
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

7-2008

A Model of Open Source Software-Based Product
Line Development
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Faheem Ahmed
Thompson River University, fahmed@tru.ca

Mohammad Ali Babar
Lero, malibaba@lero.ie

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@inproceedings{DBLP:conf/compsac/AhmedCB08, author = {Faheem Ahmed and Luiz Fernando Capretz and Muhammad Ali
Babar}, title = {A Model of Open Source Software-Based Product Line Development}, booktitle = {COMPSAC}, year = {2008},
pages = {1215-1220}, ee = {http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2008.126}, crossref = {DBLP:conf/compsac/
2008}, bibsource = {DBLP, http://dblp.uni-trier.de} } @proceedings{DBLP:conf/compsac/2008, title = {Proceedings of the 32nd
Annual IEEE International Computer Software and Applications Conference, COMPSAC 2008, 28 July - 1 August 2008, Turku,
Finland}, booktitle = {COMPSAC}, publisher = {IEEE Computer Society}, year = {2008}, isbn = {978-0-7695-3262-2}, bibsource =
{DBLP, http://dblp.uni-trier.de} }

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages

A Model of Open Source Software-Based Product Line Development

Faheem Ahmed
1
, Luiz Fernando Capretz

2
, Muhammad Ali Babar

3

1College of Information Technology, P.O. Box 17551, United Arab Emirates University,

Al Ain, United Arab Emirates
2Department of Electrical & Computer Engineering, Faculty of Engineering, University of Western Ontario,

London, Ont., Canada N6A 5B9
3Lero, University of Limerick, Ireland

1
f.ahmed@uaeu.ac.ae,

2
lcapretz@eng.uwo.ca,

3
malibaba@lero.ie

Abstract

Software Product Line (SPL) and Open Source

Software (OSS) have emerged as successful modes of

developing software. There is an increased interest in

developing suitable approaches for combining the

promised advantages of SPL and OSS. Researchers

and practitioners have been emphasizing the need of

exploiting the ever growing repositories of OSS

components for developing SPLs. However, there is no

conceptual model for guiding the process of developing

OSS-based SPLs. In this paper, we propose a model for

developing software product line using open source

software. This paper identifies and elaborates the

essential phases and activities of the proposed model of

developing OSS-based SPLs. This model emphasizes

the vital role of software architecture and asserts that

software architectures of OSS can be exploited to

establish a SPL. To demonstrate this, we have

evaluated Eclipse’s architecture for its potential to

support different flavors of a system.

1. Introduction

A Software Product Line (SPL) is a set of software-

intensive systems, which share a common, managed set

of features that satisfy the specific needs of a particular

market segment or mission and are developed from a

common set of core assets in a prescribed way [1]. A

SPL can also be seen as a collection of systems sharing

a managed set of features constructed from a common

set of core assets and having a significant impact on the

software development productivity. A SPL deals with

the assembly of products from existing core assets

commonly known as components [2], and there is

continuous growth in the core assets as the production

proceeds [3, 4]. The SPL approach is expected to help

organization to reduce cost, improve delivery time and

quality by maximize intra-organizational reuse of

software artifacts [5, 6]. Another software development

paradigm that has recently gained significant attention

is Open Source Software (OSS), originated from a

pragmatic need to share code among individuals has

grown to become a major force behind inter-

organizational reuse of platforms, components and

code. Several OSS (such as Apache, Linux and

Eclipse) have been widely adopted to support mission-

and business-critical activities in various sizes of

organizations worldwide.

Given the phenomenal success and popularity of

both SPL and OSS software development paradigms,

researchers and practitioners have been exploring the

opportunities and challenges of utilizing the ever

growing repositories of shared components provided

by OSS in software product lines. It is argued that the

use of OSS components in SPL appears to have great

potential for both the OSS and SPL communities. For

the SPL community, the use of OSS components in a

SPL promises to help them to minimize the

development efforts in commodity (non-value adding)

components. Several OSS components have been

successfully used in mission-critical product families

[7]. Despite continuously growing interest in finding

suitable mechanisms for combing the advantages of

OSS and SPL, there is no process guidance model for

developing a SPL based on OSS.

We assert that such a process guidance model can

help organizations to identify and understand the

activities and tasks that need to be undertaken in order

to successfully develop OSS based family of systems.

In order to address this gap, we propose a model of

developing SPL based on OSS by incorporating several

concepts that characterizing various aspects of SPL and

OSS. The proposed model identifies the

interdependency of various activities of SPL and OSS

and describes different ways of exploiting the

relationships between those activities in order to guide

the process of developing OSS based SPL. It should be

clarified that such a process guidance model will not

aim to replace existing SPL development and

maintenance models and frameworks such as reported

in [1, 8]. Rather, this model complements those

frameworks for establishing and maintaining SPLs.

Since Software architecture and its related issues are

considered of paramount importance in the successful

development and maintenance of a SPL [9, 10], this

model emphasises the vital role of software architecture

in developing OSS-based SPL.

2. A Model of Developing OSS-Based SPL

This section presents a model for developing OSS-

based SPL. It should be noted that the research

underpinning the proposed model does not address the

legal and business aspects of using OSS for developing

a SPL. To identify the elements of the proposed model,

we have drawn upon a number of sources including

existing frameworks for establishing and maintaining

SPLs as described in [1, 8], an extensive survey of the

published literature on software product line

engineering, software architecture, and OSS, and an

analysis of the heuristics of experienced software

architects and SPL researchers and practitioners.

However, it is not our intention to claim that this model

is complete and fully validated; nor do we assert that it

provides an exhaustive list of activities and tasks that

an organization is expected to undertake in order to

develop SPLs based on OSS. Rather, we expect this

model to evolve based on community feedback and

empirical assessment that we plan to carry out in our

future work. In the following sections, we discuss

different elements of the model shown in Figure 1.

Before describing each element of the proposed model,

it appears quite appropriate to briefly discuss the key

role software architecture in SPL. Korhonen and

Mikkonen [11] explained that Product Line

Architecture (PLA) handles the variations of the

applications of some problem domain in multiple

abstraction levels, and also guides the developers in the

product specialization work. According to Jazayeri et

al. [12], PLA defines the concepts, structure, and

texture necessary to achieve variation in features of

variant products while achieving maximum sharing

parts in the implementation. The architectural analysis

and design of product lines has been extensively

investigated as reported in [10, 13-15].

Meekel et al. [16] identified three axes of variability

among products resulting from software product line:

features variability, hardware platform variability and

performances variability. Features variability describes

product specific characteristics. PLA usually contains

three major parts, i.e. underlying core architecture,

which is the integral composition of all the resulting

products from a SPL. Products common features are

ones, which are partly or completely present in all the

resultant products. Product variable features are ones

that are present in individual products. Well-defined

core architecture of a SPL is expected to define a trade-

off among common and variable features of products

that belong to that SPL. We again highlight the

important role of architecture in supporting

commonalities and variations among different products

of a SPL during our discussion on Eclipse

architecture’s support for SPLs in Section 3.
The Domain Engineering phase of the model

establishes an infrastructure for software product line

and identifies OSS to be used in developing products,

which belong to that SPL. During the Domain

Engineering phase, SPL Infrastructure View and OSS

Archive View are initiated. The iterations of the

activities of SPL Infrastructure View and OSS Archive

View provide feedback to one another. The aim is to

identify, evaluate, and select suitable OSS components

that fulfils the requirements of the SPL and meets the

production constraints.

2.1 Product Line Infrastructure View

Product Line Infrastructure View involves

conceptualization and initiation of SPL in an

organization. This view consists of activities that

establish an infrastructure for a SPL. The Product Line

Infrastructure View constantly provides feedback to

OSS Archive View for effective search, identification,

and evaluation, of a potential candidate OSS that can

be used to establish a software product line. Software

product line scope identifies the characteristics of the

product line and the products that comprise the product

line. Software product line scope definition activity

iteratively provides feedback to OSS search and

identification activity in OSS Archive View. This way

it ensures that the searched OSS is consistent with the

scope of product line. Product line requirements deal

with features or functionalities common to all the

products belonging to that family. The requirement

engineering for product line gives feedback to OSS

selection and evaluation activity in the OSS Archive

View to find out whether the OSS meets the product

line requirements or not. The goals of the software

product line are explained by the business cases

identified, and they promote the product line. The

identification of business cases helps in evaluating

identified OSS in the OSS Archive View in order to

meet the production criteria and product requirements.

Figure 1: A model of developing Open Source Software based product software product lines

2.2 OSS Archive View

OSS Archive View is responsible for identifying

and evaluating OSS for developing SPLs. It

communicates with the Product Line Infrastructure

View to select a suitable OSS. The evaluation of the

OSS is based on the risk management and architectural

concerns with reference to a SPL. The process of

searching and identifying potential OSS starts when

we conceptualize a SPL by defining the product line

scope. The main consideration for searching an OSS is

to analyse the ability of the OSS for fulfilling the

product line requirements and meeting the production

constraints, which are considered the most important

elements of an evaluation criteria for selecting suitable

OSS products based on the guidelines provided in [17].

OSS also introduces some other issues that have to be

given appropriate attention before selecting a particular

OSS to be used in a SPL. The selection criteria should

also take organization’s strategies and objectives of

using OSS into account. Another important criterion is

the architectural level alignment between a SPL and an

OSS. That is why evaluating software architecture of

an OSS product with regards to the architectural

requirements of a SPL is a vital activity. For this

purposes, software architecture community has

developed several techniques, methods, and tools [10,

15], which can be used for this activity.

2.3 Application Engineering Phase

In the Application Engineering phase of the

proposed model (shown in Figure 1), actual products

are developed using OSS components. In this phase,

activities of the Product Line Application View

interact with the activities of the Core Assets

Development View and OSS Product Line

Architecture View to produce required products.

Product Line Application View initiates requirements

of new product and communicates with Core Assets

Development View to retrieve required core assets for

product development. OSS Product Line Architecture

View interacts with Product Line Application View to

provide information related to commonality and

variability of features based on the product

requirement it initiated.

2.4 Product Line Application View

Product Line Application View deals with the

actual development of products from open source

software. Product Line Application View interacts

with Product Line Infrastructure View to identify

potential business cases to capture market segment. In

order to develop new products Product Line

Application View mediates with Open Source

Software Product Line Architecture View which

maintains the information about core commonality

requirements among products and has elaborated

extension points in the open source architecture for

variability. The assembly activity involves the

development of new product. The product

requirements guide the assembly process to get

feedback from the query activity of Core Assets

Development View to find out those potential

components suitable to be assembled in order to

produce the product. If it is required then assembly

activity performs specialization, generalization, or

adjustment of the components. Assembly activity

introduces variability at the extension points offered by

software product line architecture to accommodate the

variable part of requirements for a particular product.

The qualification criteria of a SPL must be clearly

defined so that all the products resulting from that SPL

must meet those criteria. In product testing and

evaluation, products developed from a SPL are tested

to analyse whether they meet the product line testing

and evaluation criteria or not. Specific testing and

evaluation about integration of components ensures

that adaptability has no consequences. Business case

evaluation identifies the success and failure story of

the products developed and deployed. It compares the

proposed business case strategy with the outcome of

the development and deployment process of products.

2.5 Core Assets Development View

Core Assets Development View is responsible for

providing required components from core assets

repository for developing products. Core Assets

Development View interacts with Product Line

Application View to receive product. In the query

activity of the Core Assets Development View,

components are searched from the core assets

repository in order to develop the product. A well-

catalogue core assets repository reduces the efforts to

trace the suitable components for assembly. The

product requirements serve as an input to the query

activity, and continuously traversing core assets

repository yields the required components, exactly

matched, partially matched or not matched. The

components, after adaptation, generate versions, which

are documented in this activity. A comprehensive

version management and dependency link strategy for

components and products in the SPLE provides us

with vital information about components and products

having a relationship of composition and utilization. A

SPL develops an initial core assets repository in the

Domain Engineering phase. As a SPL gets matured in

its lifecycle, new core assets or even new versions of

existing core assets are produced, which must be added

to the core assets repository so that they can be reused

in later products. The core assets repository is dynamic

and continues increasing its size with the addition of

new core assets.

2.6 Open Source Product Line Architecture

View

The proposed model emphasizes the importance of

developing a product line architecture based on OSS

product. The junction of Domain Engineering phase

and Application Engineering phase produces a suitable

product line architecture based on existing OSS

components. The Domain Engineering phase provides

product line requirements. The Application

Engineering phase accommodates those requirements

along with product specific requirements. The

Application Engineering phase analyses whether the

architectures of OSS components meets the

characteristics required by the PLA in which those

components are supposed to be used. It has been

mentioned that a PLA represents the commonalities

among the products and variation points where

products differ from each other. All the resulting

products from a product line share common core

architecture.

The software engineering community have

proposed several product line architecture design and

evaluation methods such as Quality-driven

Architecture Design and Analysis method (QADA)

[18] and Family Oriented Abstraction, Specification,

and Translation Process (FAST) [3]. One of the

commons steps in these methods is the identification of

commonality and variability during domain

engineering. Variability among products of a SPL is a

vital characteristic of software product line

engineering. The products of a SPL may vary from

each other not only in terms of number and nature of

features but also in terms of number and level of

required quality attributes such as reliability, security,

usability and performance. These variations must be

handled systematically to accommodate changes in

various products and their different versions belonging

to a SPL. The objective of variability management is to

identify, specify and document variability among

products in the applications of product line. Software

product line architecture represents variability by

specifying the variation points, which can be exploited

at application engineering level by accommodating the

design decisions based on a product’s requirements.

The variability in products can be influenced from

internal and external factors. The internal factors have

their roots in refining the architecture, whereas the

external factors accommodate the market needs and

customers’ expectations. The introduction of variable

features in a product from a software product line is a

strategic decision based on market segment [8]. Fitting

a component into a product without tailoring it is the

easiest task, but some time we need to make certain

changes in the component to meet the requirements for

a particular product. Every component present in the

core assets must clearly define the variability

mechanism to be used in order to tailor them.

3. Evaluating Eclipse’s Architecture

 In this section, we present initial findings from

evaluating Eclipse’s architecture as the proposed

model emphasising the importance of exploiting the

architectures of OSS for developing SPLs. The main

objective of evaluating architecture of Eclipse is to

assess its ability to support a SPL development. This

activity mainly concentrates on the underlying

architecture’s ability of supporting the commonality

and variability mechanisms required by a SPL. The

Eclipse architecture has two main components: runtime

platform and Eclipse platform. The runtime platform

serves as the underlying core platform for all resulting

products. The Eclipse platform is structured around the

concept of extension points. Extension points are

well-defined places in the system where other tools

(called plug-ins) can contribute functionality.

 All functionality of the Eclipse platform is a result

of interactions between plug-ins and the kernel.

Eclipse’s architecture is expected to support dynamic

inclusion of variability points thus provides a well

defined and clear extension points to accommodate

variability among products. Plug-ins can define their

own extension points or simply add extensions to the

extension points of other plug-ins, which illustrates a

hierarchical structure of variability points. The

platform handles the logistics of the base environment

and provides a standard user navigation model. Each

plug-in can then focus on doing a small number of

tasks to implement a specific set of requirements of a

product. Each major subsystem in the Eclipse platform

is itself structured as a set of plug-ins that implement

some key function and define extension points.

Eclipse is written in Java, which makes it a cross-

platform application, independent of hardware.

Hardware platform variability can be observed in

Eclipse due to its platform independent characteristics.

Following are the major characteristics of Eclipse

architecture, which enables it a potential candidate for

software product line architecture:

 Explicit Extension Point: Feature Variability in

software products can be introduced by defining

plug-ins, which serves as a clear and explicit

extension points in Eclipse architecture.

 Hierarchical Structure Plug-ins can extend their

functionalities to other plug-ins, thus creating a

hierarchy of plug-ins, which makes Eclipse a multi

level architecture and allows substantial

extensibility keeping commonality among

resulting products. Multi level extension allows

designers to observe commonality and variability

among resulting products.
 Architectural Description Support: Eclipse

manifest files provide complete information about

the extension points introduced and thus allow

designers to understand and analyse the

architecture.

 Hardware Variability: Eclipse is a cross platform

application thus allows hardware variability to be

observed among resulting products.

 Extensible User Interface: Standard Widget

Toolkit (SWT) provides an opportunity to develop

potable application, which can directly access the

user-interface facilities of the underlying

operating.

It has also been revealed that although, the

Eclipse’s architecture has the potential to be used as

product line architecture, the quality issues (such as

reliability, usability, maintainability and efficiency)

need to be given appropriate attention. For example,

execution time is one of the major concerns in terms of

efficiency of software. If we are developing a SPL,

which has certain execution time requirements, there

needs to be suitable mechanisms in Eclipse’s

architecture to conform to such requirements. Similarly

resource allocation and utilization can also be critical

issues in software efficiency. For such requirement,

one needs to find out whether or not the architecture of

OSS (Eclipse in our case) is using the resource

allocation and utilization scheme, which is inline with

the requirements. Hence, the evaluation of the

Eclipse’s architecture also revealed that analysing the

architecture of OSS from theoretical perspective of

SPL in terms of supporting commonality and

variability is not sufficient to make a selection

decision. Rather, deeper anlaysis should be performed

to assess the capabilities of architecture for supporting

the required quality attributes in a SPL.

4. Final Remarks

This paper has proposed a conceptual model for

open source software-based software product line

development. The presented model highlights various

activities and tasks that an organization can expect to

undertake in order to develop open source software-

based SPL. The model has been developed by drawing

upon the theoretical principles and industrial practices

commonly reported by SPL and OSS communities and

discussions with software architecture and SPL

practitioners. We assert that this model provides a high

level guidance on systematically establishing open

source software-based software product line capable of

producing multiple products within an application

domain. The interdependency of various activities of

software product line and open source software

captured in the model shows a strong relationship

within a common framework of product development.

Additionally, the model provides an efficient way of

integrating the approaches of software product line and

open source software-based development process.

Our future work focuses on identifying suitable

techniques and tools from the SPLE, software

architecture, and OSS literature for supporting

different activities required by the presented model.

We also plan to carry out detailed empirical

assessment of the utilization and benefits of the model

using case study methodology.

5. References

[1] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns. 2002: Addison-Wesley.

[2] M.L. Griss, Implementing Product Line Features with

Component Reuse, in Proceedings of the 6th International

Conference on Software Reuse. 2000.

[3] D.M. Weiss and C.T. Lai, Software Product Line

Engineering: A Family-Based Software Development

Approach. 1999: Addison-Wesley.

[4] M.L. Griss, Product Line Architectures, in Component-

Based Software Engineering, G.T. Heineman and W.L.

Councill, Editors. 2001, Addison-Wesley. pp. 405-419.

[5] G. Buckle, et al., Calculating ROI for Software Product

Lines, IEEE Software, 2004. 21(3): pp. 23-31.

[6] F.v.d. Linden, Software Product Families in Europe: The

Esaps & Cafe Projects, IEEE software, 2002. 19(4): pp. 41-

49.

[7] D. Schmidt, Model Driven Engineering of Product-Line

Architectures for Distributed Real-time and Embedded

Systems, Tech Report Vanderbilt University, USA, 2007.

[8] F.v.d. Linden, K. Schmid, and E. Rommes, Software

Product Lines in Action: The Best Industrial Practice in

Product Line Engineering. 2007: Springer.

[9] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns. 2001: Addison-Wesley.

[10] J. Bosch, Design & Use of Software Architectures:

Adopting and evolving a product-line approach. 2000:

Addison-Wesley.

[11] M. Korhonen and T. Mikkonen, Assessing Systems

Adaptability to a Product Family, Journal of System and

Software, 2004. 50: pp. 383-392.

[12] M. Jazayeri, A. Ran, and F.v.d. Linden, Software

Architecture for Product Families. 2000: Addison-Wesley.

[13] D. Paulish, Architecture-Centric Software Project

Management. 2002: Addison-Wesley: Reading, MA, USA.

[14] R. Lutz and G. Gannod, Analysis of software product

line architecture: An experience report, Journal of Systems

and Software, 2003. 66(3): pp. 253-267.

[15] L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice. 2 ed. 2003: Addison-Wesley.

[16] J. Meekel, T. Horton, and C. Mellone, Architecting for

Domain Variability, Proccedings of the 2nd International

ESPRIT ARES Workshop on Development and Evolution of

Software Architectures for Product Families, 1998.

[17] D. Cruz, T. Wieland, and A. Ziegler, Evaluation criteria

for free/open source software products based on project

analysis, Software Process: Improvement and Practice,

2006. 11(2): pp. 107-122.

[18] M. Matinlassi, E. Niemela, and L. Dobrica, Quality-

driven architecture design and quality analysis method: A

revolutionary initiation approach to a product line

architecture, Tech Report 456, VTT Technical Research

Centre of Finland, Espoo, 2002.

	Western University
	Scholarship@Western
	7-2008

	A Model of Open Source Software-Based Product Line Development
	Luiz Fernando Capretz
	Faheem Ahmed
	Mohammad Ali Babar
	Citation of this paper:

	Author Guidelines for 8

