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Abstract: The direct reduction of esters to their corresponding 

ethers has been achieved using the Lewis acid BF2OTf•OEt2 
generated via anionic redistribution between TMSOTf and 

BF3•OEt2 with triethyl silane acting as the reducing agent.  Isolat-
ed yields of up to 71% have been obtained with the corresponding 

alcohol as the only side product. 

Key words: boron, esters, ethers, Lewis acid, reductions   

Lewis acids have played a fundamental role in the ad-
vancement of organic chemistry by improving reaction 
yields, increasing selectivity or mediating otherwise 
difficult reactions.1 Carbonyl Lewis acid complexes in 
particular have generated a great deal of attention and 
have been thoroughly studied in the carbonyl ene reac-
tion,2 addition of allyl silanes or stannanes to aldehydes 
and conjugated enones,3 as well as Diels-Alder4 and 
aldol reactions.5 In these examples, coordination of the 
Lewis acid to the carbonyl oxygen results in increased 
reactivity at the carbonyl carbon.   

The reduction of esters to alcohols is a commonplace 
synthetic transformation that can be accomplished with a 
variety of hydride sources (Scheme 1A), but the direct 
reduction of esters to ethers is less well known (Scheme 
1B). Such ester to ether reductions have been observed 
in the presence of strongly electron withdrawing Lewis 
acids.6 For example, in work on the reductive cleavage 
of polysaccharides Gray noted the inadvertent reduction 
of a C2 propionate ester side chain to its corresponding 
propyl ether.7 The system employed consisted of a 5:1 
mixture of TMSOMs:BF3•OEt2 in CH2Cl2 with Et3SiH 
serving as the hydride source. These results clearly 
showed that with the right Lewis acid it is possible to 
coax the collapse of the tetrahedral intermediate through 
a different reaction manifold thereby leading directly to 
ether formation. A general method for the direct for-
mation of ethers from esters would provide a highly 
desirable alternative to the classical Williamson ether 
synthesis.8 

 

Scheme 1    The well-known reduction of esters to alcohols (A), and 

an alternative pathway to ether formation (B) 

We sought to build on this early observation by confirm-
ing the nature of the Lewis acid responsible for ether 
formation, and by exploring the potential generality of 
this reduction. In the initial literature report it was pro-
posed that the mixture of TMSOMs and BF3•OEt2 un-
derwent anionic redistribution to form the active species 
of either BF2OMs•OEt2 or BF(OMs)2•OEt2.9 In order for 
us to further clarify the nature of the anionic redistribu-
tion, no-D 11B and 19F NMR were taken of solutions of 
TMSOMs and BF3•OEt2 in 1:1, 5:1, and 10:1 ratios.10  It 
was found that the parent Lewis acids underwent a single 
anionic redistribution only, to produce BF2OMs•OEt2 
and TMSF. The reaction was very rapid at room tem-
perature, and had reached equilibrium (Keq = 1.45) with-
in a few minutes (Scheme 2A).  

 

Scheme 2  In situ generation of BF2OMs•OEt2 and BF2OTf•OEt2 

Initial reductions of model ester hydrocinnamyl acetate 
using the original system7 of TMSOMs and BF3•OEt2 
with Et3SiH as a reducing agent gave a modest 25% 
isolated yield of hydrocinnamyl ethyl ether (Table 1, 
entry 1). The normal reduction product, hydrocinnamyl 
alcohol, predominated at 66% yield along with 7% of the 
triethyl silyl ether.  No reduction occurs in the absence of 
either TMSOMs or BF3•OEt2 which further supports the 
idea that BF2OMs•OEt2 was responsible for moderating 
the ester to ether reduction.  We speculated that enhanc-
ing the Lewis acidity of the active species might lead to 
more ether formation, and therefore the mesylate was 
replaced with a triflate. The BF2OTf•OEt2 was prepared 
in a manner analogous to that of BF2OMs•OEt2, that is, 
simply by mixing TMSOTf and BF3•OEt2 in a 5:1 ratio, 
and as with BF2OMs•OEt2, the redistribution was com-
plete within minutes.  19F NMR studies of the reaction 
between TMSOTf and BF3•OEt2 in toluene gave an equi-
librium constant of 1.42, compared to 0.69-0.74 in 
CH2Cl2 (Scheme 2B).11  
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Table 1 Comparison of reductions with BF2OMs•OEt2 or BF2OTf•OEt2 

 

Entry TMS-sulfonate Solvent Ether (%)a Alcohol (%)a Silyl Ether (%)a 

1 TMSOMs CH2Cl2 25 66 7 

2 TMSOTf CH2Cl2 45 46 7 

3 TMSOTf Toluene 51 40 7 

a Isolated Yields 

 

The use of BF2OTf•OEt2 in the reduction resulted in 

an improvement in ether formation to 45% (Table 1, 

entry 2), along with the alcohol (46%) and silyl ether 

(7%).  A screening of various solvents found reactions 

in toluene gave a higher yield (Table 1, entry 3). Re-

cently, Aggarwal and co workers described the in situ 

formation of BF2OTf•OEt2 and its use in Morita–

Baylis–Hillman-type reactions.11,12 

In an attempt to reduce the amount of TMSOTf used 

to generate the active Lewis acid, a 1:1 mixture of the 

parent Lewis acids in toluene was placed under re-

duced pressure (40 mmHg, rt) for two hours to re-

move the volatile TMSF and push the equilibrium 

further towards BF2OTf•OEt2 formation (Scheme 3A). 

A persistent white suspension immediately began to 

form upon evacuation and NMR analysis of the mix-

ture suggested that approximately 15% of the 

BF2OTf•OEt2 underwent further anionic redistribution 

to produce BF3•OEt2, BF(OTf)2•OEt2, and 

B(OTf)3•OEt2 (Scheme 3B).13  

 

Scheme 3    Competing reactions in the formation of BF2OTf•OEt2 

Use of the mixture containing di and tri triflate species 

was found to be disadvantageous in reduction reac-

tions, and, in this regard, it was found that their pro-

duction could be decreased to undetectable levels by 

adding an excess of BF3•OEt2 to the system prior to 

placing it under reduced pressure. In doing so, we 

successfully generated BF2OTf•OEt2 in situ free of 

TMSF, TMSOTf, BF(OTf)2•OEt2 and B(OTf)3•OEt2. 

Additional reductions of aliphatic esters were per-
formed with the new TMSF-free Lewis acid system, 
and not only was a marked improvement in the yields 
observed, but the undesired silyl ether was no longer 
produced14 (Table 2). This reaction was found to be 
successful with esters of varying steric hindrance, 
including hydrocinnamyl acetate (entry 1, 62%), iso-
butrate (entry 2, 58%), pivalate (entry 3, 57%) and 
formate (entry 4, 62%). Other esters include methyl 
hydrocinnamate (entry 5, 70%) and hydrocinnamyl 
hydrocinnamate (entry 6, 71%). Complete conversion 
required up to 5 days at room temperature for the 
bulky pivalate ester (entry 3), and attempts to shorten 
reaction times by heating above 25 °C resulted in 
significantly lower yields.   

Table 2 Reductions of esters with varying steric hindrance 

 

Entry R1 R2 Time (h) Conditionsa Ether (%)b Alcohol (%)b Silyl Ether (%)b 

1 Ph(CH2)3- Me 28 A 50 41 8 

    B 62 36 0 

2 Ph(CH2)3- iPr 72 A 47 44 6 

    B 58 40 0 

3 Ph(CH2)3- tBu 120 A 47 47 4 

    B 57 42 0 

4 Ph(CH2)3- H 24 A 46 48 3 

    B 62 36 0 
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5 Me Ph(CH2)2- 48 A 52 - - 

    B 70 - - 

6 Ph(CH2)3- Ph(CH2)2- 72 A 67 20 9 

    B 71 26 0 

a Reaction conditions: A =  6 eq TMSOTf, 1.2 eq BF3•OEt2 ; B = 1.2 eq TMSOTf, 1.8 eq BF3•OEt2, reduced pressure (40 mmHg, 2 hours) 

b Isolated Yields 

 

Several other reducing agents were examined including 

triphenylsilane, catecholborane, tributyl tin hydride, 

triacetoxy borohydride and poly(methylhydrosiloxane).15 

Unfortunately, none of these hydride sources resulted in 

any reduction of the starting esters in the presence of 

TMSF-free BF2OTf•OEt2. Reactions in CH2Cl2 or tolu-

ene of aromatic esters, including electron rich and elec-

tron deficient examples, lead to complex reaction mix-

tures presumably due to Friedel-Crafts type processes. 

In summary, the direct reduction of esters to ethers has 

been achieved using triethyl silane in the presence of 

BF2OTf•OEt2 generated in situ from BF3•OEt2 and 

TMSOTf. One noteworthy aspect of this reduction 

method is the nearly quantitative mass recovery, which 

in all cases examined was over 96%, and in the crude 1H 

NMR spectra of these reactions no unassignable extra-

neous peaks were observed. While these preliminary 

results are encouraging, the highly reactive nature of the 

BF2OTf•OEt2 Lewis acid may limit this technique to 

relatively simple aliphatic esters. Other uses for 

BF2OTf•OEt2 are under investigation, and it is hoped 

that further optimization of this reduction reaction will 

lead to a practical method in organic chemistry for ether 

synthesis. 

 

The analytical data for most of the reported compounds has been 

reported elsewhere.16 TMSOMs and TMSOTf were made accord-

ing to published procedures.17 Dry solvents were obtained from a 

solvent dispensing system. 1H, 11B, 13C, and 19F NMR spectra 

were obtained on a Varian Inova 400 MHz spectrometer. Chemical 

shifts are reported in parts per million (ppm) downfield from 

tetramethylsilane and are, in all cases, referenced to the residual 

proton resonance peak  7.25 for CDCl3. Column chromatography 

was preformed with Sorbent Technologies 32-63 m silica gel. 

General procedure for reduction of esters: 

A solution of BF3•OEt2 (1.8 mmol, 1.8 eq) and TMSOTf (1.2 

mmol, 1.2 eq) were combined with dry toluene (3 mL) and held 

under reduced pressure (40 mmHg, rt) for 2 hours. After the vacu-

um was released and the vessel was back filled with argon, ester 

(1 mmol, 1 eq), and Et3SiH (5.0 mmol, 5 eq) were added sequen-

tially.  The reaction mixture was monitored by TLC and upon 

completion (2-5 days, depending upon steric bulk) was poured 

into 20 mL methanol and 20 mL of water, and diluted with 20 mL 

CH2Cl2.  The organic layer was separated, and the aqueous layer 

was extracted with CH2Cl2 (2 x 5 mL).  The combined organic 

layers were washed with water (20 mL), brine (20 mL), dried over 

MgSO4, filtered through a thin pad of celite, and excess solvent 

was removed by rotary evaporation.  The crude product was puri-

fied by flash chromatography (hexanes:EtOAc, 9:1). 

BF2OMs•OEt2 - Boron difluoride mesylate diethyl etherate 

1H NMR previously reported.16a 

19F NMR (375 MHz, CDCl3)  -148.26 (m, 2F). 

11B NMR (125 MHz, CDCl3)  -0.45 (broad s). 

BF2OTf•OEt2 - Boron difluoride triflate diethyl etherate  

1H NMR (400 MHz, CDCl3)  4.43 (q, J = 7.0 Hz, 4H), 1.51 (t, J 

= 7.0 Hz, 6H). 

19F NMR (375 MHz, CDCl3)  -77.24 (s, 3F), -146.92 (m, 2F). 

11B NMR (125 MHz, CDCl3)  -0.5 (broad s). 

(3-Isobutoxy-propyl)-benzene (Table 2, Entry 2)16j 

Yellow oil; Rf  0.69 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3)  7.32 –  7.29 (m, 2H), 7.23 – 7.19 

(m, 3H), 3.44 (q, J = 6.9 Hz, 2H), 3.20 (d, J = 6.9 Hz, 2H), 2.73 (t, 

J = 6.9 Hz, 2H), 1.96 – 1.87 (m, 2H), 0.96 (s, 3H), 0.94 (s, 3H). 

13C NMR (100 MHz, CDCl3)  142.1, 128.5, 128.2, 125.7, 77.8, 

69.9, 32.3, 31.3, 28.4, 19.4. 

[3-(2,2-Dimethyl-propoxy)-propyl]-benzene (Table 2, Entry 

3)16h 

Yellow oil; Rf  0.70 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3)  7.30 –  7.26 (m, 2H), 7.21 – 7.16 

(m, 3H), 3.42 (t, J = 6.9 Hz, 2H), 3.06 (s, 2H), 2.70 (t, J = 6.9 Hz, 

2H), 1.92 – 1.85 (m, 2H), 0.93 (s, 9H). 

13C NMR (100 MHz, CDCl3)  142.2, 128.5, 128.2, 125.6, 81.3, 

70.4, 32.3, 32.1, 31.3, 26.8. 

Bis(3-phenylpropyl) ether (Table 2, Entry 6)16i 

Pale yellow liquid; Rf  0.43 (20% EtOAc/hexanes). 

 1H NMR (400 MHz, CDCl3)  7.32 –  7.27 (m, 2H), 7.22 – 7.15 

(m, 3H), 4.09 (t, J = 6.5 Hz, 2H), 2.96 (t, J = 7.8 Hz, 2H), 2.64 (t, 

J = 6.5 Hz, 4H), 1.97 – 1.90 (m, 2H). 

13C NMR (100 MHz, CDCl3)  142.0, 128.4, 128.3, 152.7, 69.9, 

32.4, 31.3. 
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Graphical Abstract: 
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