
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2010

Improvement of Open Source Software Usability:
An Empirical Evaluation from Developers
Perspective
Arif Raza
National University of Pakistan, arif_raza@mcs.edu.pk

Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Faheem Ahmed
Thompson River University, fahmed@tru.ac

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@article{DBLP:journals/advse/RazaCA10, author = {Arif Raza and Luiz Fernando Capretz and Faheem Ahmed}, title =
{Improvement of Open Source Software Usability: An Empirical Evaluation from Developers' Perspective}, journal = {Adv. Software
Engineering}, volume = {2010}, year = {2010}, ee = {http://dx.doi.org/10.1155/2010/517532}, bibsource = {DBLP,
http://dblp.uni-trier.de} }

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 517532, 12 pages
doi:10.1155/2010/517532

Research Article

Improvement of Open Source Software Usability:
An Empirical Evaluation from Developers’ Perspective

Arif Raza,1 Luiz F. Capretz,1 and Faheem Ahmed2

1 Department of Electrical & Computer Engineering, University of Western Ontario, London, ON, Canada N6A 5B9
2 Faculty of Information Technology, United Arab Emirates University, P.O. Box 17551, Al Ain, UAE

Correspondence should be addressed to Arif Raza, araza7@uwo.ca

Received 30 January 2010; Accepted 7 July 2010

Academic Editor: Hongyu Zhang

Copyright © 2010 Arif Raza et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

User satisfaction has always been important for software success whether it is Open Source Software (OSS) or closed proprietary
software. Even though we do not presume that OSS always has poor usability, as there are examples of good usable open
source software, it would still be agreed that OSS usability has room for further improvement. This paper presents an empirical
investigation to study the impact of some key factors on OSS usability from developers’ points of view. This is one of the series
of four studies that we are conducting regarding improvement of OSS usability from OSS developers, users, contributors, and
industry perspectives. The research model of this empirical investigation studies and establishes the relationship between the key
usability factors from developers’ perspective and OSS usability. A data set of 106 OSS developers from 18 open source projects
of varied size has been used to study the research model. The results of this study provide empirical evidence that the studied key
factors play a significant role in improving OSS usability.

1. Introduction

The term open source software refers to software equipped
with licenses that provide existing and future users the
right to use, inspect, modify, and distribute (modified and
unmodified) versions of the software to others. It is not only
the concept of providing “free” access to the software and its
source code that makes OSS the phenomenon that it is, but
also the development culture [1]. Open source is a software
development method that makes source code available to
a large community that participates in development by
following flexible processes and communicating via the
Internet [2]. The favorable acceptance of OSS products by
business and the direct involvement of major IT vendors
in OSS development have transformed OSS from a fringe
activity, developed for public good, to a mainstream, com-
mercially viable form [3]. The collaborative nature of the
OSS culture makes use of a wide volunteer community,
which conducts its development activities in a decentralized
environment that has the direct result of effectively low-
ering production costs and improving the software quality
[4].

The International Organization for Standardization and
The International Electrotechnical Commission ISO/IEC
9126-1 [5] categorize software quality attributes into six cat-
egories: functionality, reliability, usability, efficiency, main-
tainability, and portability. In the standard, usability is
defined as “The capability of the software product to be
understood, learned, used and attractive to the user, when used
under specified conditions.” However usability is probably the
least addressed area in OSS research and development. In
its early days it was generally believed that OSS is for the
technically adept users; that resulted in a blurred boundary
between developers and users. Thus, usability has never
been on the top priority list of OSS developers. Nichols and
Twidale [6] have come up with another reason why usability
aspects are not so enthusiastically addressed as compared
to functionality issues. According to them it is because the
latter have more challenges and recognition factors from the
community in them. Being voluntary in nature of work, in
OSS projects usability problems are found less interesting
and less challenging.

Hedberg et al. [7] point out that it is no more the case
as in the past when OSS users were the codevelopers who

2 Advances in Software Engineering

used to expect frequent crashing of the applications and
bugs in the code. They feel that although so far usability in
OSS has not been tested enough, now OSS community has
started to realize that their target audiences are no longer
their codevelopers only. As a result, OSS systems need to be
designed, keeping in mind the requirements, expectations,
and demands of a common nontechnical user. Viorres et al.
[8] also highlight a general trend in OSS development that
is instead of following software engineering (SE) practice of
design, specifications, testing, and prototyping; most OSS
systems follow a “bottom-up” approach where the focus
is on the development on technical issues and individual
components whereas the modeling of the whole system
comes later; plus, user interface and related issues get a
relatively lower priority.

This paper contributes in increasing the understanding
of the effects of some key usability factors through empirical
investigation that they play a vital role in improving OSS
usability. A quantitative survey of developers involved in
different OSS projects has been conducted and reported here.
The survey has been used to analyze the conceptual model
and hypotheses of the study. The results provide the evidence
that the stated key factors play an important role towards the
improvement of OSS usability.

In Section 2, we present the literature review that
motivated this research work as well as helped in selecting
the key factors for the study. Section 3 illustrates the research
model and the hypotheses of this study. Section 4 explains
the research methodology, data collection process, and the
experimental setup in its first part, reliability and validity
analysis of the measuring instrument in the second, and data
analysis procedures in its third part. In Section 5, we present
the hypotheses testing and the analysis of the results. It is
followed by the discussion in Section 6 that also includes
the limitations of the study. Finally the paper concludes in
Section 7.

2. Literature Review

2.1. Research Motivation and Related Work. Empirical studies
regarding open source quality assurance activities and quality
claims are rare [9]. Koponen [10] discusses defect manage-
ment and version management system as an integral part
of OSS maintenance process. Aberdour [11] observes that
the open source software model has led to the creation of
significant pieces of software, and many of these applications
show levels of quality comparable to closed source software
development. Raymond [4] suggests that the high quality
of OSS can be achieved due to high degree of peer review
and user involvement in bug/defect detection. Generally a
popular or active project means that the community in
the OSS project are interacting constantly and providing
feedback to activities such as defect identification, bug fixing,
new feature request, and support requests for the further
improvement.

Wayner [12] finds that developers contribute from
around the world, meet face-to-face infrequently if at all, and
coordinate their activity primarily by means of computer-
mediated communications. Crowston and Scozzi [13] inves-

tigate the coordination practices for software bug fixing in
OSS development teams and observe that task sequences are
mostly sequential and composed of a few steps, namely, sub-
mit, fix, and close, and effort is not equally distributed among
process actors; as a result, a few contribute heavily to all tasks
while the majority just submit one or two bugs. Cubranic
and Booth [14] discuss major issues of coordinating open
source development projects, including collaborative com-
munication mediums and configuration management tools.
Mockus et al. [15] provide a comprehensive comparison
of Apache against five commercial products in terms of
developer participation, team size, productivity and defect
density, and problem resolution. The Floss Survey [16]
identifies many other reasons why developers are involved
in OSS development, including becoming part of the open
source community, promoting the open source mode of
development, supporting the idea of “free” as an alternative
to proprietary software, gaining a reputation, and having fun.
In proprietary software, software quality testing is limited
within a controlled environment and specific scenarios [17].
However, OSS development involves much more elaborate
testing as OSS solutions are tested in various environments,
by various skills and experiences of different programmers,
and are tested in various geographic locations around the
world [17–20]. According to Feller and Fitzgerald [21], OSS
is characterized by active developers’ community living in
a global virtual boundary. OSS has emerged to address
common problems of traditional software development that
includes software exceeding its budget both in terms of time,
and money, plus making the production of quick, inexpen-
sive, and high quality reliable software possible. Earlier, OSS
was more about operating systems and development tools.
However lately, entertainment applications have also been
developed. Independent peer review by codevelopers in OSS
makes its quality presumably better and is also proved by
their achievement of “significant market share without any
conventional marketing or advertising campaigns.”

Koppelman and Van Dijk [22] focus on the role of clients
and users in projects, how to deal with different stakeholders
who look at the product from a different perspective,
how to communicate with them, and how to involve the
real users and clients in the design process. They suggest
that the designers should not simply rely on their own
experiences and instincts. Golden et al. [23] support the idea
of addressing usability issues at software architecture design
level. They believe that separating usability concerns from
functionality at architecture level in order to consider them
at a later stage of testing does not work. Rather, this approach
leads to extensive restructuring and even “re-architecting
of software systems.” They have come up with Usability-
Supporting Architectural Pattern (USAP) that supports
specific usability issues at architecture level. Although they
themselves state that USAP is quite detailed and complex
to imply as a whole, they conclude basing on a test case
study that it is a beneficial tool to address specific usability
issues in software architecture designs. They also observe that
usability concerns could be better addressed if “implications
of usability heuristics for software design” are made clear and
explicit to the software designers.

Advances in Software Engineering 3

Nichols and Twidale [24] feel that usability can hardly
be considered a resolved issue in proprietary software
environment that has better resources, let alone in OSS that
has relatively less resources and where most work is done
on voluntary basis with no monetary benefits or rewards.
Another factor they identify is the lack of resources in
OSS to achieve high quality, particularly in the context of
usability, as compared to the closed proprietary software. To
have more participation to analyze and fix usability bugs,
what is required is to make usability reporting easier plus
have less efforts and lower “cultural, technical and usability
barriers.” Unlike functionality bugs, where duplication in bug
reporting does not help, a large number of usability bug
reporting can help in prioritizing the usability-related errors,
to be fixed. However it is required to have some way to speed
up the discussion about usability-related issues and to have
an easier and faster solution and consensus.

Çetin and Göktürk [25] observe that being a non-
functional quality attribute, usability cannot be measured
directly; it could be measured through users’ feedback and
cognitive walkthroughs. So far, there seems to be no metrics
available for the OSS developers against which they could
measure usability of their projects. A standardized user
interface guideline may be developed by usability experts that
the developers can adhere to, in order to have consistency and
conformity in the designs.

Zhao and Deek [26] hypothesize that exploratory
method is an effective way to impart such knowledge to the
users so that they could be able to inspect and report usability
errors in OSS and hence play their part in a better way,
towards OSS usability improvement. A model has also been
proposed by them to adapt the exploratory learning method
for such purposes.

Hussain et al. [27], in their recent survey about the
integration of agile methods and usability, conclude that
the integration of agile methods with usability/user-centered
design not only adds value to the adopted processes and
to the teams of the respondents but also increases the
satisfaction of the end-users of the product developed.

Hedberg et al. [7] observe that there is a lack of strict
plan and design process in OSS environment as software
development mainly relies on developers’ skills. Advocating
the early user feedback, the authors recommend to “under-
stand and specify the user, his/her work practice/tasks and the
context of use, and carefully redesign the work practice/tasks
based on the understanding, actively involve the user, gather
early user feedback and iterate the design solution based on the
user feedback.”

The above literature review and recommendations have
played a motivating role in this study. We have been able
to identify some usability factors and analyze and validate
them empirically based on OSS developers’ perception, as
presented in the following sections.

2.2. Usability Factors: Literature Review of Concepts. Under-
standing users’ requirements and expectations by OSS devel-
opers is an important issue that needs to be addressed
seriously. Realizing the different intuitive approach of pro-
grammers from that of end-users, Pemberton [28] observes

that while developing software they are normally satisfied
with its usability and interface. Referring to the problems
in an OSS environment, he states: “the general public will
have an itch they cannot scratch; the programmers will not
have that itch, and so will not scratch it.” Nichols and Twidale
[24] also identify that generally developers do not realize the
needs and expectations of end-users that may lead to poor
usability in OSS. They refer to Human Interface Guidelines
(HIGs) that cannot only prevent such discussions but can
also be considered as an authority on what will be done.
Çetin and Göktürk [25] also realize that the main theme
of OSS is the software development through collaboration
and cooperation. Traditionally, OSS users have had technical
and computer-oriented background and needed less effort to
use OSS systems like Apache, GNU C compilers, bash shell,
and so forth. However, as OSS has become more popular,
more need is being felt to have usable systems. Koppelman
and Van Dijk [22] stress that software developers should not
simply rely on their own experiences and instincts. They
should learn how to communicate with users in order to
better understand their expectations.

The importance of HCI and Usability Experts’ Opinion
cannot be undermined. Big commercial organizations gen-
erally employ such experts to address usability issues in their
projects. However their representation is generally missing in
OSS projects probably due to voluntary work environment of
OSS. Nichols and Twidale [6] identify why usability experts
are not generally involved in OSS projects, mainly because
there are fewer such experts in OSS world; they are not
“incentivised by the OSS approach in the way that many
hackers are,” and they do not find themselves “welcomed into
OSS projects.” Hedberg et al. [7] emphasize on the need of
usability experts’ contribution and show concern regarding
their lack of participation in OSS development. They point
out that OSS users may report usability-related problems
and bugs but without formal training, neither the users
nor the developers can fix them. An expert’s opinion and
suggestion is thus required; that is currently missing from the
scene of OSS development. They propose the incorporation
of usability guidelines and active participation of usability
experts in OSS projects, possibly from the platforms of
large commercial organizations, as they have also started
participating in OSS development.

Incremental design approach, that is, introduction of
advance features of software to users in an incremental
way would make them more comfortable. Gaming softwares
use this approach all the time and allow their users to
face advance levels in an incremental and gradual fashion.
OSS developers need to realize this fact, as well, that their
target audiences may include novice users for whom the
software application would be more adaptable if advance
features are introduced in a gradual and progressive way.
Yunwen and Kishida [29] highlight the need of modularized
software system design to enable the end-users to encounter
the difficulty levels gradually and progressively. They believe
that modularized OSS system architecture design with
progressive introduction of difficult and advance features
would attract more users. Aberdour [11] also finds code
modularity a convenient way to add new features in software.

4 Advances in Software Engineering

It reduces code complexity and allows different programmers
to extend the program by working in parallel and without
interfering in others’ work.

Usability aspects cannot be improved in OSS unless
there are ways to test and measure them quantitatively.
Çetin and Göktürk [25] highlight the importance of testing
and measurement by stating: “one cannot improve what
is not measured.” Holzinger et al. [30] observe that “the
evaluation of consistency within an e-learning system and
the ensuing eradication of irritating discrepancies in the user
interface redesign is a big issue.” They have also come up
with the Shadow Expert Technique (SET) to evaluate the
consistency of the user interface and have applied it to a
university learning management system. Nichols and Twidale
[6] identify that fixing an interface needs an extra care
so that it should not lead to inconsistency as “a major
success criterion for usability is consistency of design.” Usability
problems are neither easier to specify nor very convenient to
be fixed, particularly considering virtual boundaries of OSS
where developers mostly do their work autonomously. In
their other study, Nichols and Twidale [24] observe the bias
in treating usability bugs as compared to functionality bugs
that could crash the system. Usability issues, as expected,
are more subjective in nature and more debatable as a user
interface element may be more confusing to some people
and less to others. Such issues could prolong the discussion
of analyzing and fixing usability bugs. To have more partic-
ipation to analyze and fix usability bugs, what is required
is to make usability reporting easier plus have less efforts
and lower “cultural, technical and usability barriers.” Unlike
functionality bugs, where duplication in bug reporting does
not help, a large number of usability bug reportings can
help in prioritizing the usability bugs to be fixed. Hedberg
et al. [7] suggest evaluation methods under the guidance of
usability experts, usability testing, and bug reporting. They
feel the need of in-depth empirical research to understand
the challenges related to usability and quality assurance in
OSS. Viorres et al. [8] also highlight a few OSS usability
issues such as to improve bug reporting facilities in software,
to improve the analysis procedure of usability errors by
OSS community through application of human computer
interaction (HCI) principles, and to support argumentation
to resolve such issues.

As a long-term solution, students of the Software
Engineering and Computer Science disciplines should be
taught how to address user-centric issues in their software
development projects to increase their understanding of the
users’ point of view. They should be encouraged to appreciate
the fact that finding a solution to a particular programming
problem is not the ultimate goal. They should rather come up
with design that could meet the expectations of end-users.
Faulkner and Culwin [31] observe that HCI and Software
Engineering educators have always been in different camps.
Although the growth of HCI in terms of books and as a sub-
ject taught in computer science courses is the recognition of
importance of HCI, they suggest that there is a need of more
interaction between HCI and SE by adopting HCI as the
underlying principle to the systems development. According
to them, the aim of usability engineering education must be

to ensure that effectiveness, efficiency, and user satisfaction
are present in software. The guidance from HCI specialist
needs be provided to the software developer in a useful form,
which is only possible through the unification of knowledge
and vocabulary of both. However, Rosson et al. [32] realize
that the main challenge in teaching usability engineering is
to come up with realistic projects for the students, such that
meaningful issues could be addressed in a manageable time
of a semester.

Markov [33] argues that usability is about “total user
experience,” not only about the user interface, as it is
commonly but incorrectly assumed. It should be involved
in all the phases of the product such as installation, use,
and maintenance. Although it is not the case that every OSS
must have a poor user interface, usability of OSS projects
requires improvement, in general. In their research work,
Nichols and Twidale [6] observe that OSS is growing and has
developed a repute of being reliable, efficient, and functional.
However, still common novice computer user prefers to use
proprietary software for many reasons: their better usability
is one of them. They talk about usability from applications
like word processors and web mail servers which are basically
aimed at serving a common user. They also realize that,
considering fewer resources of OSS, it could take long for
an OSS project to be mature and comparable with closed
proprietary software. Another point they make is that, in
OSS culture, coding starts earlier and refinement of design
depends on constant reviews. They advocate that to improve
OSS usability, designing of interface should be done before
the start of the coding, to keep it consistent. Viorres et
al. [8] refer to various reasons why software developers
go for OSS. These include educational reasons, reusability,
and developing reputation. However, they highlight concerns
about software usability and complexity in installation and
maintenance of OSS development tools, their nonadherence
to backwards compatibility, and limited documentation.
Hedberg et al. [7] propose the adaptation of proven methods
in OSS environment to ensure higher quality and address
usability issues. Holzinger et al. [34] discuss a user-centered
system developed at the clinical department of dermatology
at the Medical University Hospital in Graz. The system not
only improved the existing system but also helped elderly
people to overcome their computer fear.

3. Research Model and the Hypotheses

In this paper, we present a research model to analyze the
relationship between the key usability factors and the open
source software usability. This work empirically investigates
the association between these key usability factors and the
OSS Usability. The theoretical model to be empirically tested
in this paper is shown in Figure 1. Our aim is to investigate
the answer to the following research question:

How OSS developers can improve software usability?

There are five independent and one dependent variables in
this research model. The five independent variables are called

Advances in Software Engineering 5

Key usability factors

Users’ requirements

Usability experts opinion

Incremental design approach

Usability testing

Knowledge of user
centered design methods

H1

H2

H3

H4

H5

OSS usability

Figure 1: Research Model.

“key usability factors” in the rest of this paper. They include
users’ requirements, usability experts’ opinion, incremental
design approach, usability testing, and knowledge of user-
centered design methods. The dependent variable of this
study is the OSS usability. The multiple linear regression
equation of the model is as follows:

OSS Usability = f0 + f1v1 + f2v2 + f3v3 + f4v4 + f5v5, (1)

where f0, f1, f2, f3, f4, and fs are the coefficients and v1, v2,
v3, v4, and vs are the five independent variables. In order to
empirically investigate the research question we hypothesize
the following.

(H1) understanding users’ requirements by the software
developers is positively related with improving
usability in OSS.

(H2) seeking usability experts’ opinion by the software
developers is positively related with improving
usability in OSS.

(H3) incremental approach in OSS design plays a positive
role in improving usability in OSS.

(H4) usability testing by project managers/software devel-
opers has a positive impact on usability in OSS.

(H5) knowledge of user-centered design (UCD) methods
is positively related with improving software.

4. Research Methodology

Open source software projects deal with different categories
of applications like communications, database, desktop
environment, education, financial, games/entertainment,
networking, and so on. We sent personalized emails to
OSS developers of different projects on sourceforge.net. The
projects differed in size and range from small to large scale.
However, we selected the projects having activity of 90%
and more. We sent our questionnaire to the OSS developers
working on the projects in the categories of Database (118),
desktop environment (127), development (135), testing
(83), communications (104), games/entertainment (309),
education (309), financial (236), and enterprise (35) as
shown in Figure 2.

We assured the participants that our survey neither
required their identity nor would it be recorded. However
to support our analysis of data in terms of experience of
the developers and the project size, they have been working
on, we asked them to share with us their OSS development
experience and their development team size. These two
questions were optional for the participants to respond to
unlike the questions related to OSS usability which were
mandatory to respond to in the survey. We received 106
responses altogether and 104 of them chose to respond to
these two questions. 63 of the 104 respondents had less than
or equal to 5 years of OSS development experience; 31 had
more than 5 years but less than or equal to 10 years of
experience whereas 10 of the respondents stated that they
had more than 10 years of experience in OSS development
as reflected in Figure 3.

In the survey, 56 respondents had less than or equal
to 10 team members as developers in their project, 27 had
more than 10 but less than or equal to 20 team members
as developers, and 21 had more than 20 members in their
development team as represented graphically in Figure 4.

The above statistics have been presented to reflect the
experience of the respondents as well as the size of the OSS
project they belong to.

4.1. Data Collection and the Measuring Instrument. In this
study, we have collected data on the key usability factors and
the perceived level of OSS usability improvement. The ques-
tionnaire presented in the appendix requires respondents
to indicate the extent of their agreement or disagreement
with statements using a five-point Likert scale. The Likert
scale ranges from “strongly agree” (1) to “strongly dis-agree”
(5) for all items associated with each variable. For each of
the independent variables as well as the dependent variable,
four statements are presented. These statements elaborate
the specific key factor and its related issues. The statements
are designed to collect measures on the extent to which
the variable is practiced within each project. We have thus
used twenty separate items to measure the independent
variables and four items to measure OSS developers’ point
of view regarding OSS usability improvement. Although not
much work on such lines is available, we have reviewed

6 Advances in Software Engineering

Database
Desktop

environment

Development

Testing

Communications

Games /
entertainment

Education

Financial

Enterprise

Pie chart of software category

Figure 2

0
10
20
30
40
50
60
70

N
u

m
be

r
of

de
ve

lo
p

er
s

≤ 5years > 5 but ≤ 10 years More than 10 years

Range of experience

Experience of OSS developers

Figure 3

previous researches on the subject of OSS usability, so
that a comprehensive list of measuring factors could be
constructed.

4.2. Reliability and Validity Analysis of Measuring Instrument.
The two integral features of any empirical study are relia-
bility, which refers to the consistency of the measurement,
and the validity, that is the strength of the inference between
the true value and the value of a measurement. For this
empirical investigation, we have used the most commonly
used approaches in empirical studies to conduct reliability
and validity analysis of the measuring instruments. The
reliability of the multiple-item measurement scales of the five
usability factors is evaluated by using internal-consistency
analysis, which is performed using coefficient alpha [35]. In
our analysis, the coefficient alpha ranges from 0.55 to 0.67
as shown in Table 1. van de Ven and Ferry [36] state that
a reliability coefficient of 0.55 or higher is satisfactory, and
Osterhof [37] suggests that 0.60 or higher is satisfactory.
Therefore, we conclude that the variable items developed for
this empirical investigation are reliable.

Campbell and Fiske [38] state that convergent validity
occurs when the scale items are correlated and move in the
same direction in a given assembly. The principal component

Table 1: Coefficient alpha and principal component analysis (PCA)
of variables.

Usability factors Item no. Coefficient α
PCA eigen

value

Users requirements 1−4 0.67 2.19

Usability experts opinion 5−8 0.64 1.22

Incremental design
approach

9−12 0.55 1.08

Usability testing 13−16 0.55 0.99

Knowledge of UCD
methods

17−20 0.59 1.05

0
10
20
30
40
50
60

Te
am

m
em

be
rs

≤ 10 > 10 but ≤ 20 > 20

Developers team range

OSS development team

Figure 4

analysis [39] is performed for all five key usability factors
and reported in Table 1. We have used eigenvalue [40] as
a reference point to observe the construct validity using
principal component analysis. In this paper, we have used
eigenvalue-one criterion, also known as Kaiser Criterion
[41, 42], which means any component having an eigenvalue
greater than one is to be retained. Eigenvalue analysis reveals
that four out of five variables completely form a single factor
whereas eigenvalue for the usability testing is 0.99, that is
very close to the threshold of 1.0. Therefore, the convergent
validity has been regarded as sufficient.

4.3. Data Analysis Procedure. We have analyzed the research
model and the significance of hypotheses H1−H5 through
different statistical techniques in three phases. In phase I, we
have used normal distribution tests and parametric statistics
whereas, in phase II, nonparametric statistics have been
implemented. Due to a relatively small sample size, both
parametric as well as nonparametric statistical approaches
are used to reduce the threats to external validity. As our
measuring instrument has multiple items for all the five
independent variables as well as the dependent variable
(refer to the appendix), their ratings by the respondents
are summed up to get a composite value for each of
them. Tests are conducted for hypotheses H1−H5 using
parametric statistics by determining the Pearson correlation
coefficient. For nonparametric statistics, tests are conducted
for hypotheses H1−H5 by determining the Spearman
correlation coefficient. To deal with the limitations of a
relatively small sample size and to increase the reliability
of the results, hypotheses H1−H5 of the research model are
tested using partial least square (PLS) technique in phase
III. According to Fornell and Bookstein [43] and Joreskog

Advances in Software Engineering 7

and Wold [44], the PLS technique is helpful in dealing
with issues such as complexity, nonnormal distribution,
low theoretical information, and small sample size. The
statistical calculations are performed using minitab-
15. (Minitab is a statistics software package (see http://
en.wikipedia.org/wiki/List of statistical packages) and is
often used in conjunction with the implementation of Six Sigma
(see http://en.wikipedia.org/wiki/Six Sigma), CMMI (see
http://en.wikipedia.org/wiki/CMMI), and other statistics-
based process improvement methods. Minitab is available in 7
different languages.)

5. Hypotheses Testing and Results

5.1. Phase I. To test hypotheses H1−H5 of the research
model (shown above in Figure 1), parametric statistics is
used in this phase by examining the Pearson correlation
coefficient between individual independent variables (key
usability factors) and the dependent variable (OSS usability).
The results of the statistical calculations for the Pearson
correlation coefficients are displayed in Table 2. It is to be
noted that, “In statistical (see http://en.wikipedia.org/wiki/
Statistics) hypothesis testing (see http://en.wikipedia.org/
wiki/Hypothesis test), the P-value is the probability (see
http://en.wikipedia.org/wiki/Probability) of obtaining a test
statistic. (see http://en.wikipedia.org/wiki/Test statistic) The
lower the P-value, the less likely the result is if the null
hypothesis is true, and consequently the more “significant”
the result is, in the sense of statistical significance (see
http://en.wikipedia.org/wiki/Statistical significance) ” [45].

The Pearson correlation coefficient between users’
requirements and OSS usability is found positive (0.264) at
P < .05 and hence justified hypothesis H1. The Pearson
correlation coefficient of 0.084 is observed at P = .393
between usability experts’ opinion and OSS usability and
hence found insignificant at P < .05. Therefore hypothesis
H2 that deals with usability experts’ opinion and OSS
usability is rejected. Hypothesis H3 is accepted based on the
Pearson correlation coefficient (0.274) at P < .05, between
the incremental design approach and OSS usability. The
positive correlation coefficient of 0.338 at P < .05 is also
observed between the OSS usability and usability testing
which meant that H4 is accepted. Hypothesis H5 is found
significant too and thus accepted after analyzing the Pearson
correlation coefficient of 0.439 at P < .05 between knowledge
of UCD methods and OSS usability. Hence, as observed and
reported above, hypotheses H1, H3, H4, and H5 are found
statistically significant and are accepted whereas H2 is not
supported and is therefore rejected.

5.2. Phase II. Nonparametric statistical testing is conducted
in this phase by examining Spearman correlation coefficient
between individual independent variables (key usability fac-
tors) and the dependent variable (OSS usability). The results
of the statistical calculations for the Spearman correlation
coefficient are also displayed in Table 2.

The Spearman correlation coefficient between users’
requirements and OSS usability is found positive (0.480) at

Table 2: Hypotheses testing using parametric and nonparametric
correlation coefficients.

Hypothesis Usability factor
Pearson

correlation
coefficient

Spearman
correlation
coefficient

H1 Users requirements 0.264∗ 0.480∗

H2
Usability experts
opinion

0.084∗∗ 0.122∗∗

H3
Incremental design
approach

0.274∗ 0.420∗

H4 Usability testing 0.338∗ 0.390∗

H5
Knowledge of
UCD methods

0.439∗ 0.485∗

∗
Significant at P < .05. ∗∗Insignificant at P > .05.

P < .05 and hence justified hypothesis H1. For hypothesis
H2, the Spearman correlation coefficient of 0.122 is observed
with P = .213; hence at P < .05 no significant relationship is
found between usability experts’ opinion and OSS usability
in this test as well. Hypothesis H3 is accepted based on
the Spearman correlation coefficient (0.420) at P < .05,
between the incremental design approach and OSS usability.
The positive Spearman correlation coefficient of 0.390 at P <
.05 is also observed between the OSS usability and usability
testing, which means that H4 is accepted. Hypothesis H5 is
found significant too and thus accepted after analyzing the
Spearman correlation coefficient of 0.485 at P < .05 between
knowledge of UCD methods and OSS usability.

Hence, as observed and presented above, H1, H3, H4,
and H5 are found statistically significant and are accepted
whereas H2 is not supported and hence rejected in nonpara-
metric analysis, as well.

5.3. Phase III. In order to do the cross-validation of the
results obtained in Phase I and Phase II, partial least square
(PLS) technique has been used in this phase of hypotheses
testing. The direction and significance of hypotheses H1−H5
are examined. In PLS, the dependent variable of our research
model, that is, OSS usability, is placed as the response
variable and independent key usability factors as the pred-
icate. The test results that contain observed values of path
coefficient, R2, and F-ratio are shown in Table 3. The “users’
requirements” is observed to be significant at P < .05 with
path coefficient of 0.302, R2 of 0.070, and F-ratio of 7.782.
Usability experts’ opinion has path coefficient of 0.129 with
R2 of 0.007, and F-ratio of 0.737 and is found insignificant
at P < .05 (with observed P = .393). Incremental design
approach is observed to have the same direction as proposed
in hypothesis H3 with path coefficient 0.244, R2 0.075, and
F-ratio 8.429 at P < .05. Usability testing is also found in
conformance with hypothesis H4 with observed values of
path coefficient of 0.310, R2 of 0.114, and F-ratio of 13.412
at P < .05. And finally knowledge of UCD methods (path
coefficient: 0.446, R2: 0.193, and F-ratio: 24.888 at P < .05)
is also found in accordance with H5. Hence in this phase,
like in phase I and phase II, hypothesis H2 that deals with

8 Advances in Software Engineering

Table 3: Hypotheses testing using PLS regression.

Hypothesis Usability factor
Path

coefficient
R2 F-ratio

H1
Users’
requirements

0.302 0.070 7.782∗

H2
Usability experts
opinion

0.129 0.007 0.737∗∗

H3
Incremental
design approach

0.244 0.075 8.429∗

H4 Usability testing 0.310 0.114 13.412∗

H5
Knowledge of
UCD methods

0.446 0.193 24.888∗

∗
Significant at P < .05. ∗∗Insignificant at P > .05.

usability experts’ opinion and OSS usability is not found to
be statistically significant at P < .05.

5.4. Testing of the Research Model. The multiple linear
regression equation of our research model is depicted by
(1). The purpose of research model testing is to provide
empirical evidence that our key factors play a significant role
in improving open source software usability. The testing pro-
cess consists of conducting regression analysis and reporting
the values of the model coefficients and their direction of
association. OSS usability is placed as response variable and
key factors as predicators. Table 4 displays the regression
analysis results of the research model. The path coefficient
of four out of five variables, users’ requirements, incremental
design approach, usability testing, and knowledge of user-
centered design methods, is found positive, and their t-
statistics are also observed statistically significant at P < .05.
The path coefficient of usability experts’ opinion is found
negative. Negative t-statistics and P > .05 make usability
experts’ opinion statistically insignificant in this research
model. R2 and adjusted R2 of overall research model are
observed as 0.294 and 0.259, respectively, with an F-ratio of
8.335 significant at P < .05.

6. Discussion

The use of open source software has increased in the recent
years, mainly due to the easy access and availability of the
Internet. Although it has been a common belief that OSS
is popular with technically adept users, which results in a
blurred boundary between its developers and users, the users
of OSS are no more limited to this category alone: novice and
nontechnical users are using OSS as well than ever before.
As more and more people use OSS, usability and its related
issues need to be addressed more seriously. Through empir-
ical investigation, this research enables the OSS developers
and project managers to realize the relationship of key factors
of our research model and the OSS usability process. The
results provide the empirical evidence and support for the
theoretical foundations that the stated key factors play an
important role in the institutionalization of usability within
an OSS project.

Table 4: Multiple linear regression analysis of the research model.

Model coefficient name
Model

coefficient
Coefficient

value
t-value

Users’ requirements f1 0.277 2.800∗

Usability experts opinion f2 −0.006 −0.045∗∗

Incremental design
approach

f3 0.116 1.218∗

Usability testing f4 0.111 1.097∗

Knowledge of UCD
methods

f5 0.355 3.740∗

Constant f0 1.796 1.003∗
∗

Significant at P < .05. ∗∗Insignificant at P > .05.

Users’ satisfaction plays a major role in the success of
software, whether it is an open source or closed proprietary
software. The more satisfied a target user is, particularly
in application software, the more acceptability the software
would get. And we believe that a path to achieve users’
satisfaction goes through understanding their expectations
and requirements. OSS is no longer a “reserved arena” for
technically adept users; novice and nontechnical users from
all over the world use open source software as well. As
Koppelman and Van Dijk [22] identify that in order to know
end-users’ requirements and expectations, there is a need
of more communication between the software developers
and their target users, instead of relying on the former’s
instincts. 87% of our respondents support this observation
that getting users’ requirements helps in improving OSS
usability. In our empirical investigation too, we have found
a positive relationship between users’ requirements and the
OSS usability. Users’ requirements could thus be taken by OSS
developers’ community as a key issue to improve usability of
their projects.

Role of HCI and usability experts cannot be undermined
in software development. This becomes more important
in application software, where end-users are the direct
audiences. In proprietary software development, particularly
in big organizations, such experts are hired to have their
valuable opinion to make their software more usable and
acceptable to end-users. Considering voluntary nature of
work and fewer resources in OSS development, we do not
find such experts actively playing their role in OSS field. It
might be because they do not find themselves “welcomed
into OSS projects” as identified in [6]. Anyhow, our statistical
findings do not significantly support the positive association
of usability experts’ opinion and OSS usability. In the
parametric and nonparametric statistical analysis as well as
in PLS and multiple regression testing, the results were not
supported by a significant statistical level of confidence (refer
to Tables 2, 3, and 4). Therefore, we conclude that our study
has not been able to prove a positive association of usability
experts’ opinion and OSS usability.

Gradual and incremental introduction of advance fea-
tures in software makes users feel more comfortable. It
increases the acceptability and adaptability of the applica-
tion. Yunwen and Kishida [29] advocate the modularized

Advances in Software Engineering 9

system design, such that users encounter the difficulty
levels gradually and progressively. Gaming softwares use
incremental approach in their design all the time. Only after
user completes one level, s/he is encouraged to move on to
the more difficult levels. Using same approach in all designs
can make software more accommodating for a common
novice user. 69% of the respondents in our survey agree
that gradual introduction of advance features in software
would enhance its adaptability. Our research study has also
found a positive impact of incremental design approach on
OSS usability. We thus have considered incremental design
approach as a key attribute towards improving OSS usability.

Software testing is an integral part of software life cycle.
Holzinger [46] emphasizes the earlier usability testing in
software life cycle and maintains that “the earlier critical
design flaws are detected, the more likely they can be corrected.”
However, being a subjective matter, software usability cannot
be directly measured. Furthermore, difficulty being faced by
users in reporting errors makes the situation worse. Nichols
and Twidale [24] refer to such difficulties faced by the users
in reporting usability bugs by stating “Difficulties that a
User May Experience with a Graphical User Interface May
Not be Easy to Describe Textually.” 72% of the respondents
in our survey agree that formal usability testing should
be an integral part of software testing procedure. The
findings of our empirical investigation also confirm a positive
association between usability testing and OSS usability. We
thus take usability testing as a key issue to improve usability
of OSS projects.

Students of computer science and software engineering
being the future software managers and developers need to
understand the importance of usable systems more seriously.
They should be encouraged to realize that coming up with
a programming solution to a problem is not the ultimate
goal; any system developed should meet users’ expectations.
The earlier they would incorporate the usability features in
their designs, the better it would be for their projects, from
maintenance point of view, too. We also have found a positive
impact of knowledge of user-centered design methods on
OSS usability, in our empirical investigation. Not a single
respondent of our survey disagreed with our question
that “Computer Science/Software Engineering students (future
software developers) must learn how to incorporate usability
aspects in their software designs.” This could be a part of
long-term solution to improve software usability and would
be equally beneficial to both OSS and closed proprietary
software organizations. We thus take knowledge of UCD
methods as one of the key factors to improve usability of OSS
projects.

6.1. Limitations of the Study and Threats to External Validity.
Surveys, experiments, metrics, case studies, and field studies
are examples of empirical methods used to investigate both
software engineering processes and products [47]. Empirical
investigations are subject to certain limitations which is the
case of this study as well.

Threats to external validity are conditions that limit
the researcher’s ability to generalize the results of his/her

experiment to industrial practice [48], which is the case with
this study. Specific measures have been taken to support
external validity; for example, a random sampling technique
is used to select the respondent from the population in
order to conduct experiments. We retrieve the data from
the most active and well-known OSS reporting website,
sourceforge.net, which has huge amount of projects listed.

The increased popularity of empirical methodology
in software engineering has also raised concerns on the
ethical issues [49, 50]. We have followed the recommended
ethical principles to ensure that the empirical investigation
conducted and reported here would not violate any form
of recommended experimental ethics. Another aspect of
validity is concerned with whether or not the study reports
results that correspond to previous findings. First of all
is the selection of independent variables in this work. We
have used five independent variables to relate with the
dependent variable of OSS usability. We realize that there
could be other key factors that influence OSS usability, but
we have kept the scope of this study within open source
software as well as OSS developers’ point of view. Some
other contributing factors like OSS development culture, less
resources of OSS projects as compared to resources of closed
proprietary software projects developed in big organizations,
voluntary involvement of developers in OSS projects, and
so forth have not been considered in this study. Another
limitation of this study is a relatively small sample size.
Although we sent our survey to notable number of OSS
developers subscribed to 18 different categories of software,
we received only 106 responses. The relatively small sample
size in terms of number of respondents has a potential
threat to the external validity of this study. Although the
proposed approach has some potential to threaten external
validity, we have followed appropriate research procedures by
conducting and reporting tests to improve the reliability and
validity of the study, and certain measures were also taken to
ensure the external validity.

7. Conclusion

In this paper, we empirically investigate the effect of key
factors on OSS usability and find answer to the research
question stated in this investigation. Results of this empirical
investigation exhibit that the stated key factors of our
research model assist in improving OSS usability. Empirical
results of this study strongly support the hypotheses that
users’ requirements, incremental design approach, usability
testing, and knowledge of UCD methods are positively asso-
ciated with the usability of an OSS project. However we
could not find any significant statistical support for usability
experts’ opinion on OSS usability.

The study conducted and reported here will enable OSS
development teams to better understand the effectiveness of
the relationships of the stated key factors and usability of
their projects. The OSS developers need to take into con-
sideration multiple key usability factors to improve usability
aspect of software in general and their projects in particular.
Currently we are working on to develop a maturity model

10 Advances in Software Engineering

to assess the usability of open source software projects.
This empirical investigation provides us some justification
to consider these key factors as a measuring instrument.
This study is one of the series of four studies that we are
conducting in parallel, regarding OSS usability from users,
contributors, and software industry’s points of view.

Appendix

Key Usability Factors from OSS Developers’
Point of View (Measuring Instrument)

Users’ Requirements:

(1) users’ requirements help in increasing software
usability;

(2) understanding community expectations by the code
contributors support the software usability;

(3) taking community feedback before and after formal
release of every major version of software is vital in
improving software usability;

(4) recording users’ profile is crucial in understanding
their requirements and expectations and hence sup-
ports OSS usability;

Usability experts’ Opinions (Usability experts are those person-
nale who have formal training and expertise in usability and
HCI).

(5) usability features can better be incorporated if usabil-
ity experts’ opinions are taken during every life-cycle
phase;

(6) seeking usability experts’ opinions will compromise
freedom of OSS developers;

(7) OSS designs based on usability experts’ opinions end
up with GUI having standard usability norms but
lacking innovation;

(8) usability experts’ opinions are equally important and
applicable for OSS as they are for closed proprietary
software;

Incremental Design Approach (Introduction of advanced fea-
tures of software to users in an incremental way).

(9) incremental increase in the difficulty level of software
always makes user feel more comfortable;

(10) a novice user needs only basic features of software;

(11) gradual introduction of advance features will
enhance adaptability of the software; however it is
not always possible;

(12) every user should explore advance features of soft-
ware gradually;

Usability Testing.

(13) formal usability testing should be an integral part of
software testing process;

(14) although software success is dependent on users’
response, usability-related bugs mostly reflect per-
sonal demands;

(15) I will fix the usability-related bug only if I am
convinced that the reported bug is worth fixing;

(16) usability bugs reflect users’ requirements and expec-
tations; therefore they need to be fixed on priority;

Knowledge of User-Centered Design Methods (“UCD processes
focus on users through the planning, design and development of
a product” [51]).

(17) computer science/software engineering students
(future software developers) must learn how to
incorporate usability aspects in their software
designs;

(18) designing of user friendly GUI is an art not every
programmer can learn;

(19) CS/SE curriculum needs to be revised to implant
importance of usercenteredness in software designs;

(20) poor usability of OSS systems is not due to lack
of knowledge of user-centered design methods; it is
because they are not implemented and systems are
not designed with people in mind.

OSS Usability (“The capability of the software product to be
understood, learned, used and attractive to the user, when used
under specified conditions” [5]).

(1) improving OSS usability will result in reducing
the overall cost, bug reporting and defects of the
software;

(2) one reason of poor OSS usability is because it is
developed free; OSS designers should have some
incentive (e.g., award or recognition) to look for to;

(3) successful software project means usable software
with satisfied users;

(4) software having improved usability and adaptability
for less technical and novice users will end up
benefiting all users.

References

[1] E. S. Raymond, The Cathedral and the Bazaar, O’Reilly,
Sebastopol, Calif, USA, 1999.

[2] A. G. Koru and J. Tian, “Defect handling in medium and large
open source projects,” IEEE Software, vol. 21, no. 4, pp. 54–61,
2004.

[3] B. Fitzgerald, “The transformation of open source software,”
MIS Quarterly, vol. 30, no. 3, pp. 587–598, 2006.

[4] E. S. Raymond, The Cathedral and the Bazaar, O’Reilly,
Sebastopol, Calif, USA, 2001.

[5] International Standard ISO/IEC 9126-1, Software Engi-
neering—Product Quality—Part 1: Quality Model, 1st edition,
2001.

[6] D. M. Nichols and M. B. Twidale, “The usability of open
source software,” First Monday, vol. 8, no. 1, 2005.

Advances in Software Engineering 11

[7] H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa,
“Assuring quality and usability in open source software
development,” in Proceedings of the 1st International Workshop
on Emerging Trends in FLOSS Research and Development,
Washington, DC, USA, May 2007.

[8] N. Viorres, P. Xenofon, M. Stavrakis, E. Vlachogiannis, P.
Koutsabasis, and J. Darzentas, “Major HCI challenges for open
source software adoption and development,” in Proceedings of
the 2nd International Conference on Online Communities and
Social Computing (OCSC ’07), D. Schuler, Ed., pp. 455–464,
Beijing, China, July 2007.

[9] R. Glass, “Is open source software more reliable? An elusive
answer,” The Software Practitioner, vol. 11, no. 6, 2001.

[10] T. Koponen, “Life cycle of defects in open source software
projects,” in Proceedings of the 2nd International Conference on
Open Source Systems, pp. 195–200, 2006.

[11] M. Aberdour, “Achieving quality in open-source software,”
IEEE Software, vol. 24, no. 1, pp. 58–64, 2007.

[12] P. Wayner, Free for All, HarperCollins, New York, NY, USA,
2000.

[13] K. Crowston and B. Scozzi, “Bug fixing practices within
free/libre open source software development teams,” Journal
of Database Management, vol. 19, no. 2, pp. 1–30, 2008.

[14] D. Cubranic and K. Booth, “Coordinating open-source soft-
ware development,” in Proceedings of the 8th IEEE Interna-
tional Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 61–69, 1999.

[15] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study
of open source software development: the Apache server,” in
Proceedings of the 22nd International Conference on Software
Engineering, pp. 263–272, June 2000.

[16] P. A. David, A. Waterman, and S. Arora, “FLOSS-
US, the Free/Libre/Open Source Software Survey for
2003,” http://www.stanford.edu/group/floss-us/report/
FLOSS-US-Report.pdf FLOSS-US-Report.pdf.

[17] J. Lerner and J. Tirole, “Some simple economics of open
source,” Journal of Industrial Economics, vol. 50, no. 2, pp. 197–
234, 2002.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
Mozilla,” ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 3, pp. 309–346, 2002.

[19] K. R. Lakhani and E. Von Hippel, “How open source software
works: “free” user-to-user assistance,” Research Policy, vol. 32,
no. 6, pp. 923–943, 2003.

[20] J. West, “How open is open enough? Melding proprietary and
open source platform strategies,” Research Policy, vol. 32, no.
7, pp. 1259–1285, 2003.

[21] J. Feller and B. Fitzgerald, “A framework analysis of the open
source software development paradigm,” in Proceedings of the
21st Annual International Conference on Information Systems,
pp. 58–69, Brisbane, Australia, 2000.

[22] H. Koppelman and B. Van Dijk, “Creating a realistic context
for team projects in HCI,” SIGCSE Bulletin, vol. 38, no. 3, pp.
58–62, 2006.

[23] E. Golden, B. E. John, and L. Bass, “The value of a usability-
supporting architectural pattern in software architecture
design: a controlled experiment,” in Proceedings of the 27th
International Conference on Software Engineering (ICSE ’05),
pp. 460–469, St. Louis, Mo, USA, May 2005.

[24] D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,” Software Process Improvement and Practice,
vol. 11, no. 2, pp. 149–162, 2006.

[25] G. Çetin and M. Göktürk, “A measurement based framework
for assessment of usability-centricness of open source software
projects,” in Proceedings of the 4th International Conference
on Signal Image Technology and Internet Based Systems (SITIS
’08), pp. 585–592, December 2008.

[26] L. Zhao and F. P. Deek, “Exploratory inspection: a learning
model for improving open source software usability,” in
Proceedings of the Conference on Human Factors in Computing
Systems (CHI ’06), 2006.

[27] Z. Hussain, W. Slany, and A. Holzinger, “Current state
of agile user-centered design: a survey, HCI and usability
for E-inclusion,” in Proceedings of the 5th Symposium of
the Workgroup Human-Computer Interaction and Usability
Engineering of the Austrian Computer Society (USAB ’09),
vol. 5889 of Lecture Notes in Computer Science, pp. 416–427,
Springer, Berlin, Germany, 2009.

[28] S. Pemberton, “Scratching someone else’s itch: (why open
source can’t do usability),” Interactions, vol. 11, no. 1, p. 72,
2004.

[29] Y. Yunwen and K. Kishida, “Toward an understanding of the
motivation of open source software developers,” in Proceedings
of the 25th International Conference on Software Engineering,
pp. 419–429, May 2003.

[30] A. Holzinger, C. Stickel, M. Fassold, and M. Ebner, “Seeing the
system through the end users’ eyes: shadow expert technique
for evaluating the consistency of a learning management
system, HCI and usability for E-inclusion,” in Proceedings of
the 5th Symposium of of the Austrian Computer Society (USAB
’09), vol. 5889 of Lecture Notes in Computer Science, pp. 178–
192, Springer, Berlin, Germany, 2009.

[31] X. Faulkner and F. Culwin, “Integrating HCI and SE,” ACM
SIGCSE Bulletin, vol. 32, no. 3, pp. 61–64, 2000.

[32] M. B. Rosson, J. M. Carroll, and C. M. Rodi, “Case studies for
teaching usability engineering,” ACM SIGCSE Bulletin, vol. 36,
no. 1, pp. 36–40, 2004.

[33] N. Markov, “An introduction to the UCD methodology in the
current environment,” CASCON Workshop Report, 2003.

[34] A. Holzinger, P. Sammer, and R. Hofmann-Wellenhof,
“Mobile computing in medicine: designing mobile question-
naires for elderly and partially sighted people,” in Proceedings
of the 10th International Conference on Computers Helping
People with Special Needs (ICCHP ’06), vol. 4061 of Lecture
Notes in Computer Science, pp. 732–739, Springer, Berlin,
Germany, 2006.

[35] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

[36] A. H. van de Ven and D. L. Ferry, Measuring and Assessing
Organizations, John Wiley & Sons, New York, NY, USA, 1980.

[37] A. Osterhof, Classroom Applications of Educational Measure-
ment, Prentice-Hall, Upper Saddle River, NJ, USA, 2001.

[38] D. T. Campbell and D. W. Fiske, “Convergent and discriminant
validation by the multitrait-multimethod matrix,” Psychologi-
cal Bulletin, vol. 56, no. 2, pp. 81–105, 1959.

[39] A. L. Comrey and H. B. Lee, A First Course in Factor Analysis,
Psychology Press, Hillsdale, NJ, USA, 2nd edition, 1992.

[40] H. F. Kaiser, “A second generation little jiffy,” Psychometrika,
vol. 35, no. 4, pp. 401–417, 1970.

[41] H. F. Kaiser, “The application of electronic computers to factor
analysis,” Educational and Psychological Measurement, vol. 20,
pp. 141–151, 1960.

[42] J. Stevens, Applied Multivariate Statistics for the Social Sciences,
L. Erlbaum Associates, Hillsdale, NJ, USA, 1986.

[43] C. Fornell and F. L. Bookstein, “Two structural equation
models: LISREL and PLS applied to consumer exit-voice

12 Advances in Software Engineering

theory,” Journal of Marketing Research, vol. 19, pp. 440–452,
1982.

[44] K. Joreskog and H. Wold, Systems under Indirect Observation:
Causality, Structure and Prediction, Elsevier, North Holland,
The Netherlands, 1982.

[45] http://en.wikipedia.org/wiki/P-value.
[46] A. Holzinger, “Usability engineering methods for software

developers,” Communications of the ACM, vol. 48, no. 1, pp.
71–74, 2005.

[47] J. Singer and N. G. Vinson, “Ethical issues in empirical
studies of software engineering,” IEEE Transactions on Software
Engineering, vol. 28, no. 12, pp. 1171–1180, 2002.

[48] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslen, Experimentation in Software Engineering,
Kluwer Academic Publishers, Norwell, Mass, USA, 2000.

[49] R. R. Faden, T. L. Beauchamp, and N. M. P. King, A History and
Theory of Informed Consent, Oxford University Press, Oxford,
UK, 1986.

[50] J. Katz, Experimentation with Human Beings, Russell Sage
Foundation, New York, NY, USA, 1972.

[51] http://www.upassoc.org/usability resources/about usability/
what is ucd.html.

	Western University
	Scholarship@Western
	2010

	Improvement of Open Source Software Usability: An Empirical Evaluation from Developers Perspective
	Arif Raza
	Luiz Fernando Capretz
	Faheem Ahmed
	Citation of this paper:

	tmp.1374775695.pdf.KIUPb

