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Abstract

While less invasive techniques have been employed for some procedures, most

intracardiac interventions are still performed under cardiopulmonary bypass, on the

drained, arrested heart. The progress toward off-pump intracardiac interventions has

been hampered by the lack of adequate visualization inside the beating heart.

This thesis describes the development, assessment, and pre-clinical implementa-

tion of a mixed reality environment that integrates pre-operative imaging and model-

ing with surgical tracking technologies and real-time ultrasound imaging. The intra-

operative echo images are augmented with pre-operative representations of the cardiac

anatomy and virtual models of the delivery instruments tracked in real time using

magnetic tracking technologies. The virtual models assist the user with the tool-to-

target navigation, while real-time ultrasound ensures accurate positioning of the tool

on target, providing the surgeon with sufficient information to “see” and manipulate

instruments in absence of direct vision.

The targeting accuracy under model-enhanced ultrasound-assisted guidance was

studied for procedures simulating direct-access and catheter guided interventions,

and compared to the outcomes under model-assisted guidance and US image guidance

alone. The proposed guidance environment led to an overall targeting error of under 3

mm, which represented a significant improvement from the accuracy recorded under

2D US image guidance alone. In addition, the real-time US imaging component

provided sufficient information to correctly identify the intra-operative surgical target

location and to compensate for any positioning errors due to misregistrations present

between the heart model and its physical counterpart, ensuring a consistent targeting

accuracy within 1-1.5 mm.

The pre-operative anatomical models integrated within the proposed surgical en-

vironment are critical for ensuring appropriate tool-to-target navigation. Using tech-

niques previously developed in our laboratory, a method to generate subject-specific

cardiac models for use in mitral valve interventional guidance is proposed and val-
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idated using MR datasets of healthy subjects. The developed models can predict

the location of the mitral valve annulus with a 3.1 mm accuracy throughout the car-

diac cycle. Furthermore, these models can be integrated within the intra-operative

guidance environment with less than a 5 mm alignment error of the pre- and intra-

operative anatomy in the region of interest.

Several pre-clinical acute evaluation studies have been conducted in vivo on swine

models to assess the feasibility of the proposed environment in a clinical context.

Following direct access inside the beating heart using the UCI, the proposed mixed

reality environment was used to provide the necessary visualization and navigation

to position a prosthetic mitral valve on the the native annulus, or to place a repair

patch on a created septal defect in vivo in porcine models.

Starting from the fundamental assumption in image-guided interventions that

pre-operative images can adequately depict the intra-operative anatomy, the effects

of heart displacement during minimally invasive procedure workflow have also been

explored. Tracked ultrasound was used to acquire “instances” of the heart at each

stage during the peri-operative workflow of model-enhanced ultrasound-guided inter-

ventions in porcine subjects and robot-assisted coronary artery bypass graft surgery in

patients. In the effort to provide better pre-operative planning for the robot-assisted

coronary artery bypass grafting interventions, a method was proposed to predict the

intra-operative location of the target vessel based on its pre-operative, CT-derived

location and the peri-operative heart migration information.

Following further development and seamless integration into the clinical work-

flow, we hope that the proposed mixed reality guidance environment may become a

significant milestone toward enabling minimally invasive therapy on the beating heart.

Keywords: image-guided cardiac surgery; mixed reality environments; pre-operative

planning; intra-operative guidance; surgical tracking; in vivo clinical translation
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Chapter 1

Introduction

Virtual and augmented reality environments have been adopted in medicine as a

means to enhance the clinician’s view of the anatomy and facilitate the performance

of minimally invasive procedures. Their true value becomes transparent during inter-

ventions where the surgeon cannot directly visualize the targets to be treated, such as

during cardiac procedures performed on the beating heart. These environments must

accurately represent the real surgical field and require seamless integration of pre- and

intra-operative imaging, surgical tracking, and visualization technology in a common

framework centered around the patient. This chapter begins with an overview of min-

imally invasive cardiac interventions, describes the architecture of a typical surgical

guidance platform including imaging, tracking, registration and visualization, high-

lights both clinical and engineering accuracy limitations in cardiac image-guidance,

and discusses the typically encountered challenges during the translation of the work

from the laboratory into the operating room.

This work is adapted from Linte CA, White J, Eagleson R, Guiraudon GM and Peters TM.
Virtual and augmented medical imaging environments: Enabling technology for minimally invasive
cardiac interventional guidance. IEEE Reviews on Biomedical Engineering. Submitted: July 2010.
c©2010 IEEE. Reprinted, with permission, from IEEE.
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1.1 Introducing Virtual, Augmented and Mixed

Reality Environments

In many engineering applications, computer generated models are used to design

the components of a system, simulate their interaction within a complex assembly,

and analyze the behaviour of the system prior to its implementation. However, these

models are rarely carried forward to the physical implementation stage, where they

could assist with task performance. One approach to alleviate these limitations is

to complement the user’s visual field with necessary information that facilitates the

performance of a particular task. This technique is known as augmented reality (AR)

and it was first defined broadly by Milgram et al. [1], as a technique of “augmenting

natural feedback to the operator with simulated cues”. In simple terms, this approach

allows the integration of supplemental information with the real-world environment.

AR environments represent the “more real” subset of mixed reality environments.

The latter span the entire spectrum of the reality-virtuality continuum (Fig. 1.1)

and integrate information ranging from purely real (i.e. directly observed objects) to

purely virtual (i.e. computer graphic simulations). The spatial and temporal relation

between the real and virtual components distinguish AR environments from virtual

reality (VR) environments. A commonly interpreted view of a VR environment is

one in which the operator is immersed into a synthetic world consisting of virtual

representations of the real world that may or may not be representing the properties

of the real-world environment [1]. Moreover, mixed realities may include primarily

real information complemented with computer-generated data, or mainly synthetic

data augmented with real elements [2, 3]. While the former case constitutes a typical

AR environment, the latter extends further from AR into augmented virtuality (AV)

[4, 5, 6].

These visualization techniques originated in response to the industrial require-

ments to facilitate task performance. Initially, engineering models were displayed on

computer screens and used as “guides” to perform various industrial tasks. A more

revolutionary approach was undertaken by an engineering team at Boeing Industries,
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Fig. 1.1: Reality-virtuality continuum spanned by mixed reality (MR) environments ranging
from purely real, to fully virtual environments. Image adapted from Milgram et al. 1994.

where workers were provided with a natural interface to manufacturing, construction,

testing and maintenance information [7]. A see-through display, delivered via a head-

set worn by the worker, enabled the superposition of computer-generated information

(i.e. a computer-aided design model of a device) onto the real field of view (i.e. the

physical device). This approach was found to facilitate the task of, for example,

identifying the location where a bolt hole was to be drilled inside an aircraft fuselage

[7].

The advent of VR and AR environments in the medical world was also driven

by the need to enhance or enable therapy delivery under limited visualization and

restricted access conditions. Computers have become an integral part of medicine:

patient records are stored electronically, computer software enables the acquisition,

visualization and analysis of medical images, and computer-generated environments

empower clinicians to perform procedures that were rarely successful decades ago

[8]. Technological developments and advances in medical therapies have led to the

increased use of less invasive treatment approaches for conditions that require a sur-

gical procedure, but involve patient trauma and complications. Today, VR and AR

medical environments are employed for diagnosis and treatment planning [9], surgical

training [10, 11, 12, 13, 14], pre- and intra-operative data visualization [15, 16, 17, 18],

and intra-operative surgical navigation [8, 19, 20, 21, 22].

This chapter provides an overview of the development of virtual and augmented

medical imaging environments for visualization and navigation support in image-

guided cardiac interventions. Following a brief introduction on mixed reality envi-
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ronments, section 1.2 outlines the challenges associated with performing minimally

invasive procedures on the heart. Typical pre- and intra-operative imaging modalities,

image analysis, segmentation and modeling techniques, as well as data integration,

visualization, and display technologies are highlighted in section 1.3. Section 1.4

focuses on surgical guidance evaluation, including both clinical and engineering ac-

curacy assessments, as well as their incorporation in the design of image-guidance

platforms. This topic is revisited in Chapter 7, with concrete examples based on the

work included in this thesis. Section 1.5 lists common obstacles encountered during

the translation of the work from the laboratory and into the operating room (OR)

and provides several examples of pre-clinical and clinical minimally invasive cardiac

applications. Lastly, several caveats associated with the equipment, logistics, and

user interaction are identified in section 1.6. Lastly, section 1.7 outlines the objec-

tives of this thesis in terms of the research questions to be addressed in the upcoming

chapters, followed by a brief thesis outline included in section 1.8.

1.2 Minimally Invasive Procedures

A large number of conditions require physical therapeutic intervention, which often

exposes the patient to additional risks arising from the approach taken to access the

target tissue, as opposed to the therapy itself. Cardiac therapy may consist of the

replacement or repair of a malfunctioning valve, restoration of myocardial perfusion

by inserting a stent or performing a bypass graft, or electrical isolation of tissue

regions that cause abnormal heart rhythm by creating scar tissue through heating or

freezing.

Cardiac interventions are unique in several perspectives: access, restricted visual-

ization and surgical instrument manipulation, as well as the dynamic nature of the

heart. Procedure invasiveness extends beyond the typical measurement of the incision

size. Supplying circulatory support via cardiopulmonary bypass (CPB) (i.e. heart-

lung machine) represents a significant source of invasiveness that may lead to severe

inflammatory response and neurological damage [23]. Moreover, despite various ap-

proaches employed to stabilize the motion of the heart at the site of interest during
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surgery [24], the delivery of therapy on a soft tissue organ enclosing a blood-filled

environment in continuous motion is still a significant challenge. Successful therapy

requires versatile instrumentation, robust visualization, and superior surgical skills.

1.2.1 Cardiac interventions: A world of their own

Due to the challenges associated with visualization and access, cardiac interven-

tions have been among the last surgical applications to embrace the movement toward

minimal invasiveness [25]. This movement originated in the mid-1990s following the

introduction of laparoscopic techniques and their use in video-assisted thoracic surgery

[26]. The adoption of less invasive techniques posed significant problems in terms of

their workflow integration and yield of clinically acceptable outcomes. However, the

morbidity associated with the surgery rather than the therapy, together with the suc-

cessful experience with the less invasive approaches in other surgical specialties, have

fueled their emergence into cardiac therapy.

Multiple access routes, including partial sternotomies, limited access thoraco-

tomies or catheter-based techniques have been used as an alternative to the traditional

full median sternotomy [25]. Initial attempts were aimed at performing coronary

artery bypass graft (CABG) surgery via minimally invasive access to the arrested

heart [27, 28] without CPB [24, 29]. A number of centres reported their experi-

ence with robot-assisted atrial septal defect (ASD) and patent foramen ovale closure

[30], mitral valve repair and replacement [31], transluminar [32, 33, 34] or transapical

[35, 36, 37, 38, 39, 40] aortic valve implantation, or percutaneous pulmonary vein

isolation for treatment of atrial fibrillation [41, 42, 43]. The increasing use of en-

dovascular techniques constitutes one of the most rapid changes noted in cardiac

interventions. As a result, vascular-guided therapy delivery has become the ultimate,

least invasive cardiac therapy approach [44].

1.2.2 Imaging for Interventional Guidance

Medical imaging has provided a means for visualization and guidance during in-

terventions where direct visual feedback could not be achieved without significant
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trauma; such procedures are commonly referred to as image-guided interventions

(IGI). In their recent review [45], Cleary and Peters provided the following statement

to serve as a potential definition of IGI: “Image-guided interventions are medical pro-

cedures that use computer-based systems to provide virtual image overlays to help the

physician precisely visualize and target the surgical site.” Within the IGI community,

an image-guided procedure is any minimally invasive intervention that uses imaging

for guidance. The typical components/stages of an IGI system/procedure workflow

are outlined in Fig. 1.2. A detailed presentation of such techniques is available in

[46].

Fig. 1.2: Typical IGI workflow: pre-operative imaging and planning, surgical tracking,
patient registration, surgical environment visualization and display, and verification of pre-
vs. intra-operative data.

1.2.3 Towards Surgical Guidance Platforms

In spite of the wealth of information available to clinicians due to the advances in

medical technology, a gap between diagnosis and therapy still exists. If a minimally

invasive intervention is the most efficient treatment option, then pre-operative images

are employed for diagnosis and treatment planning, while intra-operative imaging is

used to guide the procedure. As a result, the interventionalist needs to mentally fuse

the surgical plan with the real-time information, while manipulating an instrument
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and monitoring therapy delivery. These challenges clearly state the need for inter-

ventional guidance platforms that enable the integration of pre- and intra-operative

imaging and surgical navigation into a common environment.

1.3 Interventional Platform Architecture

1.3.1 Imaging

Medical imaging and image guidance may be employed during both on-pump,

open-chest procedures, as well as off-pump, beating heart cardiac interventions. While

the former may benefit from enhanced visualization available through medical imag-

ing, the latter rely heavily on imaging, enabling clinicians to “see” inside the thoracic

cavity and heart chambers in the absence of direct visual access.

1.3.1.1 Pre-operative Images

Pre-operative images are necessary to understand the patient’s heart anatomy,

identify a suitable treatment approach, and prepare a surgical plan. These data are

often in the form of high-quality images that provide sufficient contrast between nor-

mal and abnormal tissue, along with a representation of the patient that is sufficiently

accurate for image guidance [47]. Three of the most common imaging modalities em-

ployed pre-operatively are described below.

Computed Tomography Computed tomography (CT) is an X-ray based imaging

method used to generate three-dimensional (3D) image volumes of tissue electron den-

sities [48]. When imaging cardiac anatomy with CT, little image contrast is generally

available to allow the differentiation of the structures of interest without additional

contrast enhancement. However, following injection of contrast agents, superb images

of the cardiac vasculature, blood pool and myocardium can be acquired, allowing

high-fidelity reconstructions of the vascular tree, cardiac chambers and myocardial

wall.
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CT has been employed for both diagnostic imaging [49] and surgical planning

[50] for patients with coronary artery disease (CAD). Pre-operative CT images are

commonly used to assess patient candidacy for robot-assisted CABG procedures [51]

and to identify the optimal port locations such that the surgical target can be reached

with the robotic instruments [52].

Classical CT scanners, however, are of limited use intra-operatively. Physicians

would need to reach with their hands into the imaging region, if the scanner were to

be used for direct guidance [53]. This option is not feasible considering the increased

radiation dose during prolonged procedures. In addition, since dynamic CT images

are acquired in single axial slices, it is difficult to visualize a catheter that is advanced

in the axial direction, as its tip is only visible in the image for a short time. Con-

sequently, CT is more suitable for procedures where the tool is manipulated in the

axial plane [54].

Magnetic Resonance Imaging Magnetic resonance imaging (MRI) provides ex-

cellent soft tissue characterization, allowing a clear definition of the anatomical fea-

tures of interest. Most cardiac conditions can be diagnosed using MRI, and the diag-

nostic images are often available to the surgeon in the OR as an aid during procedure

guidance.

In addition to its use in morphological imaging, MRI has been extensively em-

ployed for cardiac function assessment. Delayed contrast-enhanced MRI provides a

quantitative measurement of the transmural effect of the infarct in the myocardium

[55, 56, 57]. This technique has evolved into the gold-standard method for assessing

myocardial tissue viability [58] for patients suffering from CAD [59, 60]. Another

method widely used in characterizing the kinetic properties of the myocardium is MR

tagging [61, 62], in which a spatial grid pattern of magnetization is superimposed

onto the cardiac image, enabling the estimation of tissue motion during the cardiac

cycle.

In interventional radiology, where catheters and probes are navigated through the

vasculature and into the heart, MRI presents several advantages over the traditional

X-ray fluoroscopy guidance. Not only can it spare both the patient and clinical staff
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from prolonged radiation exposure, but also provides superior visualization of the vas-

culature, catheter, and target organ, often without the need of contrast enhancement.

Several designs of intra-operative MR systems have been developed to date, including

the General Electric Signa-SP “Double Doughnut” system that allows access to the

patient between the two toroidal magnets [63, 64, 65], the Siemens Medical Systems

Magnetom Open interventional magnet [66], the Philips PanoramaTM system [67], and

lastly the Medtronic Odin PoleStarTM N-20 system [68], which has been integrated

with the StealthStationTM TREON navigation platform. Other MRI guidance sys-

tems employ modified versions of clinical MR scanners featuring shorter bores with

a larger diameter, enabling the physician to reach inside the magnet and manipulate

instruments [69, 70].

Nuclear Medicine Nuclear medicine imaging typically refers to Positron Emission

Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

In general, these modalities offer little anatomical or morphological information, but

rather provide valuable functional information for detection and staging of a disease

[71]. PET and SPECT imaging are commonly used to assess myocardial tissue via-

bility in patients suffering from ischemic heart disease. To compensate for the lack

of morphological information, nuclear images are paired with morphological images,

such as CT [72, 73] or MRI [74], which provide anatomical context for their interpre-

tation.

While the use of such images during interventional guidance is minimal, their pre-

operative value is significant, as they can help the surgeon identify the target location

and determine the optimal trajectory for therapy. To further exploit its usefulness,

the functional information can be mapped onto anatomical models and made available

to the clinician intra-operatively.

1.3.1.2 Intra-operative Images

Since the surgical field cannot be observed directly, intra-operative imaging is

critical for visualization. The technology must operate in real time to provide accurate
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guidance, be compatible with the standard OR equipment, but may compromise

spatial resolution or image fidelity in favour of the above.

X-Ray Fluoroscopy X-ray images were the first medical images employed for

guidance. Their first use was reported in Birmingham, UK within months of their

discovery in 1895, to remove an industrial sewing needle from a woman’s hand [75].

Despite concerns regarding radiation exposure, X-ray fluoroscopy is the standard

imaging modality employed in interventional radiology. The X-ray tube and detector

are mounted on a curved arm (C-arm) facing each other, with the patient table lying

between them [53] and rapidly collecting two-dimensional (2D) projection images

through the body [76] at rates of over 30 Hz. Some C-arm systems are portable,

allowing them to be rolled in and out of different operating rooms as needed [77].

Fluoroscopic images possess a high spatial resolution, allowing for sub-millimeter

objects to be resolved. They also show clear contrast between different materials,

such as a catheter and tissue or bone and liver, and different tissue densities, such

as heart and lungs. However, many soft tissues, including cardiac structures, cannot

be differentiated without the use of contrast agent. Since fluoroscopic images are 2D

projections through 3D anatomy, they appear as a series of “overlapping shadows”.

Nevertheless, projection imaging is advantageous, as no post-processing of an image

volume is required, thus making it a true real-time imaging modality.

Several extensions of X-ray and fluoroscopy imaging such as CT-fluoroscopy [78,

79, 80] and cone-beam CT (CBCT) systems [81, 82, 83] have been employed for

intra-operative guidance. CBCT has evolved from C-arm based angiography and can

acquire high-resolution 3D images of organs in a single gantry rotation [84, 85, 86, 87].

To compensate for the lack of anatomical context and soft tissue contrast, fluoro-

scopic images have been combined with 3D anatomical models, allowing for a better

interpretation of the position and orientation of a catheter inside the heart [88]. They

also have been integrated into hybrid systems combining X-ray and MR imaging (also

referred to as XMR) [89, 90]. In such systems, optical tracking technology [91] is used

to determine the transformations that relate the X-ray and MRI coordinate systems

[92]. When co-registered, the X-ray and MR images provide both enhanced real-time
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navigation information, as well as real-time monitoring of therapy delivery. However,

there are several drawbacks associated with the use of XMR suites, including high

operation and maintenance costs, as well as incompatibilities with the interventional

workflow and OR equipment.

Ultrasound Ultrasound (US) has been employed in interventional guidance since

the early 1990s [93], initially for neurosurgical procedures. US can acquire real-time

images at various user-controlled positions and orientations, with a spatial resolution

ranging from 0.2 to 2 mm. Moreover, US systems are inexpensive, mobile, and

compatible with the OR equipment.

It is generally agreed that the quality of US images is inferior to that of CT or

MR images [66]. The presence of multiple speckle reflections, shadowing, and variable

contrast are some of the disadvantages that have contributed to the slow progress of

employing US imaging intra-operatively. Several approaches to enhance anatomical

visualization have included the acquisition of 2D US image series to generate vol-

umetric datasets [94, 95], optical or magnetic tracking of the 2D US transducer to

reconstruct 3D images [96, 97, 98], and fusion of US and pre-operative CT or MRI

images [99, 100, 101].

Several US transducers have been employed for cardiac applications. Until re-

cently, when their use for interventional guidance has emerged [102, 103], trans-

thoracic echocardiography (TTE) probes were mainly used for diagnosis and intra-

operative patient monitoring. However, during an intervention, the surgeon needs

to manipulate the instruments at the same time as the US transducer, leading to a

cumbersome workflow. As an alternative, trans-esophageal echocardiography (TEE)

probes [104] have been widely employed, enabling cardiac image acquisition from

the esophagus with remote probe manipulation. Similarly, for intracardiac tissue ab-

lation procedures, intracardiac echocardiography (ICE) probes have also been used

[100]. However, given the proximity of the transducer to the imaged tissue, ICE

images have a limited field of view and are difficult to interpret without additional

anatomical context.

Magnetically tracked 2D TEE has also been employed for intra-procedure guidance
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[105]. This technology, as described in the upcoming chapters, is a fundamental

feature of the surgical guidance environment proposed in this thesis. The position

and orientation of the US transducer is recorded, enabling visualization of the acquired

images relative to the tracked surgical instruments. Moreover, recent developments

in US technology have led to the launching of 3D TEE transducers. However, the

field of view is small, restricting the visualization of both surgical tools and targets in

the same volume during guidance. To ameliorate these disadvantage, Gao et el. [106]

have proposed a rapid registration technique of 3D TEE data to X-ray fluoroscopy

images for guidance of cardiac procedures.

1.3.2 Segmentation and Anatomical Modeling

Although image-guided surgery (IGS) typically employs medical imaging for guid-

ance, the image datasets can be quite large, making them difficult to manipulate in

real time. A common approach is to extract the information of interest and gener-

ate models that can be used to plan the procedures and provide visualization during

guidance. Anatomical models consisting primarily of a surface of the organ of inter-

est extracted from the volume using image segmentation are commonly employed in

IGS. A large and continuously growing body of literature is dedicated to image seg-

mentation, ranging from low-level techniques such as thresholding, region growing,

clustering methods, and morphology-based segmentation to more complex, model-

based techniques. A review of these methods can be found in [107].

Anatomical models employed for cardiac guidance are usually obtained from

pre-operative MRI or contrast-enhanced CT datasets. While manual segmentation

has been accepted as the gold-standard approach for segmentation, given the su-

perior soft tissue contrast available in the MR and CT images, various semi- or

fully automatic techniques available in open-source packages, such as ITK-SNAP

(http://www.itksnap.org/), can also be employed. Moreover, several model-based

techniques, including classical deformable models [108, 109], level sets [110], active

shape and appearance models [111, 112], and atlas-based approaches [113, 114] have

also been explored. Provided a sufficiently large database is available, a statistical



13

shape atlas can be generated and fitted to a new subject’s clinical image using non-

rigid registration [115]. These modeling techniques were initially developed to enable

the quantification of left ventricular ejection fraction for diagnostic purposes, and

were shown to yield results more rapidly than manual segmentation, while maintain-

ing anatomical accuracy [115]. Subsequently, similar methods were used [116] to build

subject specific heart models to be employed during procedure guidance. In Chap-

ter 4, a method for generating pre-operative, subject-specific heart models capable of

predicting the dynamic location of the mitral valve annulus is presented, for use in

the guidance of minimally invasive mitral valve interventions.

Surface extraction [117] is a trade-off between the fidelity of the surface and the

amount of polygonal data used to represent the organ model: the denser the surface

mesh, the better the surface features are preserved, but at the expense of manipulation

times. These limitations are addressed via decimation — an algorithm that identifies

surface regions with low curvature and replaces several small polygons with a larger

one [118]. This post-processing step reduces the amount of polygonal data, while

preserving the desired surface features.

Anatomical models are often augmented with functional information. For exam-

ple, electro-physiological information can be mapped onto a surface model of the

heart [119] or a contraction force distribution can be superimposed onto a left ven-

tricular model [120]. The former can be used to identify arrhythmia-related sites,

while the latter could depict regions of low myocardial contractility. Other groups

have employed similar modeling techniques to assess cardiac function under differ-

ent conditions. Pop et al. [121] conducted a combined theoretical and experimental

study to characterize post-infarct scars in porcine heart models, Sermesant et al. [122]

developed an electromechanical heart model to predict the effects of cardiac resyn-

chronization therapy (CRT), and Fleureau et al. [123] constructed a hybrid model of

the left ventricle to assess regional cardiac function in patients with heart failure.

The advances in computing technology and the advantage of the power of the

graphics processing unit (GPU) have allowed for the construction of four-dimensional

(4D) (i.e. 3D + time) heart models using volume rendering of pre-operative MRI and

CT datasets [124]. These techniques allow the user to appreciate the full 3D attributes
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of the pre-operative images, while maintaining all the original data, rather than dis-

carding most of it during surface extraction using classical segmentation methods.

1.3.3 Surgical Instrument Localization and Tracking

Most interventions require precise knowledge of the position and orientation of

the surgical instrument with respect to the target at all times during the procedure,

making the localization system an essential component of any image-guided interven-

tion platform. Prior to the development of real-time tracking systems, stereotactic

frames were employed in neurosurgery to provide a direct spatial relationship be-

tween the physical patient, the pre-operative images, and the surgical instruments

mounted and guided in the same coordinate system [125, 77]. As computers became

more powerful, new instrument localization techniques were developed. In the early

stages, mechanical tracking devices consisting of multi-arm systems whose kinematics

could be determined and used to infer the position and orientation of the probe [126]

were employed. However, their use diminished, as they were bulky and intrusive to

the clinical workflow. In the early 1990s, several groups [127, 128] proposed the use

of sonic triangulation systems for instrument tracking. These systems suffered from

speed of sound fluctuations induced by humidity and temperature variations in the

environment, as well as limitations related to the optimal distance between the trans-

mitter and the receiver, which allowed measurable differences in the time-of-flight to

enable accurate tracking [129].

The tracking technologies most frequently employed in IGI use either optical [91]

or magnetic [130, 131, 132] approaches (Fig. 1.3). Common optical tracking sys-

tems (OTS) include the Micron Tracker (Claron Technologies, Toronto, Canada), the

Optotrak 3020 (Northern Digital Inc, Waterloo, Canada) [133, 134], the Flashpoint

5000 (Boulder Innovation Group Inc., Boulder, Colorado) [135, 136, 137], and the

Polaris (Northern Digital Inc.) [138, 139]. In spite of their tracking accuracy on the

order of 0.5 mm [91], they require an unobstructed line-of-sight between the trans-

mitting device and the sensors mounted on the instrument, which prevents their use

for within-body applications. As such, their application is limited to procedures per-
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formed outside the body, or interventions where the rigid delivery instruments extend

outside the heart or thoracic cavity.

Magnetic tracking systems (MTS), on the other hand, do not suffer from such

limitations and allow the tracking of flexible instruments inside the body, such as

a catheter tip [140], endoscope [131, 141] or TEE transducer [105]. However, their

performance may be limited by the presence of ferromagnetic materials in the vicinity

of the field generator, or inadequate placement of the “surgical field” within the

tracking volume of the MTS. Three magnetic tracking systems typically used in IGI

include the NDI AuroraTM (Northern Digital Inc.), the 3D Guidance system from

Ascension (Burlington, VT), and the transponder-based system developed by Calypso

Medical Systems (Seattle, WA). As mentioned earlier, magnetic tracking technologies

have been employed extensively in the work presented in this thesis, to track both rigid

(e.g. pointers, valve-guiding tools or fastening devices), as well as flexible instruments,

including catheters or TEE transducers.

Fig. 1.3: Commonly employed optical a) Polaris SpectraTM from NDI and b) Micron
TrackerTM from Claron Technologies (Toronto, Canada), and magnetic tracking systems: c)
AuroraTM from NDI and d) 3D GuidanceTM from Ascension. Images courtesy of Northern
Digital Inc., Claron Technologies, and Ascension.
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In addition to optical and magnetic tracking, image-based tracking can also be

employed. Novotny et al. [142] proposed a detection technique to identify the position

of surgical instruments using 3D real-time US imaging. Their algorithm searches the

US image volume for long, straight objects to identify the axis of the instruments, and

determines their position and orientation based on passive markers attached to the

instrument shaft. This technique was implemented on the GPU for rapid execution

and enabled nearly real-time instrument tracking at a 3D US image frame rate of

26 Hz. In vitro experiments revealed a 1.8 mm and 1.1◦ accuracy in translation

and orientation, respectively. Moreover, subsequent in vivo studies demonstrated

successful tracking inside a beating swine heart [103].

1.3.4 Data Integration

Image registration is the enabling technology for the development of surgical nav-

igation environments. It plays a key role in establishing the relationship between

the virtual environment (pre- and intra-operative images and surgical tool represen-

tations), and the physical patient [143]. Initially, registration was defined as the

process of aligning images such that corresponding features can be easily analyzed

[144]. However, over time, the meaning of the term has expanded to include the

alignment of images, features or models with other features or models, as well as

with corresponding features in the physical space. The latter is known as “world”

or subject/patient registration and it determines the relationship between the virtual

environment and the subject.

1.3.4.1 Landmark-based Registration

Registration techniques vary from fully manual to completely automatic. A com-

mon manual approach is via landmark-based registration, that consists of the selection

of homologous landmarks in multiple datasets. This rigid approach is employed to

perform the world registration in vitro, for studies aimed at evaluating the navigation

accuracy of newly-developed guidance environments [145, 146]. Landmarks identified

in the pre-procedural CT image of a phantom are matched to their physical coun-
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terparts using a tracked pointer. However, considering that such rigid landmarks are

very difficult to identify in a pre-operative heart image and also within the patient’s

heart during the intervention, other registration methods may be preferred.

1.3.4.2 Geometry and Intensity-based Registration

Automatic registration methods require little or no input from the user and are

generally classified into intensity- and geometry-based techniques. Intensity-based

methods determine the optimal alignment using different similarity relationships [147,

148] among voxels of the multiple image datasets. Examples are the algorithms

developed by Huang et al. [101, 149], which use normalized mutual information to

register intra-operative 2D or 3D US images to 3D CT or MR images of the heart

acquired pre-operatively.

Geometry-based techniques provide a registration using homologous features or

surfaces defined in multiple datasets. One of the first algorithms was introduced

by Pelizzari et al. [150] and is known as the “head-and-hat” technique. In many

ways this algorithm is a precursor of what is now commonly known as the iterative

closest point (ICP) method introduced independently under its current name by Besl

and McKay [151]. Several variations of this technique are often employed in cardiac

applications. Ma et al. [152] have proposed a method that uses the epicardial surface

of the left ventricle and centerline of the ascending aorta to register intra-operative

3D US datasets to the corresponding pre-operative 3D MR datasets.

In Chapter 4 another feature-based registration approach is proposed that employs

the mitral and aortic valve annuli, identified both pre- and intra-operatively from

MR datasets and magnetically tracked 2D TEE, respectively, to register pre-operative

cardiac models to the intra-operative environment for valvular interventional guidance

[153]. An extension of this algorithm has been recently employed to study the peri-

operative migration of the heart during robot-assisted CABG procedure workflow

[154] and to predict the intra-operative location of the target vessel during the same

procedures [155], as described in Chapter 6 and Appendix A, respectively.
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1.3.4.3 Deformable Registration

Due to the soft tissue nature of the heart, deformable registration techniques

have been employed extensively for cardiac image registration. Wierzbicki et al.

[116] used a non-rigid, free-form deformation approach to extract the motion between

successive 3D image volumes of the heart acquired throughout the cardiac cycle us-

ing electrocardiogram (ECG) gating. Similar techniques were employed to construct

statistical-shape atlases of the heart by co-registering multiple patient MR images to

a high-resolution cardiac MR dataset [156, 111]. Such atlases can be further used

to generate subject-specific models of future subjects’ hearts via registration-based

segmentation [157, 158].

While these techniques provide robust frameworks for accurate registration of

cardiac images, deformable registration algorithms may be computationally expen-

sive and hence inefficient for use during time-critical interventional procedures [47].

Similar issues were raised by Dr. Russell Taylor from Johns Hopkins University at

the Workshop on Image-guided Interventions and Robotics at the 12th annual Medi-

cal Image Computing and Computer-Assisted Interventions conference (London, UK,

2009). Similar observations were reiterated by Yaniv et al. [147] when establishing

the criteria for registration evaluation for interventional guidance, which include per-

formance time, alignment accuracy, robustness, user interaction, and reliability [147].

A thorough description of image registration for interventional guidance is provided

in chapters 6 [147] and 7 [159] of the book by Peters and Cleary [160], and additional

references are available in Hajnal et al. [161].

1.3.5 Visualization and Display

1.3.5.1 Visualization Platforms

Visualization is an important component of any surgical guidance platform. What-

ever the adopted approach may be, it must present the surgical scene in a three-

dimensional fashion and provide a high fidelity representation of the surgical field.

For most closed-chest cardiac interventions, this information cannot be accessed via
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direct vision by the clinician.

Different research groups have employed various custom-developed environments

that best suited their applications [162] and were iteratively optimized to address sub-

sequent challenges identified during their use [163]. Among the visualization packages

reported in the literature, AnalyzeTM , 3D-Slicer, and Image-Guided Surgery Toolkit

(IGSTK) are examples of some which have benefited from extensive support over the

past decade.

Fig. 1.4: Surface-rendered model of the left atrium and volume-rendered peripheral vascu-
lature obtained from a clinical MRI dataset (left panel), employed here to obtain measure-
ments of the aorta from a volume-rendered image dataset (right panel). Image courtesy of
David R. Holmes III, Mayo Clinic and Graduate School, Rochester, MN.

AnalyzeTM (Biomedical Imaging Resource, Mayo Clinic, Rochester, USA) [164]

has grown into one of the longest surviving visualization packages capable of bringing

together a wide variety of tools for generalized manipulation, measurement and visu-

alization of multi-dimensional medical images within an interactive and user-friendly

environment (Fig. 1.4).

The 3D-Slicer package (Brigham and Women’s Hospital, Harvard University,

Boston, USA) [165] makes extensive use of open-source libraries such as the Visualiza-

tion Toolkit (VTK) [166] and the Insight Toolkit [167]. By embracing the open-source

philosophy and receiving support from the image guidance community, this package

has found applications in many laboratories around the world.

The IGSTK platform (Georgetown University, Washington, DC) [168] was devel-

oped for image-guided interventions and contains basic components to build specific
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applications [169] (Fig. 1.5). It also supports several tracking systems, including

models from NDI, Ascension, Claron, and Atracsys (Renens, Switzerland).

Fig. 1.5: IGSTK-based navigation graphical user interface employed during a clinical lung
biopsy procedure. Image courtesy of Ziv Yaniv, PhD, Georgetown University, Washington
DC.

Other examples include the Medical Imaging Interaction Toolkit (MITK) (Ger-

man Cancer Research Center, Heidelberg), and the AtamaiViewer (Robarts Research

Institute, London, Canada). The MITK is another open-source platform free for

development of interactive medical image-processing software. Its newly released

image-guided therapy module (MITK-IGT) supports various tracking systems and

enables the development of image-guided applications [170]. The AtamaiViewer com-

prises a user interface based on Python and VTK and integrates a wide variety of

components for image-guided applications, including multi-modality image visualiza-

tion, anatomical modeling, and surgical tracking [171]. A more detailed description

of the various functionalities of the AtamaiViewer is provided in Chapter 2, together
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with the primary application implemented within the platform — the model-enhanced

US-assisted surgical guidance environment.

1.3.5.2 Display Technology

In addition to robust visualization, choosing the most appropriate information

display technology is another key aspect of an image guidance platform. Although

we live in a technology-driven era, it could become overwhelming for surgeons to

visualize, analyze, interpret, and fuse all the information available during procedures

to allow optimal therapy delivery. VR and AR environments have provided solutions

for enhanced visualization, ranging from fully immersive environments that do not

provide the user with any real display of the surgical field, to environments that

combine computer graphics with a direct or video view of the real surgical scene. The

first head-mounted display (HMD)-based AR system was introduced by Sutherland

et al. in 1968 and combined real and virtual images by means of a semi-transparent

mirror. Operating binoculars and microscopes were also augmented using a similar

approach, as described by Kelly et al. [172] and Edwards et al. [173] for applications

in neurosurgery, and further improved and exploited by Birkfellner and colleagues

[174, 175] for maxillofacial surgery.

Distinct from the user-worn devices, AR window-based displays allow augmen-

tation without using a tracking system. This technology emerged in 1995 with the

device introduced by Masutani et al. [176]. The proposed system consisted of a

transparent mirror placed between the user and the object to be augmented. An-

other example was the tomographic overlay described in [177, 178], which made use

of a semi-transparent mirror to provide a direct view of the patient together with a

CT slice correctly positioned within the patient’s anatomy. A comprehensive review

of medical AR displays is provided by Sauer et al. [179] and Sielhorst et al. [180].

Despite these advances, cardiac interventional guidance is still hampered from

a visualization perspective, as it uses traditional OR displays to make imaging in-

formation available to the physician. Besides the minimally invasive, robot-assisted

procedures performed using the da VinciTM surgical system, which provides the sur-
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geon with a real-time stereoscopic view of the surgical field, most ORs still employ

standard overhead monitors for information display. These devices are 2D displays

and cannot efficiently represent 3D data.

Lo et al. [181] explored several avenues toward optimizing the display delivery of

a VR-enhanced US navigation environment in vitro, using phantom experiments, and

in vivo, during pre-clinical swine studies. These options included a simple computer

monitor display, standard OR overhead monitors accessible to each member of the

clinical team, HMDs worn by the surgeons, which provided a fully immersed repre-

sentation of the navigation environment, and a dual-projector stereoscopic display.

Three different display paradigms were also tested: a simple user-operated display

that integrated two fixed orthogonal views of the surgical scene; an interactive stereo-

scopic display offering views of the surgical environment updated in real-time by

optically tracking the HMDs; and a dynamic, user-controlled display that allowed

the operator to adjust the camera angle as needed during navigation [181]. Most

users, including collaborating surgeons, were comfortable using overhead monitors,

but found the HMDs more intuitive, despite their progressive discomfort experienced

with prolonged use.

A similar stereoscopic visualization paradigm was explored by del Nido’s group

[182] at Harvard working on US-guided intracardiac interventions on the beating

heart. Their study investigated the feasibility of two display systems for intracardiac

navigation of a catheter-based ASD patch delivery in swine models: a stereoscopic

3D echocardiography display and a standard 3D US view. The former technology

led to shorter procedure times and increased navigation precision, suggesting that

stereoscopic displays have the potential to improve safety of intracardiac, beating-

heart interventions.

1.4 Accuracy Considerations

From a clinical perspective, the success of an intervention is assessed according

to the therapeutic outcome. From an engineering view point, navigation accuracy is

constrained by the limitations of the IGI system. The overall targeting error within
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an IGI framework is dependent on the uncertainties associated with each of the com-

ponents [183]. Jannin et al. [184] emphasized that a proper IGI system validation

should estimate the errors at each stage in the image-guided therapy process, and

study their propagation through the entire workflow. Following these suggestions,

the accuracy challenge can be posed as a series of questions: What is the tolerable

clinical error associated with the procedure? How accurate is the pre-operative mod-

eling and planning? How accurate is the image-/model-to-patient registration? How

accurate is the surgical tracking system? What is the overall targeting accuracy of

the IGI system?

1.4.1 Clinical Accuracy Constraints

While a proper formulation is currently lacking, clinical accuracy may be defined

as the maximum error that can be tolerated during an intervention without compro-

mising therapy outcome or leading to increased risk to the patient. Such tolerances

are difficult to define, as they are procedure and patient specific. Moreover, in vivo

experiments with properly controlled variables are required to arrive at a robust mea-

sure of the clinically-imposed accuracy. This is, however, a very challenging task for

most in vivo interventions. Instead, researchers often follow the “ad-hoc” approach

and state that “according to the expertise of our collaborating clinicians, an overall

accuracy on the order of 5 mm or less is considered acceptable for the application

[152, 153].” While this may be an adequate “rule of thumb” for some applications, it

may lead to significant over- or under-constraints for others.

Once the clinical accuracy constraints are identified, the next step is to evaluate

the engineering constraints imposed by the limitations of the system, hoping that the

technology meets the clinical requirements.

1.4.2 Engineering Accuracy Considerations

The translation of clinical accuracy expectations into engineering accuracy con-

straints is intuitive in some cases. In other situations, however, it may be difficult to

identify exactly when the limitations of the image-guidance platform start to affect
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clinical performance. For percutaneous aortic valve implantation, for example, it is

difficult to estimate exactly how accurately the coronary ostia need to be localized

to allow optimal stent placement. Nevertheless, the accuracy requirement will dic-

tate the engineering approach used — magnetic TEE tracking may be sufficient for

ostia localization within 5 mm, but not within 1 mm. In these cases, simulation

experiments can be employed to estimate accuracy needs.

According to Jannin’s recommendations [184], the overall system accuracy de-

pends on the limitations of its integrated components. Therefore, it is helpful to

consider a typical image guidance environment as consisting of several stages —

modeling, registration, surgical tracking, and overall targeting — and assess their

individual accuracy constraints. An overview of the accuracy considerations associ-

ated with the model-enhanced US-assisted surgical guidance environment, together

with several observations related to monitoring, improving and providing accuracy

feedback to the surgeon, will be provided in Chapter 7.

1.5 From the Laboratory into the Operating Room

1.5.1 Logistics

Before being introduced into the OR, new image-guidance platforms must be ex-

haustively assessed in terms of both their visualization and navigation capabilities.

Image processing algorithms employed for segmentation, registration or modeling can

be evaluated using non-invasively acquired clinical images of either healthy volunteers

or patients [115, 158, 185]. However, the assessment of invasive components, such as

tool-to-target navigation, must be evaluated using in vitro clinically-relevant settings.

For a true accuracy assessment, the experimental design must ensure proper control

of all variables, repeatability of the experimental protocol, as well as precise knowl-

edge of both the surgical tool and target locations. While an in vivo, beating heart

assessment is preferred, this would entail invasive implantation of tracked targets

inside the in vivo porcine myocardium, closing of the thoracic cavity, pre-operative

image acquisition, and ultimately intra-operative navigation. As an alternative, sev-
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eral groups have resorted to the use of representative phantoms for in vitro simulation

and evaluation.

1.5.1.1 In vitro Evaluation

Nadkarni et al. [186] used 3D dynamic phantoms of the deforming patient my-

ocardia to quantify temporal jitter artifacts in ECG-gated dynamic echocardiography,

as well as phantoms mimicking the pulsatile flow for assessment of novel 2D and 3D

intravascular ultrasound imaging techniques [187].

Holmes et al. [188] developed an approach to build realistic patient-specific

anatomic models, so that the guidance procedure could be validated in vitro without

introducing unnecessary risks to patient or animal models. Starting with a pre-

procedural cardiac CT scan, they segmented the blood pool of the left and right

atria, converted them into polygonalized models, and used them to build thin-walled

patient-specific blood-pool models in a stereo-lithography system. These models were

then embedded in a platinum silicone material with similar echogenecity as human tis-

sue, resulting in phantoms mimicking patient-specific cardiac anatomy with sufficient

fidelity.

As a next step toward clinical application, Suematsu et al. [189] used ex vivo

porcine hearts to evaluate the feasibility of real-time 3D echocardiography-guided

ASD repair procedures. Similarly, we have documented several qualitative assess-

ments of our model-enhanced US-assisted guidance environment in vitro using both

a cardiac intervention phantom [190, 104], as well as ex vivo porcine hearts, as de-

scribed in Chapter 2. In addition, a thorough quantitative assessment of the targeting

accuracy under model-enhanced US guidance was performed in vitro using a beating

heart phantom [146] as presented in Chapter 3.

1.5.1.2 Initiating Clinical Translation

The initial clinical translation usually consists of in vivo evaluation using animal

models. This stage helps identify challenges specific to the operating room that had

not posed major concerns in the laboratory environment. While all system compo-
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nents need to be seamlessly integrated within the IGI platform, it is easy to overlook

the fact that they all need to physically fit inside the OR together with the rest of the

equipment and without obstructing the workflow. The invasion of technology into

the clinical environment is often referred to as the “technology foot-print” and the

key objective is to reduce its impact and ensure a smooth transition.

This concept also applies to the various algorithms employed. Although non-

rigid registration techniques are thought to be more reliable for in vivo soft tissue

applications, they are computationally prohibitive for use during surgical procedures

[47]. The choice of the appropriate image- or model-to-patient registration technique

for intra-operative use is often the best compromise of accuracy for OR feasibility.

Achieving adequate anatomical alignment in the region of interest is sufficient to

provide context for tool-to-target navigation, and further rely on real-time intra-

operative imaging for on-target positioning [140].

Surgical instrument localization is indispensable in image-guided environments.

However, while optical tracking systems pose problems due to the interruptions of the

line-of-sight between the emitters and the tracked tools, magnetic tracking systems

are often affected by large equipment present in the OR. Although a “magnetically

clean” environment can be ensured in the laboratory, the presence of ferromagnetic

objects in the OR can compromise the accuracy of MTS in clinical practice. Other

considerations involve the placement of the field generator such that it does not

interfere with the access to the surgical field, but yet is properly positioned to ensure

the subject’s heart is located within the optimal tracking volume. For a suitable

setup, the field generator can be either inserted within the mattress of the OR table

[191] or placed underneath the table [154], as later reiterated in Chapter 7.

1.5.2 Psycho-physical Effects: Visualization and Perception

The fundamental objective of surgical platforms is to provide the surgeon with a

more intuitive relationship between the medical imaging data, the surgical field, and

the patient. Given the integration of several data sources, these environments may

result in comprehensive displays that have the tendency to overload the cognitive
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channels of the user and consequently hinder the interpretation of the images. Here

we identify several factors to be considered when developing new surgical visualization

and navigation paradigms: image fusion, 3D data visualization and interaction, and

navigation and hand-eye coordination.

1.5.2.1 Image Fusion

Image fusion is the integration of multi-modality images registered to one another

within a common coordinate space for simultaneous visualization. Intra-operative

imaging modalities such as fluoroscopy or US provide real-time information, but to

be meaningful, they often need to be registered to high quality pre-operative images

to be interpreted in the appropriate context. These displays may also superimpose

diagnostic information into the guidance environment, such as the electro-anatomical

models generated within CartoMergeTM [100]. Instead of looking at several displays,

each corresponding to individual imaging devices, a unified display integrating all the

required data may streamline the surgical workflow.

1.5.2.2 3D Data Visualization and Interaction

Real surgical fields are 3D scenes, and the visualization environments employed in

lieu of direct vision must portray these scenes accordingly to ensure proper perception

of the correct spatial relationship between different structures [192]. It is a common

challenge to provide the user with the correct depth perception, especially when struc-

tures are located within other structures. Such examples include the visualization of

an arrhythmia-inducing site requiring ablation located on the endocardial surface of

the left atrium, or a coronary vessel requiring grafting embedded within the epicardial

surface of the heart. When augmenting stereoscopic video images with 3D computer

graphics representations of underlying structures, the latter often appear above the

surface represented by the video, misleading the user. To address this issues, Lerotic

et al. [193] proposed a novel pq-space based non-photorealistic rendering technique to

provide see-through vision of the embedded virtual object, while preserving the de-

tails of the exposed anatomical surface. As an alternative, the video can be “clipped”
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to generate a keyhole that enables visualization of the underlying structure, similar

to the work proposed by Kutter et al. [194] for volume-rendered displays.

1.5.2.3 Navigation and Hand-eye Coordination

The desired consequence of 3D data visualization is improved hand-eye coordi-

nation. In conventional cardiac procedures, where a direct view of the surgical field

is available, the surgeon manipulates the instruments in a coordinate system fixed

with respect to the patient. However, during minimally invasive procedures the sur-

geon uses the virtual surgical display for navigation, where the image is displayed in

a coordinate system not intuitively related to the patient, or is oriented differently

relative to the direct patient view. When studying the effect of display location on

task performance, Hanna et al. [195] concluded that the optimal position and ori-

entation of the display was in front of the operator, above the surgical field and at

hand level, ensuring direct correspondence between the real body axes of the patient

and those of the virtual surgical field. Some hardware displays that suit these re-

quirements and have the potential to provide improved hand-eye coordination during

minimally invasive procedures include semi-transparent screens positioned above the

patient [177, 196] or HMDs [197, 198] worn by surgeons.

1.5.3 Pre-clinical and Clinical Applications

Although the concepts of virtual and augmented medical imaging environments

have been around for quite some time, their application in interventional cardiac

guidance has expanded over the past years, leading to several pre-clinical and clinical

successes in terms of surgical guidance platforms.

1.5.3.1 Transapical Aortic Valve Implantation

Transapical aortic valve implantations have received significant attention over the

past few years, and such procedures have been proved successful under real-time MR

imaging, as well as real-time cone-beam CT and US imaging.
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Real-time MRI Guidance: McVeigh et al. [199] have described an effective in-

terventional navigation platform for planning and guiding transapical aortic valve

implantations. Their system employs real-time MRI guidance using a closed-bore sys-

tem with shorter depth and a wider opening (Fig. 1.6). This interventional platform

provides continuously updated images of the heart with superior soft tissue contrast

and enables real-time monitoring of therapy delivery using high-quality images [200].

To date, the system has also been employed in a number of other pre-clinical studies

in swine models, including intra-myocardial injection of stem cells [201], endovascu-

lar repair of abdominal aortic aneurysms [202], atrial-septal puncture and balloon

septostomy [203], as well as catheterization procedures in humans [204].

Fig. 1.6: Interventional cardiac MRI suite employing a modified clinical scanner with a
shorter bore and a wider opening. Image courtesy of Elliott McVeigh, PhD, Johns Hopkins
University, Baltimore, MD.
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Real-time Fluoroscopy-TEE Guidance: Walther et al. [205] have reported the

use of real-time fluoroscopy guidance combined with echocardiography to guide the

implantation of aortic valves via the left ventricular apex during rapid ventricular pac-

ing. The guidance environment integrates both a planning and a guidance module.

The pre-operative planning is conducted based on DynaCTTM Axiom Artis (Siemens

Inc., Erlangen, Germany) images and interactive anatomical landmark selection to

determine the size and optimal position of the prosthesis. The intra-operative flu-

oroscopy guidance allows tracking of the prosthesis and coronary ostia, while TEE

enables real-time assessment of valve positioning [206]. The main benefit of these

contemporary cone-beam CT imaging systems is their ability to provide 3D organ

reconstructions during the procedure. Because the fluoroscopy and CT images are

intrinsically registered, no further registration is required to overlay the model of

the aortic root reconstructed intra-operatively with the real-time fluoroscopy images

[207]. Moreover, since this therapy approach makes use of imaging modalities already

employed in the OR, it has the potential to be adopted as a clinical standard of care

for such interventions.

1.5.3.2 Ultrasound-guided Robotic Intracardiac Surgery

Real-time 3D US imaging has not only enabled the performance of new surgical

procedures [102], but also made possible real-time therapy evaluation on the beat-

ing heart. However, the rapid cardiac motion introduces serious challenges to the

surgeons, especially for procedures which require the manipulation of moving intrac-

ardiac structures. Howe et al. [208] have proposed the use of a 3D US-based robotic

motion compensation system to synchronize instrument with the motion of the heart.

The system consists of a real-time 3D US tissue tracker that is integrated with a 1

DOF actuated surgical instrument and a real-time 3D US instrument tracker. The

device first identifies the position of the instrument and target tissue, then drives the

robot such that the instrument matches the target motion.

For mitral valve repair procedures, the motion compensation system was simplified

according to the clinical observation that the mitral annulus follows mainly a one-
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dimensional translation along the left atrium - left ventricle axis. Two instruments

were introduced through the wall of the left atrium: the first deployed an annuloplasty

ring with a shape-memory-alloy frame, while the second applied anchors to attach

the ring to the valve annulus. This approach allows the surgeon to operate on a

“virtually motionless” heart when placing the annuloplasty ring and anchors. Initial

studies have demonstrated the potential of such motion-compensation techniques to

increase the success rate of surgical anchor implantation. Moreover, in a recent study

[209], the group has also reported sub-millimeter accuracy in tracking the mitral valve

using a similar motion-compensation approach for catheter servoing.

1.5.3.3 Model-enhanced Ultrasound-Assisted Guidance

The development of model-enhanced US assisted guidance draws its origins from

the principle that therapeutic interventions consist of two processes: navigation, dur-

ing which the surgical instrument is brought close to the target, and positioning,

when the actual therapy is delivered, by accurately placing the tool on target. The

integration of pre- and intra-operative imaging and surgical tracking enables the im-

plementation of the navigation-positioning paradigm formulated in this work and fur-

ther explored in the chapters to follow. As presented in Chapter 2, the pre-operative

anatomical models act as guides to facilitate tool-to-target navigation, while the US

images provide real-time guidance for on-target tool positioning. This platform has

been employed pre-clinically to guide several in vivo interventions in swine models

[191], including mitral valve implantation and ASD repair, on the beating heart under

direct intracardiac access achieved using the Universal Cardiac Introducer [210]. The

implementation of the model-enhanced US guidance technology into the pre-clinical

setting is described in Chapter 5.

1.5.3.4 Electro-physiology and Ablation Therapy Guidance

One of the systems available on the market designed to provide guidance support

for minimally invasive cardiac ablation therapy is the CartoTM package (Biosense

Webster, Haifa). Traditionally, guidance for these procedures has been provided using
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bi-plane fluoroscopy images, but these cannot show the soft tissue in a meaningful

way. The physician is required to mentally fuse the navigation data with the electrical

signals collected by the reference electrodes and deduce the location of the catheter

in the heart during navigation.

To overcome some of these limitations, the CartoTM system tracks the catheter

using a magnetic sensor, enabling the acquisition of electrical signals from the en-

docardial surface of the heart together with their 3D spatial location. These data

allow the construction of patient-specific electro-anatomical models. Although the

reconstructed anatomy was initially rather coarse, it still provided the clinician with

intuitive navigation information and real-time feedback on therapy progress [211].

Subsequently, the system was modified to enable the use of more realistic models.

Patient-specific left atrial anatomy was extracted from high-quality pre-operative MR

or CT images. These models were then integrated into the patient coordinate system

by registering them to the endocardial surface points recorded using the tracked

catheter. This technology was developed by Siemens Corporate Research [100] in

collaboration with Biosense-Webster and later commercialized as the CartoMergeTM

platform.

1.5.3.5 Assessing and Restoring Cardiac Function

Myocardial Scar Imaging: Coronary artery revascularization (CAR) and CRT

may improve systolic performance, survival, and quality of life in patients with left

ventricular dysfunction. However, it has been shown that the presence and extent

of myocardial scar [121] within the relevant vascular targets may negate clinical re-

sponse to these interventions [212, 213, 214, 215]. 3D vascular imaging techniques,

such as coronary CT or MR angiography, have been used to characterize vascular tar-

gets [216, 217] and to plan both CAR and CRT interventions [218, 219, 220]. More

recently, these vascular images have been fused with spatially matched 3D myocardial

scar imaging to provide 3D maps of both relevant vascular structures and related my-

ocardial scar (Fig. 1.7) [221]. While visual registration of these structures appears to

influence therapeutic decisions, the role of these hybrid images for guidance of CAR
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or CRT needs further investigation.

Fig. 1.7: Volume rendering of fused 3D myocardial scar imaging and coronary MRA datasets
in two patients with prior myocardial infarction referred for CRT. Patient in (a) has a lateral
wall vein without underlying scar despite extensive infarction of the anterior wall. Patient
in (b) shows extensive infarction of the lateral wall, but a viable anterior wall beneath
the anterior interventricular vein. Images courtesy of James White, MD, Robarts Research
Institute, London, ON.

Revascularization and Resynchronization Therapy: Revascularization pro-

cedures are performed using either percutaneous, fluoroscopically-guided delivery of

coronary stents, or surgically, through CABG. The pre-procedural vascular-scar mod-

els have the potential to guide the selection of vascular targets based on the viability of

the tissue in the respective territories [222]. Therefore, a simultaneous, synchronized

display of such models during fluoroscopic procedures may be clinically valuable.

This information is also relevant to the delivery of the coronary sinus pacemaker

leads for resynchronization therapy. These leads are fluoroscopically guided into

branches of the coronary venous system to advance the mechanical activation of

delayed myocardial segments. Ideally, the coronary sinus lead is delivered to the

most mechanically delayed myocardial segment that demonstrates an absence of scar.
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The accomplishment of this goal can be facilitated by the co-registration of multi-

component cardiac models to intra-operative fluoroscopy. However, future efforts in

the development of lead guidance approaches that integrate vascular models, scar

distribution, and activation maps must be invested.

Cellular-based Cardiac Regenerative Therapy: Although still under investi-

gation, cellular-based regenerative therapy continues to present an interesting poten-

tial for patients with ischemic myocardial injury. While the optimal delivery of this

therapy is uncertain, endocardial injection of the stem cells under image guidance is

commonly employed [223]. Knowledge of the injection target site relative to myocar-

dial scar morphology may therefore be crucial to the clinical success of this evolving

therapy (Fig. 1.8). This task could be facilitated by integrating MRI-derived 3D

scar models with real-time fluoroscopy during guidance.

Injection under direct MRI visualization has also been investigated [224]. This

technique not only provided enhanced soft-tissue characterization during catheter tip

placement, but also enabled the visualization of the super paramagnetic iron oxide

(SPIO)-labeled stem cell populations following delivery [225]. However, this approach

is resource intensive and its incremental clinical value beyond X-ray fluoroscopy guid-

ance remains to be determined.

1.6 Caveats in Cardiac Surgical Guidance Envi-

ronments

1.6.1 Equipment Constraints

The approach taken by McVeigh et al. [226] described earlier has demonstrated

the use of intra-operative MR imaging for interventional cardiac guidance. Moreover,

Rhode et al. [92] have reported their experience with combined real-time MR and X-

ray imaging for catheter navigation. Despite their real-time benefits and high-quality

images, these surgical suites are not only expensive and require special infrastructure
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Fig. 1.8: Cardiac MRI of a canine model used for planning an endocardial stem cell injection.
a) Delayed-enhanced image showing transmural antero-apical infarction caused by mid-LAD
ligation; b) and c) 3D segmentation of myocardial scar displayed together with delayed-
enhanced MR image; d) and e) Volume rendering of hybrid dataset including 3D MRA and
scar imaging. Images courtesy of James White, MD, Robarts Research Institute, London,
ON.

for implementation, but also hamper the clinical workflow due to their incompatibility

with traditional OR instrumentation.

The restrictive environment inside the beating heart also imposes constraints on

surgical tool design. If surgical tracking is employed, the delivery instruments must be

built or adapted from existing clinical tools, such that they incorporate the tracking

sensors [227]. In addition, most off-the-shelf surgical instruments do not comply with

the magnetically clean environment requirement imposed by the presence of magnetic

tracking technologies in the OR. Therefore, medical device manufacturers must be

involved into the project from the very start to design instruments that are both
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appropriate for the application and compatible with the guidance environment.

1.6.2 Calibration and Visualization Constraints

1.6.2.1 Spatial and Temporal Calibration

Assuming successful integration of the necessary hardware equipment into the

surgical suite, adequate calibration and synchronization of all data sources is yet

another challenge. All displayed images, models and surgical tool representations

must be integrated into a common environment, which, in turn, must be registered

to the patient. Moreover, several guidance platforms employ tracked US imaging, in

which case an additional calibration steps are required to ensure that the location

and geometry of the imaged features are accurately depicted [228, 105].

Besides spatial calibration, temporal synchronization between the information dis-

played in the visualization environment and the actual anatomy needs to be main-

tained during real-time visualization. While 3D heart models may be sufficient during

the procedure planning stage, minimally invasive, beating heart procedures may re-

quire the use of dynamic models “beating” in synchrony with the subject’s heart and

optimally registered to the real-time intra-operative images. Ideally, a high-fidelity

image guidance environment would enable image acquisition, registration, surgical

tracking, and information display at ∼ 30 frames per second. However, these pro-

cesses take time and in spite of the real-time intra-operative imaging, the virtual

information is necessarily delayed due to the latency of tracking and rendering [179].

The patient registration also needs to be updated in a nearly real-time fashion, lead-

ing to a trade off between accuracy, simplicity, and invasiveness [180]. Thanks to

the increasing computational power of modern GPUs, deformable image registration

algorithms have been optimized to yield accuracies on the order of 1-2 mm in a few

seconds [229, 230].

1.6.2.2 3D Data Representation

To appreciate the full 3D attributes of medical data, three major approaches

have been undertaken for surgical planning and guidance: slice rendering, surface
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rendering, and volume rendering. The slice rendering approach is the most commonly

employed in radiology. Clinicians often use this technique to view CT or MR image

volumes one slice at a time using the traditional ortho-plane display. This method

has been established as the clinical standard approach for visualizing and analyzing

medical images. However, this approach may not be optimal for navigation, as it only

provides information in the viewing plane and requires further manipulation of the

viewing planes to interactively scan through the acquired volume.

Surface rendering provides information beyond that offered via slice rendering and

shows three-dimensional representations of the structures of interest. The surfaces

are generated via segmentation, which is itself an obstacle, since the complex cardiac

structures cannot be easily segmented automatically. In addition, the segmentation

process involves a binary decision process to decide where the surface lies, which may

in turn affect the fidelity of the models.

Volume rendering techniques, on the other hand, utilize all of the original 3D

imaging data, rather than discarding most of it when surfaces are extracted using

segmentation. “Viewing rays” are cast through the intact volumes and individual

voxels in the dataset are mapped onto the viewing plane, maintaining their 3D rela-

tionship while making the display appearance meaningful to the observer (Fig. 1.9).

Recently, using GPUs, artifact-free, interactive volume rendering of medical datasets

were achieved [194] without compromising image fidelity.

1.6.3 User-dependent Constraints

Additional constraints associated with the development and implementation of

new visualization and navigation paradigms revolve around the interventionalist. In

minimally invasive interventions the guidance environment is the surgeon’s only vi-

sual access to the surgical site, raising the following questions: what information is

appropriate, how much is sufficient, when and how should it be displayed, and how

can the interventionalist interact with the data?

These environments are far from those clinicians have been accustomed to using.

After looking at chest radiographs or conventional views of the heart provided via
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Fig. 1.9: a) Volume rendered contrast-enhanced cardiac CT images, showing peripheral
vasculature; b, c) Procedure simulation showing volume rendered cardiac MR dataset aug-
mented with surgical instruments, displayed using different translucency levels for feature
enhancement; d) Fused cardiac MR and 3D US datasets, showing enhancement of the pre-
operative MR data. Images courtesy of Qi Zhang, PhD, Robarts Research Institute, London,
ON.

digital medical imaging, and after performing open chest surgery for decades, some

clinicians may be intimidated by the novelty of the VR and AR environments and find

the complex displays overwhelming rather than intuitive. The appropriate approach

is to make “the new” look as much like “the old”, gradually introducing new informa-

tion to avoid overload, employing standard anatomical views first and progressively
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establishing an intuitive transition toward 3D displays. This approach is expected

to provide training and sufficient time to explore and understand the guidance plat-

form. Moreover, the clinicians must be actively involved in the development of such

environments, as they can raise concerns that may unfortunately be overlooked by

the engineers.

Common paradigms for information manipulation and user interaction with clas-

sical 2D medical displays include windows, mouse pointers, menus and dials. Despite

their extensive use, these approaches do not translate well for 3D displays. In their

work, Bowman et al. [231] provide a comprehensive overview of 3D user interfaces

along with detailed arguments as to why 3D information manipulation is difficult.

Furthermore, Reitinger et al. [232] have proposed a 3D VR user interface for pro-

cedure planning of liver interventions. Both groups concluded that each procedure

requires a limited number of meaningful visualization poses suitable for the user.

Therefore, environments must be modified to control the degree of user interaction,

by identifying the necessary navigation information at each stage in the workflow and

ensure its optimal delivery without information overload [233].

1.7 Thesis Objectives

The global objective of this work is to demonstrate that a mixed reality envi-

ronment that integrates both pre- and intra-operative information can be developed

to provide the surgeon with the necessary visualization and navigation information

for minimally invasive therapy delivery inside the beating heart. Moreover, this sur-

gical guidance environment is based on a fundamental paradigm — the navigation-

positioning paradigm formulated in this thesis and described in Chapter 2.

The specific objectives are listed below in terms of the following research questions:

• Can a mixed reality environment be developed to replace the surgeons eyes and

provide sufficient guidance information to deliver therapy to targets located

inside the beating heart in absence of direct vision?

• What is the accuracy with which users can target specific locations using the
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model-enhanced US-assisted guidance environment in the context of both direct-

access, as well as catheter-guided interventions?

• Can pre-operatively acquired 3D and 4D medical images be used to generate

subject-specific anatomical models of the heart that can be integrated within the

virtual surgical environment to augment real-time intra-operative US imaging?

• How accurate should these models be to provide sufficient anatomical context

to enhance intra-operative navigation during off-pump cardiac interventions?

• What does the clinical workflow entail to accommodate the translation of model-

enhanced US guidance into the clinic and is this surgical environment clinically

feasible for guiding typical intracardiac procedures?

• What is the effect of the peri-operative workflow associated with these minimally

invasive procedures on the global position of the heart, not only in the context

of model-enhanced US-guided intracardiac interventions, but also in terms of

other minimally invasive applications?

• How can the information related to the global heart displacement be used to

improve pre-operative planning of other interventions, such as robot-assisted

CABG procedure, for example?

1.8 Thesis Outline

1.8.1 Chapter 2: Model-enhanced US-assisted Guidance En-

vironment Overview

This chapter describes the concept, design and initial implementation of the

model-enhanced US-assisted guidance platform. The overall platform architecture,

together with a series of experiments designed to demonstrate the feasibility of the

intended environment are presented, including US calibration assessment, preliminary

navigation experiments, as well as qualitative assessment of the navigation-positioning
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paradigm via in vitro and ex vivo investigations using a cardiac intervention phantom

and excised swine hearts, respectively.

1.8.2 Chapter 3: Quantitative Surgical Guidance Evaluation

A thorough quantitative assessment of the surgical navigation capabilities of the

proposed environment is described in this chapter. Using a beating heart phantom,

the targeting accuracy under model-enhanced US guidance is studied for procedures

simulating direct-access and catheter guided interventions, and compared to the out-

comes under model-assisted guidance, US image guidance alone, as well as endoscopic

guidance (used as a control modality, due to its resemblance to direct vision).

1.8.3 Chapter 4: Pre-operative Models for Mitral Valve In-

terventions

According to the navigation-positioning paradigm, virtual representations of the

subject’s anatomy provide context for the tool-to-target navigation. A method to

generate subject-specific heart models that predict the location of the mitral valve

with sufficient accuracy is presented, together with a technique to integrate these

models within the intra-operative environment to augment real-time US imaging.

1.8.4 Chapter 5: In vivo Pre-clinical Feasibility Studies

Following in vitro navigation evaluation and assessment of the model-enhanced

US environment using images of healthy subjects, this chapter describes the clinical

implementation of the environment in a pre-clinical setting, where it was employed to

guide in vivo mitral valve implantation and ASD repair procedures in swine models.
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1.8.5 Chapter 6: Heart Migration during Minimally Invasive

Procedures

A common assumption in IGS is that pre-operative information can represent

intra-operative morphology with sufficient fidelity. However, for cardiac interventions,

this assumption may be invalid, since the overall position of the heart itself may

change due to the stages involved in the peri-operative workflow. Here we study the

heart migration associated with two procedure workflows: model-enhanced US-guided

intracardiac interventions in swine models, and robot-assisted CABG interventions

in patients with coronary artery disease.

1.8.6 Appendix A: Predicting Intra-operative Target Vessel

Location

The research in this appendix, performed in collaboration with a fellow student

in the laboratory (Daniel S. Cho, Biomedical Engineering M.E.Sc. candidate). As

a follow-up on the clinical observations arising from the studies on heart migration

during robot-assisted CABG procedures, this work describes a method to predict

the intra-operative target vessel location based on the pre-operative CT information

and the peri-operative heart displacement data. The proposed technique is validated

using simulations of the clinically-observed heart migration patterns in vitro using a

heart phantom.
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Chapter 2

Model-enhanced Ultrasound

Guidance: Concept, Initial

Implementation, and Qualitative in

vitro Assessment

In an effort to reduce morbidity associated with cardiac interventions, we initiated

the development of an interventional guidance environment for off-pump cardiac in-

terventions. Our surgical navigation system employs a mixed reality environment that

integrates pre-operative anatomical modeling with real-time intra-operative US imag-

ing and surgical tool tracking, providing the surgeon with a broad range of valuable

information. This chapter provides an overview of our guidance system together with

the initial experiments designed to assess its pre-clinical performance.

This work is adapted from Linte CA, Moore J, Wiles, AD, Wedlake C and Peters TM. Virtual
Reality-Enhanced Ultrasound Guidance: A Novel Technique for Intracardiac Interventions. Journal
of Computer-Aided Surgery. 13(2):82-94. 2008.
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2.1 Introduction

Minimizing invasiveness inevitably leads to a more limited visual access to the

target tissues. This is especially true for intracardiac treatments where the goal is

to minimize the physical invasiveness of a full sternotomy. Since these procedures

require reaching targets inside the heart, direct visual access is simply not possible

while the heart is beating. However, advances in medical imaging technologies have

revived opportunities for off-pump intracardiac therapies.

The imaging modalities employed for intra-procedure guidance typically involve X-

ray fluoroscopy, magnetic resonance imaging (MRI), and 2D and 3D US, and in most

cases image guidance is limited to a simple display of imaging data via a monitor in

the operating room (OR) [1, 2, 3, 4]. The limitations associated with these approaches

have been outlined in Chapter 1: the surgeon is required to mentally reconstruct the

3D geometry of both surgical tools and patient anatomy from 2D image data, as well

as to interpret motion information (e.g. bringing a tool into contact with the target

tissue) from a 2D monitor output and then transpose it to 3D motion patterns of real

tools in the OR.

In response to these challenges, several groups have addressed some of these lim-

itations by integrating imaging data with various virtual elements to either add spa-

tial context or functional information to the intra-procedure images [5, 6, 7, 8]. Our

approach is to rely on echocardiography for intra-operative guidance, fuse it with pre-

operative information, and make use of tracking technologies to provide a robust sys-

tem for surgical guidance, thus eliminating any radiation associated with fluoroscopy.

Since real-time US images are displayed within the anatomical context supplied via

pre-operative models and virtual surgical instrument representations, we refer to this

navigation platform as the model-enhanced US-assisted guidance environment.

In terms of the nomenclature defined by Milgram et al. [9] as shown in Chap-

ter 1, this environment is best classified as a mixed reality environment, consisting
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of virtual components — pre-operative anatomical models and surgical tool repre-

sentations, and “peripherally real” components — real-time US images. While the

US images do not provide a real view of the patient, they are considered “more real”

compared to the purely virtual models of the anatomy and surgical tools; hence, the

model-enhanced US guidance environment could be classified as an AR environment.

Nevertheless, given the predominance of virtual elements, it could also be interpreted

as a VR environment. All three terms — mixed, augmented and virtual reality en-

vironment — are often used interchangeably throughout this thesis when referring

to the model-enhanced US guidance environment. However, for the sake of consis-

tency with Milgram’s reality-virtuality taxonomy, this environment should be most

appropriately identified as a mixed reality environment.

The global objective of our mixed reality surgical platform is to provide the sur-

geon with a simple, intuitive system for surgical navigation in the absence of direct

vision. Specifically, in the context of cardiac surgery, our goal is to build a sufficiently

robust and reliable system to benefit most minimally-invasive intracardiac therapies,

although our current experience has primarily focused on direct access mitral valve

replacement and ASD repairs.

To better illustrate our research goals, we follow the patient through the pro-

posed mitral valve procedure work-flow. First, a pre-operative cine CT or MR image

dataset of the subject are acquired. A static 3D subject-specific cardiac model is

constructed via either manual or semi-automatic segmentation or an atlas-based ap-

proach by registering a high-resolution average heart model containing the segmented

surgical target and the surrounding anatomy, to clinical image of the subject’s heart,

as described in Chapter 4. After accessing the heart, the intra-operative MVA is

defined interactively using tracked 2D TEE, and displayed within the intra-operative

subject space. To facilitate tool navigation and improve spatial orientation, the 2D

US images are complemented by 3D anatomical models obtained from pre-operative

MR images, and combined with virtual representations of the tracked surgical tools.
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The pre-operative cardiac models are incorporated within the intra-operative space

using a registration technique also presented in Chapter 4.

This chapter provides a generic overview of our model-enhanced US image guid-

ance system, including details on its engineering components, various clinical applica-

tions, and different investigations designed to pre-clinically assess the feasibility of the

system. Fig. 2.1 presents a schematic representation of our system and its intended

configuration in the operating room.

Fig. 2.1: Schematic displaying the layout of our model-enhanced US guidance surgical
system, its components and typical configuration within an OR. Integrated ultrasound and
virtual reality data can be delivered to the surgeon either via a monitor over the OR table,
or via HMDs.
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2.2 Surgical Guidance Platform Architecture

2.2.1 The AtamaiViewer

The model-enhanced US-assisted guidance environment is integrated into the Ata-

maiViewer software platform. The AtamaiViewer is a robust framework for medical

data visualization, interaction and navigation. This software platform is designed

to integrate all components necessary for image-guided surgery applications. It is

portable across Windows, Linux, and OS-X operating systems, using a Python-based

user interface and the Visualization Toolkit (VTK) for rendering and visualization.

2.2.1.1 Components

The AtamaiViewer integrates many components necessary for image-guided inter-

ventions, including image registration [10], cardiac modeling [11], dynamic MRI-US

image registration [12], and procedure planning [13]. Our software platform integrates

the visualization of pre-operative multi-modality images with intra-operative US, en-

doscopic data, tracked surgical tools, haptic devices and virtual models (Fig. 2.2). It

provides the ability to selectively combine the different imaging components and over-

lay them using different levels of transparency, display volumetric data on orthogonal

or oblique planes, and visualize dynamic data as cine sequences synchronized with the

intra-operative ECG [14]. The viewer also permits the incorporation of optical and

magnetic tracking systems in a common virtual workspace for a single application,

and is designed to support stereoscopic visualization. In addition, the modular design

of the platform facilitates the ready addition of new components and features.

2.2.1.2 Applications

A wide variety of applications have been developed within the AtamaiViewer en-

vironment, several relating to intracardiac image-guided surgery and therapy. These

projects include 4D electro-physiology mapping for atrial fibrillation therapy [15], an
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AR system for port placement [13], and registration of intracardiac 2D US to pre-

operative CT or MR data [16]. The most challenging application implemented within

the AtamaiViewer is the planning and guidance of mitral valve replacement and ASD

repair.

2.2.2 Mixed Reality Environment

In this section we show how a series of AtamaiViewer components have been

integrated to form a mixed reality environment used to guide minimally-invasive in-

terventions. As much of our work has been motivated by the need for less invasive

approaches to cardiac surgery, most applications have been designed and implemented

in the context of the guidance and navigation of intracardiac procedures on the beat-

ing heart.

2.2.2.1 Intra-operative Guidance: Echocardiography

To compensate for the lack of direct vision inside the beating heart, our system

primarily employs a 4 - 7.5 MHz trans-esophageal echocardiography (TEE) probe

for intra-operative imaging. To further assist in visualization, a 3D trans-thoracic

echocardiography (TTE) probe is also available to acquire three-dimensional images

with a larger field of view. Suematsu et al. [2] also raised the necessity of employing

3D echocardiography as a superior technique to 2D US for guiding instruments within

the beating heart. They reported their experience using only 3D US as the guidance

platform in a laboratory environment, without the benefit of a virtual environment.

Based on our prior experience in intracardiac navigation, we concluded that the

use of 2D TEE guidance had significant disadvantages when used as the sole modality

for image guidance, even when complemented with 3D TTE. Both anatomical targets

and surgical tools were poorly perceived in US images, making it virtually impossible

to accurately assess their position and orientation during manipulation, especially
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Fig. 2.2: Example image of the AtamaiViewer platform, showing the integration of a pre-
operative model of a cardiac intervention phantom together with virtual models of a valve-
insertion device, and US transducer and imaging fan.

since the 2D cross-sectional images do not provide the necessary context within the

3D cardiac anatomy. Some of the frequent questions arising during the procedure

were related to whether the prosthetic valve was within the mitral orifice, or whether

the valve skirt was in contact with the valve ring, and answering them was difficult

even for an experienced surgical team (Fig. 2.3). Although 3D TEE may become a

potential future solution, its limited field-of-view and lower resolution compared to

2D US may imposed further challenges in visualizing the surgical tools and target

in the same volume. However, in spite of these limitations with respect to image
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Fig. 2.3: a) 2D TEE image of the valve tool and clip applier inside a porcine beating heart;
b) 3D US image of a similar scene; c) 3D US image showing the mitral valve annulus,
prosthetic valve, and valve-insertion tool. Note the difficulty to correctly interpret the
anatomical features and surgical tools, especially in the limited field of view of 3D US.

guidance, the Doppler capabilities of US are ideal for assessing the interventions as a

function of the blood flow through the valve and abnormalities in flow patterns, such

as regurgitant flow through or around the mitral valve, or incomplete ASD repair.

To enhance intra-procedure guidance, we displayed the 2D US data within a more

robust anatomical and surgical context. We integrated two main components within

the AtamaiViewer environment: pre-operative cardiac models, as well as virtual rep-

resentations of surgical tools and US probe tracked in real time, as described in the

upcoming sections.

2.2.2.2 Pre-operative Planning and Guidance

Cardiac Modeling: Due to their high spatial resolution and tissue characteriza-

tion, MRI and contrast-enhanced CT images are often used during the procedure

planning stage to extract anatomical features of interest. These data can then be

used to generate heart models that display the cardiac anatomy as 3D rendered

surfaces. 3D subject-specific cardiac models can constructed either via manual or

semi-automatic segmentation or via an atlas-based approach, as described in section

1.3.2.

A similar anatomical modeling technique is described in Chapter 4 to build subject-
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specific models from pre-operative 4D MR data to predict the location of dynamic

surgical targets (e.g. mitral valve annulus) throughout the cardiac cycle (Fig. 2.4).

Our models that were specific to the left ventricular myocardium (LV), the left atrium

(LA), and the right atrium and ventricle (RA/RV) are accurate within 5.0± 1.0 mm,

4.7± 0.9 mm, and 5.3± 1.3 mm, respectively [17].

Fig. 2.4: a) Image of the prior high-resolution average heart model at mid-diastole (MD);
b) Prior model at mid-diastole showing two segmented features of interest: left ventricle
surface and mitral valve annulus.

Pre- to Intra-operative Registration: To augment the intra-operative TEE data

with the pre-operative cardiac models, we employed a feature-based registration tech-

nique. This method is suitable for cardiac interventions, as the selected structures are

easily identifiable in both the pre-operative and intra-operative images, and they also

ensure a good alignment of the pre-operative and intra-operative surgical targets. As

later described in Chapter 4, a RMS distance error of 5.2 mm, 4.1 mm, and 7.3 mm

in aligning the pre-operative and intra-operative features located within 10 mm from

the valvular region in each of the LV, LA and RA/RV surfaces, respectively [18].
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Fig. 2.5: Image showing real-time intra-operative TEE data augmented a pre-operative
heart model, using the feature-based registration (left panel); Illustration of the mixed
reality environment employed during an in vivo porcine study, showing pre-operative heart
model, intra-operative TEE image, tracked TEE probe, and surgical tools (right panel).

The pre-operative modeling capabilities employed in our model-enhanced US plat-

form platform not only offers the feasibility of generating sufficiently accurate models

of the subject’s heart prior to the procedure, but also facilitates their integration

within the intra-procedure environment, leading to an accurate virtual environment

for procedure planning and guidance.

2.2.2.3 Surgical Tool Tracking

For all off-pump intracardiac procedures, it is crucial for the surgeon to know

the position and orientation of the surgical tools with respect to the target at all

times during the intervention. As outlined in Chapter 1, the tracking technologies

most frequently employed in image-guided therapy use an optical [19] or magnetic

[20, 21, 22] approach. However, for procedures where no direct line-of-sight between

the sensors mounted on the probe and the transmitting device, magnetic tracking

systems are employed exclusively. Our platform employs the the NDI AuroraTM

MTS. This system consists of three components: a control unit, a magnetic field

generator, and miniature 5 or 6 DOF sensors fixed to the ultrasound transducer and
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surgical tools.

Fig. 2.6: Physical (a) and virtual (b) representation of a mechanical mitral valve attached to
the valve-insertion tool; c) Illustration showing the virtual representations of a valve-guiding
tool and a fastening device, together with a virtual models of the 2D TEE transducer and
the 2D image fan.

As an example, for a typical mitral valve implantation procedure, three virtual

objects are required: one for the TEE probe, a second for the valve-guiding tool, and

a third for the valve-fastening device. Prior to the procedure, virtual models of both

surgical tools and TEE transducer are created using VTK tools. Fig. 2.6 illustrates

a prosthetic valve attached to the valve-insertion tool, accompanied by its virtual

representation. Similar virtual models were designed for the US probe and the valve-

fastening tool. For the model of the US probe, the image plane automatically adjusts

to changes in rotation angle and depth as they are manipulated by the sonographer

in the OR (Fig. 2.5).

The AtamaiViewer platform has many tools for calibration of both tracked surgical

tools and US transducers. The tracked US probe is calibrated using either a Z-string

device [23] or a phantom-less calibration method, as described in section 2.3.1.1. The

valve-guiding tool is calibrated by first defining a transform describing the position

and orientation of the tool tip in patient space before the valve is attached. A similar

procedure is used to calibrate the valve-fastening tool. In addition, a reference MTS
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sensor is attached to a stationary region of the subject to avoid the need to recalibrate

the “world” coordinate system in case of accidental motion of the subject or field

generator.

2.3 System Evaluation and Assessment

Prior to implementing these applications in the clinic, we performed a series of

tests to evaluate the surgical guiding system. Two methods for calibrating the tracked

TEE transducer were evaluated, then a navigation accuracy assessment was per-

formed, followed by a pre-clinical in vitro evaluation of the interventional system in

the context of a mitral valve implantation procedure.

2.3.1 Accuracy Assessment

2.3.1.1 US Calibration Accuracy

The first set of experiments was designed to evaluate and compare two commonly

available calibration methods for the tracked US transducer: the Z-string phantom-

based, and the phantom-less calibration approach [24]. In addition, we also described

the uncertainty of the system for three US transducers commonly employed in our

laboratory (TTE, adult TEE, and pediatric TEE probe), plus each of the calibration

methods [25]. To achieve this goal, a point-source was localized (1.6 mm Teflon

sphere) in the US image and its position was measured.

Table 2.1: Point-source localization accuracy using three different US probes and two differ-
ent calibration methods. The root-mean-square (RMS) of the distance errors are provided.
*Please note that the figures presented in this table have subsequently improved following
additional experiments. The updated figures are available in Wiles et al. [25].

US RMS Distance (mm)
Probe Z-String Calibration Phantom-Less Calibration
TTE 1.05 1.67

TEE Adult *4.22 2.83
TEE Pediatric 2.68 2.65
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Accuracy was assessed by computing the error between the measured position of

the point source and its known position as determined before the experiment. The

point-source localization error was estimated as the root-mean-square (RMS) of the

distance between the measured and true position of the Teflon sphere. This work was

performed in collaboration with another member of the laboratory, and the results

are presented in detail by Wiles et al. [25]. For the purpose of this thesis, Table 2.1

includes a summary of the most relevant results.

2.3.1.2 Surgical Navigation Accuracy

In the second set of experiments, the accuracy of the virtual reality-enhanced US

guidance system was assessed from the surgeon’s point, as described by Wiles et al.

[26]. Three surgical guidance modalities were tested: (i) 2D US image guidance only

(“US only”); (ii) virtual reality guidance with tracked surgical tools (“VR only”);

and (iii) 2D US image guidance augmented by virtual reality (“VR + US”). The user

was asked to guide a probe tip onto a small target within a cardiac phantom. The

only information available to the user was the US image, the VR interface, and the

VR-augmented US interface for “US only”, “VR only” and “VR + US” guidance

modalities, respectively. These results are summarized in Table 2.2.

This experiment showed that our VR-enhanced US image guidance system im-

proved the widely used technique of intra-procedure guidance currently only relying

on 2D US imaging. While both the “VR only” and “VR + US” modalities showed

significantly more accurate targeting than the “US only” approach (p < 0.01), the

test showed no significant differences between the “VR + US” and “VR only” guid-

ance modalities (p > 0.01). The additional errors in the “VR + US” were attributed

to the quality of the US images acquired with the trans-esophageal probe. It is antic-

ipated that the “VR + US” will provide a superior solution when used in a dynamic

environment such as an actual in vivo intracardiac procedure [26].

In addition, the “VR + US” also provides a safety feature in that the surgeon
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Table 2.2: Single point localization accuracy assessment. Three users were asked to localize a
point three times for each of the three modalities. A two-way analysis of variance (ANOVA)
followed by Tukey’s Honestly Significantly Difference post-hoc test showed that only the
modality had a significant difference in the achieved targeting accuracy. The “VR only” and
“VR + US” modalities showed significantly more accurate targeting than the “US only”
guidance modality (∗p < 0.01).

Modality RMS (mm)
US Only *5.42
VR Only 1.02
VR + US 1.47

can use real-time imaging to precisely position devices even if the initial patient-to-

image registration has been affected due to organ motion or deformation during the

procedure. A significant advantage of the VR-enhanced US guidance approach con-

sists of its navigation versus positioning capabilities. The virtual reality components

assisted the user mostly with the orientation in space and navigation towards the sur-

gical target, while the US imaging component provided the user with critical real-time

information for performing detailed on-target manipulations.

While these results are preliminary in nature, a comprehensive in vitro accuracy

assessment of the model-enhanced US guidance environment is described in Chapter 3.

2.3.2 Pre-clinical Qualitative Evaluation: In vitro and Ex vivo

Mitral Valve Implantation

The following two sets of experiments were designed to assess the success with

which an experienced surgeon was able to perform the procedure using our VR-

enhanced interventional system, and to compare it to the outcome of the same proce-

dure performed under sole US image guidance. These pre-clinical studies mimicked a

mitral valve implantation procedure performed in a cardiac intervention phantom, as

well as in ex vivo porcine hearts. The surgical task consisted of guiding a prosthetic

valve mounted on the valve-insertion tool to the target — the synthetic or native

mitral valve annulus, respectively, positioning it correctly, and securing it in place
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using a valve-fastening tool.

2.3.2.1 Cardiac Intervention Phantom Studies

The first set of experiments were performed on a cardiac intervention phan-

tom (Fig. 2.7) built in our laboratory and similar in concept to that described by

Rettmann et al. [27]. The phantom is made from non-magnetic materials to mini-

mize the interference with the tracking system. A tube descends into the lower part

of the phantom simulating the esophagus and facilitating the use of TEE probes.

Cardiac tissue was mimicked using poly-vinyl alcohol-cryogel (PVA-C) membranes

[28] supported by plexiglass plates. This phantom provides a means of assessing

newly-developed intervention procedures under image-guidance in a laboratory that

mimic the clinical setting, reducing the reliance on animal studies, with progress being

monitored using endoscopic inspection of the target.

2.3.2.2 Excised Porcine Hearts Study

To confirm the limitations of US guidance and emphasize the benefits of our

virtual environment for navigation while mimicking an in vivo setting, ex vivo excised

porcine hearts were used in the second set of experiments, instead of PVA-C simulated

cardiac tissue. The intact porcine hearts were rinsed thoroughly with saline solution

and refrigerated for three days prior to the experiment.

The hearts were mounted inside the cardiac phantom and supported using plex-

iglass plates. To prevent any rigid body translation and rotation, the hearts were

anchored in place using a 3 point support (2 lateral and 1 basal), with the apex

resting freely on the bottom of the vessel. In order to simulate its in situ orienta-

tion during the intervention, the hearts were positioned with the left atrium facing

upwards, as shown in Fig. 2.8a.

Intracardiac cavities were reached using the Universal Cardiac Introducer R© [29],

which is affixed to the left atrial appendage of the excised heart. Note that for an
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Fig. 2.7: Plexiglass cardiac intervention phantom showing the “esophagus” and PVA-C
membranes mimicking the heart wall tissue (upper panel); Equivalent schematic represen-
tation of cardiac anatomy for the mitral valve implantation procedure (lower panel).

in vivo procedure, the beating heart would be reached via a left-anterior minitho-

racotomy. The UCI acts as an “air-lock” between the blood-filled cavity and the

chest, allowing for the introduction and manipulation of surgical instruments inside

the beating-heart with minimal blood loss [29]. The UCI is described in detail in

Chapter 5 in the context of our in vivo beating therapy studies in animal models.

The valve implantation tasks were first attempted using US guidance alone, fol-

lowed by guidance using the VR-enhanced system. The surgical target was repre-

sented by a 2 cm diameter hole in the PVA-C membrane for the trials performed on



82

Fig. 2.8: Mounting of the excised heart inside the phantom according to experimental
procedure. Note the attachment of the UCI to the heart for intracardiac access (insertion
cuff already sutured attached to the left atrial appendage (left panel); Short-axis view of the
native mitral valve annulus and parts of the valve leaflets attached to the chordae tendinae
in an excised heart (right panel). The mitral annulus represents the target onto which the
prosthetic valve must be placed and fastened during implantation.

the cardiac intervention phantom, and by the native mitral annulus for the studies

performed on ex vivo porcine hearts. The procedure was performed by a surgeon and

an echocardiographer, both with extensive experience in mitral valve interventions.

All experiments were blinded, with results being recorded for retrospective analy-

sis by an endoscope directed at the target. Intra-operative real-time 2D US images

were acquired using the TEE probe descended into the cardiac phantom through the

“esophageal tube”.

2.3.2.3 Guidance Modalities

US Image Guidance: Under US-guidance alone, it was very difficult to identify

both the target and the surgical instruments, as well as to determine their exact

position and orientation with respect to one another. As a typical observation re-

garding the valve placement on target in the phantom experiments, positioning that

seemed to be correct proved to be several millimeters off-target in both translation

and angulation (Fig. 2.9a). The “US-only procedure” was lengthy and consistently
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unsuccessful; four clips were fired using the laparoscopic clip-applier, however, none

of them efficiently fastened the valve skirt to the underlying membrane.

Fig. 2.9: a) Poorly implanted valve under US guidance in the cardiac phantom; b) En-
doscopic view showing the valve placement under US guidance in an excised heart; c)
Endoscopic view showing an incorrectly inserted fastener under US guidance in an excised
heart. Arrows indicate the location of the fasteners.

Similarly, during the trials performed on the ex vivo porcine hearts, the 2D US

images were misleading even to the experienced surgeons, causing them to rely on

previous experience in the clinic. After successive trial-and-error attempts, when it

was determined that the valve was in place, the endoscopic camera was employed to

assess the position of the valve with respect to the anatomical target (Fig. 2.9b).

Another endoscopic assessment followed by direct observation revealed that during

valve fastening, only one pin was applied in the correct location, but with an incorrect

angulation, causing a radial puncture of the ventricle wall (Fig. 2.9c).

VR-Enhanced US Guidance: In addition to the virtual representations of the

tracked TEE transducer and surgical instruments (valve-guiding and valve-fastening

devices), our virtual environment also integrated pre-operative “anatomy”, which

consisted of an automatically segmented surface model of the cardiac intervention

phantom extracted from a CT image acquired prior to the experiments. A virtual

target (a 2 cm diameter spline) was interactively reconstructed from the 2D US images

by sweeping the tracked US fan across the “mitral annulus” and displayed within the
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volume. The “surgical environment” was displayed stereoscopically using HMD units,

providing the surgeons with a better spatial perception of the virtual space.

Fig. 2.10: Navigation of the valve-guiding tool toward the defined mitral valve annulus
under virtual reality-assisted guidance (left panel), followed by on-target positioning of the
valve guiding tool under real-time 2D TEE imaging (right panel).

After displaying the 2D echo images within the context of the 3D “pre-operative

anatomy”, navigation of the valve towards the target became almost trivial. The

surgeon guided the valve to the target with very little difficulty, relying mainly on

the virtual environment. 2D US guidance was employed only to refine the position of

the valve and confirm its final correct placement on target. Fig. 2.10a illustrates the

navigation of the valve-guiding tool toward the defined surgical target by means of

the virtual model and magnetically tracked instrument models. Following navigation,

the valve-guiding tool was positioned onto the annulus under US image guidance

(Fig. 2.10b). The real-time imaging capabilities enabled the user to refine the valve

positioning on target prior to fastening.

The procedure was finalized by securing the valve in place, using a valve-fastening

device. After determining its location in space with respect to the valve, the fastening

tool was guided towards the target using the virtual models. Its positioning on target

was refined using real-time 2D US and then the clips were applied at multiple locations

around the valve skirt (Fig. 2.11a).

Guiding the valve to the mitral annulus in the excised hearts using model-enhanced
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Fig. 2.11: a) Correct valve implantation under model-enhanced US guidance in the cardiac
phantom; b) Endoscopic image showing the appropriate positioning (also confirmed by
the clear view of the chordae tendinae) of the valve onto the native mitral annulus of an
excised heart using US guidance augmented by the VR environment; c) Post-procedure
image showing the correct location of the fasteners (push-pins delivered by an instrument
consisting of a 6 mm diameter tube custom-developed for initial proof-of-concept) around
the valve achieved under US-VR guidance in an excised heart.

US was also a relatively simple task, and again, once on target, the valve positioning

was fine-tuned according to the real-time US images. The outcome of the procedure

was confirmed by an endoscopic evaluation (Fig. 2.11b). Furthermore, the surgeon

found it much easier to navigate the tip of the valve-fastening tool to the final target,

and then refine its position on target based on the TEE images. Four pins were

used to fasten the valve to the underlying tissue, and according to the post-procedure

assessment, three of them securely attached the valve (Fig. 2.11c), while the fourth

pin, although properly located, did not entirely penetrate into the mitral annulus

tissue.

2.4 Discussion

This paper presents the global architecture of our surgical platform, together with

various integrated components, resulting in a complete virtual surgical environment

that surgeons can use to plan and guide procedures in the absence of direct vision.

These applications emphasize its advantages in assisting with both the navigation
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and surgical instrument manipulation inside the beating heart.

Two-dimensional TEE plays a significant role in our interventional system as it

provides the operator with real-time intra-procedure information. Nevertheless, these

2D images are ineffective for identifying the position and orientation of surgical tools

with respect to the target. Although 3D US may provide images that are easier to

interpret, most of these transducers are too large to fit within the esophagus and they

also provide a narrow field of view.

To “zoom out” away from the surgical target region and see the “bigger picture”,

we augmented 2D intra-procedure imaging with pre-operative models of the heart

that provide anatomical context and better spatial orientation. These models can

accurately predict the location of the surgical target and can be easily fused with the

intra-operative images using a feature-based registration technique. Ultimately, the

environment was complemented with virtual representations of the surgical instru-

ments tracked in real-time during the intervention, generating a reliable system for

intra-procedure guidance.

To better mimic the environment specific to a real procedure, in addition to the

experiments performed in the laboratory, we conducted similar studies on the cardiac

intervention phantom in the operating room. These investigations allowed us to iden-

tify some of the limitations imposed by the clinical environment which we expected

to encounter during in vivo interventions.

The implications of using an MTS in the OR are two-fold. First, the “surgical

field” must be located within the optimal tracking volume of the field generator to

ensure accurate tracking, yet without interfering with the surgical workflow. Secondly,

the presence of ferromagnetic objects near the field generator must be avoided [22].

Consequently, this requirement implies also that all surgical instruments must be

manufactured from non-ferromagnetic alloys (e.g. high-grade stainless steel or plastic)

to minimize tracking error.

Additional constraints are imposed by the size of the surgical instruments used in
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the intervention. In our applications, intracardiac cavities are accessed through the

left atrial appendage, using the UCI. A potential challenge regarding the instrument

size may be reflected in the surgeon’s dexterity in maneuvering the valve-insertion

and valve-fastening tool not only inside the the UCI, but also within the heart itself.

As a concrete example, a slightly larger prosthetic mitral valve may be difficult to

insert through the small orifice between the left atrial appendage and the left atrium.

Moreover, the valve-fastening device should ideally be situated above the prosthetic

valve at all times, as it is used to attach the valve skirt to the mitral annulus.

As our technique constitutes a novel approach to surgery, it is important that the

interference with the clinical staff and procedure workflow is minimized. The footprint

of our system in the OR is limited to a computer workstation located several meters

away from the OR table, and the MTS. Cables are needed to connect the various

components: the tracked tools and field generator to the MTS, the ECG and video

capture (from the US machine) to the computer, and the computer to either an

overhead monitor or to HMD units.

The challenges outlined here represent an initial subset of limitations identified

following our preliminary implementation and evaluation of the model-enhanced US

guidance environment. Over the course of the upcoming chapters, these challenges,

in addition to other emerging caveats associated with the other aspects of the project,

will be covered. Ultimately, a full discussion of the lessons learned, presented in the

context of the existent literature, will be included in Chapter 7.

2.5 Conclusions

To conclude, this initial work has demonstrated the tremendous potential of multi-

modality imaging combined with surgical tool tracking for providing the capability

to both visualize and assess the surgical intervention in a manner that will ultimately

be superior to direct vision, within its inherent limitations. Augmented with US
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imaging for real-time guidance for on-target manipulations, and pre-operative car-

diac models for anatomical context and spatial orientation for navigation to target,

according to our preliminary implementation, our system provides extensive support

for target identification, intracardiac route planning, and guidance for direct thera-

peutic interventions. These key features of the surgical guidance environment will be

emphasized in the upcoming chapters, demonstrating the capabilities of this surgical

platform toward enabling sufficiently accurate targeting accuracy (Chapter 3), pro-

viding enhanced surgical navigation (Chapter 4), and yielding clinically-acceptable

surgical outcomes (Chapter 5).
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Chapter 3

Quantitative Evaluation of the

Model-Enhanced

Ultrasound-Assisted Guidance

Environment

Here we present a comprehensive in vitro evaluation of the our model-enhanced

ultrasound guidance environment by simulating clinically relevant interventions on a

cardiac phantom. We model therapy delivery simulating blinded, closed-chest, beating

heart interventions performed via either direct or percutaneous intracardiac access.

Our results demonstrate that the model-enhanced ultrasound guidance environment

provides a clinically-desired targeting accuracy of under 3 mm, and maintains this

This chapter is adapted from Linte CA, Moore J, Wedlake C and Peters TM. Evaluation of
Model-Enhanced Ultrasound-Assisted Interventional Guidance in a Cardiac Phantom. IEEE Trans-
actions on Biomedical Engineering. In Press: 2010. DOI: 10.1109/TBME.2010.2050886. c©2010
IEEE. Reprinted, with permission, from IEEE. Portions of this work also appeared in Linte CA,
Moore J, Wiles AD, Wedlake C and Peters TM. Targeting accuracy under model-to-subject mis-
alignments in model-guided cardiac surgery. Proc. Med Image Comput Comput Assist Interv.
(MICCAI). Lect Notes Comput Sci. 5761:361-8. 2009 and Linte CA, Wiles AD, Moore JT, Wedlake
C and Peters TM. Virtual reality-enhanced ultrasound guidance for atrial ablation: In vitro epicar-
dial study. Proc. Med Image Comput Comput Assist Interv. (MICCAI). Lect Notes Comput Sci.
5242:644-51. 2008.
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level of accuracy independent of model-to-subject misregistrations typically encoun-

tered during the actual procedures. These studies emphasize the direct benefit of in-

tegrating real-time imaging with intra-operative model-assisted navigation for therapy

guidance, as a means to facilitate tool-to-target navigation challenges in absence of

direct vision, especially under misalignments resulting due to limited registration ac-

curacy in the clinic.

3.1 Introduction

Prior to performing an intervention, diagnostic images of the patient are reviewed

off-line, and together with pre-operative images, are used to plan the procedure. It is

also commonly assumed that these images represent the intra-operative morphology

with sufficient fidelity to enable adequate therapy guidance [1]. Nevertheless, cardiac

therapy remains a challenging problem for image guidance due to the complex soft-

tissue structure and motion of the heart, and consequently due to the limited accuracy

achieved when modeling the intra-operative heart from pre-operative data. Therefore,

real-time intra-operative visualization is critical to enable minimally invasive beating

heart therapy.

In response to these challenges associated with visualization and guidance during

minimally invasive cardiac procedures, we have developed an interventional guidance

platform that relies on multi-modality medical imaging for surgical navigation ma-

nipulation of intracardiac structures in absence of direct vision [2, 3]. As described

in Chapter 2, our platform integrates trans-esophageal echocardiography (TEE) for

real-time visualization, augmented with pre-operative models of the cardiac anatomy,

and virtual representations of the surgical instruments tracked in real time using

magnetic tracking technologies [4]. The end result is a model-enhanced ultrasound

surgical guidance environment — one of the first attempts toward bridging diagnosis

and surgical planning with interventional guidance, allowing the 2D intra-operative
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ultrasound US data to be interpreted within the 3D anatomical context provided by

the pre-operative models [5].

However, before any novel image guidance platform is translated into the operating

room, a robust quantitative assessment of its surgical navigation capabilities is critical.

To perform a true surgical accuracy assessment, precise knowledge of both the surgical

tool and target locations is required. While an in vivo, beating heart assessment is

preferred, it would entail a very invasive process of implanting tracked targets inside

the in vivo myocardium of an animal model, closing up the thoracic cavity, acquiring

the necessary pre-operative images, and ultimately performing the procedure. As

a trade-off, several groups have resorted to the use of representative phantoms to

simulate in vitro clinical procedures in vitro for image guidance evaluation [6, 7, 8, 9,

10]. We have also used various phantoms to conduct qualitative assessments of the

model-enhanced US guidance environment in the context of mitral valve implantation

as described in Chapter 2, both in vitro in tissue mimicking poly-vinyl alcohol cryogel

phantoms [11] and ex vivo in excised porcine hearts [2].

The work described here complements our previous studies [2, 4, 12] described in

Chapter 2 and presents an in vitro quantitative evaluation of the surgical feasibility

of our model-enhanced US guidance system. To overcome the difficulties of an in

vivo intracardiac accuracy study, while maintaining its clinical relevance, we model

our experiments in the context of blinded closed-chest beating heart interventions.

We use a beating heart phantom to simulate closed-chest epicardial and endocardial

procedures, where the “sites to be treated” are reached either via direct access, using

rigid laparoscope-like instruments, or via transluminal access, by means of a steerable

catheter. During the surgical planning stage, the targets are identified and marked

onto the pre-operative cardiac model, which is then integrated into the intra-operative

visualization environment to assist with surgical guidance. The “surgical task” con-

sists of guiding a tracked surgical instrument (i.e. a rigid pointer tool or a steerable

catheter) to specific targets under guidance provided via model-enhanced US.
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We evaluate the performance of our model-enhanced US guidance platform by

comparing the resulting targeting accuracy and procedure duration to those achieved

under two other guidance modalities: endoscopic and US image guidance. The former

modality may be employed for epicardial procedures, but conventional endoscopic

imaging cannot provide visualization inside the blood-filled cavities of the beating

heart [13]. Nevertheless, for the purpose of our study, endoscopic imaging consti-

tutes a control modality, one that resembles guidance under direct vision. The latter

guidance approach, US imaging, represents a clinically-established modality typi-

cally employed for cardiac interventional monitoring and guidance. In addition, to

better replicate the clinical challenges associated with inaccuracies introduced dur-

ing the model-to-patient registration [14, 15, 16], we also evaluate the efficacy of

model-enhanced US guidance in presence of misregistrations between the physical

and virtual phantom model. We hypothesize that model-enhanced US-assisted guid-

ance improves targeting accuracy to a less than 3 mm targeting error and results

in shorter procedure duration than real-time 2D US image guidance alone. We also

expect the novel environment to enable consistent targeting accuracy under model-to-

subject misregistrations, leading to overall lower targeting errors than those achieved

under model-guided or US-guided therapy alone.

3.2 Materials and Methods

3.2.1 Experimental Design

To simulate cardiac anatomy in vitro, we used a realistic beating heart phan-

tom (The Chamberlain Group, Great Barrington, MA, USA), which exhibits similar

characteristics to both human and porcine hearts, with a highly detailed exterior,

and comparable size, anatomy and movement patterns. The phantom is driven by a

pneumatic actuator which allows heart rates of 60, 90 and 120 beats per minute. In
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addition, the phantom features sufficiently acceptable echogenic properties to mimic

US imaging of a typical human/porcine heart, and also enables the extraction of

high-fidelity models from CT image datasets (Fig. 3.1).

The original phantom underwent a series of modifications to suit the study de-

sign. Ten CT-visible fiducial markers (3.2 mm diameter fiducials) were attached on

the epicardial surface of the phantom to assist with the model-to-phantom registra-

tion. Four 3.2 mm CT and US visible Teflon spheres representing the surgical targets

were attached to the epi- and endocardial surfaces of the phantom. The former setup

Fig. 3.1: a) Beating heart phantom showing fiducial markers used for world registration and
Teflon spheres representing surgical targets; b) Ortho-plane display showing 3D CT volume
of cardiac phantom and (c) corresponding surface model.

was designed to simulate a direct-access, laparoscopic targeting of epicardial sites

under closed-chest conditions, where the surgical targets were embedded into the epi-

cardial surface of the phantom (section 3.2.3.1). The latter setup was designed to

mimic intracardiac therapy, where endocardial targets embedded within the endocar-

dial right atrial wall of the phantom were accessed via a tracked steerable catheter

(sections 3.2.3.2 and 3.2.3.4).

3.2.2 Visualization and Navigation Environment

During the planning stage of a typical procedure, the clinician employs pre-

operative images to identify the surgical targets and associate them with a pre-

operative model of the patient’s heart. During the intervention, the pre-operative
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model featuring the surgical targets is registered to the patient using a feature-based

approach [16, 17] and used alongside intra-operative US to guide the intervention.

Similarly, here we generate a dynamic model of the phantom from a 4D CT dataset,

register the model to its physical counterpart, and complement the environment with

virtual representations of the tracked tools and US probe.

3.2.2.1 Pre-operative Imaging and Modeling

A pre-operative dynamic image dataset of the cardiac phantom was acquired on

a 64 Slice LightSpeed VCT scanner (General Electric, Milwaukee, WI, USA). The

image acquisition was gated at a heart rate of 60 beats per minute, and 20 cardiac

volumes (0.48 mm x 0.48 mm x 1.25 mm) were acquired depicting the heart at 20

phases over the cardiac cycle.

Fig. 3.2: Upper panels show tri-planar views of the CT volume of the phantom at different
cardiac phases, while the lower panels show the corresponding surface-rendered view at each
cardiac phase.

Using automatic segmentation tools available in the Vascular Modeling Toolkit

(http://www.wmtk.org), we reconstructed virtual models of the phantom at each
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cardiac phase (Fig. 3.2). A pre-operative, dynamic model of the beating heart

phantom displaying the motion of the surgical targets was obtained by rendering the

surface sequence in cine mode for dynamic visualization.

3.2.2.2 Intra-operative Imaging

Real-time imaging is critical for intra-operative guidance, and thanks to its excel-

lent real-time capabilities and OR compatibility, US imaging, and specifically TEE, is

extensively used in cardiac interventional guidance. In the clinic, the probe is inserted

in the esophagus and manipulated by the echocardiographer; similarly, we employed

the Philips 2D TEE transducer, imaging the phantom from above, enabling acquisi-

tion of different views. As mentioned in Chapter 2, a distinct feature of our surgical

platform is the ability to acquire tracked 2D US images in real-time. The TEE probe

is tracked magnetically, enabling the display of the acquired 2D images relative to

the pre-operative anatomy and virtual tool representations.

3.2.2.3 Surgical Tracking

Surgical tracking is an essential component of any intra-operative image-guidance

system. For procedures performed inside the human body, with non-rigid instruments

and no direct line-of-sight between the sensors mounted on the probe and the trans-

mitting device, magnetic tracking systems [18, 19] need to be employed [18, 20, 21].

For all experiments presented here, we employ the NDI AuroraTM MTS. The

surgical instruments (i.e. the pointer tool and steerable catheter) are tracked using

6 DOF magnetic sensors rigidly attached close to the tips of the tools. Similarly, the

US transducer is tracked using a 6 DOF magnetic tracking sensor fixed to the head of

the probe. In addition to tracking the surgical instruments and the US transducer, in

these experiments we also track the surgical targets, using 5 DOF magnetic sensors

rigidly embedded within each Teflon sphere. The coordinates reported by the tracking

system were treated as the dynamic ground truth locations of the surgical targets.
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Following the attachment of the magnetic sensors, each tracked instrument was

calibrated to identify the rigid transform between the instrument and the attached

magnetic sensor. While the Teflon spheres only required a tool-tip calibration, the

pointer and catheter were calibrated with respect to their tool-tip position as well

as orientation. The US transducer was calibrated using a Z-string approach [22, 23],

where the probe-to-sensor transform is determined using a least-square fit between the

coordinates of a set of points identified in the acquired US images and their known,

gold-standard coordinates in tracking space.

3.2.3 Simulating in vitro Therapy Delivery

3.2.3.1 Direct Access Closed-Chest Navigation

This study simulated a minimally invasive intervention where epicardial targets

are accessed using laparoscopic-like instruments. The cardiac phantom equipped

with the tracked epicardial Teflon spheres was submerged in a water bath to enable

US image acquisition (Fig. 3.3). The “surgical setup” was blinded to the user to

mimic a closed-chest intervention where surgeons would not have access to direct

target visualization. Rather, the users only relied on the use of various visualization

modalities to assist them with the performance of the surgical task — placing the tip

of the pointer in contact with the sphere.

Both expert clinicians and novice users conducted the in vitro procedure on four

surgical targets. Each target was randomly approached 3 times by each user un-

der each guidance modality: endoscopic visualization, US image guidance alone, and

model-enhanced US guidance. Prior to data acquisition, each user was allotted a short

time to become accustomed to the performance of the surgical task under each visu-

alization modality. The procedure outcome was assessed according to the accuracy

and duration of each “therapeutic” trial.
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Fig. 3.3: Experimental setup simulating direct-access procedures: a) in vitro anatomy (heart
phantom), magnetic tracking system, US scanner, and data acquisition system; b) Heart
phantom submerged in a water bath showing the user navigate a rigid pointer to selected
epicardial targets; c) Endoscopic snapshot of the “surgical field” inside the “closed-chest”
showing the tracked pointer probing the phantom surface under TEE visualization.

3.2.3.2 Endocardial Catheter Navigation

A wide range of intracardiac interventions employ catheters guided to the surgical

sites under real-time imaging. To simulate intracardiac therapy, the surgical targets

(i.e. tracked Teflon spheres) were embedded within the right atrial endocardial wall

(Fig. 3.4). Their locations were carefully chosen in consultation with a cardiac

surgeon to represent clinically relevant sites, and be readily reached with the modified

steerable catheter. We employed a unidirectional steerable Medtronic CryoCath 7F

catheter (Medtronic Inc., Denver, USA), modified by attaching a 6 DOF magnetic

sensor near its tip, as described in section 3.2.2.3.

Each user was prompted to approach the targets in an arbitrarily generated or-

der, ensuring that each target was approached four times under three different guid-

ance modalities: endoscopic visualization, US imaging alone, and model-enhanced US

guidance. Similar to the previous experiment, prior to acquiring the measurements,

each user was allowed a short training period to become accustomed to the surgical

visualization and navigation environment.



102

Fig. 3.4: a) Components and experimental setup (b) of the apparatus used to simulate
catheter-driven endocardial procedures; c) Endoscopic image inside the right atrium showing
embedded surgical targets and magnetically tracked catheter; d) View inside the right
atrium showing the surgical targets identified pre-operatively and a virtual representation
of the catheter tip.

3.2.3.3 Intra-operative Guidance Modalities

Three distinct visualization modalities were used to perform the surgical task in

each experiment: endoscopic visualization — employed as a positive control, resem-

bling direct vision; US imaging — an intra-operative imaging modality commonly

employed in interventional guidance; and model-enhanced US guidance — the newly
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developed guidance environment under evaluation.

Endoscopic Guidance: To establish a baseline with respect to the procedure out-

come when comparing different visualization modalities, we used a standard surgical

endoscope (Intuitive Surgical, Sunnyvale, USA) as a guidance modality mimicking di-

rect vision. The endoscopic video feed provided a realistic appearance of the surgical

field, allowing simultaneous visualization of the epi- or endocardial phantom surface,

surgical targets, and pointer or catheter tip.

For the first study mimicking direct-access epicardial procedures, the device was

mounted above the phantom, providing an entire perspective view of the surgical field

(Fig. 3.5a), similar to that provided by the da Vinci robot when performing surgery

within a body cavity. For the intracardiac catheter navigation studies, the endoscope

was introduced into the right atrium of the phantom (Fig. 3.5b).

Ultrasound Image Guidance: Minimally invasive interventional navigation has

been attempted and performed clinically under US image guidance [24, 25, 26] to

reduce and potentially eliminate the use of fluoroscopy imaging and its well-known

limitations (i.e. dose to both patient and clinical staff, poor soft tissue contrast and

lack of anatomical context). In these experiments, users employed 2D real-time US

imaging as the only source of intra-operative visualization available to depict the

three dimensional surgical scene (Fig. 3.5 c,d) and bring the tool tip in contact with

the sphere.

Model-enhanced Ultrasound Guidance: Enhanced visualization was achieved

by augmenting real-time US imaging with the phantom model and virtual represen-

tation of the pointer or steerable catheter tip — the model-enhanced US guidance

environment (Fig. 3.5 e,f). In terms of the navigation-positioning paradigm, this

environment provides sufficient information for both tool-to-target navigation via the

use of virtual phantom and tool models, as well as precise on-target positioning, pro-
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Fig. 3.5: Intra-operative endoscopic image showing (a) direct-access epicardial pointer nav-
igation and (b) intracardiac catheter guidance; c) Pointer-to-target navigation and (d)
catheter tip-to-target navigation under typical 2D US image guidance; Therapy delivery
under model-enhanced US guidance for (e) direct epicardial access (e) and endocardial
catheter guidance (f).

vided via the tracked 2D real-time US images displayed relative to the virtual tool

models. Moreover, the real-time imaging component provides a significant clinical

advantage, as it allows for precise targeting in the event of slight misregistrations

between the model and the subject’s heart as shown in section 3.2.3.4.

3.2.3.4 Mimicking Model-to-Subject Misregistrations

Due to their complexity and computational inefficiency, some registration algo-

rithms may not be suitable for use in time-critical interventional applications in the

operating room (OR). Instead, fast, simple, and OR-friendly registration techniques

are often employed, however at the expense of misregistrations (Fig. 3.6) present in

the visualization environment [27].
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Recently, Ma et al. [15] proposed a feature-based registration technique that

relies on the alignment of the left ventricular surface and centerline of the descending

aorta to fuse pre- and intra-operative data using a weighted iterative closest point

(ICP) registration approach; similarly, we have shown clinically-suitable fusion of

pre-operative models and intra-operative US data via alignment of reconstructed

valve annuli [16, 17], as later described in Chapter 4. While the features driving the

registration are different, both techniques provide comparable anatomical alignment

(4-5 mm) of the pre- and intra-operative data. However, the achieved alignment may

not be suitable for model-guided therapy alone, without refined guidance provided

via real-time intra-operative imaging.

Fig. 3.6: a) Pre-operative anatomical model registered to intra-operative US image using
the feature-based model-to-subject registration approach, and b) error map displaying the
anatomical misalignments following registration distributed across the surface model.

The first two studies presented here were performed following accurate (0.8 mm

RMS target registration error (TRE)) “world registration” — the registration of the

virtual components to their real counterparts, as described in section 3.2.3.4. How-

ever, considering the common challenges encountered clinically regarding misalign-

ments caused by the model-to-subject registration, surgical target locations, although
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accurately labeled pre-operatively, may no longer align with their intra-operative lo-

cations; furthermore, they may even appear outside the cardiac chamber (Fig. 3.7),

where careless navigation may lead to severe outcomes.

To address these challenges, we took the intracardiac catheter navigation study to

the next level and evaluate the performance of the model-enhanced US guidance envi-

ronment in presence of model-to-subject misalignments. We mimicked in vitro model-

to-subject misregistrations similar to those encountered in the clinic, and showed how

our guidance platform provides sufficient navigation information to maintain accurate

targeting, in spite of slight misalignments.

Fig. 3.7: Example of a (a) well-aligned and (b) misaligned phantom model with respect to
the physical phantom (note misalignment between the epicardial contour of the phantom
model and its US image); c) Superimposed display showing well-aligned (red wireframe)
phantom model and the “inward” (yellow surface) and “outward” (blue surface) misaligned
model.
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Virtual-to-Real World Registration: The key to building accurate navigation

environments lies within the registration of all components into a common framework.

The virtual models of surgical tools, US transducer and image fan are intrinsically

registered to the tracking coordinate system and to each other via their respective

tool-to-sensor calibration transforms. The challenging step is the registration of the

patient to the pre-operative model. For our in vitro experiments, we used a point-

based registration algorithm involving the 10 epicardial fiducial markers to register the

physical phantom to its virtual model using a magnetically tracked pointer. Temporal

alignment was achieved by synchronizing the heart rate of the model with the ECG

signal driving the actuator, resulting in visualization that is close to real time.

Inducing Model-to-Subject Misregistrations: Because of misregistrations of-

ten encountered in the OR due to a slightly different orientation of the patient’s heart

between the pre- and intra-operative stage, the opening of the chest and pericardial

sac or other changes induced during the workflow, we simulated two misalignment

scenarios: the former misregistration simulates an “inward” misalignment, where the

model-depicted endocardial targets are actually located within the cardiac chamber;

the latter mimics an “outward” misalignment, where targets located on the endocar-

dial wall according to the pre-operative model are actually located outside the heart

phantom.

The model-to-subject misalignments were achieved by replacing the well-aligned

model with new, misregistered models obtained by transforming the well-aligned

model, following world registration, to their new, misregistered locations by means

of the misalignment transforms. In both cases, rigid-body transforms were chosen to

provide a target misregistration on the order of 3-5 mm in the surgical target region;

these transforms were manually applied to the well-aligned model of the phantom to

obtain the misregistered models. As the phantom model was mapped to its new, mis-

registered location using the misalignment transforms explained above, the position
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and orientation of the tracked tools and US probe remained the same with respect to

one another and to the physical phantom.

Surgical Guidance: To evaluate the effect of model-to-subject misregistration on

targeting accuracy, we conducted several experiments where users relied solely on

model-guided visualization or model-enhanced US guidance, under both well-aligned,

as well as misaligned conditions. As users were blinded as to whether or not the

model was properly registered to the phantom, a specific therapy delivery workflow

was adopted. An initial tool to target navigation was performed under model-assisted

guidance; once on target, the model display was dimmed, while the tracked 2D US

image was emphasized, allowing users to identify the true target location and refine

their tool location based on the virtual tool representation and the real-time US image

(Fig. 3.8).

3.2.4 Data Acquisition Module

All data were collected using a custom-designed module integrated within the

AtamaiViewer. The data acquisition module was designed to record the 4 x 4 trans-

formation matrix indicating the position and orientation of both the tracked surgical

targets (i.e. the gold-standard target location) and surgical tool (i.e. targeted site),

as well as the elapsed time required for the target to be reached. In addition, the

module also allowed easy randomization of both the surgical target and visualiza-

tion modalities. As such, for each new therapeutic trial the user was prompted to

approach a specific target under a specific visualization modality, avoiding any bias

caused by the development of a training effect. Several other features available within

the AtamaiViewer were incorporated into the data acquisition module, providing the

user with the flexibility of choosing the optimal information to be displayed for visu-

alization. These techniques enabled variable opacity settings, slicing and cropping of

the model, as well as the option of displaying the tracked components of interest.
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Fig. 3.8: US enhanced model-assisted guidance work flow: initial navigation via virtual
anatomy and tool model using two orthogonal views (a) and (b), followed by US model
enhancement (c), and final target identification and tool tip positioning performed under
real-time US guidance (d).

3.3 Evaluation and Results

The objective of these experiments was to quantitatively evaluate therapy deliv-

ery, in terms of both targeting accuracy and duration, under model-enhanced US-

assisted surgical guidance in vitro and to assess the therapeutic outcomes against

those achieved under endoscopic and US image guidance. Targeting accuracy was de-

termined as the distance between the tip of the surgical instrument (targeted site) and

the surgical target location (ground truth target location) as recorded by the track-

ing system, following an adjustment equal to the sum of the radii of the spherical
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tool tip and spherical targets. Targeting duration was measured directly by the data

acquisition module, as the time elapsed until targets were reached by the user. Data

analysis was performed using a parametric, two-way Analysis of Variance (ANOVA)

technique followed by Tukey’s Honestly Significant Difference post-hoc test. All sta-

tistical analyses were performed using the GraphPad Prism 4.0 package to compare

the achieved procedure accuracy and duration with respect to the guidance modality

employed, the level of expertise of the users, or the location of the physical targets,

according to the experimental protocol for each of the conducted studies.

3.3.1 Direct Access Epicardial Interventions

Four expert clinicians and four novice users randomly attempted to reach the four

targets three times each under each visualization modality; when in contact according

to the visualization display, the positions of the target and pointer tip were recorded,

along with the duration of the attempt. Table 3.1 summarizes the distance errors and

procedure time, according to the users’ expertise and guidance modality employed.

Table 3.1: Direct Access Epicardial Procedures: Summary of guidance accuracy (Targeting
Error - mm) and procedure time (Mean ± Std. Error) reported according to user’s expertise
and guidance modality.

Guidance Endoscopic Guidance US Image Guidance Model-enhanced US Guidance

Distance Error (mm) 1.9± 0.1 3.4± 0.3 2.6± 0.1
RMS Error (mm) 2.5 4.4 2.8

Elapsed Time (sec) 6.4± 1.1 13.3± 1.6 11.3± 1.8

Expertise Experts Novice Experts Novice Experts Novice

Distance Error (mm) 2.0± 0.2 1.8± 0.2 3.1± 0.4 3.7± 0.4 2.6± 0.2 2.5± 0.2
RMS Error (mm) 2.3 2.1 4.0 4.7 2.8 2.7

Elapsed Time (sec) 4.4± 0.9 7.5± 1.4 7.7± 0.6 20.1± 1.8 9.9± 1.0 12.6± 1.4

According to the presented results, model-enhanced US-assisted guidance led to

more accurate targeting compared to US guidance alone (p < 0.05) across both user

groups, and also comparable to the accuracy achieved under endoscopic guidance, our

baseline positive control modality. In addition, the level of expertise of the users had
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no significant effect on procedure accuracy (p > 0.05), as both the expert and novice

group achieved comparable targeting accuracy under model-enhanced US guidance

(Fig. 3.9). However, further analysis of the intra-modality targeting data shows that

the expert group managed to achieve better accuracy under US image guidance alone

compared to the novice group — an intuitive observation considering their exten-

sive exposure to US interventional guidance. On the other hand, the novice group

performed slightly more accurately than the expert group under model-enhanced US

guidance; they nevertheless experienced a highly significant (p < 0.001) improvement

in targeting accuracy under model-enhanced US guidance compared to US image

guidance alone.

We also analyzed the distribution of the targeted sites with respect to the actual

target location. Fig. 3.10 shows that both the novice and expert groups achieved

comparable targeting precision (i.e. a more compact distribution of the targeted sites)

under model-enhanced US guidance and endoscopic guidance, our positive control

modality. US image guidance, on the other hand, led to greater targeting variability

amongst both groups, mainly a result of poor tool-to-target navigation under 2D

image guidance alone.

The navigation duration results suggested that model-enhanced US guidance led

to slightly longer targeting times than US image guidance alone for the expert group,

while the novice group experienced a decrease in procedure time. In addition, both

groups showed similar targeting duration between model-enhanced US and endoscopic

guidance (p > 0.05). Considering that experts are highly accustomed to interventional

US, the use of the model-enhanced US display led to longer procedure times, but

also more accurate targeting. For the novice group, not only the procedure times

were reduced (p < 0.05) under model-enhanced US guidance, but the new guidance

environment led to significantly higher targeting accuracy (p < 0.001). Considering

that neither group had previously employed model-assisted guidance, we therefore

expect that procedure times will improve with adequate training.
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Fig. 3.9: Procedure accuracy and duration achieved by the expert and novice groups un-
der both guidance modalities. Note the significantly more accurate targeting (∗p < 0.001)
achieved by the novice group under model-enhanced US guidance compared to that achieved
under US image guidance alone. Moreover, the procedure times recorded for the novice
group were also significantly shorter (p < 0.05) under model-enhanced US guidance com-
pared to those recorded using US imaging alone.

Fig. 3.10: Distribution of targeted locations around the true target achieved using both guid-
ance modalities. Note that model-enhanced US guidance led to more consistent targeting.

3.3.2 Catheter-Driven Endocardial Interventions

Four users conducted the in vitro catheter navigation on the four surgical targets

embedded within the endocardial right atrial wall of the phantom. Procedure outcome

was assessed according to the targeting error and duration, reported according to the

RMS and 95% confidence interval, and mean and standard error, respectively, and

summarized in Table 3.2.
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Table 3.2: Endocardial Catheter-Guided Procedures: Guidance Accuracy (RMS Targeting
Error - mm) and Procedure Duration (Mean ± Standard Error)

Guidance Modality Endoscopic Model-enhanced US 2D US Imaging

RMS Error (mm) 0.63 1.10 12.9
Duration (sec) 6.4± 0.5 31.5± 2.8 55.7± 5.1

Target RMS Duration RMS Duration RMS Duration
Analysis (mm) (sec) (mm) (sec) (mm) (sec)

Target 1 0.5 8.3± 1.5 0.9 25.3± 5.1 10.3 52.7± 7.9
Target 2 0.7 6.0± 0.8 1.5 35.0± 5.2 11.9 61.4± 9.1
Target 3 0.6 6.4± 0.7 0.8 38.9± 6.0 18.4 77.8± 13.3
Target 4 0.7 5.2± 0.7 1.0 25.3± 5.7 9.1 29.7± 5.6

Our results show that model-enhanced US-assisted guidance led to significantly

more accurate targeting (p < 0.001) and shorter procedure times (p < 0.001) than 2D

US imaging alone. Moreover, the targeting accuracy achieved under model-enhanced

US guidance showed no significant difference (p > 0.05) from that achieved under

endoscopic guidance, once again employed to establish a positive control with respect

to the procedure outcome (Fig. 3.11).

Fig. 3.11: Graphical representation of targeting accuracy and procedure duration achieved
under endoscopic, model-enhanced US (model + US), and 2D US image guidance. Note a
significant improvement in both targeting accuracy and procedure duration under model-
enhanced US guidance with respect to 2D US imaging alone (p < 0.001). Moreover, no
statistical difference (p > 0.05) was shown between the targeting accuracy achieved under
model-enhanced US and endoscopic guidance, the control modality.
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The difficulties encountered by all users during task completion under US image

guidance are not only reflected in procedure accuracy, but also in procedure duration,

which was significantly reduced (p < 0.05) under model-enhanced US (∼ 32 sec) to

almost half the values recorded under US image guidance (∼ 58 sec), but not quite as

low as the values recorded achieved under endoscopic guidance (∼ 7 sec). A plausible

explanation for these longer trial times may be formulated in terms of the orientation

of the model-enhanced US display, the necessity to zoom in or out or to manipulate

the views for according to the user’s needs.

In addition, model-enhanced US catheter navigation led to a more consistent

distribution of the targeted sites. Fig. 3.12 shows the distribution of targeted sites

(i.e. location of the catheter tip) around the true target location for each of the four

targets, under each guidance modality. Endoscopic guidance led to most consistent

targeting, model-enhanced US guidance showed comparable performance, while US

image guidance alone showed poor precision (Fig. 3.15) across all targets. The

inaccuracies observed under US image guidance may be easily explained in terms of

the navigation-positioning paradigm introduced previously and further discussed in

section 3.4.

3.3.3 Model-to-Subject Misalignments

To illustrate the limitations of model-guided therapy in the presence of model-

to-subject misregistrations, in addition to the visual blinding and randomization of

both the targets and guidance modalities described in the previous experiment, the

users had no prior knowledge of the model-to-phantom registration within the model-

enhanced US visualization environment. The users were also prompted to perform the

surgical task under model-assisted guidance alone, and the outcomes were recorded

and compared to those results obtained under model-enhanced US guidance (Table

3.3 and Table 3.4).

Our study following accurate model-to-phantom registration described in section
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Fig. 3.12: Distribution of targeted sites with respect to the true target location shown for
all targets under all three guidance modalities: endoscopic, model-enhanced US and 2D
US image guidance. Note that increased targeting accuracy and precision was achieved
under model-enhanced US guidance compared to 2D US guidance alone. In addition, the
model-enhanced US targeted sites were within 2 mm away from the true target location.

3.3.2 showed that both the model-assisted and model-enhanced US-assisted guidance

led to significantly more accurate targeting (p < 0.001) than 2D US imaging alone;

moreover, no significant difference was observed between the endoscopic and the two

model-assisted guidance modalities (p > 0.05) (Fig. 3.13).

The chosen misalignment transforms resulted in an overall 3-5 mm misregistration

across the four targets. Following model-assisted guidance, we observed a significant

decrease in targeting accuracy (p < 0.001) compared to that recorded under well-

aligned conditions (Fig. 3.13). While targeting precision was maintained, users
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Table 3.3: Summary of Guidance Accuracy (RMS Distance Error - mm) under Model-to-
Subject Misregistrations. Part I: Well-Registered Model

Guidance Well-Registered Model
Modality Endoscopic US Imaging Model Assisted Model + US

Global 0.5 14.8 0.9 0.7

Target 1 0.4 13.4 0.8 0.8
Target 2 0.4 14.8 1.0 0.8
Target 3 0.5 20.3 0.7 0.7
Target 4 0.6 9.4 1.1 0.5

Table 3.4: Summary of Guidance Accuracy (RMS Distance Error - mm) under Model-to-
Subject Misregistrations. Part II: Inward- and Outward Misalignments

Guidance Inward Misalignment (IWD) Outward Misalignment (OWD)
Modality Model Assisted Model + US Model Assisted Model + US

Global 2.9 1.1 3.4 1.4

Target 1 3.2 0.9 3.1 1.1
Target 2 2.4 1.2 3.2 1.7
Target 3 2.9 1.4 3.4 1.6
Target 4 3.1 0.8 3.7 0.9

consistently approached the incorrect targets; hence the trueness of their targeting

estimate remained low. After mapping the targeted sites using the inverse of the

misalignment transforms, we were able to reconstruct the true locations of the surgical

targets, thereby confirming that the navigation errors were in fact induced by the

misleading environment.

Once model-assisted guidance was augmented with real-time US, we observed

a significant improvement in targeting accuracy. For the “inward” misalignment

case, targeting accuracy achieved under model-assisted guidance alone dropped to

an overall 3 mm RMS; however, it was restored to an overall 1.1 mm RMS error

via US-enhanced guidance (p < 0.001). Similarly, for the “outward” misalignment

case, model-assisted guidance accuracy was significantly improved with the addition
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Fig. 3.13: Following accurate model-to-phantom registration (left panel), comparable tar-
geting accuracy was achieved under both model-assisted guidance alone (VR-Align) and
model-enhanced US-assisted (model + US) guidance, and superior (∗p < 0.001) to that
achieved under US image guidance alone; However, following induced misregistrations (right
panel), the accuracy achieved under model-assisted guidance alone (Model ALGN) was sig-
nificantly reduced (∗p < 0.001) under both inward (Model IWD) and outward (Model
OWD) misalignments.

Fig. 3.14: Model-enhanced US-assisted guidance (Model + US) shows consistent targeting
accuracy independently of model-to-subject registration, under both inward (Model + US
IWD) and outward (Model + US OWD) misalignment conditions (left panel); Note the
significantly improved accuracy (∗p < 0.001) with model-enhanced US-assisted (Model +
US) guidance compared to model-assisted guidance alone (Model) under both inward (IWD)
and outward (OWD) misregistration conditions.
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of US imaging, from 3.1 mm targeting error to 1.4 mm RMS (Fig. 3.13). Moreover,

model-enhanced US guidance maintained a high level of accuracy regardless of the

model-to-subject registration (p < 0.001) (Fig. 3.14).

3.3.4 Qualitative Surgical Guidance Environment Evaluation

Following the in vitro therapy experiments, each user completed a survey designed

to qualitatively assess the overall performance and clinical value of the surgical visu-

alization and guidance modalities employed in this study on a scale from 1 (highly

ineffective) to 5 (highly effective). The evaluation criteria were selected to reflect the

guidance environment, the effects of the visualization modality, intuitiveness of the

display, user’s confidence during guidance, navigation vs. positioning capabilities,

and clinical relevance (Table 3.5 and Table 3.6).

Table 3.5: Expert Qualitative Guidance Assessment: Summary Table

Modality Expert Users
Evaluation Endoscopic US Model-enhanced US

Criteria Guidance Imaging Guidance

Display Quality 4.75 1.75 4.5
Intuitiveness 4.5 1.75 4.25

Overall Usability 4.75 3.0 4.5
Navigation Capabilities 4.25 1.75 4.75
Positioning Capabilities 4.5 4.5 4.5

User’s Confidence 4.75 2.5 4.75
Clinical Relevance 4.25 4.0 4.75

In summary, both the experts and novice users agreed that endoscopic guidance is

a good representation of direct visualization. However, all users identified consistent

challenges with respect to the use of real-time US imaging as the sole guidance modal-

ity. Specifically, the tool-to-target navigation often involved a backward-and-forward

iterative approach, where the target was first identified using US imaging, followed by
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Table 3.6: Novice Qualitative Guidance Assessment: Summary Table

Modality Novice Users
Evaluation Endoscopic US Model-enhanced US

Criteria Guidance Imaging Guidance

Display Quality 4.25 2.25 3.75
Intuitiveness 4.5 1.75 4.5

Overall Usability 4.75 2.0 4.25
Navigation Capabilities 4.5 1.25 4.75
Positioning Capabilities 4.5 3.75 4.5

User’s Confidence 4.5 2.25 4.25
Clinical Relevance 4.75 3.5 4.75

a search for the tool tip while panning the US fan. This process was repeated several

times until the perceived tool and target were both viewed in the same 2D US image,

leading to prolonged navigation times. Moreover, given the experience of the expert

users in interpreting the US information, the novice users experienced additional dif-

ficulties with US image guidance compared to the trained group. Nevertheless, both

user groups appreciated the superior visualization and guidance capabilities provided

by the model-enhanced US guidance environment, which in turn, lead to increased

guidance intuitiveness, greater confidence, and a more user-friendly display.

3.4 Discussion

The aim of this work was to evaluate the performance of the model-enhanced US

guidance environment in vitro by simulating minimally invasive closed-chest, beating

heart procedures using direct access or catheter-driven approach, as well as mimick-

ing clinically encountered challenges, such as model-to-subject misregistrations. The

study began with the hypothesis that model-enhanced US-assisted guidance would

lead to improved targeting accuracy (overall targeting accuracy less than 3 mm) and

shorter navigation times over 2D US image guidance alone. Furthermore, in the con-
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text of model-to-subject misregistrations, we hypothesized that real-time US imaging

would contribute to maintaining a consistent targeting accuracy compared to therapy

delivery guided using the pre-operative model alone.

We have shown that model-enhanced US guidance led to more accurate targeting

than US image guidance alone across all three simulated procedures, resulting in an

overall RMS targeting error of under 3 mm, where the baseline accuracy measure-

ments achieved under endoscopic guidance were on the order of 1-2 mm RMS. On

the other hand, targeting error achieved under US image guidance ranged from as

little as 4-5 mm to over 15 mm, where the large errors were associated with the poor

navigation capabilities available to the user through the 2D imaging modality.

Our results also show that while the expert group achieved more accurate targeting

(∼4.0 mm RMS) than the novice group (∼4.7 mm RMS) under 2D US image guidance

alone, both groups achieved comparable targeting accuracy (∼2.7 mm RMS) under

model-enhanced US guidance. Moreover, there was no significant difference between

the accuracy achieved by the two groups under the novel guidance modality; never-

theless, the novice group, which demonstrated considerably worse performance than

the expert group under US imaging alone, showed a significant improvement in the

targeting accuracy under model-enhanced US guidance, which was also accompanied

by faster navigation times.

The elapsed time was the period required to navigate the tool to the target and

it was mainly dictated by the visualization information available to perform the task.

Considering the poor information provided by the 2D US images, (i.e. 2D images

cannot easily portray a 3D scene), the elapsed time was longer for the novice group

compared to the expert group, due to their reduced exposure to US-assisted naviga-

tion. The novices, nevertheless, showed a significant improvement in both navigation

time and targeting accuracy under model-enhanced US-assisted guidance. The overall

reduction in navigation time was in fact experienced due to the augmentation of the

2D US images with anatomical context via the virtual models. The latter provided
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users with an intuitive 3D navigation perspective as opposed to having to iteratively

sweep the US fan to visualize the tool and target.

As a consequence of these findings, for the catheter navigation experiments, where

catheter manipulation itself is an acquired skill and therefore improves with practice,

we resorted to users who had minimal exposure to any sort of catheter navigation and

provided them with the same training period (30 mins) under each guidance modality

prior to collecting the measurements. This methodological approach ensured that all

users were given an equal opportunity to become familiar to the catheter navigation

in the same training environment, therefore eliminating any bias from the collected

data that may have been related to their expertise in catheter manipulation.

In addition to demonstrating the feasibility of model-enhanced US guidance for

beating heart interventions via different access routes, the performance evaluation un-

der model-to-subject misregistration represents a key component of this work. While

model-to patient misalignments are commonly encountered in cardiac interventions,

the real-time imaging component of the surgical guidance platform provides sufficient

information to identify the correct intra-operative target location following model-

assisted navigation, and compensate for the positioning error, ultimately enabling

consistent targeting within 1-1.5 mm.

For qualitative evaluation, we recorded targeting maps after each therapy deliv-

ery session (Fig. 3.15). A compact distribution of targeted sites was observed under

endoscopic guidance, and maintained under both model-assisted and US-enhanced

model-assisted guidance. In the context of the formulated navigation-positioning

paradigm, poor positioning is usually characterized by small errors, where the user-

interpreted target location is slightly removed from its true location; on the other

hand, inadequate navigation is associated with rather large errors, often due to ei-

ther mis-registrations between the real and virtual representations, or simply a poor

visualization environment, such as that provided by 2D US imaging alone. In fact,

the main drawbacks of US image guidance alone arose due to limited information
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provided for navigation, including lack of context, poor instrument perception, and

the inability of 2D images to adequately portray the 3D surgical scene. The catheter

to target navigation was further hampered by the inability to identify the catheter

tip in the US image. Nevertheless, model-enhanced US guidance did ameliorate these

limitations, and hence targeting accuracy was significantly improved, reaching com-

parable values to those achieved under endoscopic guidance.

Fig. 3.15: Post-therapy qualitative targeting distribution achieved under a) endoscopic, b)
US image guidance alone; c) Model-assisted, and d) Model-enhanced US guidance. Note
the prescribed surgical targets displayed in blue and targeted sites displayed in green.

In addition to its demonstrated advantages, the model-enhanced US guidance en-

vironment raises several challenges with respect to the employed technology and its



123

impact on the clinical workflow. The use of magnetic tracking imposes stringent lim-

itations on the workspace and tools used in the procedure. However, the magnetic

tracking manufacturers are designing newer and smaller sensors to fit both needles

and catheters, as well as magnetic field generators compatible with fluoroscopy imag-

ing and metal tables. We are currently exploring the integration of the tracking

technologies within conventional surgical tools, and it is only a matter of time until

these sensors will become fully integrated within the instruments. We have recently

integrated the 6 DOF NDI Aurora magnetic sensor within the casing of a trans-

esophageal ultrasound transducer [28] and have employed the newly integrated probe

for patient image acquisition for a different application.

A natural extension of this work is to initiate its translation into the clinic and

illustrate its advantages over traditional real-time US image guidance, as well as a

potential solution toward reducing and eventually eliminating the use of X-ray flu-

oroscopy for intracardiac catheter navigation. To date, we have performed a pre-

liminary in vivo study comparing catheter navigation to clinically relevant sites in

the right atrium of a porcine model under model-enhanced US-assisted guidance vs.

real-time US guidance. Our results have reported targeting errors of less than 5 mm

and navigation times of ∼ 20 seconds under the hybrid guidance environment — an

improvement over US image guidance alone, which led to errors as high as 30 mm

after double the hybrid navigation time.

3.5 Conclusions

These studies demonstrated that our model-enhanced US-assisted guidance envi-

ronment can lead to improved targeting accuracy (less than 3 mm) and procedure

times compared to the outcomes achieved under traditional real-time US imaging

alone. In addition, the environment also supplied sufficient information to allow con-

sistent targeting accuracy (less than 1.5 mm) in presence of commonly encountered
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model-to-subject misalignments. Provided further in vivo evaluations, we foresee this

navigation environment as a less invasive and equally efficient alternative to conven-

tional image-guided cardiac therapy, and a suitable approach to reduce and eventually

eliminate the use of X-ray fluoroscopy for catheter navigation.
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Chapter 4

Subject-Specific Models for Mitral

Valve Interventions: Predicting

Surgical Target and Enhancing

Intra-operative Navigation

For the guidance of minimally invasive mitral valve interventions on the beating

heart, surgeons need a robust interventional system capable of providing reliable, real-

time information related to the surgical targets and delivery instruments to compensate

for the lack of direct vision during the procedure. Here we describe a means of gen-

This chapter is adapted from the following work:

• Linte CA, Wierzbicki M, Moore J, Guiraudon GM, Little SH and Peters TM. Subject-Specific
Models of the Dynamic Heart for Image-Guided Mitral Valve Surgery. Proc. Med Image
Comput Comput Assist Interv. (MICCAI) - Lect Notes Comput Sci. 4792:94-101, 2007;

• Linte CA, Wierzbicki M, Moore J, Guiraudon GM, Jones DL and Peters TM. On Enhancing
Planning and Navigation of Beating-Heart Mitral Valve Surgery Using Pre-operative Cardiac
Models. Proc. IEEE Eng Med Biol. 475-8. 2007. c©2010 IEEE. Reprinted, with permission,
from IEEE.
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erating dynamic, pre-operative, subject-specific cardiac models that depict the surgical

targets and surrounding anatomy. In addition to their procedure planning value, these

models also provide cues during surgical navigation, by supplying anatomical context to

the real-time US imaging employed for guidance. The accuracy of the model-predicted

surgical target is assessed against the accuracy of the equivalent structures extracted

from 3D US images. In addition, a method to enhance intracardiac visualization and

navigation by registering the pre-operative models to the intra-operative US imaging

data is presented.

4.1 Introduction

Intracardiac procedures have challenged surgeons and researchers ever since the

pioneers of modern cardiac surgery performed the first interventions on the beating

heart [1, 2]. However, their outcomes were compromised by inadequate visualization

of intracardiac structures. These concerns led to the use of CPB as part of the

traditional approach, to allow these procedures to be performed under direct vision,

on the arrested, drained heart.

Minimally-invasive cardiac procedures can potentially reduce complications aris-

ing from surgical interventions by minimizing the size of the incision required to access

the heart, while employing medical imaging to visualize intracardiac targets without

direct vision [3, 4] and robotic and laparoscopic technologies to minimize tissue ex-

posure. However, most of these approaches still require the use of CPB, which may

lead to adverse effects, such as severe inflammatory responses [5] and neurological

dysfunction [6].

During a mitral valve implantation or repair procedure, the surgeon navigates

an instrument (e.g. a guiding tool with an attached prosthetic valve, or a fastening

device) to the surgical target — the mitral valve annulus (MVA). Hence, the guid-

ance of such procedures on the beating-heart requires detailed information about the
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dynamic behaviour of the mitral valve and the surrounding anatomy. This informa-

tion is not clearly portrayed by the TEE images, as 2D ultrasound (US) images lack

anatomical context. Although 3D TEE might become a potential future solution to

this problem, its narrow field of view may impose further challenges towards visu-

alizing the tools and target in the same volume. To address these limitations, we

include pre-operative, patient-specific models derived from MRI, which incorporate a

dynamic representation of the gross cardiac anatomy (e.g. myocardium) and surgical

target — MVA within the intra-operative VR environment. As a result, the intra-

operative TEE information can be interpreted within a rich, high-quality 3D context

[7] for improved procedure planning and navigation of surgical tools, while on-target

positioning and detailed manipulations are performed under real-time US guidance.

Our first objective is to generate subject-specific models of the heart that can

display the location of the mitral valve annulus throughout the cardiac cycle, with

sufficient fidelity to provide the surgeon with the appropriate information during

both procedure planning and guidance. To assess the accuracy of the generated

models, the model-predicted mitra valve annuli are compared to their ground-truth

representations extracted from 3D TTE images of the same subjects and acquired at

the same cardiac phases.

Our next objective is to make these 3D anatomical data available to the surgeon

during intra-operative guidance, requiring the development of a suitable approach

to register the subject-specific models to the “subject”, such that they can augment

the tracked real-time 2D US images, enabling their interpretation within the subject-

specific anatomical context.

4.2 Methodology

Our proposed surgical procedure consists of several stages, which we have im-

plemented and tested using “artificial data” acquired from healthy volunteers. Pre-
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operative 3D MR images of the subjects were acquired throughout the cardiac cycle,

and processed to obtain a subject-specific cardiac model that included anatomical

features of interest (i.e. left ventricular myocardium - LV, left atrium and aorta -

LAA, right atrium and ventricle - RA/RV, AVA and surgical target - the MVA [8].

During an actual procedure, intra-operative visualization is typically achieved with

a 2D TEE probe tracked using a magnetic tracking system (MTS), allowing for an

easy 3D reconstruction of the MVA within the surgical VR environment. However,

to determine the accuracy with which the subject-specific models can depict the

mitral valve throughout the cardiac cycle and demonstrate how the pre-operative

models may be integrated within the intra-operative environment, (i.e. how well the

pre-operative models align with the intra-operative anatomy), we required a gold-

standard representation of the MVA. Therefore, for these experiments, we used 3D

TTE to acquire subject images that allowed us to further reconstruct the MVA,

and display it within the VR intra-operative environment, mimicking those typically

identified intra-operatively using 2D TEE.

Finally, the pre-operative subject-specific model is integrated within the intra-

operative VR environment using a feature-based registration approach, as presented in

section 4.2.2. The success in aligning the pre-operative and intra-operative anatomy

was quantified by the target registration error (TRE) between selected pre-operative

and intra-operative cardiac chambers (i.e. LV, LAA and RA/RV).

4.2.1 Building Subject-Specific Cardiac Models for Mitral

Valve Interventions

Subject-specific cardiac models can be generated by expert manual segmentation

of a pre-operative MRI or contrast-enhanced CT image dataset. The features of

interest can be identified within the inherent limitations of the image dataset, allowing

the identification of all features of interest, within the inherent limitations associated
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with the manual segmentation of the pre-operative dataset.

Here we briefly describe the workflow involved in the development of subject-

specific cardiac models from pre-operative MR images of healthy subjects and the

protocol used to assess their accuracy in predicting the surgical target. We use a

high-resolution heart model previously constructed from multiple-subject 4D MRI

datasets [8] to segment the surgical target (MVA) and other relevant cardiac anatomy

by registering the prior model to a subject-specific pre-operative MR image dataset.

The resulting subject-specific MVA was then compared to its true location, obtained

by manual segmentation of 3D full-volume US images acquired throughout the cardiac

cycle. The accuracy with which the MVA could be identified, using the prior model,

was assessed by quantifying the target registration error (TRE) between the model-

predicted annuli, and those extracted manually from US images.

4.2.1.1 Prior High-Resolution Heart Model

Given its superior soft tissue contrast and 4D imaging capabilities, MRI is often

considered the gold-standard modality for cardiac imaging. However, clinical MR

images may exhibit low spatial resolution, low signal-to-noise ratio (SNR), and motion

artifacts. Consequently, surgical targets extracted directly from these clinical images

may not be sufficiently accurate for the planning and guidance of the proposed mitral

valve surgery. To address this concern, we used a high-quality prior heart model to

characterize the surgical targets in the low-quality subject images. This model was

built from low-resolution MR images of 10 subjects (6 mm slice thickness). Various

anatomical features (i.e. left ventricular myocardium, right ventricle and atrium,

etc.) were manually segmented from each image and the resulting data was then co-

registered into a common high-resolution reference image (1.5 mm slice thickness) [9].

The model takes into account both image variability (i.e. measure of the appearance

of the heart in the MR images), as well as geometric variability (i.e. measure of the

size and shape variation of the features of interest) of the heart. The image variability
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was obtained by performing a principal component analysis on the co-registered data.

The geometric variability consisted of the anatomical features of interest described

earlier, which were segmented in the reference image, and corrected to fit the average

shape of the population [8].

The prior model is used to segment anatomical features from routinely-acquired

low-resolution cardiac MR images, by fitting the image and geometry components

simultaneously to a subject-specific dynamic image dataset. A similar approach was

undertaken by Lorenzo-Valdès et al. [10], who constructed and segmented an average

heart model based on population images, and registered it to target images to auto-

mate segmentation. The final models specific to the left ventricular myocardium (LV),

left atrium (LA) and right atrium and ventricle (RA/RV) were previously shown to

be accurate to within 5.4±0.8 mm [8], despite the low resolution of the subject data.

For this study, in addition to the previously identified anatomical features, the

MVA was included in the geometry of the prior model (Fig. 4.1a), representing the

surgical target during mitral valve interventions.

4.2.1.2 Image Acquisition

MR Imaging: Coronal images of the healthy subjects were acquired using a 1.5 T

CVi scanner (GE Medical Systems, Milwaukee, USA). The imaging protocol employed

an ECG-gated gradient echo pulse sequence, a 256 × 128 image matrix, two signal

averages (NEX), 20◦ flip angle, 7.6 ms TR, and 4.2 ms TE. The dataset consisted

of 20 3D images throughout the cardiac cycle, with an in-plane resolution of 1.5

× 1.5 mm2, 6.0 mm slice thickness, and a total scan duration of approximately 20

min. To minimize breathing artifacts, 20 sec breath holds were employed during the

acquisition of each slice.

US Imaging: 3D trans-thoracic US images of the same subjects were acquired

throughout the cardiac cycle on a Philips SONOS 7500 scanner. Full-volume apical
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Fig. 4.1: a) Prior high-resolution cardiac model at mid-diastole (MD), containing segmented
LV, LA, RA/RV and MVA structures; b) Low-resolution subject MR image at MD; c) Low-
resolution MD subject MR image segmented using the prior model; d) 2D US subject image
at MD showing the manually segmented MVA.

images of the heart were acquired with a 19 Hz frame-rate and a 14 cm depth-of-focus,

with the subject in the left lateral decubitus position. Breath-holds of 5-10 sec were

employed to minimize artifacts due to respiratory motion.

4.2.1.3 Anatomical Feature Extraction

MR Image Segmentation: In addition to the anatomical features already present,

the prior model introduced in section 4.2.1.1 was modified to include the surgical



135

target — the MVA. The annulus was segmented manually under the assistance of

an experienced echocardiographer, by interactively selecting points on the 3D im-

age of the prior model depicting the heart at mid-diastole (MD). We employed a

custom-developed spline-based segmentation tool similar to that available for clini-

cal application within the TomTec 4D MV Assessment Software (Unterschleissheim,

Germany). The new prior model consisted of a high-quality image component, gross

cardiac anatomy, and MVA (Fig. 4.1a).

This model was then registered to the low-quality, mid-diastole MR image of the

subject (Fig. 4.1b). The initial model-to-subject registration was performed using

an affine transformation, which was then refined using a non-rigid transformation, to

account for the remaining morphological differences between the source and target

images. Registration was achieved by maximizing the mutual information between

the model and subject image, while ensuring the prior geometry remained consistent

with user-selected points in the subject image [8].

The resulting subject-specific model at MD (Fig. 4.1c) was then animated over

the cardiac cycle to generate a 4D dynamic model. The cardiac motion was extracted

using non-rigid registration of the MD subject image to the remaining images in the

4D image dataset (Fig. 4.2). These transforms were then used to deform the MD

subject-specific model throughout the cardiac cycle [11].

Fig. 4.2: Schematic representation of motion extraction using nonrigid registration of the
MD image to the remaining frames in the 4D dataset.
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US Image Segmentation: The segmentation of the 3D US volumes was performed

manually under the guidance of an experienced cardiologist. The same spline-based

technique used to segment the MR model was also employed to outline the MVA

contour from the subject US images at various time points throughout the cardiac

cycle (Fig. 4.1d). In addition, the LV geometry was manually segmented from the

MD image, and used to register these images to the MR image space. The US to

MR registration was performed using an ICP algorithm that aligned the geometric

features — the left ventricular myocardia, using an affine transformation.

4.2.2 Pre- to Intra-operative Registration

Cardiac therapy guided solely by a pre-operative model is not feasible given the

limitations with respect to both building accurate heart models and registering them

to the subject with sufficient accuracy. As intra-operative imaging is indispensable

for these applications, an OR-friendly approach for building US-enhanced model-

guided therapy environments is highly desired. The model-guided component of such

environments assists surgeons with the navigation to target, while the US imaging

component provides real-time information on the surgical target and tool locations.

Hence, a clinically suitable technique should provide intra-operative feasibility from

two perspectives: employ readily-identifiable anatomical features and provide ade-

quate anatomical alignment in the regions of interest.

A feature-based registration algorithm was used to augment the intra-operative

images with the pre-operative subject-specific cardiac models. This registration con-

sisted of aligning the pre-operatively defined AVA and MVA with those identified

intra-operatively, using a two-stage approach. First, we determined unit vectors nor-

mal to the pre- and intra-operative AVA and MVA. An initial alignment between

the pre-operative and intra-operative annuli was obtained by minimizing the distance

between both their centroids, as well as the tips of their corresponding unit vectors.

Following initial alignment, the downhill simplex optimizer [12] was used to further
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minimize the distance between the two sets of annuli.

Fig. 4.3: a) Subject MR image at mid-diastole; b) Subject-specific model at MD containing
segmented surfaces of the LV, LAA, RA/RV; c) Subject US image at MD acquired “intra-
operatively” showing the reconstructed MVA and AVA structures; d) AR environment
obtained by integrating the pre-operative subject-specific model within the intra-operative
virtual surgical environment by means of feature-based registration.

This technique is straight-forward to implement in the OR, since the structures

used to drive the registration can be easily identified. Moreover, it is expected to

provide a good alignment of the pre- and intra-operative regions of interest, while

adding anatomical context to the otherwise “context-less” intra-operative US images

(Fig. 4.3c)).

4.3 Results

4.3.1 Accuracy Assessment of Model-Predicted Mitral Valve

Annulus

Our main goal was to determine the accuracy of our model-based segmentation

approach in predicting the location of dynamic surgical targets. The accuracy was

assessed by computing the root-mean-squared (RMS) TRE between the model-based

MVA, and the MVA extracted manually from 3D US images and registered to the

MR image space. The TRE was quantified at four different time points in the cardiac
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cycle: end-diastole (ED), mid-systole (MS), end-systole (ES), and mid-diastole (MD).

In addition, we also estimated the perimeter for both the model-extracted and gold-

standard annuli at each of these cardiac frames. A summary of these results is

presented in Table 4.1.

Table 4.1: Mitral valve annulus perimeter and TRE values of the model-predicted MVA
geometry and the gold-standard MVA, quantified at four phases throughout the cardiac
cycle, using motion information extracted from both MR and US image datasets.

Cardiac MR-extracted Motion US-Extracted Motion
Phase Mean Perimeter (mm) TRE Mean Perimeter (mm) TRE

Model Gold-Std. (US) (mm) Model Gold-Std. (US) (mm)

ED 119.9 114.4 2.6 119.9 114.4 2.6
MS 121.3 118.0 7.9 113.0 118.0 3.5
ES 118.5 117.4 10.5 113.5 117.4 3.3
MD 114.3 109.7 2.9 114.3 109.7 2.9

Based on these results, the perimeter of the model-predicted MVAs were within

4.8 % of the perimeter of the annuli extracted from 3D US images, throughout all

cardiac frames. As the mitral valve annulus perimeter is not expected to change

throughout the cardiac cycle, this measure demonstrated consisted extraction of the

annuli from both modalities. Nevertheless, a poor TRE of the two annuli sets was

observed during the systolic phases, when the dynamic pre-operative surgical targets

were obtained using motion information extracted from the 4D MR image dataset.

According to our analysis, these inconsistencies occurred predominantly on the

mitral-aortic valve boundary. The main motion observed in this region of the MVA

was caused by the systolic thrust, which is physiologically counteracted by the tension

generated within the chordae tendinae by the papillary muscles. However, due to the

limited information provided in this region by the low-resolution, thick-slice MR data,

these intricate MVA motion patterns could not be correctly reconstructed using the

MR images. On the other hand, 3D US images possess a much higher resolution,

especially in the valve region, allowing for a clear identification of the valve leaflets.
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Fig. 4.4: Diagram showing the subject-specific MVA geometry extracted using three differ-
ent approaches: gold-standard US-based MVA (black), model-based MVA animated using
MR motion extraction (grey) and model-based MVA animated using US motion extraction
(white). All annuli are registered to the MR space, and displayed at four cardiac phases:
a) ED; b) MS; c) ES; d) MD. Note how systolic MVA inaccuracies caused by MR motion
extraction (grey vs. black annuli) were significantly improved using US motion extraction
(white vs. black annuli).

Therefore, given their high level of detail, the same non-rigid registration algorithm

was next employed to extract the cardiac motion from the 4D US image datasets.

The resulting TRE during the systolic phases was significantly improved, as reported

in Table 4.1 and Fig. 4.4.

4.3.2 Pre- to Intra-operative Registration Evaluation

After identifying the pre-operative and intra-operative aortic and mitral annuli,

we employed our feature-based registration technique to integrate the pre-operative

model within the intra-operative VR space. This enabled us to overlay the 3D subject-

specific cardiac model onto the US image, providing additional anatomical context

for enhanced intra-procedure visualization and navigation.

Our next goal was to estimate the accuracy of the augmented reality environment,

by determining how well the pre-operative models and intra-operative anatomy were

aligned using our registration approach. We measured accuracy for each cardiac

surface (LV, LAA and RA/RV), by quantifying the RMS distance between the surface
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obtained using the feature-based registration versus a previously validated MR to US

registration technique (i.e. gold-standard) [8]. This latter transform involved an

iterative closest point (ICP) approach to align the LV myocardial surface predefined

in both the pre-operative and intra-operative images.

The TRE data were classified into different bins according to the distance from

each point on the surface to the mitral/aortic valve annuli. A summary of the TRE

values specific to each of the LV, LAA and RA/RV structures was reported in Ta-

ble 4.2. As this work is targeted towards mitral valve image-guided procedures, we

tabulated the TRE for the first five bins in each structure, since these regions are

located within 50 mm from the surgical target, and are of greatest interest to the

surgeons.

In order to interpret these results from a geometric perspective, we reconstructed

TRE maps for the LV (Fig. 4.5), LAA (Fig. 4.6), and RA/RV (Fig. 4.7), and

displayed them over each surface obtained using the gold-standard registration tech-

nique. As expected, low-error regions were located in the vicinity of the mitral and

aortic valve annuli, while slightly higher errors were observed with increasing distance

from the AVA/MVA.

In addition, we extended this evaluation throughout the cardiac cycle, and assessed

robustness of the registration at two diastolic and two systolic phases. A summary of

the TRE values specific to each of the LV, LAA and RA/RV structures is reported

Table 4.2: Pre- to intra-operative registration error (RMS distance error - mm) across each
model component (LA, LAA and RA/RV).

BIN No. Geometry TRE (mm)
[DISTANCE d (mm)] LV LAA RA/RV

BIN 1 [0 ≤ d < 10] 5.2 4.1 7.5
BIN 2 [10 ≤ d < 20] 6.5 4.5 7.4
BIN 3 [20 ≤ d < 30] 7.9 5.1 7.7
BIN 4 [30 ≤ d < 40] 8.8 5.6 11.8
BIN 5 [40 ≤ d < 50] 10.1 5.3 13.2
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Fig. 4.5: TRE (mm) distribution over the LV surface between the feature-based registration
and the ICP-based registration (gold-standard): posterior (left) and anterior (right) view.

in Table 4.3 for the four cardiac phases: end-diastole (ED), mid-systole (MS), end-

systole (ES), and mid-diastole (MD). As this work is targeted towards mitral valve

image-guided procedures, we tabulated the TRE for the first four bins in each struc-

ture, since these regions are located within 40 mm of the valvular region, and are of

greatest interest both for valve procedures, as well as left atrial interventions.

To better interpret these results, we also reconstructed registration error maps

for the LV, LAA and RA/RV components (Fig. 4.8) at the four cardiac phases.

Table 4.3: RMS TRE across each model component (LV, LAA, RA/RV) at four cardiac
phases — end-diastole (ED), mid-systole (MS), end-systole (ES), and mid-diastole (MD)
— and binned according to distance from the valves.

Distance ED (mm) MS (mm) ES (mm) MD (mm)
Bin d (mm) LV LAA RA/RV LV LAA RA/RV LV LAA RA/RV LV LAA RA/RV
0 ≤ d < 10 5.4 3.9 7.5 5.5 4.0 7.3 5.3 4.3 7.3 5.3 4.1 7.5
10 ≤ d < 20 6.6 4.3 7.3 6.4 4.3 7.3 6.4 4.4 7.3 6.6 4.5 7.4
20 ≤ d < 30 8.0 5.1 7.6 7.9 5.1 8.6 7.8 5.1 8.7 8.0 5.1 7.7
30 ≤ d < 40 9.0 5.5 11.4 9.1 5.7 12.1 9.0 5.7 12.1 8.9 5.6 11.8
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Fig. 4.6: TRE (mm) distribution over the LAA surface, between the feature-based registra-
tion and gold-standard: anterior (left); posterior (right) view.

The corresponding registration error is displayed over each surface model component

mapped using the gold-standard registration technique as the appropriate cardiac

phase. As expected, low-error regions were located in the vicinity of the mitral and

aortic valve annuli, while slightly higher errors were observed with increasing distance

from the AVA/MVA.

4.4 Discussion

This work initiates the investigation of employing pre-operative, subject-specific,

dynamic models for enhancement of planning, and navigation of valvular procedures

using a VR environment. Specifically, we determined the location of the surgical

targets predicted by the pre-operative subject-specific dynamic models to be accurate

within 3.1 mm with respect to their true gold-standard location extracted from 3D US

images. This study clearly identified weaknesses regarding the extraction of accurate
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Fig. 4.7: TRE (mm) distribution over the RA/RV surface, between the feature-based reg-
istration and gold-standard: posterior (left); anterior (right) view.

valvular motion patterns from clinically feasible MR images, and highlighted the

need to acquire a set of full-volume 3D US images of the subject during the proposed

clinical protocol, to assist in building accurate pre-operative subject-specific dynamic

models.

In term of predicting the dynamic location of the mitral valve, our subject-specific

models demonstrated sufficient accuracy, despite the small variations in anatomical

structures identified in the MR and US images, as well as any subject-specific physio-

logical variations between the times at which the images were acquired. These cardiac

models can be used to augment the surgical virtual environment during image-guided

mitral valve interventions. While enhancing procedure visualization by complement-

ing the intra-operative space with 3D anatomical context, these models constitute

a significant navigation aid. According to our collaborating cardiac surgeon, a mis-

alignment on the order of approximately 5 mm is tolerable, as these models will be

used to facilitate the navigation of instruments towards the surgical targets, whereas
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Fig. 4.8: a) Pre- to intra-operative registration error maps achieved via the feature-based
registration technique shown for all model components at four cardiac phases: a) ED; b)MS;
c) ES; and d) MD.

on-target positioning and fine tuning will be performed under real-time US guidance.

In addition, the relative accuracy of the tracked surgical tools is on the order of 1-2

mm [13], leading to an accurate virtual tool-to-US navigation.

Our method of augmenting the intra-operative VR environment with pre-operative

anatomy is suitable for interventional applications. It involves the selection of easily

identifiable landmarks using intra-operative US imaging, and ensures an accurate

registration of the surgical targets. According to our collaborating cardiac surgeon, a

misalignment on the order of∼ 5 mm is tolerable, as these models are used to facilitate

navigation of surgical instruments inside the heart, whereas on-target positioning and

fine-tuning is performed under real-time US guidance. Referring to section 4.3.2, our

results were consistent with the objective. We accurately aligned the pre-operative

and intra-operative anatomy adjacent to the valvular region in the left ventricle - 5.1

mm (Fig. 4.5), as well as the left atrium, and base of the aorta - 4.1 mm (Fig. 4.6).

This is an important result, given that we use the left atrial appendage as intracardiac

port-access for our image-guided off-pump cardiac procedures. Nevertheless, larger

errors were recorded for structures further away from the surgical targets, such as

posterior and apical regions of the left ventricle (Fig. 4.5), as well as the anterior

and right-lateral region of the right ventricle, right atrium, and pulmonary artery
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Fig. 4.9: a) Surgical VR environment consisting of 2D US probe and image, valve-guiding
tool, and valve-fastening tool; b) Pre-operative subject-specific model displaying LV, LA,
and RA/RV surfaces registered to the intra-operative space for visualization and navigation
enhancement (note alignment of ventricular septum in model and US); c) Illustration of the
mixed reality environment employed during an in vivo porcine study, showing pre-operative
heart model, intra-operative TEE image, tracked TEE probe, and surgical tools.

(Fig. 4.7).

4.5 Conclusions

To conclude, the proposed model-based segmentation approach can be used to

generate subject-specific dynamic model of the cardiac anatomy that can predict

the location of surgical targets or features of interest (in this case the mitral valve

annulus), with a 3.1 mm accuracy throughout the cardiac cycle. Moreover, these

dynamic pre-operative models could be integrated within the intra-operative imaging

environment using registration, to enhance intra-procedure planning and navigation

of image-guided mitral valve surgery.

The accuracy of the augmented environment was assessed by quantifying the tar-

get registration error achieved using our feature-based registration relative to a previ-

ously validated gold-standard technique in our laboratory. According to our findings,

the environment was accurate within less than 5 mm for regions located in the vicinity

of the surgical target (∼ 0−15 mm away from the MVA), while larger errors occurred
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at remote locations.

As part of our future research, we plan to further optimize the feature-based regis-

tration approach to improve the overall alignment of pre-operative and intra-operative

anatomy. Our ultimate objective is to extend this work towards in vivo studies involv-

ing animal subjects in the operating room, to validate it using 2D TEE for real-time

intra-operative visualization, and to illustrate the direct benefits of employing these

anatomical models on enhancing surgical navigation. However, a database of porcine

cardiac MR images is not currently available in our laboratory, and manual and semi-

automatic segmentation techniques are employed to generate anatomical models from

the pre-operative MR images, as described in Chapter 5.
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Chapter 5

Mitral Valve Implantation and

Atrial Septal Defect Repair under

Model-enhanced Ultrasound

Guidance: In vivo Pre-clinical

Feasibility Studies

In Chapter 3 we assessed the guidance capabilities of the model-enhanced US-

assisted platform and in Chapter 4 we proposed a method to generate pre-operative

subject-specific models of the heart and integrate them into the intra-operative en-

vironment. Here we present our experience in translating this work to pre-clinical

studies, to guide typical intracardiac interventions — mitral valve implantations and

ASD repair procedures, in vivo in swine models.

This work is adapted from Linte CA, Moore J, Wedlake C and Bainbridge D, Guiraudon GM,
Jones DL and Peters TM. Inside the Beating Heart: An In Vivo Feasibility Study on Fusing Pre-
and Intra-operative Imaging for Minimally Invasive Therapy. International Journal of Computer
Assisted Radiology and Surgery 4(2):113-123. 2009.
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5.1 Introduction

In the previous chapters we described the new model-enhanced US-assisted guid-

ance environment intended to facilitate the delivery of intracardiac therapy with mini-

mal invasiveness, in absence of direct vision [1, 2, 3]. Spatially tracked 2D TEE images

are augmented with pre-operative anatomy and virtual representations of the delivery

instruments tracked in real time using magnetic tracking technology [2, 3], enabling

their interpretation within the appropriate 3D anatomical context for enhanced intra-

operative guidance.

This chapter describes the workflow involved in augmenting real-time US imaging

with pre-operative cardiac models and virtual representations of the surgical instru-

ments during pre-clinical studies conducted in vivo on swine models. Furthermore, our

preliminary experience related to the clinical implementation of the model-enhanced

US environment to guide mitral valve implantations and ASD repairs in a minimally

invasive manner, is reported.

All animal experiments described in this study were approved by the Animal Care

and Use Committee of The University of Western Ontario and followed the guidelines

of the Canadian Council on Animal Care.

5.2 Methodology

The in vivo clinical routine associated with this surgical technique involves several

stages, which we describe here by following a typical porcine subject through the pro-

tocol. Pre-operatively, a dynamic MR cardiac image dataset of the subject is acquired

and used to generate a subject specific dynamic heart model. Intra-operatively, TEE

is employed for real-time interventional guidance, permitting a fast reconstruction

of the intra-operative cardiac anatomy. The feature-based registration technique de-

scribed in section 4.2.2 is used to map the pre-operative cardiac models onto the

intra-operative anatomy imaged via ultrasound. Ultimately, the virtual surgical envi-
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ronment is further augmented with representations of the surgical instruments tracked

in real-time using a MTS.

5.2.1 Pre-operative Imaging and Modeling

The high spatial resolution and excellent capabilities for soft tissue characteriza-

tion without contrast enhancement promote MRI as a suitable modality for acquiring

high-quality dynamic cardiac datasets. These images allow for a clear definition of

various anatomical features of interest and can therefore be utilized to construct pre-

operative models of the heart.

5.2.1.1 Pre-operative Image Acquisition.

The animal was initially anesthetized using Telazol (5 mg/kg) reconstituted with

5 ml of Rompum (100 mg/ml at a dose of 2 ml/50 kg) and Atropine (0.04 mg/kg).

At the imaging facility, the subject was intubated with an endotracheal tube and

ventilated with oxygen (900 ml/min), nitrous oxide (800 ml/min), and isoflurane

(1.5-2%) delivered via a mechanical ventilator.

The pig was imaged using a 1.5 T MRI scanner (General Electric, Milwaukee,

WI, USA), using a flexible, phased-array cardiac radio-frequency coil. Cardiac im-

age acquisition was gated to the R-wave of the animal’s ECG and 20 images were

reconstructed per slice, depicting the heart at different cardiac phases. The fast cine

gradient-echo pulse sequence was employed, with a 10.4 msec repetition time (TR),

5.8 msec echo time(TE), 35◦ flip angle, 8 views per segment, 3 signal averages (NEX),

256 x 128 image matrix, and a 28 mm field of view. To ensure that all slices were

acquired at the same point in the respiratory cycle and to minimize the image ar-

tifacts due to breathing [4], each slice was acquired while the pig’s respiration was

consistently suspended at end-expiration using the mechanical ventilator; the animal

was re-ventilated for 2 mins after each slice acquisition. The complete image dataset
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consisted of 50 sagittal image slices at each cardiac phase, with a 2.0 mm slice thick-

ness and a 1.09 mm x 1.09 mm in-plane resolution. Each slice was acquired over

21 sec, as governed by the average length of the animal’s cardiac cycle (∼ 0.9 sec),

resulting in a total scan time of approximately 18 minutes for the entire volume.

5.2.1.2 Static Cardiac Model

The dynamic MR image dataset was processed to generate a pre-operative cardiac

model of the pig’s heart. Our approach to cardiac modeling consists of first gener-

ating individual models for different cardiac components, and then assembling them

according to the complexity of the image-guided procedure performed. The main

features of interest include the left ventricle myocardium (LV), the left atrium (LA),

and the right atrium and ventricle (RA/RV).

Fig. 5.1: a) Porcine heart image at mid-diastole (MD); b) Porcine heart model at MD
showing the left ventricle (LV), left atrium (LA) and right atrium & ventricle (RA/RV).

We extracted all anatomical features using manual segmentation of the mid-

diastole (MD) image in the 4D dataset (Fig. 5.1). We chose the MD image as

the reference because the heart is relatively static during this phase, and hence this

image exhibits a low susceptibility to motion artifacts. The image was segmented on a

slice-by-slice basis by outlining the region enclosed by the endocardial and epicardial
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contours. The outflow tract regions were segmented along the median planes delim-

iting the LV from the left atrium and aorta, therefore providing a relatively “clean”

separation of the cardiac structures. The binary image obtained during segmenta-

tion was then processed using the marching cubes algorithm [5] to generate a surface

model of each organ component (Fig. 5.2). Each surface was smoothened using a

Gaussian filter and decimated to increase rendering speed [6].

Fig. 5.2: Anatomical models of left ventricle (LV), right atrium and ventricle (RA/RV), left
atrium (LA), and complete heart (shown from left to right) extracted from the pre-operative
MR dataset of the porcine subject at mid-diastole.

5.2.1.3 Dynamic Model

Static anatomical models are of value when performing interventions on organs

in the human body that do not undergo significant physiological or intra-procedural

deformations. As this characteristic is not applicable to the heart, we employed a

technique previously developed in the lab to reconstruct the heart motion throughout

the cardiac cycle. A 3D free form deformation field that describes the trajectories

of all points in the surface model was extracted using non-rigid image registration,

according to the technique described by Wierzbicki et al [7].

Using the mid-diastole (MD) heart image as a reference, the frame-to-frame mo-

tion vectors (T0−k, where k = 1 to 19) were computed by non-rigidly registering the

3D MD image (corresponding to k = 0) to each of the remaining frames in the 4D
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Fig. 5.3: Schematic representation of motion extraction using non-rigid registration of the
MD porcine cardiac image to the rest of the frames in the 4D dataset.

dataset (Fig. 5.3).

Ultimately, a dynamic cardiac model was obtained by sequentially propagating

the static model throughout the cardiac cycle using the motion vectors previously

estimated, and rendered to portray the cardiac dynamics (Fig. 5.4).

Fig. 5.4: Dynamic cardiac model displayed at different phases in the cardiac cycle, obtained
by animating the static model with the transforms obtained using image registration.

5.2.2 Intra-operative Guidance

5.2.2.1 Trans-esophageal Echocardiography

Two dimensional TEE offers flexibility in acquiring good-quality images, and also

eliminates the interference between probe manipulation and surgical work-flow. Nev-
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ertheless, the main disadvantage of interventional 2D US is the inadequate represen-

tation of the anatomical targets and surgical tools. To address these limitations, the

2D intra-procedure images were augmented with anatomical context supplied by the

subject-specific models derived pre-operatively. Peri-operatively, TEE images of the

heart were acquired to will serve as the “target image” to which the pre-operative

models were registered, using the feature-based registration approach described in

Chapter 4.

5.2.2.2 Peri-operative Image Acquisition

2D TEE images were acquired using a Philips SONOS 7500 machine (Philips

Ultrasound Division, Bothell, WA, USA). The images were encoded spatially using

the tracking information provided by the NDI Aurora MTS (Northern Digital Inc.,

Waterloo, ON, Canada). A 6 DOF magnetic sensor coil was rigidly attached to

the US probe and calibrated using a Z-string phantom [8] prior to its insertion in the

esophagus. The image acquisition was gated to the R-wave of the animal’s ECG using

a standard 3-lead configuration. All images were acquired during breath-holding, by

shutting off the mechanical ventilator at end-expiration. A subset of 19 2D images

with a 10 cm field of view, and 0.3 mm x 0.3 mm resolution, and a 5 MHz frequency

were acquired at each cardiac phase by rotating the TEE transducer about its normal

axis at 10◦ angular increments (Fig. 5.5).

5.2.2.3 Peri-operative Image Processing

“Pseudo” 3D US images were reconstructed at each cardiac phase, by inserting

each of the 2D US image frames into its appropriate location within a 3D image vol-

ume, according to its position and orientation information recorded by the magnetic

tracking system (Fig. 5.6). Ideally, the 2D image frames would only differ from each

other by the acquisition angle, as the 2D acquisition fan was rotated at equi-angular

increments about the normal axis of the transducer. Moreover, the tracking informa-
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Fig. 5.5: Schematic illustration of the complete US image dataset acquisition. Subsets of
19 2D images of the heart were acquired at equi-angular increments of 10◦ at each phase
in the cardiac cycle, using a magnetically-tracked TEE probe. The acquisition started at
mid-diastole and was gated to the animal’s ECG, resulting in multiple image datasets, each
depicting the heart at a different cardiac phase.

tion could also be used to correct for any undesired motion of the transducer during

acquisition prior to the insertion of each 2D image frame into the 3D volume. In

addition to their spatial stamp, each image was also inserted into the appropriate

cardiac phase volume, as prescribed by the time stamp encoded by the ECG gat-

ing. This process ultimately led to a set of volumetric displays of the intra-operative

anatomy reconstructed by assembling all angular frames acquired at each cardiac

phase (Fig. 5.7). The resulting 3D displays are not continuous images, but rather

collections of 2D US images arranged according to their position in space and time
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Fig. 5.6: Schematic representation of the generation of “pseudo” 3D US volumes: each 2D
US image is inserted into the 3D volume according to its spatial stamp, recorded by the
MTS, and temporal stamp, recorded by the ECG gating.

that provide a 3D perspective of the intra-operative cardiac anatomy.

Fig. 5.7: “Pseudo” 3D reconstruction of the intra-operative anatomy images at different
cardiac phases. Each image is obtained by inserting the intra-operatively acquired 2D US
image frames at their appropriate location within the 3D volume, as prescribed by their
spatial and temporal information encoded using magnetic tracking and ECG gating.

These “pseudo” 3D displays allow us to extract features of interest from the intra-

operative cardiac anatomy. By aligning the visualization plane with the individual

2D US images, the user can select points of interest in each image of the 3D dataset,

ultimately resulting in a 3D reconstruction of the feature of interest over the entire

dataset. In our case, we use the “pseudo” 3D US volumes to select anatomical

structures — the mitral (MVA) and aortic (AVA) valve annuli — used for registration.
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5.3 Virtual Environment and Surgical Guidance

5.3.1 Pre- to Intra-operative Registration

The feature-based registration technique presented in § 4.2.2 was employed to

augment the intra-operative US images with the pre-operative cardiac models. Easily

identifiable targets — the mitral (MVA) and aortic (AVA) valve annuli — in both

the pre- and intra-procedure datasets, were chosen to drive the model-to-subject

registration algorithm (Fig. 5.8b).

The pre-operative annuli were segmented manually from the cardiac MR image

under the guidance of an experienced cardiologist, using a custom-developed spline-

based segmentation technique. The intra-operative annuli were extracted by an ex-

perienced echocardiographer from the “pseudo” 3D US volume generated in the peri-

operative stage. The visualization plane was interactively aligned with each of the

angular 2D US images in the dataset and the end-points of the mitral and aortic valve

annuli were selected. Ultimately, 3D splines were used to connect the selected points

corresponding to the mitral, and respectively, the aortic annulus.

Fig. 5.8: a) Intra-operatively reconstructed 3D US image at mid-diastole containing the
intra-operative MVA and AVA; b) Pre-operative heart model at mid-diastole also show-
ing the segmented MVA and AVA; c) Pre-operative heart model fused with the intra-
operative US image after performing the model-to-subject registration using the feature-
based technique.

The feature-based registration technique presented in Chapter 4 was employed to
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overlay the pre-operative 3D model onto the 2D TEE US image (Fig. 5.8c). This reg-

istration technique is suitable for cardiac interventions, as the selected valvular struc-

tures are easily identifiable in both the pre-operative and intra-operative datasets,

and they also ensure a good alignment of the pre- and intra-operative surgical tar-

gets. Furthermore, given the location of the features used to drive the registration,

we expect reasonable anatomical alignment in the surrounding regions, enabling us

to employ this technique for a variety of image-guided interventions inside the heart.

Table 5.1: Alignment accuracy achieved via feature-based registration estimated over the
anatomical features of interest. Note: Alignment error is reported as RMS (mm) and binned
according to the distance of the surface points from the mitral and aortic valves.

Distance d (mm) RMS Alignment Error (mm)
from AVA & MVA LV LA RA/RV

0 ≤ d < 10 5.2 4.1 7.5
10 ≤ d < 20 6.5 4.5 7.4
20 ≤ d < 30 7.9 5.1 7.7

As shown in the previous chapter, the accuracy achieved in aligning the pre-

operative models with the intra-operative anatomy was on the order of 5.2 mm, 4.1

mm and 7.5 mm for the regions of the left ventricle (LV), left atrium (LA), and

right atrium and ventricle (RA/RV), respectively, located within 10 mm from the

mitral and aortic valve annuli. Furthermore, an accuracy of approximately 6 mm

was maintained for the chambers of interest across regions located 20-30 mm away

from the valves. Table 5.1 summarizes the root-mean-squared (RMS) distance error

resulted in aligning the pre- and intra-operative structures, estimated across regions

located within 30 mm from the mitral and aortic valves.

Following the model-to-patient registration, the surgeon had access to the com-

plete AR environment during intra-procedure guidance, as opposed to just the 2D

intra-operative US images. Fig. 5.9a shows an example of a 2D intra-procedure

image used for guidance during a different experiment, displayed within the pre-
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operative anatomical context. Ultimately, the virtual environment is complemented

with the representations of the surgical instruments also built pre-operatively and

used to track the position and orientation of the physical instruments within the

virtual surgical space (Fig. 5.9b).

5.3.2 Image-Guided Therapy Applications

We next describe our preliminary experience in the OR employing such AR en-

vironments to guide typical intracardiac procedures on the beating heart in porcine

subjects, including a mitral valve implantation procedure and an ASD closure in-

tervention. For all studies, direct vision was substituted by our augmented virtual

environment integrating real-time US imaging, pre-operative anatomical images, and

virtual models of the magnetically tracked surgical tools, all displayed on a single flat

screen monitor, and stereoscopically via HMDs worn by the surgeons.

Fig. 5.9: a) Intra-operative 2D US image displayed within anatomical context provided
by the pre-operative cardiac model; b) Complete AR environment including pre-operative
model, intra-operative US image, TEE transducer, and virtual models of the surgical
instruments.

Direct intracardiac access was achieved via the UCI [9], a device used to gain

access inside beating heart, briefly mentioned in Chapter 2. The UCI had previously
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undergone extensive testing using animal studies to demonstrate its feasibility for

endocardial ablation for atrial fibrillation, and mitral valve implantation. This device

provides safe port access to intracardiac cavities and targets, and can be removed

at the end of the intervention. The UCI is designed as an “air lock” between the

blood-filled cardiac cavities and the atmosphere of the chest, and it consists of an

insertion cuff, attached at one end to the atrial appendage, and at the other end to

the introductory chamber. This chamber has sleeves that allow the introduction of up

to four different surgical instruments (e.g. laparoscopic tools, pressure line, endoscope,

etc.) inside the beating heart with minimal blood loss, through the specially-designed

access ports (Fig. 5.10). The introducer is safe and versatile and does not extensively

compromise the manipulation of tools.

Fig. 5.10: a) Schematic representation of the Universal Cardiac Introducer (UCI); b) UCI
displaying the attachment cuff and the introductory chamber with the access ports contain-
ing and a valve-guiding tool and prosthetic valve; c) UCI attached to the heart chamber
during an in vivo porcine study.

5.3.2.1 Mitral Valve Implantation

One of the most challenging interventions that we have attempted using our hybrid

image-guidance system is the implantation of a mitral valve, procedure that typically



162

requires a direct access approach to surgery under CPB. Catheter-based navigation

techniques are highly preferred for implanting an aortic valve, given the self-centering

effect of the collapsible valve within the artery after deployment. However, such

methods are not ideal for implanting an artificial mitral valve, mainly due to the

challenges encountered while correctly positioning and fastening the prosthetic valve.

Following the success achieved during our in vitro studies in the laboratory [2],

we initiated the translation of the work into the OR in porcine models. Direct in-

tracardiac access was achieved using the the UCI, attached to the left atrial ap-

pendage of the pig’s heart via a left side minithoracotomy. A magnetically-tracked

2D trans-esophageal US transducer was used for real-time intra-procedure image-

guidance. Pre-operatively generated models of the pig’s heart were registered to the

intra-procedure imaging space using the feature-based registration approach described

earlier. The surgical tools employed in this intervention consisted of a valve-guiding

tool, to which the prosthetic valve was attached via a release mechanism, and a

fastening tool — a laparoscopic clip applier.

The prosthetic valve was positioned onto the native mitral annulus, and then

fastened to the underlying tissue using the clip applier. Both steps entailed two

distinct tasks: the former consisted of navigating the valve-guiding tool and valve-

fastening tool to the target, under guidance provided by the virtual tool and organ

models. The latter involved the actual therapy delivery, represented by the correct

positioning of the valve onto the mitral annulus, followed by the correct application

of the surgical clips at the desired locations, performed under real-time US image

guidance (Fig. 5.11). Intra-operative procedure assessment using Doppler US imag-

ing confirmed successful implantation of the valve, as observed in the post-procedure

analysis.
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Fig. 5.11: a) AR environment displaying a virtual model of the US transducer, 2D image
fan, and two virtual models of the surgical tools: the valve-guiding tool and valve-fastening
tool; b) Typical OR setup during a mitral valve implantation procedures; c) Post-procedure
assessment image showing the prosthetic valve successfully positioned over the native mitral
annulus.

5.3.2.2 Atrial Septal Defect Repair

Any optimal minimally invasive ASD closure procedure should combine off-pump

techniques with the effectiveness and versatility of the traditional open-heart ap-

proach. Here we report our experience in guiding an off-pump ASD repair in porcine

models under model-enhanced US-assisted guidance. Our goal was first to create an

ASD over the fossa ovale (FO), and then close it by positioning a patch over its sur-

face. The right atrium (RA) of the pig was exposed via a right-lateral thoracotomy,

and the UCI was attached to an excluded segment of the free right atrial wall.

The septal defect was created using a custom made punch tool (15 mm diameter)

(Fig. 5.12a) introduced via the UCI and used to extract a circular region of tissue

from the FO under real-time US guidance (Fig. 5.12b). After resection of the FO, the

blood flow through the ASD was identifiable on Doppler US. A repair patch attached

to a guiding tool and the laparoscopic clip applier, as a fastening device, were then

introduced into the RA via the UCI. Using the pre-operative anatomical information

and the virtual models of the surgical tools, the patch was guided to the target. One

minor challenge resulted due to the slightly large clip applier tool used to fasten the

patch, which collided with the patch guiding tool during navigation, given the confined
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intracardiac space. After navigating the tools on target, the surgeon relied on the

real-time US images to correctly position the patch onto the created ASD and attach

it to the intra-atrial septum. The correct placement of the patch completely occluding

the ASD orifice was also confirmed in the post-procedure assessment (Fig. 5.12c).

Fig. 5.12: a) Image showing three tools employed during the creation and repair of an ASD
procedure; b) 2D intra-operative US image showing a “hole” in the FO after the creation of
the ASD; c) Image showing the successful ASD repair: note the repair patch covering the
previously created septal defect.

The attachment of both the prosthetic valve and septal repair patch, using the

laparoscopic stapler, was adequate given the acute nature of these studies; however,

we still need to further investigate and improve the durability and robustness of the

fastening. These initial studies have focused on correctly navigating and positioning

the valve and repair patch on target using the novel guidance environment, and we

chose this fastening technique to anchor the valve and patch in place sufficiently

well to enable post-procedure assessment. However, proper fastening tools specific

for these applications are currently under design and provided they comply with the

requirements, we plan to use them in future in vivo clinical evaluation studies.

5.4 Discussion

Since the surgeon is not able to directly observe the endocardial surfaces of the

heart while it is beating, we employ pre-operative anatomical models and real-time

TEE imaging to replace the traditional view of the surgical field with an AR environ-
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ment. This environment resembles the real surgical space — the cardiac chambers,

structures of interest and surgical tools, and consists of images of the heart gathered

both before and during the operation, complemented with models of the instruments

used in surgery.

Although two-dimensional TEE plays a significant role in our interventional sys-

tem, providing the operator with real-time intra-procedure information, the 2D im-

ages are of limited use when identifying the position and orientation of the surgical

instruments with respect to the target. Pre-operative models, on the other hand,

enhance surgical navigation, but surgeons need to be aware that a perfect correspon-

dence between the real and virtual anatomy cannot be achieved. These models are not

sub-millimeter replicas of the subject’s heart, registration techniques cannot provide

a sub-millimeter alignment between the model and the subject’s heart, and moreover,

because of latencies associated with the image processing, it is virtually impossible to

achieve accurate real-time synchronization between the model and the actual beating

heart.

During a typical surgical procedure, US images of the heart are acquired peri-

operatively, after accessing the thoracic cavity via a minithoracotomy and attaching

the UCI. Hence, the intra-operative anatomy imaged via US already reflects the

changes in geometry of the heart chambers induced by accessing the intracardiac

targets. On the other hand, the cardiac geometry depicted by the pre-operative

models is based on closed-chest data, and may therefore differ slightly from the intra-

operative geometry. This issue is ameliorated by registering the pre-operative model

to the true, intra-operative anatomy imaged via real-time US, after opening the chest

and accessing the intracardiac space. However, pre-operative models of the heart

that take into account physiological and positional changes arising due to the surgical

access are unlikely to be generated; hence, surgeons cannot rely solely on these models

for procedure guidance, and therefore must make use of US imaging for real-time

visualization. It is important to understand that the virtual anatomical models consist
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of an aid to improve anatomical context and facilitate the navigation to target, while

TEE consists of the true, real-time visualization modality employed when performing

all on-target, detailed manipulations.

Also from a modeling perspective, the use of virtual representations of the sur-

gical instruments, as opposed to just relying on their representation in US images,

emphasize the superior surgical guidance capabilities of our platform. While these

instruments may not be clearly identified in the US images, they can easily be viewed

as 3D objects in the virtual environment. In addition, given our accurate virtual tool-

to-US registration, the surgical instruments are aligned with their US representations

at all times, ultimately facilitating both their visualization and navigation.

The quality of the pre-operatively acquired images may also impose certain limita-

tions upon how much detail can be achieved when segmenting the anatomy of certain

organs. For mitral valve applications, it may be challenging to identify and segment

the anatomy of the mitral apparatus from clinical quality, 6 mm slice thickness MR

data. Similar challenges may be encountered whenever the surgical targets consist

of delicate anatomical structures that are not readily identifiable in low resolution

images. In response to these limitations, we have developed a technique that involves

a registration-based segmentation of pre-operative images by means of an average

anatomical model built from images acquired from a population of subjects [5, 10].

As described in § 4.2.1.1, we have constructed a database of human cardiac models

based on a population of 10 individuals, and built a high-resolution average cardiac

model of a healthy human heart. Using a registration-based segmentation approach,

the high-resolution average heart model has been used to segment cardiac MR images

of human subjects that were not part of the database, generating segmented anatom-

ical structures which were validated to be accurate within 5.0±1.0 mm, 4.7±0.9 mm,

and 5.3±1.3 mm for the left ventricle, left atrium, and the right atrium and ventricle,

respectively. While this technique has been applied and validated on human subject

MR data [11], we are currently in the process of building a similar database from
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porcine images, and employ this technique to automatically generate the anatomical

models as an alternative to manual segmentation. However, for the time being, we

have to resort to the manual segmentation approach to generate the anatomical mod-

els for our animal studies. Given this disadvantage, the pre-operative imaging must

take place a few days prior to the scheduled procedure, to allow sufficient time for

image segmentation and model generation.

Our preliminary translational studies in the operating room (OR) have allowed

us to identify several constraints specific to “live” interventions in the clinic that had

not been previously observed in the laboratory. Given that the tracking accuracy of

the MTS decreases away from the magnetic field generator, the latter must be located

within 20-30 cm from the surgical field. To further avoid any interference between the

setup and the clinical work-flow, we embedded the magnetic field generator within

the foam of the OR bed, underneath the pig’s thorax. An evolution of this approach

has been NDI’s recent announcement of a flat field generator that can be placed on

the OR table, even if it has a steel top.

While these interventional procedures are currently performed manually, a natural

extension would be to perform it using robot assistance. Under these conditions, it

would be worth while exploring the use of algorithms that track the beating heart

motion, and integrate motion compensation into the robot dynamics [12, 13, 14, 15].

However, the need for such an approach, even with robot control, is still open to debate

and currently part of our ongoing work, given that the valve or patch application

device acts as a natural stabilizer when in contact with the target. An additional

advantage of the manual approach is the inherent haptic feedback transmitted to

the surgeon through the rigid instrument shaft, a feature that robotic instruments

currently lack.

Several approaches have been considered regarding the most appropriate means of

delivering the multi-modality imaging data to the physician. The information may be

displayed via a traditional computer monitor, a translucent flat panel overlaid onto the
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patient and located directly above the surgical field, a stereoscopic display enabling

3D visualization, or via HMDs which allow the operators to “navigate” within the

virtual environment, as suggested by Sauer et al. [16] or Birkfellner [17]. To date,

we have employed the traditional overhead monitor approach, as well as the use of

the HMDs, which the surgeons found to be relatively comfortable, in spite of the

progressive discomfort experienced with prolonged use. However, investigating the

human-computer interaction between the surgeons and the mixed reality environment,

and optimizing the information display during image-guided interventions is still an

active topic of research in the laboratory.

Clinical Limitations. One of the most frequent issues in image-guided interven-

tions is surgical accuracy. Furthermore, we must also keep in mind that, unlike

orthopedic or neurological applications, cardiac image-guided procedures will always

be prone to higher inaccuracies arising from the difficulty in building perfect anatom-

ical models of the heart, and the limitations of the registration algorithms used to

map these models to the intra-operative patient anatomy. These bottlenecks are, of

course, further amplified by the rapid movement of cardiac tissue and the limitations

of working in a blood-filled environment.

The registration technique used to augment the intra-operative images with the

pre-operative models ensures a ∼ 4.5 mm alignment accuracy for the cardiac struc-

tures located within 10 mm from the valvular region. Moreover, the surgical in-

struments are also tracked with respect to the ultrasound image, since US imaging

does provide the ultimate information for on-target positioning and therapy deliv-

ery. Under the inherent limitations of the system (i.e. minimizing the presence of

ferro-magnetic materials near the field generator, tracking the instruments within the

optimal tracking volume (500 mm x 500 mm x 500 mm from the field generator),

and quasi-static conditions - smooth motion of the tracked tools), the typical perfor-

mance of the NDI Aurora 5 DOF sensors ranges from 0.9 mm to 1.4 mm in translation
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and approximately 0.3◦ in orientation, while the 6 DOF sensors are typically accu-

rate within 0.9 - 1.6 mm in translation and 0.8◦ - 1.1◦ in orientation. According to

the in vitro targeting accuracy results described in section 3.3.1, users achieved an

overall RMS targeting accuracy of 4.4 mm under sole US imaging, and a 2.8 mm

RMS accuracy under model-enhanced US-assisted guidance [18]. The dramatic ac-

curacy improvement is attributed to the augmentation of the “context-less” 2D US

images with the virtual object representations, which significantly facilitate surgical

instrument navigation.

While we have been able to quantify the in vitro targeting error via cardiac phan-

tom experiments, in vivo quantification is much more challenging. Clinically, surgical

accuracy is often denoted by a successful procedure, which, although performed via

minimally invasive approaches, should still lead to the same clinical outcome and

maintain the efficacy of the traditional approach. Based on the acute in vivo studies

performed to date, we can conclude that these investigations have demonstrated the

feasibility of the model-enhanced US platform in guiding mitral valve implantations

and ASD repairs. To further strengthen the efficiency and benefits introduced by this

novel surgical platform, we will focus on expanding the clinical evaluation toward

chronic animal studies. In addition, similar to our in vitro work, we plan not only to

assess the therapeutic success, but also to consider parameters such as procedure time

and the rate of conversion from this minimally invasive off-pump guidance method to

the traditional approach.

5.5 Conclusions

In conclusion, this initial work has demonstrated the tremendous potential of

multi-modality imaging and surgical tool tracking for both visualization and assess-

ment of surgical interventions in a manner that will ultimately be superior to direct

vision. Nevertheless, our clinical translation experience is still in its infancy and
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further experiments are necessary to better evaluate and report the clinical efficacy

of the interventional platform. Hence, our future goals consist of further evaluating

the interventional platform in vivo on porcine models, while optimizing tool design,

and building surgical instruments compatible with the anatomy, standard imaging

modalities, and tracking systems.
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Chapter 6

Investigating Heart Migration

during Minimally Invasive Cardiac

Interventions

IGS relies on the common assumption that pre-operative information can depict

intra-operative morphology with sufficient accuracy. However, the heart is a soft-tissue

organ prone to changes induced during access to the surgical targets. In addition to

its clinical value for cardiac interventional guidance and assistance with the image-

and model-to-patient registration, here we show how magnetically tracked TEE imag-

ing, together with the registration techniques described in Chapter 4 can be used to

estimate changes in the heart position and morphology of structures of interest at dif-

ferent stages in the procedure workflow of two types of interventions: model-enhanced

US-guided guided procedures performed on swine models and robot-assisted CABG

procedures performed in patients suffering of coronary artery disease.

This chapter is adapted from Linte CA, Carias M, Cho SD, Moore J, Wedlake C, Bainbridge D,
Kiaii B and Peters TM. Estimating heart shift and morphological changes during minimally invasive
cardiac interventions. Proc. SPIE Medical Imaging 2010: Visualization, Image-guided Procedures
and Modeling. Vol. 7625. Pp. 762509-1-11. 2010.
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6.1 Introduction

As an alternative to conventional therapy approaches, performing interventions on

the beating heart is considered to be the ultimate and least invasive cardiac therapy

delivery technique. Nevertheless, the challenge lies within the ability to provide the

interventionalist with a clear and intuitive display of the surgical field to enable tar-

get identification and surgical tool manipulation with sufficient accuracy and fidelity

without compromising the therapy delivery outcomes.

For most of these procedures, in addition to the intra-operative visualization

achieved using various medical imaging modalities, a pre-operative planning stage

is often involved. In the case of CABG procedures, for example, a pre-operative com-

puter tomography (CT) scan is used to assess patient candidacy for the robot-assisted

procedure (i.e. the thorax anatomy of the patient allows the surgery to be performed

using the surgical robot, ensuring the instruments can reach the heart without collid-

ing with each other). Also based on the pre-operative dataset, the surgeon identifies

the location of the target vessel - the left anterior descending (LAD) coronary artery,

as well as the optimal location of the port incisions to ensure proper access to the

LAD (Fig. 6.1).

Fig. 6.1: Pre-operative planning stage showing patient’s cardiac CT scan (a), the coronary
vessel displayed relative to the valve annuli (b) and the port placement to ensure proper
reach of the target vessel with the robotic instruments (c), where the yellow lines represent
intercostal spaces.

Besides the CABG procedures, other novel minimally invasive interventions such
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as the those guided using model-enhanced US-assisted guidance described in Chap-

ter 5, involve an image-to-patient registration step [1], where real-time intra-operative

US imaging is augmented with pre-operative anatomical models of the heart. A simi-

lar approach is presented by Ma et al. [2], where they use a feature-based approach to

register pre-operative data to the intra-operative US images at a single stage before

the procedure.

In both cases the pre-operative plan and the intra-operative visualization envi-

ronment must adequately resemble the real surgical field to allow proper surgical

navigation. Hence a clinically adequate alignment between the pre-operative models

used in therapy planning and the intra-operative information used in therapy delivery

is expected. In addition, it is worthwhile noting that the morphology of the features

used for registration may differ between the pre- and intra-operative stages, simply

due to a slightly different position of the subject, as well as changes induced dur-

ing the peri-operative workflow of the procedure itself. Therefore, any information

with regards to the changes in position, orientation and intrinsic morphology of these

features is critical to either update a pre-operative plan or to provide a sufficiently

accurate image- or model-to-patient registration.

This work is motivated by both our current developments in model-enhanced US

intracradiac surgical navigation, as well as by a parallel project aimed at optimizing

surgical planning and port placement for robot-assisted CABG procedures. Using

the registration techniques described in Chapter 4, the changes the heart undergoes

during the peri-operative workflow associated with these procedures, are estimated.

The investigations were carried out in two porcine models undergoing beating heart

interventions with intracardiac access achieved using the UCI, and four patients un-

dergoing robot-assisted CABG intervention for coronary artery disease.

After observing the heart migration in patients undergoing robot-assisted CABG

interventions, as a natural extension of this work toward improving procedure plan-

ning for the robot-assisted CABg interventions, a method to better predict of the
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intra-operative location of the LAD, based on the pre-operative plan and the observed

peri-operative migration, is proposed. This subsequent contribution is described in

Appendix A.

All animal experiments described in this study were approved by the Animal Care

and Use Committee of The University of Western Ontario and followed the guidelines

of the Canadian Council on Animal Care. Also, all human data presented here were

acquired following approval of the Research Ethics Board of the University of Western

Ontario and patient consent.

6.2 Methodology

To estimate the changes in global position and morphology of the heart during

the procedure workflow, we rely on features of the heart that are available in the

pre-operative CT or MR images and that can also be readily obtained from real-time

peri-operative US images of the subject’s heart acquired at the various stages of the

procedural workflow.

Here we use the mitral and aortic valves as the features of interest and assess their

global movement and morphological changes during the intra-procedure workflow. As

described earlier in Chapter 4 and Chapter 5, the valvular features (MVA and AVA)

have been employed in the image- or model-to-subject registration of both patient

and porcine image data, respectively. Moreover, they are also key features in another

registration technique later presented in Appendix A that uses the left main coronary

ostia (LMCO) and left ventricular apex (LVAp) in addition to the two valves, to

map the pre-operative location of the LAD vessel to the corresponding peri-operative

“instances” of the heart for improved planning and guidance of robot-assisted CABG

procedures.

During the per-operatie workflow, we are interested in the overall displacement of

the heart — a measure of how much the heart itself shifts during the procedure, and
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the morphological changes of the features of interest — a measure of the geometrical

variation of the features of interest (i.e. MVA and AVA). The morphological changes

of the valve annuli also provide a measure of the variability associated with their

identification and segmentation, which, in turn, contribute to the uncertainty of any

registration algorithm that relies on these features. In addition, their relative geom-

etry provides a measure of the extent of local, non-rigid deformations that occur in

the heart during the peri-operative workflow, which may or may not require the use

of non-rigid registration to capture these changes between adjacent workflow stages.

6.2.1 Minimally Invasive Procedure Workflow

6.2.1.1 Direct-access Off-pump Intracardiac Interventions via UCI

Unlike a limited number of epicardial procedures that can be performed off-pump,

most intracardiac procedures, including those performed under minimally invasive

conditions, are carried out on the still drained heart. Minimal invasiveness is achieved

by entering the thoracic cavity via smaller incisions with reduced tissue exposure,

usually using a lateral minithoracotomy. In Chapter 5, we have demonstrated how

model-enhanced US guidance can be used to implant a prosthetic mitral valve and

repair a septal defect in live porcine subjects, with off-pump intracardiac access pro-

vided via the UCI.

After anesthesia and mechanical dual-lung ventilation, (Stage1), the heart is ac-

cessed via a minithoracotomy and the pericardial sac is opened for access to the

chamber of interest (Stage2). The UCI is then attached to the left or right atrial

appendage and the delivery instruments are inserted inside the chamber via the ports

of the UCI (Stage3) (Fig. 6.2).
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Fig. 6.2: Peri-operative workflow stages associated with the UCI-based intracardiac inter-
ventions: a) before opening chest; b) after minithoracotomy; c) after intracardiac access; d)
during therapy delivery.

6.2.1.2 Robot-Assisted Coronary Artery Bypass Graft Interventions

Robot-assisted CABG procedures typically involve three peri-operative stages.

Initially, the patient is anesthetized, with both lungs mechanically ventilated, and

positioned in the right lateral decubitus position (Stage1). This stage closely resem-

bles the pre-operative imaging setup when the patient’s heart is imaged in the same

position and under similar breathing conditions, but under no anesthesia. Hence the

cardiac anatomy and morphology are thought to be very similar at these two stages.

The left lung is then deflated to enable access to the heart (Stage2), while the patient

undergoes single lung ventilation, followed by CO2 chest wall insufflation (Stage3) at



179

a target pressure of 10 cm H2O.

6.2.2 Data Acquisition

6.2.2.1 Pre-operative Image Acquisition

Porcine Image Acquisition: A set of 20 high resolution (1.09 x 1.09 x 2.0 mm3)

ECG-gated MR volumes of the porcine subject’s heart was acquired throughout the

cardiac cycle. A pre-operative surface model was constructed from the mid-diastole

volume [3], consisting of the left ventricular myocardium (LV), left atrium (LA), right

atrium and ventricle (RA/RV), and the mitral (MVA) and aortic valve annuli (AVA),

similar to the techniques described in Chapter 5. For procedure guidance, a dynamic

cardiac model can be obtained by animating the mid-diastolic model throughout the

cardiac cycle using motion information extracted via non-rigid image registration [4]

and synchronizing it with the ECG signal; however, for the purpose of this work, the

mid-diastolic information is sufficient.

Patient Image Acquisition: For each patient undergoing robot-assisted CABG

intervention, a high-resolution pre-operative CT scan (64 Slice LightSpeed VCT, Gen-

eral Electric, Milwaukee, WI, USA) was acquired as part of the clinical routine for

candidacy assessment. Since X-ray contrast was used for the pre-operative scans,

the images also provided accurate information about the location of the major blood

vessels, including the LAD.

6.2.2.2 Peri-operative Image Acquisition

Magnetically tracked real-time TEE was employed to acquire “instances” of the

heart at each stage in the peri-operative workflow and to track the cardiac features

of interest. For both procedures the image acquisition was repeated at each stage of

the peri-operative workflow.
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For the patients undergoing robot-assisted CABG intervention, 2D US images

were acquired using an Agilent Technologies TEE transducer (Agilent Technologies,

Canada). The probe was modified by embedding a 6 DOF NDI Aurora magnetic

sensor coil inside the encasing of the transducer and calibrated using the Z string

technique [5, 6]. The magnetic field generator was located underneath the patient’s

heart, under the operating table (Fig. 6.3).

Fig. 6.3: Peri-operative setup of the a) patient during image acquisition prior to the robot-
assisted CABG procedure, and b) porcine subject prior to the UCI-based off-pump intrac-
ardiac intervention.

In addition to spatial tracking, all images were acquired using ECG gating; the

real-time US video feed was “frozen” at 75% of the R-R interval, corresponding to

the mid-diastole time point. The mitral valve was imaged via a series of 6-10 mid-

esophageal four-chamber acquisitions at 20◦ angular increments. The aortic valve was

imaged using a 180◦ ± 10◦ long axis view and a 30◦ short axis view.

A similar acquisition protocol was used to acquire in vivo images of the porcine

subjects during the UCI-based intracardiac intervention. However, instead of using

the integrated magnetically tracked TEE probe, a similar transducer onto which

the magnetic sensor coil was rigidly attached on the outside, was employed. Also,

the field generator was located inside a mattress insert placed underneath the pig

on the operating table (Fig. 6.3). The mitral and aortic valves were imaged at

10− 20◦ angular increments, however difficulties were encountered during the aortic
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valve image acquisition due to its obstruction by features belonging to the respiratory

system.

6.2.2.3 Cardiac Feature Identification

The main advantage of the tracked image acquisition is the ability to interactively

select features of interest in the image dataset at different times during the workflow,

and display them relative to one other in the same coordinate system. As a result,

all 2D image fans are inserted into the 3D volume according to their spatial stamp

recorded by the tracking system.

Following image acquisition, all data processing was performed off-line, with the

2D images being reviewed by an experienced anesthetist. The features of interest

were identified using a custom-developed tool that enabled the user to visualize each

of the acquired 2D US images and interactively select points corresponding to the

structure of interest. Each valve annulus was segmented by identifying the annular

end points as seen in the 2D images acquired in angular increments (Fig. 6.4).

Fig. 6.4: a) Screen shot showing the US image collection and analysis tool used to extract
the features of interest (b) from the peri-operatviely acquired US images; c) Peri-operative
US images at two different stages in the workflow showing the segmented mitral and aortic
valve annuli.

The mitral and aortic annuli were reconstructed by connecting the corresponding

points selected from the 2D images, resulting in a pair of continuous annuli at each

peri-operative workflow stage. A similar tool was used to select the mitral and aortic
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Fig. 6.5: a) Patient heart instance at Stage1 acquired using tracked US and showing the valve
annuli; b) Stage1 (orange) and Stage2 (gray) instances of the heart showing relative heart
displacement and corresponding segmented valvular structures; c) Initial peri-operative US
instance (Stage1) registered to the pre-operative dataset (Stage0) and displayed within the
CT coordinate space.

annuli in the pre-operative CT and MR images. However, the process was facilitated

by the superior image quality and 3D nature of the image datasets.

6.2.3 Data Analysis

6.2.3.1 Global Heart Movement

Since procedure planning is performed on the pre-operative dataset, the pre-

operative image space was used as the fixed frame of reference. The peri-operatively

acquired images were then transferred into the pre-operative coordinate system by

aligning homologous features corresponding to the first peri-operative (Stage1 US) and

the pre-operative (Stage0 CT) datasets (Fig. 6.5). These two stages are anatomically

equivalent given the same subject position and dual-lung ventilation, and assuming

that no major changes were induced by the anesthesia. As a result, the peri-operative

displacements can be estimated with respect to the principal body axes.

The global motion of the heart was estimated according to the change in posi-

tion of the mitral and aortic valve annuli between successive stages in the procedural

workflow. The displacement was determined based on the locations of the centroid

of the valve annuli expressed as a vector quantity. The movement between consecu-
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tive stages was measured in the CT coordinate system with respect to the anterior-

posterior (AP), superior-inferior (SI) and left-right (LR) axes of the body.

6.2.3.2 Morphological Feature Characterization

In addition to estimating the overall displacement of the features as a global

measure of the position of the heart, we also characterized feature morphology in

terms of annuli lengths and lengths of their principal axes, corresponding to the

major and minor in-plane radii and polar radius, the latter being a measure of the

out-of-plane properties. While the native valves are not exactly planar structures (in

particular the mitral valve which is often referred to as saddle-shaped), the aortic

valve annulus can nevertheless be usefully approximated as planar.

The morphological feature characterization was performed within a local coordi-

nate system characterized by a basis consisting of three orthonormal vectors, which

were identified using principal component analysis and eigenvalue decomposition of

the covariance matrix of each valve annulus. The length of the in-plane and polar

radii of each annular structure are directly proportional to the squared root of the

eigenvalues in descending order, respectively. Furthermore, the directions of the prin-

cipal axes of each feature were provided by the set of orthogonal eigenvectors, where

the eigenvector corresponding to the lowest eigenvalue represented the normal of the

orthogonal plane of best fit for each structure (Fig. 6.6). In other words, the lowest

eigenvalue represents a measure of the “spread” of the feature in the out-of-plane

direction, which for planar structures, such as the aortic annuli, are minimal.

Two other parameters were also estimated to provide a measure of local defor-

mations within the heart: the inter-annular distance, represented by the distance

between the centroids of the mitral and aortic annulus, and the relative annuli ori-

entation, represented by the angle between the normals of the orthogonal plane of

best fit of each annulus. Based on these parameters, one could assess whether sig-

nificant local deformations occur between adjacent stages of the workflow, in which
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Fig. 6.6: a) Figure showing the mitral (green) and aortic (blue) shown before chest opening
in the porcine subject; b) Orthogonal best-fit plane shown, together with principal in-plane
directions (red and green) and normal unit vector (blue).

case a rigid registration algorithm may impose undesired limitations with respect to

optimal procedure planning and guidance.

6.3 Results

6.3.1 Global Heart Displacement

6.3.1.1 UCI-based Intracardiac Interventions

To evaluate the global motion of the heart during the peri-operative workflow,

we first extracted the mitral and aortic annuli from each of the peri-operative US

datasets. The peri-operative data were then registered into the same coordinate sys-

tem as the pre-operative data using the homologous features at Stage1 (before incision

in the case of UCI-based intracardiac procedure or the dual-lung ventilation stage for

the off-pump robot-assisted CABG procedure). Table 6.1 includes a summary of

the valvular and overall heart displacement across the three stages of the UCI-based

procedure.

For an intuitive graphical display, we show below the mitral and aortic valve annuli

at consecutive stages (Fig. 6.7), along with a generic model of the heart consisting of
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Table 6.1: Valvular displacement in porcine subjects between consecutive stages of an
off-pump UCI-based intracardiac intervention. Stage1: Before minithoracotomy; Stage2:
After minithoracotomy; Stage3: After UCI attachment. Note: displacements are reported
in mm according to the left/right (L/R), anterior/posterior (A/P) and superior/inferior
(S/I) directions, where positive displacements are measured toward the right, anterior and
superior directions, respectively.

Workflow Mitral Valve Shift (mm) Aortic Valve Shift (mm)
Stage L/R A/P S/I L/R A/P S/I

Stage 1-2 13.7 -6.8 4.2 22.2 -17.6 4.3
Stage 2-3 -1.9 -2.8 1.5 -5.5 8.3 -3.3
Stage 1-3 11.7 -9.7 5.8 16.7 -9.4 1.0

the left atrium and ventricle and positioned according to the location and orientation

of the mitral and aortic valve annuli (Fig. 6.8). Note that the three stages of the

procedure are colour-coded using red, green and blue, which correspond to the Stage1:

prior to minithoracotomy, Stage2: following minithoracotomy, and Stage3: post UCI

attachment, respectively.

6.3.1.2 Robot-assisted CABG Interventions

The movement of the heart during the robot-assisted CABG procedure from

Stage1 (anesthetized, dual-lung ventilation) to Stage2 (single-lung ventilation) av-

eraged to ∼ 24 mm for the mitral valve and ∼ 32.7 mm for the aortic; from Stage1

to Stage3 (chest wall insufflation), the mitral valve experienced a movement of ∼ 30

mm and the aortic movement averaged to ∼ 34 mm. Table 6.2 provides a summary

of the valvular displacements with respect to the L/R, A/P and S/I axes across the

patients observed.

Fig. 6.9 shows the position of the mitral (solid ring) and aortic (wireframe ring)

valve annuli colour-coded according to the three stages of the procedure.

For a better interpretation of the overall heart movement, Fig. 6.10 shows the

change in position of the epicardial surface of one patient’s heart segmented from the
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Fig. 6.7: Figure showing the mitral (solid ring) and aortic (wireframe ring) valve annuli
at different stages of the UCI-based intracardiac procedure workflow in a porcine subject:
Stage1: before minithoracotomy (red); Stage2: after minithoracotomy (green); Stage3: after
UCI attachment (blue).

CT dataset and animated using the sequential peri-operative transforms at the three

stages of the procedure: dual-lung ventilation shown in red, single-lung ventilation

shown in green, and post chest insufflation, shown in blue.

6.3.2 Morphological Feature Characterization

Morphological changes of the annuli themselves were also assessed. Using principal

component analysis and eigenvalue decomposition, we identified an orthonormal basis

corresponding to each annulus; the eigenvectors corresponding to the largest and

second largest eigenvalues were the principal in-plane orientations of the annulus,

while the smallest eigenvector corresponded to the unit normal vector describing its
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Fig. 6.8: Global porcine heart orientation (left ventricle and left atrium models shown)
throughout the peri-operative workflow associated with the off-pump UCI-based intracar-
diac interventions on porcine subjects: a) Before opening chest; b) Before (surfaces) and
after (wireframe) performing minithoracotomy; c) After minithoracotomy (wireframe) and
after UCI attachment (light-coloured surface); d) All-in-one generic pre-operative shift.

orientation.

In addition, we estimated the effective perimeter of the mitral and aortic annuli,

as well as the distance between the two valves and the angle between their planes of

best fit at each stage in both the UCI-based porcine procedures and the robot-assisted

CABG interventions. These parameters represent a measure of the morphology of the

features of interest, and according to their variability across the procedural workflow,

one can determine whether significant local deformations are induced and whether a

rigid-body registration approach is sufficient. A summary of these results is included

in Table 6.3 for the UCI-based porcine interventions and in Table 6.4 for the robot-

assisted CABG procedures.

6.4 Discussion

The main focus of this work was to explore the displacement of the heart and

features of interest within the heart during the peri-operative workflow of minimally

invasive cardiac interventions. This work was motivated by our on-going develop-
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Table 6.2: Mitral and aortic valve displacement in patients during off-pump robot-assisted
CABG interventions. Stage1: Dual-lung ventilation; Stage2: Single-lung ventilation; Stage3:
Chest insufflation. Note: displacements are reported in mm according to the left/right
(L/R), anterior/posterior (A/P) and superior/inferior (S/I) directions, where positive dis-
placements are measured toward the right, anterior and superior direction, respectively.

Workflow Mitral Valve Shift (mm) Aortic Valve Shift (mm)
Stage L/R A/P S/I L/R A/P S/I

Stage 1-2 1.9 -1.6 6.8 2.6 -11.5 7.3
Stage 2-3 16.2 -2.6 -7.8 14.5 -2.8 -6.9
Stage 1-3 18.1 -4.2 -1.0 17.2 -13.9 0.4

Table 6.3: Characterization of the mitral (MVA) and aortic valve (AVA) annuli during the
off-pump UCI-based procedure workflow in porcine subjects: Effective Perimeter (Length),
Effective Major (MjA) and Minor axes (MiA), Inter-annular Distance (mm) and Inter-
annular Angle (deg).

Workflow Mitral Annulus (MVA) (mm) Aortic Annulus (AVA) (mm) Annular Annular
Stage Length MjA MiA Length MjA MiA Distance (mm) Angle (deg)

Pre-operative 103.4 11.9 9.0 68.2 8.1 7.1 23.8 52
Before Incision 103.2 9.4 8.5 81.2 10.9 7.2 22.5 52
After Incision 109.4 14.4 8.9 107.8 11.1 8.9 26.4 39

After UCI 88.0 12.2 6.8 87.8 10.0 8.2 22.3 45

ments on the model-enhanced surgical guidance environment and its application in

off-pump intracardiac intervention, where intracardiac access is achieved via the UCI.

This novel therapy technique requires the registration of pre-operative images and

models to the intra-operative US imaging environment, a process that involves fea-

tures of interest that may undergo both location as well as morphological changes

during the procedure workflow. We also extended this work toward a different ap-

plication which was initiated by the need to update a pre-operative surgical plan

according to changes induced during the peri-operative workflow. As such, we have

used similar technique to estimate the location of the features of interest and the heart

overall at different stages during the procedure and also evaluate the morphological

variations of these features across the peri-operative workflow.
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Fig. 6.9: Top view (upper panel) and side view (lower panel) of the mitral (solid ring)
and aortic (wireframe ring) valve annuli at different stages of the robot-assisted CABG
procedure workflow in a patient. Stage1: dual-lung ventilation (red); Stage2: single-lung
ventilation (green); Stage3: chest insufflation (blue).

In the context of our original motivation — UCI-based off-pump intracardiac inter-

ventions — it appears that the porcine heart undergoes an overall movement of ∼ 15

mm in the lateral direction followed by a ∼ 9 mm movement in the anterior/posterior

direction and a ∼ 3 mm movement in the superior/inferior direction between the

initial peri-operative stage and the UCI attachment. These changes are sufficiently

large to require the model-to-subject registration to be performed just before therapy

Table 6.4: Characterization of the mitral (MVA) and aortic valve (AVA) annuli during the
robot-assisted CABG workflow in patients: Effective Perimeter (Length), Effective Major
(MjA) and Minor axis (MiA), Inter-annular Distance (mm) and Inter-annular Angle (deg).

Workflow Mitral Annulus (MVA) (mm) Aortic Annulus (AVA) (mm) Annular Annular
Stage Length MjA MiA Length MjA MiA Distance (mm) Angle (deg)

Dual-lung Vent. 133.8 16.9 10.8 97.4 12.8 8.8 31.5 49
Single-lung Vent. 123.4 14.9 11.6 82.8 10.6 8.0 33.4 46
Chest Insufflation 123.2 14.6 10.9 106.0 12.5 7.2 31.5 55
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Fig. 6.10: Visual representation showing an automatically segmented epicardial model of
a patient’s heart animated using the sequential peri-operative transforms based on the
valvular structures. Note: Stage1 is shown in red, Stage2 in green and Stage3in blue.

delivery, and therefore after UCI attachment and surgical tool insertion.

In the context of the robot-assisted CABG procedures, we have currently analyzed

the data from four patients from a total of over 50 patients who have agreed to partic-

ipate in the study. Similarly, we have noticed substantial movement of the heart and

valvular structures caused by the lung deflation and chest insufflation. The overall

heart displacement was ∼ 17 mm and ∼ 9 mm in the lateral and anterior/posterior

direction, respectively, while the superior/inferior displacement was ∼ 5 mm. As a

first attempt to make use of the peri-operative heart migration information toward

improving pre-operative procedure planning, a proposed pre- to peri-operative regis-

tration technique is proposed in Appendix A as a means to update the pre-operative

surgical plan with the migration information observed peri-operatively.

The morphological characterization of the mitral and aortic valve annuli has also

revealed small variations in the effective perimeter and effective length of the major

and minor axes of the valvular structures between the three stages for both types

of procedure under investigation. Using the GraphPad Prism 4.0 statistical analysis

package, a statistical comparison using two-way ANOVA was performed between the

effective perimeter and effective long and short axes of the mitral and aortic annuli
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across the patient sample. The results demonstrate that no significant differences

(p > 0.1) existed between these parameters at different procedure stage, except for

those due to the patient variability, such as the size of the patients and their or-

gans. Moreover, no significant differences were observed in the inter-annular distance

(p > 0.1). These two observations together suggest that no significant morphologi-

cal changes have occurred during the procedure workflow and therefore a rigid body

registration may be sufficient to either update the pre-operative surgical plan for

robot-assisted CABG procedures, or to perform the model-to-subject registration for

the UCI-based model-enhanced US guided procedures.

While this method is suitable to evaluate the changes in position of the heart and

features of interest, we have nevertheless identified several challenges with respect to

both data acquisition and post-processing. The peri-operatvie US images are acquired

using a magnetically tracked transducer and the acquisition is gated to the ECG signal

of the subject. For the porcine subjects the ECG gating was more consistent due to a

better control of the heart rate compared to the patients. We have also observed some

interference between the unshielded ECG leads and the tracking system, issue which

can be addressed by using improved shielding of the ECG leads. However, the heart

rate variability observed in the patients leads to the major concern in the image

acquisition: the patients undergoing these procedures suffer from various medical

conditions which lead to inconsistent heart rate and also prevent the administration of

heart-rate controlling medication to the extent required for “clean” image acquisition.

As such, the ECG trigger, although set for diastole, may actually trigger later in the

cardiac cycle, leading to a systolic image acquisition, and hence a different position

and orientation of the reconstructed annuli. These “artifacts” in fact explain the

larger variations in the angle between the mitral and aortic valve annuli across the

workflow stages in the patients undergoing robot-assisted CABG intervention.

Another challenge arises due to the large degree of manual intervention currently

involved in the post-processing of the data. All peri-operative images are accessed
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by the clinician off-line and the features of interest are segmented manually. In spite

of manual segmentation being the clinical gold-standard procedure, we believe that

there is an inherent degree of variability associated with the feature identification pro-

cess, which, in turn, will affect the shape, position and orientation of the segmented

features. To date we have not yet assessed the variability of the feature identifica-

tion, but we plan to use the morphological characterization parameters to evaluate

the repeatability and reproducibility of the segmentation as performed by different

clinicians at different time points.

6.5 Conclusions

To conclude, this work was motivated by the well-known fact that pre-operative

information can depict the intra-operative cardiac anatomy and morphology with

limited fidelity and presents an analysis of the changes in location of the heart and

the variations in morphology of features of interest arising during the workflow of

minimally invasive procedures. The global heart displacement and morphological

characteristics of the mitral and aortic valve annuli were estimated in two different

minimally invasive procedures.

In terms of our UCI-based model-enhanced US guided interventions, this work

allows us to estimate the effect of the procedure workflow on the model-to-patient

registration, and suggests the need to update the registration prior to therapy deliv-

ery. In terms of the robot-assisted CABG procedures, this information is not only

critical to assess anatomical differences induced during the procedure itself, but it also

plays a crucial role in updating a pre-operative surgical plan. The work presented in

Appendix A proposes a feature-based registration approach that predicts the intra-

operative LAD location based on the pre-operative CT image and the peri-operative

heart migration information.
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Chapter 7

Summary, Contributions and

Future Directions

The work enclosed in this thesis describes the development of a multi-modality

surgical guidance environment from initial concept, to in vitro evaluation, and all the

way to pre-clinical implementation. The model-enhanced US-assisted surgical guid-

ance environment represents one of the first attempts in cardiac IGS toward bridging

pre-operative imaging and modeling, typically employed for procedure planning, with

intra-operative guidance and therapy delivery. This environment is governed by the

navigation-positioning paradigm, which was formulated in this thesis and is applicable

to most image-guided interventions: every therapy delivery task consists of a navi-

gation step — guiding the delivery instrument in the vicinity of the surgical target,

followed by a positioning step — accurately place the tip of the delivery instrument

on the surgical target.

In the context of the reality-virtuality continuum defined by Milgram et al. [1],

the proposed platform is best classified as a mixed reality environment, leaning more

Portions of this work appear in Linte CA, Moore J and Peters TM. How accurate is accurate
enough? An overview on accuracy considerations in image-guided cardiac interventions. Proc. IEEE
Eng Med Biol. In Press. 2010. c©2010 IEEE. Reprinted, with permission, from IEEE.
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toward the augmented virtuality end of the spectrum due to the extensive presence

of virtual components (Fig. 7.1).

Fig. 7.1: Revisited schematic representation of the reality-virtuality continuum defined
by Milgram et al. in 1994, showing the classification of the model-enhanced US-assisted
guidance environment relative to the generic AR and AV environments. Image adapted
from Milgram et al. 1994.

7.1 Summary of Contributions

The ability to accurately navigate the surgical tools to the target is essential for

optimizing the surgical path that leads to achieving the desired therapeutic outcomes.

TEE is an attractive modality for intra-procedure cardiac guidance and has become

the clinical standard for interventional applications. However, despite real-time 2D

ultrasound (US) images having relatively high spatial and temporal resolution, the

context of the surgical site is generally incomplete, as 2D images cannot appropriately

portray an entire 3D scene. While the recent release of 3D TEE technology may

address some of the inherent challenges of interventional 2D TEE, its availability is

still very limited. In addition, 3D TEE images possess a very restricted field of view

and lower resolution than the 2D TEE images, making it difficult to visualizing both

surgical targets and instruments in the same volume, leading to inadequate spatial

context.

To ameliorate these situations, a key feature of the model-enhanced US platform

is the combination of surgical tracking technologies and real-time US imaging. More-
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over, the intra-operative images are augmented with pre-operative representations of

the cardiac anatomy and virtual models of the delivery instruments tracked in real

time using magnetic tracking technologies. As a result, the otherwise context-less

2D US images can now be interpreted within the anatomical context provided by

the anatomical models. The virtual models assist the user with the tool-to-target

navigation, while real-time TEE ensures accurate positioning of the tool on target,

providing the surgeon with sufficient information to “see” and manipulate instruments

in absence of direct vision.

The next research objective was to assess the accuracy with which a user can

target specific features under guidance provided via the model-enhanced US-assisted

environment. The experiments presented in Chapter 3 were designed around the

hypothesis that the proposed platform would lead to improved targeting accuracy and

shorter navigation times compared with 2D US image guidance alone; furthermore,

the real-time US imaging would contribute to maintaining a consistent targeting

accuracy under model-to-subject misregistrations.

Baseline accuracy measurements were obtained under endoscopic guidance, and

were used as positive controls against which the other guidance modalities were tested.

Our experimental results demonstrated that the proposed guidance environment led

to an overall targeting error of under 3 mm, which represented a significant improve-

ment from the accuracy recorded under 2D US image guidance alone (4-5 mm to as

much as 15 mm targeting error). A comparison study between experts and novice

users revealed that both groups achieved comparable targeting using model-enhanced

US guidance, while the novice group showed a significant improvement over the expert

group when employing the new environment, compared to the use of 2D US image

guidance alone. Lastly, the studies also demonstrated that the real-time US imaging

component provided sufficient information to correctly identify the intra-operative

surgical target location following model-assisted navigation, and to compensate for

any positioning errors due to misregistrations present between the heart/phantom
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model and its physical counterpart, ensuring a consistent targeting accuracy within

1-1.5 mm.

The pre-operative anatomical models integrated within the proposed surgical envi-

ronment are critical for ensuring appropriate tool-to-target navigation. As such, these

models need to accurately depict the subject-specific anatomy and the location of the

surgical target, and to provide the surgeon with the “big picture” of what he/she can-

not see in absence of direct vision during beating heart interventions. The method

proposed in Chapter 4 makes use of an average heart model previously developed in

our laboratory [2] to generate dynamic subject-specific models from clinical 4D MR

images. While similar techniques have previously been employed for diagnostic pur-

poses [3], the models described here are intended for use in mitral valve interventional

guidance. As reported earlier, the models can predict the location of the mitral valve

annulus with a 3.1 mm accuracy throughout the cardiac cycle. Furthermore, using

the feature-based registration method described in the same chapter, the models can

be integrated within the intra-operative guidance environment with less than a 5 mm

alignment error of the pre- and intra-operative anatomy in the region of interest.

Several pre-clinical acute evaluation studies have been conducted in vivo on swine

models to assess the feasibility of the proposed environment in a clinical context.

Following direct access inside the beating heart using the UCI, the proposed mixed

reality environment was displayed to the surgeons via either standard operating room

overhead monitors or head-mounted displays to provide the necessary visualization

for therapy delivery. The integration of the proposed environment in the clinical

workflow associated with mitral valve implantation and ASD repair procedures was

described in Chapter 5. This work demonstrated the feasibility of the surgical plat-

form for providing the required visualization and navigation information to position

a prosthetic mitral valve on the the native annulus, or to place a repair patch on a

created septal defect in a porcine model.

This work would be incomplete without exploring the effects of heart displacement
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during the intra-operative procedure workflow as described in Chapter 6. The need for

this investigation initially arose during the in vivo clinical evaluation of the model-

enhanced US guidance platform presented in Chapter 5, as a consequence of the

various stages involved in the workflow. Similar techniques were employed to assess

the peri-operative migration of the heart due to the lung collapse and chest insufflation

during robot-assisted CABG procedures in patient with coronary artery disease. Both

procedures were shown to suffer from significant changes in the heart position, which

need to be addressed during both the planning and guidance of these procedures.

The work in Appendix A is a natural extension of the findings described in Chap-

ter 6 in the context of heart migration during robot-assisted CABG procedures.

This research was performed in collaboration with a fellow student in the labora-

tory (Daniel S. Cho, Biomedical Engineering M.E.Sc. candidate) and it was aimed

at investigating feasible techniques to improve planning of robot-assisted CABG pro-

cedures. In the effort to provide better planning of these interventions, this work

proposes a modified version of the feature-based registration algorithm presented in

Chapter 4 to predict the intra-operative location of the target vessel based on its pre-

operative, CT-derived location and the peri-operative heart migration information

explored using the techniques described in Chapter 6. A preliminary validation of

the proposed technique was conducted in vitro using a beating heart phantom, and

revealed a 3.5 mm RMS target registration error in predicting the LAD location.

7.2 Accuracy Considerations: Revisited

Recalling from Chapter 1, the success of an intervention is assessed from a clinical

perspective according to the therapeutic outcome. From an engineering perspective

on the other hand, navigation accuracy is constrained by the limitations of the IGS

system [4]. To understand these limitations, it is necessary to estimate the errors

at each stage of the IGT process and study their propagation through the entire



199

workflow, as suggested by Dr. Pierre Jannin from the Université de Rennes I (Rennes,

France) [5]. However, these uncertainties are not unique, but rather application

and system dependent. Thus, the aim of this section is to address these accuracy

aspects from the point of view of the model-enhanced US-assisted surgical guidance

environment and its applications in cardiac interventions, as described in this thesis.

7.2.1 Examples of Accuracy Expectations in the Clinic

While a formal definition is currently lacking, clinical accuracy may be defined

as the maximum error that can be tolerated during an intervention without compro-

mising the therapy or leading to increased risks to the patient. Such tolerances are

difficult to define, as they are procedure and patient specific. A few examples are

provided below.

In the case of an intracardiac ablation procedure, where the clinician aims to

electrically isolate a region of tissue by forming a closed loop around the arrhythmia

foci either via radio-frequency, cryo or thermal energy delivery, a 5 mm radius may

provide a clinically adequate goal.

Another intervention in need of better guidance is the robot-assisted CABG pro-

cedure. As noted in Chapter 6, as many as 15-20% of the robot-assisted procedures

are converted to traditional open-chest surgery [6] as the target vessel cannot be

reached with the robotic instruments despite the port placement configuration hav-

ing been determined based on the pre-operative plan. To avoid such situations, a

better prediction of the intra-operative target vessel location is needed. The trocar

can be repositioned in single rib space increments, hence a clinically-imposed accu-

racy on the order of one intercostal space (1-1.5 cm) is deemed sufficient, as described

in Appendix A.

Lastly, based on our in vivo experience on swine models with mitral valve im-

plantation or ASD repair procedures presented in Chapter 5, an overall ∼ 5 mm pre-

and intra-operative anatomical alignment at the target region may be sufficient for
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navigation, in the context of the navigation-positioning paradigm.

7.2.2 Identifying Engineering Accuracy Constraints

According to Jannin’s recommendations [5], the overall system accuracy is de-

pendent on the limitations of its integrated components. Here we have broken down

our mixed reality medical imaging platform into several parts including modeling,

registration, surgical tracking, and overall tracking and reported on their individual

accuracy constraints.

7.2.2.1 Modeling Accuracy

Within the framework of our model-enhanced US guidance environment, static

and dynamic pre-operative models of the cardiac anatomy are generated using image

segmentation from high-quality CT or MR images and used to provide visual cues for

tool-to-target navigation. The accuracy of such anatomical models can be interpreted

in terms of their fidelity in representing the subject’s organ. While the accuracy of the

models generated via manual segmentation (Fig. 7.2) is difficult to assess, as manual

segmentation itself is considered the gold-standard segmentation technique, one can

nevertheless measure the uncertainties in the repeatability and reproducibility of the

segmentations.

If the models are generated using an atlas-based approach [3, 7], their accuracy

can be evaluated against that of the gold-standard models obtained by manual seg-

mentation of the pre-operative images. Using similar techniques on human MRI data,

subject-specific heart models (Fig. 7.2) for application in valvular interventions were

generated by fitting an a priori heart model [2, 8] to a mid-diastolic subject MR im-

age [9], as described in Chapter 4. These models enabled the prediction of the mitral

valve annulus with an accuracy of 2.8 mm in diastole and 3.4 mm in systole.
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Fig. 7.2: Models of a porcine left ventricle (a), right atrium and ventricle (b), left atrium
(c) and overall heart (d) obtained via manual segmentation of an MR dataset; e) A priori
average heart model of a human heart; f) Clinical quality subject MR image; g) Subject-
specific model obtained by fitting the atlas to a new subject’s image dataset.

7.2.2.2 Registration Accuracy

As mentioned in section Chapter 1, computational complexity precludes some

registration algorithms from use in time-critical interventions. Instead, fast, simple,

and OR-friendly registration techniques are preferred [10, 11].

The feature-based registration technique proposed in Chapter 4 provided suffi-

ciently accurate alignment (i.e. on the order of 4-5 mm) of the pre- and intra-operative

anatomy in the region of interest [11, 12]. Similar results were achieved by Ma et al.

[10] who proposed a feature-based registration technique that relied on the alignment

of the left ventricular surface and the centerline of the descending aorta to fuse pre-

and intra-operative data using a weighted iterative closest point (ICP) approach.

According to the navigation-positioning paradigm governing the model-enhanced

US guidance environment, the achieved registration accuracy is suitable for tool-to-

target navigation. Nevertheless, these results may not be suitable for model-guided

therapy alone, without “refined guidance” provided via real-time US imaging.

Lastly, the method described in Chapter 4 was adapted to predict the change in

location of the LAD coronary artery between the pre-operative plan and the intra-

operative stage [13]. According to the phantom studies presented in Appendix A,
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Fig. 7.3: a) US image augmented with pre-operative heart model; b) Error map showing
registration error across the model; c) Phantom experiment showing gold-standard location
of the target vessel along with its predicted location following lung deflation (d) and chest
insufflation (e).

this technique yielded a RMS TRE of 3.5 mm along the LAD (Fig. 7.3) [13]. These

accuracy figures are within the clinical requirements (10-15 mm) for the application,

previously estimated as the width of one intercostal space (i.e. 10-15 mm).

7.2.2.3 Surgical Tracking Accuracy

Surgical tracking is essential for image-guidance and knowledge of tracking accu-

racy limitations is critical. For all intracardiac procedures, magnetic tracking tech-

nologies are employed exclusively [14, 15].

As described throughout this thesis, our augmented medical imaging platform
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Fig. 7.4: The NDI AuroraTM magnetic tracking system, along with its specifications re-
garding optimal tracking volume and accuracy constraints. Figure material adapted from
the NDI AuroraTM technical brochure available at http://www.ndigital.com. Image courtesy
of Northern Digital Inc., Waterloo, ON.

employs the NDI AuroraTM MTS (Fig. 7.4). Both the surgical instruments (i.e.

rigid tools or flexible catheters), as well as the US transducer are tracked using 6

DOF magnetic sensors. In addition, for the in vitro accuracy studies presented in

Chapter 3, the surgical targets were also tracked using 5 DOF magnetic sensors. The

system enables instrument tracking with an RMS accuracy of 0.7 mm and 0.9 mm in

translation, and 0.3◦ and 0.8◦ in rotation, for the 5 and 6 DOF sensors, respectively

[15].
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7.2.2.4 Overall Targeting Accuracy

The targeting accuracy associated with an IGI system represents a measure of

how well a user can guide a tracked instrument to a particular target under guid-

ance provided by the system. According to the studies described in Chapter 3 that

mimicked direct access and catheter-based procedures [16] (including analysis under

model-to-phantom misregistrations similar to those encountered in the clinic), it was

confirmed that real-time US guidance helped refine the model-assisted navigation

accuracy, leading to targeting errors of ∼ 1 mm RMS (Fig. 7.6).

Fig. 7.5: In vitro evaluation of the targeting accuracy under optimal “world” registration
(left panel), as well as in the presence of model-to-phantom misalignments (right panel).
While model-assisted guidance alone provided accurate targeting under well-registered con-
ditions (VR-Align), its accuracy decreased with the introduction of translational (VR-Trans)
or rotational (VR-Rot) misalignments. However, superior targeting accuracy on the or-
der of 1 mm RMS was achieved once real-time US imaging was used to complement the
model-guided navigation, under both translational (VR-US-Trans) or rotational (VR-US-
Rot) misalignments.

7.2.3 Monitoring, Improving and Providing Accuracy Feed-

back to the Surgeon

The registration and tracking accuracies of IGI platforms developed thus far have

demonstrated errors on the order of several mm. These errors have the potential to
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affect user decisions in a clinically significant manner. To further improve guidance

accuracy, intra-operative real-time feedback can be presented along with uncertainty

distributions, depending on the surgical task:

• To allow the surgeon to modify tool positioning to reduce the size of the uncer-

tainty distribution if the estimated error is too large;

• To provide guidance on the appropriate size of the implant, if, for example, a

larger patch may be required in cases with high uncertainty, when attempting

to repair an atrial/ventricular septal defect;

• To provide a suggested search area in cases where multiple attempts may be

required to hit the intended target - as in a catheter ablation procedures, for

example;

• To provide the clinician with the opportunity to request additional secondary

imaging if the uncertainty is high - for example in image-guided percutaneous

valve delivery the surgeon may request additional angiographic images.

Based on the TRE models developed by Fitzpatrick et al. [17] and extended by

Wiles et al. [18], the TRE information can be estimated and presented graphically

to the surgeon using a 95% confidence ellipsoid, taking into account its anisotropic

nature. Moreover, the error associated with the pre-operative anatomical models and

the tracked surgical tools can also be incorporated and displayed to the operator.

On the other hand, presenting uncertainty distributions to the clinician may

present some cognitive challenges. Such information would be a major paradigm

change for a surgeon who is accustomed to directly visualizing a probe with respect

to its intended target. Many cardiac procedures are performed very rapidly on a

beating heart, and may involve multiple forms of image augmentation or multiple

tracked tools. The addition of uncertainty information to the display may result
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in cognitive overload; therefore, future studies are needed to explore an appropriate

delivery approach of such information.

7.3 Summary of Lessons Learned during Clinical

Translation

Some of the challenges disseminated in the literature with respect to the clinical

translation of new environments into the clinical setting have been mentioned in

Chapter 1. Following the development, evaluation, and pre-clinical implementation

of the model-enhanced US-assisted guidance platform described in this thesis, the

lessons learned along the way are outlined below, together with the challenges that

were addressed to ensure a smooth integration within the clinical environment of

modern operating rooms.

7.3.1 Zoom in where Needed: Region of Interest Accuracy

The feature-based registration technique presented in Chapter 4 was developed to

provide optimal alignment of the pre- and intra-operative valvular structures for en-

hanced tool-to-target navigation during mitral valve implantation. While an accuracy

of under 4 mm was achieved at the surgical target, remote regions of the heart expe-

rience larger registration errors. When extended to suit the application described in

Appendix A, the features of interest bounding the upper and lower end of the target

vessel — the left coronary ostium and left ventricular apex — were assigned a higher

weighting factor compared to the other features employed, leading to an overall target

registration error of ∼ 2.5 mm at the anastomosis site.

These are only two examples of situations where the registration techniques em-

ployed were adapted to suit the application and provide the desired anatomical align-

ment at the surgical site. However, this approach is common in IGS, as most tech-
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niques designed for intra-operative use must be easily implemented and computation-

ally efficient, while achieving the desired outcome.

7.3.2 Cutting-edge Hardware: Surgical Tool Design

Surgical tool manufacturing is a key component in IGS, especially when subject

to multiple constraints imposed by the cardiac anatomy, interventional application,

and surgical environment. Throughout the work described in this thesis, we have

faced the challenge of designing and building our own instruments or adapting other

available tools for the application at hand. For the pre-clinical in vivo evaluation

studies, various iterations of prototypes of the valve- and ASD patch-guiding tools

with embedded magnetic sensors were built and tested to ensure their compatibility

with the surgical environment. Moreover, a laparoscopic stapler for abdominal inter-

ventions was adapted as a fastening device for securing the valve and ASD patch, in

spite of its oversized dimensions for intracardiac applications.

Unfortunately, most off-the-shelf tools do not comply with the requirements im-

posed by the application; hence, a more efficient approach would be to involve a

medical device manufacturer in the project to ensure that the developed tools were

suitable for the application. For most interventional applications, sub-millimeter ac-

curacy is meaningless unless appropriate surgical instruments are used for safe therapy

delivery.

7.3.3 Minimizing “Footprint” in the Operating Room

A “busy” environment is not uncommon in an OR, raising the concern of us-

ing magnetic tracking technology as opposed to an optical system for surgical tool

tracking, which, in turn implies the avoidance of any ferro-magnetic objects in close

proximity to the magnetic field emitter [15]. Given that tracking accuracy decreases

away from the magnetic field emitter, the field generator must be placed within a
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range of 20-30 cm from the most probable tool location. Our initial implementation

consisted of the magnetic field generator overhanging just above the surgical field.

To minimize the obstruction of the workflow, while maintaining tracking accuracy,

the magnetic field generator was then embedded within the mattress of the operating

table. It is worth noting that NDI has recently (June 2010) announced the release of

a flat field generator that can be placed under the patient, directly on the operating

table, even if it contains ferromagnetic components. This location has the additional

benefit of placing tracked sensors closer to the field generator than large bodies of

metal such as rib spreaders, making the MTS substantially more robust. A similar

approach was undertaken during the peri-operative imaging of the patients undergoing

robot-assisted CABG procedures, with all sensor cables placed under or along the OR

table to be as unobtrusive as possible.

7.3.4 Making “the New” Look like “the Old”

The mixed reality guidance environment is a novel surgical technique and, in spite

of our efforts to make it a common part of the current operating rooms, we are well

aware that it may not make its way into conventional surgery for a few years. Over

the years, surgeons have become familiar with “standard views” of human anatomy.

Although we are now able to provide an unlimited range of oblique views of tools

and surgical targets, it is often best to use the views surgeons are most familiar with

to maintain intuitive guidance. From our experience, the best approach is to make

“the new” look much like “the old”, and instead of overwhelming the users with a lot

of new technology at once, rather give them the time to get accustomed to the new

environments.
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7.3.5 Maximizing Returns: Optimal Information Display

Minimal invasiveness restricts both visual and surgical access. For off-pump intrac-

ardiac interventions, surgeons can’t “see” what they do, and the guidance platform

is their eyes. We have considered several approaches regarding the most appropriate

display of the mixed reality environment to the surgeons, some of which were also

mentioned in the introductory chapter. While some of these paradigms have been

tested as part of parallel projects in our laboratory, others will be explored in our fu-

ture work. Nevertheless, for the time being, our surgical team has been pleased with

both overhead monitors and HMD units for visualization, in spite of their discomfort

with the HMDs after prolonged use.

7.4 Future Directions

The mixed reality environment described in this thesis has been developed with

the long-term objective to provide the surgeon with the necessary visualization and

navigation information during beating heart procedures, in absence of direct vision.

This environment can be adapted to suit the guidance of other interventions, and

based on the infrastructure currently available in our laboratory, two future develop-

ments within an arm’s length of the current work are identified here: integration of 3D

TEE data within the mixed reality environment, and integration of electro-anatomical

models with real-time image guidance for catheter-guided atrial fibrillation therapy.

7.4.1 Integration with 3D TEE

At the time this work was initiated, 3D TEE technology was still under devel-

opment. From our experience, 3D trans-thoracic US provides limited flexibility for

the surgeon to manipulate the US probe with one hand and the surgical instrument

with the other. For enhanced navigation, magnetically tracked 2D TEE has been
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integrated into the model-enhanced US environment.

Fig. 7.6: Standard 2D views and volume rendered 3D display of the mitral valve apparatus
acquired using the Philips real-time 3D TEE transducer and the IE33 scanner.

However, over the past three years, there have been significant developments in 3D

TEE technology for both diagnostic and interventional imaging. As part of our future

developments, we plan to investigate the integration of 3D US as the real-time imaging

modality within the mixed reality platform. Several groups have demonstrated the

added benefits of 3D TEE over the traditional 2D US images [19], for imaging both

surgical targets as well as delivery instruments. This modality would enable a faster

and more accurate identification and extraction of features of interest and surgical

targets, which, in turn, may potentially provide the flexibility to update the pre- to

intra-operative registration as often as needed during the procedure.
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Provided similar calibration approaches can be developed to enable magnetic

tracking of 3D TEE transducers, the proposed mixed reality environment described

in this work could be “upgraded” to include real-time 3D TEE augmented with pre-

operative anatomy and surgical instrument tracking.

7.4.2 Catheter-guided Atrial Ablation Therapy

Several other cardiac image-guidance techniques have been explored in our lab-

oratory over the past five years that have the potential to provide enhanced intra-

operative guidance. From a modeling perspective, Wilson et al. [20] demonstrated

the extension of 3D static cardiac mapping environment into one that takes full ad-

vantage of 4D pre-operative modeling. Recorded EP data can be encoded according

to their spatial and temporal time-stamps, as prescribed by the tracking system and

ECG-gating, respectively. As such, 4D mapping enables the augmentation of the pre-

operative models with functional data, leading to electro-anatomical models suitable

for both surgical planning and intra-procedure guidance. A schematic illustration of

the concept is included in Fig. 7.7, and a preliminary in vivo demonstration of this

work has also been reported [20].

Fig. 7.7: a) Cardiac phantom used for in vitro experiments; b) Surface model of the phantom
segmented from the CT image; c) Electro-anatomical model obtained by mapping EP data
onto a pre-operative model to serve with surgical target identification. Image courtesy of
Kevin Wilson, MESc, Robarts Research Institute, London, ON

From a navigation perspective, the work presented here has demonstrated the ca-
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pabilities of the model-enhanced US environment to provide sufficient guidance under

limited visualization. Moreover, a preliminary in vivo study on catheter navigation

to clinically relevant sites in the right atrium of a porcine model has been performed,

comparing navigation under model-enhanced US-assisted guidance vs. real-time US

guidance. Our results have reported targeting errors of less than 5 mm and navigation

times of ∼ 20 seconds under the hybrid guidance environment. These represents an

improvement over US image guidance alone, which led to errors as high as 30 mm,

achieved after durations twice as long as those recorded under model-enhanced US

guidance(Fig. 7.8).

Fig. 7.8: Preliminary in vivo evaluation of model-enhanced US-assisted vs. 2D US image-
guided catheter navigation in the right atrium of a porcine model. Navigation accuracy
(mm) and duration (sec) were recorded while a magnetically tracked catheter was guided
to clinically relevant sites (i.e. inferior/posterior isthmus, superior vena cava/right atrium
junction, aortic valve, and intra-atrial septum) in the right atrium of a swine model.

By combining electro-anatomical modeling and model-enhanced US for intra-

operative guidance of catheter-guided atrial fibrillation treatment, the hybrid environ-

ment would enable the mapping of dynamic EP data onto the pre-operative cardiac

model and eliminate the risks associated with fluoroscopic imaging. Ultimately, clini-

cians can explore the intracardiac environment using registered pre-operative models

as guides, and navigate surgical tools intrinsically relative to cardiac anatomy.
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7.5 Concluding Remarks

In one of his articles at the turn of the millennium, Mack et al. [21] identified

four themes in the context of minimally invasive cardiac interventions: increasing

use of image guidance in lieu of direct vision during interventions; evolution of exci-

sion techniques for arrhythmia treatment into ablation therapy; use of reconstruction

and self-anchoring devices as an alternative to traditional suturing; and therapy de-

livery via natural orifices or blood vessels as opposed to the traditional open heart

approaches. Moreover, they also raised the need for a different workplace that can

embrace these new techniques — the cardiac operating room of the future — featuring

both multi-modality imaging and tele-surgery capabilities.

Looking back almost a decade later, we recognize that some of those advance-

ments have indeed occurred: the devices have been built and the techniques have

been developed and translated into clinical practice, enabling more efficient therapy

delivery while reducing patient morbidity [22]. However, these developments would

not have taken place without appropriate visualization and guidance provided via

medical imaging.

Following further development and seamless integration into the clinical workflow,

we hope that the model-enhanced US-assisted guidance environment described in this

thesis may become a significant milestone toward enabling minimally invasive therapy

on the beating heart.
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Appendix A

Predicting Target Vessel Location

for Improved Planning of

Robot-Assisted CABG Procedures

This work is a continuation of the investigation on peri-operative heart migration

during minimally invasive robot-assisted CABG procedures in Chapter 6. In com-

mon clinical practice, the pre-operative surgical plan is based on a CT scan of the

patient acquired before the procedure, under the assumption that the heart does not

undergo any significant changes between the pre- and intra-operative stages. How-

ever, as shown in Chapter 6, the peri-operative workflow itself leads to changes in

heart position and, consequently, the intra-operative target vessel location. As such,

the pre-operative plan must be adequately updated to adjust the target vessel location to

better suit the intra-operative condition. Here we propose a technique to better predict

the peri-operative target vessel location, which has the potential to improve procedure

planning and help reduce the rate of conversion to traditional open-chest surgery.

This chapter is adapted from Cho SD, Linte CA, Chen E, Wedlake C, Moore J and Peters TM.
Predicting Target Vessel Location for Improved Planning of Robot-Assisted CABG Procedures.
Proc. Med Image Comput Comput Assist Interv. - Lect Notes Comput Sci. In Press: 2010.
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A.1 Background and Motivation

Robot-assisted (RA) surgery represents a paradigm shift in the delivery of health

care for both the patient and the surgeon [1] and it has been adopted as standard

of care at many institutions worldwide [1]; one of the popular cardiac interventions

performed under robot-assistance is the CABG procedures.

In current clinical practice, a pre-operative CT scan of the patient is used to assess

his/her candidacy for undergoing a RA-CABG procedure. Based on the pre-operative

scan, the surgeon identifies the location of the surgical target - the left anterior de-

scending (LAD) coronary artery, examines whether there is sufficient workspace inside

the chest wall for the robot arms, and ultimately estimates the optimal locations of

the port incisions to ensure proper reach of the surgical targets with the robotic in-

struments (Fig. A.1). However, it is not unusual that after setting up the patient for

the robot-assisted procedure, the surgeons encompass difficulties due to the inability

in reaching the target, robot arm collisions or reduced dexterity [2]. In fact, 20-30% of

the robot-assisted (RA)-CABG interventions require conversion to traditional open-

chest surgery [3], mainly due to the migration of the heart during the peri-operative

workflow, not accounted for in the pre-operative plan.

Fig. A.1: Pre-operative planning stage showing patient’s cardiac CT scan (a), the coronary
vessel displayed relative to the valve annuli (b) and the port placement to ensure proper
reach of the target vessel with the robotic instruments (c), where the yellow lines represent
intercostal spaces.

In a typical RA-CABG procedure, the patient is first imaged pre-operatively
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(Stage0) in the same position as during the intervention. Peri-operatively, follow-

ing intubation and anesthesia delivery (Stage1), the left lung is collapsed (Stage2),

and the chest is insufflated (Stage3) to provide sufficient work space.

As described in Chapter 6, we have developed a feasible approach to “image”

the patient’s heart at each peri-operative workflow stage using tracked US [4] and

estimate its global displacement. To capture all of the necessary cardiac features,

images were collected from three different views. For our work, mid-esophageal-4-

chamber view images were captured at 20 ◦ increments from 0 ◦ to 180 ◦ for the mitral

valve annulus (MVA) and the left ventriculr apex (LVAp). Five long axis view images

with 10 ◦ increments and one short axis view of the aorta at 30 ◦ were also acquired

to visualize the AVA and the left main coronary ostium (LMCO).

The peri-operatively acquired instances were then transferred into the CT coordi-

nate system by aligning homologous features corresponding to the first peri-operative

(Stage1 US) and the pre-operative (Stage0 CT) datasets (Fig. A.2). These two

stages are physiologically equivalent given the same patient position and dual-lung

ventilation, and hence minimal anatomical variations are expected. As a result, the

peri-operative displacements can be estimated with respect to the principal body

axes.

Fig. A.2: a) Patient heart instance at Stage1 acquired using tracked US and showing the
valve annuli; b) Stage1 (orange) and Stage2 (gray) instances of the heart showing rela-
tive heart displacement and corresponding segmented valvular structures; c) Initial peri-
operative US instance (Stage1) registered to the pre-operative dataset and displayed within
the CT coordinate space.
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Fig. A.3: Visual representation showing an automatically segmented epicardial model of
a patient’s heart animated using the sequential peri-operative transforms based on the
valvular structures. Note: Stage1 is shown in red, Stage2 in green and Stage3in blue.

We have shown the migration patterns in four patients undergoing RA-CABG

procedure [5]. Our clinical data have suggested that the heart undergoes consid-

erable displacement during the workflow, which should not be ignored during the

planning process. As an example, we show the change in position of the epicardial

surface of one patient’s heart segmented from the CT dataset and animated using the

sequential peri-operative transforms (Fig. A.3). Moreover, in spite of the observed

displacements, the morphology of the identified features remains relatively consistent

throughout the workflow [5], suggesting that no significant non-rigid deformations are

occurring, as concluded in Chapter 6.

Based on these clinical observations, the pre-operative plan needs to be updated

such that it better reflects the peri-operative migration of the LAD. To achieve this ob-

jective, here we propose a rigid-body feature-based registration that can be employed

to predict the peri-operative location of the LAD vessel based on the pre-operative

data. To validate our registration and overcome the clinical limitation arising due to

the invisibility of the LAD in the US images, we simulated the heart migration in

vitro and showed how accurately our technique predicts the LAD location.

While no known accuracy constraints have been reported for this specific applica-
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tion, our collaborating cardiac surgeons have recommended that a maximum target

prediction error on the order of one intercostal space (∼ 10-15 mm, depending on

patient size) is desired. From a clinical feasibility perspective, this constraint is valid:

as long as the intra-operative LAD location is correctly predicted to within one in-

tercostal space from its actual location, it can be reached by positioning the trocar

on either side of the adjacent rib.

A.2 In vitro Experimental Validation

A.2.1 Experimental Apparatus

Since the LAD cannot be identified peri-operatively using US imaging, we con-

ducted an in vitro validation study to assess the accuracy with which our technique

can predict the LAD location. The experimental apparatus was set up in a configu-

ration similar to that typically found in the OR. The migration patterns of the heart

observed during RA-CABG procedures where simulated in vitro by altering the posi-

tion and orientation of a heart phantom (The Chamberlain Group, Great Barrington,

USA).

Sixteen CT-visible fiducials were attached to the surface of the phantom: ten

were used to assist with the CT-to-phantom registration and the remaining six were

used to “define” the path of the LAD vessel. The position of the heart phantom was

tracked throughout the study using a 6 DOF NDI AuroraTM magnetic sensor rigidly

attached onto the phantom. Two different modalities (CT and US) were employed

for image acquisition: a pre-operative CT scan was acquired and a virtual surface

model was constructed using automatic segmentation tools; peri-operative images at

each workflow stage were acquired using a magnetically-tracked TEE probe similar

to the one used in the OR (Fig. A.4). The LAD vessel was initially identified from

the CT image and its peri-operative location was predicted based on its pre-operative
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Fig. A.4: a) Image and (b) virtual surface model of the heart phantom showing the LAD
path; c) Peri-operative US image acquisition protocol showing imaging of the apex and
coronary ostia using incrementally tracked 2D US images.

location using the proposed registration.

A.2.2 Intra-operative Image Acquisition

Since TEE is the standard of care for monitoring during cardiac procedures, in

this study we collected the required tracked US images following the clinical workflow.

The position of the heart was changed twice in order to mimic the actual intervention,

the former location representing the displacement subsequent to collapsing the left

lung, while the latter was the position subsequent to insufflating the thoracic cavity

(Fig. A.5). In each position, the image acquisitions were repeated three times and

the entire protocol was also conducted three times to minimize human errors. Four

features were then extracted from the images using a custom-developed segmenta-

tion tool: MVA, AVA, left main coronary ostium (LMCO), and left ventricular apex

(LVAp). All features were defined in the same 3D coordinate space; the mitral and

aortic valves were represented as “rings”, while the ostium and apex were represented

as points.
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Fig. A.5: a) Virtual surface model of the heart phantom showing the subsequent stages
in the peri-operative workflow simulating those observed in the clinical workflow. Note:
Stage1 is shown in red, Stage2 in green and Stage3 in blue.

A.2.3 Feature-based Registration Technique

Since the LAD can only be clearly seen in the pre-operative CT image and not

in the peri-operative US images, its peri-/intra-operative location has to be deduced

based on the rest of the data available peri-operatively. Therefore, we chose to predict

its location via a registration algorithm that involves the four features mentioned

above. All of these features are easily identifiable in both modalities and sufficiently

close to the target vessel to provide adequate alignment accuracy in the region of

interest.

The registration algorithm employed here has been adapted from the feature-based

technique presented in Chapter 4. According to cardiac anatomy, the LAD begins at

the coronary ostia and runs toward the apex, close enough to the apical region of the

left ventricle; moreover, the mitral and aortic valves are located on either side of the

starting point of the LAD. A rigid-body registration driven by these four features was

applied to map the pre-operative dataset to the peri-operative datasets, to predict

the LAD location at each subsequent stage.

A rigid-body registration was first performed using the centroids of the four ex-

tracted features. Considering the proximity of the left main coronary ostium and left
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Table A.1: Target registration error (TRE) measured along the left anterior descending
coronary (LAD) vessel. (Mean ± Sdt. Dev. and RMS (mm))

LAD Stage0 to Stage1 Stage0 to Stage2

Point Mean ± SD (mm) RMS (mm) Mean ± SD (mm) RMS (mm)
1 3.1 ± 0.9 3.2 2.9 ± 1.7 3.4
2 2.9 ± 1.3 3.2 3.4 ± 1.6 3.8
3 3.4 ± 1.4 3.7 3.3 ± 1.6 3.7
4 3.9 ± 1.9 4.3 3.8 ± 1.3 4.0
5 4.4 ± 2.3 5.0 3.9 ± 1.7 4.3
6 4.9 ± 2.6 5.5 4.5 ± 2.1 5.0

Overall 3.7 ± 1.9 4.2 3.6 ± 1.7 4.0

ventricular apex to the superior and inferior ends of the LAD, respectively, the ini-

tial alignment was then refined by minimizing the distance between the homologous

features, while enforcing more stringent constraints on the distance between the two

sets of features at each end of the LAD: the LMCO and LVAp.

A.3 Assessing Intra-operative LAD Localization

The six fiducials positioned along the LAD path were used to assess the target

registration error (TRE) computer between the predicted LAD fiducial locations and

their gold-standard locations, at each stage in the workflow. The gold-standard LAD

fiducial locations were determined by recording the LAD fiducial locations at each

stage using a magnetically tracked pointer and confirmed using the point-based reg-

istration transform corresponding to each peri-operative stage. The predicted LAD

location was identified by mapping the pre-operative LAD fiducials using the feature-

based registration transform described in section A.2.3.

Three different RA-CABG-related workflows were simulated by altering the po-

sition and orientation of the heart phantom at three different stages. For each of

the nine poses, we acquired three sets of tracked US images, defined the features of
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Fig. A.6: a) Pre-operative heart phantom model at Stage0 showing the LAD vessel; Visual
display of the LAD TRE at Stage1 (b) and Stage2 (c), showing the gold-standard LAD
(seashell white) obtained using the point-based registration transform and the predicted
LAD (purple) determined using the proposed feature-based registration transform.

interest, and used the proposed registration algorithm to predict the location of the

LAD vessel. Table A.1 summarizes the TRE between the actual locations of the

LAD target fiducials (the gold-standard location) and their predicted locations from

the registration.

For a visual interpretation of the LAD TRE, Fig. A.6 shows the virtual model

of the heart phantom along with the gold-standard and predicted LAD paths at

both Stage1 and Stage2 in the peri-operative workflow, showing clinically-adequate

alignment, well under the 10-15 mm intercostal space constraint.

Table A.2: Localization error of the features used in the registration. (RMS (mm))
Feature Stage0 (mm) Stage1 (mm) Stage2 (mm)

LVAp 2.3 4.7 4.0
AVA 1.4 1.3 1.2
MVA 0.6 1.9 1.5

LMCO 1.1 4.0 2.1

Moreover, considering that the target vessel location is predicted using a feature-

based registration algorithm, we next assessed the error associated with the feature
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localization. Table A.2 includes a summary of the RMS localization error associ-

ated with the identification of each of the four features used to drive the registration:

left main coronary ostium, left ventricular apex, and mitral and aortic valves. As

expected, the localization of the left ventricular apex and coronary ostium was chal-

lenging, mainly due to the 2D nature of the US images used to identify a 3D structure.

A.4 Discussion

This work constitutes the first steps towards optimizing pre-operative planning for

RA-CABG procedures. Motivated by a recent clinical study that revealed substantial

migration of the heart during the peri-operative procedure workflow, our ultimate goal

was to predict the intra-operative location of the target vessel, to therefore provide

the surgeon with an optimized surgical plan that better reflects the intra-operative

stage.

As a bridge to the in vivo validation, considering the limitations arising due to poor

visualization and identification of the LAD coronary vessel in clinical US images, the

phantom study was performed to assess the accuracy with which a proposed feature-

based registration technique can predict the location of a target vessel in a simulated

workflow. Our results have shown an RMS TRE of ∼ 3.5 mm across the twenty-seven

peri-operative poses simulated in our study. The feature localization errors explain

the increased target registration error at the LAD fiducials closer to the apical region

at both peri-operative stages. Moreover, considering that the actual anastomosis

target site is located along the LAD path approximately two thirds of the way from

the coronary ostia toward the apex, target registration error can be further improved

near the inferior end of the LAD using a more robust apex localization approach from

the US data. A possible solution would be to use the apical region as a registration

constraint as opposed to a single point, and include a robust estimator to reduce the

TRE, as suggested by Ma et al. [6]. Nevertheless, in spite of these slight inaccuracies,
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our results are well within the 10-15 mm clinically-imposed constraint dictated by a

typical intercostal space, allowing sufficient tolerance (over 10 mm) in the event that

these errors amplify when using clinical data.

A.5 Conclusions

Driven by the clinical motivation to improve the pre-operative planning of RA-

CABG procedures, here we have proposed and evaluated a technique used to predict

the intra-operative target vessel location. Our technique was validated in an in vitro

study simulating the clinically-observed RA-CABG procedure workflow and yielded

an overall RMS accuracy on the order to 3.5 mm in predicting the peri-operative LAD

location. Provided an equally successful in vivo evaluation in our upcoming clinical

studies employing dyna CT for intra-operative validation, we believe this technique

has the potential to significantly improve the current pre-operative planning of RA-

CABG procedures, and consequently lead to reduced rates of conversion to traditional

open-chest surgery.
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