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Neonatal Brain: Regional
Variability of in Vivo MR
Imaging Relaxation Rates at
3.0 T—Initial Experience1

PURPOSE: To retrospectively investigate regional in vivo magnetic resonance (MR)
imaging transverse and longitudinal relaxation rates at 3.0 T in neonatal brain, the
relationship between these rates, and their potential use for gray matter (GM) versus
white matter (WM) tissue discrimination.

MATERIALS AND METHODS: Informed parental consent for performance of
imaging procedures was obtained in each infant. Informed consent for retrospective
image analysis was not required; ethics approval was obtained from institutional
review board. At 3.0 T, R1 and R2 were measured in brain regions (frontal WM,
posterior WM, periventricular WM, frontal GM, posterior GM, basal ganglia, and
thalamus) in 13 infants with suspected neurologic abnormality (two term, 11
preterm). Maps of R1 and R2 were acquired with T1 by multiple readout pulses and
segmented spin-echo echo-planar imaging sequences, respectively. Accuracy of R1
and R2 map acquisition methods was tested in phantoms by comparing them with
inversion-recovery and spin-echo sequences, respectively. Statistical analysis in-
cluded linear regression analysis to determine relationship between R1 and R2 and
Wilcoxon signed rank test to investigate the potential for discrimination between
GM and WM.

RESULTS: In phantoms, R1 values measured with T1 by multiple readout pulses
sequence were 3%–8% lower than those measured with inversion recovery se-
quence, and R2 values measured with segmented echo-planar sequence were
1%–8% lower than those measured with spin-echo sequence. A strong correlation
of 0.944 (P � .001) between R1 and R2 in neonatal brain was observed. For R2,
relative differences between GM and WM were larger than were those for R1
(z � �2.366, P � .05). For frontal GM and frontal WM, (R2GM � R2WM)/R2WM

yielded 0.8 � 0.2 (mean � standard deviation) and (R1GM � R1WM)/R1WM yielded
0.3 � 0.09.

CONCLUSION: Results at 3.0 T indicate that R1 decreases with increasing field
strength, while R2 values are similar to those reported at lower field strengths. For
neonates, R2 image contrast may be more advantageous than R1 image contrast for
differentiation between GM and WM.
© RSNA, 2005

Magnetic resonance (MR) imaging is a powerful technique for noninvasively investigating
brain maturation, injury, and abnormalities in neonates. Thus far, the majority of neonatal
MR imaging studies have been limited to field strengths of 1.5 T and lower. The improved
signal-to-noise ratio provided at higher field strengths (3.0 T and higher) should be advanta-
geous for imaging and spectroscopy of the neonatal brain. To take advantage of the higher
field strengths for neonatal studies, it is necessary to optimize image contrast and to determine
which sequences provide the strongest contrast between particular tissues. Optimization of
contrast between neonatal brain regions is particularly important for investigating the influ-
ence of brain injury or prematurity on the morphologic development of the brain (1–5)
because such studies often involve segmentation of brain regions (6,7).
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MR imaging data required for contrast
optimization and comparison can be ob-
tained through image-based measure-
ments of the relaxation rates R1 and R2
(R1 � 1/T1, R2 � 1/T2). Since relaxation
rates, in particular R1, have been shown
to change with changes in field strength
(8–12), accurate values for relaxation
rates for neonatal brain regions at 3.0 T
must be determined. Although relax-
ation measurements have been reported
at lower field strengths for various pre-
term and term neonatal brain regions
(13–20), no relaxation data have been re-
ported at 3.0 T. In this article, “preterm”
and “premature” have been used inter-
changeably in reference to an infant of
less than 37 weeks gestation.

Thus, the purpose of our study was to
retrospectively investigate regional in
vivo MR imaging transverse and longitu-
dinal relaxation rate values at 3.0 T in the
neonatal brain, the relationship between
these values, and their potential use for
discrimination between gray matter
(GM) and white matter (WM) tissue.

MATERIALS AND METHODS

MR Imaging System

Studies were performed with a 3.0-T
dual-channel MR imaging–MR spectros-
copy system (IMRIS; Innovative Mag-
netic Resonance Imaging Systems, Win-
nipeg, Manitoba, Canada) designed for
imaging studies in infants. The short-
bore magnet (length, 135 cm) is
equipped with asymmetric gradients
with a gradient clear bore of 379 mm and
a maximum gradient strength of 40
mT/m. Infants were imaged in a 27.4-cm
quadrature birdcage coil, which was
lined with a layer of barium sulfate–
loaded vinyl-foam composite sound-
proofing material (type B-14C; Wilrep,
Mississauga, Ontario, Canada). This lin-
ing reduced acoustic noise by approxi-
mately 15 dB (A weighted). Sound levels
for all sequences used were measured to
be less than 85 dB (A weighted) at the
center of the coil. In addition, infants
wore molded earplugs (EarClassic; Aearo,
Indianapolis, Ind) to provide additional
sound attenuation.

R1 Measurements

MR image–based measurements of R1
were determined with the T1 by multiple
readout pulses sequence (21) with a six-
section acquisition, as recently described
(11). Six transverse sections, centered at
the level of the lateral ventricles, were
acquired. Imaging parameters included

the following: delay between the final
excitation of a given section and the in-
version pulse for the next view, 2000
msec; time duration between excitations
of the same section, 120 msec; echo time
(TE), 8 msec; section thickness, 3 mm;
intersection gap, 1 mm; matrix, 128 �
96; field of view, 160 mm; flip angle, ap-
proximately 25°; and total imaging time,
approximately 9 minutes 30 seconds. R1
maps were reconstructed according to a
recently described automated procedure
(11) that does not require prior knowl-
edge of the exact flip angle within each
pixel. This is advantageous at higher field
strengths, since B1 variation within the
head increases with field strength. This
reconstruction procedure (11) also pro-
duced maps of the flip angle for each
section with lower resolution (32 � 32
matrix).

R2 Measurements

Measurements of R2 were determined
with a 16-segment spin-echo echo-planar
MR imaging sequence. In each infant,
images were collected with TE values of
30, 60, 100, 160, 200, and 250 msec, ex-
cept as noted later. The acquisition in-
cluded eight to 12 transverse sections
centered on the lateral ventricles. Six of
the sections were matched in position to
those for the R1 acquisition. Other imag-
ing parameters included the following:
TR � TE, 3400 msec; section thickness, 3
mm; intersection gap, 1 mm; matrix,
128 � 128; field of view, 160 mm; imag-
ing bandwidth, 100 kHz; and acquisition
time, approximately 2 minutes per TE
value. Curve fitting for the construction
of R2 maps was automated and com-
pleted according to an appropriately
weighted linear fit of the log of the signal
intensity.

To minimize Nyquist ghosting for the
segmented echo-planar imaging acquisi-
tion, reference image data (ie, data ac-
quired with phase encoding turned off)
were acquired and used to perform phase
correction (22,23) of k-space echo-planar
imaging data after one-dimensional Fou-
rier transform imaging. The TE shifting
technique (23) was applied to reduced
phase and amplitude discontinuities in
k-space–associated T2* decay.

To ensure that the T2 decay curve was
not affected by T1 relaxation, which can
be the case if TR is fixed, the quantity
TR � TE was held fixed as TE was varied.
This minimizing of T1-related effects can
be illustrated by considering the ampli-
tude of the spin-echo signal (SSE) as a
function of TE and TR for a tissue with

parameters T1, T2, and N (spin density),
as given in an equation in another source
(10) and shown here in Equation (1):

SSE(TE, TR) � N � �1 � 2 � e�(TR�TE/2)/T1

� e�TR/T1� � e�TE/T2 . (1)

If we define Td as TR � TE, then Equation
(1) becomes

SSE � N � �1 � 2 � e�Td/T1 � e�TE/2T1

� e�Td/T1 � e�TE/T1� � e�TE/T2 . (2)

By expanding the exponential factors
containing TE, for TE �� T1, and retain-
ing only first-order terms, the quantity in
parentheses (Eq [2]) becomes equal to 1 �
e(�Td/T1). If Td is held constant, the
quantity in parentheses is approximately
independent of TE, and, thus, the signal
decays exponentially with increasing TE.
For the timing parameters used in the
present study (Td � 3400 msec, 30
msec � TE � 250 msec) and T1 of 1000
msec, numeric calculations indicate that
the variation of the quantity in parenthe-
ses with variation in TE is extremely
small (�0.05%). (This represents an over-
estimate of the variation, since the T1 of
neonatal brain tissue is 	1000 msec.)

Phantom Experiments

To validate the technique, measure-
ments of R1, obtained with the multisec-
tion T1 by multiple readout pulses se-
quence, were determined with distilled
water solution phantoms containing
three concentrations of MnCl2 of ap-
proximately 0, 5, and 15 mg/L. The con-
centrations of MnCl2 were chosen to rep-
resent a physiologic range of R1 values
for neonatal brain tissue. R1 values were
compared with those obtained with a
standard single-section inversion-recov-
ery sequence with 16 inversion times
ranging from 1 to 10 000 msec and a TR
of 14 000 msec plus inversion time to
allow for complete relaxation.

The effect of flip angle variation on
measured R1 values was determined by
using a spherical phantom (constructed
by L.A.W.) with a diameter of 10 cm that
contained a distilled water solution with
MnCl2 concentration of approximately 5
mg/L. The mean flip angle was measured
for two regions of interest (ROIs) that
were drawn by one author (L.A.W.) on
the flip angle map for each of the six
sections. The first ROI corresponded to a
circular region drawn in the center of the
phantom (radius, approximately 14
mm), and the second corresponded to a
ring (thickness, approximately 8 mm)
drawn near the edge of the phantom. The
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same ROIs were placed on the R1 maps in
areas that corresponded to the ROIs
drawn on the flip angle maps, and the
mean R1 was measured for each of the
two regions.

Measurements of R2, determined with
the segmented spin-echo echo-planar
imaging sequence, were performed by us-
ing distilled water solution phantoms
(MnCl2 concentration, approximately 4,
6, 8, and 20 mg/L). The concentrations of
MnCl2 were chosen to represent a phys-
iologic range of R2 values for neonatal
brain tissue. R2 values were compared
with those obtained with a standard sin-
gle-section single-echo spin-echo se-
quence with the same phantoms and TE
values of 30, 60, 100, 160, 200, and 250
msec and TR � TE of 10 000 msec.

Neonatal Subjects and Protocol

Infants who were admitted to the Neo-
natal Intensive Care Unit at St Joseph’s
Health Care, London, Ontario, Canada,
between January 1, 2001, and January 1,
2003, and who underwent 3.0-T MR im-
aging during their hospitalization be-
cause they were suspected of having neu-
rologic abnormalities were included in
this study. Informed parental consent to
perform the imaging procedures was ob-
tained in each infant. Ethics approval
was obtained from the institutional re-
view board for our study. Informed con-
sent for retrospective image analysis was
not required by the institutional review
board. The cohort included 13 consecu-

tive patients (Table 1), eight male and
five female infants. The gestational age,
as the number of completed weeks of ges-
tation according to maternal menstrual
dates at birth, varied from 26 weeks to 42
weeks (median, 29 weeks). Depending on
infant stability and the urgency of the
clinical imaging, corrected gestational
age (gestational age at birth plus postna-
tal age) at imaging varied from 28 weeks
to 43 weeks (median, 34 weeks).

Infants were sedated for 3.0-T MR im-
aging with an oral dose of 25–50 mg/kg
chloral hydrate (Chloral Hydrate 500
mg/5 mL; Pharmascience, Montreal,
Quebec, Canada) prior to arrival at the
3.0-T MR imaging suite. Infants were
swaddled and laid on their sides with
gentle head restraint in an attempt to
maximize infant comfort and minimize
infant motion. Infant heart rate and ox-
ygen saturation levels were continuously
monitored during imaging. In addition,
an infrared video monitoring system was
interfaced to the system to allow a view
of the infant’s head and provide a means
to watch for motion. Image-based mea-
surements of R1 and R2 were determined
with the methods described previously.

Data to reconstruct R1 maps for infants
A, G, J, and K and R2 maps for infant D
were not acquired because of the limited
time during which each infant remained
still. In addition, images for infants E
(TE � 100 msec), G (TE � 60 and 200
msec), J (TE � 200 and 250 msec), and K
(TE � 60 and 200 msec) were not ac-

quired for the same reason. Images were
analyzed for motion artifacts by one au-
thor (L.A.W.) in consultation with an-
other author (N.G.) and were discarded if
artifact-to-signal ratio was greater than
15% (artifact-to-signal ratio � [SIG �
SIN]/SIWM, where SIG � signal intensity of
image ghost, SIN � signal intensity of
image noise, SIWM � signal intensity
from region of WM). With these criteria,
the R1 data set and images for infant E
(TE � 60 and 160 msec) were discarded.
R2 maps were reconstructed by using the
remaining images for infants E (TE � 30,
200, and 250 msec), G and K (TE � 30,
100, 160, and 250 msec), and J (TE � 30,
60, 100, and 160 msec).

Image Analysis

Mean values for relaxation rates were
measured from ROIs within frontal WM,
posterior WM, periventricular WM, fron-
tal GM, posterior GM, basal ganglia, and
thalamus. ROIs for the basal ganglia and
thalamus were located on a single sec-
tion, whereas ROIs for the frontal WM,
posterior WM, periventricular WM, fron-
tal GM, and posterior GM were obtained
from a single section at the level of the
centrum semiovale. Measurements for
frontal WM, posterior WM, periventricu-
lar WM, basal ganglia, and thalamus
were determined by using one ROI that
encompassed tissue from the region. To
avoid contamination of the GM regions
with the surrounding WM, measure-
ments for frontal GM and posterior GM
were determined by selecting several in-
dividual pixels within clearly defined GM
regions.

The size of the ROI was dependent on
the brain region and ranged as follows: in
frontal WM, 33–77 mm2 (mean, 56
mm2); in posterior WM, 42–88 mm2

(mean, 63 mm2); in periventricular WM,
16–23 mm2 (mean, 20 mm2); in frontal
GM, 23–39 mm2 (mean, 28 mm2); in pos-
terior GM, 17–34 mm2 (mean, 26 mm2);
in basal ganglia, 53–145 mm2 (mean, 106
mm2); and in thalamus, 31–75 mm2

(mean, 61 mm2). Measurements were ob-
tained from both the left and the right
hemispheres of the brain for each ROI
and then were averaged to yield a value
for each region of the brain. Because of
section positioning in infant I, all mea-
surements were determined at the level
of the basal ganglia, and measurements
for basal ganglia and thalamus were from
only the right hemisphere of the brain.
ROIs for R1 measurements were drawn
on R1 maps, and those for R2 measure-
ments were drawn on R2 maps. To main-

TABLE 1
Characteristics of Infants in This Study

Infant

GA at
Birth
(wk)*

Corrected
GA at

Imaging
(wk)† Main Diagnosis

A 27 28 Albright hereditary osteodystrophy
B 27 32 Bilateral periventricular leukomalacia
C 30 33 Parenchymal hemorrhage
D 28 33 Isolated parenchymal cysts
E 29 34 Bilateral periventricular leukomalacia
F 29 34 Grade 3 intraventricular hemorrhage, hypoxic-ischemic

encephalopathy
G 29 34 Bilateral periventricular leukomalacia
H 35 37 Periventricular leukomalacia, hypoxic-ischemic encephalopathy
I 26 38 Left-sided periventricular leukomalacia
J 29 39 Grade 2 intraventricular hemorrhage
K 26 40 Grades 2 (right side) and 4 (left side) intraventricular

hemorrhage
L 41 42 Hypotonia
M 42 43 Hypoxic-ischemic encephalopathy

Note.—GA � gestational age.
* Gestational age is the number of completed weeks of gestation according to maternal

menstrual dates at birth.
† Corrected gestational age is the gestational age at birth plus the postnatal age.
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tain consistency, all ROIs were drawn by
one author (L.A.W., with 4 years of expe-
rience in neonatal brain MR imaging) in
consultation with a neuroradiologist with
14 years of experience in neonatal brain
imaging.

In each infant, the flip angle variation
over the two sections used for R1 mea-
surement was assessed by measuring the
mean flip angle for two ROIs that were
drawn by one author (L.A.W.) on the flip
angle maps. The first ROI was drawn as a
circular region (radius, approximately 10
mm) in the center of the brain, and the
second ROI was drawn as a ring (thick-
ness, approximately 8 mm) near the edge
of the brain.

All image analysis was performed by
using a software package (Eigentool; Im-
age Analysis Laboratory, Department of
Diagnostic Radiology, Henry Ford Hospi-
tal and Health Sciences Center, Detroit,
Mich).

Statistical Analysis

To ascertain whether there were differ-
ences between relaxation measurements
in the left and the right hemispheres for
each ROI, a separate within-subject anal-
ysis of variance was conducted for the
hemisphere and the ROI for both R1
and R2.

The relationship between R1 and R2
values in the neonatal brain was investi-
gated by applying a linear regression
analysis to the data points from all ROIs
where acquisition of both R1 and R2 data
was successful. In addition, R1 and R2
values were averaged for each ROI, and
the Pearson product moment correlation
coefficient and Spearman rank correla-
tion coefficient (
) were calculated.

For the purpose of determining which
relaxation rate (R1 or R2) is better for
discrimination between WM and GM in
the neonatal brain, the relative differ-
ences were calculated with (R1FGM �
R1FWM)/R1FWM and (R2FGM � R2FWM)/
R2FWM in each infant in whom both R1
and R2 data were available. R1FGM and
R1FWM represent the R1 values for frontal
GM and frontal WM, respectively, and
R2FGM and R2FWM represent the R2 val-
ues for frontal GM and frontal WM, re-
spectively. Relative differences for both
R1 and R2 were compared with the Wil-
coxon signed rank test.

All statistical analyses were performed
with a software package (SPSS, version
10.0.7; SPSS, Chicago, Ill). Results that
showed a difference with P � .05 were
considered statistically significant.

RESULTS

Phantom Experiments

Table 2 provides a comparison be-
tween the R1 values measured with the
phantoms by using the T1 by multiple
readout pulses sequence and those mea-
sured by using the inversion-recovery se-
quence. Values of R1 obtained by using
the T1 by multiple readout pulses se-
quence are approximately 0.03 sec�1

lower than those obtained by using the
inversion-recovery sequence. This differ-
ence corresponds to an approximate rel-
ative difference of 3% for phantoms with
a high R1 and up to 8% for phantoms
with a low R1.

The relative difference in R1 between
the two regions in the spherical phantom
was reasonably small (mean, 3.3% � 0.3
[standard deviation]) compared with the
relative flip angle difference (8.9% � 0.7
[standard deviation]).

Table 3 provides a comparison be-
tween the R2 values measured by using
the segmented echo-planar imaging se-
quence and those measured by using the
standard spin-echo sequence. R2 values
obtained with segmented echo-planar
imaging were 1%–8% lower than the val-
ues obtained with the spin-echo method.

Neonatal Subjects

Representative R1 and R2 maps are
shown in Figure 1 for infant J. The sec-

tions on the left were obtained at the
level of the centrum semiovale where the
frontal WM, periventricular WM, poste-
rior WM, frontal GM, and posterior GM
can easily be identified. The sections on
the right were obtained at the level of the
basal ganglia where the basal ganglia and
thalamus can be identified. Statistical
analysis showed that, for both R1 and R2,
there were no significant interactions be-
tween the measurements for the left and
the right hemispheres and the ROI or
main effects for the hemisphere or the
ROI. The regional variability of R1 and R2
are shown in Figures 2 and 3, respec-
tively.

In the neonatal brain, the difference in
flip angle (mean, 7.7% � 1.5 [standard
deviation]) between the two ROIs used
for flip angle assessment was similar to
that obtained with the phantom (mean,
8.9% � 0.7 [standard deviation]).

There was a strong correlation (r �
0.944, P � .001) between measured R1
and R2 values in the neonatal brain (Fig
4). The linear regression analysis was ap-
plied to the data points from all ROIs for
infants B, C, F, H, I, L, and M. The mean
regression parameters, slope and inter-
cept, were found to be 0.036 sec�1�
0.002 (standard error) and 0.215 sec�1�
0.011 (standard error), respectively. In
addition, after averaging across subjects
for a given region, a significant difference
was observed in both the Pearson prod-

TABLE 2
Phantom R1 Values Obtained with Multisection T1 and Single-Section Inversion-
Recovery MR Imaging Sequences

Phantom MnCl2
Concentration (mg/L)

R1 Value*

T1 Sequence Inversion-Recovery Sequence

0 0.33 � 0.008 0.36 � 0.002
5 0.58 � 0.009 0.61 � 0.005

15 1.04 � 0.013 1.07 � 0.005

Note.—T1 sequence refers to T1 by multiple readout pulses MR imaging sequence.
* Values are expressed as the mean seconds � standard deviation.

TABLE 3
Phantom R2 Values Obtained with Multisection Segmented Echo-Planar and
Single-Section Single-Echo Spin-Echo MR Imaging Sequences

Phantom MnCl2
Concentration (mg/L)

R2 Value*

Echo-Planar Sequence Spin-Echo Sequence

4 3.08 � 0.17 3.34 � 0.08
6 4.44 � 0.14 4.75 � 0.08
8 5.82 � 0.19 5.87 � 0.12

20 12.15 � 0.45 12.37 � 0.25

* Values are expressed as the mean seconds � standard deviation.
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uct moment correlation coefficient,
which was 0.997 (P � .001), and the
Spearman 
, which was 0.891 (P � .01).

The mean relative R2 difference be-
tween GM and WM (0.8 � 0.2 [standard
deviation]) was significantly greater than
the mean relative R1 difference (0.3 �
0.09 [standard deviation]), on the basis of
the Wilcoxon signed rank test (z �
�2.366, P � .05). In fact, the relative R2
difference was greater than that of R1 in
all compared cases.

DISCUSSION

Relationship between R1 and R2 in
Neonatal Brain Tissue

Our results indicate a strong correla-
tion (r � 0.944) between the values of R1
and R2 in brain regions in this group of
neonates examined at 3.0 T. This suggests
that the interregional variation of R1 and

R2 largely reflects variations in the same
tissue property. This property may be
simply tissue water content. That is, the
intersubject and interregional variation
in relaxation rate values may largely re-
flect variations in water content. Investi-
gators in previous reports demonstrated a
linear correlation between R1 and water
content in vitro (24,25) and in vivo
(11,24–26) and an almost linear relation-
ship between R2 and water content (at
low water content) in vitro (25). In hu-
man neonates, tissue water would be ex-
pected to decrease with increasing age
and vary with region, according to the
level of maturational changes, such as
myelination, since maturation is typi-
cally accompanied by increases in the
content of tissue “semisolids” (ie, major
components of the tissue other than wa-
ter). This relationship between R1 and R2
is consistent with what has been ob-

served in age-related changes in R1 and
R2 in an animal model (27).

Findings in previous studies about re-
laxation rates indicate that, in healthy
adults, the interregional variation in val-
ues for R1 appears to be related largely to
water content (11,26), whereas that in
values for R2 is also strongly influenced
by levels of tissue iron stores (28–31). (In
adults, at 3.0 T, regional values of R2 are
greatest in the iron-rich deep GM region
[28], whereas R1 is greatest in the WM
region [11], which is the region with low-
est water content.) We do not expect tis-
sue iron stores, however, to strongly in-
fluence R2 values in neonates because of
the extremely low iron levels in such sub-
jects at this age (32,33).

Estimates of Brain Tissue Water
Content in Neonates

In previous in vivo studies in the adult
brain, regression analysis provided a lin-
ear relationship between the interre-
gional variation of R1 in healthy adults
and estimates of regional water content
(11,26). If we assume that the relation-
ship between R1 and tissue water content
in the neonatal brain is similar to the
relationship previously reported in the
adult brain, then a rough estimate of the
water content of neonatal WM and GM
can be obtained. When we substitute our

Figure 1. Transverse R1 maps (top row) and R2 maps (bottom row)
in infant J (Table 1) illustrate positions of ROIs used for quantitative
analysis. Frontal WM (FWM), posterior WM (PWM), periventricular
WM (PVWM), frontal GM, and posterior GM can be identified on the
section obtained at level of centrum semiovale shown at left. Basal
ganglia (BG) and thalamus (TH) can be identified on the section
obtained at level of basal ganglia shown at right. Areas outlined in
black demarcate representative ROIs in each region. Frontal GM and
posterior GM regions were determined as described in the text. Im-
aging parameters included section thickness, 3 mm; section gap, 1
mm; and acquired matrix size, 128 � 96 for R1 maps and 128 � 128
for R2 maps.

Figure 2. Plot shows regional variability in R1 values within neona-
tal brain regions, which include frontal WM (FWM), posterior WM
(PWM), periventricular WM (PVWM), frontal GM (FGM), posterior
GM (PGM), basal ganglia (BG), and thalamus (TH). Values plotted are
the mean values of the left and right hemispheres, except those of
infant H (see Materials and Methods for details). Infants B, C, D, and
F were premature infants imaged at a premature age; infants H and I,
premature infants imaged at a term age; and infants L and M, term
infants imaged at a term age.
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average R1 values in the term neonatal
brain in the equation for the previously
reported linear relationship (R1 �
1.99 � [1/fw] � 1.75, where fw � water
content � mw/mtt [where mw is water
mass and mtt is total tissue mass]) and
solve for fw, we estimate the water con-
tent of frontal WM and frontal GM in
term neonates to be 93% and 88%, re-
spectively.

Similarly, for the premature infant
brain, we can estimate that the frontal
WM water content is approximately 94%
and the frontal GM water content is ap-
proximately 90%. Although the relation-
ship between R1 and water content was
obtained from studies in adults, our pre-
dictions are reasonable, given the results
of a postmortem study in which the re-
searchers found that the whole-brain wa-
ter content at birth was 88%. Researchers
in that study also found that whole-brain
water content decreased to 82% by 6
months of age (34). Also, it is well known
that the water content of WM is greater
than that of GM during the neonatal pe-
riod (5). This finding is in contrast to
findings in the adult brain, where the
tissue water content of frontal GM is
greater than that of frontal WM, each of
which was reported to be 80%–86% and
70%, respectively (11,26,35–37). The
large decrease in the WM water content
as the brain develops into adulthood is
explained by prominent maturational

changes, such as myelination. This de-
crease in water content is associated with
increased values of R1 and R2.

Implications for Contrast
Optimization at MR Imaging in
Neonates

For the neonatal brain, our results in-
dicate that R2 values have better poten-
tial than do R1 values for discrimination
between GM and WM. In adults, R1-
based discrimination is typically stron-
ger. This is demonstrated in Figure 5,
which illustrates a comparison of values
in our study for relaxation rates in neo-
natal frontal WM and frontal GM with
adult values of R1 (Fig 5a), which were
measured previously (11) by using the T1
by multiple readout pulses sequence, and
with values of R2 (Fig 5b), which were
measured previously (28) by using the
gradient-echo sampling of free induction
decay and echo sequence (38). Figure 5
demonstrates that, for neonates, the rel-
ative difference in R2 values between
WM and GM ([R2FGM � R2FWM]/
R2FWM � 0.8) is stronger than that asso-
ciated with R1 values ([R1FGM � R1FWM]/
R1FWM � 0.3). In adults, however, the
relative difference in R1 between WM
and GM ([R1FWM � R1FGM]/R1FGM � 1.1
[Fig 5a]) is stronger than is the difference

in R2 ([R2FWM � R2FGM]/R2FGM � 0.3 [Fig
5b]).

These findings suggest that contrast in
the neonatal brain, although ultimately
dependent on a particular imaging se-
quence, is very different from that in the
adult brain at 3.0 T. From these results,
R2-based contrast may be of more inter-
est for neonatal imaging studies that re-
quire good discrimination between GM
and WM. A rigorous comparison of the
contrast-to-noise ratio for imaging se-
quences with R1 versus R2 contrast, how-
ever, would require calculations of con-
trast-to-noise ratio per unit time specific
to the particular sequences of interest.
These calculations could be performed by
using R1 and R2 values provided here.

Comparison with Results at Lower
Field Strengths

A comparison of our 3.0-T MR imaging
relaxation rate measurements with those
obtained at lower field strengths in other
studies is provided in Table 4. Our data
are consistent with the expected increase
in T1 with field strength (ie, decrease in
R1 with field strength), as projected from
studies in adults (9–12). On the other
hand, our values for T2 are similar to
typical values obtained at MR imaging
with field strengths of 2.4 T (14), 2.35 T

Figure 3. Plot shows regional variability in R2 values within neona-
tal brain regions, which include frontal WM (FWM), posterior WM
(PWM), periventricular WM (PVWM), frontal GM (FGM), posterior
GM (PGM), basal ganglia (BG), and thalamus (TH). Values plotted are
mean values of the left and right hemispheres, except those of infant
H (see Materials and Methods for details). Infants A, B, C, E, F, and G
were premature infants imaged at a premature age; infants H, I, J, and
K, premature infants imaged at a term age; and infants L and M, term
infants imaged at a term age.

Figure 4. Graph shows correlation of R1 and R2 relaxation rates
measured in several brain regions. Plot includes only data from which
both R1 and R2 measurements were successful (see Materials and
Methods for details). Values plotted are the mean values of the left
and right hemispheres, except those of infant H (see Materials and
Methods for details). Infants B, C, and F were premature infants
imaged at a premature age; infants H and I, premature infants imaged
at a term age; and infants L and M, term infants imaged at a term age.
Observed correlation between R1 and R2 suggests that, for neonatal
brain tissue, interregional variation of these two relaxation rates may
largely reflect variations in the same tissue property, perhaps water
content.
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(15), 1.5 T (17,18), and 1.0 T (16,19). The
variation in relaxation times according to
gestational age (13,14,16,20) and abnor-
mality (17) limits the interpretation of
results of this comparison.

Potential Limitations

A potential limitation of performing
R2 measurements by using a single spin-
echo acquisition, rather than a multi-
echo sequence (eg, Carr-Purcell-Mei-
boom-Gill method [39]), involves the
influence of diffusion through meso-
scopic magnetic field gradients on R2. It
has been shown that, in multiecho acqui-
sitions, R2 increases with the time be-
tween refocusing pulses, and this effect is

known as interecho time-dependent
transverse relaxation enhancement
(40,41). This enhancement occurs be-
cause the irreversible decay associated
with diffusion has more time to evolve
with longer refocusing times. For mea-
surements of R2 that are based on sepa-
rate single-echo acquisitions (as used in
this study), one might expect that the
influence of diffusion on R2 would in-
crease with increasing TE and, hence,
vary along the decay curve.

The amount by which R2 increases
with increasing interecho time, however,
has been found to be related to the con-
centration of ferritin in adult brain tissue
(40,41). In frontal WM, which has one of
the lowest ferritin concentrations (ap-

proximately 4.2 mg/100 g fresh weight
[32]) in adult brain regions, a 10-fold de-
crease in the interecho spacing produced
a decrease of 0.82 sec�1 in the value of R2
at 1.5 T (41). In neonates, this effect
should be even smaller because the con-
centration of brain ferritin is much lower
(ranging from approximately 0.3 mg/100
g fresh weight in frontal WM to 0.7 mg/
100 g fresh weight in the occipital cortex
[32]). Thus, this diffusion effect likely
provides only a small contribution to the
measured values for R2 in our study.

Multiecho sequences were not consid-
ered practical for the purpose of measur-
ing values for interregional relaxation
rates in the neonatal brain at 3.0 T. The
precision of R2 measurements with a se-
quence that is based on the Carr-Purcell-
Meiboom-Gill method (39) relies heavily
on the homogeneity of both the B0 and
B1 fields (42). In some previous studies
involving T2 measurements in the brain
at 1.5 T (43,44), nonselective refocusing
radiofrequency pulses were applied,
which minimized errors in T2 measure-
ment associated with B1 variation. This,
however, limited the acquisition to a sin-
gle section. Since B1 variation within the
head increases with field strength, it is
even more difficult to obtain accurate flip
angles and, thus, accurate measurements
of R2 at 3.0 T than it is to obtain mea-
surements of R2 at 1.5 T. In addition, the
increase in the specific absorption rate
with field strength creates further prob-
lems for determination of multiecho T2
measurements at 3.0 T.

In our analysis of values of R2 relax-
ation rates, we assumed a single expo-
nential decay. Results in previous reports
of transverse relaxation rate measure-
ments in adult brains have demonstrated
at least two decay components, with T2
values of roughly 10–50 msec and 70–
120 msec (43,45,46). The shorter T2 com-
ponent, which is thought to be associ-
ated with myelin water, contributes
approximately 2%–24% of the signal in-
tensity, depending on region of the brain
(43,45,46). We would expect the magni-
tude of this short component to be much
smaller in neonatal brain tissue than in
adult brain tissue, because, in the neo-
nate, myelination occurs at a very early
stage in most regions. In this study, for
regions examined that have myelin levels
that are closer to adult myelin levels,
such as the thalamus and basal ganglia,
the adult fractions of myelin water were
reported to be less than 6% (43).

This study included a small cohort of
neonates who were referred for examina-
tion because they were suspected of hav-

Figure 5. Graphs show R1 and R2 values for frontal WM (FWM) and
frontal GM (FGM) in premature infants, term infants, and healthy
adults. Mean R1 and R2 values were plotted for each subset. Error bars
indicate the standard deviation for each group. This figure illustrates
that, for neonatal brain, R2 has better potential than does R1 for
discrimination between GM and WM. In adult brain, R1 contrast
often is more useful than is R2 contrast for differentiation between
GM and WM. Graphs illustrate that R1 and R2 increase as the brain
matures and that this increase is greater in WM than it is in GM.
(a) R1 values. (Data for adults were obtained from reference 11.)
(b) R2 values. (Data for adults were obtained from reference 28.)
Prematurely born infants who were imaged at a term age were in-
cluded in the term infant group for both a and b.
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ing a neurologic abnormality. Thus, the
measurements presented may be valid
only for infants with similar clinical find-
ings at presentation. Infants who are sus-
pected of having neurologic abnormali-
ties, however, most often undergo MR
imaging examinations. For that reason,
the presented relaxation rate measure-
ments provide important information for
optimizing sequences used for clinical
imaging at 3.0 T in neonates.

In conclusion, as expected for MR im-
aging in the neonatal brain at 3.0 T, there
is a decrease in values for the in vivo
longitudinal relaxation rate, R1, com-
pared with values reported at lower field
strengths. At 3.0 T, however, the values
for the transverse relaxation rate, R2, ap-
pear to be similar to values reported at
lower field strengths (1.0–2.4 T).

Our results show a strong correlation
among the in vivo interregional varia-
tions in values for the longitudinal and
transverse relaxation rates, R1 and R2,
respectively, for regions of the frontal
WM, frontal GM, posterior WM, poste-
rior GM, periventricular WM, thalamus,
and basal ganglia in the neonatal brain at
3.0 T. This correlation suggests that, in
the neonatal brain, the interregional
variation in R1 and R2 values may largely
reflect variations in the same tissue prop-
erty, possibly tissue water content. This is
in contrast to values for relaxation rates
in adult brain tissue, where the R2 varia-
tion appears to be strongly influenced by
tissue ferritin levels.

In addition, our results indicate that R2

contrast may be more advantageous than
R1 contrast for discrimination between
GM and WM regions in the neonatal
brain. This is the reverse of that in the
adult brain, where R1 contrast often is
more useful than R2 contrast for differ-
entiation between GM and WM.
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