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Abstract 

From typing to playing the piano, sequences of finger movements are essential in 

our everyday lives. To become skilled at any task, takes practice and determination. 

To remember and perform a sequence of movements, we form an abstract mental 

representation of it. To estimate our performance accuracy, we usually rely on 

sensory feedback from our environment. For instance, when playing piano, we pay 

close attention to the tone that is played. To improve performance, we adjust our 

mental representation by integrating this sensory feedback. The goal of this thesis 

was to elucidate how the mental representation and feedback control of finger 

movement sequences change with training. We first examined whether the mental 

representation of a movement sequence can be shaped early in training and how 

this modulation impacts performance long-term. To this end, we used a discrete 

sequence production task, in which participants performed sequences of finger 

presses on a keyboard-like device. We influenced participants’ initial representation 

to be either beneficial or detrimental to performance and estimated how these 

instructions impacted subsequent performance. Participants’ performance was 

continuously influenced by the instructions throughout a three-week training period. 

Only if participants abandoned the detrimental instruction could they improve their 

performance. Next, we investigated how feedback control changes across training. 

Using the same task, we probed feedback integration over four days by either 

delaying or advancing the time at which participants received the sensory feedback 

from the keypress. We found that the feedback perturbations consistently slowed or 

advanced participants’ performance on the perturbed press in accordance with the 

direction of the perturbation. Nevertheless, the amount of behavioural adjustment 

decreased with training, suggesting a reduction in feedback integration. In both 

studies, we could show that the mental representation of skilled movement 

sequences was hierarchically organized. In summary, this thesis provides novel 

insights into the change in representation and control of finger movement sequences 

with training. 
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Summary for Lay Audience 

Sequences of movements are essential in our everyday life, from tying shoelaces to 

playing tennis. By combining simpler movements into longer actions, we can perform 

movements with sublime artistry such as playing a Beethoven sonata on the piano. 

To be able to learn and modify such sequences of movements, we need to hold and 

modify them in our mind. To do so, we represent them as an abstract organization in 

our brain, which is also termed a mental representation. One key question is how 

does practice change the mental representation of a movement sequence. One 

factor that might influence learning is the instructions we receive – through teachers, 

parents, or other types of media (e.g., YouTube). Such instructions are commonly 

thought to advance learning. Nevertheless, in some cases, instructions can hinder 

learning. In the first part of this thesis, we investigated whether providing beneficial 

or detrimental instructions during the early phase of learning can shape the mental 

representation and performance of a movement sequence long-term. We found that 

over a three-week training period, the instructions continuously impacted 

participants' mental representation and performance. Only if participants were able 

to abandon the detrimental instructions could they improve their performance. The 

second part of this thesis investigated how we use sensory feedback during 

movement execution. For example, when playing the piano, we pay close attention 

to the produced tone. If we hear a wrong tone, we adjust which key is pressed. This 

illustrates the importance of sensory feedback during movement sequence 

execution. While we rely heavily on sensory feedback early in training, it has been 

suggested that we use it less with practice. To test this, we modified the sensory 

feedback participants received upon a keypress by delaying or advancing it by a 

small amount of time. We found that while sensory feedback was indeed less used 

as learning progressed, the perturbation still significantly influenced participants’ 

performance, by slowing or speeding up their movement execution in accordance 

with the perturbation direction. Together, this thesis investigated how instructions 

shape the mental representation of sequences and how feedback is integrated 

during movement execution.  
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Chapter 1  
 

1 General Introduction 
 

1.1 Preamble  
Throughout our lifetime we acquire a diverse set of motor skills. It takes practice 

and repetition to become skilled at any movement, but eventually, it becomes 

smooth and effortless. Movements are rarely performed in isolation, but rather 

are strung together into longer actions. For example, when making a cup of 

coffee, multiple movements are connected, over time becoming bound into a 

rhythm that is executed similarly every morning. An action that consists of 

movements that are strung together and performed in a sequential order is also 

termed a movement sequence. Linking movements reduces the mental effort 

needed to complete a task, enabling efficient execution of complex actions. In 

this manner, our tiredness in the morning does not disrupt the actions needed to 

produce that precious cup of coffee.  

Sequencing movements also affords us the execution of sublime artistry, 

such as a pianist playing a Beethoven sonata or a ballet dancer executing 

multiple pirouettes on pointe shoes. Such impressive skills demonstrate that our 

bodies are capable of astonishing feats of movement. Nevertheless, to achieve 

them with such apparent ease, practice is crucial – be it several iterations for 

coffee making or years of practice for a professional pianist (Ericsson et al., 

1993; Hayes, 2013).  

In this thesis, I explore how the mental representation and control of 

movement sequences develops with training. To investigate these topics, I 

studied sequences of finger movements. Finger movement sequences are 
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essential in our daily activities. Take for example the finding that in 2001, 78% of 

the workforce in Canada used a computer keyboard in their workplace daily 

(Marshall, 2001). In light of the COVID-19 pandemic, the use of computers and 

other technologies has also increased (De’ et al., 2020; Vargo et al., 2021), 

amplifying the reliance on finger movements to complete various tasks – from 

communicating with colleagues to online shopping. Our fingers allow us to 

perform a variety of dexterous movements such as object manipulation, 

grasping, or performing sign language. Well-specified anatomical connections 

(Rathelot and Strick, 2009; Strick et al., 2021) provide us with a clear 

understanding of the neural processes involved in finger movements. And our 

ability to individuate our fingers (Hager-Ross and Schieber, 2000) enables a 

multitude of experimental design manipulations. Therefore, studying finger 

movement sequences is a powerful experimental paradigm to investigate the 

representation and control of movement sequences. 

I will present two data chapters in the body of this thesis. In the first 

chapter, we investigated the relationship between the organization of mental 

representations and performance. To do so, we influenced participants’ initial 

mental representation to be either beneficial or detrimental to performance and 

examined how this manipulation impacted ultimate performance after three 

weeks of training. The second chapter investigated how sensory feedback is 

used to adjust ongoing execution of finger movement sequences. By perturbing 

participants’ feedback, we were able to examine how feedback integration 

changed across training. Together, these chapters provide novel insights into the 

control and representation of finger movement sequences.  

In the following sections of this introductory chapter, I will first discuss the 

type of mental representations that have been proposed to underlie the execution 

of movement sequences. Then, I will examine what factors influence the initial 

representation of movement sequences and how subsequent training modulates 

this representation. Thereafter, I will deliberate on the role of feedback during 
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movement sequence execution. Lastly, I will provide an overview of the 

subsequent thesis chapters.  

 

1.2 Theories of sequence representation 
While sequences of movements have been of interest to neuroscientists for 

decades, the organization of sequences is still elusive to date. The terms 

‘organization’, ‘representation’, and ‘mental representation’ are used 

interchangeably in this thesis and denote how movement sequences are 

represented and controlled by the brain. Depending on the theory, this 

organization can vary from a single layer (Keele, 1968) to a highly structured 

hierarchical organization with multiple levels (Rosenbaum et al., 1983). 

Additionally, the type of characteristics that are represented can range from 

being directly bound to the motor output (e.g. combinations of muscle 

commands) to more abstract (e.g. sensory consequence or rhythmic features). 

 

1.2.1 Response chaining 

One of the first organizations proposed was response chaining (Figure 1.1A), 

where the feedback received from the execution of one movement triggers the 

initiation of the subsequent movement (James, 1890; Watson, 1920). This type of 

representation is analogous to a domino effect, where once the first movement is 

set in motion, this triggers the next movement, which in turn triggers the one after 

that, and so on until all movements have been executed. This mechanism can 

explain well-associated movements such as playing a musical piece where the 

order of movements is pre-determined and not variable (Greenwald, 1970). 

Nevertheless, two key findings led to the realization that this organization is not 

applicable to a variety of movement sequences: first, movements can be 

executed without the need for sensory feedback (Lashley, 1917); and second, 



4 

 

 

certain types of actions can be reused in different contexts and do not rely on 

pre-specified associations (Lashley, 1951). This is obvious in speech where 

different sounds and words are interchangeable and can be freely rearranged 

(Browman and Goldstein, 1990; Lashley, 1951). 
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Figure 1.1. Proposed representations underlying movement sequence 

execution.  

(a) In a simple response chaining organization, each motor command is driven 

by the feedback of the previous movement. (b) In the single motor program, the 

movements are preplanned and executed without the need for sensory feedback 

from the fingers (i.e. white arrows). (c) In a hierarchical organization, each 

controller is governed and governs one other controller (here similar to tree-

transversal structure). Sensory feedback is fed back from the body to the finger 

controllers (or chunk controllers). Press completion is fed back to the hierarchical 

controller who sends an initiation signal for the next movement(s) to the finger 

controller, who then initiates the next movement(s). 
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1.2.2 Single Motor Program 

In response to critiques of response chaining, a new type of “flat” organization 

was proposed, where movements are still organized serially, but feedback is no 

longer necessary to trigger subsequent movements (Figure 1.1B). This type of 

organization is also referred to as a single motor program (Keele, 1968). Each 

motor program stores the muscle commands required for the execution of a 

single movement sequence. This idea was driven by Lashley's (1917) finding that 

patients who lost all sensation in their limbs could still produce accurate 

movements. Therefore, this type of organization introduced the idea of a motor 

plan, meaning that movements can be preplanned and stored in the brain before 

execution, which reduces the need for sensory feedback.  

The assumption that a flat organization results in a multitude of separate 

motor programs, where each specifies the exact set muscle commands, implies 

that such representations cannot be generalized across movement sequences. 

Therefore, performing a movement sequence similar to an already practiced 

sequence should be no different than performing a completely novel sequence. 

This prediction has been refuted on multiple occasions (Panzer and Shea, 2008; 

Verwey, 2001; Yokoi et al., 2018). Namely, it has been demonstrated that 

participants can generalize their performance gains to novel sequences that 

share movement patterns with the previously practiced sequence (Sakai et al., 

2003).  

On the flipside of generalization, this flat organization also predicts the 

absence of interference effects. If each sequence is stored as a single motor 

program, no detrimental effects are expected when learning similar sequences. 

However, previous learning of a sequence can hinder the learning of a novel 

sequence when it is only partially modified (Krakauer et al., 2005; Panzer et al., 

2006). Therefore, motor programs are too autonomous to account for 

generalization and interference effects. In light of this, researchers have 

expanded the motor program idea. Schmidt (1975) for instance suggested a 
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“generalized motor program”, which is an abstract representation of the 

movements required for a class of actions (Summers and Anson, 2009). He 

suggested that the timing and amplitude of motor program commands can be 

linearly scaled, which allows for a more diverse execution of the same sequence. 

Thus, a more abstract motor program could account for some of the discussed 

findings. 

Another issue concerns the biological plausibility of a motor program in 

terms of its neuronal underpinnings. Early propositions focused on the primary 

motor cortex (M1) as the functional location of motor programs (Wickens et al., 

1994). Because of its prominent role in movement execution, it was considered 

as the prime candidate to encode movement sequences. Previous research has 

indeed reported findings consistent with this idea (Matsuzaka et al., 2007). For 

instance, Karni and colleagues (1998, 1995) reported that M1 activity was 

greater for a trained sequence compared to an untrained sequence, which they 

interpreted to imply a more extensive representation for the trained sequence in 

M1. Nevertheless, recent experiments, including work from our lab, have found 

little to no evidence that M1 encodes sequence identity (Berlot et al., 2020; 

Beukema et al., 2019; Russo et al., 2020; Yokoi et al., 2018; Zimnik and 

Churchland, 2021). Rather, these studies demonstrate that M1 activity best 

represents elemental movements (i.e., single finger movement). In contrast, 

higher-order areas including supplementary motor area (Hikosaka et al., 2002), 

premotor, and parietal cortices have been found to encode sequence 

characteristics (Berlot et al., 2020; Yokoi et al., 2018; Yokoi and Diedrichsen, 

2019). These findings suggest a wide network of brain regions associated with 

the representation of movement sequences (Berlot et al., 2018; Lashley, 1950) 

rather than a single locus as suggested by a flat representation.  

Overall, while a “flat” organization provides a simple, straightforward, and 

elegant proposal of how movement sequences are represented, it is unable to 

explain the variety of behavioural and neuronal findings. 
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1.2.3 Hierarchical representation 

In light of the evidence against flat organizations, hierarchical representations of 

finger movement sequences have become the most viable framework (Book, 

1908; Botvinick et al., 2009; Collard and Povel, 1982; Gallistel, 1980; Hikosaka et 

al., 2002; Pew, 1966; Rosenbaum et al., 1984, 1983; Yokoi and Diedrichsen, 

2019).  

In this type of organization, sequences are represented across multiple 

interconnected layers (Figure 1.1C), with layers representing movement 

sequences at different degrees of abstraction. Rosenbaum and colleagues 

(1983) proposed a specific type of hierarchical organization, called a “tree-

transversal structure”. It consists of movement elements (“Body” in Figure 1.1C) 

that give rise to the motor output and control elements (“Finger controller” in 

Figure 1.1C) that are connected to other elements in the hierarchy (Collard and 

Povel, 1982). Two criteria govern this structure: (a) every control element has to 

be connected and regulate at least one element of a lower level in the hierarchy 

(movement or control element). And (b) excluding the element at the top of the 

hierarchy, each element is supervised by precisely one control element 

(Rosenbaum et al., 1983). This creates a tree-like structure that branches out 

from a single point (Figure 1.1C). In this framework, the time between the 

execution of two movements depends on how many nodes have to be traversed 

along the way. The finding that inter-response intervals vary in duration, 

depending on the sequence length and position within the sequence 

(Rosenbaum et al., 1983; Sternberg et al., 1978) supports this structure. This 

framework can also account for generalization and interference effects as well as 

for differences in error distribution (Povel and Collard, 1982; Rosenbaum et al., 

1983). More broadly, hierarchical organizations have been applied to studies on 

speech (Sternberg et al., 1988; Uddén et al., 2020), sports (Schack, 2004), and 

across different areas of musical processing (Fitch, 2013; Lerdahl et al., 1985; 

Rohrmeier, 2011).  
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To summarize, evidence supports a hierarchical organization of 

movement sequences. Nevertheless, it is less well understood how these 

hierarchical representations develop and change with extensive training and 

whether their specific organization relates to performance. I will discuss some of 

the findings related to these questions in the next section. 

 

1.3 The acquisition and modification of a sequence 
 representation with practice 

So far, I have discussed what type of mental representation could underlie the 

control of movement sequences, but a remaining question is how these 

representations are learned in the first place. When first learning a novel 

movement sequence, for instance, a musical piece on the piano, we use a single 

item selection process whereby we treat each part of the sequence as a separate 

action (Diedrichsen and Kornysheva, 2015). Performance in this early stage is 

marked by slow execution with long breaks between movements (Rand et al., 

2000; Rhodes et al., 2004). As we become more familiar with the execution of 

the musical piece, we start to combine movements into so-called “chunks” 

(Gobet et al., 2001; Lashley, 1951; Verwey, 1996; Verwey et al., 2010; Verwey 

and Eikelboom, 2003).  

 The formation of chunks is behaviourally characterized by changes in the 

timing between movements. The inter-response interval between movements is 

more rapid if the movements are within a chunk than if they are at a chunk 

boundary (Verwey and Dronkert, 1996). This is clearly visible in phone numbers, 

where the visual structure (e.g., 226-521-4870) is also evident during vocalization 

or typing. The emergence of chunks early in training (Verwey and Dronkert, 

1996) is suggested to be driven by working memory constraints (Bo and Seidler, 

2009; Seidler et al., 2012; Solopchuk et al., 2016). Because movement 

sequences are often longer than the “magical number 7” (Miller, 1956), chunks 
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are assumed to aid memorization by breaking longer sequences into smaller 

parts (Chekaf et al., 2016). Research further points to the ability of holding four 

chunks in short-term memory (Cowan, 2001). 

 The emergence of chunks has also been recognized as a behavioural 

identifier of a hierarchical organization (Afraimovich et al., 2014; Fonollosa et al., 

2015). While at first each movement element is governed by a separate 

controller, through chunking movements become linked and governed by the 

same controller (Figure 1.1C). Together these distinct chunk controllers make up 

one layer of the hierarchical organization. Investigating the chunking process by 

inspecting the temporal execution pattern of sequences provides a valuable 

proxy of early movement sequence representation.  

 

1.3.1 Measuring mental representation of movement sequences  

A recent approach utilizes these movement chunks to measure the hierarchical 

representation of movement sequences. The “structural dimensional analysis of 

mental representation” (SDA-M) was proposed by Schack (2012) and is based 

on the idea of basic action concepts (BACs). These can be understood as 

functional parts of a sequence and strongly relate to the idea of movement 

chunks. The first necessary step in this method is to determine the BACs for a 

given movement sequence based on opinions from experts, experimental 

observations, biomechanical features, and participants’ perceptions. For 

instance, these BACs were determined in the pre-activation phase of a tennis 

serve: ”(1) ball throw, (2) forward movement of pelvis, (3) bending the knees, and 

(4) bending the elbow” (Schack & Mechsner, 2006; p. 78). Once the BACs have 

been determined, the next step involves a split procedure to create a distance 

scaling between the different BACs. In this procedure, reaction times are 

measured while the participants are asked about the perceived similarity 

between the BACs. A hierarchical cluster analysis then translates the obtained 
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BAC similarity and reaction time measures into a hierarchical organization, with 

dimensionality reduction applied to uncover the different clusters. Lastly, it is 

assessed whether the resulting organization is invariant across participants and 

within the individual (Schack, 2012).  

Schack and colleagues have applied this technique to a multitude of 

movement sequences across a variety of sport disciplines. They demonstrated 

that highly trained individuals showed hierarchical representations that coincided 

with the biomechanical and functional properties of the movement sequence and 

were fairly invariant across participants (Bläsing et al., 2009; Schack, 2003; 

Schack and Mechsner, 2006; Velentzas et al., 2010). In contrast, novices 

showed representations that were more variable across participants and less 

hierarchically organized. Overall, these results suggest a potential link between 

the structure of the mental representation and the performance of a movement 

sequence.  

While this technique has provided an elegant way to measure the 

representation of movement sequences, it does, however, rely on the 

participants’ perception of the relationship between the movement elements 

rather than estimating mental representation directly from their motor output. 

Therefore, it remains unclear whether motor performance is causally related to 

the mental representation and how this relationship is modified with training. By 

solely correlating the performance of participants with changes in mental 

representation, these studies were unable to provide a causal link between the 

two variables. Hence, an important missing piece to understanding this 

relationship is to manipulate the initial representation and examine how it impacts 

performance.  
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1.3.2 Factors influencing the early representation of movement 
sequences 

In order to manipulate the initial mental representation, it is crucial to recognize 

the factors that can influence the formation of participants’ movement chunks at 

the beginning of training. In the study of finger movements sequences, several 

factors have been found to modulate early inter-response interval patterns. One 

such factor is the structure of finger movements within the sequences, which 

includes characteristics such as regularities, repetitions, or reversals (de Kleine 

et al., 2009; Koch and Hoffmann, 2000; Verwey and Eikelboom, 2003). Another 

factor is the visual presentation of the sequences, as previously shown by the 

phone number example. A last factor I want to address is the timing of execution. 

To study this effect on participants’ chunk structure, Summers (1975) presented 

cues indicating which finger had to be pressed at varying time intervals during a 

finger sequencing task. Some cues were presented quicker in succession (100 

ms), while others had a longer pause between presentations (500 ms). 

Participants were instructed to execute the sequences in this pre-specified 

rhythm even for trials where they had to perform the sequences from memory. 

After an initial set of training blocks, Summers (1975) switched the goal of the 

task and asked participants to perform the sequence as quickly as possible from 

memory. He found that despite the removal of timing constraints, participants still 

paused longer at the locations that were originally separated by longer inter-

response intervals. This suggested that temporal patterns imposed early in 

training impacted participants’ chunk structure even once the temporal 

constraints were removed (Verwey et al., 2009; Verwey and Dronkert, 1996). 

Altogether, these studies provide evidence that it is possible to shape 

participants’ initial mental representation by imposing certain sequence and 

experimental characteristics.  
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1.3.3 Changes in chunking with training   

Once an initial representation has formed, how is it modified with training? 

Practice is accompanied by a multitude of behavioural modifications. The most 

readily identifiable is the decrease in time needed to execute the movement 

sequence; making it a hallmark of motor sequence learning (Abrahamse et al., 

2013; Berlot et al., 2020; Korman et al., 2003). This increase in speed has been 

related to several distinct processes including increased accuracy (Woodworth, 

1899), faster movement selection (Ariani and Diedrichsen, 2019; Haith et al., 

2016; Hardwick et al., 2017), and more rapid movement planning (Ariani and 

Diedrichsen, 2019; Wong et al., 2014). Behavioural changes are believed to rely 

on improvements related to the mental representation. At present, however, we 

still do not have a clear understanding of how these behavioural changes are 

associated with modulations in sequence representation.  

One possible way to measure changes in sequence representation more 

directly with training is to assess changes in participants’ chunk pattern. A large 

body of studies has demonstrated that the number of chunk boundaries 

decreases with practice (e.g. the longer inter-response intervals), which results in 

longer chunks (Acuna et al., 2014; Solopchuk et al., 2016; Song and Cohen, 

2014; Verstynen et al., 2012; Wymbs et al., 2012). The location of these 

boundaries also shifts with practice (Acuna et al., 2014; Fonollosa et al., 2015; 

Wymbs et al., 2012). Therefore, if we assume that these adjustments in chunk 

structure directly relate to a modulation of sequence representation (Fonollosa et 

al., 2015), then these findings provide supporting evidence of training-induced 

modulations. By reducing the number of chunk boundaries, we increase 

execution efficiency as we reduce the amount of longer inter-response intervals 

between movements (Ramkumar et al., 2016). This could imply that in order to 

achieve the maximum efficiency, the ultimate goal of sequence execution should 

be to execute the sequence as a single chunk (Servan-Schreiber and Anderson, 

1990). This could further signify a change in representation from hierarchical to 

flat with extensive training. In opposition to this idea, using the previously 
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discussed SDA-M technique, Frank and colleagues (2013, 2016) found that 

training resulted in an increase in functionally relevant clusters which represents 

greater hierarchical organization. Therefore, it is still unclear whether extensive 

training strengthens or weakens the hierarchical representation of sequences. 

One difficulty that can distort the results from chunking experiments is that 

changes in execution speed can bias the measurement of chunk boundaries. 

Due to the increase in speed, we may simply no longer be sensitive to changes 

in inter-response intervals and mistakenly label a faster sequence as not 

containing chunks. Therefore, we need a more systematic and sensitive 

examination of how the chunk structure changes over (a prolonged period of) 

time. Recent modeling efforts have proven valuable in untangling measures of 

chunk boundaries and changes in overall execution speed (Acuna et al., 2014).  

In summary, to get better understanding of the relationship between 

mental representation and performance it is important to a) manipulate the 

mental representation and examine how this impacts performance over time, and 

to b) carefully examine modulations in mental representation over time by 

considering changes in behaviour, such as improvements in speed.   

 

1.4 The role of feedback in movement sequence control  
So far, I have discussed the type of organizations that could underlie the 

representation of movement sequences and how these representations are 

shaped by external variables and training. Another important factor that shapes 

sequence performance and might influence sequence representation is sensory 

feedback. During movement execution, we receive sensory input from various 

modalities. This input provides us with feedback regarding the accuracy and 

timing of our movements. For example, when playing the piano, the sensation felt 

on the fingertips when pressing the key, the visual feedback of the depressing 
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key, and the tone that is heard, all provide us with valuable information that can 

be used to estimate and adjust performance.  

Sensory feedback is used to correct movement errors in two ways: a) 

through an online process by which it is used to adjust ongoing movements 

directly after the error occurred and b), through and an offline process where it is 

used to adapt the motor commands between executions (Seidler et al., 2013). 

Here, I will focus on the feedback processes involved in the online corrections 

during execution. Whereas the integration of sensory feedback to adjust ongoing 

movements has been extensively studied in reaching movements and adaptation 

studies (for reviews see Cluff et al., 2015; Scott, 2012; Shadmehr et al., 2010), 

less is known about the importance of feedback in sequences of movements and 

especially in the execution of finger movement sequences. It is also unclear how 

feedback is integrated in the potentially hierarchical representation of finger 

movement sequences. To provide an overview of the current literature on this 

topic, I will first discuss prominent views regarding the general integration of 

feedback in motor control and how this integration changes with training. 

Afterwards, I will address findings from synchronization studies, which are 

currently the prominent model for examining feedback control in finger movement 

sequences. 

 

1.4.1 Open and closed-loop control 

Researchers have long acknowledged the important role of sensory feedback in 

motor control. One particular theory in which feedback is particularly important to 

motor control is the closed-loop theory (Figure 1.2A). Spear-headed by Adams 

in 1971, it proposes that feedback is continuously used to adjust and inform the 

execution of a motor skill. In this view, sensory feedback is essential to the 

execution of movement sequences throughout skill acquisition, even once 

actions have become automatized (Proteau, 1992). On the other end of the 
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spectrum stands the concept of open-loop control (Figure 1.2B). It proposes that 

an action can be executed and planned without the need for sensory feedback 

(Lashley, 1917). A strong argument for open-loop control stems from the idea 

that very fast movements are too fast for feedback to play a role (Gerdes and 

Happee, 1994; Hollerbach and Flash, 1982; Schmidt and McCabe, 1976). The 

finding that patients and monkeys who lost peripheral input (i.e., deafferentation) 

are still capable of movement (Polit and Bizzi, 1979; Rothwell et al., 1982; Taub 

et al., 1975), further strengthens this theory. While these two theories are 

extremes of the spectrum, movements are likely driven by both types of control, 

with some movements relying more on open-loop control while others rely more 

on feedback control.  

 

 

 

 

 

 



 

 

 

17 

 

Figure 1.2 Feedback control models.  

(a) In a closed-loop model sensory feedback is continuously used to update 

movement execution. (b) Feedback is not used to adjust movement execution in 

an open loop model. A motor plan enables movement execution without the need 

for feedback. (c) Depicts a “Hybrid model” which uses internal models to adjust 

and predict movement output during execution. An inverse model specifies the 

motor commands and the forward model uses an efference copy of these 

commands to specify the predicted sensory state at any given moment. Sensory 

feedback identifying the actual state of the movement is then compared to the 

predicted state and any discrepancies result in corrective commands that are 

integrated during movement execution.  
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1.4.2 Internal models  

Internal models were originally proposed to overcome the sluggishness of 

feedback control (Kawato, 1999; Wolpert and Kawato, 1998), but have since 

reached wide acceptance in the motor control field, as they can provide an 

opportunity for the integration of feedback and open-loop control. Internal models 

estimate movement execution and the consequences of our movements in two 

ways (Wolpert et al., 2001; Wolpert and Kawato, 1998). The inverse model 

computes the motor commands that are needed to reach a desired movement 

state. The forward model predicts the sensory outcomes anticipated from the 

motor commands of the inverse model (Figure 1.2c). For example, when playing 

music, one can anticipate the specific tones and rhythm that should be heard 

upon execution.  

Many theories assume that our mental representation codes the sensation 

associated with movement execution (Bernshtein, 1967; Fowler and Turvey, 

1978; Prinz, 1987). This assumption has also been experimentally supported 

(Elsner and Hommel, 2001; Greenwald, 1970; Schack and Mechsner, 2006). For 

instance, Mechsner and colleagues (2001) demonstrated that the tendency for 

mirror symmetry during bimanual movements stems from the perceptual 

information and not from muscle coactivation. They tested how different hand 

postures affected accuracy when performing synchronous index finger 

movements with both hands. If the mirror symmetry arises due to synergies of 

the homologous muscles, then hand posture should matter, as this changes 

which muscles are activated. They found, however, that participants were most 

accurate when the perceptual information was mirrored irrespective of whether 

the same muscles were activated across hands. Furthermore, the worst accuracy 

was found in a condition where homologous muscles were used. They concluded 

that perceptual rather than muscle-related mechanisms drive bimanual 

symmetry.  
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The predictive power of a forward model reduces the need for sensory 

feedback (Higgins and Angel, 1970; Jaeger et al., 1979). To overcome the 

sluggishness of sensory feedback, the forward model utilizes an efference copy 

of the motor output, which it then compares to its prediction of the desired state. 

Any discrepancy between the two can be used to induce online corrections 

without the need for sensory feedback. In predictive environments, such as 

during self-generated movements (i.e., not due to external disturbances), we rely 

on an internal model to smoothly adjust our behaviour. For example, when we 

move our arm while gripping an object, the changes in grip force happen in 

parallel with the increases in load with no noticeable delay (Flanagan and Wing, 

1997; Gallistel, 1980). Thus, instead of sensory feedback, an internal model was 

used to adjust the grip force. Furthermore, the existence of internal models 

enables us to ignore sensory feedback that is potentially misleading (Flanagan et 

al., 2001).  

While internal models can overcome the inherent feedback delays through 

state predictions, there are times when these predictions are inaccurate. For 

instance, early in training when errors are large and the internal model is still 

inaccurate, we need to rely on feedback control to adjust ongoing movements 

(Wolpert and Flanagan, 2001). As internal models are updated with training 

(Jordan and Rumelhart, 1992), they become more accurate and in turn facilitate 

movement execution (Hertz et al., 1991; Krakauer et al., 1999; Weir et al., 1989; 

Wolpert et al., 1995).  

 To add more flexibility in terms of feedback vs. feed-forward control 

“Hybrid models” have been proposed (Figure 1.2C) that integrate both control 

types during movement execution (Desmurget and Grafton, 2000; Hoff and 

Arbib, 1993; Pélisson et al., 1986; Wolpert et al., 1995). In these models, sensory 

feedback is compared to feed-forward predictions to adjust ongoing movements. 

One such application is predictive coding which uses Kalman-filtering and 

updates the state estimation using sensory feedback (Huang and Rao, 2011; 
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Miall and Wolpert, 1996; Wolpert et al., 1995). In this way the motor system can 

optimally combine the predicted state and the perceived sensory feedback into a 

state estimate that guides behavioural modifications. While these models have 

been successfully applied to explain rapid behavioural adjustments to feedback 

perturbations in reaching movements (Miall and Wolpert, 1996; Shadmehr and 

Mussa-Ivaldi, 1994; Wolpert et al., 1995), object manipulation (Flanagan and 

Wing, 1997) and speech production (Jones and Munhall, 2000), they have, to our 

knowledge, not been utilized to elucidate feedback integration in finger sequence 

tasks.   

 

1.4.3 Changes in feedback integration during movement execution 
with training 

It has been proposed that the amount of reliance on feedback versus feed-

forward control shifts with practice (Pew, 1966; Seidler-Dobrin and Stelmach, 

1998). Specifically, the notion is that in the initial phases of motor skill acquisition 

feedback control dominates execution, whereas later in training we rely more on 

feed-forward control. This shift is related to an increase in internal model 

accuracy with training, which reduces the need to integrate the sluggish sensory 

feedback (Pew, 1966; Pratt et al., 1994; Schmidt, 1975; Schmidt and McCabe, 

1976; Seidler-Dobrin and Stelmach, 1998). This shift has also been reported in 

electromyography (EMG) activity during movement adaptation (Coltman and 

Gribble, 2020; Thoroughman and Shadmehr, 1999). 

Another line of findings that could further our understanding on the shift in 

feedback control comes from observations of differences in feedback integration 

between novices and experts. Yet, findings thus far have been divided in this 

regard. Some studies using finger sequence tasks reported that novices were 

impacted to a greater extent by feedback perturbations than experts (van der 

Steen et al., 2014), while other studies have found the opposite effect 

(Pfordresher, 2008, 2005). In an experiment involving singing, it was found that 
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experienced singers responded less to a fundamental frequency shift compared 

to novices, but showed enhanced aftereffects (Jones and Keough, 2008). The 

researchers interpreted this finding as the experienced singers depending to a 

greater extent on internal models compared to novices. While previous research 

suggests a shift from feedback to feed-forward control with training, several 

shortcomings need to be addressed to provide a better understanding of this 

topic. Either studies failed to directly assess feedback integration during 

movement sequence execution by relying on observations rather than using 

manipulation, or they did not examine the changes in the same participant 

sample over a prolonged period of time. One way to address these shortcomings 

is to probe feedback integration during movement sequence execution by using 

feedback perturbations and measuring changes in behaviour over an extended 

training period.  

 

1.4.4 Feedback integration in synchronization tasks 

The use of sensory feedback in sequence production has not been well studied. 

One exception are synchronization tasks. In these studies, participants have to 

synchronize their finger movements either to a metronome or to a musical piece 

(Drewing, 2013; van der Steen et al., 2014; Wing, 1977). Two types of 

synchronization tasks have been primarily used. In the “pseudo-synchronization 

task” (Flach, 2005; Pfordresher and Palmer, 2002), participants are asked to 

synchronize their movements with a metronome, which is taken away after a 

while and participants have to keep executing the movements at the same pace 

(i.e., same response timing). In the other type of synchronization tasks, 

participants are asked to continuously synchronize their movements to an 

external variable such as a musical piece or a metronome (Gates et al., 1974; 

Kulpa and Pfordresher, 2013; Repp, 2000; van der Steen et al., 2014). To assess 

feedback integration in these tasks, researchers delay the time at which 

participants receive the sensory feedback associated with a finger movement. 
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Some studies have reported that a time delay in sensory feedback presentation 

leads to an increase in performance speed (Flach, 2005; Pfordresher and 

Palmer, 2002; Repp, 2000). This speed-up arises to counteract the delay and to 

preserve the execution rhythm (Flach, 2005; Furuya and Soechting, 2010; 

Pfordresher and Palmer, 2002). This would suggest a behavioural adjustment 

that opposes the direction of the perturbation. Other studies, however, have 

reported a slowing rather than a sped up in performance after a feedback delay 

(Gates et al., 1974; Kulpa and Pfordresher, 2013; van der Steen et al., 2014; 

Wing, 1977), which suggests a behavioural adjustment in the same direction as 

the perturbation. Thus, it is unclear whether feedback perturbations lead to 

behavioural changes in the same direction as the perturbation or to opposing 

adjustments. Further, there are two other shortcomings of the previous studies 

that I want to highlight and that will be addressed in this thesis.  

First, the majority of studies investigating sensory feedback perturbations 

in sequence execution have used synchronization tasks. Research on how 

feedback perturbations are integrated in non-constrained sequence execution is 

scarce. Amongst the few studies that have been reported, it has been 

demonstrated that presenting a lag in visual, haptic, or auditory feedback results 

in disrupted and delayed performance (Jay and Hubbold, 2005; Long, 1975). 

However, further research into non-constrained sequence execution is greatly 

needed.  

Second, one critical limitation of the majority of these studies is that they 

only delayed participants’ feedback, but did not assess what happens if the 

feedback is advanced. Both types of feedback violate expectations, however it is 

unclear whether both will produce similar or opposing effects on behaviour. 

Amongst the studies that advanced participants’ feedback during a 

synchronization task, discrepant results were found. One study demonstrated a 

slowdown in subsequent performance (Repp, 2000), whereas another study 

reported a speed up (Wing, 1977). To get a better understanding on the 
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integration of feedback during movement sequence execution, it is important to 

include time delays as well as advancements when using feedback 

perturbations.  

 

1.4.5 Wing-Kristofferson model 

Lastly in this section, I want to examine a prominent model that has been 

proposed for the control of movement sequences. The Wing-Kristofferson model 

(Wing and Kristofferson, 1973) focuses on explaining the control of movement 

sequences as they are synchronized to an external variable. In this open-loop 

model, the execution of self-paced movements (such as in the end of pseudo-

synchronization tasks) is governed by two processes: a) a central time-keeper 

that sends a movement initiation signal after a fixed time interval, and b) a motor 

controller that in turn performs the signalled movement after a certain delay. 

These two processes are believed to work in parallel to govern the timing of 

execution. This model has been found to account for a number of behavioural 

findings. For instance, it predicts the observation that the neighboring inter-

response intervals in synchronization tasks are negatively correlated (Ivry et al., 

1988; Wing and Kristofferson, 1973). The model accounts for this finding by 

assuming that the variability of the motor delay and the internally generated 

intervals are uncorrelated. If the response of the motor controller is delayed on a 

given movement, this increases the current inter-response interval, as it delays 

the current onset of the movement. At the same time, it also reduces the next 

inter-response interval since the timekeeper still sends the next signal after a 

given time interval irrespective of the motor controller delay. Thus, when 

measuring the next inter-response interval, it will be shorter than the one before, 

leading to a negative correlation across neighboring intervals. In a later 

adjustment of this model, a linear phase corrector was added that can partly 

correct the timekeeper interval based on the asynchrony experienced on a 

previous movement (Vorberg and Wing, 1996). This was added to account for 
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the finding that a feedback perturbation can impact the timing of the subsequent 

press (Wing, 1977). More recently, Drewing (2013) proposed that the timing 

processes described in the model account for the sensory consequences of the 

movements rather than for the movement commands themselves.  

While the Wing & Kristofferson model accounts for a number of findings in 

the synchronization literature, it is unclear whether this model can account for 

behaviour in situations where synchronization is not required. Without the need 

to synchronize, the goal of the task shifts. In such non-constrained execution 

tasks, the main goal is predominantly to perform sequences of movements as 

quickly and accurately as possible, which is contrary to the requirement of 

synchronization tasks to preserve a rhythm. Hence, other control mechanisms 

might be in place to control unconstrained sequences of movements. Overall, 

understanding how sensory feedback is integrated in fast and non-restrained 

execution of finger movement sequences remains a research gap that deserves 

further attention. 

   

1.5 Chapter overview 
The overarching goal of this thesis was to further our understanding of the 

representation and control of finger movement sequences. Specifically, we were 

interested in understanding how the mental representation of finger movement 

sequences can be shaped by instructions early in training and how this can 

impact the ultimate performance after training. This will provide us with further 

information regarding the relationship between mental representation and 

performance. Further, we were interested in examining whether sensory 

feedback is continuously used to adjust movement execution, even after 

sequences have become skilled. By perturbing the feedback participants 

received, we were able to probe the idea that feedback integration shifts from 

feedback to feed-forward control with practice. To achieve these objectives, we 
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used a discrete sequence production task in which participants performed 

sequences of movements with their right hand as rapidly and accurately as 

possible on an isometric keyboard. We provided participants with different types 

of sensory feedback during execution and measured their force and response 

timing. 

Chapter 2 presents experiments aimed to manipulate participants’ initial 

mental representation where we investigated how sequence representations 

changed over three weeks of training. To do so, we influenced participants’ 

temporal execution pattern (chunking) early in practice. Participants first 

practiced smaller parts of the sequence (i.e., chunks), while only later being 

presented with the entire sequence. By instructing participants’ early chunk 

structure, we were able to directly assess how this initial representation impacted 

subsequent learning over three weeks. Additionally, we influenced their initial 

representation to be either beneficial or detrimental to overall performance by 

considering the behavioural constraints of our keyboard. This enabled us to 

estimate whether these two types of instructions shaped participants' behaviour 

to a similar extent. We used an advanced modeling technique to estimate 

participants’ chunking structure over time, accounting for overall changes in 

speed. In summary, this experiment allowed us to examine how initial 

instructions can shape participants' early mental representation and whether this 

representation remains stable across a longitudinal training regimen. 

 Chapter 3 addresses the question of how feedback is used to adjust the 

execution of skilled finger movement sequences. To probe feedback integration, 

we chose to advance or delay the sensory feedback participants received on a 

single finger press within a sequence. We measured how this small transient 

feedback perturbation affected behaviour on the perturbed press itself as well as 

on the subsequent finger presses in the sequence. We trained participants over 

four days to assess whether the effects of the perturbation changed with practice. 

Additionally, we performed a second experiment where we examined which 
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sensory modality (auditory, haptic and visual) impacted participants’ performance 

the most. Furthermore, we were able to estimate what type of representation 

underlies participants’ movement execution and uncover the distinct feedback 

processes involved in this organization.   

 In summary, this thesis provides novel insights into the representation and 

control of finger movement sequences. By manipulating participants' behaviour in 

a precise and systematic manner, I was able to address shortcomings of 

previous research and demonstrate the malleability and hierarchical nature of 

mental representations of skilled finger movement sequences.  
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Chapter 2  
 

2 The effect of instruction on motor skill learning 
 

2.1 Introduction 
Many motor skills are learned with the help of instructions, be it from peers, 

parents, teachers, or from videos. Such instructions often break down longer, 

complicated sequences of actions, for example tying one’s shoelaces, into 

smaller elements that can be more easily remembered and practiced. Thus, 

instruction help to build up an initial mental representation of the motor skill, 

which in turn guides physical practice (Green and Flowers, 1991; Hodges and 

Franks, 2002; Masters, 1992; Meier et al., 2020; Wulf et al., 1998). However, it is 

unclear for how long these initial mental representations influence motor 

behaviour. At what point does the learner find an optimal way of performing the 

action independent of the initial instruction? Furthermore, are some ways of 

building an initial mental representation of a motor sequence better than others?  

We investigated these questions in the context of a discrete sequence 

production task (DSP), in which participants perform a series of single finger 

presses as fast as possible while having full knowledge of the sequence 

(Abrahamse et al., 2013; Verwey, 2001). Learning in this task depends on both 

cognitive and motor processes (Diedrichsen and Kornysheva, 2015; Wong et al., 

2015). Initial performance relies strongly on forming a declarative memory of the 

sequence (de Kleine et al., 2009; Verwey et al., 2010, 2009; Verwey and 

Dronkert, 1996). This initial declarative memory (or mental representation) of the 

motor sequence is often characterized by chunking – the process of breaking 

down long sequence of items into smaller subsets, which has been shown to aid 

memorization (Halford et al., 1998; Miller, 1956; Solopchuk et al., 2016). In the 
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context of movement sequences, this chunked memory representation has been 

shown to influence the actual motor performance, with participants inserting 

larger pauses between chunks than between finger presses within a chunk 

(Verwey, 1996; Verwey and Dronkert, 1996). This cognitively-induced chunking 

pattern (de Kleine et al., 2009; Verwey et al., 2010, 2009; Verwey and Dronkert, 

1996) has been found to remain stable over the course of a few days of practice 

(Verwey and Eikelboom, 2003).  

We hypothesized that the way the initial declarative memory of a motor 

sequence is chunked will either facilitate or impede subsequent skill learning. To 

test this idea, we instructed participants to memorize long sequences of finger 

presses by first practicing smaller 2-3 digit “chunks” on an isometric keyboard-

like device. Participants were then trained on the seven 11-digit sequences that 

were made up of the 2-3-digit chunks that they had learned prior. Each sequence 

was subdivided and instructed in two different ways: In a counterbalanced within-

subject design, half of the sequences for each participant were instructed using 

an aligned chunking structure, in which the boundaries between chunks were 

aligned with finger transitions that were difficult to execute. These transitions 

constituted natural breaking points, and we hypothesized that the participants 

should be able to use the time needed to execute these transitions to recall the 

next chunk. Additionally, we kept easy finger transitions, such as runs (e.g. 123), 

together within a chunk, enabling participants to execute these quickly. The other 

half of the sequences were instructed using a misaligned chunking structure, in 

which these easy finger transitions were artificially broken up by chunk 

boundaries, and difficult transitions were kept within a chunk. We hypothesize 

that sequences that were learned under a misaligned structure would be 

executed more slowly. After the instruction phase, participants practiced the 

sequences over the course of three weeks, allowing us to investigate the 

influence of the initial instruction on subsequent motor skill learning. 
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Specifically, we investigated three questions: First, do the initial chunk 

instructions lead to stable movement patterns that persists over three weeks of 

training? Second, can different chunk instructions on the exact same sequence 

lead to movement patterns that are superior or inferior in terms of performance? 

We hypothesized that sequences learned using the misaligned instruction would 

be performed slower compared to sequences learned with the aligned 

instruction. Finally, if we can induce deficits in performance using suboptimal 

chunk instructions, how long are these maladaptive patterns maintained?  

 

2.2 Methods 
 

2.2.1 Participants 

In total forty participants who reported no neurological conditions were recruited 

for the study (30 females; ages: 19 to 33). Thirty-two of them were randomly 

assigned to learn the sequences with one of the two chunk sets. Eight additional 

participants were recruited as a control group that did not receive any chunk 

instructions. All participants were right-handed based on the Edinburgh 

Handedness Inventory and completed informed consent. On average, 

participants had received 4.68 (± 5.55) years of musical training, with 55% 

reported having more than six months of experience playing the piano. While 

participants with piano experience performed the sequences faster than 

participants with no experience and the number of practice years correlated with 

execution speed (MT), the amount of participants’ prior musical experience did 

not have a qualitative influence on participants’ chunking behaviour. The study 

protocol was approved by the ethics board of the University of Western Ontario. 
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2.2.2 Apparatus 

A custom-built five-finger keyboard was used (Figure 2.1a). The keys were not 

depressible but were equipped with a force transducer (FSG-15N1A, Sensing 

and Control, Honeywell) underneath each key which measured participants’ 

isometric force production with a repeatability of <0.02 N and a dynamic range of 

16 N (Wiestler et al., 2014; Wiestler and Diedrichsen, 2013; Yokoi et al., 2017). 

The measured force at each key was digitally sampled at 200 Hz.  

 

2.2.3 Discrete sequence production task 

We used a discrete sequence production task (DSP) in which participants 

executed sequences of two, three, or 11 keypresses as fast as possible while 

keeping their error rate under 15%. Each finger was associated with a number 

(thumb = 1, index = 2, middle = 3, ring = 4 and little = 5; Figure 2.1a). Each trial 

started with the visual presentation of the sequence to be executed and was 

completed once the participants pressed the amount of presented numbers. 

A keypress was registered when the measured force first exceeded 1.5 N. 

A key release was marked when the force measured at the same key first fell 

below 1 N. The magnitude of the force applied to each key was represented by 

five lines on an LCD monitor, with the height of the line representing the force at 

the corresponding key. No pause between presses was required and thus some 

co-articulation between fingers emerged with faster execution. However, to 

prevent participants from pressing more than several keys at once, the previously 

pressed key had to be released before a new key could be registered as 

pressed. 

Immediately after the keypress threshold was reached, participants 

received visual and auditory feedback. If the correct key was pressed, the color 

of the corresponding digit changed from white to green and a sound was 
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presented (same sound for each key). If the incorrect key was pressed, the cue 

turned red and a lower-pitch sound was presented. 

After each trial participants received points based on their accuracy 

(whether all presses in the sequence were correct) and movement time (MT; the 

time between the first keypress and last key release). Correct sequences 

performed faster than the MT threshold (see below) were rewarded with one 

point. MTs that were 20% faster than the threshold was rewarded with three 

points. Incorrect presses or MTs exceeding the threshold resulted in zero points. 

At the end of each block, participants received feedback on their error rate, 

median MT, points obtained during the block, and total points obtained during the 

session. In order to motivate participants to continue to improve their 

performance, we adjusted the MT threshold by lowering it by 500 ms after each 

block in which the participants performed with an error rate of 15% or lower and 

had a median MT faster than the current threshold. This manipulation resulted in 

a stable overall error rate of 14.6%, SD: 2.6%. On 27% of trials, participants 

received one point, on 34% of trials three points.  

 

2.2.4 Baseline study for measuring execution-level constraints  

One of the aims of the study was to design specific ways of chunking a sequence 

that would induce either better or worse performance. We hypothesized that it 

would be advantageous to have chunk boundaries fall on transitions between 

fingers that are, based on execution-level constraints, executed slowly. We 

define execution-level constraints as factors arising from the neural control of 

movement, biomechanics, and characteristics of the keyboard device, 

independent of cognitive factors. To determine these constraints on finger 

transition speed – i.e., how fast participants can naturally execute each of the 25 

possible two-finger transitions (e.g. 12,13, 25 etc.), we recruited seven 

participants (five females, ages: 21-27) for a 3-day study. None of the 
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participants that participated in this experiment participated in the later main 

experiment. Participants executed all possible two-finger transitions (e.g., 25) 

and three-finger transitions (e.g., 125), each eight times per day. Each sequence 

was presented twice in a row. Each day, participants completed eight blocks with 

150 trials each. The setup, task, and feedback were the same as described 

above.  

Because participants only had to plan and execute two or three finger 

presses, we assumed that cognitive constraints, chunking, or planning processes 

should not have limited performance. Thus, the average speed of these 

transitions can be taken as a characterization of the execution-level constraints 

of our specific task. The data from the 2-finger transitions revealed a clear 

pattern (Figure 2.1b), in which transitions between adjacent fingers (e.g. 12, 23, 

32 etc.) could be executed on average 68.5 ms faster than finger repetitions (e.g. 

55, 33, 22 etc.). We tested this difference by comparing the average speed of 

adjacent finger presses with the average speed of repetitions with a paired t-test 

(t(6) = 13.965, p = 8.404e-06; Figure 2.1b). To press the same finger twice, the 

force applied to the key had to first exceed the press threshold, then go below 

the release threshold and then cross the press threshold again. This rapid 

alternation of forces takes time to produce. In contrast, for two adjacent fingers, 

the second finger press can be initiated (have already reached the press 

threshold but have not yet been registered) before the previous finger is 

released, making it easier to rapidly produce this force pattern.  

The overall 5x5 pattern of inter-press intervals (IPIs) was stable across 

participants (average correlation r = 0.689) and days (r = 0.894), even though 

participants improved their overall speed from 157 ms on the first day to 114 ms 

on the third day. The same pattern was also apparent for the 3-finger transition 

data. If we broke up the 3-finger transitions into the constituent IPIs, the average 

pattern correlated with the 2-finger transition data with r= 0.913.  
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Figure 2.1 Apparatus & two-finger transition execution speed.  
(a) Isometric keyboard-like device. Each key was associated with a number 

(these numbers were not shown to the participants but verbally explained). (b) 
Data from the independent baseline study in which participants performed all 

possible combinations of 2-digit transitions. Matrix indicates the median inter-

press interval (IPI) to produce the transition between pairs of keypresses. 

Indicated values are means over seven participants. 
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2.2.5 Experimental design 

To experimentally impose a particular way of chunking, we instructed participants 

in the experimental group to memorize and perform a set of 2-3 keypress chunks 

(Figure 2.2a). These chunks were later combined to form the training sequences 

(Figure 2.2b). Our goal was to impose beneficial or detrimental motor patterns 

on participants’ performance. For this, we used the finding from the execution-

level constraint baseline study that finger repetitions are performed slower than 

presses of adjacent fingers. We designed sequences such that they would 

include both fast transitions (runs e.g., 123 - 3-digit transition with two adjacent 

finger transitions that either are descending or ascending) and slow finger 

repetitions (e.g., 113). In the “aligned” chunk structure we inserted chunk 

boundaries such that they fell on difficult finger transitions, which were executed 

slowly. We hypothesized that participants could use the time required to perform 

these difficult finger transitions to recall the next chunk, which should benefit 

overall performance. In this chunk structure, the 3-digit “runs” (i.e. 123) were also 

kept intact within a chunk. We predicted that learning the sequence using this 

chunk structure would be beneficial to performance speed (Figure 2.2c). In the 

misaligned chunk structure, we placed chunk boundaries in a way that divided up 

fast finger transitions such as runs (e.g. 123), thereby breaking up parts of the 

sequence that could otherwise be performed very quickly. Adding chunk 

boundaries at easy finger transitions should lead to slower performance because 

these finger transitions now have to be used to recall the next chunk (which takes 

longer than executing the easy finger transitions). We hypothesized that this 

would hinder overall performance (Figure 2.2c). All participants practiced the 

same seven sequences (Figure 2.2b). Half of the participants in the 

experimental group were instructed with the aligned chunk structure for the first 

three sequences, and the misaligned chunk structure for the next three 

sequences (Figure 2.2d). For the other half of the participants, the assignment of 

sequences to aligned and misaligned was reversed. The last sequence (#) was 

neither misaligned or aligned under the two chunk structures, but was added to 
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ensure that each chunk occurred in at least two different sequences. The 

counterbalanced design (Figure 2.2d) allowed us to draw strong inferences 

about whether participants’ performance was dictated by execution demands 

(which were identical across participants) or whether it was affected by the chunk 

structure imposed during the chunk instruction phase (which was different 

between the two chunk sets). We also included a control group that did not 

receive any explicit chunk instruction. 

Every participant completed 15 training sessions in total (Figure 2.2e): 

one session per day across a 3-week period. Each session lasted approximately 

one hour, excluding the two initial sessions and the last session which each took 

two hours. Participants completed at least ten blocks of 28 trials per training day. 

Each block comprised four repetitions of each of the seven sequences.  
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Figure 2.2 Experimental design. 
(a) Each participant learned 11 chunks associated with the chunk cues (A-K) 

from one of the chunk sets. (b) The seven 11-digit sequences that participants 

trained on. The vertical lines (not shown to the participants) indicate the chunk 

boundaries induced in training through the chunk set. Sequences were trained 

with an aligned (red) or misaligned (blue) chunk structure. (c) Example sequence 

containing a 3-digit run and two-digit repetitions. In the aligned structure, the 

chunk boundaries fell between repetitions, in the misaligned structure the chunk 

boundary broke up the run. (d) We counterbalanced across participants which 

sequences were practiced with which chunk structures. An additional control 

group was added who did not receive any chunk instruction (e) Experimental 

timeline depicting the training at each stage. In the instruction phase participants 

memorized chunks and sequences. In the optimization phase participants trained 

to perform these sequences as fast as possible from memory. In the last week of 

training, half of the participants were directly cued with the sequence, while the 

others performed the sequences from memory.
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2.2.5.1 Days 1-4: Chunk instruction & initial sequence learning 

For the experimental group, participants were pre-trained on one of the two 

chunk sets on the first day of training (Figure 2.2a). Each chunk was associated 

with a letter of the alphabet (A-K). Participants were explicitly told to learn this 

association. Each chunk was practiced twice in succession. On the first trial of 

each pair, the numbers corresponding to the finger presses where shown 

together with the letter indicating the chunk. On the second trial the numbers 

were replaced with stars, such that the participants had to recall the presses 

solely based on the letter. This trial order was reversed on every second block, 

such that participants had to first try to recall the sequence with the help of the 

letter, and then were shown both the letter and the numbers on the second trial. 

To ensure that participants had memorized the chunks we added recall blocks at 

the end of days 1 and 2. At the end of the first and second day, participants were 

asked to recall and type out the numbers corresponding to the presented letters 

as quickly and as accurately as possible (letters were randomly presented). At 

the end of day 2, participants could reliably produce the chunks from memory 

with an average accuracy of 92.7%. 

On day 2, the experimental participants trained on the seven 11-press 

sequences. Each sequence was associated with a symbol (e.g. $; Figure 2.2b). 

Each symbol was presented twice in succession and participants had to perform 

the sequences from memory using the symbol cue on one trial or with the help of 

the chunk letters on the next trial. We tested participants’ sequence knowledge 

with a recall block at the end of days 2-4. The first two participants did not 

perform the recall blocks. At the end of day 4, participants were able to recall all 

sequences from memory using the sequence cues with an accuracy of 93.1%. 

In contrast, the control group did not receive any chunk training but 

instead trained directly on the seven 11-press sequences. On day 1 they were 

presented with the 11 digits corresponding to the 11-press sequences. We 

matched the amount of training across groups by ensuring that all participants 

were required to produce the same overall number of finger presses. On day 1, 
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the control participants were not aware that they would have to memorize the 

sequences later on. On days 2-4 they were instructed to memorize the 

sequences using the same symbolic sequence cues as the experimental groups 

and their memory was tested using recall blocks at the end of each day (Day 4: 

90.2% accuracy). The rest of the experimental design was identical for all 

groups. 

 

2.2.5.2 Days 5-10: Optimization - Memory Recall 

On days 5-10 both experimental and control participants practiced exclusively on 

the eleven-press sequences using the symbolic cues. Chunks were no longer 

cued. Each sequence cue was presented twice in succession and participants 

had to recall the sequence from memory on both trials. 

 

2.2.5.3 Days 11-14: Optimization - Memory recall or cued 
presentation 

On the last four days of training half of the experimental participants performed 

the sequences from memory (as on days 5-10), while for the other half and for 

the control participants we removed the symbolic sequence cue and instead 

visually presented participants with the complete set of 11 digits that 

corresponded to the sequences (Figure 2.2e).  

 

2.2.6 Statistical Analysis 

We recorded and analyzed the force measured at each key. For each trial, we 

calculated movement time (MT, time between the first press and last release) 

and inter-press-intervals (IPIs; time between force peaks of two consecutive 

presses). All analyses were performed using custom-written code in MATLAB 

(The MathWorks) and the dataframe toolbox 
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(github.com/jdiedrichsen/dataframe). We excluded from our analyses trials that 

contained one or more incorrect presses, as well as trials with an MT or a press 

with an IPI three standard deviations above the mean calculated across all days 

and participants.  

For the correlation analysis in Figure 2.5, we split the data for each day, 

participant and sequence in half (first vs. second half of each day) and calculated 

correlations of all possible pairs. We Fisher z-transformed the correlations before 

averaging and performing statistical tests. For plotting the correlations, we then 

inverse Fisher z-transformed the values. 

The data were analyzed using mixed-effects analysis of variance (mixed 

ANOVA), Pearson’s correlation and paired and one-sample t-tests. All t-tests 

were two-sided unless specified otherwise. A probability threshold of p<0.05 for 

the rejection of the null hypothesis was used for all statistical tests.  

 

2.2.7 Probabilistic model for estimating chunk structure 

To estimate participants’ chunking behaviour from IPIs, we used an extended 

version of a Bayesian model of chunking behaviour, developed by Acuna and 

colleagues (2014). The algorithm uses a Hidden Markov Model to estimate the 

posterior probability that a specific chunk structure is present on a given trial. 

Here we used only the IPIs on correct trials, but not the error probability as in the 

original publication, as the probability of errors did not relate systematically to the 

imposed chunk structure early in learning.  

As we had ten digit transitions, each of which could either coincide with a chunk 

boundary or not, we had to consider 210-1= 1023 possible chunk structures. 

Between trials, the hidden Markov process could either preserve the same chunk 

structure with probability p or switch to any other chunk structure with probability 

(1-p)/1022. The IPIs were modeled as a Gaussian random variable, with a 
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different mean and variance depending on whether the keypress transition was 

within or between chunks. 

In contrast to Acuna and colleagues (2014), in which learning effects were 

removed in a preprocessing step using a single exponential, we modeled 

learning within our model using two separate exponential terms for the IPI mean. 

This captured the faster reduction in the between- compared to the within-chunk 

intervals (Figure 2.3a). The inclusion of separate learning curves for within- and 

between-chunk IPIs allowed us to estimate participants’ chunk structure 

independently of changes in the overall performance speed (Figure 2.6a). This is 

an important advance over previous methods that used a constant cut-off value 

to distinguish between within- and between-chunk intervals. For these methods, 

faster performance would automatically decrease the number of chunk 

boundaries detected. To confirm that our algorithm did not show this bias, we 

simulated artificial data using parameter estimates for individual participants. We 

simulated sequences that switched between four different chunk structures, each 

of which contained four chunks. Even though IPIs decreased by about 300 ms 

with learning, the estimated average number of chunks remained stable across 

the entire simulated experiment (average distance to single chunk: 3.35 ~ 4 

chunks and three boundaries).  

We used an Expectation-Maximization (EM) algorithm to simultaneously 

estimate the posterior probability of each chunk structure for each trial, as well as 

the nine parameters of the model: three parameters each for the exponential 

curve for the within- and between-chunk IPIs, one variance parameter for each, 

and the transition probability p (for implementation details, see 

https://github.com/jdiedrichsen/chunk_inference). 

As a preprocessing step, we regressed the IPIs for each participant 

against the average biomechanical profile, which was estimated as the average 

IPI profile for all possible two-digit presses from our biomechanical baseline 

experiment (Figure 2.1b). The fitted values were removed from the IPIs. 
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Removing temporal regularities that could be modeled with biomechanics alone 

should result in chunking estimates that more closely reflect cognitive and 

learning influences. Qualitatively comparable results were also obtained using 

the raw IPIs, without biomechanical factors removed.   

 

2.2.8 Expected distance 

We quantified how much participants changed their chunking behaviour over 

time by calculating the expected distance between their estimated chunk 

structure and a reference chunk structure. We defined the distance between two 

chunk structures, d(i,j), as how many of the ten keypress transitions would have 

to change from a chunk boundary to a non-boundary (and vice versa) to 

transform one structure into the other (for an example, see Figure 2.6b). A 

distance of zero would indicate no change. The average distance between two 

randomly chosen chunk structures is five. Because chunk structures produced by 

participants on each trial were estimates, we calculated the expected distance. 

For this, we first calculated a 1023 X 1023 matrix containing the distances 

between any chunk structure i, and chunk structure j. From the posterior 

probability distribution, we could then derive how likely each of these chunk 

structure changes was, p(i,j). The expected value of the distance was then 

calculated as  

𝐸(𝑑) = ∑ ∑ 𝑝(𝑖, 𝑗)𝑑(𝑖, 𝑗)+,-.
/0+

+,-.
10+ .  

 

2.3 Results 
Over 15 days we trained 32 participants to produce sequences of 11 isometric 

keypresses from memory on a keyboard-like device. Participants were rewarded 

with points for executing sequences as fast as possible while keeping the 

proportion of incorrect keypresses in each block of trials below 15%. We 
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maintained the participants’ motivation by gradually decreasing the movement 

time (MT) threshold at which they received points.  

We manipulated how participants memorized the sequences by splitting 

the sequences into several chunks, each composed of 2-3 keypresses. The aim 

was to test whether the different ways of chunking (hereafter “chunk structures”) 

imposed through the chunk training in the instruction phase (Methods, Figure 
2.2b) would affect performance optimization in the subsequent two weeks of 

training. Each sequence could be chunked in an aligned or misaligned fashion, 

predicted to lead to beneficial or detrimental performance respectively (Methods, 

Figure 2.2c). All participants practiced the same seven sequences but differed in 

the chunking instructions they received for each sequence.  

 

2.3.1 Chunk instruction induces a stable movement pattern 

To assess whether the imposed chunk structures influenced participants’ motor 

behaviour, we examined inter-press time intervals (IPIs). An increased IPI is 

commonly taken as a sign of a chunk boundary, as the cognitive processes 

(memory recall, action selection) involved in switching from one chunk to another 

require additional time (Verwey, 1999; Verwey et al., 2010). Hence, we would 

expect our participants to exhibit shorter IPIs between keypresses that belonged 

to a chunk imposed during day 1 (within-chunk IPIs) and larger IPIs for the 

boundaries between chunks (between-chunk IPIs). For this analysis, we pooled 

the data from all sequences irrespective of instruction (misaligned vs. aligned). 

We indeed found significantly longer between-chunk IPIs compared to within-

chunk IPIs in the first few days of training (Figure 2.3a: days 2-4: t(31) = 7.728, p 

= 5.098e-09), suggesting that our manipulation was successful in inducing a 

temporally specific pattern of keypresses.  

In the optimization phase, we ceased to cue sequences using the 

alphabetic letters associated with the chunks. Instead, participants were asked to 
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recall the entire 11-keypress sequences from memory in response to symbolic 

sequence cues (e.g. “$”). Across days 5-10, the within and between-chunk IPIs 

were still significantly different from each other; t(31) = 7.165, p = 2.351e-08 

(Figure 2.3a). This difference cannot be attributed to differences in performance 

difficulty of the finger transitions, as the within-chunk IPIs for one half of the 

participants were the between-chunk IPIs for the other half and vice versa 

(Figure 2.2b). IPIs that were within-chunk for all participants (e.g., the first and 

last IPI of a sequence) were excluded from this analysis.  

In the last four days of training, we tested whether the slower IPIs at chunk 

boundaries were due to the fact that the sequences needed to be recalled from 

memory. Half of the participants continued to perform the sequences from 

memory, whereas the other half were cued using the numbers that indicated the 

necessary keypresses (Figure 2.2e), therefore removing any memory recall 

demands. Both the memory (t(15) = 4.865, p = 2.059e-04, Figure 2.3b) and the 

cued subgroup (t(15) = 3.403, p = 0.004) showed a significant difference between 

the within- and between-chunk IPIs. There was no reliable difference between 

the two subgroups in this effect (t(30) = -0.749, p = 0.460). Thus, removing the 

requirement for memory recall did not abolish chunking. Because none of the 

subsequent analyses showed any significant difference between the two 

subgroups, we will report their combined results for the remainder of the article.  
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Figure 2.3 Within- vs. between-chunk inter-press intervals (IPIs).  
(a) Time course of IPIs that were within an instructed chunk (dashed line), or on 

the boundary between chunks (solid line). Asterisks indicate significant 

differences between average within- and between-chunk IPIs in the 

corresponding week (separated by dashed lines). Shaded area denotes 

between-subject standard error. (b) Difference of between- and within-chunk IPIs 

in the last week of training, split by whether participants had to recall the 

sequences from memory or were cued with the sequence numbers. Violin plots 

indicate distribution of individual participants, white circles indicate means.  
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2.3.2 Misaligned chunk structure impairs performance 

We then asked whether the two types of chunk instructions that were used for 

each sequence (counterbalanced across participants) would lead to measurable 

differences in performance. We designed chunk structures that were either 

aligned or misaligned with the basic execution-level constraints (see Methods), 

and predicted that these structures would either improve or impede performance. 

Each experimental participant learned three of the seven sequences with a 

misaligned chunk structure and three sequences with an aligned chunk structure, 

with the assignment counterbalanced across participants (Figure 2.2d). 

Therefore, all participants practiced the same seven sequences, but differed in 

which chunk instructions they received. This counterbalanced design allowed us 

to compare execution speed between aligned and misaligned sequences within 

each participant. 

To test our prediction that training with the misaligned chunk structure 

would lead to poorer performance, we measured participants’ movement time 

(MT) by estimating the time between the first finger press and the last finger 

release. For each participant we then calculated the difference in average speed 

between the aligned and the misaligned instructed sequences. As predicted, in 

the instruction phase, sequences instructed with the misaligned chunk structure 

were performed slower than the sequences instructed with the aligned chunk 

structure (Figure 2.4a) one-sample t-test: t(31) = 2.693, p = 0.006. Hence, we 

were not only able to manipulate how participants performed a sequence, but 

also how well they could perform it. 

Next, we wanted to examine what factors influenced the difference in 

speed we observed. To determine how beneficial it was to have a finger run 

(three adjacent presses in either descending or ascending order, e.g. 123) 

preserved within a chunk, rather than separated by a chunk boundary, we 

selected all IPIs that could be either within or between a chunk (excluding the 

IPIs that were within-chunk for both aligned and misaligned structures). For the 

within-chunk IPIs, we compared the average IPI for transitions that occurred in a 
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run (e.g. between 1&2 and 2&3), to the average IPI for transitions outside of a 

run (e.g. 2&4 or 5&1). This gives us an idea of how beneficial it is for a finger run 

to be present within a chunk compared to when there is no run present. We then 

compared this measurement to how advantageous a run is when it is separated 

by a chunk boundary. In other words, we compared the advantage of having a 

finger run within a chunk to having a finger run that is distributed across chunks. 

We found a significant advantage of 28.6 ms (SD 44.6; one-sided t-test: t(31) = 

3.624, p = 5.137e-4). Similarly, we calculated the cost of a finger repetition within 

a chunk, as compared to the cost of a finger repetition between chunks and 

found an average difference of 16 ms (SD 68.1), a non-significant difference 

(one-sided t-test: t(31) = 1.331, p = 0.097). An additional factor that influenced 

participants' speed was whether the 2-digit chunk was placed in the beginning 

(misaligned) or the end of the sequence (aligned). We evaluated this factor by 

averaging the second and second-to-last IPI in each sequence, as one of them 

was within-chunk and one was between-chunk for each sequence. This 

comparison showed an significant advantage of 24.7 ms (SD 60.0) for the 

aligned chunk structure (one-sided t-test: t(31) = 2.330, p = 0.013). These results 

suggest that multiple factors led to an MT advantage for sequences that were 

instructed with an aligned vs. misaligned chunk structure.  

The difference in MT we found in the first week was maintained in the 

second week of training (days 5-10: t(31) = 2.313, p = 0.014). However, this speed 

difference was no longer statistically reliable in the last four days of training (days 

11-14: t(31) = 0.764, p = 0.225). This suggests that participants ultimately were 

able to overcome the performance detriment that we imposed through the initial 

chunk instructions.  

To determine whether receiving the aligned chunk instruction was more 

beneficial to performance than not receiving a chunk instruction at all, we tested 

an additional control group. This group did not have to explicitly learn chunks, but 

rather trained on the entire sequences from the beginning (see Methods for 

details). We compared the performance of this group to the experimental group 
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for days 5-10, during which all groups had to perform the sequences from 

memory. During these days, the control group performed on average 63.5 ms 

(standard error 223.2 ms) slower than the experimental group on the aligned 

sequences, and nearly identical (0.5 ms slower, SE 215.3 ms) compared to the 

performance of the experimental group on the misaligned sequences. However, 

neither of these contrasts reached statistical significance (Aligned vs. control: t(38) 

= -0.285, p = 0.778; misaligned vs. control: t(38) = -0.002, p = 0.998).  
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Figure 2.4. Change in chunk structure and performance for aligned and 
misaligned instructed sequences. 
(a) Differences in movement time (MT) between sequences instructed with an 

aligned or misaligned chunk structure. Asterisk indicates a significant difference 

from zero (no difference). (b) Within- or between-chunk IPIs across training days 

for the sequences instructed with the aligned chunk structure. (c) Within- or 

between-chunk IPIs across training days for the sequences instructed with the 

misaligned chunk structure. Error bars denote between-subject standard error. 
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2.3.3 Misaligned chunk structure is changed more rapidly 

To investigate how participants overcame the detrimental influence of the 

misaligned chunk structure, we separated the IPI analysis (Figure 2.3a) by 

whether the intervals came from sequences that were instructed using an aligned 

or misaligned structure. The difference between within- and between-chunk IPIs 

for sequences instructed with the aligned chunk structure was stable over the 

entire training period (Figure 2.4b). In contrast, for the misaligned structure, the 

difference between the within- and between-chunk IPIs started to disappear late 

in learning (Figure 2.4c). The three-way day x within/between x 

aligned/misaligned interaction was significant (F(12,372) = 19.790, p = 1e-16). 

Thus, participants diverged from the misaligned chunk structure while 

maintaining the aligned chunk structure.  

To understand these changes in more detail, we investigated the entire 

pattern of IPIs produced by the participants for each sequence. In a first analysis 

we correlated the participants’ IPI pattern of each day to the pattern produced on 

day 2 (Figure 2.5a, see methods for details). This analysis shows how far 

participants diverged from their initial chunking pattern with training. The 

comparison between the aligned and misaligned instructed sequences confirmed 

our previous observation that participants diverged more from the misaligned 

instruction (Day X Instruction: F(11,330) = 4.348= p= 4.352e-06). The analysis also 

demonstrates that the control group significantly diverged from their second day 

IPI pattern with training (Day: F(11,77) = 30.209, p <0.0001).  

Importantly, our data shows that this drift was not due to participants 

becoming more variable in their performance. To investigate the stability of the 

temporal structure within each day, participant, and sequence, we correlated the 

average IPI patterns across the first half and second half of each day. To test for 

a systematic change of stability across training, we fitted a linear regression 

separately to each participants’ correlation results and compared the resulting 

slope values to zero. We found that within-subject correlations increased over the 

course of training for the aligned instructed sequences (t(31) = 4.204, p = 3.071e-
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05) as well as for the control group (t(31) = 2.874, p = 0.024, Figure 2.5b). For the 

misaligned instructed sequences the increase failed to reach significance (t(31) = 

1.9744, p = 0.0573, Figure 2.5b). We also found that the chunking pattern for the 

misaligned instructed sequences was less stable than for the aligned instructed 

sequences (t(31) = 2.952, p = 0.006). Overall, however, correlations were very 

high (r>0.9), showing that participant adopted a relatively stable temporal 

structure for each sequence.  

Given that participants converged on a stable IPI pattern for each 

sequence, we asked whether this pattern was the same across participants, or 

whether individuals found idiosyncratic solutions. To explore this question, we 

again used the average IPI pattern for each half day, but now correlated these 

patterns with those of any of the other participants. This approach enabled us to 

directly compare how similar two participants performed the same sequence in a 

session (between-subject correlation), with how consistent a single participant 

performed that same sequence (within-subject correlation). For the experimental 

group, we found that between-subject correlation (Figure 2.5c) was substantially 

lower than the within-subject correlation (t(31) = 19.664, p <0.0001) at the end of 

training (day 14). This suggests that participants adopted chunk structures at the 

end of training that were stable, but quite different across participants. This was 

especially true for the misaligned instructed sequences, which showed a lower 

between-subject correlation than the aligned instructed sequences on the last 

day of training (t(31) = -8.211, p = 2.834e-09, Figure 2.5b). Similarly, the control 

group also shows much higher within-subject than between-subject of the IPI 

patterns (t(7) = -19.119, p = 2.666e-07). Together, these results show that 

participants, independent of chunk instruction, changed their IPI patterns 

systematically over training, converging on idiosyncratic, but individually stable 

temporal patterns of performance. 
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Figure 2.5 Changes of IPI pattern across training.  
(a) Within-subject correlation of IPI pattern of day 2 with the IPI pattern of each 

subsequent day, averaged across the first and second half of blocks. Correlation 

separated for misaligned and aligned instructed sequences and control group. 

(b) Within-subject IPI pattern per day between first and second half of data. (c) 
Between-subject IPI pattern separated by instruction across days.  
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2.3.4 Bayesian model of chunk behaviour 

To get a more detailed understanding of how participants changed their chunk 

structure across training, we used a Bayesian model to estimate the probability of 

each possible chunk structure given the observed series of IPIs on a trial-by-trial 

basis (Acuna et al., 2014). The state variable in this Hidden Markov Model 

represents which of the 1023 possible chunk structures is present on each trial. 

Using an expectation-maximization (EM) algorithm (Dempster et al., 1977; 

Welch, 2003), we simultaneously estimated the nine free parameters of the 

model (for details see Methods), and the posterior probability for each possible 

chunk structure on each trial. We accounted for the effects of biomechanical 

difficulty by regressing out the patterns of IPIs across finger transitions predicted 

from our biomechanical dataset (Figure 2.1b) before modeling. Importantly, our 

model could capture separate learning-related changes to the within- and 

between-chunk intervals (Figure 2.6a). Our method, therefore, allowed us to 

estimate participants’ chunk structure independently of the overall speed of 

performance.  

Figure 2.6b shows two examples of individual participants and 

sequences. In the first panel, the participant chunked the sequence according to 

the initial instructions at first, then inserted one or two additional chunk 

boundaries, and at the end of training performed the sequence as a single chunk. 

In comparison, the other participant maintained the instructed chunk structure for 

most of the training period.  
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Figure 2.6 Probabilistic chunking model fitted to example participant data. 
(a) The change of within- and between-chunk IPIs were modeled using two 

separate exponential functions across training. The density plot shows individual 

IPIs, with the color indicating the probability of a between- (pink) or within-chunk 

interval (blue). (b) Posterior probability for two example participants (for one 

sequence per participant) over the course of the experiment. Only the four most 

likely chunk structures out of the 1023 possible structures are shown. The color 

scale indicates the posterior probability of a given chunk structure for each trial - 

with yellow indicating higher probabilities. The dashed vertical lines indicate the 

boundaries between training phases (Days 2-4; 5-10 & 11-14). The black box 

(left) indicates the chunk boundaries as white lines within the 11-press sequence 

(maximal 10 boundaries) for the chosen chunk structures. The first row indicates 

the instructed chunk structure (arrow). The other three rows illustrate other chunk 

structures that were highly probable at some point during the experiment. The 

distance measure expresses how many chunks need to be added or removed to 

transform one structure (in this case the instructed chunk structure) into the 

other.  

 



  

 

67 

To characterize changes in chunk structure over training we defined a 

metric that quantified the difference between any two chunking structures. The 

metric is based on counting the number of chunk boundaries that differ, in other 

words, the number of chunks that would need to be split or merged to transform 

one chunk structure into the other (Figure 2.6b - distance). We then used this 

measure to calculate, on each trial, the distance between the chunk structure 

estimated for the participant and three reference structures of interest: (1) the 

aligned-, (2) misaligned, and (3) a structure that consisted of a single chunk. 

These distances defined a coordinate system that enabled us to visualize 

changes in chunk structure over training. We then projected participants’ 

estimated chunk structures into this space (Figure 2.7a). On the horizontal axis 

is the expected distance of participants’ chunk structure to the single-chunk 

structure. Given our definition of distance, this measure simply counts the 

number of chunk boundaries. The vertical axis indicates how close the estimated 

chunk structure is to the aligned and misaligned chunk structure, respectively. 
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Figure 2.7. Changes in chunk structure with learning.  
(a) The average chunk structure over 13 days of practice for aligned (red) and 

misaligned (blue) instructed sequences for the experimental participants. The 

results of the control group are shown in grey. The horizontal axis represents the 

distance to the single-chunk structure, i.e., the number of chunk boundaries. The 

vertical axis shows the distance to the aligned or misaligned chunk structure. The 

crosses indicate the positions of the three reference structures (aligned, 

misaligned and single). Ellipses denote the between-subject standard error. (b) 
Average distance of participants’ chunk structure to the instructed chunk 

structure. (c) Distance to the single chunk structure across days. 
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2.3.5 Participants abandoned the misaligned faster than aligned 
chunk structure  

First, we wanted to compare the findings from our IPI analyses with the results 

from the modeling approach. Consistent with our IPI analysis (Figure 2.4b), we 

observed that participants abandoned the instructed misaligned chunk structure 

to a greater degree than the aligned chunk structure (Day x Instruction 

interaction: F(12,372) = 5.610, p < 1e-16). In the last four days of training, 

sequences with the misaligned chunk structure were more dissimilar to the 

instructed chunk structure than sequences with an aligned chunk structure: t(31) = 

2.294, p = 0.029 (Figure 2.7b). Additionally, we found a significant Day x 

Instruction interaction (F(12,372) = 2.215, p = 0.011) for the distance to a single 

chunk (Figure 2.7c), suggesting a stronger tendency towards performing a 

sequence as a single chunk when trained on the misaligned chunk structure. 

Together these results indicate that participants changed their chunking 

behaviour more readily for sequences that were trained using the misaligned 

chunk structure than when trained using the aligned chunk structure. 

 Despite the divergence from the misaligned chunk structure with training, 

our analysis also revealed that participants did not overcome the influence of the 

instruction completely. In the third week, sequences trained with a misaligned 

chunk structure were still performed using a chunk structure that was closer to 

the misaligned structure than to the aligned structure (t(31) = 6.962, p < 1e-16). 

This shows that training with a misaligned chunk structure had a lasting influence 

on participants’ motor behaviour. 

Interestingly, on the first day, the control group performed the sequences 

closer to the misaligned chunk structure than to the aligned chunk structure (t(7) = 

-2.799, p = 0.027). With training, participants then moved closer to the aligned 

chunk structure, as indicated by a significant change in the difference between 

the distance to the aligned and misaligned chunk structure across days (F(12,84) = 

5.303, p < 1e-16).  
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2.3.6 Movement towards a single chunk structure 

Previous literature has suggested that with training, participants group smaller 

chunks together to form new larger chunks (Kuriyama et al., 2004; Ramkumar et 

al., 2016; Sakai et al., 2003; Song and Cohen, 2014; Verstynen et al., 2012; 

Verwey, 1996; Wymbs et al., 2012), a process that may help to improve 

performance (Abrahamse et al., 2013; Ramkumar et al., 2016; Verwey, 2001, 

1999; Verwey et al., 2010; Verwey and Wright, 2014). However, in nearly all 

previous studies the estimated number of chunks is biased by the overall 

movement speed. As verified by simulations (see Methods), our probabilistic 

model was able to disambiguate the two factors. We estimated the number of 

chunk boundaries for each participant averaged across sequences. On the 

second day, participants separated sequences into more chunks than the four 

chunks we instructed (Figure 2.7c, t(31) = 4.224, p = 0.0002). This tendency 

continued on day 3, on which participants tended to subdivide the sequences into 

even smaller chunks (day 2 vs. 3: t(31) = 2.023, p = 0.052). After day three the 

number of chunk boundaries decreased as shown by a significant effect of day in 

a repeated measures ANOVA (F(11,341) = 11.710, p < 1e-16). However, even in 

the last phase of training, participants performed the sequences with an average 

of 2.9 chunk boundaries (we instructed three chunk boundaries). Thus, while 

there was a clear tendency towards merging chunks after an initial increase, 

participants did not perform the sequence as a single chunk, even after three 

weeks of practice. 

Similar to the experimental groups, the control group initially subdivided 

the sequences into small chunks and then slowly combined them into larger 

chunks. The distance to a single chunk structure decreased significantly over 

days (F(12,84) = 17.977, p < 1e-16, Figure 2.7a), and reached a level that was not 

statistically different from the experimental participants on the last day of training 

(t(38) = -0.940, p = 0.353). 
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2.3.7 Idiosyncratic chunk structures at the end of training and their 
importance to performance 

Finally, we analyzed how the final chunk structure that participants adopted for 

each sequence influenced their performance after three weeks of training. We 

visualized this relationship by plotting the chunk structure for each sequence and 

participant in the 2-dimensional space defined in earlier Figure 2.7a, with the 

corresponding average MT indicated by the size of the symbol (Figure 2.8).  

 The first insight is that participants used quite diverse chunk structures. To 

show that this is not due to within-subject variability of performance, we 

compared participants’ within-subject variation in IPI patterns for each sequence 

across even and odd trials (in the last three days of training) to the between-

subject variation in IPI patterns for each sequence. We found that the between-

subject variability was much higher than the within-subject variability (t(31) = 

36.130, p < 1e-16). Similar to the findings of the IPI analyses, this shows that 

participants developed their own, idiosyncratic way of chunking each sequence, 

which is not fully dictated by the biomechanical requirements of the sequence. 

With this result in mind, we asked whether these individual differences relate to 

differences in final performance. 
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Figure 2.8 Relationship between chunking and speed (days 11-14).  
The x-axis indicates the distance to a single chunk and the y-axis the relative 

distance to the two instructed chunk structures. Each data point indicates the 

average chunk structure and MT of a single sequence and participant in the last 

four days of training. The diameter of each circle represents the MT with larger 

circles indicating slower performance.  
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 Figure 2.8 suggests, that performance was better for sequences that were 

closer to the aligned chunk structure. To statistically test whether this finding 

holds true within each individual, we regressed the MT for six sequences for 

each participant in the last four days of training against the corresponding 

distance to the aligned chunk structure. On average the individual slopes were 

significantly greater than zero, both for the experimental (Figure 2.9a; t(31) = 

2.220, p = 0.017), and control group (Figure 2.9b, t(7) = 2.720, p = 0.015). Thus, 

finding a better way of chunking (for the same number of chunk boundaries) 

improved performance.  

Secondly, Figure 2.8 also suggests, that performing the sequence with a 

reduced number of chunks is beneficial for performance. We regressed the MT 

for six sequences (last four days) against the corresponding distance to the 

single chunk structure to (Figure 2.9c). The majority of the participants showed a 

positive relationship between the number of chunks and MT: a one-sample t-test 

indicated that the individual slopes were significantly greater than zero (t(31) = 

6.104, p = 4.560e-07). This relationship was also found for the control 

participants (Figure 2.9d, t(7) = 3.429, p = 0.006). Thus, performing the 

sequences with fewer chunks led to better performance. Note that for both 

analyses, the chunk structure can be determined independently from the overall 

performance criterion (MT, see Methods). 

Overall, these results suggest that the two optimization processes - joining 

chunks and aligning the remaining chunk boundaries with biomechanical 

constraints - positively influenced participants’ ultimate performance. Sequences 

for which participants could not develop a better way of chunking were performed 

substantially slower. 
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Figure 2.9 Relationship between the distance to the aligned/single chunk 
structure and MT.  
(a) Scatterplot between the normalized (per participant) distance to the aligned 

chunk structure and normalized MT in the last four days of practice. A separate 

regression line is fitted to the six sequences for each participant. Red dots 

indicate sequences with aligned instructions, blue dots sequences with 

misaligned chunking instructions. (b) Same as a but for the control group. (c&d) 
same as a & b but for the normalized distance to a single chunk. 
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2.4 Discussion 
In this study, we utilized chunking as a tool to investigate the role of instructions 

on skill learning. We influenced the structure of the initial declarative sequence 

representation by manipulating how participants memorized them (Park et al., 

2004). Moreover, by experimentally imposing two different chunk structures on 

the same physical sequence, one that was beneficial and one that was 

detrimental to performance, we could make causal inferences about the effects 

of chunking on motor skill development. This is an important advance over 

previous observational studies (Ramkumar et al., 2016; Wright et al., 2010; 

Wymbs et al., 2012), which did not experimentally control how participants chose 

to chunk the sequences.  

We report four main results. First, consistent with previous studies (de 

Kleine et al., 2009; Verwey et al., 2010, 2009; Verwey and Dronkert, 1996), our 

data demonstrate that a stable chunking pattern can be induced through 

cognitive manipulations during the initial stages of sequence learning. 

Importantly, participants did not completely overcome this imposed chunk 

structure and the chunking structure remained stable, even when the task 

changed from a memory-guided to a stimulus-guided task. Thus, the initial chunk 

instructions led to the formation of specific movement patterns.  

Second, we were able to induce chunking patterns that differentially 

affected participants’ performance. To do so, we designed two different ways of 

instructing the sequence, one aligned and the other misaligned with execution-

level constraints that were identified using a separate participant population. 

Using this manipulation, we were able to induce a performance difference in the 

beginning of practice, which was still observed during the second week of 

practice but disappeared in the last week. While these results clearly show that 

instructions can systematically impact performance, the comparison to 

participants that trained without explicit chunking instructions does not allow firm 

conclusions on whether this difference was caused by the aligned instruction 
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facilitating performance, the misaligned instruction impeding performance, or 

both. 

Third, more detailed analyses of the inter-press interval patterns showed 

that participants followed the beneficial chunk instructions throughout the entire 

training period, but changed their chunking pattern for the misaligned instructed 

sequences. We also demonstrate that participants did not all converge on the 

same chunking pattern after abandoning the misaligned instructions, but rather 

found an idiosyncratic chunking structure for each sequence. These solutions 

differed across participants, but were relatively stable within each participant at 

the end of training. Similar observations were made for the control group. The 

stabilization of IPI patterns that we observed over the course of training can be 

compared to the development of an invariant temporal and spectral structure in 

bird-song, a process that has been termed “crystallization” (Brainard and Doupe, 

2002).  

Finally, we identified two ways in which participants overcame the 

limitation induced by the bad habit. After initially breaking up the instructed 

sequences into five chunks on average, participants then joined chunks together, 

and by doing so, decreasing the amount of additional time spent on chunk 

boundaries. While previous research has suggested that the size of chunks 

increases with training, these findings were usually conflated with the overall 

speed of the action (Solopchuk et al., 2016; Song and Cohen, 2014; Wymbs et 

al., 2012). Using a Bayesian model to assess chunk structure independent of 

performance, we demonstrated a positive relationship between chunk 

concatenation and execution speed, both in the experimental as well as in the 

control group that developed a chunking strategy without explicit instructions. 

However, our results also indicate that participants did not merge all sequences 

into a single chunk after three weeks of training, but on average subdivided each 

sequence into 3-4 chunks. This suggests that the number of motor actions that 

can be joined in a single chunk may be limited (Langan and Seidler, 2011; 

Ramkumar et al., 2016; Verwey et al., 2002; Verwey and Eikelboom, 2003).   
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Furthermore, we found that participants also optimized performance by 

rearranging chunk boundaries in a biomechanically efficient manner. Consistent 

with our prediction based on the difficulty of individual digit transitions, placing 

chunk boundaries at digit transitions that take more time to execute and 

combining finger presses that are adjacent resulted in faster performance for the 

full sequence. This optimization process was also observable in the control group 

that memorized and practiced sequences on their own terms. Conversely, we 

observed that sequences that were not chunked in line with these strategies 

were performed slower. Therefore, if a more beneficial way of chunking was not 

found, participants still produced sequences using longer movement times, 

suggesting that other learning mechanisms did not fully make up for a persistent 

motor habit. Considering that participants’ behaviour became highly invariant in 

the last week of practice, we predict that some motor habit will remain and 

continue to influence participants’ performance even after prolonged training.  

In many motor tasks, there are numerous strategies and processes that 

can lead to excellent performance (Verstynen et al., 2012; Verwey et al., 2010). 

Examining Figure 2.8, one can observe that the shortest MTs were achieved 

anywhere in the space between the aligned and single chunk structure. 

Occasionally, good performance was also reached in other locations in chunk 

space. Our analysis showed that participants adopted quite idiosyncratic chunk 

structures for each sequence at the end of training. This suggests that there is 

considerable inter-individual variability in which technique works best for reaching 

a high level of performance. Part of these differences may reflect biomechanical 

variation across participants, leading to slightly different optimal solutions. 

Alternatively, these differences may be learning-related. A number of ways of 

chunking may work approximately equally well, such that the cost of changing an 

established habit may outweigh the small benefit that could be gained from 

changing the structure. A similar observation can be made in sports, where even 

top-ranked athletes use slightly different techniques to reach similar levels of 

performance.  
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An alternative interpretation of the data is that with training participants’ 

temporal inter-press interval patterns are primarily driven by execution-level 

constraints of the sequences rather than by chunking. This would mean that 

chunking is abolished with training and the remaining regularities we observe are 

due to physical constraints (i.e., how fast can each finger transition be executed). 

Some aspects of our findings, however, speak against this possibility. Execution 

level constraints have a relatively high (r = 0.689) inter-subject correlation (see 

baseline study results), and we would have expected a similarly high correlation 

for the IPI patterns. Our finding that the between-subject IPI correlation is 

substantially lower and also differed across chunk instructions, therefore speaks 

against this possibility. This line of reasoning would also suggest that participants 

that did not receive any explicit chunk instructions (the control group) developed 

stable chunking patterns with training, supporting claims by previous studies 

(Ramkumar et al., 2016; Wright et al., 2010; Wymbs et al., 2012).  

The characteristics of the stable motor patterns we observed make them 

similar to “habits”. Habits are defined as highly entrenched behavioural pattern 

that resists change through retraining (Ashby et al., 2003; Dezfouli and Balleine, 

2012; Dolan and Dayan, 2013; Graybiel, 2008; Graybiel and Grafton, 2015; 

Hardwick et al., 2019; Hélie et al., 2010; Jager, 2003; Robbins and Costa, 2017; 

Seger and Spiering, 2011; Smith and Graybiel, 2013a), even if they have 

become maladaptive. Most papers on habits (Jog et al., 1999; Robbins and 

Costa, 2017; Smith et al., 2014; Smith and Graybiel, 2016; Wickens et al., 2007) 

have focused on habits in the context of action selection – i.e. choosing what 

action to perform. In contrast, our experiment addresses the question of habits in 

motor performance – i.e. habits that influence how to perform a chosen action. 

For example, a tennis player could be influenced by a habitual pattern in action 

selection, whereby they always choose a forehand over a backhand to return a 

serve. At the same time, they could be influenced by a motor habit, whereby they 

execute the forehand without rotating their hips. In support of this idea, we 

showed that we could induce a stable performance pattern that can be observed 

even after weeks of training, that these performance patterns crystallized over 
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the course of training, and that changes in task demands did not lead to 

behavioural modifications. Therefore, we believe that studying chunking can 

provide valuable insights into the neural systems underlying motor habits. 

Indeed, it has recently been suggested that chunking plays an integral role in the 

formation and expression of habits (Dezfouli et al., 2014; Graybiel, 2008) and is 

neurally represented in the dorsal lateral striatum as action “start and stop 

signals” (Barnes et al., 2005; Graybiel, 1998; Jin et al., 2014; Smith et al., 2014; 

Smith and Graybiel, 2013b). 

The establishment of a paradigm which allows us to not only cognitively 

influence participant movement patterns, but also influence their behavioural 

impact on performance, will enable us to explore ways to encourage learners to 

change their current movement pattern, especially if it is disadvantageous. While 

our deliberate attempt at modifying participants’ behaviour by changing the task 

from a memory-based to a stimulus-based task was ultimately not successful, 

there are many other techniques that could be used. In many disciplines, 

teachers have developed ways to help students overcome habits. Such 

techniques often relate to changing context, speed or overall execution (De 

Souza, 2020, 2017; Ito, 2020). 

In conclusion, we were able to use a sequence chunking paradigm to 

impose specific movement patterns on participants’ behaviour that in turn 

impacted their mental representation. We found that these movement patterns 

were stable across three weeks of training. Furthermore, by aligning the imposed 

chunking patterns with beneficial or detrimental finger transitions, we were able 

to impact participants’ performance speed. Interestingly, while participants 

maintained the beneficial chunking pattern throughout the entire training period, 

participants that were able to abandon the detrimental pattern or combined more 

chunks could overcome the imposed performance detriment. 
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Chapter 3  
 

3 The role of feedback in the production of skilled finger 
sequences 

 

3.1 Introduction 
Most motor behaviours strongly depend on feedback. When we grasp a full cup 

and feel a sudden slip, we can swiftly adjust our grip force to avoid the cup 

slipping from our hand. This correction can occur in less than 100 ms (Cole and 

Abbs, 1988; Hernandez-Castillo et al., 2020; Johansson et al., 1992). Feedback 

from other senses such as vision (Day and Lyon, 2000; Veerman et al., 2008) 

and audition (Burnett et al., 1998; Howell, 2004) is also used for the control of an 

ongoing movements, albeit at slightly slower speeds (at 90-260 ms and 100-200 

ms respectively). Based on the importance of sensory feedback, researchers 

have proposed that continuous feedback integration is essential for accurate 

movement execution (Adams 1971).  

While much is known about the rapid sensory feedback integration during 

the execution of individual movements (for reviews see Cluff, Crevecoeur, & 

Scott, 2015; Scott, 2012; Shadmehr, Smith, & Krakauer, 2010), less is known 

about the integration of sensory feedback during the execution of sequences of 

finger movements. Previous studies investigating this topic have primarily 

focused on synchronization tasks in which participants are asked to synchronize 

their movements with an external variable such as a metronome or a musical 

piece (Aschersleben, 2002; Gates et al., 1974; Kulpa and Pfordresher, 2013; 

Pfordresher and Benitez, 2007; Repp, 2000; van der Steen et al., 2014). To 

probe feedback integration during the execution of fast finger sequences, 

feedback is commonly perturbed by delaying feedback presentation, either 

transiently or over a prolonged period of time. Using this approach, some studies 
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have reported an overall slowing of performance as a reaction to the perturbation 

(Gates et al., 1974; Kulpa and Pfordresher, 2013; van der Steen et al., 2014; 

Wing, 1977), whereas others observed a speed up in performance (Flach, 2005; 

Furuya and Soechting, 2010; Pfordresher and Palmer, 2002; Repp, 2000). This 

speed up has been attributed to an effort to maintain the imposed rhythm (Flach, 

2005; Furuya and Soechting, 2010; Pfordresher and Palmer, 2002). Studies 

investigating non-constrained execution of rapid finger movements, however, are 

scarce (Jay and Hubbold, 2005; Long, 1975). Moreover, the majority of studies 

investigating this topic have focused on perturbing the slower visual or auditory 

feedback channels. Hence, these studies were unable to examine the full range 

of rapid feedback adjustments that are possible during a finger press.  

Here we probed the use of sensory feedback during the execution of fast 

finger movement sequences. We manipulated haptic, visual, and auditory 

feedback on a few selected presses within a sequence, in a way that was not 

consciously perceivable by the vast majority of participants. Participants were 

trained on sequences of finger movements on an isometric keyboard throughout 

a four-day training period. On each press, upon reaching a given force threshold, 

participants were given a small haptic stimulus, similar to the feedback devices 

embedded in modern computer trackpads or smartphones. Concurrently, 

auditory and visual feedback indicated the successful pressing of the key. We 

then either delayed or advanced feedback on a single press within a sequence to 

probe how this sensory feedback is used in control. During the delayed feedback 

perturbation participants were not required to wait for the feedback to perform the 

subsequent presses – thus, by design, they could perform the task without 

considering feedback. However, we found an immediate, directionally-specific 

reaction to the feedback perturbation, providing strong evidence for the reliance 

of fast finger sequences on feedback.  

The way participants react to a small feedback perturbation also provides 

a probe into how skilled motor sequences are organized. Models of sequence 

performance usually fall on a continuum along two extremes (Diedrichsen and 
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Kornysheva, 2015). On one side, sequences are controlled as a single unit or 

motor program (Keele, 1968) that specifies the detailed muscle commands 

necessary to produce the sequence (Figure 3.1a). On the other end is the idea 

that movement sequences are controlled hierarchically (Rosenbaum et al., 

1983), in which one layer represents the sequence to be executed and another 

one generates the detailed muscle commands for each finger press (Figure 
3.1b). 

While both models would predict a modulation of the press that is 

perturbed, they differ in how subsequent presses would be affected. In the single 

motor program model, an acceleration or delay of a single movement element 

will shift the subsequent presses accordingly. In contrast, in the hierarchical 

model, the influence of a local sensory perturbation on a single finger could differ 

from the influence on subsequent presses. How exactly subsequent presses are 

influenced depends on how feedback is communicated from the lower-level 

finger controllers to the higher-level sequence controller (Kiebel et al., 2009), and 

how the sequence controller uses the feedback. By comparing the influence of a 

sensory feedback perturbation across finger movements of a sequence, we are 

able to gain novel insights into how sensory feedback is used in this organization. 
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Figure 3.1. Two hypothetical representations of movement sequences.  
(a) A single motor program represents the movement sequence as an integrated 

unit. The completion of one finger controller automatically triggers the next finger 

controller. (b) A hierarchical controller represents the movement sequence 

across multiple layers that interact to produce the sequence of movements. The 

finger controllers represent the specific muscle commands for each of the fingers 

and are responsible for finger press execution. The sequence controller 

commands the finger controllers to initiate movements. In this particular model, 

the finger controllers provide internal feedback to the sequence controller when 

the finger press is completed. However, the next press may be initiated at a 

different time from the occurrence of the internal feedback 
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3.2 Methods 
 

3.2.1 Participants 

Twenty-six participants were recruited for this study (11 males; ages 18 to 44; 

mean age 25.5 [± 7.25]). All participants were right-handed (self-declared) and 

completed informed consent. On average participants had received 6.44 (± 7.25) 

years of musical training based on their longest played instrument, with 57% 

having at least one year of piano playing experience. The study protocol was 

approved by the ethics board of the University of Western Ontario and all 

participants gave their signed consent before starting the study. 

 

3.2.2 Apparatus 

To test participants, we used a custom-built five-finger keyboard (Figure 3.2a). 

The keys were not depressible but a force transducer (FSG-15N1A, Sensing and 

Control, Honeywell) was mounted underneath each key measuring isometric 

force production with a repeatability of <0.02 N and a dynamic range of 16 N 

(Wiestler et al., 2014; Wiestler and Diedrichsen, 2013; Yokoi et al., 2017). The 

digital sampling rate of the measured force was 200 Hz. Additionally, each key 

was equipped with a linear resonant actuator (LRA, LVM061930B-L20, Jinlong 

Machinery & Electronics Inc.) that provided haptic feedback during the 

experiment. LRAs vibrate at a frequency between 200 and 250 Hz. In our 

application, a haptic controller creates a specific waveform to elicit the click 

sensation. The haptic stimulation was produced by a haptic motor controller 

(DRV2605L, Adafruit Industries LLC) that produces a computer-controlled 

click/vibratory sensation that feels similar to the sensation experienced from 

smartphone keys or trackpads on laptops (see the DRV2605L dataset for more 

information regarding the specific waveform).   
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Figure 3.2 Apparatus and achieved time advancements of feedback.  
(a) Isometric keyboard-like device. Each key was associated with a number 

(these numbers were not shown to the participants but verbally explained). (b) 
Distribution of advancement times. Histogram of the time intervals between 

feedback presentation and press onset for the two advancement conditions. 

Vertical doted lines indicate -30 ms and -60 ms.  
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3.2.3 Discrete sequence production task 

Participants performed a discrete sequence production task (DSP), executing 

sequences of 11 keypresses as fast and as accurately as possible. Participants 

were instructed to move as fast as possible, while maintaining an error rate of 

under 15% for each block of trials. Each finger was associated with a number 

(thumb = 1, index = 2, middle = 3, ring = 4 & little = 5). Each trial began with the 

presentation of a sequence of numbers on a computer screen (white font). A trial 

was deemed completed after 11 finger presses were executed. The numbers 

stayed on the screen throughout execution. Participants performed three 

sequences in total that were randomly presented to the participant. None of the 

sequences had directly repeating numbers (i.e., 33 or 44). The same three 

sequences were used for all participants; however, the presentation order was 

randomized across participants. Each block consisted of 39 trials and each 

sequence was presented 13 times during a block. 

The force magnitude applied to each key by the participant was displayed 

as five lines on an LCD monitor, where each line height indicated the amount of 

force applied to the corresponding key. When the force on a key exceeded 1.5 N, 

the key press was registered and the feedback was triggered. Some co-

articulation between fingers emerged as the next key could be pressed before 

the previous key was released.  

When participants pressed the correct key, the visual cue on the screen 

turned green, a short pleasant auditory sound could be heard (each key was 

assigned a specific tone that was different from the rest) and a small click could 

be felt on the finger. We used the following notes for each key: thumb = A, index 

= C, middle = D, ring = E, little = G. If, however, an incorrect key was pressed, 

the visual cue changed to red, a lower-pitch sound could be heard (same across 

keys), and a click (same for accurate and incorrect press) could be felt.  

For each completed trial participants received points based on their 

performance. If the participant pressed all keys correctly and their median 
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movement speed (MT - time between first press and last release) was within 

95% to 110% of the current speed threshold (MT threshold) they received one 

point. If they correctly executed the sequence and their median movement speed 

was faster than 95% of the current MT threshold they received three points. If 

they pressed one or multiple keys incorrectly or their median speed was slower 

than 110% of their MT threshold they received zero points. At the end of a block, 

we provided participants with feedback regarding their error rate, median speed 

(MT), points obtained for the current block, and total points obtained across the 

session. To motivate participants to improve their performance throughout the 

sessions, we first set the MT threshold at 10 s at the beginning of each session 

and then adjusted it by lowering it to the median MT of a given block if the 

participant had a lower median MT compared to the current MT threshold and if 

their error rate was below 15%.  

 

3.2.4 Feedback manipulation 

The first three blocks in each session were completely unperturbed, meaning no 

feedback perturbation was presented. In each block afterwards, we perturbed 24 

trials out of the 39 trials. On these perturbation trials, we either advanced or 

delayed the haptic, visual, and auditory feedback by 30 or 60 ms on one of the 

11 key presses. To generalize our findings across fingers and press location 

within the sequence, we chose two fixed positions within each sequence where 

feedback perturbations were given. This also reduced the potential predictability 

of the perturbation location in each sequence. In sequence 1, we gave the 

feedback perturbation either at position 6 (finger 5) or 9 (finger 4), in sequence 2 

at positions 4 (finger 2) or 7 (finger 1), and in sequence 3 at positions 5 (finger 4) 

or 8 (finger 3). In total, we presented the perturbation at six different sequence 

positions across all sequences.  

For the advanced feedback conditions, we used an algorithm to predict 

when the feedback had to be given to occur either 30 or 60 ms before press 
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onset (the time at which the force on the key exceeded 1.5 N). This prediction 

was updated in real-time every 2 ms during trial execution. This prediction was 

based on three factors: the current force, the current force change (numerical 

derivative based on three time points) and the time since the last press onset. 

We separately trained this predictive model for each participant, sequence 

position and delay condition (-30 ms or -60 ms) using a logistic regression. This 

was done twice in each session. The first time we fit the model on the data from 

the first three blocks, using the unperturbed trials as training data. To account for 

speed changes during the session, we repeated the estimation in the middle of 

the session based on the unperturbed trials of all previous blocks (excluding the 

three initial blocks and at least six blocks of trials). The predicted outcome 

variable was zero if it was too early to present feedback and one if it was too late. 

Feedback was provided once the predicted probability exceeded 0.5. This 

approach led to an average time advancement of 29.3 ms (SD: 11.4 ms) for the -

30 ms advancement condition and an average of 57.9 ms (SD: 23.3 ms) 

advancement for the -60 ms condition (see Figure 3.2b).  

On the advanced trials participants could press the next key as soon as 

the feedback was presented on the current press, meaning they were allowed to 

press the next key before reaching the press threshold for the perturbed press. 

This led to an average of 2.36% (SD: 1.55%) of the advanced trials not reaching 

the press threshold. We excluded these trials from our analyses. Our analyses 

centered on calculating time intervals between specific press landmarks and the 

press onset of the perturbed press. In these trials the press onset was absent 

and thus we were unable to perform the same analyses.   

In the delay conditions feedback was withheld upon reaching the press 

threshold, and instead presented 30 or 60 ms after press onset. However, in the 

delay conditions participants were not required to wait for the feedback to be 

presented before moving on to press the next press. This was important as 

participants did not have to take the feedback perturbation into account and 
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could potentially perform the sequences just as fast as when no perturbation was 

present.  

 

3.2.5 Experimental Procedure 

Participants completed four sessions that lasted approximately 1.5 hours each 

depending on how fast the participant was able to complete the required blocks 

of trials. Participants completed one session per day and the four sessions were 

scheduled over a timespan of approximately two weeks. Each participant 

completed a total of 74 blocks of trials across the four sessions. We encouraged 

participants to take breaks between blocks as necessary and offered a longer 

break in the middle of the experimental session. The participants were told that 

the goal was to perform the sequences as accurately and fast as possible. At the 

end of the four sessions we asked participants several questions about their 

experience that became more and more specific (see Appendix A). This 

questionnaire was used to determine whether participants were conscious of the 

experimental manipulation. Only two participants expressed clear conscious 

knowledge of the experimental manipulation, while the rest of the participants did 

not notice the manipulation. The performance of these two participants was 

similar to the performance of the other participants and therefore were not 

excluded from the analyses. Overall, the majority of participants were not 

consciously aware of our experimental manipulation, and hence we believe that 

they did not change their behaviour consciously. 

 

3.2.6 Statistical Analysis 

For each trial, we calculated the overall movement speed (movement time/MT) 

between the onset of the first press (first time it reached the press threshold) and 

the release of the last press (force fell below 1 N). Additionally, we found five 

landmarks (Figure 3.3a) for each press: early onset (EO - when force first was 
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great or equal to 0.75N), onset (O - when force first was equal or exceeded 1.5 

N), peak (P - time at highest force – between onset and late release), release (R 

- when the force first fell under 1.5 N after peak), and late release (LR - when 

force first fell under 0.75 N after onset). All analyses were done relative to the 

onset of the perturbed press (or for unperturbed trials, the matching unperturbed 

press in the same sequence). We analyzed the relative timing of the landmarks 

on the perturbed press (+0), and the two presses after the perturbed press (+1 & 

+2). 

All analyses were performed using custom-written code in MATLAB (The 

MathWorks) and the dataframe toolbox (github.com/jdiedrichsen/dataframe). We 

excluded any error trials from our analyses, as well as trials in which the press 

was delayed by more than 100 ms after the advanced feedback was given, as 

we believe that this could either suggest conscious awareness or an incorrect 

estimation from our algorithm that predicts when feedback should be given. We 

analyzed the data using paired one- and two-sample t-tests that were based on 

clear a priori predictions and we chose a probability threshold of p<0.05 for the 

rejection of the null hypothesis.  

To estimate how quickly participants reacted to the delayed feedback by 

adjusting the perturbed press, we conducted a change point analysis. We first 

calculated the difference between the average force curves for the delayed trials 

(+30ms or +60ms) and unperturbed trials from 20 ms before press onset and 240 

ms after onset. Using the data before the occurrence of the peak difference 

between the two curves, we estimated the time point when the difference started 

to emerge. We modelled the difference as a piece-wise linear function with a 

change point of 𝑏, between the two segments. 

 𝑦5(𝑡) = 7 0	,				𝑡 < 𝑏,
(𝑡 − 𝑏,)𝑏+,				𝑡 ≥ 𝑏,

 

where 𝑦5(𝑡) is the predicted force values for time t, 𝑏, is the chosen change point 

and 𝑏+ is the slope of the function. Using the function fminsearch in MATLAB, we 
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found the values for 𝑏, and 𝑏+ that minimized the sum of squares of the 

difference between observed and fitted data.   

The single motor program hypothesis predicts that the perturbed press 

(+0) and the press following the perturbed press (+1) would be delayed or 

accelerated (relative to an average unperturbed press) by the same amount 

(Figure 3.3b). To test this idea, we examined the difference in the effect of the 

perturbation at a singular point in time across the consecutive presses (i.e. a 

point in time where the force curves of the presses overlap). We first chose a 

landmark at a time when the force curves of the two presses overlapped. At the 

end of training this overlap was clearly observed at the onset (1.5 N) of the +1 

press for the unperturbed trials, which we chose as our reference landmark. On 

unperturbed trials we then found the average force for the +0 press, which 

defined our matching landmark (i.e. that occurred at the same point in time; see 

Figure 3.3b). We then calculated the effect of the perturbation on these two 

landmarks. The single motor program hypothesis predicts that both landmarks 

would be delayed by the same amount of time (relative to an unperturbed press). 

In contrast, a difference in delay (positive or negative) between the +1 press and 

the +0 press would indicate that the effect of the perturbed feedback was not the 

same for the two presses.  
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Figure 3.3. Calculation of feedback differences across presses and 
landmarks.  
(a) For our analyses we calculated time intervals between the onset of the 

perturbed press (blue onset dot in the figure) and different force landmarks 

(green dots) on the perturbed press as well as on subsequent presses (indicated 

with +1). We chose five specific force landmarks on each press: Early Onset 

(>=0.75 N), Onset (>=1.5 N), Peak (maximum N between onset and release of 

press), Release (first time <1.5 N after onset), and Late Release (first time <0.75 

after onset). (b) We choose a single time point (onset of next press) and 

compared how the perturbation affected this time point across presses. The 

black line indicates unperturbed trials and red lines represent perturbed trials.  
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3.2.7 Control experiment 

In a separate experiment we probed to what degree the modality of the sensory 

feedback (auditory, haptic and visual) had differential effects on participants’ 

performance. We recruited 48 participants for this experiment. They were 

assigned to one of the three feedback groups (auditory, haptic or visual) at the 

beginning of training based on an algorithm that matched participants’ speed, 

calculated as the time between the onset of the first press to the release of the 

last press (MT). This was done to ensure that the groups had similar average 

speeds at the start of the experiment. Participants only received one type of 

feedback throughout the study (how each feedback was given was the same as 

described in the experimental design above). When an incorrect finger press 

occurred, all groups saw the visual cue on the screen turn red to make it easier 

for them to know where they made the error in the sequence. Participants 

practiced four different sequences (three were the same as in the main 

experiment) for five days on the same keyboard-like device. Press threshold was 

1 N. Because of the difference in press threshold we adjusted our landmark 

criteria for this experiment: early onset (EO - when force first was great or equal 

to 0.6 N), onset (O - when force first was equal or exceeded 1 N), peak (P - time 

at highest force – between onset and late release), release (R - when the force 

first fell under 1 N after peak), and late release (LR - when force first fell under 

0.6 N after onset). Feedback perturbations were given on a single press within 

the sequence at two possible locations (similar to the main experiment but the 

locations were not identical). In this experiment we only perturbed participants’ 

feedback by delaying it by 80 ms. The rest of the experimental design was 

identical to the main experiment (point system, threshold change, etc.). As in the 

main experiment, most participants were unaware of the perturbation when 

asked about it using a questionnaire at the end of the sessions.  
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3.3 Results 
 

3.3.1 Feedback perturbations cause directionally specific 
behavioural adjustments to the perturbed finger press. 

To investigate how sensory feedback is used during the execution of fast finger 

sequences, we used transient perturbations of the sensory feedback that 

indicated the successful pressing of a key. The perturbation was only applied to a 

single press within a sequence. Participants practiced three different sequences 

over four days. If sensory feedback is used to control the near-isometric 

keypress, the delay and advancements of feedback should prolong or shorten 

the ongoing press, respectively.  

The group average force traces (Figure 3.4a) indicated that even though 

each finger press was completed within ~300 ms, participants indeed reacted to 

the feedback perturbation by extending or shortening the ongoing press. To 

quantify this effect, we calculated the time interval between the onset (first time 

>=1.5 N is reached) and the peak (onset-peak) of the perturbed press (Figure 
3.4b onset-peak), as well as the interval between the onset and the release (first 

time <1.5 N after onset; Figure 3.4b onset-release). On day 1, both the +30 ms 

(t(25) = 11.189, p= 1.59e-11) and the +60 ms delay condition (t(25) =4.969, p= 

2.02e-05) resulted in a longer onset-peak interval. Similar effects can also be 

seen on the interval between onset and release (+30 ms: t(25) = 6.630, p = 3.01e-

07, +60 ms: t(25) = 5.963, p = 1.58e-06). For the time advanced feedback 

conditions, the onset-release intervals on day 1 were shortened in response to 

perturbations (onset-release -30 ms: t(25) = 5.308,  p = 8.42e-06; -60 ms: t(25) = 

4.291, p = 3.78e-10). These results suggest participants used sensory feedback 

to finely control the duration of the force production.  
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3.3.2 Perturbation effects diminish but do not disappear with 
training 

Does feedback control still play a role in movement execution at the end of 

training? If the motor system uses sensory feedback to control the execution of 

extensively practiced finger movements, we expect the feedback perturbation to 

still impact the duration of the press at the end of training. Indeed, this was what 

we found (Figure 3.4a vs. 3.4c). Specifically, both delay conditions showed 

longer onset-peak intervals (+30 ms: t(25) = 5.963, p = 1.17e-04; +60 ms: t(25) 

=6.420, p= 5.05e-07) and onset-release intervals (+30 ms: t(25) = 6.143, p = 

1.01e-06, +60 ms: t(25) = 5.082, p = 1.51e-05) compared to the unperturbed 

condition on day 4 of training (Figure 3.4d). Similarly, shorter onset-release 

intervals were observed for the advancement conditions (day 4 onset-release -30 

ms: t(25) = 3.774, p = 4.46e-04, -60 ms: t(25) = 4.785, p= 3.26e-05). The finding of a 

clear adjustment of the perturbed press at the end training suggests that even 

skilled performance is controlled by sensory feedback.  

While the overall effect was clearly present across all days, the effect 

caused by the large perturbations reduced by ~40%. Specifically, the difference 

between perturbed and unperturbed onset-release interval reduced from day 1 to 

day 4 for the +60 ms (-38%, t(25) = 2.502, p = 0.019) and the -60 ms condition (-

40%; t(25) = -3.859, p = 7.106e-04). While the overall effect also reduced for the 

smaller perturbations, these changes were not significant (+30 ms: -29%, t(25) = 

1.848, p = 0.076; -30 ms: -35%, t(25) = -1.639, p = 0.113). This suggests that 

some transition from feedback to feed-forward control took place in our task with 

practice. 
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Figure 3.4. Effects of perturbation on perturbed press and subsequent 
press.  
(a) & (b) Average force traces for day 1 and 4 and the following press 

interpolated and standardized to the average time of each condition. Dotted line 

indicates press onset, for which the sensory feedback was shifted in time. Error 

bars represent the standard error of the mean across participants. (c) & (d) 
Differences between the onset-to-peak and onset-to-release intervals of 

perturbed and unperturbed trials for day 1 and day 4. 
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3.3.3 Perturbations lead to reactions within 80ms 

How quickly is sensory feedback taken into account to control the ongoing finger 

press? To estimate this, we first calculated a difference curve between the 

average force traces of the delayed perturbation conditions and the unperturbed 

condition for each participant. We then used a change point analyses (see 

methods for details) to estimate the time at which the difference curve was 

impacted by the feedback delay. On day 1 in the +60 ms delay condition, it took 

an average of 106.4 ms (95% CI [97.77, 115.03]) after press onset for 

participants to show a divergence between the two force traces. For the +30 ms 

delay condition we saw a difference at 77.3 ms (95% CI [64.65, 90.04]) after 

press onset. For day 4, our estimate of adjustment onset for the +60 ms condition 

was 92.5 ms (95% CI [83.04, 101.97]), faster than day 1 (t(25) = 2.085, p = 0.047). 

The estimate for the +30 ms condition was comparable to day 1 (mean: 67.5; 

95% CI [46.32, 88.72]; t(25) = 0.738, p = 0.467). Thus, the adjustment of the 

ongoing press to the delayed feedback was consistently very fast. 

 

3.3.4 Subsequent presses are delayed irrespective of perturbation 
direction 

So far, we have established that sensory feedback about the keypress is used to 

control the finger that produces the press, even during fast performance after 

extended training. Next, we investigated how the subsequent presses are 

impacted by the perturbation. This provides us with an opportunity to compare 

different models of how skilled movement sequences are organized.  

To visualize how the perturbations influenced both the current and 

subsequent presses, we plotted the timing of five events (early onset, onset, 

peak, release, late release, see Methods) for the perturbed and the two 

subsequent presses across the four sessions (Figure 3.5). As the independent 

variable (i.e. x-axis) we plotted the group-averaged time estimates of these 

landmarks for the non-perturbed trials relative to the onset of the perturbed press 
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(0 ms). As the dependent variable (i.e. y-axis) we plotted the change in the 

average time interval relative to the unperturbed condition. Each press is 

indicated by a line that connects the five corresponding landmarks.  

The feedback perturbations impacted not only the execution of the current 

press, but also of subsequent presses. On the first day of training, both the +30 

ms perturbation (t(25) = 6.055, p= 2.51e-06) and the +60 ms perturbation (t(25) 

=9.078, p= 2.177e-09) delayed the onset (interval onset-onset+1) of the next 

press relative to when no perturbation was present (i.e. red lines vs. grey line at 

zero). Moreover, the delay of feedback impacted even the onset of the press two 

positions after the perturbation (+60 ms: t(25) = 7.172, p= 8.11e-08). In contrast, 

time advancements did not alter the timing of subsequent presses relative to the 

unperturbed trials (onset-onset+1: -30 ms: t(25) = -0.904; p = 0.375; -60 ms: t(25) = 

-1.488, p = 0.149). This pattern of results provides new insights into how 

feedback is used in the control and representation of skilled movement 

sequences (as outlined in the introduction, Figure 3.1). 

If trained sequences are encoded as a single motor program (Figure 
3.1a), the control of one finger directly influences the control of the subsequent 

finger. This prediction becomes directly testable when there is considerable 

overlap, i.e., coarticulation, across different finger presses. Such coarticulation 

was observed on days 3 and 4 (Figure 3.5; where the onset of the second press 

roughly occurred at the same time as the release of the perturbed press). For 

such overlapping presses, the single motor program hypothesis would predict 

that the relationship between the release of the perturbed press and the onset of 

the next press in the sequence will be the same, even if the entire motor program 

is sped up or slowed down. In other words, the effect of the perturbation should 

be the same for simultaneous events on two overlapping presses. To test this 

idea, we used the data from the last day of training. We compared the effect of 

the perturbation on the onset of the next press (onest+1 Figure 3.5) with its 

effect on the perturbed press at the same point in time (see Methods for detail). 

We found a significantly longer delay for the subsequent press in comparison to 
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the perturbed press for the +60 condition (t(25) = 2.522, p = 0.018). This effect can 

be seen as an offset between the end of the line for the perturbed press and the 

onset of the line of the subsequent press in Figure 3.5 (day 4). A similar offset 

between presses was also present between the second and third press after the 

perturbation (t(25) = 3.429, p = 0.002). These additional delays across presses 

resulted in an overall slower execution speed for the entire sequence (MT; day 4: 

+60 ms: t(25) = 5.828, p = 4.456e-06). These findings provide clear evidence 

against the idea that the sequence is represented as a single motor program 

after training. Rather it argues for a hierarchical organization (Figure 3.1b), in 

which the effects on the subsequent finger presses can differ from the effect on 

the perturbed finger.  

The participants’ reactions to the other perturbation conditions provide us 

with more detailed insight into how feedback is considered in this hierarchical 

organization. Similarly to what we have observed for the +60 ms delay condition, 

an offset between the different presses was also observed for time-advancement 

of the feedback by -60 ms (dark blue in Figure 3.5), although this effect did not 

reach significance (t(25) = 2.043, p = 0.052). Nevertheless, the offset was 

significant when comparing the second and third press after the perturbation (t(25) 

= 3.877, p = 6.799e-04). In the -60 ms perturbation condition, these additional 

offsets did not result in a significant slowdown of the overall sequence speed 

(Day 4: t(25) = -0.858, p = 0.399), suggesting that the additional delays of 

subsequent presses were cancelled out by the speed-up on the perturbed press. 

In contrast to the ±60 ms feedback perturbations, no clear offset was present for 

the ±30ms perturbation condition (Figure 3.5 – light blue and light red). Indeed, 

the comparison did not reach statistical significance for either time delay (+30 

ms: t(25) = 0.882, p = 0.193) or advancement perturbation (-30 ms: t(25) = 0.589, p 

= 0.281). In sum, for larger but not for smaller perturbations participants delayed 

subsequent presses after the occurrence of a perturbation, irrespective of 

whether the sensory feedback was advanced or delayed.  
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Overall, our findings suggest a hierarchical organization in which sensory 

feedback acts in two qualitatively different ways. First, the timing of the feedback 

directionally either lengthens or shortens the perturbed key press. Second, the 

occurrence of a perturbation also appears to act in a directionally non-specific 

manner slowing down the execution of future presses. This effect was stronger 

for larger (60 ms) compared to smaller (30 ms) perturbations but did not depend 

on the direction of the temporal shift.  
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Figure 3.5. Effects of feedback perturbation on the perturbed press (press 
0) and subsequent finger presses (Press +1, +2) across feedback 
conditions and training days. 
Five landmarks (EO: early onset, O: onset, P: peak, R: release, LR: later release) 

are plotted per press (see methods). The x-axis shows the average time of 

occurrence of the landmark on unperturbed trials relative to the onset of the first 

press. The y-axis shows the time interval differences between the perturbation 

conditions and the unperturbed condition on the particular landmarks. Landmarks 

belonging to a finger press are connected by a line. Anything above the 0 line 

indicates that the perturbation resulted in longer time intervals (i.e. slower) 

compared to when no perturbation was present, whereas everything below the 

line indicates shorter time intervals (i.e. speed-up). The different panels indicate 

the different training sessions (i.e. days). Day 4 shows how we tested the offset 

between presses, with an example of the 2nd to 3rd press for the +60ms condition. 

Error bars represent the standard error of the mean across participants. 
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3.3.5 Rapid behavioural adjustments are caused by haptic 
feedback 

Finally, we investigated to what degree the effects observed in the main 

experiment were due to the perturbation of haptic, visual, or auditory feedback. 

To test this, we conducted a control experiment, in which a separate set of 

participants was assigned to one of three experimental groups, with each group 

receiving only one of the three types of feedback (auditory, visual or haptic). As 

in the main experiment, we delayed the feedback on selected finger presses 

within the sequence. In this case, we only chose a single perturbation condition 

(delay +80 ms) and participants practiced the task for five days. Examining the 

effect of the delay on the perturbed press (see Figure 3.6), we found that only 

the haptic group demonstrated a significantly longer onset-peak interval following 

the perturbation both in the beginning (Day 1: t(15) = 2.980, p = 0.009) and 

towards the end of training (Day 4: t(15) = 3.579, p = 0.003). Neither the visual 

(Day 4: t(15) = 0.901, p = 0.382) nor the auditory group (Day 4: t(15) = 1.060, p = 

0.306) showed a significant effect of the feedback perturbation on the onset-peak 

interval. These results clearly show that the rapid adjustments of the ongoing 

press were driven by haptic feedback from the fingertip. 

 

3.3.6 Delay of subsequent presses arises from all three feedback 
modalities 

In contrast, the delay of subsequent presses was observed for all three feedback 

modality groups. Consistent with the effect on the perturbed press, the delay of 

the onset of the press following the perturbation (+1, averaged across days 2-5) 

was largest in the haptic group (69 ms, t(15) = 6.890, p = 5.146e-06). However, 

both the auditory group (35 ms, t(15) = 4.888, p = 1.971e-04), as well as the visual 

group (19 ms, t(15) = 4.828, p = 2.214e-04), showed a clear delay in the onset of 

the subsequent press, even though no such effect was observed on the 

perturbed press (Figure 3.6). This result suggests that the delay we observed on 
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the subsequent presses in our main experiment could be induced by the 

perturbations in each of the three feedback modalities. 
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Figure 3.6. Effect of feedback perturbation for haptic, visual and auditory 
groups in control experiment across training days. 
As in Figure 3.5, five landmarks per press (connected by a line) are plotted. The 

control experiment only had +80ms perturbations, but each group received only 

one type of feedback. The different panels indicate the different training sessions 

(i.e. days). The error bars represent the standard error of the mean across 

participants for each group. 
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3.4 Discussion 
In this study, we used small transient feedback perturbations to probe how 

sensory feedback is used in the control of fast finger movement sequences. 

Specifically, we examined how sensory feedback modulates the execution of 

skilled finger movements across four days of training, and how feedback 

differentially affects the execution of the ongoing press and subsequent presses.  

 

3.4.1 Sensory feedback modulates movement execution 
throughout skill acquisition  

Throughout training, we found clear evidence of rapid behavioural adjustments 

on the finger press that received the perturbation. This result illustrates the 

continuous integration of sensory feedback when controlling skilled finger 

movements. Participants adjusted their ongoing behaviour even though our task 

was designed so that it could be accomplished without considering the feedback. 

The keypresses were isometric and participants simply needed to exceed a 

specific force threshold. In the delay condition, we decoupled sensory feedback 

and force threshold by delaying the feedback. In this case, participants needed to 

exceed the force threshold but they did not need to wait for the feedback to 

produce the next press. Nonetheless, participants adjusted their behaviour based 

on the perturbation.  

Furthermore, we found that the effects of the perturbation were 

directionally specific: The delay in sensory feedback resulted in a lengthening of 

the perturbed press, whereas a time advancement resulted in a shortening. 

Previous studies have primarily investigated feedback delays (Furuya and 

Soechting, 2010; Howell and Archer, 1984; Sakata and Brainard, 2006; van der 

Steen et al., 2014) but have rarely advanced participants’ feedback (Repp, 2002; 

Wing, 1977). By including both feedback delays and advancements we provided 

evidence of the directional nature of sensory feedback integration in fast non-

constraint finger movements.  
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The reaction to the delay of haptic feedback was very fast and occurred 

within 60-90 ms after the expected time of the feedback. This finding is 

consistent with previous reports that demonstrate responses between 65-110 ms 

following a haptic input (Abbs et al., 1984; Pruszynski et al., 2016; Scott, 2016). 

In contrast, auditory and visual feedback alone did not elicit a strong reaction on 

the press, consistent with the fact that the quickest reactions to changes in these 

two modalities are noticeably slower (Burnett et al., 1998; Day and Lyon, 2000; 

Howell, 2004; MacKenzie and Marteniuk, 1985; Smith and Bowen, 1980; 

Veerman et al., 2008). Therefore, by including a haptic feedback condition we 

were able to show the very rapid integration of sensory feedback in the execution 

of a finger press. 

 

3.4.2 Shift from feedback to feed-forward control with learning 

While the feedback perturbation still significantly impacted the execution of the 

perturbed press on the last day of practice, we did find that the effect reduced by 

approximately 40% with training. This observation is in line with previous 

research that observed a shift from feedback to feed-forward control with training 

(Pew, 1966; Seidler-Dobrin and Stelmach, 1998). It has been suggested that 

feedback plays an important role in the initial phases of acquiring a novel motor 

skill, but its importance decreases, and potentially even disappears altogether, 

with prolonged training (Pew, 1966; Pratt et al., 1994; Schmidt, 1975; Schmidt 

and McCabe, 1976; Seidler-Dobrin and Stelmach, 1998). One theoretical 

consideration behind this idea is that, as we acquire an accurate internal 

representation of the instructed movements, sensory feedback becomes less 

necessary for execution (MacNeilage and MacNeilage, 1973; Schmidt, 1975; 

Seidler-Dobrin and Stelmach, 1998). However, it is unclear whether the decrease 

in perturbation effects we observed was indeed driven by a change in internal 

model accuracy. Another possible explanation is that participants learned that the 

feedback was not directly related to their performance (Wei and Körding, 2009) 

and that they could therefore perform the task accurately and fast without taking 
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the feedback into consideration. If this was the case, however, it is unclear why 

we only saw a reduction in the larger perturbations but not in the smaller ones.  

 

3.4.3 Hierarchical organization of feedback control in sequential 
movements 

Our second main goal was to understand how sensory feedback is being taken 

into account in the control of a complex motor sequence. Models of sequence 

representation fall between two opposing extremes: A single, integrated motor 

program, and a strict hierarchical organization (Figure 3.1). By examining how 

feedback is integrated across multiple finger presses, we were able to get a 

better grasp of this underlying organizational structure and how feedback is 

integrated across the different layers. 

We found that the feedback perturbation on a single press also affected 

the execution of subsequent presses, both at the beginning and at the end of 

training. Important, the reaction to the feedback perturbation was different for the 

perturbed and subsequent presses. This finding argues against the idea that 

after prolonged training a movement sequence is represented as a single motor 

program (Keele, 1968), in which each finger is affected in the same way by the 

perturbation. Instead, our results more closely align with the idea of a hierarchical 

organization (Rosenbaum et al., 1983), in which the sequence is controlled 

through the interaction of different layers that control sequence execution. One 

possible organization is a two-tiered structure (Figure 3.1b), in which a sequence 

controller is positioned at the highest level representing the specific order of 

movements and commanding the next layer of finger controllers, which in turn 

are responsible for the control of specific finger movements. Our results suggest 

three important processes in how this system deals with sensory feedback:   

First, we found that the sensory feedback from the finger itself is 

continuously relayed to the finger controller which then impacts the ongoing 

movement execution in a directional specific manner. Second, upon receiving the 
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sensory feedback signifying press completion, the finger controller issues a 

completion signal to the sequence controller. Our finding that feedback not only 

impacts the ongoing press but also subsequent presses, demonstrates that 

information is relayed across all hierarchical levels. Third, we found that both 

feedback advancements and delays led to an overall slower initiation of the next 

finger in the sequence. One possible mechanism is that the sequence controller 

compares a prediction of when a completion signal is expected vs. when it is 

received and, upon mismatch, delays the execution of the next press as a 

cautionary measure. We also found that only the two larger sensory feedback 

perturbations led to a significant delay, suggesting that the cautionary response 

is proportional to the amount mismatch between expected and received feedback 

from the lower-level controller. Additionally, the sequence controller also showed 

a reaction to a delay or time advancement in auditory and visual feedback, which 

did not influence the local press, indicating that the sequence controller also has 

direct access to sensory feedback signalling whether the goal of an action has 

been achieved.  

Previous research studying time delays and advancements of an external 

pacing signal in a synchronization paradigm (Furuya and Soechting, 2010; Repp, 

2000; Wing, 1977) also show evidence for feedback adjustments in a hierarchical 

sequence controller. In contrast to our experiment, in which a feedback 

perturbation led to a delay irrespective of direction of the perturbation, these 

adjustments were targeted to bring the finger tapping back into synchronization 

with the metronome (Furuya and Soechting, 2010; Repp, 2000). In our paradigm, 

participants’ speed was not constrained by any external variable (such as a 

metronome), so performance was not directed to preserve a rhythm. Together 

these results suggest that the reaction of the sequence controller to feedback 

perturbation strongly depends on the task goal.   
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3.4.4 Conclusion 

In this study, we demonstrated that sensory feedback is continuously used to 

adjust movement execution but that the extent of this integration diminishes with 

training. Haptic feedback drove the effects we observed on the perturbed press, 

whereas the effects across the remaining movements in the sequence were 

impacted by the perturbation in all three feedback modalities. Lastly, we 

demonstrated distinct types of feedback processes involved in the hierarchical 

control of skilled finger sequences. 
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Chapter 4  
 

4 General Discussion 
 

4.1 Overview 
The overarching aim of this thesis was to advance our understanding of the 

control and representation of finger movement sequences. These topics were 

investigated using a discrete sequence production task in which participants had 

to perform sequences of isometric finger movements as fast and accurately as 

possible. More specifically, in chapter 2 we investigated the relationship between 

the mental representation of a sequence and its performance. We were able to 

shape participants’ initial mental representation to be either beneficial or 

detrimental to performance and observed how these initial instructions impacted 

performance long-term. In chapter 3, we used sensory feedback perturbations to 

test how sensory feedback is integrated during movement execution and whether 

this integration changes with training. The following discussion is divided into four 

sections. The first part will focus on our findings related to the hierarchical 

representation of finger movement sequences and how the structure of such 

representations pertains to performance. Section two will outline arguments 

about the mechanistic underpinnings of the natural formation of hierarchical 

representations. In the third part, I will review our results regarding the use of 

sensory feedback during sequence execution and expand on the possible 

mechanisms that could underlie the training-related changes we observed. Part 

four is an opinion section, in which I discuss the relationship between task 

diversity and result generalization.   
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4.2 Hierarchical organization of skilled movement 
 sequences 

One of the key findings we observed across both projects is that sequences of 

skilled finger movements are hierarchically organized (Figure 4.1). In chapter 2, 

we demonstrated that participants concatenated chunks with training, but did not 

merge the sequence into a single chunk even after extensive training. Instead, 

participants on average still subdivided the sequence into three chunks. We 

believe that in combination with our finding that participants’ chunk structure 

crystalized with training, this provides a strong argument for the hierarchical 

representation of skilled movement sequences.  

In chapter 3, we found that the feedback perturbation had distinct effects 

on finger press execution at the end of training. Specifically, we observed that the 

press following the perturbation was impacted to a greater degree than the 

perturbed press. The observed difference could only occur if the finger controllers 

are governed by a higher-level controller (i.e., sequence controller). This higher-

level controller can modulate ongoing movement execution by adjusting the 

finger controllers independently (Figure 4.1). Therefore, this finding provides 

further evidence for a hierarchical organization of skilled finger movement 

sequences and opposes the idea that with training, sequences become 

organized as a single motor program (Rozanov et al., 2010). In summary, using 

two different approaches to study the representation of skilled finger movement 

sequences, we demonstrated the importance of hierarchical organization for 

skilled sequential actions.  
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Figure 4.1. Hierarchical organization of sequence representation with 
feedback mechanism.  
Abstract hierarchical representation of a movement sequence with three levels. It 

includes a representation of how feedback is integrated and shapes the motor 

command. The finger controller submits a motor command to the body to 

produce movement. Sensory feedback is then compared to a predicted state and 

any discrepancy results in an error signal that then adjusts the ongoing motor 

command.  
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4.2.1 Neuronal underpinnings of a hierarchical sequence 
representation 

The neuronal underpinnings of such a hierarchical system have yet to be fully 

formalized. However, several propositions have been advanced regarding the 

brain regions involved at different levels of the hierarchy. The primary motor 

cortex (M1), the cerebellum, and the primary somatosensory cortex (S1) have 

been considered prime candidates for the lower levels of the hierarchy. Brain 

regions at these levels are theorized to be responsible for the execution of motor 

primitives and the integration of sensory feedback. As described in chapter 1, 

M1 is involved in the execution of single finger presses but does not appear to be 

encoding sequence-specific characteristics (Berlot et al., 2020; Yokoi et al., 

2018; Yokoi and Diedrichsen, 2019). The cerebellum plays a critical role in the 

generation of predictive models (Parrell et al., 2017; Shidara et al., 1993) and is 

suggested to be an important region for the acquisition and transformation of 

internal models (Kawato, 1999; Wolpert and Kawato, 1998). Hence, together with 

S1, this region appears to be crucial for the integration of sensory feedback 

during movement execution. The shift from feedback to feed-forward control we 

observed in chapter 3, could indicate an increased involvement of the 

cerebellum as learning progresses (Izawa et al., 2012; Pisotta and Molinari, 

2014).  

The basal ganglia potentially play a role in the connection between the 

lower and higher levels of the sequence hierarchy. The striatum, in particular, is 

involved in the temporal segmentation (chunking) of sequences (Geddes et al., 

2018; Jin et al., 2014; Jin and Costa, 2015; Levesque et al., 2007; Markowitz et 

al., 2018), and in the exhibition and encoding of motor habits (Graybiel, 2008; 

Tricomi et al., 2009; Yin and Knowlton, 2006). In line with this idea, Tremblay and 

colleagues (2010) observed that movement segmentation is dopamine-

dependent. They found that movement chunking is absent in Parkinson’s 

patients (Benecke et al., 1987) but can be restored with levodopa treatment 

(Tremblay et al., 2010). In sum, the basal ganglia could be important for the 
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interplay between the lower and higher levels of the hierarchy by being 

responsible for movement segmentation early in training (Miyachi et al., 1997) 

and habituation later in training. 

Higher-order association regions have been proposed to reside at the 

highest level of the hierarchy. Neural activity in the supplementary motor area 

(SMA) is sensitive to the sequential order of upcoming movements. This 

potentially implies a role of SMA in the temporal order of sequence execution 

(Tanji and Shima, 1994). With the anatomical connection from the basal ganglia 

to SMA via the thalamus (Akkal et al., 2007; Sakai et al., 1999), it is conceivable 

that the sequence segmentation is forwarded from the basal ganglia to SMA, 

which in turn is responsible for the temporal order of the movement chunks. 

Additionally, SMA is said to be responsible for the aggregation of the distinct 

movement elements into a united motor plan (Gentilucci et al., 2000), which 

could be driven by input from the cerebellum (Akkal et al., 2007). Pre-SMA and 

SMA have been suggested to play different roles during sequence learning 

(Kennerley et al., 2004; Nakamura et al., 1998). Activity in pre-SMA is greater 

early in training and reduces as training continuous (Hikosaka et al., 1996; Sakai 

et al., 1998). This could suggest its involvement in chunk formation, which occurs 

early on in training. Additionally, pre-SMA is also active when a movement plan 

has to be changed (Matsuzaka and Tanji, 1996). In contrast, SMA seems to be 

more active for learned sequences (Hikosaka et al., 1996). Given this 

information, we would predict a dissociation between Pre-SMA and SMA activity 

in chapter 2 across training. We would predict greater pre-SMA activity for the 

disadvantageously instructed sequences compared to the advantageously 

instructed ones, as participants changed their chunk pattern more readily for the 

former. In contrast, more SMA activity could be expected for the beneficially 

instructed sequences throughout practice.  

Besides SMA, the prefrontal cortex has also been implicated in sequence 

learning (Badre and Nee, 2018; Mushiake et al., 2006; Ninokura et al., 2004), 

especially given its direct connection with the basal ganglia (Alexander et al., 
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1986; Maurice et al., 1999). While both chunks and sequence identity are reliably 

encoded in areas of the premotor and parietal cortex, these regions did not 

distinctively represent these features when measured using fMRI (Yokoi and 

Diedrichsen, 2019). Thus, it is unclear whether these regions play similar or 

distinct roles in the sequence hierarchy. To get a better grasp of the hierarchical 

control of movement sequences, it will be important for future studies to 

investigate the temporal dynamics of the neural activity during sequence 

execution alongside the spatial distribution of it. This will not be trivial, however, 

given the drawbacks of different imaging techniques.  

 

4.2.2 Changes in hierarchical representation with training and its 
relationship to performance 

Previous research has suggested a link between the extent to which a movement 

sequence is hierarchically organized and the skill level at which it is performed 

(Bläsing et al., 2009; Schack and Mechsner, 2006; Velentzas et al., 2010). Frank 

and colleagues (2016, 2013) suggest that increases in performance prompt a 

build-up of hierarchical organization, as novices show less hierarchical 

organization compared to experts (Bläsing et al., 2009; Schack and Mechsner, 

2006; Velentzas et al., 2010). I argue that these two processes are mediated 

through performance variability resulting from increased exploration early in 

training. In chapter 2 we demonstrated that early in practice, the chunking 

structure of participants in the control group varied highly from trial to trial. This 

variability decreased with training, becoming more similar to the experimental 

group. This early exploration might present itself as reduced hierarchical 

clustering when analyzed using the Structural Dimensional Analysis of Mental 

Representation (SDA-M) by Schack and colleagues. Increased motor variability 

has been proposed to benefit learning (Adi-Japha et al., 2008; Dhawale et al., 

2017; Wu et al., 2014). Hence, settling on a particular hierarchical organization 

too early might result in reduced exploration (Uehara et al., 2019), and 

subsequently worsens performance (Lee and Ranganathan, 2019). In summary, 
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the lack of hierarchical organization observed in novices potentially reflects 

greater exploration of chunk patterns early in training. Future studies could 

correlate the differences in inter-individual exploration with measures of 

hierarchical clustering, and relate those to subsequent performance outcomes to 

disentangle the influence of each of these behavioural measures on the 

hierarchical organization.  

While there is a lack of hierarchical organization early in training, both of our 

studies show a clear hierarchical organization after extensive practice. One 

innovation of our study in chapter 2 was that we directly manipulated 

participants’ early sequence representation. This provided a stronger 

manipulation to estimate the relationship between hierarchical organization and 

performance at the end of training. Thus far studies have predominantly 

observed the relationship between hierarchical organization and performance as 

it naturally unfolded (Bläsing et al., 2009; Schack and Mechsner, 2006; Velentzas 

et al., 2010). In our experiment, we manipulated participants’ early sequence 

representation to be functionally beneficial or detrimental to performance, 

providing a unique window to assess how these instructions subsequently 

influenced performance. While instructions shaped performance throughout 

training, participants who were able to abandon the disadvantageous 

performance pattern we induced, managed to improve their performance. If the 

disadvantageous instructions were not overcome, participants’ performance 

remained suboptimal. Thus, we provide evidence for a direct link between 

participants’ representation and performance level after extensive training. 

 

4.2.3 The necessity of instructions for a beneficial hierarchical 
organization 

In chapter 2 we found that the control group, which received no instructions, 

naturally moved closer to the beneficial chunk structure with training and showed 

similar results in terms of crystallization, chunk concatenation, and overall 
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performance speed as the experimental group. Combined with our previous 

finding that detrimental instructions can harm performance long-term, one could 

question whether providing instructions might be more harmful than useful for the 

formation of mental representations and subsequent performance.  

Indeed, several studies have reported that participants who learned a task 

without instructions, commonly referred to as “discovery learning”, showed 

similar (Berry and Broadbent, 1984; Hodges and Lee, 1999; Meier et al., 2020) or 

even better performance (Vereijken and Whiting, 1990; Wulf and Weigelt, 1997) 

compared to participants provided with instructions. Meier and colleagues (2020) 

tracked how instructions affected performance and mental representation of 

participants’ volleyball serve over five weeks. Participants who received 

instructions shifted their mental representation closer to the optimal structure. 

However, this change did not lead to significantly better performance compared 

to a control group who did not receive instructions. These results suggest that 

instructions are not superior to discovery learning. Researchers investigating the 

potentially harmful effects of instructions on performance, emphasize the 

increased memory load and attention demands (Green and Flowers, 1991). Such 

accounts argue that the retrieval of instructions might be interfering with 

automatic processes needed to enhance performance (Wulf et al., 1998). 

However, our finding that a reduction in the cognitive load (by switching from a 

memory-guided to a visually-guided task mid-way through training) did not 

influence participants’ chunk structure or overall performance, opposes this idea. 

Furthermore, multiple studies have provided evidence that favour instructions 

over the use of discovery learning to improve performance (Al-abood et al., 2001; 

Alfieri et al., 2011; Nigam and Klahr, 2004).  

In summary, while it is possible to achieve a functionally beneficial 

hierarchical representation without instructions, it is important to understand what 

boundary conditions might mediate the effectiveness of discovery learning over 

instructions. Potential factors could include task complexity, the age of the 

learner (Alfieri et al., 2011), or prior task knowledge (Gijlers and De Jong, 2005). 
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As different types of discovery learning have started to be applied in classrooms 

(Balım and Günay Balım, 2009; Nigam and Klahr, 2004), it is important to get a 

better grasp on what task parameters determine which of these two teaching 

modes is superior in a given context. 

 

4.3 Mechanisms underlying the natural emergence of 
 hierarchical organization  

As evidenced by our control group (chapter 2) and previous research (Verwey, 

1996; Wymbs et al., 2012), a hierarchical organization, as behaviourally 

represented by chunking, arises naturally with training. It is still unclear, however, 

what mechanisms underlie the structure of these naturally emerging chunk 

patterns. In chapter 1, I discussed how finger patterns, as well as temporal and 

visual presentation characteristics, can impact sequence segmentation (de 

Kleine et al., 2009; Koch and Hoffmann, 2000; Verwey and Eikelboom, 2003). 

This suggests that structural regularities might play a key role in the formation of 

chunk patterns. 

 It has been found that humans are able to extract structure from 

sequences without the need for instruction or conscious awareness (Conway and 

Christiansen, 2005; Fiser and Aslin, 2002; Saffran, 2001). Even young children 

can extract structural regularities from speech streams (statistical learning; 

Saffran et al., 1996). One prominent task that has been used to assess this 

ability is the artificial grammar learning task (Reber, 1967). In artificial grammar 

learning tasks, participants are first presented with sequences of letters. 

Afterwards, they are made aware that the sequences followed a particular 

grammar rule but are not informed about the specific rule. They are then asked to 

determine whether novel sequences of letters follow the same rule. These types 

of studies have demonstrated that participants are surprisingly good at extracting 

statistical probabilities of sequence transitions without being explicitly instructed 
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to uncover the rule. It has been suggested that chunking could arise through this 

sensitivity to statistical regularities. 

 

4.3.1 Possible mechanisms underlying chunk formation 

Three possibilities have been postulated regarding the interaction between the 

statistical regularities in sequences and chunk formation (Perruchet and Pacton, 

2006). First, chunks are formed through a random process that is not informed by 

the statistical regularities (e.g., through a random process), but can subsequently 

be modulated by them (Perruchet and Pacton, 2006). Second, chunk formation 

and the learning of statistical regularities are independent processes (Meulemans 

and Van Der Linden, 2003). And third, chunk boundaries are driven by the 

statistical regularities in the sequence (Beukema and Verstynen, 2018).  

 Support for the idea that chunking occurs randomly but is then governed 

by statistical processes comes from two models in the artificial grammar learning 

field: PARSER (Perruchet and Vinter, 1998) and the Competitive Chunk model 

(Servan-Schreiber and Anderson, 1990). Both of these models suggest that 

sequences are initially parsed into chunks through a random process. These 

chunks are then either strengthened or forgotten based on whether they are 

repeated in future executions (through regularities/frequencies). Both models 

have been shown to explain participants’ performance during artificial grammar 

learning (Boucher and Dienes, 2003; Perruchet and Vinter, 1998).  

As an alternative proposal, Meulemans and Van Der Linden (2003) argue 

that chunking and the learning of statistical regularities (i.e., association 

mechanisms) are two independent processes. They found that amnesic patients 

performed akin to a control group in the classification of novel sequences during 

an artificial grammar learning task. However, when participants had to generate 

strings that agreed with the grammar rule, control participants outperformed 

amnesic patients. They argue that chunk knowledge is explicit and thus 
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necessary for sequence generation, while recognition is governed by implicit 

processes and proceeds without the need for chunk knowledge. 

Studies in motor sequence learning have also started to distinguish these 

possibilities. In a continuous serial-reaction time task (SRTT; Nissen & Bullemer, 

1987), chunking was found when the stimuli had structural characteristics 

(Jiménez, 2008; Koch and Hoffmann, 2000), such as ascending and descending 

finger patterns. However, Jiménez (2008) highlighted that these chunk structures 

could be explained by biomechanical constraints. As discussed in chapter 2, 
biomechanical factors can influence performance, and therefore might have 

driven the chunking observed in the study by Koch and Hoffmann (2000). Du and 

Clark (2017) considered these biomechanical constraints during an SRT task by 

removing the slow and fast reaction time components that were periodically 

repeated in the sequence. They found that chunking subsequently vanished and 

performance was best characterized by first-order autocorrelations. However, 

measuring biomechanical constraints on the same data that is used for analyses 

could lead to biased results. In chapter 2 we presented a more unbiased way of 

considering biomechanics, by measuring them separately from the main 

experiment and building up a general biomechanical profile that was then used to 

remove these features from our experimental data. Using this cleaner approach 

to account for biomechanical constraints, we still observed clear chunking 

patterns throughout training.  

  

4.3.2 Investigation into chunk versus statistical regularities  

In work that is not included in the previous thesis chapters, we tried to get a 

better grasp of the distinction between chunking and learning of the statistical 

regularities in the acquisition of finger movement sequences.  

We first addressed this question by reanalyzing data from chapter 2 to 

investigate whether participants’ chunk pattern was not only driven by our 
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instruction but also by statistical regularities (Figure 4.2a). To do so, we used 

cross-validated regressions to compare how well different statistical and chunk 

properties predicted participants’ inter-press intervals (IPIs). For the experimental 

group, a combined model of chunk and transition frequencies best predicted the 

data, suggesting that even though we instructed their chunk structure, statistical 

properties still seemed to drive some of the inter-press interval patterns we 

observed (Figure 4.2b). For the control group, we predicted participants’ most 

likely chunk structure using our Bayesian algorithm discussed in chapter 2 and 

again found that a combination of frequency of transitions and chunk pattern best 

described behaviour (Figure 4.2b). Therefore, our data reinforce the idea that 

both of these processes contribute to participants’ behaviour. However, because 

this task was not designed to systematically differentiate between these models, 

we are unable to make any further claims regarding the interaction between 

them.  

Next, we designed an experiment to test whether participants’ chunk 

pattern, is better explained by the frequency of exposure or by the speed with 

which participants could execute the different transitions (Figure 4.2c). If a 

hierarchical representation that is beneficial to performance is indeed formed 

naturally, one could expect the resulting chunks to be based on execution speed 

rather than on frequency of exposure. In this manner, the hierarchical 

representation is constructed to achieve the fastest performance given certain 

task and working memory constraints. Akin to the experiment in chapter 2, we 

initially had participants produce two, three or four-keypress combinations for two 

days. We carefully manipulated the frequencies with which these transitions were 

performed. Participants were then exposed to longer sequences across two 

additional days. These sequences were designed to produce particular IPI 

patterns depending on which a priori model was followed. On the first and last 

day of practice, we included a session where participants performed all possible 

two-press transitions (e.g., 1-2, 1-3, … 4-5). This data was used to form a 

biomechanical baseline measure for each participant, which was in turn used to 

predict the speed of the transitions (Figure 4.2c). The two central models that we 
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used for our predictions were: 1) that participants’ inter-press interval pattern 

followed the pre-trained transitions based on the frequency with which they were 

exposed to them; 2) or that participants’ inter-press interval pattern was driven by 

the speed with which they could execute the pre-trained press combinations. We 

also considered other nuisance models such as the average shape of the IPI 

pattern across the sequence, to account for the observation that we see a 

speedup of execution at the beginning and end of the sequence with slowing in 

the middle (‘average shape’ in Figure 4.2d). Our analyses revealed that none of 

the models (alone or in combination) accounted for the observed behaviour to a 

satisfactory degree (when compared to the noise ceiling; Figure 4.2d). This tells 

us that there is structure in participants’ behaviour that our models could not 

account for. The variance that we could not predict with our models could either 

1) stem from nuisance variables that impact chunking, or 2) could be the result of 

an underlying mechanism that we missed to include. Furthermore, two days of 

sequence training might have not been enough to form stable IPI patterns in all 

participant
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Figure 4.2. Statistical regularities versus chunk learning.  
(a) Distinction between a chunk model and a model based on the frequency of 

transitions. Based on participants’ exposure to different transition frequencies 

and chunks we can make distinct predictions regarding the inter-press interval 

(IPI) pattern of novel sequences. Dark blue in both instances represents faster 

execution, whereas yellow represents chunk boundaries/longer IPIs. Error-bars 

denote the between-subject standard error. (b) Prediction results for the 

experimental and control group based on data from week 3. For both groups a 

combination of chunking and 1st (press transition between two press, i.e., 1-2) 

and 2nd (press transitions between 3 presses, i.e. 1-2-3) order transition 

frequencies best fit the data. The noise ceiling represents the variance in 

participants’ behaviour that the models should be able to explain. (c) Abstract 

representation of how we can predict a distinction in IPI patters between a model 

that is based on the speed of the press combination or based on the frequency of 

exposure. The speed estimation for the IPI prediction was based on the 

biomechanical baseline (all press transitions) of the participant on day 1. The 

frequency prediction was based on the occurrence of the transition(s) during the 

practice, with a high frequency resulting in faster IPIs. (d) Results from the 

regression analyses. A combination of all three models did not reach the noise 

ceiling. The average shape model considers the overall speed changes across 

sequence execution. The combination model combines all three models. Error-

bars denote the between-subject standard error. 
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Previous research, including the work in this thesis, has demonstrated that 

testing the underlying mechanism of naturally occurring chunking patterns has 

proven difficult. One difficulty arises from the type of statistical regularities that 

are considered. A few studies have primarily focused on the frequency of 

occurrence of each element (Chang and Knowlton, 2004; Servan-Schreiber and 

Anderson, 1990) while ignoring other measures that play important roles, such as 

the first or second-order transition frequency (Fiser and Aslin, 2002; Hunt and 

Aslin, 2001). Hence, it is important to investigate a variety of different types of 

statistical measures to be able to create more accurate models.  

As experienced by myself, designing a sequence experiment that predicts 

differences in behaviour between specific a priori models requires a greater 

amount of work early in the project before data collection can begin. The 

statistical properties of strings of letters, numbers, or presses are often entangled 

with each other and with chunk measures (Perruchet and Pacton, 2006). For 

instance, the frequency of chunk occurrence also affects the first-order transition 

probabilities. Hence, to provide systematic insights into differences between 

learning of statistical properties and chunking, future studies should follow in our 

footsteps and determine whether their experimental design can theoretically 

distinguish between possible models.  

Lastly, exposure outside of the experimental setup (e.g., different 

languages or musical experiences) likely influences chunking patterns and the 

resulting mental representations. This can lead to inter-individual differences that 

are hard to control for and difficult to account for (Perruchet and Gallego, 1997). 

While we want participants to chunk sequences naturally to get an unbiased 

estimate, we need consistent behaviour across participants to make strong 

inferences. Therefore, to avoid high inter-individual variability we either have to 

bias participants’ performance via pre-training, or use sequence structures that 

naturally produce specific behavioural patterns. 
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4.4 Changes in feedback use with training  
In chapter 3 we found that participants still adjusted their behaviour in 

accordance with the feedback perturbation after four days of training, albeit to a 

lesser extent than at the beginning of training. This suggests a shift from 

feedback to feed-forward control with practice, which has been related to 

increased automaticity and more accurate internal models (Jordan and 

Rumelhart, 1992; Wolpert et al., 1995), resulting in less reliance on feedback 

during execution (Seidler-Dobrin and Stelmach, 1998). Our findings align well 

with hybrid models of motor control (Desmurget and Grafton, 2003, 2000; Hoff 

and Arbib, 1993; Pélisson et al., 1986; Wolpert et al., 1995) in which sensory 

feedback is integrated and compared to a predicted state. If this comparison 

leads to a discrepancy, a corrective signal is sent to correct the ongoing 

movement. While our findings from chapter 3 reinforce a shift from feedback to 

feed-forward control, the mechanism responsible for attenuating the impact of the 

sensory feedback with training is uncertain. Below, I will elaborate on two 

possible mechanisms that could explain the observed shift. 

 

4.4.1 Sensory attenuation through an increase in self-agency 

One possibility is that the sensory information is reduced through sensory 

attenuation. This mechanism represents the process by which we filter afferent 

information to limit the amount of received feedback (Blakemore et al., 1998). 

Sensory attenuation is originally thought to help distinguish self-motion from 

externally-caused motion (Shergill et al., 2003) and is said to arise from internal 

model computations. The sensory prediction from the feed-forward model is 

compared to the received feedback; if these two match, the sensation is 

attenuated (Wolpert and Ghahramani, 2000). For instance, the inability to tickle 

oneself has been explained via sensory attenuation (Blakemore et al., 1998, 

2000). I argue that an increase in sensory attenuation potentially underlies the 

reduction in feedback perturbation effects we observed in chapter 3. Two 
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interconnected factors are supposed to play a role in increasing sensory 

attenuation: the sense of self-agency and intentional binding. 

It has been demonstrated that an increase in the perception of self-agency 

results in increased sensory attenuation, while the opposite is true for decreasing 

sense of self-agency (Desantis et al., 2011; Kilteni and Ehrsson, 2017; Moore et 

al., 2009). Increases in the accuracy of internal models have been suggested to 

inflate the sense of self-agency (Blakemore et al., 2000). Therefore, training-

induced changes in the accuracy of internal models can enhance the perception 

of self-agency and in turn result in greater sensory attenuation.  

However, temporal delays between the action and the subsequent 

sensory consequence have been shown to reduce the perception of self-agency 

(Blakemore et al., 1999). Therefore, our experimental manipulation of inducing a 

sensory delay or advancement to the sensory consequence of the action would 

predict a decrease rather than an increase in sense of agency. Nevertheless, it 

has been shown that participants adapt to a delay in sensory consequence with 

training. For instance, electroencephalography (EEG) patterns produced by 

tones that were delayed by 100 ms after movement onset were shifted with 

training to become more similar to the EEG patterns when feedback was 

synchronous with the movement (Cao et al., 2017; Elijah et al., 2018, 2016). This 

suggests a learned adjustment in temporal prediction (Stetson et al., 2006; Timm 

et al., 2014), by reducing the perceived delay between the action and the 

sensory consequence. This temporal binding between an action and its delayed 

sensory consequence has also been termed intentional binding (Haggard et al., 

2002). It is therefore possible that in our experiment the motor system adjusted 

its temporal prediction window with training to include the small feedback 

perturbations that we induced. This increase in intentional binding would allow for 

an increase in self-agency with training. And in turn, this increase in self-agency 

would prompt greater sensory attenuation, which we observed as a reduction in 

behavioural effects from the feedback perturbations. 
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4.4.2 Learning to ignore external perturbations 

Another mechanism by which participants could have reduced the effect of the 

feedback perturbation is through learning that the perturbation was irrelevant to 

performance (Diedrichsen et al., 2005). Our task was designed so that 

participants did not need to wait for the delayed feedback to occur to move on to 

the next press. Therefore, it is possible that through training the motor system 

realized that the feedback perturbations are not directly related to performance. 

Wei and Körding (2009) demonstrated that the motor system indeed estimates 

whether the error directly relates to movement production. Thus, if the 

perturbation is believed to be driven by external factors that are not under one’s 

control, this should reduce the behavioural adjustments. In contrast to the 

previously discussed mechanism, in this proposal participants assign less 

agency to the perturbed feedback with training. It has previously been suggested, 

however, that error-sensitivity increases with training (Herzfeld et al., 2014), 

which would suggest that we become more sensitive to the sensory perturbation 

with training. Nevertheless, a recent study found that this was only the case in 

highly consistent environments. If the variability of the perturbation magnitude 

was high during a motor adaptation task the increase in error-sensitivity with 

training was stunted (Albert et al., 2021). This finding potentially reinforces the 

idea that participants did not become more sensitive to errors with learning, but 

rather decreased their overall sensitivity to the perturbations.  

 While we cannot be certain about the mechanism that drove our results, 

one way to possibly dissociate these two mechanisms in the future is by slightly 

increasing the feedback perturbation (i.e., temporal delay) after a certain amount 

of training. If we assume that learning to ignore perturbations is a general 

process with a broader impact, we would expect that the behavioural 

adjustments to the increased perturbation should be similar to the previously 

experienced perturbation. In this scenario, the motor system should have learned 

to ignore a broad range of external feedback perturbations. On the other hand, if 

we assume that in the sensory attenuation scenario the temporal prediction 
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window is only increased to the extent of the largest experienced perturbation, 

then we would expect greater behavioural adjustments to the increased 

perturbation compared to the previously experienced perturbation. Nevertheless, 

this test assumes that learning to ignore a perturbation generalizes to multiple 

perturbation sizes, which might not be the case. 

 

4.5 The issue of task fragmentation and its impact on 
 generalization and validity  

When first designing a new experiment, the overarching goal is to produce 

results that provide strong evidence for or against a certain theory or hypothesis 

(“Dogmas, paradigms and proving hypotheses,” 2010). In a perfect world, we 

wish to make strong claims that are relevant and generalize to all sequential 

movements. In reality, however, results are often messy, not straightforward, and 

deviate from initial expectations. Nevertheless, to publish, they need to be 

perceived as polished, novel, and generalizable (Franco et al., 2014). While this 

exposes issues in publication requirements, which have been discussed 

elsewhere (Franco et al., 2014; Mlinaric et al., 2017; Rockwell et al., 2006; 

Rosenthal, 1979; Yong, 2012), it also relates to the idea of “task fragmentation” 

(Ranganathan et al., 2021), which I will address next. In this last section of my 

discussion, I aim to offer some suggestions on this broader issue that I have 

been confronted with during my dissertation research. 

 

4.5.1 Task fragmentation 

The paradigm we use is often specific to the research lab, meaning that the 

likelihood of another lab using the same experimental setup is small or negligible. 

This leads to a high volume of paradigms with very little overlap between them 

(Ranganathan et al., 2021; see Yartsev, 2017 for an opposing view in animal 

models). Even if the same task is used, the difference in exact measures and 
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equipment can lead to discrepancies in outcomes (Ranganathan et al., 2021). 

For instance, in finger sequence tasks some research groups including ours use 

keyboard-like devices while others use computer keyboards or button boxes. 

This can lead to differences in finger placements and forces that need to be 

produced. Usually, we try to explain discrepancies in results by pointing out 

differences between tasks. We do so to reinforce the validity of our results and 

blame external circumstances for any differences. This process is similar to the 

self-serving bias in psychology (Miller and Ross, 1975; Taylor and Doria, 1981), 

where success is personal and failures are situational. We tend to ascribe 

discrepancies in results between our and other studies to experimental factors 

that were likely chosen out of convenience or based on arbitrary measures 

(Ioannidis et al., 2014). For instance, the size of feedback delay in chapter 3 was 

primarily chosen so that it was not consciously perceived by the majority of 

participants. However, the exact sizes that were chosen are arbitrary and were 

on average larger in contrast to similar studies (Repp, 2000; Wing, 1977). These 

types of discrepancies make comparisons between studies difficult. While 

disagreement and disproval play key roles in science advancement (Bauerlein, 

2002; Dellsén and Baghramian, 2020; Kuhn, 2012; Lugg, 1978; “The power of 

disagreement,” 2016), how can we possibly evaluate which of such contradictory 

findings is “more valid” when differences are attributed to minor technical details 

(Smalheiser, 2013)? And how can we ultimately decide on overarching 

processes that can account for the discrepant outcomes (Collins, 2009; 

Muthukrishna and Henrich, 2019)?  

 

4.5.2 Discrepancies as opportunities 

One way we could use task fragmentation to our advantage is by taking an 

experimental approach when considering the discrepancies in results. In my 

experience, and I am guilty of it as well, differences are often half-heartedly 

addressed in the discussion section, with the knowledge that they will likely not 

be experimentally addressed in the future. It could, however, be valuable to put 
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greater effort into understanding the factors we believe underlie the 

discrepancies. As my supervisor would often say to me “a gut feeling is good but 

not sufficient”, as long as the gut feeling is not critically tested it remains just a 

“feeling”. Therefore, we should attempt to experimentally characterize what we 

believe caused these differences. For instance, in chapter 3, we could repeat the 

same experiment but instead of having participants perform the sequences as 

fast and accurately as possible, we could ask them to synchronize their 

movements to an external variable. This way we can test for behavioural 

differences that are related to the task goal and better link our findings to the 

synchronization literature. Treating the differences in results as an opportunity 

rather than as a “necessary evil” could promote generalization even with 

fragmented task designs.   

 

4.5.3 Model tasks 

To overcome the issues of the fragmentation of tasks, Ranganathan and 

colleagues (2021) suggested to introduce “model tasks” that are formally 

operationalized and are related to particular paradigms used in motor 

neuroscience (e.g. adaptation). By constraining and formalizing the specific 

variables and equipment to be used, generalizability across research labs 

increases. For instance, a “model” sequence task might use a standard computer 

keyboard combined with a specific computer screen and clear instructions 

regarding the complexity and length of sequences of letters that are to be used. 

This could provide a standard setup for finger sequence tasks that is cost-

effective and easy to implement. The study in chapter 2 could easily be 

replicated using such a setup. However, how many of these model tasks would 

we need to include a variety of movement sequences. While findings from finger 

sequence tasks can potentially approximate processes involved in piano playing 

or typing on our laptops, we would like to generalize our findings to other 

movements that we make in our daily life, such as making a cup of coffee or 

hitting a baseball. Model tasks enable a narrow increase in generalization within 
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a certain task category, they do not, however, address the issue of generalizing 

to broader categories.  

 A further issue that could be mediated using model tasks is replication 

(Camerer et al., 2018; Open Science Collaboration, 2015). Replication is 

important to reinforce previous findings (Harzing, 2016; Zwaan et al., 2017). 

However, replications, similar to null results (Mlinaric et al., 2017), are often not 

exciting enough to warrant a publication without the inclusion of exciting new 

findings (Pashler and Harris, 2012). With model tasks, replication will be pushed 

to the foreground and small changes in the model variables can still lead to novel 

results (Ranganathan et al., 2021).  

 The idea of “model tasks” is intriguing in the current climate of task 

diversity; however, it opposes the ingrained idea of scientific freedom (“AAAS 

Statement on Scientific Freedom and Responsibility,” 2017; Simmons et al., 

2011; Wilholt, 2010). While task fragmentation results in many findings that are 

hard to consolidate, it allows for creativity and exploration. Model tasks would 

reduce this freedom by constraining it. This leads to a more philosophical 

question: Would the field become complacent and stagnant if novel findings 

would not constantly make us question our previous beliefs? Humans are 

creatures of habits that crave consistency and dislike change (Carden and Wood, 

2018; Ersche et al., 2017; Marien et al., 2018). Maybe the variety in findings and 

experimental setups bolsters our critical thinking and discourages complacency. 

To sum up, model tasks provide an interesting way to address some of the 

issues regarding generalization, reliability and validity of research findings, 

however, given some of the drawbacks they might not come into realization in 

the near future. 
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4.5.4 Changes in experimental designs to promote generalization 

Instead of revamping the entire system, changing how we collect and compare 

data could also lead to greater generalization irrespective of task fragmentation. 

Generally, we try to generalize from a small subset of participants to a 

population. However, given the frequently small sample sizes in neuroscientific 

research (Nee, 2019; Turner et al., 2018), this type of generalization might not 

always be valid (Button et al., 2013; Ranganathan et al., 2021; see Smith & Little, 

2018 for an opposing view). While some collaborative projects across labs and 

countries have achieved larger participant samples (Van Essen et al., 2013; 

Volkow et al., 2018), this is not always possible. Therefore, I want to address 

another way by which we could improve generalization given task fragmentation 

and small sample sizes.   

 Instead of focusing on the participant sample size, we could focus on the 

stimuli we are using. To potentially improve generalization, we could diversify the 

stimuli set that we present to participants. Instead of providing the same stimuli to 

all participants, it might be valuable to provide each participant with a unique set 

of stimuli. For instance, when investigating differences in the neural 

representation of trained and untrained sequences, instead of training all 

participants on the same set of sequences, each participant trains on a distinct 

set that does not overlap with other sets. While this will likely increase between-

subject variability, because of the variation in stimuli, the overlapping effects we 

find are potentially more generalizable across the stimuli category. This design 

choice is possible if the stimuli pool is large, but becomes difficult when only a 

few stimuli are associated with a category. Nevertheless, this experimental 

design reduces the random effects associated with using specific sets of stimuli.  

 Instead of tinkering with the overall experimental design to account for 

stimuli specificity, adjusting the assignments of fixed and random effects in 

statistical testing can also improve generalizability. It has been proposed that 

stimuli variability should be considered as a “random-effect” rather than as a 

“fixed-effect” to overcome the issue of generalizing effects that stem from limited 
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sets of stimuli (Chang and Lane, 2016; Judd et al., 2012; Westfall et al., 2017). 

While there is no single right answer to how research should promote 

generalization, it is important to be aware and vigilant of this issue. 

 

4.6 Conclusion 
In summary, the research presented in this thesis demonstrates that skilled finger 

sequences are represented hierarchically and are adjusted continuously to 

incoming sensory feedback. We provided new evidence on the causal 

relationship between sequence representation and skill level by manipulating 

early sequence representation through instructions. Our results demonstrate the 

continuous integration of sensory feedback during finger movement execution 

even after extended practice. Additionally, we observed a shift from feedback to 

feed-forward control with training. Our results reinforce a hybrid control model of 

motor control that uses a combination of feed-forward and feedback control to 

adjust ongoing movement execution. Overall, this thesis provides novel insights 

into the representation and control of finger movement sequences.  
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Appendices 

Appendix A: Questionnaire given to subjects in the study in Chapter 3. 

Subj:                      Study: Sequence 

Integration 4 

Questionnaire about Experience: 

 

Did you notice anything during the experiment? 

 

We manipulated an aspect of the task during the experiment what was it? 

 

Which of these manipulations did we implement (chose any that apply)? 

  Change the frequency of the tones that were presented when a key was pressed 

  Delay the feedback of a press 

  Provide false feedback on a press (if you were correct it would show as incorrect) 

  Interleave the 3 trained sequences with random sequences 

  Change the frequency of the vibration when a key was pressed 

  Advance the feedback of a press 

  Switched a single press within the sequence (switch which number is presented) 

  Randomize the points you received for each trial rather than making them dependent 

on performance 

 Omit the feedback of a press 

 Give you false feedback regarding your average speed at the end of a block (higher 

or lower than you actually were) 
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Appendix B: Letter of information and Consent Form for experiments for 
Chapters 2-3 
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LETTER OF INFORMATION FOR PARTICIPANTS 

  
Studies of the acquisition and control of skilled finger movements 

Principal Investigator:  
Jörn Diedrichsen, Ph.D.  
Departments of Computer Science and Statistics  
University of Western Ontario, London, Ontario 
jdiedric@uwo.ca 
Phone: 519-661-2111 x 86994 

Introduction 
We would like to invite you to take part in an observational study in motor control. The purpose of the 
research is to determine how complex movement skills are learned and controlled. You are being asked to 
participate in this research, because we recruit participants without neurological disorders, with two 
functional upper limbs and with normal or corrected-to-normal vision. You should participate in this 
study only if you want to; you are not required to in any way. Before you decide whether you wish to take 
part, please read the information below. Please ask us if anything is unclear or you would like more 
information.  

Research Procedures 
If you agree to participate in this study, you will undergo multiple training and testing sessions. We will 
schedule the sessions during days that are most convenient for you. These sessions will involve 
behavioral training in the laboratory in the Brain and Mind Institute located in the Western 
Interdisciplinary Research Building on Perth Drive. 
 
In these sessions, you will be seated in front of a finger box, which resembles a piano keyboard, and a 
monitor. You will be asked to make a sequence of key presses in a pre-specified order as quickly as 
possible – sometimes you also have to press multiple fingers at once in a coordinated pattern.  The finger 
box will record the movement and force of each finger.   
 
In some experiments, we might attach a number of adhesive electrodes to the surface of your skin to 
record your muscle activity. These electrodes will only be used for recording and never for stimulation.   
In other experiments you may be asked to look at the screen through an eye tracker, so that we can record 
the movements of your eyes. This will simply be done by resting your chin on the eye-tracker’s chin rest.  
 
After each activity, you will receive visual and/or auditory feedback on speed and accuracy. The testing is 
organized into blocks of trials of 3-6min length. After each block you will have the opportunity to take a 
break.  Each session may take up to 2 hours. You may be asked to come to the testing centre for a single 
session or multiple sessions depending on which experiment you are completing.  
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We anticipate enrolling 400 participants in total, with approximately 20 versions of the experiment 
involving 6 - 20 participants each. The research staff will let you know which experiment you will be 
completing as well as the expected duration and number of sessions involved at the time of consent. 

Risks 
The study has basically the same level of risk as working at a computer keyboard or practicing a musical 
instrument. The main risk is fatigue in the hand from the repetitive movement. The experimenter will 
offer you opportunity to take breaks during the experiment as often as you wish.  

Benefits and compensation 
There is no direct benefit to you from participating in this study. The results from this study may help us 
to better understand the brain regions underlying human motor learning.   
 
You will be compensated for each session you attend, and will receive $10 for every hour of participation. 
Additionally, you will receive bonuses based on your performance during the motor task. On average the 
additional reward will be $5 an hour. If the study has to be stopped for any reason, compensation will be 
adjusted according to the fraction of the study that was completed. 

Voluntary Participation / Withdrawal from Study 
You should only participate in the study if you really want to; choosing not to take part will not 
disadvantage you in any way. At any time during the study, the experimenter may ask you to stop the 
study. This usually occurs for technical reasons. You can withdraw from the study at any point in time if 
you feel uncomfortable or tired –you just have to tell the experimenter that you wish to stop. Withdrawal 
will have no negative consequence for you or your academic status, and you will be paid for your time 
that you have spent on the experiment up to that point. You can also withdraw your data from the study at 
any time, without negative consequence for yourself, your academic status, or your reimbursement.  
 
At a future date, we may ask whether you would be willing to participate in an additional study from our 
lab or institute.  If you are interested in participating, please check and initial the “Contact for Future 
Studies” section on the Consent Form.  You may freely decline to participate in any future studies and to 
be contacted further. 

Confidentiality 
Any information obtained from this study will be kept confidential. Any data resulting from your 
participation will be identified only by a participant code, without any reference to your name or personal 
information. A sheet linking you name to the participant code will be stored in a securely locked filing 
cabinet in a room that will be accessible only to the experimenters. Seven years after completion of the 
study these records will be destroyed. Representatives of the University of Western Ontario Health 
Sciences Research Ethics Board may require access to the study-related records or may follow up with 
you to monitor the conduct of the study. De-identified data will be kept past these seven years for future 
usage.  

Name of Sponsor / Conflict of Interest 
The research is supported by a startup grant from Western University, and a Scholar award from the 
James S. McDonnell Foundation. Neither of the funders has played any role in study design or analysis. 
None of the Investigators has a financial interest in the outcome of the study.  
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Consent Form 
You do not waive any legal rights by signing the consent form. If you wish, we can provide you with a 
copy of this letter of information and the consent form.  
 

Contact Information 
A more complete and detailed description of the study is available from the principal investigator, 
Professor Jörn Diedrichsen (email: jdiedric@uwo.ca). Professor Diedrichsen will try to answer any 
questions that you may have.  
 
If you have any questions about your rights as a research participant or the conduct of the study you may 
contact: 
 
The Office of Research Ethics  
Western University 
519-661-3036 
E-mail: ethics@uwo.ca 
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CONSENT FOR RESEARCH STUDY 

 
Studies of the acquisition and control skilled finger movements 

 
 
I have read the letter of information, have had the nature of the study explained to me, and I 
agree to participate. All questions have been answered to my satisfaction. 
 
 
Dated in London, this__________ day of________________,20___. 
 
 
 
Name of Participant (Please print): ____________________________________ 
 
 
 
Signature of Participant: _____________________________________________ 
 
 
 
 
My signature means that I have explained the study to the participant named above.  I have 
answered all questions. 
 
Signature of Person Responsible 
for Obtaining Consent:______________________________________________ 
 
 
 
Name of Person Responsible 
for Obtaining Consent (Please print):___________________________________ 
 
 
 
Date for Obtaining Consent:     ___________________________________ 
 
 

Contact for Future Studies  

Please check the appropriate box below and initial:  

□   I agree to be contacted for future research studies  

□  I do NOT agree to be contacted for future research studies 
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