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Abstract

We study known and potential numerical earmarks of schizophrenia through math-

ematical methods. One known numerical characteristic of schizophrenia is that of

prolonged encoding latencies in response to cognitive stimuli. Motivated by the need

to explain interaction patterns in 2 × 2 factorial data where one factor is encoding

load and the other is diagnostic status, we define a class of general serial mixture

models based on the number of encoding subprocesses executed and the speed at

which they are executed. Mathematical derivations performed on these models yield

closed form expressions for the mean encoding latency and average intertrial variance,

which in turn yield expressions for the mean interaction contrast and variance inter-

action contrast. Different interaction signatures correspond to different members of

the model class. A wealth of examples are provided linking various potential physical

and neurophysiological encoding mechanisms to members of the model class. We also

derive results for a specific subset of the general model class where only the number

of subprocesses is allowed to vary over factorial cells. Our development includes a

numerical test (verified by theory and simulation methods) to determine if the num-

ber of encoding subprocesses varies over trials. Theoretical results are then developed

for the case where the speed of encoding subprocesses is allowed to vary. Secondly,

by means of an exhaustive literature search and application of contingency tables,

we investigate whether a collection of numerical indices, called nonlinear indices or

complexity indices, can be utilized to support or refute a conjecture in the literature

which states that complexity in EEG recordings tends to be higher in schizophrenia
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patients than controls with this tendency being dampened (and even inverted) by

medication, increasing age, and decreasing symptomatology. Our analysis indicates

only weak effects due to age and medication, and suggests that symptomatology may

play a greater role. Moreover, we observe a strong “study effect” which suggests

that laboratory procedures may also play a role. Our systematic review of nonlinear

indices does, however, indicate that heart rate variability is reduced in schizophrenia

and bipolar disorder.

Keywords: schizophrenia, stimulus encoding, mixture models, mean interac-

tion contrast, nonlinear dynamics, complexity, EEG, heart rate variability, bipolar

disorder
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Summary

Schizophrenia is a mental disorder which is usually described in behavioural terms.

A person with schizophrenia will often exhibit symptoms of delusions (strongly-held

false beliefs) or hallucinations (the experience of sensations or perceptions without

supporting stimulus events accessible to others). Other symptoms may include inco-

herent speech and disorganized thought. This thesis, however, focuses on character-

istics of schizophrenia that can be quantified numerically. One such characteristic is

that of prolonged encoding times. Encoding is the process by which a person men-

tally transforms an observed event or object into a format which facilitates the task

at hand, e.g., transforms a word into a picture for comparison with another picture.

Experimental evidence has shown that schizophrenia patients require longer encoding

times than normal controls or even other psychiatric controls. This thesis develops

a family of mathematical models which can be used to describe and investigate the

possible physical and psychological mechanisms that underlie the encoding process.

These models are constrained to fit known experimental data in which encoding load

and diagnostic status are manipulated. Secondly, the thesis investigates whether a

collection of numerical indices, called nonlinear indices or complexity indices, can be

used to differentiate schizophrenia (and bipolar disorder) patients from normal con-

trols in EEG and ECG studies. In particular, we examine the question of whether

there is a tendency toward greater complexity in the EEG of schizophrenia patients,

with this tendency dampened or even reversed with medication, increasing age, and

reduced symptomatology. This analysis was spurred by a large literature with contra-
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dictory findings. We found only weak effects due to age and medication, and noted

that symptomatology as well as laboratory procedures may play a greater role in

outcomes. On the other hand, nonlinear indices seem to consistently indicate lower

complexity in the heart rate of both schizophrenia and bipolar patients.
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Chapter 1

Introduction to the Thesis

In the study of clinical psychology, the earmarks of psychopathology are of partic-

ular interest – those identifying characteristics which may allow us to distinguish a

disordered state from that of a healthy one. In this thesis we bring rigorous math-

ematical methods to bear on a suite of numerically quantifiable potential earmarks,

seen, for specificity, primarily through the lens of schizophrenia, yet demonstrably ap-

plicable to certain other disorders (see, for example, the sections on bipolar disorder

in Chapter 3). The potential earmarks we consider can largely be subsumed under

the rubric of the cognitive neuroscience of schizophrenia, with the chiefly studied

numerical characteristics either taking the form of cognitive-processing latencies (in

particular, encoding times) or nonlinear functions of reactive electroencephalogram

(EEG) signals in response to cognitive stimuli. However, further potential earmarks

that are studied are nonlinear functions of heart rate variability (HRV), the latter

which is governed by neuro-signals through the autonomic nervous system (ANS)

and may be measured easily in a noninvasive fashion.

One broad goal of the thesis is to illustrate the value and utility of mathe-

matics as a tool to describe, model, investigate, quantify, and validate (or invalidate)

 1
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potential earmarks of psychopathology (in this case the pathology of schizophrenia).

This theme is omnipresent throughout the thesis. In Chapter 2, we focus specifically

on the earmark of prolonged encoding latencies which are observed in schizophrenia

(R. W. J. Neufeld and coauthors; for details see Chapter 2 and the references therein).

Encoding is the mental process by which a person transforms cognitive stimuli into

a task-facilitative format (for example, transforms a word into a picture for compar-

ison with another picture). Neufeld and coauthors have determined experimentally

that the encoding process requires more time for schizophrenia patients than it does

for normal controls or other psychiatric controls (such as persons exhibiting major

depression), thus rendering its prolongation a verified earmark of the disorder. In

Sec 2.1.1 we review the literature on 2 × 2 factorial experimental paradigms (with

encoding load as one factor and diagnostic status as the other) which have given rise

to the above conclusions. These results are accompanied by the observation that the

mean interaction contrast (MIC) is always found to be zero whereas the variance in-

teraction contrast (VIC) may be zero or nonzero depending on the experiment. In Sec

2.1.2 we review some early models for encoding latencies which satisfy the constraint

VIC = 0 if and only if MIC = 0 and are sufficient to explain certain experimental

paradigms. These early models act as a springboard to the definition of a general

class of serial mixture models in Sec 2.2, which is the first original contribution of

the thesis. (Material in Chapter 2 from Sec 2.2 onward is original work by the thesis

author.) This class of serial mixture models features two key components: K, the

number of encoding subprocesses being executed on a trial, and Θ, a vector which gov-

erns the speed at which each subprocess is encoded. Each serial mixture model also
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features a base distribution which can essentially be any continuous positive right-

tailed probability distribution. The broad generality in the definition of this class of

models allows it to be potentially applicable to a wide range of cognitive-processing

latencies (where encoding subprocesses are replaced by the relevant components of

the cognitive process under consideration). In Theorem 1 we further illustrate the

flexibility of this model class by demonstrating that each instantiation can also be

interpreted in parallel form as well as serial form; specifically, each instantiation has

a representation as a fixed capacity parallel model with reallocation. Mathematical

derivations performed on this model class then lead to Theorem 2 which provides

closed form formulae for mean encoding latencies E(T ) and average intertrial vari-

ances E(Var(T )) (calculations which heretofore had to be computed by integrals on

a case-by-case basis). These closed form expressions are a highlight of the thesis,

as they in turn yield expressions for MIC and VIC which can be developed for any

member of the model class. In Sec 2.3 we study a specific subset of the model class

which we call generalized Cutler-Neufeld (gen-CN) models as they are extensions

of the earlier models developed by Neufeld and Cutler and Neufeld reviewed in Sec

2.1.2. These models have the feature that only the number of subprocesses K can

vary over factorial cells whereas the distribution of Θ remains the same from cell to

cell. Thus these models correspond to encoding mechanisms where changes in E(T )

and E(Var(T )) over cells can be explained by changes in the number of subprocesses

executed. The structure of gen-CN models allows for simple elegant expressions for

MIC and VIC (Theorem 3) and for mathematical derivation of numerous examples

which feature various MIC-VIC signatures, some of which satisfy VIC = 0 if MIC =
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0 and some of which satisfy VIC 6= 0 if MIC = 0. The potential underlying physical

and/or neurophysiological encoding mechanisms corresponding to each of these ex-

amples is also discussed. It would seem that gen-CN models have the potential for

wide applicability, given the number of encoding mechanisms that can be put in this

format and given the fact that converging experimental evidence has indicated that

in many cases changes in encoding latencies can be explained by changes in the num-

ber of subprocesses executed (see Sec 2.1.2). In Sec 2.4 we consider the problem of

distinguishing gen-CN models with variation from gen-CN models without variation.

A gen-CN model has variation if K varies over trials for a participant in addition

to possibly varying over participants, whereas in a gen-CN model without variation

K can only vary over participants. Variation over trials can occur for a number of

reasons, but one specific cause of particular interest to experimenters is (unwanted)

variability of the stimulus input sequence of the experiment. We show that VIC 6= 0

implies variability over trials (Theorem 4) which in many cases will be a quick suf-

ficient method to establish variation. However, it is possible for variation to occur

even in the presence of VIC = MIC = 0 so an alternative method to Theorem 4

required development. In Theorem 5 and Corollary 5.1 we develop a ratio statistic

(based on the sample variances and means of the cell encoding latencies) and show

that if this ratio differs over cells then variation over trials must be present. Exten-

sive simulation studies are carried out to illustrate both the use and limitations of

this ratio statistic. Finally, in Sec 2.5, we turn our attention to the case where Θ,

rather than K, varies over cells. This amounts to explaining changes in E(T ) and

E(Var(T )) across cells by changes in the encoding speed of subprocesses rather than
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by changes in the number of subprocesses. Although there is less experimental evi-

dence supporting this paradigm where encoding is involved, it is possible that it may

describe some encoding situations as well as being applicable to cognitive-processing

latencies other than encoding. Since the definition of Θ depends explicitly on the base

distribution, one must choose a particular base and derive results on a case-by-case

basis. Theorems 6-8 (along with attendant corollaries) develop MIC-VIC expressions

for different choices of base distribution and different choices of varying component in

the Θ vector. The section is rounded out with a number of examples illustrating var-

ious MIC-VIC signatures. The chapter closes with the section Discussion and Future

Directions.

Chapter 2 saw us focus attention on the goal of developing mathematical

models for a numerical characteristic (encoding latency) which has been verified ex-

perimentally as an earmark of schizophrenia. In Chapter 3 we turn our attention

to a different goal – specifically, that of attempting to ascertain whether a certain

collection of (or subset of) numerical characteristics can be utilized as earmarks of

schizophrenia. The numerical characteristics we consider are called nonlinear indices

and are often referred to as complexity indices, in spite of the fact that the term

“complexity”, although ubiquitous in the nonlinear science literature, is actually an

ill-defined concept. At least some authors regard a complex state as one falling some-

where between a completely ordered state and a completely random state, but this

intuitive idea is complicated by the fact that the various nonlinear indices do not

all measure the same quantity, and in fact some of these indices, such as entropy

indices, actually reach their maximum value in the case of completely random states.
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Chapter 3 has been published as the article Cutler and Neufeld (2019)1 but here we

provide a version of this article with slightly expanded introductory material (Secs

3.1-3.3) which gives concise but precise definitions of the various nonlinear indices

and the methods used to obtain them since these are typically not well-known quan-

tities or methodologies outside of nonlinear science. In Sec 3.4 we proceed to examine

the potential utility of nonlinear indices in distinguishing the EEG of schizophrenia

patients from that of normal controls. A vast array of authors have attempted to uti-

lize nonlinear indices in this way – specifically, to ascertain if a particular nonlinear

index (or group of indices) can indicate whether EEG recordings, in response to cog-

nitive stimuli, are more complex or less complex in schizophrenia patients compared

to those of normal controls. The resulting literature has provided numerous contra-

dictory findings in this regard. The centerpiece of this chapter and its chief unique

contribution (presented as Section 3.4.1), is an exhaustive quantitative analysis of the

existing literature on this topic. In particular, we attempt to determine whether a

certain hypothesis put forward in the literature by some authors (a hypothesis which

we call the L-F proposal) appears to have merit based on the totality of studies that

have been done. The L-F proposal, paraphrased, is the claim that “complexity tends

to be higher in the EEG of schizophrenia patients, especially first episode patients,

than that of controls, but this tendency is dampened or even inverted by antipsy-

chotic medication, increasing age, and reduced symptomatology”. Obviously such

a proposal implies a delicate interplay between several factors, and can be used to

1Cutler, C. D., & Neufeld, R. W. J. (2019). Nonlinear indices with applications to schizophrenia
and bipolar disorder. Nonlinear Dynamics, Psychology, and Life Sciences, 23, 17-56.
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explain the various contradictory and perplexing results found in the literature. We

utilize chi-square contingency tables in our quantitative analysis and find only weak

effects due to age and medication, and propose that symptomatology may be the most

important of the suggested L-F factors. However, it should be noted that the most

consistent and significant finding yielded by our analysis was that of a pronounced

“study effect”, i.e., the observation that, in most cases, each study showed similar

EEG outcomes in the patients over a range of cognitive stimuli. This is of course

not inconsistent with the suggestion that symptomatology of the patients is the most

important factor, but it also does not preclude the possibility that the different EEG

procedures and analyses used by different laboratories were contributing factors in

the outcomes. In Sec 3.5 we carry out a systematic review of nonlinear indices ap-

plied to heart rate variability in both schizophrenia and bipolar disorder; here we

find much more consistent results, with nonlinear indices suggesting lower complexity

(greater regularity) in heart rate in both these disorders. It is known that greater

regularity in heart rate creates a predisposition toward cardiac disease and sudden

cardiac events. Sec 3.6 reviews the limited literature applying nonlinear indices to

mood data in bipolar disorder, and the chapter closes out with Sec 3.7 Discussion

and Future Directions. Chapter 4 consists of Concluding Remarks which summarize

the key points of the thesis.



Chapter 2

Encoding Latencies in
Schizophrenia and
Psychopathology

2.1 Introduction to Chapter 2

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) of the American

Psychiatric Association (2013) provides categorical descriptions of mental disorders,

generally focusing on the observed behavioural symptoms of a disorder. For example,

schizophrenia is characterized by an individual displaying two or more of the follow-

ing features: delusions, hallucinations, disorganized speech, grossly disorganized or

catatonic behviour, and negative symptoms (with at least one among the first three

features being present) (DSM-5, p. 99). In this chapter, however, we focus our atten-

tion on a quantitative characteristic of schizophrenia (specifically, prolonged encoding

latencies – see below) which may be modelled analytically, thereby rendering insight

into the nature of the underlying disease process. The general family of models we

develop (Sec 2.2 and onward), while explicated here in the context of encoding times

in schizophrenia, can be applied in principle to other cognitive-process latencies in

8
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both healthy individuals and those exhibiting various psychopathologies.

Cognitive deficits have long been recognized to play a significant role in the

presentation of schizophrenia (see, e.g., American Psychiatric Association, 2013; An-

dreasen, 1999; Bleuler, 1950; Friston, 1999). The cognitive deficit we focus on here

is that of the prolongation of encoding latencies or encoding times (the two terms

to be used interchangeably). Stimulus encoding (encoding, for short), is the mental

process by which an individual transforms a cognitive stimulus into a format which

facilitates carrying out the task at hand. As a concrete example, consider the classic

memory search Choice Reaction Time (CRT) task as described in Sternberg (1966,

1975). Here the participant is first presented with a set of alphanumeric items (mem-

ory set), then later presented with an item (probe item) which may or may not have

been a member of the memory set. The participant must determine, as quickly and

accurately as possible, whether the probe item was a member of the memory set,

indicating a decision by pressing a button with a “yes” or “no” response. In order

to achieve this, the participant must first encode the probe item, that is, extract its

salient physical features, such as lines, curves, and intersections, to facilitate subse-

quent comparison with the members of the memory set. The total response latency

or reaction time (to be denoted RT ) is the time measured from onset of presentation

of the probe item to completion of the “yes” or “no” response. This may be expressed

mathematically (e.g., Townsend & Ashby, 1983) as

RT = Tencoding + Y +W (2.1.1)

where Tencoding represents the time spent encoding the probe item, Y represents the ad-
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ditional time required to complete the mental task, such as making comparisons with

members of the memory set to render a decision, andW represents the additional time

required for the physical yes-no response. Although in some experimental paradigms

it is possible that these three steps are carried out sequentially in a nonoverlapping

manner, (2.1.1) allows them to overlap, permitting behaviour such as the cascade

model of McClelland (1979) in which encoding and comparisons operate simultane-

ously. The results of Neufeld (1978), combined with those of Neufeld (1977), in a more

complex sentence-verification CRT task, provide evidence that in some experiments,

at least for patients with schizophrenia, the ability to continuously access the probe

item (what we call, somewhat imprecisely, as “ongoing encoding”) improves perfor-

mance in making comparisons. Highgate-Maynard and Neufeld (1986) deliberately

kept the probe item in view throughout their entire experiment to permit ongoing

encoding.

In a variety of CRT tasks, the memorial comparison times, as exemplified by Y

in (2.1.1), have been shown to be equivalent between normal controls and schizophre-

nia patients (Boksman, 2006; Checkosky, cited in Sternberg, 1975; Highgate-Maynard

& Neufeld, 1986; Marusarz & Koh, 1980; Neufeld, 1977; Wishner, Stein, & Paestrel,

1978). This is seen by examining the plot of the RT vs. the size of the memory set

(typically 1-4 items) or vs. the complexity of the comparison task quantified in some

suitable way (see Neufeld (1977, 1978) for an example of a sentence-verification CRT

task of varying complexity). The slope of the RT vs. memory set size (or complex-

ity) is the same for both normal controls and schizophrenia patients, indicating that

they are making comparisons at equivalent rates. However, the RTs differ in their
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intercept values, with those of the schizophrenia patients being elevated above those

of the controls. The intercept value accounts for the encoding time plus the physical

response time, as exemplified by T + W in (2.1.1). These elevated intercepts cause

the RTs of schizophrenia patients to be elongated as compared to those of controls.

Converging evidence has indicated that both Y and the physical response time

W are spared in schizophrenia, and the elevation in RT intercepts is due solely to a

prolonged encoding time T . Neufeld (1978) designed an experiment where encoding

was arranged to take place first, then the probe item was removed, followed by the

commencement of timing. Under these circumstances the differences in intercepts

disappeared. Moreover, Carter and Neufeld (1999, 2007) found that estimates of the

time engaged in memory search, decision-making, and physical response did not differ

between schizophrenia patients and controls. Intercept inequalities also remained

after accounting for memorial comparisons and physical response time in Neufeld,

Vollick, and Highgate (1993). These results point to the conclusion that encoding is

the process chiefly affected in schizophrenia.

It is worthy of note that the elongation of RTs is also more pronounced among

schizophrenia patients compared to other psychiatric control groups (such as patients

with major depression) and that schizophrenia patients with paranoid symptoms

(delusions and hallucinations) generally exhibit the most prolonged RTs of all (George

& Neufeld, 1987; Highgate-Maynard & Neufeld, 1986; Neufeld, 2007a; Neufeld &

Williamson, 1996).

The potential consequences of protracted encoding times are numerous. We

provide a summary of some of these here, and refer the reader to Neufeld (2021) for
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an excellent and thorough review. A direct link has been posited between elongated

encoding times and thought-content disorder (thematic delusions) in schizophrenia

(Neufeld, 2007a; Neufeld, 2021; Neufeld, Boksman, Vollick, George, & Carter, 2010).

Given a fixed small window of time available to encode a situation (e.g., a passing

conversation) it is possible that a person who requires considerably more time for

satisfactory encoding may fail to properly transform several of the less salient but

nonetheless important contextual features of the situation, thus coming away with

a false impression of what transpired. A natural need to contextualize the situation

may lead the person to attribute persecutory or grandiose elements to the circum-

stances, considering that such attribution may have a self-protective element to it.

Prolonged encoding times can also be used to explain the compromised coherence

of judgments that depend on execution of multiple stimulus dimensions (Carter &

Neufeld, 1999). Moreover, schizophrenia patients, particularly those with paranoid

features, exhibit increased numbers of rapid eye-movement saccades when visually

tracking a slow moving target. The increased number of saccades are believed to

be due to inefficient encoding of the spatial stimulus properties required for smooth

tracking (Adams, Huys, & Rosier, 2016; Collewijn & Tamminga, 1982; Neufeld &

Williamson, 1996). Finally, protracted encoding impacts negatively on the successful

navigation of environmental stressors (Morrison, Neufeld, & Lefebvre, 1988; Neufeld

& Grant, 2018; Shanahan & Neufeld, 2010).

In this chapter we will be looking at mathematical models applied to encod-

ing times and designed to explain patterns in mean interaction contrast (MIC) and

average intertrial variance contrast (VIC) (see below) arising in certain 2×2 factorial
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CRT experimental paradigms. We describe these paradigms, with specific examples,

in the subsection below.

2.1.1 2 × 2 Factorial Paradigms

Here we will consider 2× 2 factorial experiments where one factor to be manipulated

is encoding load (designated to be low (L) or high (H)) and the second factor to be

manipulated is diagnostic status (designated to be normal health (N) or schizophrenia

(S)). The format is that of a 2× 2 mixed model ANOVA where the between-subjects

factor is diagnostic status and the within-subjects factor is encoding load. We perform

a CRT task and obtain the RTs for all participants in the four factorial cells (LN,

LS, HN, and HS). The experiments we consider all have the feature that memorial

comparisons Y and physical response times W behave the same way for both con-

trols and schizophrenia patients (as discussed in the Introduction to Chapter 2) but

encoding times T depend on both encoding load and diagnostic status. Specifically,

T tends to increase as the encoding load moves from low to high (which is intuitively

credible) and, as we have discussed earlier, T also tends to increase as diagnostic

status changes from normal to schizophrenia. Thus we can replace the general RT

model (2.1.1) here by the specific factorial RT model

RTload, diagnosis = Tload, diagnosis + Y +W (2.1.2)

We now describe some specific examples of such experiments. Highgate-Maynard and

Neufeld (1986) asked participants to decide, “yes” or “no”, whether a probe item (an

object or animal) was similar in real-life size to any member of a memory set of objects

(e.g., an airplane and a coffee pot are not similar in real-life size). Encoding load was
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manipulated by either presenting both probe item and memory set in pictures (low

encoding load; see Paivio (1975, 1979)) or presenting both probe item and memory

set in words (high encoding load, as this requires transformation to visual imagery;

again see Paivio (1975, 1979)). For the sake of the factorial design, only trials on

which there were no matches were considered. George and Neufeld (1987) conducted

a CRT task where participants were briefly shown a four-letter word in the central

visual field (memory set), followed by a probe item. The probe item consisted of two

words, one presented in the right visual field and one presented in the left visual field.

Participants were asked to indicate, “yes” or “no”, whether either one of the two words

matched the memory set. For the sake of the factorial design, only the case of matched

trials was considered. The encoding load was appraised to be low if the matching

word was presented in the right visual field (left hemispheric superiority for processing

of verbal stimuli) and high if the matching word was presented in the left visual field.

Boksman (2006) considered a CRT task where participants were asked to determine

if a probe item (a consonant) belonged to a previously memorized set of consonants.

Encoding load was manipulated by presenting the probe item either in the same font

as the memory set (low encoding load) or in a different font (high encoding load).

Kieffaber et al.̃(2006) provided participants with a pre-trial auditory cue (“shape”

or “size”), then asked them to decide, “yes” or “no”, whether a presented pair of

items were the same in terms of the cue. Trials were divided as either “stay” trials

(where the cue was the same as on the previous trial) or “switch” trials (where the cue

changed from the previous trial). Stay trials can be designated as low encoding load

and switch trials as high encoding load (see Schneider & Logan (2005)) and indeed
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results showed a marked increase in the length of correct-response RTs for switch

trials compared to stay trials. Finally, Taylor, Théberge, Williamson, Densmore, and

Neufeld (2016, 2017) considered the Stroop cognitive task where the congruent case

(colour of name matching the name of colour) comprised the low encoding load, and

the incongruent case (colour of name not matching name of colour) comprised the

high encoding load.

We now define the mean interaction contrast (MIC) as

MIC = (E(RT )HS − E(RT )HN) − (E(RT )LS − E(RT )LN)

= (E(T )HS − E(T )HN) − (E(T )LS − E(T )LN)

(2.1.3)

where equality between the two lines of (2.1.3) comes about because the expectations

E(Y ) and E(W ) are the same over the four factorial combinations (see (2.1.2)).

Thus we may express MIC in terms of the second-order differences of either the raw

RTs or the implicit encoding times T . We will utilize the encoding times because

those are the particular cognitive processes we wish to model; however, in practice

it is the RTs which are readily available from data. Rough estimates of encoding

times can be determined by employing the method of subtraction (Donders, 1969) as

illustrated in Neufeld et al. (2010) after estimating E(Y ) and replacing E(W ) by an

estimated experimental quantity (Woodworth & Schlossberg, 1954, p. 36). However,

these estimates of encoding times can be too crude to be useful in some cases (Cutler

& Neufeld, 2017) although Neufeld et al. (2010) was able to exploit them profitably.

However, due to the equality of the two lines in (2.1.3), we can continue to express

MIC in terms of second order differences of mean encoding times while in practice

computing it by second order differences of estimated mean RTs.
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The case MIC = 0 of course corresponds to the case where there is no inter-

action between the two factors encoding load and diagnostic status. Perhaps surpris-

ingly, this feature was observed in all five of the experiments described in this sub-

section; mean reaction times in schizophrenia patients and normal controls increased

by the same amount as the encoding load moved from low to high (factorial additiv-

ity of means). Although some caution must be applied in accepting this conclusion

(since testing for interactions favours the null hypothesis) the replication of this re-

sult over a variety of experimental paradigms suggests it is a genuine phenomenon. It

appears that schizophrenia and encoding load operate separately and independently

to alter encoding times. Thus any models we utilize for encoding times should easily

accommodate this phenomenon; see the discussion in Neufeld (2021) and Neufeld et

al. (2010) and Sec 2.2 onward of this chapter.

Another quantity which can be used to augment our ability to model is the

average intertrial variance contrast VIC. In order to define VIC, first note that, under

the assumption that T , Y , and W act independently of one another, from (2.1.2) we

have, for any random trial on any participant in a particular cell

Var(RT )load, diagnosis = Var(T )load, diagnosis + Var(Y ) + Var(W ) (2.1.4)

and hence, taking expectations over all participants in each cell:

VIC = (E(Var(RT ))HS − E(Var(RT ))HN) − (E(Var(RT ))LS −E(Var(RT ))LN )

= (E(Var(T ))HS − E(Var(T ))HN) − (E(Var(T ))LS − E(Var(T ))LN)

(2.1.5)

where the two lines in (2.1.5) are equal because E(Var(Y )) and E(Var(W )) are the

same over each of the four cells. Thus, as in the case of MIC, VIC can be de-
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fined in terms of either second order differences of average intertrial variances of

RTs or of second order differences of average intertrial variances of encoding times.

E(Var(RT ))load, diagnosis can be estimated from the data in a cell by computing the

sample variance of the RTs of each cell participant, then averaging these sample vari-

ances over all participants in the cell. The case VIC = 0 indicates factorial additivity

in the variances.

George and Neufeld (1987) (see Neufeld et al. (2007) and Neufeld et al. (2010)

for discussion) as well as Taylor et al. (2016, 2017) found results compatible with

MIC = VIC = 0. However, factorial additivity of variances is not as universal as

factorial additivity of means; the Highgate-Maynard and Neufeld (1986) data, as cited

in Neufeld and Williamson (1993), found factorial superadditivity in the variances,

i.e., VIC > 0 in company with MIC = 0.

This chapter is devoted to developing a class of models that spawn various

examples which, when MIC = 0, provide different outcomes for VIC; more specifi-

cally, for these different examples we are able to compute the exact form of VIC for

MIC = 0. The physical mechanisms underlying these examples are also discussed.

This provides a collection of templates against which an experimenter can compare

theoretical mechanisms and factorial data to choose or eliminate certain models.

Earlier models considered by Neufeld (2021), Neufeld et al. (2010), and Cutler

and Neufeld (2017) provide a springboard to the general class of models we develop

in Sec 2.2 and onward. We review these earlier models in the next subsection.
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2.1.2 The Neufeld and Cutler-Neufeld Models

The encoding process overall can be viewed as the execution of a collection of com-

ponent subprocesses; e.g., in a basic Sternberg memory search CRT task (Sternberg,

1975), the alphanumeric probe item is encoded as a collection of lines, curves, and in-

tersections (subprocesses) for comparison against the memory set. In a more complex

CRT language-verification task (Neufeld, 1977, 1978), sentences needed to be encoded

as an abstract set of negative vs. affirmative components for comparison against a

visual display. It has been shown (Townsend & Nozawa, 1995; Townsend & Wenger,

2004) that MIC = 0 (factorial additivity of means as discussed in the previous sub-

section) is a signature of constituent subprocesses being carried out in serial. To this

end, Neufeld et al. (2007), Neufeld et al. (2010), and Neufeld (2021) used the simple

standard serial model as a starting point to model encoding times T . This model

has the exponential distribution as its base. The time to complete each individual

component encoding subprocess `j is assumed to follow an exponential distribution

with the same rate parameter v and probability density function (pdf)

φ(`) = ve−v` for ` > 0 (2.1.6)

We can then express T as the sum of its k individual subprocess encoding times

T = `1 + · · · + `k (2.1.7)

which, under the assumption the `js also act independently of one another (indepen-

dent intercompletion times) leads to T following an Erlang distribution with param-



19

eters k and v with pdf given by

f(t) =
vktk−1

(k−1)!
e−vt for t > 0 (2.1.8)

The Erlang is a special case of the gamma distribution (see Appendix B). Here the

parameter k is interpreted as the number of encoding subprocesses and v is interpreted

as the rate at which each subprocess can be completed (elemental workload capacity).

The serial model as described above in (2.1.7) is intuitively appealing but it should

be noted that it can be mimicked by a fixed capacity parallel model with reallocation

(FCPR model); see Townsend and Ashby (1983, p. 138) for a discussion focusing

on the exponential case, as well as Sec 2.2 of this chapter for details and a general

equivalence between such models even in the non-exponential case. In fact Neufeld

et al. (2010) presented the Erlang model as an FCPR model. It can be seen that

the Erlang (whether interpreted in its serial or parallel form) easily accommodates

the signature VIC = 0 if MIC = 0, and that MIC = 0 is achieved by appropriately

varying the number of subprocesses k across cells while holding v fixed; see Sec 2.2

and onward where more general models are considered. Taylor et al. (2016, 2017)

were able to utilize the Erlang model profitably in fitting their Stroop factorial data.

It should be noted that Neufeld et al. (2010) and Neufeld (2021) considered

two other models for T which can easily accommodate the signature MIC = 0; one

is the independent parallel model with moderately limited capacity, and the other is

a first stage unlimited capacity model. In both these cases the distribution of T is

seen to have a general gamma distribution (McGill & Gibbon, 1965) in which the

pdf of T is a weighted combination of exponential distributions with different rates.
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In particular, the intercompletion times are not identically-distributed. We will not

expand on these two models because in this chapter we focus on developing a class of

models where the intercompletion times are independent and identically-distributed

(i.i.d.) on any given trial, thus extending the Erlang model.

In some cases the Erlang model can explain factorial data well (e.g., Taylor et

al. (2016, 2017)). However, other data may display extra variation or “over disper-

sion” which degrades the model fit. A novel approach to account for over dispersion

in encoding latencies, given by Neufeld, Vollick, Carter, Boksman, and Jetté (2002),

Neufeld et al. (2007), and Neufeld et al. (2010), was to expand the Erlang model to

a Bayesian mixture model (Batchelder & Riefer, 2007; Berger, 1985; Neufeld, 2016).

In a mixture model extension of the Erlang model1, each participant i is assigned

their own values ki and vi representing, respectively, the number of subprocesses

they require to encode the stimulus and the rate at which they encode them. This

extension is quite natural as we would not generally expect two individuals to be-

have in identical fashion in the course of an experiment. The differences between the

kis and the vis, ranging over participants, can account for the variation previously

dismissed as exogenous “noise”. Moreover, this variation, now captured within the

model itself as a meaningful and elucidated feature, can itself be modelled in terms of

distributions (called Bayesian priors or Bayesian mixing distributions) over the four

cells. In the specific mixture model we call the Neufeld model, specific choices for

prior distributions were made on the number of subprocesses k and the rate v. The

number of subprocesses k, distributed across participants in cell *, was assumed to

1in this case the Erlang may be considered as the “skeleton” of the mixture model
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follow a Poisson distribution with mean m∗ (abbreviated k
D∼ Pois(m∗)), whereas v

was assumed distributed across participants in each cell according to a gamma distri-

bution with constant shape parameter u and constant rate parameter r (abbreviated

v
D∼ Gam(u, r)) (see Appendices A and B for distributions). In this context, m∗, u, r

are called hyperparameters. These hyperparameters can take on specific psychological

meanings within an experiment (Neufeld, 2007b). The hyperparameter m∗ of course

represents the average number of subprocesses required for encoding by participants

in cell *. The hyperparameter u is a competence-based parameter, where higher

values of u reflect greater participant competence (owing, for example, to practice

effects), and r is a stress-related hyperparameter, where larger r detracts from the

performance of the participants.

The reason in the Neufeld model for allowing m∗ to vary with the cell * while

keeping u and r fixed over the cells was to easily satisfy the signature VIC = MIC = 0;

this was profitably utilized in fitting the George and Neufeld (1987) factorial data

(Neufeld et al., 2007; Neufeld et al., 2010). Note that allowing m∗ to vary over cells

while keeping the distribution of v fixed over cells proclaims that the increase in mean

encoding latencies seen in moving diagnostic status from normal health to schizophre-

nia, or from low encoding load to high encoding load, is due to an increase in the

number of subprocesses being executed rather than any change in the rate at which

they are being executed. Thus this model posits a hypothesis about the neurophys-

iological mechanism behind prolonged encoding times in schizophrenia patients. It

is intuitively credible that the number of required subprocesses would increase when

shifting from a low encoding load to a high encoding load, but it is less obvious why the
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schizophrenia disease process should produce additional encoding operations above

those of a control. Nonetheless, converging evidence suggests that the mechanism

posited by the Neufeld model is indeed accurate for a class of factorial experimen-

tal paradigms. Russell and Knight (1977) noted that elevated preparatory activity

(described as “process system priming”) appeared to take place in schizophrenia pa-

tients at the inception of a cognitive task. A wealth of results from neuroimaging

studies and related paradigms support the notion of an atypical resting state default-

mode network of neurocircuitry in schizophrenia patients (Bluhm et al., 2007; Hare

et al., 2019; Lee, Doucet, Leibu, & Frangou, 2018; Murphy, Birn, Handwerker, &

Bandettini, 2000; Orliac et al., 2013; Penner et al., 2018; Williamson & Allman,

2012). Braver and Barch (2006) note that atypical default-system connectivity in

schizophrenia may negatively impact the efficient implementation of encoding steps

once encoding is initiated. Failure to implement may arise from a variety of sources,

e.g., failing to successfully navigate an encoding step and therefore being required to

repeat it, or failing to tag a step as completed and thus unnecessarily repeating it

(Hemsley, 1993, 1994; Steffy & Galbraith, 1980; Steffy & Waldman, 1993). There

may also be failure to aggregate redundant elements of a subprocess into a single

Gestalt (Treisman, 1996).

As successful as the Neufeld model has been in modelling some factorial exper-

iments, it has also exhibited one particular flaw. Specifically, estimates of the average

number mLN of subprocesses required to be executed by participants in the LN (Low-

Normal) cell were considerably below one; in Neufeld et al. (2010) it was observed

that mLN = .0971 and in Highgate-Maynard and Neufeld (1986) it was observed that



23

mLN = .00001. Assuming these estimates are all based on valid encoding trials (i.e.,

the participants did not disengage from the task or respond based on some other cue)

this implies that some participants were encoding instantaneously. In other words,

they were encoding without executing any subprocesses, which is unsatisfactory both

conceptually and mathematically. Cutler and Neufeld (2017) managed this situation

by introducing a task parameter α > 0 (smaller α implies the task is easier) and

replacing the exponential base (2.1.6) with the following gamma base

φ(`) =
vα`α−1

Γ(α)
e−v` (2.1.9)

Once again a random encoding time T can be represented in serial form by the

sum of the `js as in (2.1.7), only now T follows a Gam(kα, v) distribution rather

than an Erlang distribution. We further cast it in the form of a mixture model by

allowing ki and vi to vary with the participant i as in the Neufeld model. However,

we further stipulate that the distribution of k over participants in each cell must

follow a distribution which takes mass only on positive integers, thereby disallowing

the Poisson distribution as a mixing distribution. Thus, the Cutler-Neufeld model

differs from the Neufeld model only in two fundamental ways; one in the choice of

base distribution on the subprocesses (gamma rather than exponential) and second

in a restriction on the legitimate mixing distributions for subprocesses. Both models

accommodate VIC = MIC = 0 but the Cutler-Neufeld model allows for arbitrarily

small (but nonzero) estimates of mLN , recast now as being estimates of the product

αmLN (Cutler & Neufeld, 2017) rather than that of the mean itself. This provides

one motivation and justification for considering base distributions other than the
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exponential, as we do in Sec 2.2. Allowing a wide range of base distributions not

only permits a flexible range of modelling for encoding times, it allows extension of

modelling to other cognitive-processing latencies which may suit a particular base

distribution. In Sec 2.2 we also relax our restriction on requiring mixing distributions

on k to be restricted to positive integers, instead interpreting cases where k = 0 as

“faulty trials” where the participant has disengaged or responded based on some other

cue. This provides a convenient mathematical and conceptual bookend to possible

outcomes. (In practice the experimenter would likely identify and remove faulty trials

from consideration before analysis.)

In this chapter we will be focusing on the development and analysis of models

(nested within a large class of mixture models) yielding examples with specific values

of VIC given the constraint MIC = 0 and thereby extending the work of Neufeld

and Williamson (1996) and Neufeld (2021). Having said that, it is worth noting that

mixture models have an enormous range of applicability beyond the scope in which

we consider them here. Examples range from obtaining accurate personal parameter

estimates (e.g., ki, vi) based on a relatively small samples of encoding latencies from

a participant to estimating the probabilities of illness severity (group membership)

again based on a relatively small sample of encoding latencies compared against a

population (Neufeld, 2021; Neufeld et al., 2010).

Other sources on applications of modelling include Ahn and Busemeyer (2016),

Chechile (2020), Neufeld (2007b, 2015, 2016, 2021), Neufeld and Cutler (2019),

Neufeld and Shanahan (2021), and Townsend, Fifić, and Neufeld (2007).
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2.2 A Class of General Serial Mixture Models

The Cutler-Neufeld model can be considered as an extension of the Neufeld model

in the sense that the former allows for a general gamma base (2.1.9) of which the

exponential base (2.1.6) is the special case α = 1. Neufeld and Williamson (1996),

Neufeld et al. (2010), and especially Neufeld (2021), have considered extensions of

the Neufeld model which retain the exponential base but deviate from the Neufeld

model in other ways; for example, by allowing the number of subprocesses k or the

rate v to vary over encoding trials (rather than, or in addition to, varying over par-

ticipants) according to a Poisson or gamma distribution respectively. We will see

that these Neufeld extensions are specific examples of the class of models we develop

now. This class is a general extension of the standard serial model (2.1.7). We al-

low any continuous positive infinite-tailed distribution to act as the base distribution

for an encoding latency, subject to the mild constraint that it have finite first and

second moments. The parameters that govern the base distribution are allowed to

vary over both trials and participants (and cells), and the number of subprocesses is

also allowed to vary over both trials and participants (and cells). Note that the form

of the base distribution (i.e., its probability distribution, with the exception of the

values of its parameters) is kept the same for all participants in all four cells. This

is a simplifying assumption in keeping with the observation of Neufeld et al. (2010)

and Neufeld (2021) that seldom is a change in overall model architecture required for

different participants within a given experimental paradigm; any necessary changes

can generally be accommodated by tweaking distributional parameters.
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Definition 1: the general serial mixture model: Let Ti denote a random en-

coding trial for participant i. We may express this in serial form as

Ti =

{

0 if Ki = 0

`i1(Θi) + · · · + `iKi
(Θi) if Ki ≥ 1

(2.2.1)

where the number of subprocesses Ki is a nonnegative integer-valued random variable

(that is, its values may vary over trials within a participant, and it may also vary

across participants) and the `i1(Θi), . . . , `iKi
(Θi) are independently and identically-

distributed (i.i.d.) continuous positive infinite-tailed random variables with the sim-

plifying assumption that, for each participant, the distributional form of `ij(Θi) is

the same except possibly for the values of the governing parameters Θi. The Θi are

random vectors which may vary over trials within a participant as well as across

participants. In other words, for all participants, the individual subprocess encoding

times `ij(Θi) share a common base distribution but the parameters of that distribu-

tion on a particular trial for participant i depend on the value Θi = θi for that trial.

We further define the first and second-order moment functions

µ(θ) = E(`(Θ) |Θ = θ) and σ2(θ) = Var(`(Θ) |Θ = θ) (2.2.2)

and make the assumption that µ(θ) and σ2(θ) are finite for all possible values of θ.

The mappings i → Ki and i → Θi can be considered as measure-valued random

processes (Kallenberg, 2017) over the individuals in each cell * with respective dis-

tributions P∗(K) and Q∗(Θ). It is assumed that the processes P∗(K) and Q∗(Θ) act

independently.

Notes Attendant to Definition 1: The capital letter notationKi is used to indicate

the possibility that the number of subprocesses varies over trials for the ith participant;
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the capital Θi is used for similar reasons. The lower case letters ki and θi will be

reserved for two situations, the first being the case where there may be variation

across participants but none across trials (in which case Ki = ki and Θi = θi are

constants for participant i) or, secondly, when we are conditioning on the observed

outcome of a given trial, yielding Ki = ki and Θi = θi for that trial. The case Ki = 0

represents the situation where, on the specified trial, participant i does not encode at

all but either disengages from the task or responds based on some other cue (“faulty

trial”). Variability inKi across trials can have a number of sources, such as variability

in the experimental input sequence from trial to trial, variability in the participant’s

attention from trial to trial, and instances of “partial encoding” (needing or choosing

to encode only parts of the stimulus before executing a response). Variability in

Ki across participants is of course due to differences between participants. Note

that changes in the vector parameter Θi (whether it be over trials or participants)

represent changes in the encoding speed of the subprocesses (thus Θ may be seen as

a generalization of the rate V associated with the exponential distribution) and we

may well envisage situations in which the nature of the input sequence or state of

mind of the participant may affect encoding speed of individual components.

Below we delineate a small number of potential base distributions. We re-

fer the reader to Appendix B for details, properties, and abbreviations concerning

these distributions. The reader can find information about these distributions in

Hogg, McKean, and Craig (2005), Johnson, Kotz, and Balakrishnan (1994), and Van

Zandt (2000). Note that, in practice, any continuous positive right-tailed distribution
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would be a valid candidate provided it satisfied the finite moment constraints on µ(θ)

and σ2(θ).

examples of base distributions:

1. exponential base: Here Θi = Vi and `ij
D∼ expo(Vi). It follows that µ(Θi) =

1/Vi and σ2(Θi) = 1/V 2
i . For observed Ki = ki and Vi = vi on a trial, we obtain

Ti = `i1(vi) + · · · + `iki
(vi)

D∼ Gam(ki, vi) which is the Erlang distribution.

2. gamma base: Here Θi = (Ai, Vi) and `ij
D∼ Gam(Ai, Vi). It follows that

µ(Θi) = Ai/Vi and σ2(Θi) = Ai/V
2
i . For observed Ki = ki, Ai = ai, and Vi = vi

on a trial, we obtain Ti = `i1(ai, vi) + · · · + `iki
(ai, vi)

D∼ Gam(kiai, vi)

3. inverse Gaussian base: Here Θi = (Mi,Λi) and `ij
D∼ IG(Mi,Λi). It follows

that µ(Θi) = Mi and σ2(Θi) = M3
i /Λi. For observed Ki = ki, Mi = µi, and

Λi = λi, we obtain Ti = `i1(µi, λi) + · · · + `iki
(µi, λi)

D∼ IG(kiµi, k
2
i λi).

4. Weibull base: Here Θi = (Ai, Bi) and `ij
D∼ Wei(Ai, Bi). It follows that

µ(Θi) = Bi Γ(1+1/Ai) and σ2(Θi) = B2
i {Γ(1+2/Ai)−(Γ(1+1/Ai))

2}. For given

values Ki = ki, Ai = ai and Bi = bi we obtain Ti = `i1(ai, bi) + · · ·+ `iki
(ai, bi).

In the case of the Weibull, a closed form expression for the distribution of Ti is

not known.

5. lognormal base: Here Θi = (Mi,Σ
2
i ) and `ij

D∼ LN(Mi,Σ
2
i ). It follows that

µ(Θi) = eMi+Σ2
i /2 and σ2(Θi) = e2Mi+Σ2

i (eΣ2
i − 1).For given values Ki = ki,

Mi = µi and Σ2
i = σ2

i we obtain Ti = `i1(µi, σ
2
i ) + · · · + `iki

(µi, σ
2
i ). In the

case of the log normal, a closed form expression for the distribution of Ti is not



29

known.

We now show that the general serial mixture model can be mimicked distri-

butionally by a fixed capacity parallel model with reallocation (FCPR model) as first

discussed in Sec 2.1.2. In an FCPR model, all subprocesses begin executing simul-

taneously at time t = 0; as soon as one subprocess finishes executing, its workload

capacity is reallocated over the remaining ki − 1 subprocesses and these remaining

subprocesses are “restarted” simultaneously with this new capacity. This procedure

is repeated until all subprocesses have finished executing. We make this precise

in the following (see also Atkinson, Holmgren, and Juola (1969), Townsend (1972,

1990), Townsend and Ashby (1983), and more recently Houpt, Townsend, and Jeffer-

son (2018) and Townsend, Wenger, and Houpt (2018)).

Theorem 1: Suppose the encoding latency Ti can be represented by the general

serial mixture model in Definition 1. Then Ti has an equivalent (up to a random

ordering of the subprocesses) representation as an FCPR model.

proof: Condition on the outcome Ki = ki and Θi = θi for a given trial. In the cases

ki = 0 or ki = 1 there is nothing to prove as the parallel process is the same as the

serial process. Therefore assume ki ≥ 2. Let Si(t) denote the survivor function of

`ij(θi), i.e., Si(t) = P (`ij(θi) > t). At time t = 0 simultaneously start ki parallel

i.i.d. processes `
(1)
1 , . . . , `

(1)
ki

where each `
(1)
j has survivor function S(1)(t) = (Si(t))

1/ki.

That is, S(1)(t) is the kth
i root of Si(t). Note that S(1)(t) is itself a survivor function

because S(1)(t) is decreasing, S(1)(0) = 1, and S(1)(∞) = 0. Let m1 be the time of
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finishing of the fastest process, i.e., m1 = min(`
(1)
1 , . . . , `

(1)
ki

). Then

P (m1 > t) = P (min(`
(1)
1 , . . . , `

(1)
ki

) > t) = P (`
(1)
1 > t) · · ·P (`

(1)
ki
> t)

= (S(1)(t))ki

=
(

Si(t))
1/ki
)ki

= Si(t)

= P (`i1 > t)

(2.2.3)

Thus m1 has the same distribution as `i1, i.e., m1
D∼ `i1. Now at time m1 si-

multaneously speed up and independently restart the remaining ki − 1 processes

to produce new parallel i.i.d. processes `
(2)
1 , . . . , `

(2)
ki−1 which have survivor function

S(2)(t) = (Si(t))
1/(ki−1). (This amounts to redistributing capacity over the remaining

ki − 1 processes and restarting them from time m1.) Let m2 = min(`
(2)
1 , . . . , `

(2)
ki−1)

which is the fastest finishing time of the restarted processes. Note that m2 represents

the intercompletion time between the first finishing time m1 and the second overall

finishing time m1 +m2. Moreover

P (m2 > t) = P (min(`
(2)
1 , . . . , `

(2)
ki−1) > t) = P (`

(2)
1 > t) · · ·P (`

(2)
ki−1 > t)

= (S(2)(t))ki−1

=
(

Si(t))
1/(ki−1)

)ki−1

= Si(t)

= P (`i2 > t)

(2.2.4)

and, from independence of the restarting process, m1 + m2
D∼ `i1 + `i2. If ki ≥ 3

we can continue on in this manner, independently restarting and speeding up the



31

remaining ki−2 processes to produce new parallel i.i.d. processes `
(3)
1 , . . . , `

(3)
ki−2 which

have survivor function S(3)(t) = (Si(t))
1/(ki−2) and intercompletion time m3

D∼ `i3.

Carrying on in this way we have an overall parallel process with ki subprocesses and

independent intercompletion times m1, . . . , mki
where mj

D∼ `ij and

m1 + · · · +mki

D∼ `i1 + · · · + `iki
(2.2.5)

The parallel and serial models are equivalent up to an ordering of the execution of

the subprocesses. The serial model may (or may not) specify a specific ordering of

execution of the subprocesses whereas the order of completion of the subprocesses

in this FCPR model is uniformly at random. However, they are distributionally

equivalent in the sense that they lead to the same distribution of the overall encoding

time Ti for given values Ki = ki and Θi = θi. 4

Thus the ability to consider the distribution of Ti as the result of a serial or

parallel process provides flexibility to the model architecture.

We now wish to derive general closed-form expressions for the mean encoding

latencyE(T )∗ and average intertrial variance E(Var(T ))∗ in cell * for the general serial

mixture model. Although we will continue to use the convenient notation E(T )∗ and

E(Var(T ))∗ to denote these quantities, we will be more careful with the notation in

the computational formulas, since they will require computing moments over both

trials and participants. Before we take this step, we will summarize some standard

known formulas for calculating moments.

Lemma 1: standard calculation formulas: Suppose X and Y are two random
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variables. Then

E(X) = EY [E(X |Y )] (2.2.6)

Var(X) = VarY [E(X |Y )] + EY [Var(X |Y )] (2.2.7)

and if X and Y are independent, then

Var(XY ) = Var(X)Var(Y ) + E(X)2Var(Y ) + E(Y )2Var(X) (2.2.8)

proof: see Ross (2007) for (2.2.6) and (2.2.7). The expression (2.2.8) follows from

elementary properties of the variance and independence. 4

We now derive closed form expressions for E(T )∗ and E(Var(T ))∗. We note

that this notation is somewhat careless, in that we should precisely express these

quantities as

E(T )∗ = Ei
∗[E(Ti)] and E(Var(T ))∗ = Ei

∗[Var(Ti)] (2.2.9)

where E(Ti) and Var(Ti) denote the mean and variance, respectively, of the encoding

latencies of the ith participant over trials, and Ei
∗ denotes the subsequent averaging

of those quantities over all participants in cell *. For convenience we will continue to

employ the casual notation E(T )∗ and E(Var(T ))∗ with the understanding that they

represent (2.2.9), but in the following computational formulas we will be very precise

with notation in order to avoid any confusion.

Theorem 2: general formulas for cell means and cell variances: Suppose we

have a general serial mixture model where, for the ith participant, Ti has associated

subprocess number Ki and random vector Θi. Let µ(Θi) and σ2(Θi) be the moment
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functions defined in (2.2.2). Then

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(µ(Θi))] (2.2.10)

and

E(Var(T ))∗ =
{

Ei
∗[Var(Ki)]E

i
∗[Var(µ(Θi))] + Ei

∗[E(Ki)
2]Ei

∗[Var(µ(Θi))]

+ Ei
∗[E(µ(Θi))

2]Ei
∗[Var(Ki)]

}

+ Ei
∗[E(Ki)]E

i
∗[E(σ2(Θi))]

(2.2.11)

proof: We first precisely define the notation on the right hand side of both (2.2.10)

and (2.2.11) and ask the reader to compare with (2.2.9). The outer expectations Ei
∗

refer to expectations being taken across all participants in cell *. The inner moments

(either expectations E or variances Var) are taken across trials within a participant

within a cell. These inner moments are computed first. Conditioning on Ki = ki and

Θi = θi for participant i we obtain

(Ti |Ki = ki,Θi = θi) = `i1(θi) + · · · + `iki
(θi) i.i.d. sum

so

E(Ti |Ki = ki,Θi = θi) = E(`i1(θi)) + · · · + E(`iki
(θi))

= kiµ(θi)

(2.2.12)

and similarly

Var(Ti |Ki = ki,Θi = θi) = Var(`i1(θi)) + · · · + Var(`iki
(θi))

= kiσ
2(θi)

(2.2.13)

Expressed in functional form these become

E(Ti |Ki,Θi) = Kiµ(Θi) and Var(Ti |Ki,Θi) = Kiσ
2(Θi) (2.2.14)
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Applying the standard calculation formulas in Lemma 1 and the independence of Ki

and Θi we obtain

E(Ti) = E(Ki)E(µ(Θi)) (2.2.15)

and

Var(Ti) = Var(E(Ti |Ki,Θi)) + E(Var(Ti |Ki,Θi))

= Var(Kiµ(Θi)) + E(Kiσ
2(Θi))

=
{

Var(Ki)Var(µ(Θi)) + E(Ki)
2Var(µ(Θi)) + E(µ(Θi))

2Var(Ki)
}

+ E(Ki)E(σ2(Θi))

(2.2.16)

Now averaging over all participants in cell * (that is, applying Ei
∗) and using (2.2.9)

and the fact that the random measures K and Θ are independent of one another, we

obtain (2.2.10) and (2.2.11). 4

Note: When applying expectations in (2.2.10) and (2.2.11), care must be taken

to apply expectations in the correct manner over the correct quantities. As noted

at the beginning of the proof of Theorem 2, inner moments, such as E(Ki)
2 and

Var(µ(Θi)), are computed across trials for the ith participant. Thus, if Ki = ki and

Θi = θi are constant over trials for the ith participant, we obtain E(Ki)
2 = k2

i and

Var(µ(Θi)) = Var(µ(θi)) = 0. On the other hand, the outer expectations Ei
∗ are taken

across all participants in cell *.

Theorem 2 yields general closed form solutions to E(T )∗ and E(Var(T ))∗ for

any base distribution with any admissible choice of distributions P∗(K) and Q∗(Θ).

In the following we apply Theorem 2 to the exponential base.

Corollary 2.1: exponential base: Suppose we have a general serial mixture model
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with an exponential base and distributions P∗(K) and Q∗(V ). (Recall Θ = V , the

exponential rate, in the case of an exponential base.) Then

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(1/Vi)] (2.2.17)

and

E(Var(T ))∗ =
{

Ei
∗[Var(Ki)]E

i
∗[Var(1/Vi)] + Ei

∗[E(Ki)
2]Ei

∗[Var(1/Vi)]

+ Ei
∗[E(1/Vi)

2]Ei
∗[Var(Ki)]

}

+ Ei
∗[E(Ki)]E

i
∗[E(1/V 2

i )]

(2.2.18)

proof: Here `ij
D∼ expo(Vi) and hence µ(Vi) = 1/Vi and σ2(Vi) = 1/V 2

i (see Ap-

pendix B). Plugging these values into (2.2.10) and (2.2.11) yields the desired results.

4

We now apply Corollary 2.1 to a collection of examples considered by Neufeld (2021).

The examples fall under the umbrella of Corollary 2.1, each exhibiting an exponen-

tial base, accompanied by a Poisson distribution over K (either over participants or

trials) and a gamma distribution over V (either over participants or trials). Thus

these examples represent extensions of the Neufeld model. The purpose of examining

these examples is to show how easily E(T )∗ and E(Var(T ))∗ can be calculated by

utilizing known related distributional moments (see Appendix A and Appendix B for

moments and notation) and plugging into (2.2.17) and (2.2.18). This contrasts with

Neufeld (2021) where it was necessary to calculate integrals on a case-by-case basis.

Example 1: This is the Neufeld model, and corresponds to example 5 of Neufeld (2021).

Here k ∼ Pois(m∗) across participants in cell * and v
D∼ Gam(u, r) across participants

in each cell where u > 2. There is no variation over trials, and so all three terms
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within the braces of (2.2.18) vanish. This yields

E(T )∗ = Ei
∗[ki]E

i
∗[1/vi] = m∗

[

r

u− 1

]

=
m∗r

u− 1

and

E(Var(T ))∗ = Ei
∗[ki]E

i
∗[1/v

2
i ] = m∗

[

r2

(u− 1)(u− 2)

]

=
m∗r

2

(u− 1)(u− 2)

Example 2: This corresponds to example 6 of Neufeld (2021). Here Ki
D∼ Pois(m∗)

across trials for each participant in cell * whereas v
D∼ Gam(u, r) across participants

in each cell where u > 2. Applying (2.2.17) yields

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[1/vi] = Ei

∗[m∗]E
i
∗[1/vi] = m∗E

i
∗[1/vi] =

m∗r

u− 1

Now because Ki is a random variable over trials whereas vi is constant over trials, we

see from (2.2.18) that the first two terms inside the braces vanish whereas the last

term inside the braces does not, and we obtain

E(Var(T ))∗ = Ei
∗[1/v

2
i ]E

i
∗[Var(Ki)] + Ei

∗[E(Ki)]E
i
∗[1/v

2
i ]

= Ei
∗[1/v

2
i ]
(

Ei
∗[Var(Ki)] + Ei

∗[E(Ki)]
)

= Ei
∗[1/v

2
i ] 2m∗ since Var(Ki) = E(Ki) = m∗

=
2m∗r

2

(u− 1)(u− 2)

(2.2.19)

Example 3: This corresponds to example 7 of Neufeld (2021). Here Ki
D∼ Pois(mi)

over trials for participant i, and then m
D∼ Gam(w∗, z∗) across participants in cell *.

(Thus Ki varies over both trials and participants.) As in the previous two examples,

v
D∼ Gam(u, r) over participants in each cell where u > 2. Applying (2.2.17) yields

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[1/vi] = Ei

∗[mi]E
i
∗[1/vi] =

[

w∗

z∗

] [

r

u− 1

]

=
rw∗

z∗(u− 1)
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As in Example 2, the first two terms inside the braces of (2.2.18) vanish whereas the

third does not, yielding

E(Var(T ))∗ = Ei
∗[1/v

2
i ]E

i
∗[mi] + Ei

∗[mi]E
i
∗[1/v

2
i ] = 2

[

w∗

z∗

][

r2

(u−1)(u−2)

]

=
2r2w∗

z∗(u−1)(u−2)

(2.2.20)

Example 4: This corresponds to example 9 of Neufeld (2021). Here Ki
D∼ Pois(m∗)

over trials for each participant in cell * and also Vi
D∼ Gam(u∗, r∗) over trials for each

participant in cell * where u∗ > 2. Applying 2.2.17 yields

E(T )∗ = Ei
∗[m∗]E

i
∗[r∗/(u∗ − 1)] =

m∗r∗
u∗ − 1

Now since both Ki and Vi are random variables over trials here, all terms within

the braces of (2.2.18) are nonzero. Noting that E(Ki) = Var(Ki) = m∗ and that

E(1/Vi) = r∗/(u∗ − 1), E(1/V 2
i ) = r2

∗/[(u∗ − 1)(u∗ − 2)] and Var(1/Vi) = r2
∗/[(u∗ −

1)2(u∗ − 2)] (see Appendices A and B), we can plug into (2.2.18) to obtain

E(Var(T ))∗ =

{

m∗r
2
∗

(u∗−1)2(u∗−2)
+

m2
∗r

2
∗

(u∗−1)2(u∗−2)
+

r2
∗m∗

(u∗−1)2

}

+
r2
∗m∗

(u∗−1)(u∗−2)

=
m∗r

2
∗[m∗ + 2(u∗−1)]

(u∗−1)2(u∗−2)
(2.2.21)

Example 5: This corresponds to example 10 of Neufeld (2021). Vi
D∼ Gam(u∗, r∗)

across trials for each participant in cell * where u∗ > 2 (as in previous example)

but here Ki
D∼ Pois(mi) across trials for participant i where m

D∼ Gam(w∗, z∗) across

participants in cell *. Applying (2.2.17) gives

E(T )∗ = Ei
∗[mi]E

i
∗[r∗/(u∗ − 1)] =

[

w∗

z∗

] [

r∗
u∗ − 1

]

=
r∗w∗

z∗(u∗ − 1)
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Again all terms inside the braces of (2.2.18) are nonzero. SinceE(Ki) = Var(Ki) = mi

we obtain Ei
∗[E(Ki)

2] = Ei
∗[m

2
i ] = [(w∗+1)w∗]/z

2
∗ and Ei

∗[Var(Ki)] = Ei
∗[mi] = w∗/z∗.

Plugging into (2.2.18) yields

E(Var(T ))∗ =

[

w∗

z∗

] [

r2
∗

(u∗ − 1)2(u∗ − 2)

]

+

[

w∗(w∗ + 1)

z2
∗

] [

r2
∗

(u∗ − 1)2(u∗ − 2)

]

+

[

r2
∗

(u∗ − 1)2

] [

w∗

z∗

]

+

[

w∗

z∗

][

r2
∗

(u∗ − 1)(u∗ − 2)

]

=
r2
∗w∗

z2
∗

[

2z∗(u∗ − 1) + w∗ + 1

(u∗ − 1)2(u∗ − 2)

]

(2.2.22)

Below we apply Theorem 2 to a gamma base distribution.

Corollary 2.2: gamma base: Suppose we have a general serial mixture model with

a gamma base and distributions P∗(K) and Q∗(Θ). Recall Θ = (A, V ), the shape and

rate parameters, respectively, in the case of a gamma base. Further assume that the

distributions of A and V act independently over both trials and participants. Then

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(Ai)]E

i
∗[E(1/Vi)] (2.2.23)

and

E(Var(T ))∗ = Ei
∗[E(K2

i )]
{

Ei
∗[Var(Ai)]E

i
∗[Var(1/Vi)] + Ei

∗[E(Ai)
2]Ei

∗[Var(1/Vi)]

+ Ei
∗[E(1/Vi)

2]Ei
∗[Var(Ai)]

}

+ Ei
∗[E(Ai)

2]Ei
∗[E(1/Vi)

2]Ei
∗[Var(Ki)]

+ Ei
∗[E(Ki)]E

∗
i [E(Ai)]E

i
∗[E(1/V 2

i )]

(2.2.24)

proof: For the gamma base µ(Θi) = Ai/Vi and σ2(Θi) = Ai/V
2
i . Plugging into

(2.2.10) and using the assumed independence of A and V yields (2.2.23). Now as

direct application of (2.2.11) will produce a very lengthy algebraic expression, we

shorten it first by noting that Var(Ki) + E(Ki)
2 = E(K2

i ) and thus (2.2.11) can
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equivalently be written in the more compact asymmetric form

E(Var(T ))∗ =
{

Ei
∗[E(K2

i )]Ei
∗[Var(µ(Θi))] + Ei

∗[E(µ(Θi))
2]Ei

∗[Var(Ki)]
}

+ Ei
∗[E(Ki)]E

i
∗[E(σ2(Θi))]

(2.2.25)

Now expanding Var(µ(Θi)) = Var(Ai/Vi) according to (2.2.8) and plugging into

(2.2.25) and using independence yields (2.2.24). 4

Corollary 2.3: the Cutler-Neufeld base: This is a special case of the gamma

base where the shape parameter Ai = α is a constant; hence Var(Ai) = 0. Plugging

into (2.2.23) and replacing E(K2
i ) with Var(Ki) + E(Ki)

2 in (2.2.24) yields

E(T )∗ = αE∗
i [E(Ki)]E

∗
i [E(1/Vi)] (2.2.26)

and

E(Var(T ))∗ = α2
{

Ei
∗[Var(Ki)]E

i
∗[Var(1/Vi)] + Ei

∗[E(Ki)
2]Ei

∗[Var(1/Vi)]

+ Ei
∗[E(1/Vi)

2]Ei
∗[Var(Ki)]

}

+ αEi
∗[E(Ki)]E

i
∗[E(1/V 2

i )]

(2.2.27)

Corollary 2.4: inverse Gaussian base: Suppose we have a general serial mixture

model with an inverse Gaussian base and distributions P∗(K) and Q∗(Θ). Recall

Θ = (M,Λ), the mean and shape parameters, respectively, in the case of an inverse

Gaussian base. Further assume that the distributions of M and Λ act independently

over both trials and participants. Then

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(Mi)] (2.2.28)

and

Ei
∗[Var(Ti)] =

{

Ei
∗[Var(Ki)]E

i
∗[Var(Mi)] + Ei

∗[E(Ki)
2]Ei

∗[Var(Mi)]

+ Ei
∗[E(Mi)

2]Ei
∗[Var(Ki)]

}

+ Ei
∗[E(Ki)]E

i
∗[E(M3

i )]Ei
∗[E(1/Λi)]

(2.2.29)
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proof: This follows directly by plugging µ(Θi) = Mi and σ2(Θi) = M3
i /Λi into

(2.2.10) and (2.2.11) and utilizing independence. 4

Note: In Corollary 2.2 and 2.4 we assumed that the components of the vector Θ

acted independently of one another; i.e., A and V were independent in the case of

the gamma, and M and Λ in the case of the inverse Gaussian. This assumption

was made simply in order to allow us to calculate the cell means and variances in

terms of the moments of the individual components of Θ. If the components of Θ

are not independent, this in no way invalidates (2.2.10) and (2.2.11); however, these

expressions must then be calculated using the joint distribution of Θ.

Example 6: Here we consider an inverse Gaussian base where the mean m
D∼

Gam(u, r) across participants in each cell and the shape parameter λ
D∼ Gam(w, z)

across participants in each cell with w > 1 (there is no variation over trials for either

m or λ). Assume m and λ act independently over participants. In addition, assume

Ki varies over trials according to a geometric distribution with parameter pi (i.e.,

Ki
D∼ geom(pi); see Appendix A) and p follows a beta distribution across participants

in cell * with pdf f(p) = β∗ p
β∗−1 for 0 < p < 1 and some β∗ > 2. Then

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(Mi)] = Ei

∗[1/pi]E
i
∗[mi] (2.2.30)

and the first two terms inside the braces of (2.2.29) vanish, yielding

Ei
∗[Var(Ti)] = Ei

∗[m
2
i ]E

i
∗[(1 − pi)/p

2
i ] + Ei

∗[1/pi]E
i
∗[m

3
i ]E

i
∗[1/λi] (2.2.31)

Applying the gamma distributions Gam(u, r) and Gam(w, z) yields

Ei
∗[mi] =

u

r
, Ei

∗[m
2
i ] =

u(u+ 1)

r2
, Ei

∗[m
3
i ] =

u(u+ 1)(u+ 2)

r3
, Ei

∗[1/λi] =
z

w − 1
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and applying the beta distribution yields

Ei
∗[E(Ki)] = Ei

∗[1/pi] =

∫ 1

0

1

p
β∗ p

β∗−1 dp =
β∗

β∗ − 1

and

Ei
∗[Var(Ki)] = Ei

∗[(1 − pi)/p
2
i ] =

∫ 1

0

(

1 − p

p2

)

β∗ p
β∗−1 dp =

β∗
(β∗ − 1)(β∗ − 2)

Plugging in to (2.2.30) and (2.2.31) produces

E(T )∗ =

[

β∗
β∗ − 1

]

[u

r

]

=
β∗u

r(β∗ − 1)
(2.2.32)

and

E(Var(T ))∗ =

[

u(u+ 1)

r2

] [

β∗
(β∗ − 1)(β∗ − 2)

]

+

[

β∗
β∗ − 1

] [

u(u+ 1)(u + 2)

r3

] [

z

w − 1

]

(2.2.33)

Thus we have seen by numerous examples that Theorem 2 allows us to compute E(T )∗

and E(Var(T ))∗ for various continuous positive infinite-tailed base distributions with

different choices for P∗(K) and Q∗(Θ). This in turn will allow us to compute MIC

and VIC by plugging into (2.1.3) and (2.1.5). However, in taking our first steps

toward calculating MIC and VIC, we first consider a particular subset of the class

of general serial mixture models, a subset we call generalized Cutler-Neufeld models.

These models have the feature that MIC and VIC take particularly simple forms.

2.3 Generalized Cutler-Neufeld Models

Definition 2: Generalized Cutler-Neufeld Model: This is a specific subset of

the class of general serial mixture models in Definition 1 with unspecified base and
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having the properties that (a) Θi = θi for each participant i (i.e., Θi = θi does not

vary over trials although it may vary across participants) and (b) the distribution of

θ over participants is the same in each cell. Note that (a) and (b) can be summarized

by stating that there exists a distribution Q(θ) such that Q∗(Θ) = Q(θ) in each

cell *. On the other hand, Ki may vary over both trials and participants, and its

distribution P∗(K) depends on the cell *. In the case Ki varies over trials for some

participants, we say it is a generalized Cutler-Neufeld model with variation. In the

caseKi = ki is constant for each participant i, we say it is a generalized Cutler-Neufeld

model without variation, in which case the notation P∗(K) can be replaced by the

notation P∗(k) describing the distribution of k across participants in cell *. Both

the Neufeld and Cutler-Neufeld models are examples of generalized Cutler-Neufeld

models without variation. For convenience, we use the abbreviation gen-CN model

to denote generalized Cutler-Neufeld models.

There are three motivations behind defining gen-CN models. First, they de-

scribe a large flexible subset of the class of general serial mixture models that includes

the Neufeld model, the Cutler-Neufeld model, as well as Examples 1, 2, 3, and 6 given

above. Second, specific cases of such models have proven useful in modelling facto-

rial experiment encoding latencies (see Neufeld et al. (2002), Neufeld, Vollick, et

al. (2007), Neufeld et al. (2010), Taylor et al. (2016, 2017)) in which the changes in

E(T )∗ and E(Var(T ))∗ over cells have been satisfactorily explained by shifting the

distribution of the number of subprocesses K over cells while keeping the distribu-

tion of all other parameters constant. Third, the gen-CN models permit particularly

succinct and aesthetic expressions for MIC and VIC.
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Theorem 3: MIC and VIC for gen-CN models: Suppose we have a gen-

CN model with moment functions µ(θ) and σ2(θ). Since the distribution of θ over

participants in a cell is the same for each cell, we can reflect this by writingEi
∗[µ(θi)] =

Ei[µ(θi)] and Ei
∗[σ

2(θi)] = Ei[σ2(θi)]. Define

KMIC = (Ei
HS[E(Ki)] − Ei

HN [E(Ki)]) − (Ei
LS [E(Ki)] −Ei

LN [E(Ki)]) (2.3.1)

and

KVIC = (Ei
HS[Var(Ki)] − Ei

HN [Var(Ki)]) − (Ei
LS [Var(Ki)] − Ei

LN [Var(Ki)]) (2.3.2)

Then

MIC = Ei[µ(θi)]KMIC (2.3.3)

and

VIC = Ei[µ(θi)
2]KVIC + Ei[σ2(θi)]KMIC (2.3.4)

proof: It follows from the assumptions of the theorem and (2.2.10) that

E(T )∗ = Ei
∗[E(Ki)]E

i[µ(θi)] (2.3.5)

and since Var(µ(θi)) = 0, leading to a vanishing of the first two terms in (2.2.11), we

obtain

E(Var(T ))∗ = Ei[µ(θi)
2]Ei

∗[Var(Ki)] + Ei
∗[E(Ki)]E

i[σ2(θi)] (2.3.6)

Thus applying (2.1.3) and the above, we obtain

MIC = Ei[µ(θi)]
{

(Ei
HS[E(Ki)] − Ei

HN [E(Ki)]) − (Ei
LS[E(Ki)] − Ei

LN [E(Ki)])
}

= Ei[µ(θi)]KMIC

(2.3.7)
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whereas applying (2.1.5) and the above yields

VIC =
{

(Ei[µ(θi)
2]Ei

HS[Var(Ki)] + Ei
HS[E(Ki)]E

i[σ2(θi)])

− (Ei[µ(θi)
2]Ei

HN [Var(Ki)] + Ei
HN [E(Ki)]E

i[σ2(θi)])
}

−
{

(Ei[µ(θi)
2]Ei

LS[Var(Ki)] + Ei
LS[E(Ki)]E

i[σ2(θi)])

− (Ei[µ(θi)
2]Ei

LN [Var(Ki)] + Ei
LN [E(Ki)]E

i[σ2(θi)])
}

= Ei[µ(θi)
2]
{

(Ei
HS[Var(Ki)]−Ei

HN[Var(Ki)])−(Ei
LS[Var(Ki)]−Ei

LN[Var(Ki)])
}

+ Ei[σ2(θi)]
{

(Ei
HS[E(Ki)] − Ei

HN [E(Ki)]) − (Ei
LS[E(Ki)] − Ei

LN [E(Ki)])
}

= Ei[µ(θi)
2]KVIC + Ei[σ2(θi)]KMIC

(2.3.8)

as claimed. 4

Note: We see that the base distribution itself plays no role in the form of (2.3.3) and

(2.3.4) except for the specific values that Ei[µ(θi)], E
i[µ(θi)

2], and Ei[σ2(θi)] attain.

Moreover, we see that MIC = 0 if and only if (iff) KMIC = 0. Thus these models

will exhibit factorial additivity over means iff KMIC = 0.

We now note that the situation becomes even simpler in the case of gen-CN

models without variation.

Corollary 3.1: MIC and VIC in gen-CN models without variation: Assume

the gen-CN model is without variation, i.e., Ki does not vary over trials for any

participant. Then

MIC = Ei[µ(θi)]KMIC (2.3.9)

and

VIC = Ei[σ2(θi)]KMIC (2.3.10)
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Thus VIC = 0 iff MIC = 0 which in turn occurs iff KMIC = 0.

proof: Since there is no variation over trials, Ki = ki and Var(ki) = 0 for all i and

hence KVIC = 0. The result then follows from (2.3.4) and (2.3.3). 4

Corollary 3.2: alternate expression of Corollary 3.1: In the case of a gen-CN

model without variation, we have Ki = ki and can express

Ei
LN [ki] = m, Ei

HN [ki] = m+ h, Ei
LS[ki] = m+ g, Ei

HS[ki] = m+ f (2.3.11)

Thus KMIC = f − (h+ g) and it follows from Corollary 3.1 that

MIC = Ei[µ(θi)][f − (h+ g)] (2.3.12)

and

VIC = Ei[σ2(θi)][f − (h+ g)] (2.3.13)

Thus VIC = 0 iff MIC = 0 which in turn occurs iff f = h+ g. 4

Note: In the experimental paradigms we are considering, E(T )∗ is shortest in the

LN cell, increasing as we shift into any of the other three cells. This combined with

(2.3.5) implies that, for all practical purposes, h > 0, g > 0, and f > 0. Although this

positivity constraint is not necessary for most mathematical expressions to be valid,

it will simplify things going forward (especially when evaluating the sign of VIC) to

assume related definitions of such quantities are positive. We will call attention to

this as the situation arises.

Note: The value of Corollary 3.2 is as follows. For a given outcome of a specific ex-

periment, we may observe the equality f = h+g as the result of serendipity. However,

if repeated manipulations of the encoding load (perhaps over a series of increasing
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loads) and repeated manipulations of diagnostic status (perhaps by considering pa-

tients of increasing levels of illness) always result in f = h+ g, this suggests that the

observed additivity is a real phenomenon. In this case the additional subprocesses

due to increases in encoding load (represented by h) and the additional subprocesses

due to schizophrenia diagnostic status (represented by g) act independently of one

another, producing f = h+ g and the result VIC = MIC = 0.

In the case of gen-CN models with variation, we may or may not obtain the

signature VIC = 0 iff MIC = 0. Below we present an assortment of gen-CN models

that permit a variety of different explicit MIC-VIC signatures.

Example 7: Poisson over trials: Consider a gen-CN model where, for participant

i in cell *, Ki follows a Poisson distribution over trials with mean mi which in turn

may vary over participants in the cell according to some positive distribution P∗(m).

Since mi = E(Ki) = Var(Ki) for the Poisson, then setting Ei
∗[mi] = λ∗ yields

KMIC = KVIC = (Ei
HS[mi] − Ei

HN [mi]) − (Ei
LS[mi] − Ei

LN [mi])

= (λHS − λHN ) − (λLS − λLN )

(2.3.14)

where the boundary conditions 0 < λLN < λHN , λLS < λHS hold in order to satidy

(2.3.5) and the factorial outcomes of E(T )∗ in Sec 2.1.1. Hence VIC = 0 iff MIC = 0

and there is a wide range of admissible choices of λ∗ which will permit this outcome .

Thus this is an example of a gen-CN model with variation that satisfies the signature

VIC = 0 iff MIC = 0. Note that Example 7 also embraces the special subcase where

there is no variation in mi across participants in the cell, in which case P∗(m) is just

a point mass at λ∗ and Ki only varies over trials.

Example 8: a simple negative binomial model: Consider a gen-CN model where



47

we assume that, for each participant i, Ki has a negative binomial distribution across

trials with parameters r∗ and p∗ in cell * (see Appendix A). There is no variation

across participants. We interpret r∗ as the number of steps that must be encoded in

cell * in order for successful encoding of the entire stimulus to occur, and p∗ represents

the probability of successful encoding of a step on any one try. Thus Ki represents

the total number of tries (subprocesses) required to successfully encode the stimulus

on a trial. It follows that E(Ki) = r∗/p∗ and Var(Ki) = r∗(1 − p∗)/p
2
∗ in cell *.

Assume further that the required number of steps r∗ is the same in cells LN and LS

and can be denoted by rL. Similarly assume that the required number of steps r∗

is the same in cells HN and HS and can be denoted by rH . (Note this assumption

is very reasonable as it implies the same set of stimuli are presented to both normal

controls and schizophrenia patients, but that there is a difference in number of steps

between the low and high encoding loads.) Assume that the probability of successful

encoding of a step on any try is pN for a normal control and pS for a schizophrenia

patient (and this does not vary with encoding load, which also is reasonable). Make

the assumption that the experiment satisfies rL < rH and pS < pN in order to be

consistent with observed outcomes E(T )∗ in the factorial experiments described in

Sec 2.1.1. Then

KMIC =

(

rH

pS
− rH

pN

)

−
(

rL

pS
− rL

pN

)

= (rH − rL)

(

1

pS

− 1

pN

)

> 0

(2.3.15)
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and

KVIC =

(

rH(1 − pS)

p2
S

− rH(1 − pN )

p2
N

)

−
(

rL(1 − pS)

p2
S

− rL(1 − pN )

p2
N

)

= (rH − rL)

(

1 − pS

p2
S

− (1 − pN )

p2
N

)

> 0

(2.3.16)

It follows that both MIC > 0 and VIC > 0 always in this simple negative binomial

model. Thus this model, while appealing in its explanatory physical mechanism, is

not a candidate for modelling the experimental paradigms considered in Sec 2.1.1

because those experiments always produced MIC = 0.

Example 9: an alternative negative binomial model: In Example 8 above a

specific negative binomial model was considered where the number of successful steps

required to encode under the low encoding condition was rL whereas the number of

successful steps required to encode under the high encoding condition was rH. These

steps may be considered to be determined by the physical complexity of the input

stimulus sequence (e.g., consider encoding a 3-letter word as opposed to a 6-letter

word). An alternative model which may be more appropriate in some cases is when the

complexity of the input sequence physically stays the same (e.g., always present a 6-

letter word) but some quality in the presentation results in a differential encoding load

(e.g., present the word in bold face vs. faded) which leads to a differential probability

of successfully encoding a step on any try. The diagnostic status of the participant

also affects this probability. In this case the number of required encoding steps r

remains the same from cell to cell but the probability p∗ of successfully encoding a
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step on any one try depends on the cell. The number of subprocesses Ki required to

encode follows a negative binomial distribution over trials with parameters r and p∗.

Hence E(Ki) = r/p∗ and Var(Ki) = r(1 − p∗)/p
2
∗. In order to be consistent with the

factorial outcomes of Sec 2.1.1 we have the boundary conditions

0 < pHS < pHN , pLS < pLN < 1

These boundary conditions imply that there exists p > 0, h > 0, g > 0, and f > 0

such that

1

pLN

=
1

p
,

1

pHN

=
1

p
+ h,

1

pLS

=
1

p
+ g,

1

pHS

=
1

p
+ f

It follows that

KMIC =

[

( r

pHS
− r

pHN

)

−
( r

pLS
− r

pLN

)

]

= r

[

(1

p
+ f
)

−
(1

p
+ h
)

−
{

(
1

p
+ g) − 1

p

}

]

= r[f − (h+ g)]

(2.3.17)

so here MIC = 0 iff f = h + g, which is a possible scenario. We will show that

MIC = 0 always implies VIC > 0 for this model. First note that

p∗ =
p

1 + px∗
where x∗ = 0, h, g or f depending on the cell *

and furthermore

1 − p∗ =
1 + px∗ − p

1 + px∗
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Then it follows that

KVIC = r

[

1 − pHS

p2
HS

−
(

1 − pHN

p2
HN

)]

− r

[

1 − pLS

p2
LS

−
(

1 − pLN

p2
LN

)]

= r

[

(

1 + pf

p

)2(
1 + pf − p

1 + pf

)

−
(

1 + ph

p

)2(
1 + ph − p

1 + ph

)

]

− r

[

(

1 + pg

p

)2(
1 + pg − p

1 + pg

)

− (1 − p)

p2

]

=
r

p2

{

(1 + pf)(1 + pf − p) − (1 + ph)(1 + ph− p)

− [(1 + pg)(1 + pg − p) − (1 − p)]
}

=
r

p2

{

2p[f − (h+ g)] − p2[f − (h+ g)] + p2[f2 − (h2 + g2)]
}

(2.3.18)

Substituting in the restriction f = h+ g corresponding to MIC = 0 yields

KVIC = r[(h+ g)2 − (h2 + g2)] = 2rhg > 0 (2.3.19)

so MIC = 0 yields

VIC = 2rEi[µ(θi)
2]hg > 0 (2.3.20)

Thus this alternative negative binomial model is a candidate for modelling experi-

ments that yield factorial additivity of means and factorial superadditivity of vari-

ances.

Example 10: a binomial model: Suppose we have a gen-CN model and assume

that there exists n ≥ 1 such that for each individual there is a set of n underlying

subprocesses which could be activated on any encoding trial and, in cell *, p∗ is the

probability that any one of these subprocesses is activated. We let Ki = number of

activated subprocesses for participant i, and assume that this does not depend on

i but only the cell probabilities p∗. If the subprocesses are activated independently
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of one another then Ki follows a binomial distribution over trials with parameters n

and p∗ with E(Ki) = np∗ and Var(Ki) = np∗(1 − p∗). In order to accommodate the

factorial data outcomes E(T )∗ we have the boundary conditions

0 < pLN < pHN , pLS < pHS < 1

We obtain

KMIC = n[(pHS − pHN) − (pLS − pLN )] (2.3.21)

and

KVIC = n[(pHS(1−pHS)−pHN (1−pHN ))− (pLS(1−pLS)−pLN (1−pLN ))] (2.3.22)

There are many admissible solutions rendering KMIC = 0 and hence MIC = 0; for

example, select any 0 < x < 1/4 and set pLN = x, pHN = 2x, pLS = 3x, and

pHS = 4x. Then KMIC = 0 and KVIC = −4nx2 < 0 so VIC < 0. In fact we can

show that in this model, MIC = 0 always implies VIC < 0. Note that if KMIC = 0

then there must exist x, y, and d such that pLN = x, pLS = x + d, pHN = y, and

pHS = y + d. Under the usual factorial data outcomes we will have x < y and d > 0.

Now

KVIC = n [(y + d)(1 − (y + d)) − y(1 − y)− {(x+ d)(1 − (x+ d)) − x(1 − x)}]

= n
[

(y + d) − (y + d)2 − y(1 − y) − {(x+ d) − (x+ d)2 − x(1 − x)}
]

= n
[

y + d− y2 − 2dy − d2 − y + y2 − {x+ d− x2 − 2dx− d2 − x+ x2}
]

= n
[

d − 2dy − d2 − {d− 2dx− d2}
]

= −n [2d(y − x)] < 0

(2.3.23)
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Thus here we always have MIC = 0 implying VIC < 0. Therefore the binomial model

is a candidate for modelling those factorial experiments exhibiting factorial additivity

of means but factorial subadditivity of variances.

The next model can exhibit VIC < 0 or VIC > 0 depending on the situation

when MIC = 0.

Example 11: the truncated Poisson: Assume we have a gen-CN model where, in

cell *, Ki follows a truncated Poisson distribution over trials (see Appendix A) with

parameter m∗ > 0. The truncated Poisson can be described as a Poisson distribution

conditional on having at least one observation (i.e., at least one subprocess occurs),

so the range of K is k = 1, 2, 3, . . . . It follows that

E(Ki) =
m∗

1 − e−m∗

and Var(Ki) =
m∗

1 − e−m∗

−
(

m∗

1 − e−m∗

)2

e−m∗ (2.3.24)

Note that E(Ki) and Var(Ki) converge rapidly to m∗ as m∗ increases, and that since

the function f(v) = v/(1 − e−v) is a 1-1 increasing function over (0,∞) we have the

boundary conditions

0 < mLN < mHN, mLS < mHS

We obtain

KMIC = (Ei
HS[E(Ki)] −Ei

HN [E(Ki)])− (Ei
LS [E(Ki)] − Ei

LN [E(Ki)])

=

(

mHS

1 − e−mHS
− mHN

1 − e−mHN

)

−
(

mLS

1 − e−mLS
− mLN

1 − e−mLN

) (2.3.25)

so KMIC = 0 is equivalent to the constraint

mHS

1 − e−mHS
=

mHN

1 − e−mHN
+

mLS

1 − e−mLS
− mLN

1 − e−mLN
(2.3.26)

which for notational convenience we will rewrite as

z

1 − e−z
=

w

1 − e−w
+

y

1 − e−y
− x

1 − e−x
(2.3.27)
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Note that the above constraint is invariant under an interchange of w and y. Note

that since f(v) = v/(1 − e−v) is increasing over (0,∞) then, given 0 < x < w, y,

there is a unique solution z > w, y to (2.3.27) which can be computed by numerical

iteration, thereby rendering MIC = KMIC = 0. Note also that as, v → ∞, f(v) is

asymptotic to v, and this asymptotic behaviour is achieved rapidly. Thus, once x is

modestly large, the exact constraint (2.3.27) can be approximated well by the easily

computable linear constraint

z = w + y − x where w, y > x (2.3.28)

which corresponds to the solution to MIC = 0 for the original (non-truncated) Poisson



54

distribution. Now

KVIC = (Ei
HS[Var(Ki)] − Ei

HN [Var(Ki)]) − (Ei
LS [Var(Ki)] − Ei

LN [Var(Ki)])

=

[(

mHS

1 − e−mHS
−
(

mHS

1 − e−mHS

)2

e−mHS

)

− mHN

1 − e−mHN
−
(

mHN

1 − e−mHN

)2

e−mHN

)]

−
[(

mLS

1 − e−mLS
−
(

mLS

1 − e−mLS

)2

e−mLS

)

− mLN

1 − e−mLN
−
(

mLN

1 − e−mLN

)2

e−mLN

)]

= KMIC +

[

(

mHN

1 − e−mHN

)2

e−mHN −
(

mHS

1 − e−mHS

)2

e−mHS

]

−
[

(

mLN

1 − e−mLN

)2

e−mLN −
(

mLS

1 − e−mLS

)2

e−mLS

]

= KMIC +

[

(

w

1 − e−w

)2

e−w −
(

z

1 − e−z

)2

e−z

]

−
[

(

x

1 − e−x

)2

e−x −
(

y

1 − e−y

)2

e−y

]

(2.3.29)

Now MIC = 0 implies KMIC = 0 and so then KVIC reduces to

KVIC =

[

(

w

1−e−w

)2

e−w−
(

z

1−e−z

)2

e−z

]

−
[

(

x

1−e−x

)2

e−x−
(

y

1−e−y

)2

e−y

]

(2.3.30)

where 0 < x < w, y < z and (2.3.27) holds. (Note that this expression is invariant

to interchange of w and y.) Now for fixed x > 0 with 0 < x < w, y < z we see that

(2.3.27) implies z → ∞ if either w → ∞ or y → ∞ and we obtain

lim
w,y→∞

KVIC = −
(

x

1 − e−x

)2

e−x < 0 (2.3.31)
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Thus MIC = 0 implies VIC < 0 for sufficiently large w and y. Of course VIC → 0 as

x → ∞ and this limit coincides with the original (non-truncated) Poisson distribution

where VIC = 0 iff MIC = 0. Moreover the convergence of KVIC to 0 is rapid.

Consider the example x = 5, w = 6, and y = 8. Solving (2.3.27) for z yields

z = 8.9825 (compare this with the value z = 9 from the linear approximation (2.3.28)),

and we obtain KVIC = −0.0697. However, we end this example by noting that

VIC is not always negative for MIC = 0. The sign flips to positive for some very

small values near the origin. Letting x = 0.05, w = 0.1, and y = 0.15 (this would

correspond to a high probability of zero subprocesses occurring for the original (non-

truncated) Poisson), we solve (2.3.27) numerically to obtain z = 0.19845. This yields

KVIC = 0.000788 > 0.

We now consider a special type of gen-CN model.

Definition 3: hybrid gen-CN models: These are gen-CN models in which we

can partition Ki = ni + Ri where n is distributed across participants in cell * ac-

cording to some nonnegative discrete distribution P∗(n) (no variation over trials) and

Ri is a nonnegative discrete random variable. The quantity ni can be interpreted as

a minimum on the number of subprocesses that must be executed by participant i

(may encompass resting-state subprocesses plus possibly particular task-related sub-

processes) and Ri represents additional subprocesses that may arise trial to trial due

to a variety of reasons, such as variability of the stimulus input sequence or failure to

tag subprocesses as completed.
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Corollary 3.3: Suppose we have a hybrid gen-CN model where Ki = ni +Ri. Define

nMIC = (Ei
HS[ni] − Ei

HN [ni])− (Ei
LS [ni] − Ei

LN [ni]) (2.3.32)

RMIC = (Ei
HS[E(Ri)] − Ei

HN [E(Ri)])− (Ei
LS [E(Ri)] − Ei

LN [E(Ri)]) (2.3.33)

and

RVIC = (Ei
HS[Var(Ri)] − Ei

HN [Var(Ri)]) − (Ei
LS [Var(Ri)] − Ei

LN [Var(Ri)]) (2.3.34)

Then KMIC = nMIC + RMIC and KVIC = RVIC, and applying Theorem 3 yields

MIC = Ei[µ(θi)](nMIC + RMIC) (2.3.35)

and

VIC = Ei[µ(θi)
2]RVIC + Ei[σ2(θi)](nMIC + RMIC) (2.3.36)

proof: Substituting E(ni + Ri) = ni + E(Ri) for E(Ki) in (2.3.1) yields KMIC =

nMIC+RMIC, whereas noting that Var(Ki) = Var(ni+Ri) = Var(Ri) yields KVIC =

RVIC. Now apply Theorem 3. 4

The simplest example of a hybrid gen-CN model is a translated Poisson dis-

tribution (see Appendix A).

Example 12: translated Poisson: Suppose we have a hybrid gen-CN model where

there exists an integer n ≥ 1 such that Ki = n + Ri and Ri is Poisson over trials

with mean mi where m is distributed across participants in cell * according to some

distribution with meanEi
∗[mi] = λ∗. ThusKi follows a translated Poisson distribution

with translation factor n. It follows that nMIC = 0 and since mi = E(Ri) = Var(Ri)
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for the Poisson, we obtain

RMIC = (Ei
HS [mi] − Ei

HN [mi])− (Ei
LS [mi] −Ei

LN [mi])

= (λHS − λHN) − (λLS − λLN )

= RVIC

(2.3.37)

Thus applying Corollary 3.3 it follows that VIC = 0 iff MIC = 0 here.

Example 13: Suppose we have a hybrid gen-CN model Ki = ni + Ri where n is

distributed across participants according to some distribution P∗(n) in cell *, and the

random variables Ri have the property that the distribution of R across participants

in cell LN is the same as that of R across participants in cell HN , and the distribu-

tion of R across participants in cell LS is the same as that of R across participants

in cell HS. (This assumption describes a model that implies that the number of ran-

dom additional subprocesses R is driven by diagnostic status alone, a model which

would likely posit that individuals with schizophrenia tend to incur more additional

“incidental” subprocesses (interpreted here as “errors”) above their baseline level ni

than do normal controls.) Thus we obtain Ei
LN [E(Ri)] = Ei

HN [E(Ri)], E
i
LS [E(Ri)] =

Ei
HS[E(Ri)], E

i
LN [Var(Ri)] = Ei

HN [Var(Ri)], E
i
LS [Var(Ri)] = Ei

HS[Var(Ri)], and con-

sequently RMIC = 0 and RVIC = 0. Thus Corollary 3.3 yields

MIC = Ei[µ(θi)] nMIC and VIC = Ei[σ2(θi)] nMIC (2.3.38)

which coincides with the expressions for MIC and VIC in the gen-CN model without

variation (i.e., where we remove Ri from the model and simply consider ki = ni

distributed across participants; see Corollary 3.1). However, despite this equivalence

in the final expressions for MIC and VIC, these two models are not equivalent. The
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hybrid model allows for more variation in Ti over trials (by varying the number of

subprocesses executed on a trial) and also captures a possible qualitative difference

between patients and controls.

Example 14: Here we present a variation on Example 13 but with a very different

interpretation. Assume Ki = ni + Ri where the distribution of Ri does not depend

on i and moreover, the distribution of Ri over trials is the same in both cells LN and

LS (denoted in shorthand by RLN
D∼ RLS), as is the distribution of Ri over trials

in cells HN and HS (denoted RHN
D∼ RHS). Recall that the same set of stimuli

is presented to all participants in cells LN and LS (low encoding load) whereas a

different set of stimuli is presented to all participants in cells HN and HS (high

encoding load). Thus this model can be used to describe the situation where there

is a certain amount of variability over items in the stimulus input sequence (leading

to variability in the number of subprocesses required for encoding on a trial) with

that degree of variability potentially depending on the encoding load set. As in

Example 13 we obtain RMIC = RVIC = 0, yielding (2.3.38) here as well. However,

just as in Example 13, this hybrid model is not equivalent to the corresponding gen-

CN model without variation, and indeed an experimenter might be very concerned

about a high degree of variability among items in a stimulus set.

Finally we close out this section by presenting a detailed example of a hybrid

model.

Example 15: Suppose we have a hybrid gen-CN model Ki = ni +Ri where ni follows

a translated Poisson distribution (with translation factor m ≥ 1) across participants

in cell * with Ei
∗[ni] = m+λ∗. Suppose Ri

D∼ geom(pi) over trials where p is distributed



59

over (0, 1) according to a beta distribution with pdf f(p) = β∗p
β∗−1 with β∗ > 2 in

cell * (see Example 6 for details and calculations). It follows that

nMIC = (λHS − λHN) − (λLS − λLN ) (2.3.39)

whereas

RMIC =

[

βHS

βHS − 1
− βHN

βHN − 1

]

−
[

βLS

βLS − 1
− βLN

βLN − 1

]

(2.3.40)

and

RVIC =

[

βHS

(βHS − 1)(βHS − 2)
− βHN

(βHN − 1)(βHN − 2)

]

−
[

βLS

(βLS − 1)(βLS − 2)
− βLN

(βLN − 1)(βLN − 2)

]

(2.3.41)

Thus from Corollary 3.3 it follows that

MIC = Ei[µ(θi)] (nMIC + RMIC) (2.3.42)

and

VIC = Ei[µ(θi)
2] RVIC + Ei[σ2(θi)] (nMIC + RMIC) (2.3.43)

and the signs of MIC and VIC will depend on the particular values of λ∗ and β∗.

In the next section we consider the problem of distinguishing between gen-CN

models with and without variation.

2.4 Testing for Variation in Generalized Cutler-

Neufeld Models

In the previous section we have seen that gen-CN models without variation always

yield the signature VIC = 0 iff MIC = 0 whereas gen-CN models with variation can
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also yield that signature or a variety of other MIC-VIC signatures, depending on the

specific model. Variation inKi over trials can be explained by the physical mechanism

driving the encoding process (see Examples 7-12) or be due to other sources, such

as attentional errors associated with diagnostic status (Example 13) or to variability

over items in the stimulus encoding set (Example 14). There is probably no real-world

case where there is absolutely no variation in Ki over trials, but it is of interest to

detect cases where this variation is substantial enough to be informative. Detecting

this variation may give us insight into the physical mechanism guiding the encoding

process or, if the source of variation is the stimulus set of the experiment, it may lead

the experimenter to modify and more tightly control the input sequence.

The following theorem provides a simple test for the presence of variation in

some cases.

Theorem 4: Suppose we have a gen-CN model in which MIC = 0 and VIC 6= 0.

Then this is a gen-CN model with variation.

proof: Since MIC = 0 implies VIC = 0 in gen-CN models without variation (see

Corollary 3.1) the observation of MIC = 0 with VIC 6= 0 implies we have a model

with variation. Another way to see this is to note that MIC = 0 ⇒ KMIC = 0 and

thus VIC 6= 0 ⇒ Ei[µ(θi)
2]KVIC 6= 0, which in turn implies Ei

∗[Var(Ki)] > 0 for

some cell. Thus Var(Ki) > 0 for at least some participants.

Theorem 4 is so useful because we often have factorial additivity of means

(i.e., MIC = 0) and given the sample variances of reaction times we can do a test

for interaction to determine potential factorial additivity of variances. If we reject

additivity of variances, i.e., conclude VIC 6= 0, then we have strong evidence that
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there is variation over trials.

However, as earlier examples have shown, it is possible to observe MIC =

VIC = 0 even when there is variation over trials (see Examples 7 and 12, and also

Examples 13 and 14 when nMIC = 0). Thus, observation of MIC = VIC = 0 is not

in itself sufficient evidence of no variation. In the following we develop a technique

which can aid in elucidating whether variation exists which may be applied in general,

even when VIC = 0. In order to apply this technique, however, we need to assume

that we have obtained the actual encoding times of each participant. We discuss this

further after stating and proving the following theorem.

Theorem 5: Suppose we have a gen-CN model. If the ratio E(Var(T ))∗/E(T )∗

varies depending on the cell *, then we have a gen-CN model with variation.

proof: From (2.3.5) and (2.3.6) of Theorem 3 we obtain

E(Var(T ))∗ = Ei[µ(θi)
2]Ei

∗[Var(Ki)] + Ei
∗[E(Ki)]E

i[σ2(θi)] (2.4.1)

and

E(T )∗ = Ei
∗[E(Ki)]E

i[µ(θi)] (2.4.2)

and thus the ratio

E(Var(T ))∗
E(T )∗

=
Ei[µ(θi)

2]Ei
∗[Var(Ki)] + Ei

∗[E(Ki)]E
i[σ2(θi)]

Ei
∗[E(Ki)]Ei[µ(θi)]

= b
Ei

∗[Var(Ki)]

Ei
∗[E(Ki)]

+ c

(2.4.3)

where for convenience here we set

b =
Ei[µ(θi)

2]

Ei[µ(θi)]
and c =

Ei[σ2(θi)]

Ei[µ(θi)]
(2.4.4)

Obviously, if there is no variation over trials, then Var(Ki) = 0 for each participant

and the ratio (2.4.3) is a constant over cells (and specifically equals c). Thus if (2.4.3)
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differs over at least two cells, this implies there must be variation over trials for at

least some participants. 4

Now, in terms of applying Theorem 5 using sample data, we assume that for

each participant i we have their actual encoding times ti1, . . . , tiN based on N trials.

Over these N trials we compute the sample mean t̄i and sample (intertrial) variance s2
i

for each participant i. We then estimate E(T )∗ by t̄∗ = (
∑M

i=1 t̄i)/M and E(Var(T ))∗

by s̄2
∗ = (

∑M
i=1 s

2
i )/M , where M is the number of participants per cell. Then we have

the following:

Corollary 5.1: Suppose we have a gen-CN model. Define the sample ratio r∗ by

r∗ = s̄2
∗/t̄∗. Then

lim
M→∞

lim
N→∞

r∗ =
E(Var(T ))∗
E(T )∗

with probability 1 (2.4.5)

provided 0 < E(T )∗ < ∞ and E(Var(T ))∗ < ∞. If r∗ differs in a statistically

significant fashion over at least two cells, then we have strong evidence that this is a

gen-CN model with variation.

proof: see Appendix C. 4

In the following examples we fix the sample sizes at N = 200 and M = 100 for

an individual experiment, regarding these as feasible experimental values, and then

repeat the experiment 500 times. This enables us to calculate the average ratio r̄∗ in

each cell over the 500 repetitions, as well as calculate the sample standard deviation

sd∗ of the 500 ratios for each cell. This will provide an idea, in a single experiment,

of the extent to which differences between ratios in various cells are due to genuine

differences or due to statistical error. We will see that the choice of base distribution
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significantly affects the statistical error, and the conclusion is, not surprisingly, that

N and M should be made as large as possible to reduce this unwanted error.

In all of the following examples, models and parameter values have been cho-

sen so that MIC = VIC = 0 so that Theorem 4 cannot be applied to assess the

presence of variation over trials. All numerical work was carried out using the R

statistical programming language (R(2013)). We examined two base distributions

– the exponential(θ) in which a rate parameter θ was generated randomly from a

Gam(30, 10) distribution for each participant, and a lognormal distribution LN(θ,Σ2)

in which we fixed Σ = 1 and generated θ randomly from a normal N(0, 1) distribution

for each participant. In the case of the exponential base with the above parameter

values, the statistical error was generally small and Corollary 5.1 worked well; in the

case of the lognormal base with the above parameter values, the statistical variation

was large, and greater values of M and N would be required to draw reliable conclu-

sions from a single experiment. This is likely due to the thicker tail of the lognormal

distribution.

Note that in the case of the exponential base with rate θ
D∼ Gam(30, 10) and

in the case of a lognormal base LN(θ, 1) where θ
D∼ N(0, 1), it is possible to explicitly

calculate the theoretical constants b and c in (2.4.4), yielding

bexpo = cexpo = .35714 and blognorm = 7.389, clognorm = 12.696 (2.4.6)

Thus, for any chosen distribution on the number of subprocesses K, it is then possible

to explicitly calculate the theoretical ratios

E(Var(T ))∗
E(T )∗

= b
Ei

∗[Var(Ki)]

Ei
∗[E(Ki)]

+ c (2.4.7)
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for our two chosen base distributions. These can then be compared with the obtained

simulated average ratios r̄∗ in each cell. In the following tables, the first row of

numbers consist of the simulated average ratios r̄∗ in each cell, accompanied by the

sample standard deviation over the 500 repetitions in that cell. The second row of

numbers consists of the (true) theoretical ratios (2.4.7) in each cell.

Example 16: Here we used the exponential base, and there is no variation over

trials; k varied only over participants with parameter λ∗ depending on the cell. We

actually used a translated Poisson k = 1 + x where x
D∼ Pois(λ∗) with parameters

λLN = 2, λHN = 5, λLS = 20, and λHS = 23. (These parameter choices yield MIC =

VIC = 0.) The reason for using the translated Poisson was simply to avoid the

possibility of an entire vector of 0s and hence a zero encoding time. The results are

presented in Table 2.1.

Table 2.1: k Poisson without variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.357 .0097 .357 .0090 .356 .0085 .358 .0087

.357 .357 .357 .357

Example 17: Here we used the exponential base, and there is no variation over trials;

k followed a geometric distribution over participants with parameter p∗ depending on

the cell. We employed pLN = 1/2, pHN = 1/6, pLS = 1/20, and pHS = 1/24 (these

parameter values result in MIC = VIC = 0). The results are presented in Table 2.2.

Note that the standard deviations are very small in both Examples 16 and 17, and

that accurate results would likely be obtained with a single experiment. The stability

of the sample ratios across cells is suggestive of a model without variation in both



65

Table 2.2: k geometric without variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.357 .0112 .358 .0120 .356 .0115 .358 .0115

.357 .357 .357 .357

examples. Also note that the sample ratios in both examples yield approximately

the same value .357, which is the common value cexpo in (2.4.7) (the theoretical ratio

here).

Example 18: This is Example 16 (Poisson without variation over trials) repeated

with the lognormal base in place of the exponential base. The results are presented

in Table 2.3.

Table 2.3: k Poisson without variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

12.3 6.00 12.3 5.61 12.2 6.00 12.1 5.96
12.7 12.7 12.7 12.7

Example 19: This is Example 17 (geometric without variation over trials) repeated

with the lognormal base. The results are presented in Table 2.4.

Table 2.4: k geometric without variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

12.0 9.72 11.5 5.84 11.9 7.09 12.2 9.34
12.7 12.7 12.7 12.7

Note that for both Examples 18 and 19 the average cell ratios (computed over

500 repetitions of the experiment) yield an approximate value of 12 (which provide

a slight underestimate of the true value clognorm in (2.4.7)). However, the standard
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deviations are comparatively large, and a single experiment (with the given values of

N = 200 and M = 100) might give the appearance of significant differences between

ratios in cells and produce misleading results.

We now consider some examples where Ki is varying over trials. The first

point to note is that the Poisson distribution is in a special position because it sat-

isfies Var(Ki) = E(Ki) and hence the ratios will not vary over cells. In fact any

integer multiple Xi = nKi of a Poisson distribution Ki will share this property, since

Var(Xi) = Var(nKi) = n2Var(Ki) = n2E(Ki) = nE(nKi) = nE(Xi). Thus Theo-

rem 5 will not pick up variation over trials in the case of a Poisson or any of its integer

multiples. We illustrate this with the following.

Example 20: Here Ki follows a Pois(λ∗) distribution over trials with no variation

over participants, and the exponential base is used. The cell parameters are λLN =

2, λHN = 5, λLS = 20, and λHS = 23, yielding MIC = VIC = 0. The results are

presented in Table 2.5. Note that the standard deviations are very small and the

ratios very stable across cells. The simulated mean cell ratios of approximately .714

exactly match the theoretical ratio bexpo + cexpo of (2.4.7).

Table 2.5: K Poisson with variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.714 .0176 .715 .0178 .714 .0178 .715 .0170

.714 .714 .714 .714

Example 21: Translated Poisson distributions do not share the special position of the

Poisson and its integer multiples. Specifically, ifKi is a translated Poisson distribution

varying over trials, then Theorem 5 may pick up this variation provided the standard
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deviations are small. Here we consider the exponential base and Ki = 5 + Xi where

Xi
D∼ Pois(λ∗) over trials with cell parameters λ∗ identical to those of Example 20.

The results are presented in Table 2.6. Note that the cell ratios are small, but

the difference between the largest ratio and the smallest ratio is well outside twice

the standard deviations, indicating that a single experiment will pick up genuine

differences. Note the close match with the theoretical ratios (2.4.7).

Table 2.6: K translated Poisson with variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.459 .0111 .536 .0125 .642 .0154 .652 .0170

.459 .536 .643 .651

Example 22: Here we consider the case whereKi follows a geometric(p∗) distribution

over trials with the exponential base and no variation over participants. The parame-

ter values are pLN = pLS = .5 and pHN = pHS = .05 (representing the situation where

successful encoding depends only on encoding load) which yields MIC = VIC = 0.

The results are presented in Table 2.7. Note the sharp deviations between the cell

ratios, well outside the scope of the standard deviations, and the close match with

the theoretical ratios.

Table 2.7: K geometric with variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.715 .018 7.15 .194 .715 .020 7.15 .198

.714 7.14 .714 7.14

Example 23: Here we consider the case whereKi follows a binomial distribution over

trials (no variation over participants) with the exponential base. We assume there
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are a maximum of n = 100 subprocesses which could be activated, with schizophrenia

patients activating a subprocess with probability pLS = pHS = .8 and normal controls

activating a subprocess with probability pLN = pHN = .2, yielding MIC = VIC = 0.

The results are presented in Table 2.8.

Table 2.8: K binomial with variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.644 .0154 .643 .0148 .428 .0100 .429 .0100

.643 .643 .429 .429

Note that the difference between the largest and smallest cell ratios is well outside

the range of the standard deviations, indicating that a single experiment would pick

up genuine differences. Also note the close match with the theoretical ratios.

Example 24: Here we consider a hybrid model (see Definition 3) where Ki varies

over both trials and participants. We express Ki = ni + Ri where n varies over

participants according to a Poisson distribution with parameters λLN = 2, λHN =

5, λLS = 20, λHS = 23, and Ri follows a geometric distribution over trials with pLN =

pLS = .7 and pHN = pHS = .2. The exponential base is assumed. The results are

presented in Table 2.9.

Table 2.9: K hybrid Poisson-geometric with variation over trials (exponential base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

.421 .012 1.07 .032 .367 .009 .612 .016

.421 1.07 .367 .612

Again we have a close match with the theoretical ratios and see that standard

deviations are sufficiently small that a single experiment would pick up genuine dif-
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ferences between the cell ratios. However, as noted in Examples 18 and 19, this need

not be true if we alter the base distribution. Changing the base distribution can lead

to differences that are purely the result of statistical error. We illustrate this further

with the following example.

Example 25: Here we repeat Example 20 (Ki Poisson over trials) with the lognormal

base. The results are presented in Table 2.10. We see that, whereas the cell mean

Table 2.10: K Poisson with variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

18.6 7.49 19.0 7.03 19.4 10.88 20.4 11.78
20.1 20.1 20.1 20.1

ratios (over 500 repetitions) are stable at about a value of 19 (representing a slight

underestimate of the theoretical value blognorm+ clognorm = 20.1 in (2.4.7)), the sample

standard deviations are large so that a single experiment might return highly variable

ratios over cells, leading the experimenter to conclude there is variation over trials.

Ironically such an occurrence would lead to the correct conclusion (since there is

variation over trials) even though theoretically this technique should actually fail at

detecting the case of random Poisson trials.

We now repeat Examples 21-24 using the lognormal base in place of the ex-

ponential base. We see that the mean cell ratios correctly pick up the variation over

trials (which can be verified by comparing with the standard errors of these means,

given by sdmean∗ = sd∗/
√

500) but that the individual cell standard deviations sd∗ are

so large in some cases as to possibly blur these differences on a single experiment. We

also note that the simulated cell ratios consistently slightly underestimate the true
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theoretical ratios in the case of the lognormal base.

Example 26: Here we repeat Example 21 (Ki translated Poisson over trials) using

the lognormal base. The results are presented in Table 2.11. Note that the mean

cell ratios reveal some differences (as they should) but their actual values on a single

experiment would probably be blurred by the large standard deviations. Nonetheless

the conclusion based on a single experiment would likely be that variation over trials

exists.

Table 2.11: K translated Poisson with variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

14.1 5.33 15.9 9.95 18.3 14.37 17.9 8.76
14.8 16.4 18.6 18.8

Example 27: Here we repeat Example 22 (Ki geometric over trials) with a lognormal

base, and the results are presented in Table 2.12.

Table 2.12: K geometric with variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

19.7 11.82 148.7 68.62 19.7 11.41 150.1 76.47
20.1 153.1 20.1 153.1

The cell mean ratios differ sharply here, correctly indicating variation over

trials, and these marked differences would almost certainly be observed by a single

experiment, although a blurring of the actual values due to the standard deviations

might occur.

Example 28: Here we repeat Example 23 (Ki binomial over trials) with the log-

normal base. The results are presented in Table 2.13. The cell mean ratios correctly
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Table 2.13: K binomial with variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

17.8 8.87 18.1 8.78 13.6 5.95 13.5 5.62
18.6 18.6 14.2 14.2

pick up the differences and hence the variation over trials but the standard deviations

may blur the actual values in the outcome of a single experiment.

Example 29: Here we repeat Example 24 (Ki hybrid Poisson-geometric) with the

lognormal base, and the results are presented in Table 2.14.

Table 2.14: K hybrid Poisson-geometric with variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

13.5 9.11 27.1 15.44 11.9 4.37 17.1 6.33
14.0 27.5 12.9 18.0

Again we see marked mean cell differences but large standard deviations.

Note: We have seen that the choice of base distribution can introduce considerable

variability into the individual cell ratios, so that a single experiment may produce

incorrect or inconclusive results. The most significant effect of large standard devia-

tions is to create the appearance of differences between cell ratios even when there is

none (leading the experimenter to erroneously conclude there is variation over trials

when such is not the case). The experimenter is less likely to erroneously conclude

that there is no variation over trials when such variation is in fact present, although

large standard deviations can blur the differences between cells and lead to incorrect

estimates of cell ratios. The most effective method of reducing error is to increase

the number of trials N per participant as well as the number of participants M per
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cell to the greatest degree possible, since obviously repeating the experiment hun-

dreds of times is not possible. However, considerable increases in N and M may be

necessary to reduce the standard deviations to suitable levels. By way of illustrating

that this method works in principle, we increased N and M to the values N = 1000

and M = 500 in Examples 18 and 19. Note the reduced (yet still large) standard

deviations presented below:

Example 30: This is Example 18 (Poisson without variation over trials) repeated

for N = 1000 and M = 500. The results are presented in Table 2.15. Contrast this

with Table 2.3.

Table 2.15: k Poisson without variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

12.6 3.50 12.7 4.50 12.6 3.44 12.4 2.56
12.7 12.7 12.7 12.7

Example 31: This is Example 19 (geometric without variation over trials) repeated

for N = 1000 and M = 500. The results are presented in Table 2.16. Contrast this

with Table 2.4.

Table 2.16: k geometric without variation over trials (lognormal base)

r̄LN sdLN r̄HN sdHN r̄LS sdLS r̄HS sdHS

12.3 4.02 12.7 5.61 12.3 3.98 12.4 4.31
12.7 12.7 12.7 12.7

Note that, in addition to the reduced standard deviations, Examples 30 and 31 ex-

hibit improved convergence of the simulated mean ratios to the theoretical ratios;

specifically, the downward bias of the simulated values seen in Examples 18 and 19 is
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noticeably decreased. Further increases in N and M would result in further improved

convergence and further reduction in the standard deviations.

2.5 Results for Models with Varying Θ

In Secs 2.3 and 2.4 we focused attention on generalized Cutler-Neufeld (gen-CN) mod-

els which are specific members of the class of general serial mixture models (Sec 2.2)

having the special property that the only quantity whose distribution differs depend-

ing on the cell * is the number of subprocesses K. In various factorial experiments

involving schizophrenia patients and controls, gen-CN models have seemed sufficient

to capture the changes across cells in mean encoding times E(T )∗ and average in-

tertrial variances E(Var(T ))∗. However, many other models might be selected from

the class of general serial mixture models (not just for modelling encoding times in

schizophrenia, but potentially other cognitive processes as well). In particular, we

might question the favoured position being delegated to K in gen-CN models, and

wonder whether changes in the distribution of the vector Θ over cells might better

describe observed data. This changes the focus from the number of subprocesses K

to the encoding speed (governed by Θ) of individual subprocesses. However, the defi-

nition of Θ depends explicitly on the choice of base distribution; thus to work with Θ

we must first select a particular base distribution (which was not the case for gen-CN

models). Having to choose a base distribution is not a barrier to obtaining results;

however, it does mean that results need to be derived on a case-by-case basis.

We now proceed to determine MIC-VIC signatures for a variety of serial mix-

ture models with different choices of base and Θ. Throughout these derivations we
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make the assumption that Ki = ki does not vary over trials, and that the distribution

of k across participants is the same in every cell. Instead it will be Θ that is allowed

to vary across trials, participants, and cells. This amounts to a reversal of the roles

of K and Θ from that of gen-CN models.

2.5.1 Gamma Base with Varying Rate Parameter V

Here we choose a gamma base (see Appendix B) with accompanying vector Θ =

(A, V ) where A denotes the shape parameter and V denotes the rate parameter. It

will be too complex to cope with both A and V varying over trials and cells, so in

this subsection we assume it is only V which is allowed to vary in that manner. This

leads to the following:

Theorem 6: Let `ij follow a gamma base distribution with Θi = (ai, Vi) where the

rate parameter Vi is allowed to vary over trials and participants within a cell as well

as to vary across cells. The shape parameter ai can vary over participants within a

cell but not over trials, and moreover must follow the same distribution in each cell.

We also assume that the number of subprocesses ki can vary over participants in a

cell but not over trials, and must follow the same distribution in each cell. Further

assume that the random processes ai, Vi, and ki act independently of each other over

participants and trials. Define

IVMIC = (Ei
HS[E(1/Vi)]−Ei

HN[E(1/Vi)])− (Ei
LS[E(1/Vi)]−Ei

LN [E(1/Vi)]) (2.5.1)

and

IVVIC = (Ei
HS[Var(1/Vi)] − Ei

HN [Var(1/Vi)]) − (Ei
LS[Var(1/Vi)] − Ei

LN [Var(1/Vi)])

(2.5.2)
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and

IVSQMIC = (Ei
HS[E(1/V 2

i )] − Ei
HN [E(1/V 2

i )])− (Ei
LS [E(1/V 2

i )] −Ei
LN [E(1/V 2

i )])

(2.5.3)

Then

MIC = Ei[ki]E
i[ai]IVMIC (2.5.4)

and

VIC = Ei[k2
i ]E

i[a2
i ]IVVIC + Ei[ki]E

i[ai]IVSQMIC (2.5.5)

note: The prefactor “IV” in the notation above stands for “Inverse of V”.

proof: For the gamma base distribution µ(Θi) = ai/Vi and σ2(Θi) = ai/V
2

i . Plugging

into (2.2.10) and using the independence of the processes we obtain

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(ai/Vi)]

= Ei[ki]E
i
∗[aiE(1/Vi)]

= Ei[ki]E
i[ai]E

i
∗[E(1/Vi)]

(2.5.6)

so

MIC = (E(T )HS − E(T )HN) − (E(T )LS − E(T )LN)

= Ei[ki]E
i[ai]IVMIC

(2.5.7)

Similarly, plugging into (2.2.11), we obtain

E(Var(T ))∗ = Ei[k2
i ]E

i
∗[Var(ai/Vi)] + Ei[ki]E

i
∗[E(ai/V

2
i )]

= Ei[k2
i ]E

i
∗[a

2
iVar(1/Vi)] + Ei[ki]E

i
∗[aiE(1/V 2

i )]

= Ei[k2
i ]E

i[a2
i ]E

i
∗[Var(1/Vi)] + Ei[ki]E

i[ai]E
i
∗[E(1/V 2

i )]

(2.5.8)

Then

VIC = (E(Var(T ))HS − E(Var(T ))HN) − (E(Var(T ))LS − E(Var(T ))LN)

= Ei[k2
i ]E

i[a2
i ]IVVIC + Ei[ki]E

i[ai]IVSQMIC as claimed. 4
(2.5.9)
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In the corollary below we consider the subcase where Vi = vi does not vary over trials.

Corollary 6.1: Suppose the premise of Theorem 6 holds. Further suppose vi varies

only over participants and cells with no variation over trials. Then Var(1/Vi) =

Var(1/vi) = 0 for each participant, yielding IVVIC = 0. Thus

MIC = Ei[ki]E
i[ai]IVMIC (2.5.10)

and

VIC = Ei[ki]E
i[ai]IVSQMIC 4 (2.5.11)

The following two examples illustrate the application of Corollary 6.1.

Example 32: Assume the premises of Theorem 6 and Corollary 6.1 both hold.

Consider the case where v follows a Gam(u, r∗) distribution across participants in cell

*, i.e., the shape parameter u > 2 stays the same for each cell but the rate parameter

r∗ varies. Then we know that

Ei
∗[1/vi] =

r∗
u− 1

and Ei
∗[1/v

2
i ] =

r2
∗

(u− 1)(u− 2)

Let r, h, g, f be defined by rLN = r, rHN = r + h, rLS = r + g, and rHS = r + f .

Note that (2.5.6) plus the usual factorial data assumptions implies h > 0, g > 0, and

f > 0. Then

IVMIC = (Ei
HS[1/vi] − Ei

HN [1/vi]) − (Ei
LS[1/vi)] − Ei

LN [1/vi])

=

[

rHS

u− 1
− rHN

u− 1

]

−
[

rLS

u− 1
− rLN

u− 1

]

=
1

u− 1
[f − (h+ g)]

(2.5.12)
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and

IVSQMIC = (Ei
HS[1/v2

i ] − Ei
HN [1/v2

i ])− (Ei
LS [1/v2

i ] − Ei
LN [1/v2

i ])

=

[

r2
HS

(u− 1)(u− 2)
− r2

HN

(u− 1)(u− 2)

]

−
[

r2
LS

(u− 1)(u− 2)
− r2

LN

(u− 1)(u− 2)

]

=
1

(u− 1)(u− 2)
[(r+ f)2 − (r + h)2 − {(r + g)2 − r2}]

=
1

(u− 1)(u− 2)
[2r[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.13)

Since IVMIC = 0 iff f = h+ g, substituting this constraint into IVSQMIC yields

IVSQMIC =
2hg

(u− 1)(u− 2)
> 0 (2.5.14)

so MIC = 0 implies VIC > 0 always in this model.

note: Consider the case of the Erlang model, which has the exponential base (a

special case of the gamma where ai = 1 for all participants) and the two parameters

k and v. The Neufeld model extends the Erlang to the case where k and v are both

allowed to vary over participants in each cell. One can then make a choice – attempt

to explain changes in E(T )∗ and E(Var(T ))∗ by changes in k over cells, or attempt to

explain changes in E(T )∗ and E(Var(T ))∗ by changes in v over cells. The first choice

(which was the choice made by Neufeld) leads to the signature VIC = 0 iff MIC = 0

(see Corollary 3.1) whereas the second choice, when assigning v a Gam(u, r∗) dis-

tribution (recall Neufeld used a fixed gamma distribution to describe v in each cell)

leads to VIC > 0 whenever MIC = 0 (Example 32). This shows that, if we assume

the premise of a basic Neufeld model, factorial data which supports additivity in both

means and variances suggests that neurophysiological changes due to schizophrenia

and encoding load are explained by increases in the number of subprocesses k required
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for encoding, whereas factorial data which supports additivity in means but super-

additivity of variances suggests that neurophysiological changes due to schizophrenia

and encoding load are explained by decreases in the rate v at which subprocesses are

executed.

The above note describes the possible choice between two models and the

resulting interpretation of neurophysiological processes, but it is also important to

realize that Example 32 specifically assumed a Gam(u, r∗) distribution on v. The

conclusions of that example can be altered by changing the behaviour of v, as we do

in the next example. There we retain a gamma distribution on v but introduce a

relationship between the rate parameter r∗ and the shape parameter u∗.

Example 33: Consider a modification of Example 32 where v
D∼ Gam(u∗, r∗) and

there exists some β > 0 such that r∗ = β(u∗ − 2). The shape parameter u∗ can

vary over (2,∞) which results in r∗ varying over (0,∞). The connection between the

parameters introduces a linear relationship betweenEi
∗[1/v

2
i ] and Ei

∗[1/vi]; specifically

Ei
∗[1/v

2
i ] = βEi

∗[1/vi]. To see this, note that

Ei
∗[1/vi] =

r∗
u− 1

=
β(u∗ − 2)

u∗ − 1
(2.5.15)

and

Ei
∗[1/v

2
i ] =

r2
∗

(u∗ − 1)(u∗ − 2)
=

β2(u∗ − 2)2

(u∗ − 1)(u∗ − 2)
= β

(

β(u∗ − 2)

u∗ − 1

)

= βEi
∗[1/vi]

(2.5.16)
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Applying this yields

IVSQMIC = (Ei
HS[1/v2

i ] − Ei
HN [1/v2

i ])− (Ei
LS [1/v2

i ] −Ei
LN [1/v2

i ])

= (βEi
HS[1/vi] − βEi

HN[1/vi]) − (βEi
LS[1/vi] − βEi

LN [1/vi])

= β IVMIC

(2.5.17)

Thus IVSQMIC = 0 iff IVMIC = 0, yielding VIC = 0 iff MIC = 0.

Note: There are some restrictions to the applicability of Example 33. Note from

(2.5.15) that Ei
∗[1/vi] is an increasing function of u∗ but is bounded above by an

asymptote at β, i.e., 0 < Ei
∗[1/vi] < β. Applying (2.5.6), this in turn implies the

restriction 0 < E(T )∗ < Ei[ki]E
i[ai] β which must be considered when applying the

model to data. Moreover, the asymptote at β for Ei
∗[1/vi] sometimes precludes the

possibility of a solution to MIC = 0. In order to see this, for convenience in this

example let c∗ = Ei
∗[1/vi]. Now suppose we have 0 < cLN < cLS < cHN < cHS < β

where cLS −cLN > β/2. This forces cLS > β/2 and thus cHS−cHN < β−β/2 =

β/2. This results in IVMIC < 0 whenever this pattern arises. However, there are

other circumstances which produce solutions to IVMIC = 0. For example, suppose

0 < cLN < cLS < cHN < β/2. Then cLS − cLN = b < β/2 and it follows that

cHN + b < β/2 + β/2 = β which implies that cHN + b is an admissible value for cHS.

Setting cHS = cHN + b yields IVMIC = 0. Similarly, if 0 < cLN < cHN < cLS < β/2

then once again cLS−cLN = b < β/2 and setting cHS = cHN + b yields a solution to

IVMIC = 0.

In the next two examples, Vi varies over trials rather than participants.

Example 34: Assume the premise of Theorem 6 holds. Suppose the rate parameter

Vi follows an inverse Gaussian distribution over trials (no variation over participants)
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in each cell, with the assumption that the shape parameter λ is fixed in each cell

whereas the mean µ∗ shifts from cell to cell, i.e., Vi
D∼ IG(µ∗, λ) in cell *. For

convenience let φ∗ = 1/µ∗ and ψ = 1/λ. It follows that

E(1/Vi) = φ∗ +ψ, Var(1/Vi) = ψφ∗ +2ψ2, E(1/V 2
i ) = φ2

∗ +3ψφ∗ +3ψ2 (2.5.18)

Then, setting m = φLN and defining h, g, f by φHN = m + h, φLS = m + g, and

φHS = m+ f , yields

IVMIC = (Ei
HS[E(1/Vi)] − Ei

HN [E(1/Vi)]) − (Ei
LS[E(1/Vi)] −Ei

LN [E(1/Vi)])

= (φHS − φHN) − (φLS − φLN)

= f − (h+ g)

(2.5.19)

and also

IVVIC = (Ei
HS[Var(1/Vi)] − Ei

HN [Var(1/Vi)]) − (Ei
LS[Var(1/Vi)] − Ei

LN [Var(1/Vi)])

= ψ[(φHS − φHN) − (φLS − φLN)]

= ψ[f − (h + g)]

(2.5.20)

Therefore IVVIC = 0 iff IVMIC = 0. However

IVSQMIC = (Ei
HS[E(1/V 2

i )] − Ei
HN [E(1/V 2

i )])− (Ei
LS[E(1/V 2

i )] − Ei
LN [E(1/V 2

i )])

= [(φ2
HS + 3ψφHS)−(φ2

HN + 3ψφHN)]−[(φ2
LS + 3ψφLS)−(φ2

LN + 3ψφLN )]

= 2m[f − (h+ g)] + f2 − (h2 + g2) + 3ψ[f − (h+ g)]

(2.5.21)

so substituting in f = h+ g always yields

IVSQMIC = 2hg > 0 (2.5.22)
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so MIC = 0 always implies VIC > 0.

Note: We can impose different relationships between µ∗ and λ∗ to produce other

results; for example, if the mean and shape parameter are identical in each cell but

change from cell to cell, then it can easily be seen that IVMIC = 0 implies both

IVVIC > 0 and IVSQMIC > 0 as illustrated below:

Example 35: Assume the premise of Theorem 6 holds. Suppose the rate parameter

Vi follows an inverse Gaussian distribution over trials (no variation over participants)

in each cell, with the assumption that the mean and shape parameters coincide in

each cell and shift from cell to cell, i.e., Vi
D∼ IG(λ∗, λ∗) in cell *. For convenience let

φ∗ = 1/λ∗. It follows that

E(1/Vi) = 2φ∗, Var(1/Vi) = 3φ2
∗, E(1/V 2

i ) = 7φ2
∗ (2.5.23)

Then

IVMIC = (Ei
HS[E(1/Vi)] − Ei

HN [E(1/Vi)]) − (Ei
LS[E(1/Vi)] −Ei

LN [E(1/Vi)])

= 2[(φHS − φHN ) − (φLS − φLN )]

= 2[f − (h+ g)]

(2.5.24)

where we define m, h, g, f as in Example 34. Then also

IVVIC = (Ei
HS[Var(1/Vi)] − Ei

HN [Var(1/Vi)]) − (Ei
LS[Var(1/Vi)] − Ei

LN [Var(1/Vi)])

= 3[(φ2
HS − φ2

HN) − (φ2
LS − φ2

LN)]

= 3 [2m[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.25)
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and similarly

IVSQMIC = (Ei
HS[E(1/V 2

i )] − Ei
HN [E(1/V 2

i )])− (Ei
LS [E(1/V 2

i )] −Ei
LN [E(1/V 2

i )])

= 7 [2m[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.26)

so substituting in f = h+ g always yields

IVVIC = 6hg > 0 and IVSQMIC = 14hg > 0 (2.5.27)

so MIC = 0 always implies VIC > 0.

2.5.2 Gamma Base with Varying Shape Parameter A

Here we assume `ij follows a gamma base distribution with vector Θi = (Ai, vi), i.e.,

`ij
D∼ Gam(Ai, vi), where Ai may vary across participants, trials, and cells, whereas

vi can only vary across participants with the same distribution in each cell. Thus we

are simply reversing the rules for Ai and vi from the previous subsection. This yields

the following:

Theorem 7: Here we assume `ij
D∼ Gam(Ai, vi) where the shape parameter Ai is

allowed to vary over trials and participants within a cell as well as vary across cells.

The rate parameter vi can vary over participants within a cell but not over trials,

and moreover must follow the same distribution in each cell. We also assume that

the number of subprocesses ki can vary over participants in a cell but not over trials,

and must follow the same distribution in each cell. Further assume that the random

processes Ai, vi, and ki act independently of each other over participants and trials.

Define

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)]) (2.5.28)
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and

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)]) (2.5.29)

Then

MIC = Ei[ki]E
i[1/vi]AMIC (2.5.30)

and

VIC = Ei[1/v2
i ]
{

Ei[k2
i ]AVIC + Ei[ki]AMIC

}

(2.5.31)

Therefore if MIC = 0 the sign of VIC depends on the sign of AVIC.

proof: For the gamma base distribution µ(Θi) = Ai/vi and σ2(Θi) = Ai/v
2
i . Plugging

into (2.2.10) and using the independence of the processes we obtain

E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(Ai/vi)]

= Ei[ki]E
i
∗[(1/vi)E(Ai)]

= Ei[ki]E
i[1/vi]E

i
∗[E(Ai)]

(2.5.32)

so

MIC = (E(T )HS − E(T )HN) − (E(T )LS − E(T )LN)

= Ei[ki]E
i[1/vi]AMIC

(2.5.33)

Similarly, plugging into (2.2.11), we obtain

E(Var(T ))∗ = Ei[k2
i ]E

i
∗[Var(Ai/vi)] + Ei[ki]E

i
∗[E(Ai/v

2
i )]

= Ei[k2
i ]E

i
∗[(1/v

2
i )Var(Ai)] + Ei[ki]E

i
∗[(1/v

2
i )E(Ai)]

= Ei[k2
i ]E

i[1/v2
i ]E

i
∗[Var(Ai)] + Ei[ki]E

i[1/v2
i ]E

i
∗[E(Ai)]

= Ei[1/v2
i ]
{

Ei[k2
i ]E

i
∗[Var(Ai)] + Ei[ki]E

i
∗[E(Ai)]

}

(2.5.34)
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Then

VIC = (E(Var(T ))HS − E(Var(T ))HN) − (E(Var(T ))LS − E(Var(T ))LN)

= Ei[1/v2
i ]E

i[k2
i ]
{

(Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)])

− (Ei
LS [Var(Ai)] − Ei

LN [Var(Ai)])
}

+ Ei[1/v2
i ]E

i[ki]
{

(Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])
}

= Ei[1/v2
i ]
{

Ei[k2
i ]AVIC + Ei[ki]AMIC

}

as claimed. 4
(2.5.35)

Corollary 7.1: Suppose the premise of Theorem 7 holds. Further suppose Ai varies

only over participants with no variation over trials. Then Var(Ai) = 0 for each

participant, yielding AVIC = 0. Thus VIC reduces to VIC = Ei[1/v2
i ]E

i[ki]AMIC

and so VIC = 0 iff MIC = 0. 4

Corollary 7.1 shows that the signature VIC = 0 iff MIC = 0 is obtained in the

case of a gamma base distribution where ai, vi, and ki vary only over participants,

and the shifting in E(T )∗ across cells is explained by shifting the distribution of

ai. Thus this model is a competitor for a gen-CN model without variation (using a

gamma base, e.g., the Cutler-Neufeld model) where the shifting in E(T )∗ across cells

is explained by shifting the distribution of ki (see Corollary 3.1). Here the two models

mimic each other.

We now consider a series of examples with a gamma base where Ai varies

only over trials. We employ different positive distributions for Ai since, as a shape

parameter, Ai must satisfy Ai > 0. We have chosen to model Ai with continuous

distributions (as would most likely be done in practice) but there is no reason discrete

distributions could not be employed. The quantities m, h, g, and f that are defined
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in some of these examples (whose values depend on the example) are always positive

due to (2.5.32) and the shifting values of E(T )∗ in our factorial models.

Example 36: Ai follows a gamma distribution over trials with shifting shape

parameter and fixed rate parameter: Assume the premise of Theorem 7 holds.

Suppose that, in cell *, Ai follows a gamma distribution over trials (no variation

over participants) with shape parameter a∗ and fixed rate parameter b, i.e., Ai
D∼

Gam(a∗, b). Then

E(Ai) =
a∗
b

and Var(Ai) =
a∗
b2

(2.5.36)

Thus

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= (1/b)[(aHS − aHN) − (aLS − aLN)]

(2.5.37)

and

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)])

= (1/b2)[(aHS − aHN) − (aLS − aLN)]

= (1/b)AMIC

(2.5.38)

Thus AVIC = 0 iff AMIC = 0 and so VIC = 0 iff MIC = 0.

Note that Example 36, where Ai is varying over trials, produces the same

MIC-VIC signature as the case where ai varies only over participants (Corollary 7.1)

but these models are not equivalent as the former produces more variability in the

trials Ti.

Example 37: Ai follows a gamma distribution over trials with fixed shape

parameter and shifting rate parameter: Assume the premise of Theorem 7 holds.

In cell *, let Ai follow a gamma distribution over trials (no variation over participants)
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with fixed shape parameter a and shifting rate parameter b∗, i.e., Ai
D∼ Gam(a, b∗) in

cell *. Then

E(Ai) =
a

b∗
and Var(Ai) =

a

b2∗
(2.5.39)

and setting m = 1
bLN

, 1
bHN

= m+h, 1
bLS

= m+g, and 1
bHS

= m+f yields

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= a[(1/bHS − 1/bHN) − (1/bLS − 1/bLN )]

= a[f − (h+ g)]

(2.5.40)

and

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)])

= a[(1/b2HS − 1/b2HN ) − (1/b2LS − 1/b2LN )]

= a[((m+ f)2 − (m+ h)2) − ((m+ g)2 −m2)]

= a[2m[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.41)

Now AMIC = 0 iff f = h+ g and substituting this constraint into AVIC yields

AVIC = 2ahg > 0 (2.5.42)

Thus MIC = 0 always implies VIC > 0 here.

Example 38: Ai follows an inverse Gaussian distribution over trials with

shifting mean and fixed shape parameter: Assume the premise of Theorem 7

holds. Here we assume that, in cell *, Ai follows an inverse Gaussian distribution

over trials (no variation over participants) with mean a∗ and fixed shape parameter

b, i.e., Ai
D∼ IG(a∗, b) in cell *. Then

E(Ai) = a∗ and Var(Ai) =
a3
∗

b
(2.5.43)
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so

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= (aHS − aHN) − (aLS − aLN)

= f − (h+ g)

(2.5.44)

where we set m = aLN and aHN = m+ h, aLS = m+ g, and aHS = m+ f. Then

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)])

=
1

b
[(a3

HS − a3
HN) − (a3

LS − a3
LN )]

=
1

b
[((m+ f)3 − (m+ h)3) − ((m+ g)3 −m3)]

=
1

b
[3m2[f − (h+ g)] + 3m[f2 − (h2 + g2)] + f3 − (h3 + g3)]

(2.5.45)

Since AMIC = 0 iff f = h+ g, substituting this constraint into AVIC yields

AVIC =
1

b
[3m[(h+ g)2 − (h2 + g2)] + (h+ g)3 − (h3 + g3)]

=
1

b
[3m(2hg) + 3(h2g + hg2)]

=
1

b
(3hg)[2m+ h+ g] > 0

(2.5.46)

Thus MIC = 0 always implies VIC > 0.

Note: We do not consider the case of the inverse Gaussian where we hold the mean

fixed and only shift the shape parameter, since in this case E(Ai) = a is the same in

all four cells, rendering E(T )HS = E(T )HN = E(T )LS = E(T )LN which is not of any

practical interest.

Example 39: Ai follows a lognormal distribution over trials with shifting

associated normal mean and fixed associated normal variance: Assume the

premise of Theorem 7 holds. In cell *, let Ai follow a lognormal distribution over trials
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(no variation over participants) with an associated normal mean a∗ and associated

normal variance b2, i.e., Ai
D∼ LN(a∗, b

2) in cell *. Then

E(Ai) = ea∗+
b2

2 = ea∗e
b2

2 and Var(Ai) = e2a∗+b2(eb2−1) = e2a∗eb2(eb2−1) (2.5.47)

Settingm = eaLN and defining h, g, f by eaHN = m+h, eaLS = m+g, and eaHS = m+f ,

we obtain

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= e
b2

2 [(eaHS − eaHN ) − (eaLS − eaLN )]

= e
b2

2 [f − (h + g)]

(2.5.48)

and

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)])

= eb2(eb2 − 1)[(e2aHS − e2aHN) − (e2aLS − e2aLN )]

= eb2(eb2 − 1)[((m+ f)2 − (m+ h)2) − ((m+ g)2 −m2)]

= eb2(eb2 − 1)[2m[f − (h + g)] + f2 − (h2 + g2)]

(2.5.49)

Since MIC = 0 iff f = h + g, substituting this constraint into AVIC yields

AVIC = 2eb2(eb2 − 1)hg > 0 (2.5.50)

so MIC = 0 always implies VIC > 0.

Example 40: Ai follows a lognormal distribution over trials with fixed

associated normal mean and shifting associated normal variance: Assume

the premise of Theorem 7 holds. In cell *, let Ai follow a lognormal distribution

over trials (no variation over participants) with an associated normal mean a and

associated normal variance b2∗, i.e., Ai
D∼ LN(a, b2∗) in cell *. Then

E(Ai) = ea+
b2
∗

2 = eae
b2
∗

2 and Var(Ai) = e2a+b2
∗(eb2

∗ − 1) = e2aeb2
∗(eb2

∗ − 1) (2.5.51)



89

Setting m = e
b2
LN
2 and e

b2
HN
2 = m+ h, e

b2
LS
2 = m+ g, and e

b2
HS
2 = m+ f , we obtain

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= ea[(e
b2HS

2 − e
b2HN

2 ) − (e
b2LS
2 − e

b2LN
2 )]

= ea[f − (h+ g)] and

(2.5.52)

AVIC = e2a[(eb2HS(eb2HS − 1)−eb2HN (eb2HN − 1))−(eb2LS(eb2LS − 1)−eb2LN (eb2LN − 1))]

= e2a[(m+ f)2[(m+ f)2 − 1] − (m+ h)2[(m+ h)2 − 1]]

− e2a[(m+ g)2[(m+ g)2 − 1] −m2[m2 − 1]]

= e2a
{

((m+ f)4 − (m+ h)4) − ((m+ g)4 −m4)

− (m+ f)2 + (m+ h)2 + (m+ g)2 −m2
}

= e2a[4m3[f − (h + g)] + 6m2[f2 − (h2 + g2)] + 4m[f3 − (h3 + g3)]

+ e2a[f4 − (h4 + g4)] − 2m[f − (h+ g)] − [f2 − (h2 + g2)]]

= e2a[(4m3 − 2m)[f − (h+ g)] + (6m2 − 1)[f2 − (h2 + g2)]]

+ e2a[4m[f3 − (h3 + g3)] + f4 − (h4 + g4)]

(2.5.53)

Since MIC = 0 iff f = h + g, substituting this constraint into AVIC yields

AVIC = e2a[(6m2 − 1)[(h+ g)2 − (h2 + g2)] + 4m[(h+ g)3 − (h3 + g3)]

+ e2a[(h+ g)4 − (h4 + g4)]

= e2a[(6m2 − 1)[2hg] + 12m[h2g + hg2] + 4[h3g + hg3] + 6h2g2]

= e2a(2hg)[(6m2 − 1) + 6m(h+ g) + 2(h2 + g2) + 3hg] > 0

(2.5.54)

so MIC = 0 always implies VIC > 0. (Note that m > 1 always in this example.)
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Example 41: Ai follows a Weibull distribution over trials with shifting

scale parameter and fixed shape parameter: Assume that the premise of The-

orem 7 holds. Suppose that, in cell *, Ai follows a Weibull distribution over trials

(no variation over participants) with shape parameter a and scale parameter b∗, i.e.,

Ai
D∼ Wei(a, b∗) in cell *. Then

E(Ai) = b∗Γ(1 + 1/a) and Var(Ai) = b2∗
{

Γ(1 + 2/a) − (Γ(1 + 1/a))2
}

(2.5.55)

Set m = bLN and define h, g, f by bHN = m+h, bLS = m+ g, and bHS = m+f. Then

AMIC = (Ei
HS[E(Ai)] − Ei

HN [E(Ai)]) − (Ei
LS[E(Ai)] − Ei

LN [E(Ai)])

= Γ(1 + 1/a)[(bHS − bHN) − (bLS − bLN )]

= Γ(1 + 1/a)[f − (h+ g)]

(2.5.56)

Now

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] −Ei

LN [Var(Ai)])

=
{

Γ(1 + 2/a) − (Γ(1 + 1/a))2
}

[((m+ f)2 − (m+ h)2) − ((m+ g)2 −m2)]

=
{

Γ(1 + 2/a) − (Γ(1 + 1/a))2
}

[2m[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.57)

Now AMIC = 0 iff f = h+ g and substituting this constraint into AVIC yields

AVIC = 2
{

Γ(1 + 2/a) − (Γ(1 + 1/a))2
}

hg > 0 (2.5.58)

Thus MIC = 0 always implies VIC > 0.

Note: So far we have seen, in the case of a gamma base with a varying shape

parameter, and with the the notable and important exceptions of Corollary 7.1 and

Example 36 where the signature VIC = 0 iff MIC = 0 is obtained, in all other
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examples MIC = 0 implied VIC > 0. The latter tends to occur because of the

definition of AVIC and the fact that variances tend to skew concave upward because

of the squaring operation. However, in the case whereAi follows a Weibull distribution

with fixed scale parameter but shifting shape parameter, it can be shown that whereas

many cases with MIC = 0 do result in VIC > 0, this is not universally true; there

exist specific solutions where MIC = 0 yields VIC < 0. One is illustrated below.

Example 42: Ai follows a Weibull distribution over trials with fixed scale

parameter and specific varied shape parameter values: Assume the premise of

Theorem 7 holds. Suppose that, in cell *, Ai follows a Weibull distribution over trials

(no variation over participants) with scale parameter b and specific shape parameters

a∗, i.e., Ai
D∼ Wei(a∗, b) in cell *. Then

E(Ai) = bΓ(1+1/a∗) and Var(Ai) = b2
{

Γ(1 + 2/a∗) − (Γ(1 + 1/a∗))
2
}

(2.5.59)

For convenience we define x∗ = 1/a∗ and set xLN = 0.46, xHN = 0.56, and xLS =

0.66. Then define mLN = Γ(1.46) = 0.8856, mHN = Γ(1.56) = 0.8896, and mLS =

Γ(1.66) = 0.9017. Now the result MIC = 0 is equivalent to the constraint

mHS = mHN +mLS −mLN = 0.8896 + 0.9017 − 0.8856 = 0.9057 (2.5.60)

Solving numerically yields Γ(1.684) = 0.9057 so xHS = 0.684 corresponds to MIC = 0

here. We can then compute

AVIC = (Ei
HS[Var(Ai)] − Ei

HN [Var(Ai)]) − (Ei
LS[Var(Ai)] − Ei

LN [Var(Ai)])

= b2[(0.3965 − 0.2654) − (0.3678 − 0.1845)]

= −b2(0.0522) < 0

(2.5.61)

Thus the possibility VIC < 0 when MIC = 0 does arise here.
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2.5.3 Inverse Gaussian Base with Varying Mean M

Here we choose an inverse Gaussian base (see Appendix B) with accompanying vector

Θ = (M,Λ) where M denotes the mean of the distribution and Λ denotes the shape

parameter. We will restrict consideration to the case where only M is allowed to vary

over cells. This leads to the following

Theorem 8: Here we assume `ij follows an inverse Gaussian base distribution with

Θi = (Mi, λi) where the mean Mi is allowed to vary over trials and participants

within a cell as well as vary across cells. The shape parameter λi can vary over

participants within a cell but not over trials, and moreover must follow the same

distribution in each cell. We also assume that the number of subprocesses ki can vary

over participants in a cell but not over trials, and must follow the same distribution in

each cell. Further assume that the random processes Mi, λi, and ki act independently

of each other over participants and trials. Define

MMIC = (Ei
HS[E(Mi)] − Ei

HN [E(Mi)]) − (Ei
LS[E(Mi)] − Ei

LN [E(Mi)]) (2.5.62)

and

MVIC = (Ei
HS[Var(Mi)]−Ei

HN [Var(Mi)])−(Ei
LS[Var(Mi)]−Ei

LN [Var(Mi)]) (2.5.63)

and

MCUMIC = (Ei
HS[E(M3

i )]−Ei
HN [E(M3

i )])− (Ei
LS[E(M3

i )]−Ei
LN [E(M3

i )]) (2.5.64)

Then

MIC = Ei[ki]MMIC (2.5.65)
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and

VIC = Ei[k2
i ]MVIC + Ei[ki]E

i[1/λi]MCUMIC (2.5.66)

proof: For the inverse Gaussian distribution µ(Θi) = Mi and σ2(Θi) = M3
i /λi. Using

(2.2.10) we obtain

E(T )∗ = Ei[ki]E
i
∗[E(Mi)] (2.5.67)

and using (2.2.11) we obtain

E(Var(T ))∗ = Ei[k2
i ]E

i
∗[Var(Mi)] + Ei

∗[ki]E
i[1/λi]E

i
∗[E(M3

i )] (2.5.68)

from which the results follow. 4

The following two examples are illustrations of Theorem 8.

Example 43: Assume the premise of Theorem 8 holds. Suppose Mi does not vary

over trials but does vary over participants in cell * according to a Gam(a∗, b) distri-

bution. Then Var(Mi) = 0 so MVIC = 0 and we have Mi = mi with

Ei
∗[mi] =

a∗
b

and Ei
∗[m

3
i ] =

(a∗+2)(a∗+1)a∗
b3

(2.5.69)

Setting m = aLN and defining h, g, f by aHN = m+h, aLS = m+g, and aHS = m+f

(note h > 0, g > 0, f > 0 as usual using (2.5.67)), we obtain

MMIC =
1

b
[f − (h+ g)] (2.5.70)
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and

MCUMIC =
1

b3
{[(m+f+2)(m+f+1)(m+ f) − (m+h+2)(m+h+1)(m+h)]

− [(m+g+2)(m+g+1)(m+g)− (m+ 2)(m+ 1)m]}

=
1

b3
{

f3 − (h3 + g3) + (3m+ 3)[f2 − (h2 + g2)]

+ (3m2 + 6m + 2)[f − (h+ g)]
}

(2.5.71)

Substituting in f = h+ g yields

MCUMIC =
3

b3
hg(h+ g + 2m+ 2) > 0 (2.5.72)

so MIC = 0 implies VIC > 0.

Example 44: Assume the premise of Theorem 8 holds. Suppose Mi varies over

trials according to an exponential distribution with rate ci, i.e., Mi
D∼ expo(ci). For

convenience let ai = 1/ci and suppose a varies over participants in cell * according to

a gamma distribution where a
D∼ Gam(α, b∗). Then

E(Mi) = ai, Var(Mi) = a2
i , E(M3

i ) = 6a3
i

and setting d∗ = 1/b∗ yields

Ei
∗[E(Mi)] = Ei

∗[ai] = αd∗ , Ei
∗[Var(Mi)] = Ei

∗[a
2
i ] = α(α + 1)d2

∗

and

Ei
∗[E(M3

i )] = Ei
∗[6a

3
i ] = 6α(α + 1)(α + 2)d3

∗

Set m = dLN and define h, g, f by dHN = m + h , dLS = m + g, and dHS = m + f .

Note that h > 0, g > 0, f > 0 as usual by (2.5.67). Then

MMIC = α[(dHS − dHN ) − (dLS − dLN )] = α[f − (h+ g)] (2.5.73)
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and

MVIC = α(α+ 1)[(d2
HS − d2

HN ) − (d2
LS − d2

LN )]

= α(α+ 1)[2m[f − (h+ g)] + f2 − (h2 + g2)]

(2.5.74)

whereas

MCUMIC = 6α(α + 1)(α+ 2)[(d3
HS − d3

HN) − (d3
LS − d3

LN )]

= 6α(α + 1)(α+ 2)
{

f3 − (h3 + g3) + 3m[f2 − (h2 + g2)]

+ 3m2[f − (h + g)]
}

(2.5.75)

Substituting in f = h+ g yields both

MVIC = 2α(α + 1)hg > 0 (2.5.76)

and

MCUMIC = 18α(α + 1)(α+ 2)(hg)(h + g + 2m) > 0 (2.5.77)

Thus MIC = 0 always implies VIC > 0 here.

Note that expressions for MIC and VIC can always be developed for other base

distributions and varying choices of Θ simply by employing the general expressions

for cell means and variances given by (2.2.10) and (2.2.11). Here in Sec 2.5 we have

attempted to produce relatively simple expressions for MIC and VIC by holding the

distribution of k and that of at least one component of the vector Θ constant over

trials and cells. For example, in Theorem 8, only Mi was allowed to vary over trials

and cells. However, if one is willing to accept more complicated expressions for MIC

and VIC, then one can allow other quantities to vary over trials and/or cells as well,

and simply plug into (2.2.10) and (2.2.11).
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2.6 Discussion and Future Directions

Encoding is the mental process by which a cognitive task is transformed into an

internal representation which facilitates carrying out the task at hand. In this chapter

we observed that, for patients with schizophrenia, encoding latencies are prolonged

as compared to those of normal controls whereas other mental operations, such as

making comparisons with memory sets, and executing a response time, are spared

by the disease process. Moreover, the prolonged encoding times in schizophrenia are

even seen in comparison to other psychiatric controls (such as patients with major

depressive disorder) with the greatest increase found among schizophrenia patients

with paranoid symptoms (delusions and hallucinations). Thus prolonged encoding

times appear to be an earmark of the schizophrenia disease process.

In this chapter we also reviewed the outcomes of 2 × 2 factorial experiments

in which encoding load (low vs. high) and health diagnostic status (normal vs.

schizophrenia) were manipulated. These experiments were always seen to feature

factorial additivity of means (MIC = 0) whereas we might observe factorial additiv-

ity of variances (VIC = 0) or factorial nonadditivity of variances (VIC 6= 0) depending

on the experiment. The persistent observation of MIC = 0 suggests that the total

encoding time can be broken down into a sum of encoding times of individual sub-

processes (a serial model). Previously developed models (the Erlang model, Neufeld

model, and Cutler-Neufeld model) were in fact examples of such serial models which

featured the signature VIC = 0 if and only if (iff) MIC = 0, and were suitable to

describe the outcomes of certain factorial experiments. The goal of this chapter was
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to develop a much broader class of serial models which could address a variety of fac-

torial experimental paradigms with differing MIC-VIC signatures. The general serial

mixture models of Sec 2.2 are the class that emerged from this pursuit. This class

allows the individual subprocess encoding times to be distributed according to any

continuous positive infinite-tailed distribution (called the base distribution) whereas

the Erlang and Neufeld models both utilized an exponential base. This new flexi-

bility in base distribution is not only potentially useful for modelling encoding times

but for application to modelling other cognitive processes which may follow different

distributions. The serial mixture models of Sec 2.2 also feature the innovation of the

Neufeld model whereby parameter values are allowed to vary according to participant

(thus incorporating heretofore “exogenous model noise” into the model itself, lead-

ing to Bayesian mixture models) but extend beyond this to further allow parameter

values to vary from trial to trial. The value of the latter is particularly seen when

considering the number of subprocesses Ki executed by the ith participant on any

given trial. It is easy to posit physical (and neurophysiological) mechanisms which

would lead to Ki varying from trial to trial. One such mechanism is the stimulus set

of the experiment itself, where there may be variability in the encoding requirements

of individual items in the set. Sec 2.3 presents examples of other mechanisms which

can lead to variability in Ki over trials. Sec 2.5 focuses on cases where the parameter

Θ of the base distribution itself varies over trials, representing the situation in which

the encoding speed of a subprocess increases or decreases depending on the trial.

One main sequela of the development of the general serial mixture models of

Sec 2.2 was the derivation of general closed-form expressions for the mean encoding
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time E(T )∗ and average intertrial variance E(Var(T ))∗ in each cell. These expressions

allow us to derive the form of MIC and VIC for any general serial mixture model.

Of course under many circumstances these expressions can be quite complicated, so

in Secs 2.3 and 2.5 we focus on special cases where particularly elegant and simple

expressions for MIC and VIC can be obtained. In Sec 2.3 we consider the special

case of what we call generalized Cutler-Neufeld (gen-CN) models. These models

are general serial mixture models where the base distribution is arbitrary and the

only variable which can vary over trials and cells is the number of subprocesses Ki.

These models, which are an extension of the Cutler-Neufeld model of Sec 2.1.2, not

only provide simple concise expressions for MIC and VIC but allow for a variety

of MIC-VIC signatures which are explored through a series of examples. Moreover,

the models themselves are supported by experimental evidence that has suggested

that the changes in E(T )∗ across cells can be explained by shifts in the distribution

of Ki across cells. Thus these models may have wide applicability. Note that one

particularly significant result in this section is that if Ki does not vary over trials

(what we call gen-CN models without variation) then we always obtain the signature

VIC = 0 iff MIC = 0. Thus observation of VIC 6= 0 implies there is some variation

in subprocess number over trials. However, various examples also illustrate the fact

that VIC = MIC = 0 can be obtained in some situations where variation is present.

Sec 2.4 addresses the problem of determining, using factorial data, whether variation

is present in a gen-CN model. As noted earlier, Sec 2.5 considers special cases of the

general serial mixture model where the parameter Θ of the base distribution is allowed

to vary across participants, trials, and cells. (In a sense, this is the reverse of the set-



99

up in Sec 2.3.) The results here are dependent on the choice of base distribution. It

is worth noting that the signature VIC = 0 iff MIC = 0 can be obtained here as well

in some special cases, e.g., Corollary 7.1 and Example 36.

Note that although throughout this chapter we have been focusing on the sign

of VIC when MIC = 0, we have actually derived explicit expressions for VIC in each

example. Most of these expressions involve constants unknown to the experimenter, so

it would be difficult to match any of these signatures against one set of experimental

data, i.e., against a single estimated value for VIC. However, this situation may

change if we are able to manipulate the encoding load and health status and obtain

a second value of VIC. For example, consider the case of a gamma base where we are

trying to decide between the shape parameter A following a gamma distribution with

shifting rate parameter (Example 37) or A following an inverse Gaussian distribution

with shifting mean (Example 38). Now for both these examples, when MIC = 0, we

have

E(T )∗ = cEi
∗[E(Ai)] and VIC = dAVIC (2.6.1)

where c > 0 and d > 0 are constants unknown to the experimenter. Define the

quantities h′ > 0 and g′ > 0 by E(T )HN = E(T )LN + h′ and E(T )LS = E(T )LN + g′.

Note that h′ and g′ can easily be estimated from the estimates of E(T )LN , E(T )HN,

and E(T )LS based on factorial data. In Example 37, the quantities E(T )LN , E(T )HN,

and E(T )LS, can be represented respectively by acm, ac(m+ h), and ac(m+ g), so

h′ = ach and g′ = acg in this example. (Note in this example that m = 1/bLN .) It
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then follows from (2.5.42) and (2.6.1) that there exists d′ > 0 such that

VIC = d′h′g′ for Example 37

Similarly, in Example 38, the quantities E(T )LN , E(T )HN, and E(T )LS, can be rep-

resented respectively by cm, c(m+ h), and c(m + g), so h′ = ch and g′ = cg in this

example. (Here m = aLN = E(T )LN/c.) Plugging into (2.5.46) and (2.6.1) yields

existence of a constant d′′ > 0 such that

VIC = d′′(h′g′)[2E(T )LN + h′ + g′] for Example 38

Note in particular that, in Example 38, VIC is a function of the mean encoding

latency in the first cell as well as the differences h′ and g′ between cells, whereas

in Example 37, VIC is only a function of the differences between cells. In theory,

repetitions of the experiment that yield different choices for h′ and g′ would allow

us to distinguish between the above two expressions for VIC and thus between the

two models. Numerical studies in this area would be a fruitful avenue to explore for

future work.

Another area for future work would be the development of the distribution of

the ratio statistic r∗ = s̄2
∗/t̄∗ proposed in Sec 2.4 as a method for testing for variation in

generalized Cutler-Neufeld models. As noted in that section, the standard deviation

of r∗ is highly dependent on the underlying base distribution, so it would be useful to

have distributional results for different choices of base. A related problem, possibly

more easily accomplished in the short term, would be numerical work determining

the required sample sizes necessary to obtain desired standard deviations for different

base distributions. Experimenters could then choose sample sizes according to the
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base distribution believed to be applicable to their problem or, more likely, according

to a “worst case scenario” choice for base distribution.

It would also be desirable to develop explicit expressions for MIC and VIC

for at least some general serial mixture models where more than one quantity is

varying over trials and/or cells. Of course term-by-term expressions for MIC and

VIC can always be obtained by plugging into (2.2.10) and(2.2.11) (see Examples 4

and 5 where both K and V are varying over trials) and then applying (2.1.3) and

(2.1.5). However, such expressions (at least for VIC) are bound to be complicated

and unwieldy. It would be of interest to determine if there is a subset of models with

at least two quantities varying over trials and/or cells for which somewhat concise

and elegant expressions can be obtained for MIC and VIC.

Finally, a core assumption made in the definition of the general serial mixture

model (Definition 1) was that the process that governed the number of subprocesses K

was independent of the process that governed the random vector Θ. This permitted

factoring in several expressions and led to the simplicity of many of the obtained

results, in particular (2.2.10) and (2.2.11). However, one can easily envisage situations

where Ki and Θi are linked for participant i. Such cases might need to be solved on

a case-by-case basis, but exploration of this area would be of interest.
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Chapter 3

Nonlinear Indices in Schizophrenia
and Bipolar Disorder

3.1 Introduction to Chapter 3

The idea that the human brain operates as a series of interacting nonlinear processes

initially generated considerable enthusiasm about potential applications to the study

of schizophrenia and bipolar disorder (Ehlers, 1995; Globus & Arpaia, 1994; Heiby,

1995; Melançon, Joanette, & Bélair, 2000; Schmid, 1991). It seems natural to consider

schizophrenia and bipolar disorder together as they represent the two major psychoses

and share some commonalities in both symptoms and genetics (Demjaha, MacCabe,

& Murray, 2012; Murray et al., 2004). Schizophrenia research moved more quickly

to meet this interest in nonlinear dynamics, and more recent articles (Breakspear,

2006; Paulus & Braff, 2003) have argued vigorously for continuing exploration of

this area. Nonlinear research in bipolar disorder is now emerging as well. A wealth

of nonlinear techniques exist, and we refer the reader to Heath, Kelly, and Longstaff

(2000), Guastello (2009), Guastello and Gregson (2011), and Heath (2014) for general

overviews of these techniques, especially as they are applied to psychological and
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biological data.

In this chapter1 we focus on applications of nonlinear indices to univariate

time series Xt arising from electroencephalogram (EEG) studies, electrocardiogram

(ECG) studies, and mood studies. A nonlinear index is a numerical value that either

quantifies some aspect of nonlinearity about a system (the indices we have called the

phase space indices) or is inspired by nonlinear concepts such as fractal dimension

and entropy (the indices we have called the time domain indices). Evaluating phase

space indices requires embedding procedures to reconstruct the underlying system

dynamics whereas evaluating time domain indices does not. A summary of the indices

we consider is given in Table 3.1. This list is by no means exhaustive, but for space

constraints it was necessary to limit the number of indices. Nonlinear indices stand

apart from linear quantities such as the mean, variance, and power spectrum of a

time series.

Table 3.1: Summary of Nonlinear Indices

Phase Space Indices

symbol name description
λ1 largest Lyapunov exponent predictability index
KSE Kolmogorov-Sinai entropy information index
D2 correlation dimension spatial clustering index

Time Domain Indices

symbol name description
ApEn approximate entropy randomness index
SampEn sample entropy randomness index
MSE multiscale entropy multiple scales SampEn indices
LZC Lempel-Ziv complexity pattern index
Hc compression entropy compressibility index
KFD Katz fractal dimension graph roughness index
HFD Higuchi fractal dimension graph roughness index
RBFD Real box fractal dimension graph roughness index
Methods I and II symbolic dynamics symbol complexity indices

1A slightly modified version of this chapter has been published as Cutler and Neufeld (2019)
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Nonlinear indices are frequently referred to as complexity indices in the liter-

ature (Fernández, Gómez, Hornero, & López-Ibor, 2013; Takahashi, 2013). However,

the notion of “complexity” is an ill-defined one (Kantz & Schreiber, 1997, p. 91)

although the recent article by Yang and Tsai (2013) has described complexity as

occupying a position intermediate between order and randomness. The different non-

linear indices actually measure somewhat different quantities (possibly one reason

for the many contradictory findings in the literature) and entropy indices typically

reach their maximum for totally random series, not complex ones (however, see Heath

(2015) for an index which reaches its maximum at the edge of chaos).

The purpose of this chapter is threefold. The first is to provide an accessible

self-contained description of the nonlinear indices and techniques under considera-

tion. The second is to discuss the ways in which nonlinear indices and techniques

have been applied to EEG data, ECG data, and mood data in schizophrenia and

bipolar disorder. The third involves a lengthy quantitative investigation (Section 3.4)

into a hypothesis put forward by Lee, Choo, Im, and Chae (2008) and Fernández et

al. (2013) which can be paraphrased as “higher complexity in EEG tends to be the

default condition in symptomatic unmedicated schizophrenia (especially first-episode

patients) with this tendency being dampened or even inverted by medication (an-

tipsychotics), increasing age, and decreasing symptomatology”. For brevity, we will

call this the L-F proposal. We find only weak quantitative evidence to support indi-

vidual aspects of this proposal, but suggest that the underlying symptomatology of

the patients may provide the key to untangling apparent contradictions.

For the purpose of identifying the research studies for this systematic review
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and quantitative analysis, we searched PsychInfo, PubMed, Scopus, and Google

Scholar for all combinations of the words nonlinear, correlation dimension, Lya-

punov, chaos, fractal, entropy, and symbolic dynamics coupled with each of the terms

schizophrenia, bipolar disorder, mania, manic depression, and bipolar depression.

3.2 Phase Space Indices

3.2.1 Dynamical Systems, Attractors, and Time Series

The definitions of phase space indices are predicated on the assumption that the

observed time series Xt is a univariate measurement on an underlying multivariate

dynamical system ϕt evolving in N dimensions. The N -dimensional space is typically

called state space or phase space. If y0 is the starting position of the system in phase

space (called the initial condition) then ϕt(y0) denotes the position of the system in

phase space after t units of time have passed. The curve {ϕt(y0) | t ≥ 0} is called the

trajectory of the system with initial condition y0.

A dynamical system is called linear if ϕt(c1y1 + c2y2) = c1ϕt(y1) + c2ϕt(y2);

otherwise it is called nonlinear. The long-run behaviours of linear systems are rel-

atively simple. Depending on the initial condition, the trajectory may become un-

bounded over time, or settle onto an attracting fixed point, limit cycle (e.g., an ellipse),

or torus (Hirsch & Smale, 1974). Accordingly, the behaviour of the measured time se-

ries Xt is simple as well. However, in the nonlinear case, the long-run behaviour of ϕt

can be very complex if N ≥ 3. In such a situation, it is possible that, for a collection

of initial conditions, the trajectories exhibit chaotic behaviour (see Sec 3.2.3 below)

and settle onto a complicated fractal attractor (a set so structurally intricate that
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it has a noninteger dimension; see Mandelbrot (1977, 1982)). When the underlying

dynamics are chaotic, the measured time series Xt will be so irregular as to appear

random (also called stochastic) even though a latent determinism is generating the

series.

Phase space indices can be used to identify and quantify aspects of nonlinearity

and chaos. However, before we define these indices, it is necessary to cope with the

fact that in practice we usually do not know the actual dynamical system. All we

have available to us is the univariate time series Xt. The next section considers

reconstruction of the underlying dynamics from knowledge of Xt alone.

3.2.2 Reconstruction of Dynamics from the Time Series

It may seem evident that having only a univariate measurement on a multivariate

system will yield only partial information about the underlying dynamics of the mul-

tivariate system. However, if the measurement function is sensitive to changes in all

the variables (as is typically the case) following one measurement over time will reveal

information about the entire system. This is done by the method of time-delay em-

beddings, first introduced by Packard, Crutchfield, Farmer, and Shaw (1980), which

we describe below. At this point we will simplify our presentation by noting that the

continuous-time realization Xt is, in practice, sampled only at discrete time steps,

say with step size ∆t. Thus the sampled data takes the form X∆t, X2∆t, . . . , Xn∆t.

For convenience we will represent this as X1, X2, . . . , Xn. Let L ≥ 1 and M ≥ 1 be

integers and define the vector X
(M )
j by

X
(M )
j = (Xj, Xj+L, Xj+2L, . . . , Xj+(M−1)L) (3.2.1)
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Thus X
(M )
j is a vector in M-space which consists of M points of the original time

series separated by L units in time. L is called the lag or delay, and should be

chosen so that consecutive elements of the vector are neither too correlated nor too

uncorrelated. The sequence of vectors X
(M )
j , j = 1, 2, . . . , n− (M −1)L, sketches

out a curve in M-space. Celebrated reconstruction theorems (Takens, 1981; Sauer,

Yorke, and Casdagli, 1991) state that, under “most” typical conditions, if M is large

enough, the curve sketched out by the vectors (3.2.1) will mimic (with perhaps some

minor distortions) the trajectory of the underlying dynamical system as it moves

around its attractor. In the case that this mimicking occurs, we refer to (3.2.1) as a

time-delay embedding of the system and M as the embedding dimension. Since the

required embedding dimension M is unknown apriori, an approach to determining

it has been given by Kennel, Brown, and Abarbanel (1992), called the method of

false nearest neighbours (FNN). Cao (1997) modified the FNN method to be less

subjective and more efficient, an algorithm we will denote CFNN. The methods FNN

and CFNN seem to be the most popular ways of determining M in papers after the

year 2000. Prior to that the Grassberger-Procaccia (GP) algorithm (Sec 3.2.5 below)

was generally used. It is important to note that different choices of lag and embedding

method can produce different answers, and these differences can affect estimates of

the phase space indices.

3.2.3 Lyapunov Exponents (λ1) and Chaos

For a dynamical system ϕt evolving in N -space, a spectrum of numbers can be ob-

tained that indicate the long-run rate of divergence (or convergence) of two initially
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close trajectories along N principal axes of motion. These are called the Lyapunov

exponents of the system and are typically ordered largest to smallest

λ1 ≥ λ2 ≥ . . . ≥ λN (3.2.2)

Positive exponents indicate directions of expansion whereas negative exponents indi-

cate directions of contraction. The existence of at least one positive exponent (i.e.,

λ1 > 0) implies that any two nearby trajectories diverge exponentially fast. In this

case, if ∆y0 denotes a very small perturbation so that the starting points of two

nearby trajectories are given by y0 and y0 + ∆y0, respectively, then the distance

between the two trajectories at time t is:

||ϕt(y0 + ∆y0) − ϕt(y0)|| ≈ eλ1t||∆y0|| (3.2.3)

This rapid exponential expansion of an originally small perturbation is known as sen-

sitivity to initial conditions. A dynamical system is called chaotic if it stays bounded

over time, has no stable periodic cycles (in practice this means that if you select an

initial condition at random then the trajectory will never repeat itself numerically)

and the system displays sensitivity to initial conditions (i.e., has at least one positive

Lyapunov exponent). Chaotic systems are of such great interest because they are

deterministic and may involve a small number of variables (the Lorenz system has

only three) and yet, because of the sensitivity to initial conditions, behave almost

as unpredictably as a random process. Much of the search for chaos from data has

centred on a search for a positive Lyapunov exponent. We call the phase space index

λ1 a predictability index since greater positive values of λ1 imply faster separation

of trajectories and greater unpredictability of the system. It is possible to estimate
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λ1 using only the time-delay reconstructions of the previous section; a variety of al-

gorithms exist (Kantz & Schreiber, 1997; Kreindler & Lumsden, 2007; Rosenstein,

Collins, & De Luca, 1993; Wolf, Swift, Swinney, & Vastano, 1985).

3.2.4 Kolmogorov-Sinai Entropy (KSE)

The Kolmogorov-Sinai entropy index (KSE) is closely tied to the notion of Lyapunov

exponents and can be defined as

KSE =
∑

λi>0

λi (3.2.4)

The sum of the positive Lyapunov exponents governs the rate at which new infor-

mation comes into the system. Chaotic systems create information as they evolve

because trajectories that are initially so close that we cannot tell them apart will

become separate and distinct under the stretching actions of the system. Thus KSE

is called an information index.

3.2.5 Correlation Dimension and the GP Algorithm

The indices λ1 and KSE measure active dynamical properties of the underlying sys-

tem. Another value of interest is a static quantity, which is the number of distinct

dimensions that characterize the system attractor A. A higher number of dimensions

is generally viewed as reflecting greater system complexity. In the chaotic case A typ-

ically has a fractional dimension, and thus verification of a fractional dimension for

A has been used as an identifier of chaos. One difficulty here is that the trajectories

of the system typically visit different regions of A with unequal probabilities, so it

may require enormous sample sizes to get an accurate picture of A. Thus experimen-
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talists turned their attention to dimension quantities associated with the probability

distribution over the attractor. The most popular of these has been the correlation

dimension.

Correlation Dimension (D2)

Let P denote the probability distribution describing the relative frequency with which

the trajectories visit different regions of A. Suppose X and Y are two vectors drawn

randomly and independently from the phase space according to P . For each r > 0

the spatial correlation integral is defined to be the probability that those two vectors

are no more than distance r apart, i.e.,

C(r) = Probability(||X− Y|| ≤ r) (3.2.5)

As r → 0 this quantity is believed to scale as rD2 , i.e.,

C(r) ∼ rD2 (3.2.6)

where the exponent D2 is called the correlation dimension. It turns out that D2 is a

lower bound on the dimension of A (Cutler, 1991) and is often viewed as a measure

of complexity, although really it is a measure of the spatial clustering of points over

A. Given a sample of time-delay embedded vectors X1, . . . ,Xn, Grassberger and

Procaccia (1983a) introduced the sample correlation integral

Cn(r) =
2

n(n− 1)

∑

i

∑

j>i

I[||Xj−Xi||≤r] (3.2.7)

where I[||Xj−Xi||≤r] = 1 if ||Xj − Xi|| ≤ r and is otherwise 0. Thus Cn(r) is simply

the proportion of pairs of vectors in the sample that are no more than r units apart.
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Cn(r) is the natural estimator of the correlation integral C(r) defined in (3.2.5). In

order to estimate D2, Grassberger and Procaccia (1983a) proposed that logCn(r)

should be plotted versus log r and a suitable scaling region (a region of linear slope)

determined. The estimate of D2 is then the slope of this scaling region. Various

difficulties with and improvements of this procedure have been discussed (Denker &

Keller, 1986; Eckmann & Ruelle, 1992; Theiler, 1986, 1990). Accurate estimates of

D2 require long time series of stationary noise-free data.

The Grassberger-Procaccia (GP) Algorithm

As noted in Sec 3.2.2, the required embedding dimension M can be determined by

methods such as FNN or CFNN. Historically, the Grassberger-Procaccia (GP) al-

gorithm (Grassberger & Procaccia, 1983a, 1983b) has been used, as will be seen in

some of the earlier papers we review. For each embedding dimension M = 1, 2, . . .

the embedded M-vectors are constructed and an estimate D̂2 is obtained by plotting

log Cn(r) versus log r. The value of M at which the estimates D̂2 stop changing (as-

suming this occurs) is taken as the embedding dimension. Moreover, the final value

of D̂2 is taken to be the estimate of D2. When this occurs, the correlation dimension

estimates are said to converge. If the estimates fail to converge, this suggests that the

underlying system is very high-dimensional or maybe even stochastic. A problem with

this algorithm is that coloured noise with a 1/fα power-law spectrum can produce

(false) convergence of the D2 estimates (Osborne & Provenzale, 1989). Coloured noise

actually has infinite correlation dimension but the rate at which the trajectory “fills

out” this infinite-dimensional space can be so slow that the GP algorithm appears to
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converge to a finite value (Cutler, 1994; Theiler, 1991).

3.2.6 Surrogate Data Tests for Nonlinearity

The phase space indices λ1, KSE, and D2 directly capture some qualities of a noise-

free dynamical system. However, they can also be used in another way. If the

original univariate time series Xt is stochastic (i.e., noisy) it will appear irregular

and unpredictable (like a chaotic process) whether it is a linear or nonlinear process.

The phase space indices (as well as other discriminating statistics) can be used to

detect the presence of nonlinearity in Xt. The null hypothesis H0 that is assumed is

that Xt is a linear Gaussian stochastic process. A statistical test is carried out by

constructing B independent surrogate series. The surrogate series are obtained by a

method which retains the linear properties of Xt but destroys any nonlinear structure.

The linear properties of Xt are contained in its autocorrelation function (equivalently,

its Fourier transform or power spectrum). Thus each surrogate series is created to

have the same mean, variance, and autocorrelation function as Xt by computing the

fast Fourier transform of the original series, randomizing the phases, then inverting

the transform to obtain the surrogate series (Chan & Tong, 2001; Kantz & Schreiber,

1997; Kugiumtzis, 2000; Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992).

The randomization of the phases destroys any nonlinear structure in the surrogate

series. A discriminating statistic is then used to see if there is a difference between the

original series and the collection of surrogate series. Very often D2 is used. If we set

the size of the test to be α = .05 we would construct 40 independent surrogate series,

calculate D̂2 for the original series, and D̂
(1)
2 , D̂

(2)
2 , . . . D̂

(40)
2 for the surrogate series.
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We would only reject H0 and conclude there was some nonlinear structure in Xt if

D̂2 was either smaller or larger than all 40 surrogate D2 estimates, since Prob(D2 ≤

min(D̂
(1)
2 , D̂

(2)
2 , . . . D̂

(40)
2 ) = Prob(D2 ≥ max(D̂

(1)
2 , D̂

(2)
2 , . . . D̂

(40)
2 ) < 1/40 = .025 which

yields a two-sided hypothesis test at α = .05.

3.3 Time Domain Indices

These are indices based directly on Xt and do not require phase space reconstruction.

3.3.1 Approximate Entropy (ApEn) and Sample Entropy (Sam-

pEn)

Pincus (1991, 1995) developed an index which could rank time series in order of their

degree of randomness. Pincus (and others) use the term “order of complexity” but it

should be understood that Pincus’ index, called approximate entropy ApEn, assigns

its highest values to completely random series. It has received wide use in the analysis

of EEG signals and heart rate series as well as other psychological, physiological, and

biological processes; see Pincus (2006) for a review of applications.

We now describe the ApEn index. LetX1, . . . , Xn be the time series, letm ≥ 1,

and create the m-vectors X
(m)
i = (Xi, Xi+1, . . . , Xi+(m−1)) for i = 1, . . . , n− (m− 1).

Let the “tolerance limit” r > 0 be fixed. X
(m)
j is considered a “match” to X

(m)
i if

||X(m)
j −X

(m)
i || ≤ r. Using the simplifying notation of Richman, Lake, and Moorman

(2004), the index ApEn(m, r, n) can be defined as

ApEn(m, r, n) = − 1

n−m

n−m
∑

i=1

log

(

Ai

Bi

)

(3.3.1)

where Bi denotes the number of matches with X
(m)
i , and Ai denotes the number
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of matches with X
(m+1)
i . Note that the ratio Ai/Bi is an estimate of the conditional

probability that a vector of lengthm+1 matches X
(m+1)
i given that the vector of length

m matches X
(m)
i . When these conditional probabilities are close to 1, ApEn(m, r, n) is

close to zero. Pincus (1991, 1995) found that he could effectively distinguish between

the degree of randomness for many series using as few as n = 75− 1000 observations,

with m = 1 or 2, and r selected to be 0.1·SD or 0.2·SD, where SD is the standard

deviation of X1, . . . , Xn.

The counts in Ai and Bi in (3.3.1) include “self-matches” which has been

criticized by Richman and Moorman (2000) and Richman et al. (2004). The self-

matches cause a downward bias in the ApEn index. Richman and colleagues also claim

that ApEn is dependent on series length and has problems with relative consistency.

In order to remedy these problems, they modified the definition of ApEn to create an

index they called sample entropy SampEn. This index is defined as

SampEn(m, r, n) = − log

(

A

B

)

(3.3.2)

where B is the number of matches among vectors of length m and A is the number of

matches among vectors of length m+ 1. Self-matches are not included in the counts

for A and B. Note that the ratio A/B can be viewed as an estimate of the conditional

probability of a match of length m+ 1 given a match of length m.

3.3.2 Multiscale Entropy (MSE)

Multiscale entropy (MSE) is actually a family of indices derived from SampEn for

different scaling factors τ . Let X1, . . . , Xn be the original time series, and for each
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τ = 1, 2, . . . , n define a new time series Xτ whose elements are given by

Xτ
j =

1

τ

jτ
∑

i=(j−1)τ+1

Xi for 1 ≤ j ≤ [n/τ ] (3.3.3)

The MSE values are generated by calculating SampEn for each of the series Xτ

(Costa, Goldberger, & Peng, 2005). Note that τ = 1 reproduces the original time

series and yields the usual SampEn value. SampEn(τ ) provides information about

short-range temporal irregularity when τ is small and information about long-range

temporal irregularity when τ is large.

3.3.3 Lempel-Ziv Complexity (LZC) and Compression En-

tropy (Hc)

Here the time series Xt is coarse-grained into a sequence of 0’s and 1’s by setting

s(t) = 1 if Xt > m and s(t) = 0 if Xt ≤ m where m is the median of the time

series. Lempel and Ziv (1976) developed a measure of pattern complexity that begins

by scanning the sequence s(1), . . . , s(n) left to right and updating the counter c(k)

each time a new pattern is observed. For example, if the sequence was 0101101

then c(7) = 3 since the new patterns are 0, 1, 011. Usually c(n) is then normalized

to account for the length of the original sequence, producing a value known as the

Lempel-Ziv complexity (LZC); see Li et al. (2008) for detailed discussion.

Ziv and Lempel (1977) developed an algorithm for compressing data strings.

The compression entropy Hc is defined to be Hc = length of compressed string
length of string

. See Baumert

et al. (2004) for discussion and application to heart rate series.
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3.3.4 Fractal Dimension of the Graph (KFD, HFD, and RBFD)

Here measures of the fractal dimension (FD) of the graph G = {(t, Xt) | t ≥ 0} are

considered. The FD of a graph falls between 1 and 2, where FD is higher when the

graph is rougher. (A smooth line would have FD = 1.) There are three popular

algorithms which are employed to estimate FD, one due to Katz (1988), a second

due to Higuchi (see Bahrami, Seyedsadjadi, Babadi, & Noroozian (2005) for the

algorithm), and a “real” box-counting algorithm which has a long history (see Cutler

(1993, p. 74) for discussion). The Katz fractal dimension (KFD) is given simply by

KFD =
log10(n)

log10(n) + log10(d/L)
(3.3.4)

where n is the number of data points, d is the planar extent of the observed graph, and

L is the length of the linearly-interpolated observed graph. In the Higuchi method,

successive linear approximations with step size r = 1, 2, . . . , rmax are constructed with

a computed vertical length L(r). If L(r) scales as r−HFD, i.e.,

L(r) ∼ r−HFD (3.3.5)

then the exponent HFD is taken as the Higuchi fractal dimension. In the real box-

counting method, for each small ε > 0, a “real” box count is computed

Nε =
∑

(maxXt −minXt)(1/ε) (3.3.6)

where the differences between the max and min of the graph are computed and then

summed across nonoverlapping strips of width ε. If

Nε ∼ ε−RBFD (3.3.7)
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then the exponent RBFD is taken as the real box-counting fractal dimension. These

algorithms need not always yield the same answer (and in particular the estimated

KFD can sometimes exceed 2), although HFD and RBFD should be closely related.

3.3.5 Symbolic Dynamics

Another way of assessing the regularity of a time series is through the method of

symbolic dynamics. Symbolic dynamics have increasingly been used in the analysis of

heart rate variability (HRV) (Voss et al., 1996; Voss, Baier, Schulz, & Bär, 2006) so

we describe it in this context. A heart rate series is generated by an electrocardiogram

(ECG) recording, and the times between successive beats are computed, called the

RR-intervals. Specifically, RRi = Ti − Ti−1 is the time between the (i − 1)th and

ith beat. (Usually only normal-to-normal beats are considered.) There are two basic

methods of generating a symbol sequence a0, a1, . . . from the RR series.

Method I: Choose a threshold parameter c (e.g., c = 10 ms) and set ai = 0 if

RRi − RRi−1 ≤ c and ai = 1 if RRi − RRi−1 > c. The sequence of 0’s and 1’s is

often analyzed for its regularity in two basic ways. One is to calculate plvar (which

is based on the number of occurrences of six consecutive 0’s) and phvar (which is

based on the number of occurrences of six consecutive 1’s). A large value of plvar

indicates low variability in the RR series and is often indicative of cardiac disease,

whereas a large value of phvar indicates high variability and is typical of healthy

persons. Another way the sequence is analyzed is to concatenate successive symbols

into 3-letter “words” aiai+1ai+2 and calculate the Shannon entropy (see (3.3.9) below)

of the frequency distribution of the words, usually corrected for sample size. A higher
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value for the entropy indicates greater randomness in the sequence.

Method II: This is more sophisticated. Here we choose a 4-letter alphabet {0, 1, 2, 3},

let µ = the mean of the RR-series, and let c be a parameter (often c = 0.1). Then set

ai =























0 µ < RRi ≤ (1 + c)µ

1 (1 + c)µ < RRi <∞
2 (1 − c)µ < RRi ≤ µ

3 0 < RRi ≤ (1 − c)µ

(3.3.8)

Concatenating three successive symbols generates a 3-letter word aiai+1ai+2 which

can take on one of 43 = 64 values. The frequency distribution of the 3-letter words

(over the 64 possible bins) can be evaluated by Shannon entropy (see (3.3.9) below).

Other statistics that are sometimes considered are Word Count (WC) which is the

percentage of different words encountered out of the possible 64, as well as the number

of “forbidden” words (words that occur with probability p < .001). Voss et al. (1996)

and Voss et al. (2006) note that a high percentage of words consisting only of 0’s and

2’s indicates abnormal regularity and tends to categorize serious cardiac patients.

Shannon entropy: ConsiderK bins with probabilities p1, p2, . . . , pK where
∑K

i=1 pi =

1. The Shannon entropy H is defined to be

H = −
K
∑

i=1

pi log pi (3.3.9)

where 0 · log 0 = 0. Note that H reaches a maximum of logK if the probabilities

are uniformly distributed over the K bins (maximum randomness) and reaches a

minimum of 0 if pi = 1 for some i (minimum randomness).
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3.4 Applications to EEG

Pritchard, Duke, and Krieble (1995), Theiler and Rapp (1996), and Palus (1996)

studied several EEG data sets obtained from healthy adults and concluded, based on

surrogate data techniques, that there was evidence of nonlinearity in the EEG but

not low-dimensional chaos. The EEG likely combines some nonlinear properties with

nonstationary stochastic elements. As such, the actual specific values of nonlinear

index estimates (contaminated by choice of algorithm and stochastic noise) probably

do not reflect meaningful characteristics in themselves. However, comparisons of

these values between groups (e.g., patients vs. healthy controls) may provide useful

information. Ideally we would hope to be able to distinguish between groups, at least

under certain conditions.

EEG recordings are carried out with varying numbers and placements of elec-

trodes. The placement of an electrode can significantly alter the value of the index

being estimated (often this is the purpose of the study, e.g., the difference between

patients and controls might be statistically significant at frontal electrodes but non-

significant at parietal electrodes). Very early papers have featured analysis at just a

few electrodes (often one or two) whereas now most (although not all) papers use a

multiplicity of electrodes encompassing the entire scalp. Generally articles calculate

indices for patients and controls from an EEG segment at each electrode and present

those electrodes at which a statistically significant difference (p < .05) is obtained.

In terms of deriving overall conclusions for a given paper, this situation is simplified

by the fact that in the papers we have studied, differences at individual electrodes
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are either statistically nonsignificant (ns) or significant in the same direction, so that

one may make a global statement such as “this index was higher in the patients”.

This statement does not mean it was true at every electrode, but that it was true

at those which were found to be statistically significant. It should be noted that

seldom is a mixed ANOVA (with patients and controls as between-groups and elec-

trodes and/or conditions as within-subjects) or corrections for multiple comparisons

between electrodes (e.g., Bonferroni corrections) carried out (some exceptions include

Akar, Kara, Latifoğlu,& Bilgiç, 2015a, and Carlino et al., 2012). Whereas this can be

considered a weakness in some studies (if 20 electrodes are compared and uncorrected

statistically significant differences (p < .05) are found at one or two, is it surprising

or meaningful?) it can also be argued that different regions of the brain deserve to

be evaluated separately and an observed difference at even one electrode may sig-

nify important information about that brain location. Finally we note that, whereas

the above electrode-by-electrode analysis is most common, a few authors appear to

have compared averages over all electrodes (e.g., Chen et al., 2013, Sabeti, Katebi, &

Boostani, 2009), and yet others have included comparisons by electrode groups (e.g.,

comparisons among frontal, temporal, and occipital lobes such as those presented by

Thilakavathi, Shenbaga, Bhanu, & Malaippan, 2017).

3.4.1 EEG in Schizophrenia

There have been a multitude of nonlinear index EEG studies comparing schizophrenia

patients to healthy controls, often producing contradictory results. Fernández et al.

(2013) give an excellent discussion of the situations in which these various contra-
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dictions arise and provide an argument, derived from the disconnection hypothesis

of Friston (1996) and Friston and Frith (1995), for the notion that nonlinear indices

should be higher in schizophrenia patients than controls. Building on an insight of Lee

et al. (2008), they sought to explain the observation that this was frequently not the

case as the result of the interplay of symptoms, medication (antipsychotics), and age.

Specifically, recall the L-F proposal that higher complexity tends to be the default con-

dition in symptomatic unmedicated schizophrenia (especially first-episode patients)

with this tendency being dampened or even inverted by medication (antipsychotics),

increasing age, and decreasing symptoms. Fernández et al. (2011) provide empirical

support for the proposed effect of aging by noting that, in a magnetoencephalogra-

phy study, LZC decreased with age in schizophrenia patients, a phenomenon they

attributed to a possible “progressive defect”.

The present authors began this work with three notions in mind. The first

was that more studies have been done since the Fernández et al. (2013) article and

perhaps sufficient data now existed for a quantitative analysis of the L-F proposal.

The second was that perhaps enough data existed that it could be determined if the

actual condition under which the EEG data was collected (e.g., resting eyes-closed

vs. counting or visual stimulation) also played a consistent role in the outcome. We

believed that condition could play a role since various other authors have noticed a

change in outcome (increase or decrease) when moving from one condition to another

(e.g., Kirsch, Besthorn, Klein, Rindfleisch, & Olbrich, 2000). Finally we hoped that

enough data existed that perhaps differences in behaviour between nonlinear indices

could be discerned. Unfortunately, neither a clear difference between nonlinear in-
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dices nor a clear consistency within conditions emerged from the data. However,

the decision to include all conditions permitted us to inflate our data set (allowing

a quantitative analysis of aspects of the L-F proposal) and to make the observation

that, in many cases, the outcome was a statistically nonsignificant (ns) difference

between schizophrenia patients and controls. This is true even in papers that report

a significant difference; for example, the authors may have collected data under three

conditions of which only one was statistically significant. This raises the possibility

of a serious “file drawer” problem, involving papers that were shelved because they

did not obtained statistically significant differences.

In the presentation that follows we have accepted the statistical conclusions

of the authors of each paper at face value provided that they have indicated that a

statistical test has been carried out and that the statistical data they offer does not

contradict their conclusions. In the latter respect, we note that Sabeti et al. (2009)

conclude that ApEn, LZC, and HFD are lower in schizophrenia patients than con-

trols, but the error bars (standard deviations) they present on their graph lead to

a statistically nonsignificant conclusion for their sample size of 20. (Thus we have

entered “ns” for their paper in Table 3.6). Similarly, Katebi and Sabeti (2012) re-

port that D2, HFD, and KFD are lower in schizophrenia patients than controls, but

electrode-by-electrode independent-sample t-tests of the means and standard devia-

tions presented in their table produce ns results. It should be noted that in the case

of HFD, the use of a paired t-test (with electrodes acting as “blocks” and ignoring the

individual standard deviations) does produce a globally significant result, but other

authors do not use this approach and there is some conceptual question as to whether
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it is appropriate. Thus we have entered “ns” in Tables 3.2 and 3.6. At times we have

also used data provided by other authors to augment their results; for example, Car-

lino et al. (2012) provide means and standard deviations at each electrode for each

of their four conditions, enabling us to carry out independent-sample t-tests at each

electrode for each condition. We note that their entry at the Fp2 electrode for controls

in the resting eyes-open condition appears to be a typographical error, and we have

ignored it, assigning that electrode a “ns” value in keeping with other electrodes in

that condition.

Quantitative Analysis of Correlation Dimension in Schizophrenia

Sufficient data has been collected on D2 that a quantitative analysis can be carried

out on it alone. (It is desirable to separate the nonlinear indices if possible in order to

reduce confounds.) The outcomes are listed in Table 3.2 by year of publication, where

“higher” implies that D2 was higher in the schizophrenia patients than controls. We

divide patients into four groups and retain the following notation throughout: MED =

medicated, NMF = never-medicated first episode, UM = unmedicated (which includes

the possibility of prior medication), and UMx = unmedicated for at least x months.

Medication, in the context of schizophrenia patients, always refers to antipsychotics.

The paper of Lee et al. (2001b) is often cited as an example of UM patients

yielding a lower correlation dimension than controls but they utilized a spatial embed-

ding (rather than time delay embeddings) to calculate a global dimension DS whose

interpretation and relation to D2 is controversial (Pezard, Lachaux, Thomasson, &

Martinerie, 1996; Pritchard, 1999; Pritchard, Krieble, & Duke, 1996). Hence we have
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not included it in Table 3.2 or our analysis. We have also omitted a commonly cited

paper by Elbert, Lutzenberger, Rockstroh, Berg, and Cohen (1992) since they actu-

ally computed pointwise dimension D1, a related but distinct quantity that provides

an upper bound on D2.
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Table 3.2: Outcome of D2 in EEG of schizophrenia patients vs. controls by condition

authors N mean age patient status condition result
Koukkou et al. (1993) 15 27.6 NMF initial resting ns

rest eyes closed ns
before audio #1 higher
after audio #1 higher
before audio #2 higher
after audio #2 ns

Koukkou et al. (1993) 12 27.3 remitted UM3 initial resting ns
rest eyes closed ns
before audio #1 ns
after audio #1 ns
before audio #2 ns
after audio #2 ns

Röschke et al. (1994) 11 28 acute UM3 sleep stage II lower
sleep stage III ns
sleep stage IV ns
REM sleep lower

Lutzenberger et al. (1995) 18 34.4 chronic MED count backwd ns
observe pendulum higher
imagine pendulum ns

Hoffman et al. (1996) 12 33.9 UM1 or NMF passive visual lower

Jeong et al. (1998) 13 27.3 MED rest eyes closed lower

Saito et al. (1998) 9 20.7 NMF rest eyes closed higher

Kirsch et al. (2000) 87 26.9 remitted MED rest eyes open ns
task CPT1 higher
task CPT2 higher

Lee et al. (2001a) 18 30.6∗ UM rest eyes closed higher

Jin et al. (2003) 10 35.8∗ chronic MED rest eyes closed lower
sound & light lower

Katebi et al. (2012) 10 ? ? rest eyes open ns

Carlino et al. (2012) 17 34.7 stable MED rest eyes closed higher
rest eyes open ns
count forward ns
count backward higher

Zhao et al. (2012) 31 25.9 MED rest eyes closed higher

(table continued next page)

MED = medicated (antipsychotics)
UM = unmedicated; UMx = unmedicated for at least x months
NMF = never medicated first-episode

sample sizes for controls similar or identical to those of patients so omitted from table

∗ controls are not age-matched with patients, otherwise age-matched
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Table 3.2 (continued):

authors N mean age patient status condition result
Chen et al. (2013) 45 31 NMF rest eyes closed ns

rest eyes open ns
count backward lower
memory test ns
number cancel lower

Akar et al. (2015a) 22 34.6 neg symps MED rest eyes closed ns
white noise ns
music higher
after music ns

From Table 3.2 we see that out of the 43 reported conditions (each condition

within each study is counted as a separate condition, even if that condition is also

examined in another study), D2 is higher in patients in 12 conditions and lower in

patients in 8 conditions. This is a 3:2 ratio. Moreover, we calculated the effect sizes

(Hedge’s g) for the statistically significant results for those papers for which such data

was available, and most effect sizes were large (g > 0.8) and all were at least medium-

large (g > 0.6), regardless of whether D2 was higher or lower. This suggests that

statistically significant results (whether higher or lower) are reporting a meaningful

effect, and further suggests that something distinctly different is occurring in studies

that yield higher rather than lower results (and conversely).

From Table 3.2 we also see that the greatest number (23) of outcomes are in

fact ns. An ns outcome actually has an important role to play here. For example, if

there is a propensity toward higher D2 in UM patients and medication reduces this

propensity (a tenet of the L-F proposal) then we may see a shift from higher D2

toward ns differences in MED patients.

We also note from Table 3.2 that there appears to be a strong “study effect”,

i.e., within any given study, we do not see “higher” appear in one condition and

“lower” appear in another. Rather, the outcomes of any one study are all of the same
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type (higher or lower) with perhaps some ns outcomes mixed in for some conditions.

This suggests that the “study effect” (possibly due to the fact that repeated measures

are carried out on the same group of patients) is more important than the conditions

under which the study is carried out. This in itself lends support for something like

an L-F proposal which suggests that patient characteristics are the dominating factor

in outcome. However, laboratory procedures (which may differ from laboratory to

laboratory) may also contribute to this pattern of outcomes.

In order to quantitatively test aspects of the L-F proposal, we will utilize

contingency tables (chi-square tests of independence). For example, Table 3.3 tests

whether medication status is independent of outcome. UNMED combines all those

conditions in which the patients are NMF, UM, or UMx (in other words, it comprises

all conditions in which patients were unmedicated at the time of the study). The

observed number of conditions, with the expected number (under the hypothesis of

independence) alongside in brackets, is given in each cell. The observed chi-square

statistic and its p-value is given at the base of the table. As we can see, there is no

evidence of an association between medication status and outcome.

Table 3.3: Contingency Table Medication Status vs. Outcome for D2

higher lower ns

UNMED 5[6.86] 5[4.57] 14[12.57]

MED 7[5.14] 3[3.43] 8[9.43]

χ2

obs,2
= 1.651, p = .438

Two caveats must be made here. First, it is typical to require expected cell

frequencies of at least 5 to validate the chi-square approximation. However, this
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requirement can be relaxed, as discussed in Lawal and Upton (1984). It is sufficient

if the minimum expected frequency exceeds 5s/rc where s is the number of cells

having expected frequency < 5 and r and c are, respectively, the number of rows and

columns in the table. Here we require min > 1.67 which is clearly satisfied. The

second caveat we must make is to acknowledge again that, within studies, outcomes

are repeated measures on the same group of patients, possibly contributing to what

we have already noted is a “study effect”. However, it is important to realize that it is

the conditions (not the patients) which are actually being slotted into the contingency

tables. To use an analogy, if we regard a condition as being a geographical region being

evaluated for independence of its agricultural yield and rainfall, there is no difficulty in

seeing widely-separated geographical regions (conditions from different laboratories)

as unrelated entities, while we might expect physically close but distinct geographical

regions (different conditions evaluated in the same laboratory) to potentially have

similarities in rainfall and yield. This does not prevent us from classifying these

regions into a table, and we expect that strong trends within the data would be

picked up by the chi-square statistic.

We carried out a similar analysis to look for an age effect. It was decided

to partition the data into those in which the mean age of the sample was under 30

and those in which the mean age was over 30. This division was not arbitrary. It

permitted the division into two groups of roughly equal size, and resulted in a 2-year

age gap between the oldest in the younger group and the youngest in the older group.

Moreover, since the first-time onset of schizophrenia is usually prior to age 30, we

expected to catch most of such patients in the first group. The results are displayed



136

in Table 3.4. No association between age and D2 outcome is observed.

Table 3.4: Contingency Table Age vs. Outcome for D2

higher lower ns

under 30 7[6.29] 3[4.19] 12[11.52]

over 30 5[5.71] 5[3.81] 10[10.48]

χ2

obs,2
= 0.920, p = .631

It can be argued that the L-F proposal really suggests an interplay between age,

medication, and symptomatology, so we present a contingency table which examines

UNMED and Under Age 30 vs. MED and Over Age 30. The expected cell frequencies

of this reduced data set are too low to carry out a chi-square analysis but we present

the table for visual inspection. Unfortunately too little is known about the actual

symptomatology of patients in most studies to include this in any meaningful way.

Table 3.5: Contingency Table Medication Status × Age vs. Outcome for D2

higher lower ns

UNMED and under 30 4[4.53] 2[2.27] 11[10.20]

MED and over 30 4[3.47] 2[1.73] 7[7.80]

In the next subsection we augment our data set by including outcomes from

other nonlinear indices.

Quantitative Analysis of All Indices in Schizophrenia

It could be argued that the data set in Table 3.2 is too small for the chi-square

statistic to pick up moderate associations. In Table 3.6 we compile data from all

other nonlinear indices. Our procedure will be to repeat the analysis of the preceding
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subsection, using all the nonlinear indices together (including D2 from Table 3.2,

although, for the sake of parsimony, we have not re-entered those values in Table 3.6).

This makes the basic (and questionable) assumption that all nonlinear indices behave

the same way with respect to medication, age, and symptomatology.

For the reader’s convenience, in Table 3.6 we have grouped papers together by

index, so that the reader may see how outcomes differ even within the same index.

Some authors have studied more than one index in the same paper so their paper

appears multiple times on the table, once for each index. For example, Thilakvathi

et al. (2017) have studied LZC, ApEn, and HFD, so their paper appears thrice.

Once again we notice a very strong “study effect” that in fact extends to all indices

measured within the same study. By that we mean not only do we observe the same

result (or ns) for a given index measured over different conditions, if authors measure

one index as lower in patients then they will also measure other indices as lower in

patients. There are only two exceptions to this rule. Akar et al. (2015a) found D2

to be higher in patients in the music condition (see Table 3.2) while finding λ1 to be

lower in patients in all conditions (see Table 3.6). Thilakvathi et al. (2017) found both

LZC and ApEn to be ns in the resting eyes-closed condition but HFD to be higher

in patients in that condition. Totalling over both Tables 3.2 and 3.6, we observe 29

conditions in which the index is higher in patients than controls and 19 in which it is

lower, maintaining the same 3:2 ratio observed for D2 alone.
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Table 3.6: Outcome of index in EEG of schizophrenia patients vs. controls by condi-
tion

authors index N mean age patient status condition result
Röschke et al. (1995) λ1 13 28 acute UM3 sleep stage I ns

sleep stage II ns
sleep stage III ns
sleep stage IV ns
REM sleep higher

Kim, & Jeong et al. (2000) λ1 25 25.1 MED rest eyes closed lower

Keshavan et al. (2004) λ1 10 20.5 NMF rest eyes closed ns
sleep stage I-II ns
sleep stage III-IV ns
REM sleep lower

Akar et al. (2015a) λ1 22 34.6 MED rest eyes closed lower
white noise lower
music lower
after music lower

Fritzsche et al. (2006) KSE 22 32.2 stable MED rest eyes closed higher
count backward higher

Zhao et al. (2012) KSE 31 25.9 MED rest eyes closed higher

Li et al. (2008) LZC 62 34.8 NMF rest eyes closed higher
count backward higher

Sabeti et al. (2009) LZC 20 33.4 MED rest eyes open ns

Zhao et al. (2012) LZC 31 25.9 MED rest eyes closed higher

Akar et al. (2016) LZC 22 41.1 chronic MED rest eyes closed lower

Cerquera et al. (2017) LZC 9 42.2 deficit MED rest eyes open ns
LZC 10 40.3 nondeficit MED rest eyes open ns

Thilakvathi et al. (2017) LZC1 55 40.3 MED rest eyes closed ns
visual stimulus 1 higher
visual stimulus 2 higher

Sabeti et al. (2009) ApEn 20 33.4 MED resting eyes open ns

Taghavi et al. (2011) ApEn 10 36.5 remitted MED rest eyes open lower

Akar et al. (2016) ApEn 22 41.1 chronic MED rest eyes closed lower

Thilakvathi et al. (2017) ApEn 55 40.3 MED rest eyes closed ns
visual stimulus 1 higher
visual stimulus 2 higher

(table continued next page)

1Thilakvathi et al. (2017) call this Kolmogorov complexity but in fact they have defined LZC
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Table 3.6 (continued):

authors index N mean age patient status condition result
Takahashi et al. (2010) MSE 22 25.6 NMF resting higher

15 25.7 post MED resting ns

Raghavendra et al. (2009) HFD 18 ? NMF rest eyes closed lower

Sabeti et al. (2009) HFD 20 33.3 MED rest eyes open ns

Katebi et al. (2012) HFD 10 ? ? rest eyes open ns

Thilakvathi et al. (2017) HFD 55 40.3 MED rest eyes closed higher
visual stimulus 1 higher
visual stimulus 2 higher

Katebi et al. (2012) KFD 10 ? ? rest eyes open ns

Akar et al. (2015b) KFD 22 41.1 chronic MED rest eyes closed, noisy ns
rest eyes closed, denoised lower

Yu et al. (2016) RBFD 17 28 NMF Tower of Hanoi ns
TMT-A higher
TMT-B higher

The contingency tables (computed for those articles for which mean age and/or med-

ication status are known as required) are:

Table 3.7: Contingency Table Medication Status vs. Outcome for All Indices

higher lower ns

UNMED 11[13.33] 7[8.74] 22[17.93]

MED 18[15.67] 12[10.26] 17[21.07]

χ2

obs,2
= 3.105, p = .212
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Table 3.8: Contingency Table Age vs. Outcome for All Indices

higher lower ns

under 30 13[13.15] 5[8.16] 21[17.69]

over 30 16[15.85] 13[9.84] 18[21.31]

χ2

obs,2
= 3.375, p = .185

Tables 3.7 and 3.8 show no evidence for an association between medication

status and outcome, or between age and outcome, although in the latter case we see

that younger patients are about 2.5 times more likely to have a higher than a lower

outcome, whereas older patients are almost equally likely to have either outcome.

Adding in the other indices has not only increased the sample size but increased the

available age status in the pool (e.g., we now have some samples in which the average

age exceeds 40). This time we have enough data to compare UNMED and Under 30

vs. MED and Over 30.

Table 3.9: Contingency Table Medication Status × Age vs. Outcome for All Indices

higher lower ns

UNMED and under 30 8[9.26] 3[5.74] 19[15]

MED and over 30 13[11.74] 10[7.26] 15[19]

χ2

obs,2
= 4.557, p = .102

In Table 3.9 we see a weak trend suggesting that age and medication factors

may combine to create some sort of effect on outcome. Younger unmedicated patients

appear about 2.5 times more likely to have a higher index than a lower one relative

to controls; older medicated patients are about equally likely to have higher or lower

indices. Perhaps what is most striking from Table 3.9 is the observation that the
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UNMED and Under 30 group are almost twice as likely to have an ns outcome rather

than any other outcome; this may be partly accounted for by the inclusion in Table 3.9

of the young unmedicated remitted patients of Koukkou, Lehmann, Wackermann,

Dvorak, and Henggeler (1993) who were ns under six conditions (Table 3.2). Table 3.9

suggests that medication may produce a slight shift from higher to lower or ns results

in older patients.

Missing in the above analysis is the role of symptomatology as most papers

do not supply details of this. However, the next subsection deals with some results

and hypotheses concerning the role of symptoms.

The Role of Symptomatology in Index Outcome in Schizophrenia

Even the extreme ends of the L-F proposal do not always hold true, as can be seen

in Keshavan, Cashmere, Miewald, and Yeragami (2004) who found lower λ1 in very

young NMF patients (Table 3.6), and in Thilakvathi et al. (2017) who found higher

LZC, ApEn, and HFD in MED patients whose average age exceeded 40 (Table 3.6).

This, combined with the mixture of results from Tables 3.2 and 3.6, the strong “study

effect”, and weak, at best, evidence of association provided by the chi-square analyses,

suggests that other factors beyond age and medication status must be in play. The

L-F proposal does suggest that symptomatology plays a role, favouring higher indices

for NMF patients (who are highly symptomatic with positive symptoms almost by

definition) and lower indices for chronic patients, who are dominated by negative and

cognitive symptoms. In this section, we propose that recent work by Cerquera, Gjini,

Bowyer, and Boutros (2017) sheds some light on this subject, explaining why young
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UNMED patients may score lower and older MED patients may score higher. Specif-

ically, Cerquera et al. (2017) studied two separate groups of schizophrenia patients.

One group was defined to have deficit schizophrenia (DS), a syndrome characterized

by severe primary and persistent negative symptoms, poor psychosocial premorbid

functioning, and worse prognosis than their nondeficit (NDS) counterparts (Kirk-

patrick & Galderisi, 2008). To qualify as DS, a patient must meet criteria on the

Scale for the Deficit Syndrome (Kirkpatrick, Buchanan, McKenny, Alphs, & Carpen-

ter, 1989). There is some question in the literature as to whether DS may even be a

separate disease entity from NDS. Cerquera et al. ’s patients were medicated, were not

young, and sample sizes were small (mean age of DS = 42.2, N = 9; mean age of NDS

= 40.3, N = 10). They found the LZC of DS patients to be statistically significantly

lower than that of NDS patients with a large effect size (Cohen’s d = 1.539). The

controls fell in between the two groups, with the DS being lower than the controls

with a trend (p < .1) toward statistical significance and a large effect size (d = 1.002).

The LZC of NDS patients was higher than that of controls with a medium effect size

(d = 0.428) although not statistically different. It is easily argued that with such

small sample sizes there was insufficient power to separate all three groups, and we

propose that replication with sufficient power might show the NDS patients to have

higher LZC than controls, and the controls to have higher LZC than the DS patients.

The authors also found that LZC was positively correlated with general psychopathol-

ogy scores on the PANSS (Kay, Fiszbein, & Opler, 1987), explained partially by the

emotional component subscale, which comprises anxiety, guilt feelings, depression,

and active social avoidance. Kirkpatrick and Galderisi (2008) point out that DS pa-
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tients are “less distressed” than their NDS counterparts, and it is reasonable to posit

that DS patients might therefore score lower on the emotional component, thereby

suppressing their LZC scores.

We therefore propose that the outcome in index studies may be governed in

part by the predominance of the type of patient (DS vs. NDS) in that particular study.

It may be that NDS patients, governed more by positive symptoms and emotional

reactivity, tend to score as high or even higher than controls. Medication may temper

some of this response; Takahashi et al. (2010) apparently performed the first study to

compare never medicated patients before initiation of medication and after 2-8 weeks

of medication. They used MSE as a discriminator, and found that for high scaling

frequencies τ (10 ≤ τ ≤ 40 depending on electrode location) MSE was significantly

higher in pre-treatment patients than controls in the fronto-central-temporal regions.

These differences became nonsignificant in the fronto-central regions post-treatment,

but the differences in the temporal regions did not vanish.

Koukkou et al. (1993) were the first to consider that symptomatology could

play a role in outcome. They included a group of fully remitted UM3 patients

in their study along with a group of NMF patients and a group of controls. In

Koukkou, Lehmann, Federspiel, and Merlo (1995) they more fully describe the pa-

tients in Koukkou et al. (1993), stating that the NMF patients had such severe posi-

tive symptoms that they required hospitalization, and the UM3 patients had achieved

“complete clinical and social remission” from which we can conclude the remitted pa-

tients were remitted NDS. The D2 values for the remitted patients fell between those

of the NMF patients and the controls, but were not significantly different from either
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of them, although the NMF patients were significantly higher than the controls.

Raghavendra, Dutt, Halahalli, and John (2009) also noted that the type of

symptomatology was relevant. They calculated HFD in NMF patients under the

resting eyes closed condition, and whereas they found HFD to be significantly lower

generally in patients than controls (suggesting to us that perhaps they had several DS

patients) they found that among those patients with prominent positive symptoms

and an absence of negative symptoms, HFD appeared higher than that of controls in

the temporal regions. .

3.4.2 EEG in Bipolar Disorder

Very little work has been done in applying nonlinear indices to EEG in bipolar pa-

tients. There seem to have been three papers investigating bipolar disorder or mania.

Thomasson, Pezard, Boyer, Renault, and Martinerie (2002) followed one rapid-cycling

bipolar II patient with a pronounced predictable 48-hour cycle, alternating between

one day of hypomania and one day of depression. They collected mood data twice

daily, and performed a 31-channel EEG (using a motor task response) on each of

six consecutive days. They used the multiple channels to construct a 31-dimensional

spatial embedding and computed KSE for each day. Their main result was that high

values of KSE were correlated with depressed days and low values of KSE were cor-

related with hypomanic days. Bahrami, Seyedsadjadi, Babadi, and Noroozian (2005)

noted that computer simulations have suggested that increased HFD of the graph of

the EEG is due to “asynchronous co-activation of multiple neuronal populations in

the cortex” (p. 190). Using 19-electrode EEG recordings, they were able to establish
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that HFD of the EEG in acute manic inpatients was significantly greater than that

of controls. (Patients were on a variety of medications). They concluded that brain

complexity is greater during mania, in the sense that the brain is dominated by an

increasing number of independently and asynchronously firing neural assemblies. In

contrast, Bhattacharya (2000) reported that persons with mania exhibited similar

EEG profiles to those of controls.

We were unable to locate any articles examined EEG in bipolar depression.

Articles are now starting to appear on EEG in major unipolar depression. With the

important caveat that behaviour in unipolar depression may not be the same as in

bipolar depression, we note that an (inexhaustive) search of unipolar depression has

revealed a general consensus that nonlinear indices seem to be higher in depression

than in controls. Ahmadlou, Adeli, and Adeli (2012) founder higher HFD (but not

KFD) in unmedicated depressive patients than controls. Akar, Kara, Agambayev,

& Bilgiç (2015a,b) found both higher HFD and higher KFD in medicated depressive

patients, not only in resting conditions but in audio conditions (being subjected to

music and noise). Bachmann, Lass, Suhhova, and Hinrikus (2013) also found higher

HFD in depressive patients. Li et al. (2008) found not only that LZC was higher in

NMF psychotic depression patients compared to controls but that it was even higher

in depression than in schizophrenia. Akar et al. (2015a) as well as Bachmann, Kalev,

Suhhova, Lass, and Hinrikus (2015) also observed higher LZC in depression patients

compared to controls. Thomasson and Pezard (1999) did not use controls but followed

a single recurrent depression patient over the course of treatment and found KSE to

be highly correlated with self-report measures of depression symptoms. Specifically,
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KSE was high at the start of treatment and decreased as health improved.

In a recent article, Jaworska et al. (2018) were able to use pre-treatment MSE

to predict response to antidepressant medication.

3.5 Applications to Heart Rate Variability (HRV)

Persons with schizophrenia or bipolar disorder are at increased risk of cardiovascular

disease and death (Brown, Inskip, & Barraclough, 2000; Enger et al., 2004, Kessing,

Vradi, & Andersen, 2015). Among other factors such as lifestyle habits, this has been

linked to changes in the Autonomic Nervous System (ANS) controlling the rhythms

of the heart. Psychotropic medication is also known to adversely affect the ANS, and

part of the focus of current research is teasing apart the effects of disease from the

effects of medication. Voss et al. (2006) makes the important point that the field

has historically suffered from serious confounding effects, such as having patients on

differing types of medication, having patients with differing degrees of illness, and

featuring a lack of properly matched controls. However, recent studies have made

inroads toward addressing these issues.

A common noninvasive tool is to study the heart rate variability (HRV) of the

RR series (Sec 3.3.5). Reduced HRV is a known risk factor for cardiac illness and

death (Klieger, 1995). It is postulated that greater HRV offers a protective effect,

allowing the heart rhythm to adapt to environmental perturbations and return to

normal functioning (Levy, 1990). Standard linear indices for studying HRV include

SDNN (the standard deviation of the normal-to-normal RR-intervals), RMSSD (the

square root of the mean sum of squared differences between successive normal-to-
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normal RR intervals), and pNN50 (the proportion of successive normal-to-normal

RR intervals that differ by more than 50 ms). A lower value of SDNN, RMSSD, or

pNN50 is indicative of a reduction in some aspect of HRV. It is also typical to analyze

the RR series in the frequency domain, reporting on the power in the low and high

regions of the spectrum, in order to examine the balance between the sympathetic and

parasympathetic (vagal) forces on the heart. HRV is also investigated using nonlinear

indices, the most popular being the time domain indices as they are better suited to

the shorter and noisy RR series arising from ECG data. Typical choices include

symbolic dynamics, Hc, ApEn, SampEn, MSE, and KFD. Lower values for these

quantities are indicative of a reduction in the complexity (more precisely, an increase

in the regularity) of the RR series. Voss et al. (1996) point out that a synthesis of

both linear and nonlinear indices can aid in discriminating between persons at risk

for sudden cardiac events.

As will be seen below, HRV analysis leads to much more consistent results than

those obtained in the EEG analyses of the preceding section. In general, patients with

schizophrenia exhibit reduced HRV and reduced RR complexity compared to healthy

controls. Much less work has been done on bipolar disorder, but results there also

point toward reduced HRV and reduced complexity.

3.5.1 HRV in Schizophrenia

The tendency in schizophrenia toward parasympathetic withdrawal and sympathetic

predominance in heart rate modulation as well as the reduction in HRV, as measured

by linear and spectral indices, has been documented by Montaquila, Trachik, and
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Bedwell (2015) and Clamor, Lincoln, Thayer, and Koenig (2016). Thus we focus on

articles that have employed nonlinear indices. A number of studies have provided

evidence that RR series from unmedicated (UM) schizophrenia patients result in

significantly lower nonlinear scores than those from healthy matched controls. Com-

pression entropy Hc has been repeatedly evaluated and found to be lower in such

patients (Bär et al., 2007; Bär, Boettger, et al., 2008; Bär, Koschke, et al., 2008;

Schulz, Bär, & Voss, 2015). ApEn and KFD were found to be significantly reduced in

Bär et al. (2007) and Bär, Koschke, et al. (2008). SampEn was found to be lower in

Chang et al. (2009) and Schulz, Bär, and Voss (2015), and only failed to reach statis-

tical significance after Bonferroni correction in Chang et al. (2010). Various versions

of symbolic dynamics (methods I or II) have also revealed reduced complexity in UM

patients (Bär et al., 2007; Bär, Boettger, et al., 2008; Mujica-Parodi, Yeragani, &

Malaspina, 2005; Schulz, Bär, & Voss, 2008; Schulz, Bär, & Voss, 2015). Thus the

evidence that RR complexity is reduced due to schizophrenia itself is compelling.

Antipsychotics can also have an impact on HRV and carry an increased risk of

cardiac death, even for persons without schizophrenia (Silke, Campbell, & King, 2002;

Strauss et al., 2004). Thus research has also focussed on the effects of antipsychotics

on HRV in schizophrenia. The results have suggested that in general antipsychotics

tend to further reduce HRV and complexity. Schulz, Bär, and Voss (2008) examined

46 acute hospitalized patients split into two groups, medicated (MED) and unmedi-

cated (UM). They calculated the Shannon entropy as well as the forbidden words of

the symbolic dynamics Method II words. The Shannon entropy was lower and the

number of forbidden words higher in the MED group, indicating lower complexity.
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They also calculated plvar and phvar from symbolic dynamics Method I. The former

was higher and the latter lower in the MED group, again indicating lower complexity

in the MED group. Schulz, Bär, and Voss (2009) extended this study to include Hc,

also finding it lower in the MED group. One shortcoming of their analysis, as noted

by the authors, is that patients were on a variety of antipsychotics, so differences due

to antipsychotic choice could not be ascertained. Mujica-Parodi et al. (2005), com-

paring UM patients with patients treated with either clozapine or olanzapine, found

that the percentage word count from symbolic dynamics Method II exhibited a trend

toward lower values among MED patients. Bär, Koschke, et al. (2008) calculated

ApEn, KFD, and Hc in patients before and after seven days of treatment with olan-

zapine, and found Hc to be significantly lower after treatment. Chang et al. (2010),

however, who studied patients before and after six weeks of risperidone treatment,

did not find a significant change in SampEn or the Shannon entropy of words con-

structed from symbolic dynamics Method I. The article by Kim, Yi, Lee, and Kim

(2013) is a particularly important paper because it illustrates the point that the effect

of antipsychotics on HRV may be more subtle than simply one of suppression. Kim,

Yi, et al. obtained baseline Positive and Negative Syndrome Scales (PANSS) scores

as well as baseline ApEn and SampEn scores on 42 treatment-resistant patients.

These quantities were re-evaluated after four weeks and again after eight weeks of

monotherapy with clozapine. As a group, the patients exhibited significantly lower

ApEn and SampEn at four weeks than at baseline, with slightly higher (but still sup-

pressed with respect to baseline) values at eight weeks. However, based on changes in

PANSS scores from baseline to eight weeks, Kim, Yi, et al. retrospectively classified



150

patients as responders (37.5%) or non-responders (62.5%). They observed that both

ApEn and SampEn decreased from baseline through week four through week eight

for the non-responders. However, for the responders, ApEn and SampEn decreased

through week four, but then increased to slightly above baseline values at week eight.

The difference in ApEn and SampEn values between responders and non-responders

at week eight was statistically significant. In our view this suggests that patients

having a good response to an antipsychotic may be less compromised by deleterious

effects of the medication, possibly because their ANS responds to the improvement

in symptoms. The paper also illustrates the importance of the time frame over which

treatment response is evaluated; the rise in ApEn and SampEn values in responders

was not seen until week eight.

The aforementioned article by Kim, Yi, et al. (2013) suggests that there may

be a relationship between HRV and degree of psychopathology symptoms, and this

has in fact been investigated by a few authors. Kim et al. (2004) compared 50

clozapine-treated patients with 50 controls, using RMSSD, pNN50, ApEn, SampEn

and the Shannon entropy of words constructed from symbolic dynamics Method I. All

these indices were significantly lower in the patient group, but what was new was an

observed significant negative correlation between SampEn and both the total scores

and positive symptoms subscales of the PANSS, even after controlling for clozapine

dose. Chang et al. (2010), who compared PANSS scores before and after six weeks

of risperidone treatment in a small sample (N = 16), found a significant negative

correlation between changes in SDNN and changes in the PANSS positive symptoms

subscale as well as a significant negative correlation between changes in RMSSD and



151

changes in both the PANSS total score and positive symptom subscales. SampEn

was not correlated with these changes. Kim, Ann, and Lee (2011) compared SDNN,

RMSSD, and ApEn with PANSS scores of 21 patients on risperidone monotherapy.

Although ApEn was reduced in the patients compared to the controls, ApEn did not

correlate with the PANSS scores. However, similar to what was obtained by Chang et

al., Kim et al. found (after controlling for risperidone dose) a significant negative cor-

relation between PANSS total scores and both SDNN and RMSSD. In addition, they

found a significant negative correlation between the PANSS cognitive/disorganization

factor and both SDNN and RMSSD. Chung et al. (2013) ran a much larger study

(94 medicated patients, 51 healthy controls) and evaluated SDNN, RMSSD, pNN50,

ApEn, and MSE, where an overall score for this last quantity was calculated by sum-

ming the SampEn values over all scaling factors 1 ≤ τ ≤ 20. SDNN, RMSSD, and

pNN50 were all negatively correlated with the PANSS positive subscale. MSE was

negatively correlated with the PANSS general psychopathology scale, and both MSE

and ApEn were negatively correlated with the equivalent haloperidol dose of the pa-

tients. A unique aspect of this study was that metabolic profiles of the participants

were also examined, and both ApEn and MSE showed some correlation with aspects

of metabolic syndrome, e.g., they both were negatively correlated with amount of

high-density lipoprotein. Thus the HRV indices, especially the linear indices, seem to

be sensitive to degree of psychopathology, particularly the positive symptoms.

Two recent papers have investigated the possible role of HRV indices in evalu-

ating side effects of antipsychotic medication. Kim, Ann, Lee, Kim, and Han (2013)

studied ApEn in the context of Antipsychotic Induced Subjective Restlessness (AISR)
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which can be an unpleasant side effect of antipsychotics and interfere with treatment

compliance. They found that the severity of AISR was significantly negatively cor-

related with ApEn. Chang et al. (2015) studied a number of linear and nonlinear

HRV indices in the context of subjective self-reports on side effects of antipsychotics.

While they found correlations between side effects and various indices, they pointed

out that SampEn seemed to be more sensitive than the linear indices and exhibited a

significant negative correlation with extrapyramidal and anticholinergic side effects.

In summary, nonlinear (and linear) indices of HRV have been shown to differ

between schizophrenia patients and healthy controls, and to further differentiate be-

tween medicated and unmedicated patients in a number of areas. The ultimate goal

would be to do be able to use these indices clinically to predict (and prevent) adverse

cardiac events and adverse responses to certain antipsychotics.

3.5.2 HRV in Bipolar Disorder

There have been comparatively few studies done on bipolar disorder involving non-

linear indices, so we first report on articles involving only linear indices in order

to present evidence that HRV, as measured by linear indices, is reduced in bipolar

patients regardless of clinical mood state. Cohen et al. (2003) analyzed euthymic

medicated bipolar patients and found SDNN to be lower in patients than controls.

The patients were on a variety of medications, but an ANOVA did not reveal any

difference in SDNN between medication groups, so the authors proposed that the

reduced HRV was due to the disease and not the medications. Voggt et al. (2015)

also found reduced SDNN in medicated euthymic bipolar patients and argued that
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medication was not likely the sole cause of the reduction. Lee, Kim, Hong, and Joo

(2012) analyzed medicated bipolar patients who were in a subsyndromal depressive

state and found both SDNN and pNN50 (althought not RMSSD) significantly reduced

compared to controls. The proposal that the disease itself (apart from medication)

carries a risk for reduced HRV has now been supported by recent work of Chang et al.

(2014) and Chang, Chang, Kuo, and Huang (2015). Chang et al. (2014) compared 61

patients during an acute manic episode with 183 matched controls. Participants were

carefully selected to have no physical condition or smoking history that could impact

HRV; moreover, patients could have no comorbid psychiatric diagnosis and had to be

unmedicated for at least one month (UM1). Chang et al. found SDNN significantly

lower in patients than controls. Furthermore, SDNN was inversely correlated with

scores on the Young Mania Rating Scale. Chang et al. (2015) then carried out a

study comparing UM1 depressed bipolar II patients to UM1 depressed unipolar pa-

tients and controls (again carefully selecting for physical health, smoking history, and

lack of comorbidities). They found that SDNN was significantly lower in the bipolar

patients than in both the unipolar patients and controls. Since the two patient groups

were matched on severity of symptoms, the authors suggested that their results may

indicate that bipolar II depression and unipolar depression are two distinct diseases.

The most important point to be drawn from these studies, however, is that HRV, at

least as measured by SDNN, appears to be reduced regardless of the clinical state

(manic, depressed, euthymic) of a bipolar patient. A recent meta-analysis (Faurholt-

Jepsen, Kessing, & Munkholm, 2017) concludes that there is evidence for reduced

HRV in bipolar disorder but makes an argument for stricter methodology in studies.
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Most work that has been done in evaluating nonlinear indices in the context

of HRV has focused on SampEn. It was first proposed by Migliorini, Mendez, and

Bianchi (2012) that SDNN and RMSSD might be useful in discriminating between a

bipolar patient and a healthy control (which is consistent with our discussion above)

whereas SampEn (and LZC) might be more sensitive to the actual mood state of the

patient. Migliorini et al. ran a very small study where they computed normal ranges

(5th − 95th percentile) of various indices based on sleep ECG from eight healthy con-

trols. They then determined these same indices for one bipolar patient over four

nights (at least one week apart) who was in a different clinical state during each

night. The different clinical states were different levels of depression (mild or severe)

and different levels of anxiety (low or high). On the fourth night only she was eu-

thymic with low anxiety. SDNN and RMSSD for the patient fell below the normal

5th percentile on all four nights. SampEn, on the other hand, while much below the

normal 5th percentile on the first three nights, increased into the normal range on

the fourth night. Interestingly, LZC was slightly elevated above the normal 95th per-

centile for the first three nights, dropping into the normal range on the fourth night.

The idea that SampEn might be exploited to predict onset of euthymia (and hence

response to treatment) has been studied further by Nardelli, Valenza, Gentili, Lanata,

and Scilingo (2014) and Lanata, Valenza, Nardelli, Gentili, and Scilingo (2015). The

second paper is essentially an extension of the first with a larger sample size. Ten

hospitalized patients (either experiencing acute depression or an acute mixed depres-

sive/hypomanic episode) were followed from the initiation of treatment or a change

of treatment until remission. In each case SampEn increased almost linearly with
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time, with mixed states exhibiting the lowest SampEn and euthymia exhibiting the

highest. The authors opined that measuring early changes in SampEn might be an

objective way of determining whether a particular treatment protocol was going to

be effective for a given patient. It should be noted that data was obtained using

very long ECG recordings obtained by having patients wear a comfortable textile

T-shirt (with embedded electrodes) as they went about their day. The authors see a

future in such personal monitoring systems in providing patients and physicians with

feedback on multiple indices of HRV and perhaps predicting mood relapses as well as

treatment response. Levy (2014) divided medicated remitted bipolar I patients into

two groups, those with high illness severity (HIS) and those with low illness severity

(LIS). Patients were considered to be HIS if they had ever had a psychotic episode,

otherwise they were classified as LIS. Levy calculated SDNN and SampEn. He found

that SDNN could distinguish between HIS patients, LIS patients, and controls, with

the first group exhibiting the lowest SDNN and the last group exhibiting the highest

SDNN. SampEn, on the other hand, could only distinguish between the HIS group

and the controls, assigning lower value to the first. This again suggests that within

a fixed mood state (in this case euthymia) SampEn is less sensitive to differences in

diagnostic status. Valenza, Nardelli, Bertschy, Lanata, and Scilingo (2014) further

studied the discriminatory power of SampEn by considering MSE at different scales

τ . They utilized a small sample of six depression recordings, five hypomanic record-

ings, and five euthymic recordings. MSE was not discriminatory when the standard

parameters m = 2, r = 0.15·SDNN were used in calculating SampEn on each series.

However, by changing r to be optimal for each series (in the sense that it maximized
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approximate entropy for that series) MSE became discriminatory at most values of

1 ≤ τ ≤ 20. In particular it could distinguish the hypomanic sample from the eu-

thymic sample at τ = 1, 2 and τ = 4 − 20. Moreover, the hypomanic sample could

be distinguished from the depressive sample at τ = 1, 9, 10. (The hypomanic MSE

scores were the lowest and the euthymic MSE scores the highest.) Since τ = 1 is

just SampEn, this is further evidence of the discriminatory power of SampEn among

mood states even when samples are small (at least when r is optimal).

A few papers have examined other nonlinear indices. Todder, Bersudsky, and

Cohen (2005) re-analyzed the euthymic data of Cohen et al. (2003) using λ1 as well

as symbolic dynamics (Method II) where they computed the Shannon entropy of the

word distribution. They found no difference between patients and controls on either

index. Thus the lowered HRV that was picked up by SDNN was not buttressed by a

reduction in complexity as reflected by these indices. The reasons are unknown and

could range from a lack of sensitivity within a fixed mood state (similar to SampEn)

to the (unknown) length of the RR series, to which nonlinear indices (especially λ1)

are sensitive. Henry, Minassian, Paulus, Geyer, and Perry (2010) compared bipo-

lar inpatients who were in an actively manic state with schizophrenia inpatients and

healthy controls. The majority of all patients were on medication. Henry et al. used

symbolic dynamics (Method I) and SampEn along with the linear indices. The manic

patients scored significantly lower than the controls on both nonlinear indices as well

as RMSSD (interestingly, SDNN was reduced but did not reach statistical signifi-

cance). There was also a trend toward reduced HRV in the schizophrenia patients

(across both linear and nonlinear indices) but these did not reach statistical signifi-



157

cance. However, the sample size of the schizophrenia patients was about half that of

the manic patients. Moon, Lee, Kim, and Huang (2013) investigated differences in

HRV in a variety of psychiatric disorders, using more than double the sample sizes of

Henry et al. (2010). ECG recordings were taken 0-7 days after starting medication.

The only nonlinear index used was ApEn which did not reach statistical significance

for any disorder. However, the bipolar patients exhibited significantly reduced SDNN

and RMSSD whereas the schizophrenia patients just exhibited reduced SDNN; more-

over, the reductions in bipolar disorder were accentuated compared to schizophrenia.

3.6 Applications to Mood Data in Bipolar Disor-

der

The application of nonlinear indices to the RR series generated by bipolar patients

was considered in the previous section. Here we consider applications to mood data

generated by self-report measures. Bipolar disorder, as measured by mood data over

time, shows some evidence of cyclical behaviour between manic and depressive states,

but for almost all individuals these cyclicities are too irregular and unpredictable to be

considered truly periodic. This fact was noted almost 100 years ago by Kraepelin (as

discussed and cited by Woyshville, Lackamp, Eisengart, and Gilliland, 1999). As such,

bipolar mood data presents a natural example of a situation ripe for investigation for

the possibility of underlying nonlinear dynamics. In spite of this, there has been

relatively little application of nonlinear indices to the analysis of mood data, possibly

because of the difficulty of collecting sufficiently long time series to produce reliable

estimates. A notable exception is the article by Gottschalk, Bauer, and Whybrow
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(1995) who applied estimates of D2 to distinguish between patients and controls.

Gottschalk et al. followed seven rapid-cycling bipolar patients and 28 healthy controls

over a period of 1-2.5 years. All patients and controls completed daily mood logs (the

controls actually reported mood twice daily, but for the purpose of comparison with

the patients one of the daily reports was later dropped). The mood log utilized was a

100-mm continuous analogue scale ranked from “Very Worst I Felt” to “Very Best I

Felt” with the midpoint designated as “Normal”. Patients placed a mark on the scale

indicating their average mood over the preceding 24 hours. A slightly different but

similar recording procedure was used for controls. Time series lengths ranged from

n = 358 to n = 922 for the patients, which are short compared to the lengths of time

series usually considered in the physical sciences. Plots of the time series revealed clear

distinctions between patients and controls; the latter appeared much more irregular

or “rougher”, whereas the patients’ series seemed to suggest more structure with the

occasional appearance of cyclical features. In the following discussion we omit Patient

7 who was identified by Gottschalk et al. as the “healthiest” of the patients and who

produced data closer to that of the controls. Spectral analysis (which is equivalent to

analysis of the autocorrelation function) suggested that both patients and controls had

power spectra consistent with a 1/fα power spectrum (up to the “noise floor” of the

data) where α̂ = 2.24 for patients and α̂ = 0.57 for controls. The difference between

these two α values was statistically significant. The lack of “peaks” in the spectra

(for both patients and controls) indicates the absence of well-defined periodicities in

the time series, thus validating the observations of Kraepelin. The higher value of α

for the patients is also indicative of a greater degree of short-term correlation in the
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patients’ data, which is suggested from the time series plots. The key result of the

paper, however, was that the Grassberger-Procaccia (GP) algorithm converged for

each of the patients (producing surprisingly low finite values for the estimates of D2)

whereas the algorithm failed to converge for the controls. The quantitative validity

of the finite D2 estimates cannot be known, as linear correlations in the data may

play a role in the convergence, but the difference in the behaviour of the algorithm

between patients and controls certainly suggests a qualitative difference in dynamics.

In particular, as Gottschalk et al. noted, the time series of the patients is much more

organized than those of the controls. Gottschalk et al. went on to construct three

surrogate series for each patient, and found that the GP algorithm failed to converge

for the surrogate series. This suggests that the patients’ original time series probably

do include nonlinear features, and that the finite D2 values were not simply the result

of strongly-correlated linear noise. However, it was not clear why Gottschalk et al.

did not carry out a full surrogate analysis as described in Sec 2.2.6. This could have

been done by selecting a significance level, generating B or more surrogate series for

each patient, and choosing an embedding dimension M for which the GP algorithm

had converged for that patient. The values of the estimates of D2 for the surrogate

series (using the chosen value of M) could then be compared to the estimate of D2

for the original series. Gottschalk et al. concluded that their results implied evidence

of chaotic dynamics in the bipolar mood data, but in view of the short lengths of the

time series, absence of estimates of Lyapunov exponents, and form of power spectra

(see paragraph below) the best that can be firmly concluded from their analysis is

that bipolar patients exhibit qualitatively more organized dynamics than controls
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with a possibility of nonlinearity.

Krystal and Greenside (1998) provided a short critique of Gottschalk et al.

(1995) where they pointed out that chaotic deterministic dynamics should show power

spectra that decay exponentially fast (not as power laws) in the high frequency range

(Sigeti, 1995a,b). Gottschalk et al. (1998) responded that their spectral data was

also consistent with an exponential decay; statistically neither the exponential model

nor the power-law model fit better (which calls into question the interpretation of

the α estimates mentioned in the original article; see also the comment regarding

Woyshville et al. (1999) below). It may simply be that there is too much noise in the

patients’ data to see a clear exponential decay. However, Gottschalk et al. (1998) do

point out that, for the controls, the power law model fits the data significantly better

than the exponential model.

Woyshville et al. (1999) carried out a shorter study where similar daily mood

data was collected only over a period of 90 days. (In this case patients were identified

as exhibiting affective instability and were not limited to bipolar diagnoses; they had

a variety of Axis I mood disorders). Woyshville et al. did not have enough data to

carry out a GP algorithm analysis, but they did calculate the power spectra of par-

ticipants as well as the fractal dimension (FD) of the graph of the mood series data,

using a coastline algorithm (Mandelbrot, 1977). They fit power law models to the

spectra, and found the α ratio of patients to controls to be approximately 2, which

is roughly the same ratio as obtained by Gottschalk et al. (1995). Woyshville et al.

made the intriguing suggestion that this ratio was perhaps an invariant characteristic

between patients and controls. However, in view of Gottschalk et al. (1998), these α
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values must be viewed with caution. Moreover, in a very brief recent report, Kreindler

and Munshi (2015) did not find any significant difference in α between groups con-

sisting of bipolar patients, patients with affective instability, and healthy controls;

nor did Ribeiro and Lourenço (2016). However, Woyshville et al. also found that FD

was significantly lower in patients than controls, which quantitatively supports the

observation that mood series in controls appear rougher than those in patients.

Heiby, Pagano, Blaine, Nelson, and Heath (2003) carried out hourly mood

measurements (using a 7-point Likert scale) 10 times daily on one depressed female

patient and one female control, obtaining a time series of length 1,840 for each. They

found a periodic component in each woman’s power spectrum (stronger in the patient)

which they attributed as possibly being due to the participants’ menstrual cycles.

Using the GP algorithm, Heiby et al. found a D2 estimate of 2.7 for the patient and

a D2 estimate of 4 for a single surrogate series constructed for the patient. (The GP

algorithm did not converge for the control). The D2 estimates for the patient and the

surrogate series are mentioned here only to indicate how potentially indistinguishable

the two may be; a proper analysis using a full set of surrogate series might have

revealed whether the patient’s D2 value was reflecting nonlinear structure or was the

result of strong linear correlations in the time series. The latter is quite possible since

we can expect hourly mood measurements to be highly correlated in a person with

persistent low mood. Katerndahl, Ferrer, Best, and Wang (2007) obtained mood data

from three depressed patients and four controls. Mood data here was also recorded

hourly (while participants were awake) on a 100-mm analogue scale for 30 days. The

authors report D2, λ1, KSE, and the results of surrogate data testing (based on 20
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surrogate series) for each participant. These results were produced by a software

package and the authors do not provide details as to how they selected the final

values. Critically, unlike Gottschalk et al. (1995) or Heiby et al., they claim finite

correlation dimensions for the controls (which are not distinguishable from those of the

patients; this is also true of λ1 and KSE). The authors do not offer an explanation for

the lack of distinction. Moreover, they indicate that surrogate data testing indicates

nonlinearity for all participants. However, there is insufficient information to evaluate

their results.

It is important to note that techniques that do not involve embedding methods

have been utilized to evaluate possible nonlinearity in bipolar mood series. Bonsall,

Wallace-Hadrill, Geddes, Goodwin, and Holmes (2012) obtained weekly mood data

from 23 bipolar patients for a period ranging 46-220 weeks; unlike Gottschalk et

al. (1995), however, they used only depression score ratings (the Quick Inventory of

Depressive Symptomatology QIDS-SR). An interesting aspect of their approach is

that, based on the first six months of data, they classified patients as either stable

(n = 11) or unstable (n = 12). Using the Akaike Information Criterion, they fit

various models, and found that distinct nonlinear models best fit the two different

groups. The stable group was best described by a threshold autoregressive model of

order one (TAR(1)) whereas the unstable group was best described by a threshold

autoregressive model of order two (TAR(2)). In both cases the threshold was the

mean score of the individual patient’s mood data. Moore, Little, McSharry, Goodwin,

and Geddes (2014) were critical of the rather large in-sample errors of the TAR

models in Bonsall et al., although the latter indicated that some of this error was
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probably due to runs of missing data. Moore et al. used 100 weekly mood ratings

from eight bipolar patients (employing the same QIDS-SR scale as Bonsall et al.) and

constructed surrogate series for each patient. Comparing the original and surrogate

series using two discriminating statistics, first the ratio of linear vs. nonlinear in-

sample forecast errors, and then a time-reversal asymmetry statistic, Moore et al.

concluded that there was no distinction between the original and surrogate time series.

Thus they found no evidence for nonlinearity in the original mood series. Moreover,

a comparison of various linear and nonlinear out-of-sample forecasts showed little

difference between methods. The authors acknowledged that their conclusion of lack

of nonlinearity in the original series could be due to insensitivity of the discriminating

statistics, short length of the time series, or the sampling frequency. It is worth

noting that Ortiz, Bradler, Garnham, Slaney, and Alder (2015) found that mood

ratings of both healthy controls and euthymic bipolar patients could be modelled

by a linear stochastic process in the form of an autoregressive integrated moving

average (ARIMA(1,1,0)) process. This means that after the original mood series

Xt is differenced to create Zt = Xt − Xt−1 (this is done in order to render the

series stationary) then Zt can be expressed as an AR(1) process Zt = cZt−1 + at.

However, Ortiz et al. point out that a model for medicated euthymic patients may

not fit unmedicated patients or patients experiencing active episodes (recall that the

patients in Gottschalk et al. (1995) were rapid-cycling). The question of linear vs.

nonlinear models remains open.

There have been a few studies using time space indices in bipolar mood data.

Bauer et al. (2011) expanded on a pilot study by Glenn et al. (2006) where they used
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approximate entropy ApEn to see if pre-episode states could be distinguished from

pre-remission states in bipolar patients. They followed 98 patients over a period of

one year, collecting daily mood data (rapid-cycling patients were excluded from the

study). A pre-hypomanic state was defined to be the 60 days before an episode of

hypomania, a pre-depressive state was defined to be the 60 days before an episode of

depression, and a pre-remission state was defined to be the 60 days before a month

(30 days) of euthymia. Thus the time series to be compared were only of length

n = 60. The ApEn parameters used were m = 1 and r = 0.2·SD for each patient.

The key result of the paper is that ApEn(1, r, 60) could distinguish between all

three states, yielding ApEn(pre-hypomanic)> ApEn(pre-depression) > ApEn(pre-

remission), with all differences being statistically significant using t-tests. In contrast,

mean mood could not distinguish between pre-hypomanic and pre-depressive states,

or between pre-hypomanic and pre-remission states. The mood SD was more sensitive

to changes in the time series but still could not distinguish pre-hypomanic states

from pre-depressive states. This points not only to the utility of ApEn as a tool for

distinguishing patterns in data, but to the notion that prodromal changes in bipolar

mood may begin and be detected in longer time periods (e.g., 60 days) before the

onset of an episode. Yeragani, Pohl, Mallavarapu, and Balon (2003) also showed that

ApEn could distinguish between mood in healthy controls (also using n = 60).

Kreindler and Munshi (2015) reported on a study in which they did not find a

significant difference in SampEn on mood ratings between bipolar patients, affectively

unstable patients, and healthy controls. However, Ribeiro and Lourenço (2016) did a

more involved analysis where they examined SampEn for different parameter choices
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m and r over five different 110-mm visual analogue daily mood scales (VAS) (e.g.,

“very worst I ever felt” to “very best I ever felt” was one scale, “very tired/slow”

to “very energetic/excited” was another scale). There were 17 patients with active

affective instability (71% bipolar) and 10 matched controls. Two-way ranked ANOVA

revealed a difference in SampEn between the patient and control groups over the

five VAS, although post hoc Mann-Whitney multiple comparisons did not reveal

a significant difference between the patients and controls on any particular VAS.

There was a second part to the analysis, however, where the authors looked at the

relationship between SampEn and the “load of bad days” which, for each participant,

was defined as the proportion of days in the “very worst – very best” VAS that

fell beneath one standard deviation below the mean score of the VAS. The load

of bad days was seen as a proxy for the amount of daily strain on the affective

system. The authors predicted that, in controls, mood complexity (as measured by

SampEn) would increase as load of bad days increased (indicating a resilient response

to strain) and that this response would be compromised in patients. This hypothesis

was born out; SampEn increased with load of bad days in general, but the relationship

was much stronger in controls, with patients showing on average up to 25% lower

complexity of mood variation than controls for the same load of bad days. The authors

conclude that the healthy response to adversity involves activation of processes of

emotion regulation that lead to increases of complexity in mood variability, and that

this response is impaired in patients with affective disorders. They state that the

main clinical implication of their findings is that “interventions aimed at increasing

flexibility of emotion regulation and complexity of mood variation may be effective
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treatments for people with affective disorders” (p. 43).

3.7 Discussion and Future Directions

In this chapter we began by reviewing the definitions of the main nonlinear indices

employed in the study of EEG, HRV, and mood data for persons with schizophrenia

or bipolar disorder. This list of indices is not exhaustive, but due to space constraints

we isolated these as the indices receiving most frequent attention. An important point

to be taken from these various definitions is that these indices are generally measuring

different quantities and there is no unique definition of the term “complexity”. In our

view it may be better to avoid that term altogether, but we have sometimes used it

because it is so ubiquitous in the literature.

In the study of EEG in schizophrenia (Section 3.4.1), we performed an ex-

haustive literature search and investigated the L-F proposal. We saw that if D2 was

used as the index, there was no observable medication or age effect (in contradiction

to the L-F proposal). When all nonlinear indices were combined (requiring the as-

sumption that they all behave the same way with respect to age and medication) we

obtained only weak evidence of age and medication effects. Based on recent work

of Cerquera et al. (2017) we proposed that patient symptomatology (a specific com-

ponent of the L-F proposal) may be the most important determinant of outcome

relative to healthy controls. It would also be important to determine the extent to

which laboratory techniques are contributing to the apparent “study effect”. Resolv-

ing this conundrum may be part of unravelling the observed patterns and ultimately

the neurobiology of schizophrenia.
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Future directions may lie in the area of determining if in fact there are any key

elements of conditions (or tasks) that partly determine the outcome of an index (i.e.,

other than patient symptoms). Results from the present review appear to indicate

elevatedD2 in schizophrenia samples for certain tasks. Further scrutiny indicates that

these tasks evidently share requirements for stimulus encoding, meaning the cognitive

translating of presenting stimuli into a format facilitating performance (e.g., sentence

representation for possible later recall, Koukkou et al., 1993; input of continuously

presented items, of the continuous-performance task, Kirsch et al., 2000; and visual

tracking of a pendulum, Lutzenberger et al., 1995; see Cutler and Neufeld (2017) and

Chapter 2 for a discussion of stimulus encoding in schizophrenia.)

Linear and nonlinear indices have consistently pointed toward reduced com-

plexity (increased regularity) of the RR series in schizophrenia with similar conclu-

sions now being reached for bipolar disorder. Studies have shown that antipsychotic

effects on HRV can also be detected via these indices, and it is possible that they

might be employed to predict both adverse and positive responses to treatment. One

of the more intriguing suggestions is that SampEn can be used to differentiate be-

tween mood states in bipolar disorder, and that personalized wearable monitoring

systems might utilize HRV indices to predict both mood relapses and response to

treatment. Since such wearable systems are already in the testing stage, this seems

a possibility in the near future.

There have been few studies of mood data using phase space indices likely

because of the difficulty in obtaining sufficiently long time series. Now that attention

is turning more toward time domain indices (which are more applicable to relatively
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short and even noisy time series) we can expect more advances in this area. The

fact that Bauer et al. (2011) found that ApEn could distinguish between pre-manic,

pre-depressive, and pre-remission mood states (while linear measures could not) was

particularly interesting. It suggests that applying nonlinear indices to mood records

might aid in predicting both the onset and nature of relapses. This might become a

particularly powerful tool if it was coupled with prediction methods from HRV data

as discussed in the preceding paragraph.

The focus above has been on EEG and ECG. Future directions will include

applying nonlinear concepts to MEG and fMRI data, the latter offering spatial reso-

lution that may reveal new information.
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R., . . . López-Ibor, J. J. (2011). Lempel-Ziv complexity in schizophrenia; A
MEG study. Clinical Neurophysiology, 122, 2227-2235.

Friston, K. J. (1996). Theoretical neurobiology and schizophrenia. British Medical
Bulletin, 52, 644-655.

Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome?
Clinical Neuroscience, 3, 89-97.



173

Fritzche, M., Fritzche, L. N., Kosidubova, S. M., Prognimak, A. B., & Mayorov, O.
Y. (2006). Asymmetric information-processing in development, evolution, and
psychopathology. Cognition, Brain & Behavior, X (2), 311-342.

Guastello, S. J. (2009). Chaos as a psychological construct: Historical roots, princi-
pal findings, and current growth directions. Nonlinear Dynamics, Psychology,
and Life Sciences, 13 (3), 289-310.

Guastello, S. J., & Gregson, R. A. M. (2011). Nonlinear dynamical systems analysis
for the behavioral sciences using real data. Boca Raton, FL: CRC Press.

Glenn, T., Whybrow, P. C., Rasgon, N., Grof, P., Alda, M., Baethge, C., & Bauer,
M. (2006). Approximate entropy of self-reported mood prior to episodes in
bipolar disorder. Bipolar Disorders, 8, 424-429.

Globus, G. G., & Arpaia, J. P. (1994). Psychiatry and the new dynamics. Biological
Psychiatry, 35, 352-364.

Gottschalk, A., Bauer, M. S., & Whybrow, P. C. (1995). Evidence of chaotic mood
variation in bipolar disorder. Archives of General Psychiatry, 52 (11), 947-959.

Gottschalk, A., Bauer, M. S., & Whybrow, P. C. (1998). In reply to “low-dimensional
chaos in bipolar disorder?” Archives of General Psychiatry, 55, 275-276.

Grassberger, P., & Procaccia, I. (1983a). Characterization of strange attractors.
Physical Review Letters, 50 (5), 346-349.

Grassberger, P., & Procaccia, I. (1983b). Measuring the strangeness of strange
attractors. Physica D, 9, 189-208.

Heath, R. A. (2014). Nonlinear dynamics: Techniques and applications in psychol-
ogy. New York, NY: ψ Psychology Press.

Heath, R. A. (2015). Detecting nonlinearity and edge-of-chaos phenomena in ordinal
data. Nonlinear Dynamics, Psychology, and Life Sciences, 19 (3), 229-248.

Heath, R. A., Kelly, A., & Longstaff, M. (2000). Detecting nonlinearity in psycho-
logical data: Techniques and applications, Behavior Research Methods, Instru-
ments, & Computers, 32 (2), 280-289.

Heiby, E. M. (1995). Chaos theory, nonlinear dynamical models, and psychological
assessment. Psychological Assessment, 7 (1), 5-9.

Heiby, E. M., Pagano, I. S., Blaine, D. D., Nelson, K., & Heath, R. A. (2003).
Modeling unipolar depression as a chaotic process. Psychological Assessment,
15 (3), 426-434.

Henry, B. L., Minassian, A., Paulus, M. P., Geyer, M. A., & Perry, W. (2010). Heart
rate variability in bipolar mania and schizophrenia. Journal of Psychiatric
Research, 44, 168-176.



174

Hirsch, M. W., & Smale, S. (1974). Differential equations, dynamical systems, and
linear algebra. Orlando, Florida: Academic Press.

Hoffman, R. E., Buchsbaum, M. S., Jensen, R. V., Guich, S. M., Tsai, K., &
Nuechterlein, K. (1996). Dimensional complexity of EEG waveforms in neuroleptic-
free schizophrenic patients and normal control subjects. Journal of Neuropsy-
chiatry and Clinical Neuroscience, 8, 436-441.

Jaworska, N., Wang, H., Smith, D. M., Blier, P., Knott, V., & Protzner, A. B. (2018).
Pre-treatment EEG signal variability is associated with treatment success in
depression. NeuroImage: Clinical, 17, 368-377.

Jeong, J., Kim, D.-J., Chae, J.-H., Kim, S. Y., Ko, H.-J., & Paik, I.-H. (1998). Non-
linear analysis of the EEG of schizophrenics with optimal embedding dimension.
Medical Engineering & Physics, 20, 669-676.

Jin, S.-H., Na S. H., Kim, S. Y., Ham, B.-J., Lee, D. H., Lee, J. H., & Lee, H.
(2003). Hemispheric laterality and dimensional complexity in schizophrenia
under sound and light stimulation. International Journal of Psychophysiology,
49, 1-15.

Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. Cambridge, U.K.:
Cambridge University Press.

Katebi, S. D., & Satebi, M. (2012). Complexity measures as a feature to classify
schizophrenic and healthy participants. 2012 14th International Conference on
Modelling and Simulation, IEEE Computer Society, 337-382. doi: 10.1109/UK-
Sim2012.61

Katerndahl, D., Ferrer, R., Best, R., & Wang, C.-P. (2007). Dynamic patterns in
mood among newly diagnosed patients with major depressive episode or panic
disorder and normal controls. Primary Care Companion Journal of Clinical
Psychiatry, 9, 183-187.

Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology
and Medicine, 18 (3), 145-146.

Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome
scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13 (2), 261-276.

Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embed-
ding dimension for phase-space reconstruction using a geometrical construction.
Physical Review A, 45, 3403-3411.

Keshavan, M. S., Cashmere, J. D., Miewald, J., & Yeragani, V. K. (2004). Decreased
nonlinear complexity and chaos during sleep in first episode schizophrenia : a
preliminary report. Schizophrenia Research, 71, 263-272.



175

Kessing, L. V., Vradi, E., & Andersen, P. K. (2015). Life expectancy in bipolar
disorder. Bipolar Disorders, 17, 543-548.

Kim, J.-H., Ann, J.-H., & Lee, J. (2011). Relationship between heart rate variability
and the severity of psychotic symptoms in schizophrenia. Acta Neuropsychi-
atrica, 23, 161-166.

Kim, D.-J., Jeong, J., Chaue, J.-H., Park, S., Kim, S. Y., Go, H. J., . . . Choi, B.
(2000). An estimation of the first positive Lyapunov exponent of the EEG in
patients with schizophrenia. Psychiatry Research: Neuroimaging Section, 98,
177-189.

Kim, J.-H., Yi, S. H., Yoo, C. S., Yang, S. A., Yoon, S, C., Lee, K. Y., . . . , Kim,
Y. S. (2004). Heart rate dynamics and their relationship to psychotic symp-
tom severity in clozapine-treated schizophrenic patients. Progress in Neuro-
psychopharmacology & Biological Psychiatry, 28, 371-378.

Kim, J.-H., Ann, J.-H., Lee, J., Kim, M.-H., & Han, A.-Y. (2013). Altered heart
rate dynamics associated with antipsychotic-induced subjective restlessness in
patients with schizophrenia. Neuropsychiatric Disease and Treatment, 9, 989-
994.

Kim, J.-H., Yi, S. H., Lee, J., & Kim, Y. S. (2013). Effects of clozapine on heart
rate dynamics and their relationship with therapeutic response in treatment-
resistant schizophrenia. Journal of Clinical Psychopharmacology, 33 (1), 69-73.

Kirkpatrick, B., Buchanan, R. W., McKenny, P. D., Alphs, L. D., & Carpenter, W.
T. (1989). The schedule for the deficit syndrome: an instrument for research in
schizophrenia. Psychiatry Research, 30, 119-123.

Kirkpatrick, B., & Galderisi, S. (2008). Deficit schizophrenia: An update. World
Psychiatry, 7 (3), 143-147.

Kirsch, P., Besthorn, C., Klein, S., Rindfleisch, J., & Olbrich, R. (2000). The di-
mensional complexiy of the EEG during cognitive tasks reflects the impaired
information processing in schizophrenic patients. International Journal of Psy-
chophysiology, 36, 237-246.

Klieger, R. E. (1995). Heart rate variability and mortality and sudden death post
infarction. Journal of Cardiovascular Electrophysiology, 6, 365-367.

Koukkou, M., Lehmann, D., Federspiel, A., & Merlo, M. C. G. (1995). EEG reac-
tivity and EEG activity in in never-treated acute schizophrenia, measured with
spectral parameters and dimensional complexity. Journal of Neural Transmis-
sion, 99, 89-102.

Koukkou, M., Lehmann, D., Wackermann, J., Dvorak, I., & Henggeler, B. (1993).
Dimensional complexity of EEG brain mechanisms in untreated schizophrenia.
Biological Psychiatry, 33, 397-407.



176

Kreindler, D. M., & Lumsden, C. J. (2007). The effects of irregular sampling and
missing data on largest Lyapunov exponents. Nonlinear Dynamics, Psychology,
and Life Sciences, 11 (4), 401-412.

Kreindler, D., & Munshi, A. (2015). Entropy and periodicity analysis to investigate
mood variability in bipolar disorder. Bipolar Disorders, 17 (Suppl. 1), 80-80.

Krystal, A, D., & Greenside, H. S. (2008). Low-dimensional chaos in bipolar disor-
der? Archives of General Psychiatry, 55, 275-275.

Kugiumtzis, D. (2000). Surrogate data test for nonlinearity including nonmonotone
transforms. Physical Review E, 62 (1), 25-28.

Lanata, A., Valenza, G., Nardelli, M., Gentili, C., & Scilingo, E. P. (2015). Com-
plexity index from a personalized wearable monitoring system for assessing re-
mission in mental health. IEEE Journal of Biomedical and Health Informatics,
19 (1), 132-139.

Lawal, H. B., & Upton, G. J. G. (1984). On the use of χ2 as a test of independence in
contingency tables with small cell expectations. Australian Journal of Statistics,
26 (1), 75-85.

Lee, S.-H., Choo, J.-S., Im, W.-Y., & Chae, J.-H. (2008). Nonlinear analysis of
electroencephalogram in schizophrenia patients with persistent auditory hallu-
cinations. Psychiatry Investigations, 5, 115-120.

Lee, J.-S., Kim, B., Hong, Y., & Joo, Y. H. (2012). Heart rate variability in the
subsyndromal depressive phase of bipolar disorder. Psychiatry and Clinical
Neurosciences, 66, 361-366.

Lee, Y.-J., Zhu, Y.-S., Xu, Y.-H., Shen, M.-F., Tong, S., & Thakor, N. V. (2001a).
The nonlinear dynamical analysis of the EEG in schizophrenia with temporal
and spatial embedding dimension. Journal of Medical Engineering & Technol-
ogy, 25 (2), 79-83.

Lee, Y.-J., Zhu, Y.-S., Xu, Y.-H., Shen, M.-F., Zhang, H.-X., & Thakor, N. V.
(2001b). Detection of non-linearity in the EEG of schizophrenic patients. Clin-
ical Neurophysiology, 112, 1288-1294.

Lempel, A., & Ziv, J. (1976). On the complexity of finite sequences. IEEE Trans-
actions on Information Theory, IT-22 (1), 75-81.

Levy, B. (2014). Illness severity, trait anxiety, cognitive impairment and heart rate
variability in bipolar disorder. Psychiatry Research, 220, 890-895.

Levy, M. N. (1990). Autonomic interactions in cardiac control. Annals of the New
York Academy of Science, 601, 209-221.



177

Li, Y., Tong, S., Liu, D., Gai, Y., Wang, X., Wang, J., . . . Zhu, Y. (2008). Abnor-
mal EEG complexity in patients with schizophrenia and depression. Clinical
Neurophysiology, 119, 1232-1241.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20, 130–141.

Lutzenberger, W., Stevens, A., & Bartels, M. (1995). Do schizophrenics not differ-
entiate between perception and imagination? An EEG study using dimensional
analysis. Neuroscience Letters, 199, 119-122.

Mandelbrot, B. B. (1977). Fractals: Form, chance, and dimension. San Francisco,
CA: W. H. Freeman and Co.

Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco, CA: W.
H. Freeman and Co.
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Röschke, J., Fell, J., & Beckmann, P. (1995). Nonlinear analysis of sleep EEG data
in schizophrenia: Calculation of the principal Lyapunov exponent. Psychiatry
Research, 56, 257-269.
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Chapter 4

Concluding Remarks

In this thesis we have focused study on certain observed and potential numerical ear-

marks of schizophrenia, chiefly in response to cognitive stimuli, but also in response to

the behaviour of the ANS. Numerical quantities have a theoretical advantage over be-

havioural ones in that in principle they may be more objectively measured. However,

as we observed in Chapter 3, the inconsistency of outcomes in nonlinear indices in the

EEG of schizophrenia patients means there is no simple correspondence between com-

plexity of EEG signals and diagnostic health. Rather, a more involved relationship,

such as the L-F proposal, must be entertained which takes into account factors of

age, antipsychotic medication, patient symptomatology, and laboratory procedures.

To this we may also add the condition, or cognitive stimulus, under which the EEG

is taken. We noted in the discussion at the end of Chapter 3 that D2 was seen to be

higher in certain conditions in which encoding load could be considered high. The L-F

proposal, with all the above components factored in, has never really been properly

investigated in any depth. One might propose a study involving a very large number

of participants over a wide range of ages, different medication dosages (including un-

medicated), and different symptomatology (in particular deficit syndrome (DS) vs.
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nondeficit syndrome (NDS)) and develop a multiple regression model using all these

variables. (There would of course be limits on the design as medication dosages, as

well as medication presence or absence, would be controlled by the needs of the pa-

tient.) The EEG procedure could then be carried out over a range of cognitive stimuli

(including those with low and high encoding requirements) and a suite of nonlinear

indices could then be evaluated for each participant. In this manner the influence

due to different factors might become clearer. The relationship between nonlinear

indices and HRV in schizophrenia patients, however, is much more direct; schizophre-

nia patients seem to exhibit reduced complexity in HRV with a concomitant greater

tendency toward adverse cardiac events.

In Chapter 2 we reviewed experimental studies that suggest that prolonged

encoding times in response to cognitive stimuli are a numerical earmark of persons

with schizophrenia, and noted that this prolonged encoding results in a variety of

consequences. The main work of Chapter 2 was then to develop a flexible class of

models (the general serial mixture model introduced in Sec 2.2) that could be ap-

plied to describe encoding times (and other cognitive processing latencies) and which

enabled us to explore and illustrate potential physical and neurophysiological mech-

anisms behind encoding in various experimental paradigms. These models featured

an emphasis on two quantities: the number K of subprocesses being encoded and

the speed Θ at which they were encoded. In Sec 2.3 we focussed on a subclass of

these models where changes in encoding times were explained solely by changes in K

while holding the distribution of Θ constant. These simplified models, which seem

sufficient to explain encoding changes in many cases of schizophrenia, were seen to
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yield a variety of MIC-VIC signatures which can be used for comparisons between

models in terms of fitting them to factorial data. A distinction in these models was

made between the case where K varies only over participants and the case where K

varies over trials rather than, or in addition to, varying over participants. A numeri-

cal test for distinguishing these two cases was developed. Further work in developing

the asymptotic behaviour of this numerical test and the sample sizes necessary to

effectively implement it is warranted. In Sec 2.5 we focussed on the reverse case

where Θ was allowed to vary while holding the distribution of K constant. There has

been less experimental evidence linking these models to changes in encoding times in

the case of schizophrenia, but it is possible that these models may be useful in some

experimental paradigms as well as in the case of cognitive processing latencies other

than encoding times. Cases where both K and Θ are allowed to vary simultaneously

are a topic for future study, as are cases where the distributions of K and Θ are not

independent but linked. It is hoped that continuing investigations into the general

serial mixture model will yield a mathematical toolbox of techniques for examining

processing latencies in cognitive neuroscience.
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Appendix A

Discrete Probability Distributions

1. Poisson distribution: K has discrete probability mass function on k =
0, 1, 2, . . . given by

P (K = k) =
mke−m

k!

where m > 0 and E(K) = Var(K) = m. Abbreviation: K
D∼ Pois(m)

2. truncated Poisson distribution: K has discrete probability mass function
on k = 1, 2, 3, . . . given by

P (K = k) =
mke−m

(1−e−m) k!

where m > 0, E(K) = m
1−e−m and Var(K) = m

1−e−m −
(

m
1−e−m

)2
e−m

3. translated Poisson distribution: Let n be a fixed positive integer. K has a
translated Poisson distribution with translation factor n if K = X + n where
X

D∼ Pois(m). Thus E(K) = m+ n and Var(K) = m.

4. binomial distribution: K has discrete probability mass function on k =
0, 1, . . . , n given by

P (K = k) =

(

n

k

)

pk(1 − p)n−k

where 0 < p < 1, E(K) = np, and Var(K) = np(1 − p). Abbreviation:

K
D∼ binom(n, p)

5. geometric distribution: K has discrete probability mass function on k =
1, 2, 3, . . . given by

P (K = k) = (1 − p)k−1p

where 0 < p < 1, E(K) = 1
p

and Var(K) = 1−p
p2 . (Note the geometric is a

special case of the negative binomial (see below) where r = 1.) Abbreviation:

K
D∼ geom(p).

6. negative binomial distribution: Let r be a fixed positive integer. K has
discrete probability mass function on k = r, r+1, r+2, r+3, . . . given by

P (K = k) =

(

k−1

r−1

)

(1 − p)k−rpr

where 0 < p < 1, E(K) = r
p

and Var(K) = r(1−p)
p2 . (The case r = 1 yields the

geometric distribution as noted above.) Abbreviation: K
D∼ negbinom(r, p).
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Appendix B

Continuous Positive Infinite-Tailed Probability Distributions

1. exponential distribution: Let v > 0 (called the rate parameter; sometimes an
alternate parameterization is used where b = 1/v is called the scale parameter).

Abbreviation: `
D∼ expo(v).Then ` has probability density function (pdf)

given by
φ(`) = ve−v` for ` > 0

and mean and variance given by

E(`) =
1

v
and Var(`) =

1

v2
.

Note the exponential is a special case of the gamma distribution (see below)
where the shape parameter a = 1. Thus an alternative abbreviation for the

exponential is `
D∼ Gam(1, v).

2. gamma distribution: Let a > 0 (shape parameter) and v > 0 (rate parameter;
the alternate parameterization b = 1/v is sometimes used where b is called the

scale parameter). Abbreviation: `
D∼ Gam(a, v). Then ` has probability

density function (pdf)

φ(`) =
`a−1va

Γ(a)
e−v` for ` > 0

with mean and variance

E(`) =
a

v
and Var(`) =

a

v2

Some related moments of interest (for a > 2) are:

E(1/`) =
v

a− 1
, E(1/`2) =

v2

(a− 1)(a− 2)
, Var(1/`) =

v2

(a− 1)2(a− 2)

Also note that the special case of the gamma where a = k, a positive integer,

is called the Erlang distribution and can be expressed as `
D∼ Gam(k, v).

3. inverse Gaussian distribution: Let µ > 0 (the mean) and λ > 0 (the shape

parameter). Abbreviation: `
D∼ IG(µ, λ). Then ` has probability density

function (pdf)

φ(`) =

√

λ

2π`3
e
−

λ(`−µ)2

2µ2` for ` > 0

and the mean and variance are

E(`) = µ and Var(`) =
µ3

λ

Some related moments of interest are:

E(1/`) =
1

µ
+

1

λ
and Var(1/`) =

1

µλ
+

2

λ2
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4. Weibull distribution: Let a > 0 be the shape parameter and b > 0 be the

scale parameter. Abbreviation: `
D∼ Wei(a, b). Then the pdf is

f(`) =
a

b

(

`

b

)a−1

e−( `
b)

a

for ` > 0

and the mean and variance are

E(`) = bΓ(1 + 1/a) and Var(`) = b2
{

Γ(1 + 2/a) − (Γ(1 + 1/a))2
}

The expo(v) distribution is a special case of the Weibull where a = 1 and
b = 1/v.

5. lognormal distribution: Here −∞ < µ < ∞ and σ2 > 0 are real numbers
denoting, respectively, the mean and variance of the associated normal distri-

bution X
D∼ N(µ, σ2). Here ` = eX. Abbreviation: `

D∼ LN(µ, σ2). The pdf
is

f(`) =
1

`
√

2πσ2
e−

(log `−µ)2

2σ2 for ` > 0

and the mean and variance are

E(`) = eµ+σ2

2 and Var(`) = e2µ+σ2

(eσ2 − 1)
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Appendix C

Proof of Corollary 5.1

The conceptual idea behind this corollary is that, conditioning on a specific partici-

pant i, the mean of the sequence of observed encoding trials ti1, . . . , tiN should con-

verge as N → ∞ to the theoretical mean E(Ti) = E(Ki)E(µ(Θi)) of that participant

by the strong law of large numbers for i.i.d. sequences. Then, since we can (uncon-

ditionally) view the mean E(Ti) of each participant as an i.i.d. observation from a

distribution with mixture mean Ei
∗[E(Ti)] = E(T )∗, the mean (

∑M
i=1E(Ti))/M over

the participants in the cell then converges as M → ∞ to E(T )∗ provided E(T )∗ <∞.

(A similar conceptual argument can be made for variances.)

The second part of the above argument, concerning the convergence to E(T )∗

of (
∑M

i=1E(Ti))/M , is correct as it stands. However, the first part of the argument

requires more nuance. A sequence T1, T2, . . . of encoding times from a random par-

ticipant is an exchangeable sequence (Chow & Teicher, 1988) in that any permutation

of a finite number n ≥ 1 of elements Ti1, . . . , Tin has the same distribution as every

other permutation of that number of elements, but the sequence is not i.i.d. since

the variables are linked through their (unknown) common distributions of K and Θ.

However, conditional on the distributions of K and Θ, the sequence does become i.i.d.

(Up until now, we have been using the phrase “conditional on participant i” but this

has been a convenient mislabelling; all that is needed to render the sequence i.i.d. is

to condition on the distributions of K and Θ, and many participants may share the

same distributions for these quantities.) An equivalent way to phrase “conditional on
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the distributions of K and Θ” is to state “conditional on the σ-algebra G = σ(K,Θ) of

events generated by K and Θ”. Combining Theorem 2, p. 224, of Chow and Teicher

(1988) with the first theorem of Kuritsyn (1987), we obtain the following convergence

theorem:

Theorem C: If the exchangeable sequence T1, T2, . . . from a random participant with

mixed marginal distribution T satisfies E[|T |] <∞, then

lim
N→∞

1

N

N
∑

j=1

Tj(ω) = E(T | G)(ω) with probability 1.

Consider first the case of the means. Since encoding times are nonnegative, we may

express the mixed marginal mean E[|T |] = E[T ] = E(T )∗ = Ei
∗[E(Ki)]E

i
∗[E(µ(Θi)]

where at the last step we revert to our previous notation and employ (2.2.10) in order

to make the link clear. Therefore the premise of Theorem C is verified by checking

that, for the distributions chosen for K and Θ, the mixed marginal mean E(T )∗ =

Ei
∗[E(Ki)]E

i
∗[E(µ(Θi)] is finite. (This is so for all examples we have considered in Sec

2.4.) Then across a sequence of encoding times on any participant we obtain

lim
N→∞

1

N

N
∑

j=1

Tj(ω) = E(T | G)(ω) with probability 1

where E(T | G)(ω) = E(T |σ(K,Θ))(ω) = E(Ki)(ω)E(µ(Θi))(ω) = E(Ti)(ω) for all

participants i which share the same distributions for K and Θ. This proves the

part of Corollary 5.1 dealing with the convergence to E(T )∗. For the case of the

variance E(Var(T ))∗ we can argue that the mean over participants (
∑M

i=1 Var(Ti))/M

converges as M → ∞ to E(Var(T ))∗ provided E(Var(T ))∗ < ∞ so we only need to
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establish that, with probability 1,

s2
N(ω) =

1

N − 1

N
∑

j=1

(Tj(ω) − T̄N (ω))2 =
1

N − 1

(

N
∑

j=1

T 2
j (ω) −NT̄ 2

N (ω)

)

converges to Var(T |σ(K,Θ))(ω) = Var(Ti)(ω) for all participants i which share the

same distributions for K and Θ. Since Var(T |σ(K,Θ))(ω) = E(T 2 |σ(K,Θ)) −

(E(T |σ(K,Θ)))2, this will follow from Theorem C if we can show, for the given

choices of distributions on K and Θ, we have E[T 2] = E(T 2)∗ < ∞, as then both

terms in the right hand expression for s2
N will converge appropriately. Now E[T 2] =

Ei
∗[T

2
i ] which will be finite iff Ei

∗[Var(Ti)] = E(Var(T ))∗ is finite, which can be checked

by applying (2.2.11).

In summary, a sufficient condition for the convergence of r∗ to the theoretical

ratio (2.4.7) is that 0 < E(T )∗ <∞ and E(Var(T ))∗ <∞, which proves Corollary 5.1.

(The restriction E(T )∗ > 0 is made so that the theoretical ratio is not undefined.)

References for Appendix C

Chow, Y. S., & Teicher, H. (1988). Probability theory: Independence, interchange-
ability, martingales, 2nd Ed. New York: Springer-Verlag.

Kuritsyn, Y. G. (1987). On monotonicity in the law of large numbers for exchange-
able random variables. Theory of Probability and its Applications, 29 (1), 150-
153.



191

Appendix D

Copyright Permission

In reference to the article: Cutler, C. D., & Neufeld, R. W. J. (2019). Nonlinear
indices with applications to schizophrenia and bipolar disorder. Nonlinear Dynamics,
Psychology, and Life Sciences, 23, 17-56.

I can attest that you have permission to use information from this publication as part
of your thesis.
Sincerely,
David Pincus, Ph.D., Permissions Editor
Nonlinear Dynamics Psychology and Life Sciences
Journal web-site: http://www.societyforchaostheory.org/ndpls/
Fair use policy: http://www.societyforchaostheory.org/ndpls/permissions/files/ Ac-
ceptableUseV4tc.pdf



192

C U R R I C U L U M V I T A E

Colleen Diane Cutler

Degrees

2015 M.Sc. Clinical Psychology Western University

2013 B.A. (Hons) Psychology University of Guelph

1985 Ph.D. Mathematics Carleton University

1980 M.Sc. Math & Stats Carleton University

1979 B.Sc. (Dble Hons) Math & Stats University of Manitoba

Employment

Sep 2018/Apr 2019 GTA Psych 2810: Statistics Western University

Sep 2017/Apr 2018 GTA Psych 3316: Trauma Western University

Sep 2016/Apr 2017 GTA Psych 2810: Statistics Western University

Sep 2015/Apr 2016 GTA Psych 2810: Statistics Western University

Sep 2014/Apr 2015 GTA Psych 2810: Statistics Western University

Sep 2013/Apr 2014 GTA Psych 2800: Research Western University

Jul 1999/Aug 2009 Professor of Statistics University of Waterloo

Jul 1991/Jun 1999 Assoc. Professor of Statistics University of Waterloo

Jul 1986/Jun 1991 Asst. Professor of Statistics University of Waterloo

Sep 1983/Jun1986 Asst. Professor of Statistics University of Manitoba



193

Awards

• Ontario Graduate Scholarship1: Sep 2013 - Aug 2014 ($15,000)

• 2001 CRM–SSC Prize for outstanding contributions to statistical science.
This award is given at most annually by the Centre de Recherche Mathematique
(CRM) and the Statistical Society of Canada (SSC) for research done by a
Canadian within 15 years of their Ph.D. ($5,000)

Psychology Publications

Published Articles

Cutler, C. D., & Neufeld, R. W. J. (2017). Addressing very short stimulus encoding
times in modeling schizophrenia cognitive deficit. Journal of Mathematical Psychol-
ogy, 79, 53–63.

Cutler, C. D., & Neufeld, R. W. J. (2019). Nonlinear indices with applications to
schizophrenia and bipolar disorder. Nonlinear Dynamics, Psychology, and Life Sci-
ences, 23, 17–56.

Neufeld, R. W. J., & Cutler, C. D. (2019). Potential contributions of clinical mathe-
matical psychology to robust modeling in cognitive science. Computational Brain &
Behavior, 2, 251–254. https://doi.org/10.1007/s42113-019-00044z

Conference Papers

Neufeld, R. W. J., & Cutler, C. D. (2019). Potential contributions of clinical mathe-
matical psychology to robust modeling in cognitive science. Society for Mathematical
Psychology, Montreal, Canada, July 22, 2019.

Neufeld, R. W. J., Taylor, R., Cutler, C. D., Théberge, J., Densmore, M., & Williamson,
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