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Abstract 

Locoregional treatment is the specific delivery of therapeutics to their desired sites of action 

with minimized systemic adverse effects. In this approach, drug is administered through 

topical instillation, inhalation, intra-lesional or intra-arterial injection. Decades of experience 

in locoregional treatment have delivered meaningful benefits to patients with localized 

diseases (e.g., osteoarthritis, ocular disorders and liver cancers). However, improvements are 

required for this type of treatment to be more effective. For transarterial chemoembolization 

(TACE) therapy of hepatocellular carcinoma (HCC), the most current approaches do not 

allow repeat treatment as the drug delivery vehicle is not degradable. In addition, image 

contrast agents for visualization are administered separately, leading to uncertainty of the 

drug location.   

In this thesis, the concept of a multifunctional ‘nano-on-micro’ delivery system was explored 

for enhanced TACE therapy. Magnetic hydrogels composed of poly(vinyl alcohol) (PVA) 

and iron oxide nanoparticles (IONPs) were prepared and shaped into microparticles using 

microfluidics. This system was able to deliver the anti-cancer drug, doxorubicin (DOX), with 

co-localized IONPs as a contrast agent to visualize drug location. Degradability of the PVA 

hydrogel carrier allows for repeat treatment. To enhance drug loading, we explored the use of 

silica nanoparticles (SiNPs) as an effective drug carrier. Loading was investigated using 

lysozyme as a model protein and applied to N-94, a therapeutic peptide for dry eye treatment. 

The results demonstrated SiNPs system could provide controlled drug release that is also 

degradable under simulated physiological conditions. Building on these results, silica (SiO2) 

was introduced to prepare PVA-SiO2-IONP microparticles. In addition to all the positive 

attributes of the original system, the PVA-SiO2-IONP microbeads have increased drug 

loading and tunable release profile.  

The concept of a multifunctional ‘nano-on-micro’ delivery system demonstrated for TACE 

therapy can be applied to other diseases where locoregional treatment is applicable.  
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Summary for Lay Audience 

Locoregional therapy is a treatment strategy where therapeutics are delivered to sites of the 

diseases via topical instillation, inhalation or injection. This approach can potentially 

minimize the involvements of invasive surgery and systemic side effects. Transarterial 

chemoembolization (TACE) is a locoregional therapy that is used in the treatment of 

hepatocellular carcinoma (HCC), which is commonly known as liver cancer. Microbeads are 

used to block tumor blood vessels and to deliver therapeutic drugs to the tumor site.  Most of 

the beads currently used cannot be removed after the anti-cancer drug is delivered, so repeat 

treatment would not be possible. Also, to determine the location of the beads, imaging 

contrast agents have to be injected separately to the proximity of beads' delivery site. This 

causes uncertainty as to the exact location of the treatment site.  

For TACE therapy, we developed a poly(vinyl alcohol) (PVA) hydrogel-based 

multifunctional delivery system containing iron oxide nanoparticles (IONPs) and silica 

(SiO2) particles that can deliver the drug and the image contrast agent within the same 

package. This allows the drug to be delivered effectively. In addition, the microparticles can 

be monitored via imaging more precisely. The delivery system is also degradable, which 

would allow repeat treatment at the same tumor site. These improvements would lead to 

enhanced treatment and better outcomes for the patients.  

The concept of a multifunctional delivery system demonstrated for TACE therapy can be 

applied to other diseases where locoregional treatment is applicable.  

 



 

iv 

 

Co-Authorship Statement 

Chapter 1 and Chapter 2 were written by Xinyi Li and edited by Dr. Wankei Wan. 

Chapter 3: Experiments were carried out mainly by Xinyi Li. The high-speed camera 

images of the microfluidic fabrication were captured by Dawn Bannerman. The MRI images 

of the microparticles were provided by Dr. Ali Khan’s lab. The manuscript was prepared by 

Xinyi Li and reviewed by Dr. Wankei Wan. 

The research work in this chapter will be submitted to Polymers under the title: Development 

of multifunctional poly(vinyl alcohol) hydrogel microparticles for transarterial 

chemoembolization therapy. Xinyi Li is the first author. 

Chapter 4: Xinyi Li developed the protocol for the preparation of SiNPs and SiNP-protein 

conjugates. Experiments on lysozyme were conducted by Xinyi Li. Experimental work on N-

94 peptide and cell study was performed by Angela Chang in Dr. Cindy Hutnik’s lab. This 

work was co-supervised by Dr. Wankei Wan and Dr. Cindy Hutnik. Xinyi Li and Angela 

Chang contributed equally to the manuscript.  

A version of this chapter will be submitted to Clinical & Experimental Ophthalmology under 

the title: Lacritin peptide (N-94)-conjugated solid silica nanoparticles as a novel drug 

delivery system for dry eye disease. Xinyi Li shares the co-first authorship with Angela 

Chang. 

Chapter 5: This chapter contains a research work that is complete. Experiments were 

performed by Xinyi Li under the supervision of Dr. Wankei Wan. This chapter was written 

by Xinyi Li and reviewed by Dr. Wankei Wan.  

A paper under the title: Microfluidic fabrication of drug-eluting composite hydrogel 

microparticles is in the preparation stage. Xinyi Li will be the first author. 

Chapter 6: This chapter was prepared by Xinyi Li and modified by Dr. Wankei Wan. 

 

 



 

v 

 

Acknowledgments 

I want to start by thanking my supervisor Dr. Wan, for his guidance and support over the past 

years. Back in 2014, I came to Western University as a fourth-year student, excited and 

scared. I still vividly remember the days you were the instructor for several courses I was 

taking. You told me to step out the comfort zone and challenge myself, which were engraved 

in my heart, and encouraged me to push the boundaries and explore the unknown. Thank you 

for taking me as your student, this Ph.D. journey really shaped me into a better researcher. 

My sincere thanks also go to my advisory committee members, Dr. Ali Khan, Dr. Elizabeth 

Gillies, Dr. Saman Maleki for providing insights and suggestions for my projects.  

I would like to extend my appreciation towards Tim Goldhawk, Todd Simpson, Karen 

Nygard, Reza Khazaee and Dr. Richard Gardiner for teaching and assisting me with the TEM 

and SEM. I am also grateful to Angela Chang and Hong Liu at Dr. Hutnik’s lab for their 

collaboration on the bioactive protein project. 

I would also like to express my gratitude to my colleagues Helium Mak and Betty Li. Thanks 

for providing advice on my projects, training me on a wide range of techniques and helping 

me both in the lab and daily life. I would also like to thank my friends Ruolan Fan, Xiao Li, 

Mengxing Lin, Xiaoyi Pan, Xuelian Xing, Yujie Zhang, Vincent Kong, Dong Zhang, Zhehao 

Jing, Jiangtian Li, Olivia Tong and Neda Aslankoohi for be willing to comfort me, support 

me and tolerate my unending complaints. I would also like to thank Aishik Chakraborty, 

Yasmeen Shamiya and Shruthi Polla Ravi, thanks for the company in the late stage of my 

Ph.D. journey. I have never felt such close to anyone, thank you everyone for opening my 

heart and making me someone important. 

My special thanks go to Longyi Chen, for showing me persistence and courage. I have no 

doubt that you will be a good researcher, and I wish you a bright future in academia. My 

sincere thanks also go to Hui Wang. Thank you for teaching me care and patience. I will 

never forget all the happy and depressing days we have spent together. I couldn't imagine 

what my life would be if you were not here. 



 

vi 

 

Last but not least, I want to give my biggest thanks to my parents. Thank you, mom and dad, 

for bringing me to this beautiful world. Having your unconditional love and support with me, 

I had the chance to meet so many amazing people, learnt plenty of invaluable knowledge and 

skills, and created uncountable wonderful memories. 

Thank you to anyone who has ever shown up in my life. Thank you for helping me get to 

where I am today. My life would be so much less joyful without you! 

 



 

vii 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iii 

Co-Authorship Statement................................................................................................... iv 

Acknowledgments............................................................................................................... v 

Table of Contents .............................................................................................................. vii 

List of Tables ................................................................................................................... xiii 

List of Figures .................................................................................................................. xiv 

List of Abbreviations ....................................................................................................... xix 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 Background and Motivation ................................................................................... 1 

1.2 Objectives ............................................................................................................... 4 

1.3 Thesis Structure ...................................................................................................... 5 

1.4 References ............................................................................................................... 7 

Chapter 2 ........................................................................................................................... 10 

2 Literature Review ......................................................................................................... 10 

2.1 Hepatocellular Carcinoma and Transarterial Chemoembolization ....................... 10 

2.2 Dry Eye Disease and Treatments .......................................................................... 13 

2.3 Chemotherapeutic Agents ..................................................................................... 16 

2.4 Drug-eluting Microparticles and Commercial Products ....................................... 17 

2.5 Design Criteria for Drug-eluting Microparticles .................................................. 19 

2.5.1 Shape ......................................................................................................... 20 

2.5.2 Size and Size Distribution ......................................................................... 21 

2.5.3 Imageability/Detectability......................................................................... 21 



 

viii 

 

2.5.4 Targetability .............................................................................................. 22 

2.5.5 Controlled Release .................................................................................... 24 

2.5.6 Degradability............................................................................................. 25 

2.5.7 Delivery of Multiple Therapeutics ............................................................ 26 

2.6 Design of Multifunctional Materials for Drug Delivery ....................................... 26 

2.7 Choice of Materials and Proposed Systems .......................................................... 30 

2.7.1 Poly(vinyl alcohol).................................................................................... 30 

2.7.2 Iron Oxide Nanoparticles .......................................................................... 33 

2.7.3 Silica Particles ........................................................................................... 38 

2.7.4 Proposed Systems ..................................................................................... 41 

2.8 System Assembly using Microfluidics ................................................................. 43 

2.8.1 Materials and Fabrication Techniques for Microfluidic Chips ................. 43 

2.8.2 Droplets Generation Mechanisms ............................................................. 45 

2.8.3 Geometrical Design of Microchannels ..................................................... 47 

2.8.4 Droplet Microfluidics in Drug Delivery ................................................... 48 

2.9 Clinical Applications and Future Translational Opportunities ............................. 50 

2.10 References ............................................................................................................. 51 

Chapter 3 ........................................................................................................................... 78 

3 Development of Multifunctional PVA-IONP Microparticles for TACE ..................... 78 

3.1 Introduction ........................................................................................................... 78 

3.2 Materials and Methods .......................................................................................... 80 

3.2.1 Materials ................................................................................................... 80 

3.2.2 Assembly of the Microfluidic Device ....................................................... 80 

3.2.3 Preparation of Dispersed Phase ................................................................ 81 

3.2.4 Microfluidic Fabrication of Microparticles .............................................. 81 

3.2.5 Microscopy Observation ........................................................................... 81 



 

ix 

 

3.2.6 Magnetic Properties .................................................................................. 82 

3.2.7 MR Contrast Effect ................................................................................... 83 

3.2.8 In vitro Degradation Measurements.......................................................... 83 

3.2.9 Loading and in vitro Release of DOX ...................................................... 83 

3.2.10 Statistical Analysis .................................................................................... 84 

3.3 Results ................................................................................................................... 85 

3.3.1 Droplets Generation and Size Analysis .................................................... 85 

3.3.2 Morphological, Elemental and Structural Features of Microparticles ...... 86 

3.3.3 Magnetic Properties .................................................................................. 88 

3.3.4 MR Contrast Effect ................................................................................... 89 

3.3.5 In vitro Degradation .................................................................................. 90 

3.3.6 DOX Loading and in vitro Release ........................................................... 92 

3.4 Discussion ............................................................................................................. 93 

3.4.1 Fabrication of PVA-IONP Microparticles ................................................ 93 

3.4.2 Morphological, Elemental and Structural Features of Microparticles ...... 94 

3.4.3 Magnetic Properties .................................................................................. 95 

3.4.4 MR Contrast Effect ................................................................................... 96 

3.4.5 In vitro Degradation .................................................................................. 96 

3.4.6 DOX Loading and in vitro Release ........................................................... 97 

3.5 Conclusion ............................................................................................................ 98 

3.6 References ............................................................................................................. 98 

Chapter 4 ......................................................................................................................... 105 

4 Development of a Multifunctional Bioactive Protein/Peptide Delivery System for Dry 

Eye Disease ................................................................................................................ 105 

4.1 Introduction ......................................................................................................... 105 

4.2 Materials and Methods ........................................................................................ 107 



 

x 

 

4.2.1 Materials ................................................................................................. 107 

4.2.2 Preparation and Characterization of Protein/Peptide-SiNPs Conjugates 108 

4.2.3 Protein Adsorption Kinetics and Isotherms ............................................ 108 

4.2.4 Protein/Peptide Release in the Absence of Cells .................................... 109 

4.2.5 Dissolution of SiNPs in the Absence of Cells ........................................ 110 

4.2.6 Cell Culture ............................................................................................. 110 

4.2.7 Determination of Optimal Pro-inflammatory Cytokines IFNγ & TNF 

Concentration .......................................................................................... 110 

4.2.8 Effects of N-94 on HCECs ..................................................................... 111 

4.2.9 Effect of N-94-SiNPs on HCECs ............................................................ 111 

4.2.10 Statistics .................................................................................................. 112 

4.3 Results ................................................................................................................. 113 

4.3.1 Preparation and Characterization of Protein/Peptide-SiNPs Conjugates 113 

4.3.2 Adsorption Kinetics and Isotherms ......................................................... 114 

4.3.3 Protein/Peptide Release in the Absence of Cells .................................... 116 

4.3.4 Dissolution of SiNPs in the Absence of Cells ........................................ 118 

4.3.5 Toxicity of N-94 to HCECs .................................................................... 118 

4.3.6 Cytoprotective Effects of N-94 to HCECs.............................................. 119 

4.3.7 Toxicity of N-94-SiNPs to HCECs ......................................................... 121 

4.3.8 Cytoprotective Effect of Released N-94 on Stressed HCECs ................ 122 

4.4 Discussion ........................................................................................................... 123 

4.5 Conclusions ......................................................................................................... 126 

4.6 References ........................................................................................................... 126 

Chapter 5 ......................................................................................................................... 132 

5 Development of Multifunctional PVA-SiO2-IONP Microparticles for TACE .......... 132 

5.1 Introduction ......................................................................................................... 132 



 

xi 

 

5.2 Materials and Methods ........................................................................................ 135 

5.2.1 Materials ................................................................................................. 135 

5.2.2 Preparation of PVA Solution .................................................................. 135 

5.2.3 Preparation of Iron Chloride Solution..................................................... 136 

5.2.4 Preparation of PVA-SiO2-Fe (II, III) Gel ............................................... 136 

5.2.5 Fabrication of the Flow-focusing Microfluidic Device .......................... 136 

5.2.6 Fabrication of PVA-SiO2-IONP Microparticles ..................................... 136 

5.2.7 Drug Concentration Effect on DOX loading .......................................... 137 

5.2.8 In vitro Release of DOX ......................................................................... 138 

5.2.9 Degradation of PVA-SiO2-IONP Microparticles.................................... 138 

5.2.10 Size Analysis ........................................................................................... 138 

5.2.11 Scanning Electron Microscopy (SEM)/Energy-Dispersive X-ray (EDX)

................................................................................................................. 139 

5.2.12 Transmission Electron Microscopy (TEM) ............................................ 139 

5.2.13 Fourier Transform Infrared Spectroscopy (FTIR) .................................. 139 

5.2.14 Vibrating Sample Magnetometry (VSM) ............................................... 139 

5.2.15 Statistical Analysis .................................................................................. 139 

5.3 Results ................................................................................................................. 140 

5.3.1 Microfluidic Fabrication of Size-tunable PVA-SiO2-IONP Microparticles

................................................................................................................. 140 

5.3.2 Characterization of PVA-SiO2-IONP Microparticles ............................. 141 

5.3.3 Drug Concentration Effect on DOX Loading ......................................... 144 

5.3.4 In vitro Release of DOX ......................................................................... 144 

5.3.5 Degradation of Microparticles ................................................................ 145 

5.4 Discussion ........................................................................................................... 146 

5.4.1 Microfluidic Fabrication of Size-tunable PVA-SiO2-IONP Microparticles

................................................................................................................. 146 



 

xii 

 

5.4.2 Characterization of PVA-SiO2-IONP Microparticles ............................. 148 

5.4.3 Drug Concentration Effect on DOX Loading ......................................... 150 

5.4.4 In vitro Release of DOX ......................................................................... 151 

5.4.5 Degradation of Microparticles ................................................................ 152 

5.5 Conclusion .......................................................................................................... 152 

5.6 References ........................................................................................................... 153 

Chapter 6 ......................................................................................................................... 160 

6 Conclusion and Recommendations ............................................................................ 160 

6.1 Summary and Conclusion ................................................................................... 160 

6.2 Significance of Research..................................................................................... 162 

6.3 Future Studies ..................................................................................................... 163 

6.4 References ........................................................................................................... 165 

Appendices ...................................................................................................................... 166 

Curriculum Vitae ............................................................................................................ 172 



 

xiii 

 

List of Tables 

Table 2.1 Barcelona Clinic Liver Cancer (BCLC) staging system with treatment 

recommendations. Adapted from reference [6]. ..................................................................... 10 

Table 2.2 Roles of TACE in the management of HCC........................................................... 11 

Table 2.3 Summary of commonly used cytotoxic anticancer drugs for TACE. ..................... 17 

Table 2.4 Overview of commercially available DEBs. .......................................................... 18 

Table 2.5 Overview of the degradable drug-eluting microparticles. ...................................... 25 

Table 2.6 Comparison of current DEBs with multifunctional microparticles. ....................... 51 

Table 5.1 Drug concentration effect on DOX loading. ......................................................... 144 

 



 

xiv 

 

List of Figures 

Figure 1.1 Schematic of the interrelationship of the research work described in Chapter 3-5. 5 

Figure 2.1 Schematic demonstration of TACE. Figure reprinted with permission from [18]. 12 

Figure 2.2 Design and processing of a multifunctional hydrogel system for biomedical 

applications. ............................................................................................................................ 28 

Figure 2.3 Schematic of ferrogel preparation. (A) The blending method. (B) The in situ 

precipitation method. (C) The grafting-onto method. ............................................................. 37 

Figure 2.4 Schematic drawing of a multifunctional PVA-IONP microparticle. ..................... 41 

Figure 2.5 Schematic drawing of the bioactive protein delivery system. ............................... 42 

Figure 2.6 Schematic drawing of a multifunctional PVA-SiO2-IONP microparticle. ............ 43 

Figure 2.7 Schematic illustration of different channel geometries of a microfluidic device. 

(A) Co-flow; (B) T-junction; and (C) flow-focusing. Solid arrows indicate the flow direction.

................................................................................................................................................. 48 

Figure 3.1 Fabrication of PVA-IONP microbeads using a flow-focusing microfluidic 

channel. The red arrow indicates flow of the dispersed phase, the blue arrow indicates flow 

of the continuous phase, and the black arrow indicates the generated microbeads. Droplets 

were successfully fabricated using a flow-focusing microfluidic device. .............................. 85 

Figure 3.2 (A) Optical microcopy image of fabricated PVA-IONP microbeads and (B) 

histogram of microbead equivalent spherical diameter fit to a Gaussian distribution. 

Microbeads were in a teardrop shape with a relatively narrow size distribution.................... 86 

Figure 3.3 (A)-(C) SEM images of PVA-IONP microbeads. (A) displays a whole bead, (B) 

and (C) show surface morphology. (D) Whole microbead with a square specifying the 

location of EDX sampling. (E) EDX spectrum indicating the presence of iron in the PVA-

IONP microbeads. ................................................................................................................... 87 



 

xv 

 

Figure 3.4 (A) TEM micrograph of PVA-IONP microbeads. The black arrow indicates an 

individual iron oxide nanoparticle, the red arrow indicates a polymer-rich region, and the 

blue arrow indicates a polymer-poor region. (B) Histogram of diameter of dispersed IONPs 

fit to a Gaussian distribution. IONPs were in spherical shape with minimum aggregation. 

IONPs were observed to distribute at the interface of polymer-rich and polymer-poor regions.

................................................................................................................................................. 88 

Figure 3.5 (A) Magnetic responsiveness of PVA-IONP microbeads upon introducing of a 

permanent magnet close to the sample. The microparticles were attracted by the magnet and 

would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

completely settle down due to gravity after the magnet was removed. (B) Magnetic 

susceptibility of the microbeads. The absence of a hysteresis loop indicates a 

superparamagnetic behavior of the PVA-IONP microbeads. The saturation magnetization Ms 

of the microbeads was measured to be 9.36 emu/g. ............................................................... 89 

Figure 3.6 T2-weighted MRI images of microbeads at different quantities (3T, repetition time 

350 ms, echo-time 3.5-15 ms). The white arrow indicates the presence of PVA-IONP 

microbeads and their contrast effect on T2-weighted images. ................................................ 89 

Figure 3.7 Degradation of the PVA-IONP beads. (A) Cumulative iron released from the 

microbeads. (B) and (C) are optical images of beads at day 0 and day 30, respectively. (D) 

SEM micrograph of beads at day 30. Degradation study was performed in DMEM at pH 5.5, 

7,4 and 37 ℃. More than 20% of total iron was released in 5 weeks for both conditions. The 

removal of IONPs can be further visualized through the color change of the microparticles. 

The PVA-IONP microparticles lost the original teardrop shape during the incubation. The 

release of IONPs and disintegration of the polymeric matrix indicate the degradation of the 

microbeads. ............................................................................................................................. 91 

Figure 3.8 Profiles of cumulative percent doxorubicin release with time from PVA-IONP 

beads in PBS at pH 7.4, 5.5 and 37 ℃. The DOX loading was 0.49 ± 0.02 mg/mL with a 

loading efficiency of 48.8 ± 2.5%. Microparticles can provide a controlled release for DOX 

for 7 days. Acidic environment contributes to a faster and greater DOX release. ................. 92 



 

xvi 

 

Figure 4.1 SEM of SiNPs used in (A) lysozyme and (B) N-94 study. Insert is the particle size 

distribution. ........................................................................................................................... 113 

Figure 4.2 (A) SEM of lysozyme-loaded SiNPs. The red arrow indicates the presence of 

lysozyme. Insert: FTIR spectrum of SiNPs, lysozyme powder and lysozyme-SiNPs. The red 

arrow indicates the characteristic bands of proteins, and the black arrow indicates the 

characteristic bands of silica. (B) SEM of N-94-loaded SiNPs. The SEM micrographs and 

FTIR spectrum confirm the loading of lysozyme and N-94 onto the SiNPs surface. .......... 114 

Figure 4.3 (A) Adsorption kinetics and (B) isotherm at 296 K. Error bars for some data points 

are too small to be displayed. The black square shows the experimental data, and the red dash 

curve shows the best-fit curve. Kinetic data is fit with pseudo-second order kinetic (R2 > 

0.99). Isotherm data fits well with the Langmuir isotherm (R2 = 0.94). ............................... 116 

Figure 4.4 (A) Lysozyme release from SiNPs in PBS at pH 7.4 and 37 ℃ in the absence of 

cells. Lysozyme loading (i.e., 𝑴∞) was 21.74 ± 2.32 mg/g. (B) N-94 release from SiNPs, N-

94 loading (i.e., 𝑴∞) was 44.94 ± 0.42 mg/g. SiNPs can providde controlled release for both 

lysozyme and N-94 over the course of 8 hours. Representative spectra of various masses (m/z 

or Da) of lacritin peptide (N-94) (C) prior to its conjugation to SiNPs, and (D) after release 

from SiNPs. The conjugation to SiNPs and release do not affect peptide integrity. ............ 117 

Figure 4.5 SEM images of SiNPs with an increasing immersion time in PBS, (A) t=0, (B) 

t=10 days, and (C) t=30 days. (D) Size variation of SiNPs after immersion in PBS for 0, 10, 

and 30 days. Each value is presented as mean ± SD. Based on the one-way ANOVA test, 

size of SiNPs significantly decreased with a prolonged immersion time (*, P < 0.05), 

indicating the degradation of the nanoparticles. ................................................................... 118 

Figure 4.6 Mean cellular metabolic activity (% relative to vehicle control ± SD) of primary 

human corneal epithelial cells obtained from three donors (N=3) following treatment of 

lacritin peptide (N-94) (1, 10, 100, 1000, 10 000 nM). Vehicle control (dotted line, 100%) 

was cell culture medium treatment only. MTT assays were performed after 1, 2, 6, and 24-

hour treatment durations. There were no significant differences in cellular metabolic activity 

between the varying concentrations and durations of N-94 treatment, including vehicle 

control. .................................................................................................................................. 119 



 

xvii 

 

Figure 4.7 . Mean cellular metabolic activity (% relative to vehicle control ± SD) of primary 

human corneal epithelial cells obtained from three donors (N=3) following (A) insult by 100 

U/mL of IFNγ and varying concentrations of TNF (0, 6.25, 12.5, 25, 50, 100 ng/mL) and (B) 

co-treatment of lacritin peptide (N-94) (0, 1, 10, 100, 1000, 10 000 nM) along with insult by 

100 U/mL IFNγ and 12.5 ng/mL TNF. In both, vehicle control (dotted line, 100%) was cell 

culture medium treatment only. MTT assays were performed after 16- and 20-hour treatment 

durations. *, **, and *** indicate statistical significance versus insult only. ***, P < 0.001; **, 

P < 0.01; *, P < 0.05. ............................................................................................................. 120 

Figure 4.8 (A) Mean cellular metabolic activity (% relative to vehicle control ± SD) and (B) 

mean lactate dehydrogenase (LDH) release (% relative to vehicle control ± SD) of primary 

human corneal epithelial cells obtained from three donors (N=3) following treatment of 

lacritin peptide-conjugated silica nanoparticles (N-94-SiNPs) (1, 10, 100, 1000 nM). There 

was a vehicle control (dotted line, 100%) of phosphate-buffered saline and cell culture 

medium treatment only and a group of bare SiNP treatment only. MTT and LDH assays were 

performed after 16- and 20-hour treatment durations. There were no significant differences in 

cellular metabolic activity and LDH release between the various treatments and vehicle 

control at either time point. ................................................................................................... 121 

Figure 4.9 (A) Mean cellular metabolic activity (% relative to vehicle control ± SD) and (B) 

mean lactate dehydrogenase (LDH) release (% relative to vehicle control ± SD) of primary 

human corneal epithelial cells obtained from three donors (N=3) following co-treatment of 

lacritin peptide (N-94) (0, 1, 10, 100, 1000 nM) released from silica nanoparticles along with 

100 U/mL IFNγ and 12.5 ng/mL TNF. Vehicle control (dotted line, 100%) was phosphate-

buffered saline and cell culture medium treatment only. MTT and LDH assays were 

performed after 16- and 20-hour treatment durations. *, **, and *** indicate statistical 

significance versus insult only. ***, P < 0.001; **, P < 0.01; *, P < 0.05. .............................. 122 

Figure 5.1 Schematic illustration for the preparation of PVA-SiO2-IONP microparticles. .. 135 

Figure 5.2 Relationship between particle diameter and flow rates. (A) Diameter as a function 

of dispersed phase, Qc=20 mL/h, Qd=1-9 mL/h. (B) Diameter as a function of continuous 

phase, Qd=1 mL/h, 3 mL/h, Qc=5-45 mL/h. (C)-(E): Optical microscope images and size 

distributions of microbeads fabricated under different flow rate conditions. For a fixed Qc=20 



 

xviii 

 

mL/h, the particle size decreased first and then increased as the Qd increased. At a fixed Qd, 

the particle size decreased with an increased Qc. .................................................................. 140 

Figure 5.3 (A) and (B): surface morphology of microparticles (Qd=3 mL/h, Qc=20 mL/h). (C) 

and (D): EDX spectrum of microparticles with a square indicating the area of analysis. (E) is 

the EDX elemental mapping of the entire sample in (C). The EDX analysis confirmed the 

presence of iron and silica content in the PVA-SiO2-IONP microparticles. ........................ 141 

Figure 5.4 TEM images of (A) silica sol and (B) PVA-SiO2-IONP microbeads. Acid-

catalyzed sol-gel process contributed to spherical silica microparticles with a diameter of 1.3 

± 0.5 𝝁m. IONPs were 2.3 ± 0.8 nm in diameter and were well-dispersed in the microbeads. 

Due to the large variance of the dimension of silica microparticles and IONPs, individual 

silica microparticle cannot be displayed in (B) with IONPs................................................. 142 

Figure 5.5 FTIR spectra of neat PVA, PVA-SiO2 gel, and PVA-SiO2-IONP microbeads. The 

emergence of C-O-Si peak and reduction of O-H peak indicates the condensation reaction 

between -OH groups of PVA and surface silanols of silica. ................................................. 143 

Figure 5.6 Magnetization curve of PVA-SiO2-IONP microparticles. The microparticles 

exhibited paramagnetic behavior. (B) Microparticles dispersed in PBS attracted by a 

permanent magnet. ................................................................................................................ 144 

Figure 5.7 In vitro drug release from DOX-loaded PVA-SiO2-IONP microparticles: (A)-(C) 

effect of release conditions on DOX release; (B) effect of drug loading on DOX release. 

Within the same DOX loading subgroup, the release rate increased with a higher ionic 

concentration in buffer or a lower pH value. At the same buffer condition, microparticles 

with a higher DOX loading contributed to a slower and lower percentage of release. ........ 145 

Figure 5.8 SEM images of the PVA-SiO2-IONP microparticles at two buffer conditions. 

Pictures were obtained after 0, 14, 35 and 56 days’ immersion in the corresponding buffer. 

Error bar: 20 𝝁m, except for day 14 PBS (error bar 100 𝝁m). The degradation of 

microparticles at both buffer conditions was evidenced by the morphological change during 

the test period. ....................................................................................................................... 146 

Figure 6.1 Schematic of the research work described in Chapter 3-5. ................................. 160 



 

xix 

 

List of Abbreviations 

AAm Acrylamide 

AAS Atomic absorption spectroscopy 

ACM Acetylated chitosan microspheres 

AMF Alternating magnetic field 

ANOVA Analysis of variance  

APAP Acetaminophen 

APBA 3-aminophenylboronic acid 

BCLC Barcelona Clinic Liver Cancer  

BMA Butyl methacrylate 

CM Chitosan microspheres 

CMC Carboxymethylcellulose 

CMCS Carboxymethyl chitosan  

CPT Camptothecine 

CT Computed tomography 

cTACE Conventional transarterial chemoembolization 

CV Coefficient of variation  

DEB Drug-eluting bead 

DED Dry eye disease  

DLS Dynamic light scattering  

DMEM Dulbecco’s modified Eagle’s medium  

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DOX Doxorubicin 

DSC Differential scanning calorimetry  

EASL European Association for the Study of the Liver 

ECM Extracellular matrix 

EDX Energy-dispersive X-ray 

EORTC Response Evaluation Criteria in Solid Tumors 

FDA Food and Drug Administration 

FITC Fluorescein isothiocyanate  

FTC Freeze-thaw cycle 

FTIR Fourier transform infrared spectroscopy  

GRAS Generally Recognized as Safe  

HA Hyaluronan 

HAP Hydroxyapatite 

HCC Hepatocellular carcinoma 

HCEC Human corneal epithelial cell 

HEMA 2-hydroxyethyl methacrylate (HEMA) 

HNT Halloysite nanotubes  



 

xx 

 

IEP Isoelectric point  

IFNγ Interferon-γ  

IL Interleukin 

IONP Iron oxide nanoparticle 

KGN Kartogenin  

Lap Laponite 

LD50 Lethal dose  

LDH Lactate dehydrogenase 

LNP Lipid nanoparticle 

LTTC Low temperature thermal cycling 

MC Methylcellulose 

MMP Matrix metalloproteinases  

MRI Magnetic resonance imaging 

MRN Magnetic resonance navigation  

MRT Magnetic resonance targeting  

MS Microsphere 

MTT Methyl thiazolyl tetrazolium  

MW Molecular weight 

NIPAM N-isopropylacrylamide 

NP Nanoparticle 

NPX Naproxen 

P(MAA-g-EG)  Methacrylic acid grafted with poly(ethylene glycol) 

PBS Phosphate buffered saline 

PC Polycarbonate 

PDI Polydispersity index  

PDMS Poly(dimethylsiloxane)  

PEG Poly(ethylene glycol) 

PEGMA Poly(ethylene glycol) methacrylate 

pHEMA Poly(2-hydroxyethyl methacrylate 

PLGA poly(lactic-co-glycolic acid) 

PMMA Poly(methyl methacrylate)  

PNIPAm Poly(N-isopropylacrylamide)  

PVA Poly(vinyl alcohol) 

PVAc Poly(vinyl acetate)  

RFA Radiofrequency ablation  

ROS Reactive oxygen species 

SD Standard deviation 

SDC Syndecan 

SEC Size exclusion chromatography  

SEM Scanning electron microscope  

SiNP Silica nanoparticle 



 

xxi 

 

SMANCS Poly(stylene-co-maleic acid)-conjugated neocarzinostatin  

SPION Superparamagnetic iron oxide nanoparticle 

TACE Transarterial chemoembolization 

TAE Transarterial embolization  

TEM Transmission electron microscope 

TEOS Tetraethyl orthosilicate 

TMZ Temozolomide 

TNF Tumor necrosis factor  

UV-vis Ultraviolet–visible 

VEGF Vascular endothelial growth factor  

VSM Vibrating sample magnetometer  

  



1 

 

 

Chapter 1  

1 Introduction 

1.1 Background and Motivation 

Drug release systems are drug depots that aim to confine the drug's pharmacological 

activity to the target site with a predetermined release profile. The ideal formulation 

should be able to (1) maintain the local concentration within the therapeutic window, (2) 

prolong drug release at the site of disease, (3) protect therapeutics from inactivation or 

degradation, (4) produce little or no systemic toxicity, (5) be tailored to the 

administration route and physiological features of the desired site of action [1]. 

Since the first drug-polymer system was introduced in the mid-1960s [2], controlled 

delivery technologies have undergone profound advancement over the past 60 years. This 

is represented by the move from short-term (1-2 day) delivery formulations in the form of 

tablets or ointments, towards long-term (6-12 months) and modulated formulations in 

micron or nanoscale dosage forms [3]. The choice of drug carriers also evolves from non-

degradable polymers like silicone rubber and ethylene-vinyl acetate to a wide array of 

biodegradable polymers. Of note, hydrogels and nanocarriers composed of biodegradable 

materials dominated the research landscape in the past decade and have established 

promising clinical relevance, and the systems based on nanoparticles are projected to be 

leading the research on targeted delivery in the future [3,4].   

Existing drug delivery systems can be categorized into two types based on the 

administration route and action mechanism. The first group is usually administered via 

oral or intravenous route and reaches the desired site of action through blood circulation. 

Typical delivery platforms are tablets [5] and nanoscale particles such as polymeric 

nanoparticles [6], lipids [7] and micelles [1]. Although controlled release formulations 

offered many advantages over the conventional dosage forms, they are suffering from 

suboptimal pharmacokinetic profiles or poor stability and low bioavailability [8,9]. The 

second group of delivery systems are characterized by wafers, hydrogels, and inhalable or 

injectable microparticles [10]. They can be implanted or injected within or adjacent to the 
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site of diseases, leading to locoregional drug delivery. Localized treatment regimens can 

circumvent hepatic first-pass metabolism and gastrointestinal enzymatic degradation and 

bypass different biological barriers, resulting in improved bioavailability [11]. 

The advancements in controlled release techniques expanded drug delivery options and 

fostered safer, more efficient and compliant treatments. In contrast to systemic delivery, 

locoregional drug delivery limits the presentation of the drug to a target site for its release 

and absorption. Drug administration can be achieved through implantation, injection or 

inhalation [10]. This delivery strategy provides a number of advantages over systemic 

administration such as minimally invasive administration, lower total drug dosage and 

fewer adverse side effects. 

Locoregional drug delivery plays a well-defined role in the management of the diseases 

with localized nature. It remains one of the main strategies treating osteoarthritis [12], 

perturbed wounds [13] and a range of ocular disorders [14]. A wide range of treatment 

options is currently in clinical and preclinical investigations, including devices, 

macromolecular drugs (e.g., peptides and proteins) and small molecules [12,14,15]. 

Future research is likely to focus on expanding the drug spectrum, developing long-term 

controlled release formulations and addressing the safety concerns. 

In addition, locoregional delivery of chemotherapeutics extends treatment options in case 

of solid tumors that are easily accessible. Patients undergoing intraductal administration 

of liposomal doxorubicin have shown higher drug concentration in the breast than 

intravenously injected groups, indicating reduced systemic toxicity [16]. In the case of 

ovarian cancer, Lu et al. found that intraperitoneal treatment provided sustained drug 

levels in the peritoneal cavity with lower systemic drug exposure [17]. Similarly, in the 

postsurgical management of glioblastoma, implantable Gliadel® wafer could provide a 

drug concentration up to 1200 times higher than the systemic route with no significant 

safety concerns [18,19]. Locoregional treatments have also demonstrated promising 

results as the alternative or adjuvant to other forms of treatment in managing lung and 

liver tumors [20,21].  
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Decades of experience in locoregional drug delivery have delivered meaningful benefits 

to an appreciable number of patients and imparted additional requirements for controlled 

release systems. First, the retention time of drug depots in the targeted site can be 

extended. Delivery systems with mucoadhesive and drug-protecting attributes would be 

highly desirable in such circumstances [22]. Second, drug permeation and absorption 

should be improved. In this context, drug carriers that are charged, lipophilic and small in 

dimension will be of great value [23,24]. In image-guided locoregional delivery like 

transarterial embolization (TACE), controlled release systems with CT/MRI detectability 

would be highly beneficial [25]. In addition, for the best treatment outcome, co-delivery 

systems might be necessary [25,26]. Last but not least, in consideration of 

biocompatibility and repeated drug administration, the delivery system should be able to 

degrade without forming toxic substances in vivo.  

The realization of the desired drug delivery systems relies upon novel material strategies. 

The significant progress in nanotechnology and polymer science offers a great 

opportunity. It can combine the intrinsic strengths of macroscale systems (e.g., 

hydrogels) with properties (e.g., antimicrobial and imageable) of nanoparticles. This 

combinational system allows a multifunctional delivery formulation. A wide range of 

nanoparticles such as superparamagnetic iron oxide nanoparticles (SPIONs) [26–28], 

silica nanoparticles (SiNPs) [29–31], lipid nanoparticles (LNPs) [32] were successfully 

incorporated into hydrogels through physical or chemical interactions. The incorporation 

of nanocarriers provides a tool to alter the mechanical strength, drug release and hydrogel 

degradation. These manipulations can be done by varying the concentration of nano 

components in the gel matrix [30,31,33,34]. Compared with the delivery systems based 

on a single platform, combinational systems offer expanded spectrum of loadable drugs 

and prolonged drug release [35]. In addition, the nanoparticle-hydrogel interaction adds a 

degree of freedom in regulating drug release and polymer degradation [27]. 

To conclude, locoregional drug delivery has gained increasing importance for treating 

disease with localized nature. Drug delivery systems composed of hydrogels and 

nanoparticles demonstrate huge potential in fulfilling the stringent requirements placed 

on locoregional delivery. As the therapeutics and intervention techniques continue to 
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grow, it is expected that novel drug release systems will be in high demand. We believe 

the development and optimization of multifunctional drug delivery systems will deepen 

the understanding of fundamental science and, more importantly, lead to significant 

clinical impact in the coming decades. 

1.2 Objectives 

In previous work in our laboratory, we explored PVA-iron oxide nanoparticles (IONPs) 

nanocomposite hydrogels. We have shown that the incorporation of IONPs contributes to 

the crosslinking of the PVA and leads to a ‘degradable’ hydrogel system [27]. 

The overall objective of this thesis is to explore various formulations to improve and 

expand their applications in locoregional drug delivery. To achieve the objectives, a 

series of specific goals are set up and listed below. 

1. To develop a range of delivery systems in the form of nanoparticles or composite 

hydrogels. 

2. To characterize the delivery systems in terms of size, morphology, composition, 

and magnetic properties. 

3. To investigate drug release profiles at different environmental conditions. 

4. To study the degradation/dissolution of the drug carriers. 

As shown in Figure 1.1, the first stage (Chapter 3) of this thesis is regarded as a 

continuation of our prior work. Magnetic PVA-IONP hydrogels were prepared and 

shaped into microparticles using microfluidics for doxorubicin delivery with IONPs co-

localized for visualization of drug location at the tumor site. Degradability of the carrier 

also allows for repeat TACE treatment. In the second stage (Chapter 4), non-porous silica 

nanoparticles (SiNPs) were explored as a carrier for bioactive protein and peptide N-94 

for the treatment of dry eye disease. Finally, a modified microbeads formulation 

composed of silica microparticles, IONP and PVA hydrogel (PVA-SiO2-IONP) was 

developed and characterized for doxorubicin delivery. The optimized system 

demonstrated an increased drug loading and tunable release profile compared to the 

original PVA-IONP system (Chapter 5). 
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Figure 1.1 Schematic of the interrelationship of the research work described in 

Chapter 3-5. 

1.3 Thesis Structure 

This thesis is structured into 6 chapters. Chapter 3-5 will describe three projects towards 

the development and improvements of locoregional drug delivery systems. 

• Chapter 1 Introduction 

This chapter provides a general introduction of locoregional drug delivery and controlled 

release delivery systems, as well as the objectives and outline of this thesis. 

• Chapter 2 Literature Review 

This chapter gives an in-depth review of the rationales of designing a microparticulate 

drug delivery system. Topics including transarterial chemoembolization, dry eye 

didsease, design criteria for drug-eluting microparticles, design rationale for 

multifunctional materials and droplet microfluidics are comprehensively reviewed. 
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• Chapter 3 Development of Multifunctional PVA-IONP Microparticles for TACE 

This chapter introduces the design of PVA-IONP microparticles as potential drug-eluting 

beads (DEBs) in TACE treatment.  Microparticles were fabricated via microfluidic 

technique. The MRI images of microbeads of various concentrations were taken to 

examine the contrast enhancement. Doxorubicin loading and release were performed. 

Degradation studies were performed in the acidic and physiological pH conditions.  

• Chapter 4 Development of a Multifunctional Bioactive Protein/Peptide Delivery 

System for Dry Eye Disease 

This chapter describes the work on SiNPs as protein carriers in the application of dry eye 

treatment. Adsorption kinetics and isotherm were studied and modelled using lysozyme 

as the model protein. The release profile of lysozyme and a bioactive peptide, N-94, were 

studied and compared. Dissolution of SiNPs was investigated in a period of one month. 

Cell studies were performed to examine the functional equipotency of N-94 to its parent 

protein, lacritin, and the biocompatibility of the delivery system. 

• Chapter 5 Development of Multifunctional PVA-SiO2-IONP Microparticles for 

TACE 

This chapter presents the modification and improvements of PVA-IONP microbeads. 

Silica microparticles were introduced into the composite hydrogel. The dependency of 

particle diameter on flow rates of the continuous phase and dispersed was explored. The 

effect of drug loading, pH and ionic concentration on the drug elution profile were 

investigated. The dissolution of PVA-SiO2-IONP microparticles was qualitatively 

characterized.  

• Chapter 6 Conclusions and Recommendations 

This chapter provides the summary, significance and future directions of the research 

presented in Chapter 3-5. 
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Chapter 2  

2 Literature Review 

2.1 Hepatocellular Carcinoma and Transarterial 
Chemoembolization 

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver 

and the third most common cause of cancer-related mortality in the world [1,2]. The 

treatment allocation for HCC is dependent on the stage of disease, liver function, and 

performance status. Table 2.1 provides an overview of the most commonly used HCC 

management guideline- Barcelona Clinic Liver Cancer (BCLC) staging system. With 

improved surveillance strategy of patients with cirrhosis and chronic liver disease and 

advanced diagnostic methods, more patients are detected at early-stage HCC [3]. 

Curative treatments, including hepatic resection, liver transplantation, and radiofrequency 

ablation (RFA) are recommended for patients diagnosed with early-stage HCC [4]. For 

HCC that is not amenable to curative procedures, palliative therapies via TACE or 

systematic chemotherapy are offered [5]. 

Table 2.1 Barcelona Clinic Liver Cancer (BCLC) staging system with treatment 

recommendations. Adapted from reference [6]. 

 

Transarterial chemoembolization plays multiple roles in the clinical management of 

HCC, as summarized in Table 2.2. In accordance with the BCLC guideline, TACE is the 
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first-line treatment for patients with intermediate stage HCC (BCLC stage B) [6]. TACE 

is used in cases with recurrent HCC after curative treatments [7,8]. TACE has also been 

used as a bridge for patients waiting to fulfill criteria for transplantation when donor 

becomes available [9,10]. Moreover, TACE represents a valuable component in 

multimodal treatments for downsizing large tumors [11].  

Table 2.2 Roles of TACE in the management of HCC. 

 

The principle of TACE revolves around the dual blood supply of the liver. The normal 

tissue of the liver receives most (75%-85%) of its blood supply from the portal vein and 

receives the remaining from the hepatic artery. On the other hand, liver tumors receive 

~90% of their blood supply from the hepatic artery [5]. It has been reported that the 

embolization via hepatic arteries would have minimal ischemic damage on normal 

hepatic parenchyma, as its dominant blood supply from a portal vein is unaffected [12]. 

In addition, unlike oral or intravenous delivery, the chemotherapeutic effect of the drugs 

is reserved as this approach bypasses the first-pass metabolism [13].  

The success of the TACE procedure heavily relies on imaging techniques and requires a 

multidisciplinary tumor board consist of a surgeon, clinical oncologist and interventional 

radiologist [14]. In a typical TACE therapy, pre-treatment imaging consisting of a 

multiphasic computed tomography (CT) or dynamic contrast-enhanced magnetic 

resonance imaging (MRI) of the liver must be obtained preferably within four weeks of 

the planned TACE intervention [15]. The pre-treatment imaging aims to acquire anatomic 

information to aid in planning the procedure [15,16]. Figure 2.1 schematically describes 

the TACE procedure. During a TACE, patients will be given a local anesthetic. The 

interventional radiologist places a catheter into the patient's femoral artery and moves the 

catheter up until it reaches the hepatic artery in the liver. Three-dimensional vascular 

Palliative treatment for intermediate stage HCC (BCLC stage B)

Treatment/prevention tool for recurrent HCC after curative treatments by surgery or ablation

Bridging or downstaging tool to liver transplantation

Neoadjuvant therapy to downsize tumor prior to liver resection

Combined therapy with other interventional treatments
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images (angiogram) are necessary to identify the appropriate tumor-feeding branches. An 

X-ray is taken by infusing radio-opaque contrast agents through the catheter. Drugs/drug 

carriers and embolic materials are delivered separately or simultaneously depending on 

the techniques and delivery systems. The injection is stopped when the stasis flow of 

contrast agents existed. Angiography is repeated, and embolization is continued until all 

blushed tumors disappeared [17]. In post-procedure care, CT scans are performed to 

determine tumor response recurrence 4-8 weeks after the procedure. Sequential TACE 

procedures can be performed in 4-16 weeks if any recurrent tumor is identified [12].  

 

Figure 2.1 Schematic demonstration of TACE. Figure reprinted with permission 

from [18]. 

TACE can be classified as conventional TACE (cTACE) and drug eluting beads (DEB)-

TACE. The cTACE involves an arterial infusion of an emulsion containing 

chemotherapeutics in iodinated oil (Lipiodol®) followed by injection of embolic agents to 

occlude the same tumor vasculature. A major advantage of cTACE is its radiopaque 

iodinated oil allows intra-procedure visualization of the drugs, which is helpful to 

optimize the imaging guidance. The drawbacks of cTACE include the rapid release of 

drug from Lipiodol associated with the weak bonding between the doxorubicin and the 

carriers [19]. Other drawbacks underline the unstable and unpredictable post-treatment 

outcomes, which might be due to the variants in the procedure, as cTACE is not a well-

standardized procedure and can be largely dependent on the medical specialists' 

experience,  treatment devices available and the therapeutic agents injected [20]. 

The limitations of cTACE led to its gradual replacement by DEB-TACE. DEB-TACE 

takes advantage of drug-impregnated microspheres and allows the simultaneous delivery 
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of chemotherapeutic agents together with vessel occlusion. The DEBs essentially serve as 

a drug carrier, contrast agent and embolic agent. The integration of multiple functions is 

achieved by the appropriate design of the size and composition of the matrix. DEBs are 

typically in the diameter of 40-900 𝜇m, making them large enough for vascular 

embolization [21]. Drug loading is performed prior to the TACE procedure by immersion 

methods and typically takes 20 min to 2 h to complete depending on the bead size and 

materials [22,23]. The loading is driven by ionic interactions between the drug molecules 

with polymeric backbone. The contrast medium could be incorporated by physical 

mixing with DEBs [24,25] or via covalent coupling with the polymeric backbone [26]. 

Imageable DEBs can also be prepared by entrapment of iron oxide nanoparticles (IONPs) 

[27–29]. Of note, DEB-TACE is performed in a more standardized way as compared to 

cTACE, both during preparation and administration. The standardization leads to more 

homogenous and stable patient data [30]. In some clinical studies, DEB-TACE has shown 

improved tolerability, better tumor response and lower systemic toxicity than cTACE 

[31,32].  

2.2 Dry Eye Disease and Treatments 

Dry eye disease (DED) is a multifactorial disease of the tear and ocular surface, 

characterized by hyperosmolarity, tear film instability, ocular surface inflammation, and 

visual discomfort [33]. These changes in tear composition activate stress signaling 

pathways in the ocular surface epithelium and resident immune cells, which triggers the 

production of inflammatory mediators to recruit and activate immune cells and produce 

cytokines, such as interleukin (IL)-1𝛽, IL-6, and tumor necrosis factor (TNF)-𝛼 [34]. The 

secretion of cytokines would initiate a vicious cycle and further damage the cornea and 

lacrimal glands, decline the tear function and worse the symptoms [34,35]. 

The current DED treatments focus on minimizing the inflammation and supplementing 

the tear film components [36]. The topical application of lubricating agents, anti-

inflammatory therapeutics, biological tear components through eye drops remains the 

commonest intervention option for patients with dry eye [37]. For this treatment, punctal 
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plug insertion is encouraged to prolong the resident time of aqueous and artificial tears on 

the ocular surface [38]. 

The topical administration is often associated with two challenges: the low ocular 

bioavailability of the drug and the unfavorable long-term use of the commonly prescribed 

therapeutics [36,37]. Less than 5% of topically applied drug doses can reach deeper 

ocular tissues due to the complex anatomical and physiological barriers of eyes [39]. 

Reflex tearing, blinking, nasolachrymal drainage and metabolic degradation impede 

sufficient time residence and deep drug permeation [40]. As a result, frequent dosing of 

the drugs at high concentrations is required to deliver sufficient therapeutic effects. The 

poor patient adherence and high drug dosage could result in extreme fluctuations in drug 

ocular concentrations and systemic drug distribution, leading to undesirable side effects 

[37].  

To prolong the ocular residence time of the therapeutics and minimize the oscillations in 

the drug concentrations, numerous drug delivery systems have been developed. 

Nanomicelles, nanoparticles, liposomes, and hydrogels were loaded with drugs and can 

provide an effective drug concentration in the eye for a week [41]. In addition to being 

used solely, such systems could be included in other devices such as contact lens. The 

liposome-laden lens have demonstrated a controlled drug release over a period of 8 days 

[40].  

The potential risks associated with the long-term use of commonly prescribed drugs 

posed a challenge for DED treatment via topical route. Steroids are one of the most 

effective and rapid medications for DED. However, prolonged use is not recommended 

due to the risks of developing an ocular infection, glaucoma, and cataract [42]. Topical 

instillation of cyclosporine can lead to complications such as lid maceration and corneal 

epitheliopathy [43]. Another alternative treatment is lifitegrast, the only U.S. Food and 

Drug Administration (FDA)-approved drug for both signs and symptoms of DED [44]. 

The adverse events consist of ocular irritation and hyperthermia. Systemic effects are 

headaches, erythema, and musculoskeletal pain. Clinical studies on long-term safety 

profiles are still quite limited and represent an essential avenue for future investigation.  
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The adverse ocular events associated with commonly prescribed molecules have 

encouraged research and development of biotherapeutics as alternatives. Among them, 

bioactive tear proteins have emerged as promising candidates. 

Lacritin is a growth-factor-like tear protein (~ 25 kDa) that is selectively downregulated 

in dry eye [45,46]. It is produced by human lacrimal acinar cells, corneal, conjunctival, 

and salivary epithelia [47]. Lacritin has demonstrated mitogenic and cytoprotective 

properties on human corneal epithelial cells (HCECs) and can promote basal tearing that 

is sustained for at least 4 hours when topically instilled in rabbits [46–48]. It was found 

that lacritin’s C-terminal is mitogenic and has a amphipathic 𝛼-helical structure [49]. In 

addition, its C terminus targets cell surface syndecan-1 (SDC1), a transmembrane protein 

that regulates mitogenic signaling, making lacritin a potential cell-targeting strategy for 

DED. 

Various C-terminal fragments of lacritin have been produced via chemical synthesis. For 

example, N-65 represents a lacritin truncation mutant lacking 65 N-terminal amino acids 

[50]. Other lacritin peptides such as N-55, N-74, N-94, and N-104 were synthesized, as 

described elsewhere [51]. The synthetic surrogates have demonstrated antimicrobial 

properties and they are effective in stabilizing the tear lipid layer and maintaining 

epithelial homeostasis [52].  

The combinational use of protein-based therapeutic agents with drug delivery systems 

offers a promising tool to treat DED. The topical administration of lacritin molecules or 

its fragments may contribute to a restored team film microenvironment, particularly 

under dry eye conditions where they are deficient [47]. As biomolecules are prone to 

decomposition on the inflammatory and oxidative ocular surface, the use of drug delivery 

systems, in return, can potentially protect and allow sustained availability of protein 

therapeutics [53].  

For dry eye treatment, future efforts should be dedicated to discovering safer drug 

molecules and more effective delivery options. The replacement of steroid therapy with 

natural tear components can provide a long-term solution by physiologically rescuing the 

ocular surface without provoking any noticeable adverse effects.  On the other hand, the 
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advancement in carrier systems is expected to facilitate the delivery of drugs, concentrate 

drugs at the target site, and prolong their corneal residence time, ultimately reducing dose 

and dosing frequency. 

2.3 Chemotherapeutic Agents 

For TACE, the most common sole-agent anticancer drugs used are the anthracycline 

group. In published cohort and randomized studies, anthracycline antibiotic doxorubicin 

(DOX) takes up 36% of the cases while epirubicin represents 12% of the records. Other 

popular chemotherapy agents include cisplatin (31% of the cases), mitoxantrone (8%), 

mitomycin (8%), and poly(stylene-co-maleic acid)-conjugated neocarzinostatin 

(SMANCS, 5%) [54]. The chemical formula and structure of commonly used anticancer 

drugs are shown in Table 2.3. Notably, the criteria to decide the dosing regimen is not 

standardized: some physicians prefer to determine it based on patient’s body surface area, 

weight, tumor burden or bilirubin level, while others prefer to use a fixed dose [55]. The 

usual dose for DOX is 40-100 mg while cisplatin between 50-100 mg [14,15]. Some 

randomized clinical studies showed no significant differences in survival rate between the 

single-drug treatment of DOX and cisplatin or epirubicin [56–59]. Moreover, to date, 

there is no evidence of the superiority of any single cytotoxic anticancer drug over other 

drugs or for mono-drug chemotherapy versus combination chemotherapy [14,15].  
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Table 2.3 Summary of commonly used cytotoxic anticancer drugs for TACE. 

 

While the dosing regimen is not standardized, the EASL-EORTC [(European Association 

for the Study of the Liver) or (Response Evaluation Criteria in Solid Tumors)] clinical 

practice guidelines provide a general rule for the dose of DOX. The recommended DOX 

dose per treatment is 50-75 mg to a maximum value of 150 mg (75 mg/m2 body surface 

area) [60]. Patients may receive 3- 4 TACE treatments within six months, with each 

session being ~3 to 4 weeks apart. The maximum recommended lifetime dose of DOX is 

900 mg (450 mg/m2), in correlation to the cardiac toxicity when the drug is administered 

systemically [61]. 

2.4 Drug-eluting Microparticles and Commercial 
Products 

Over the previous decades, several DEBs have become commercially available (Table 

2.4). The most commonly used microparticles in clinical practice are DC BeadTM/LC 

BeadTM (Biocompatibles, United Kingdom), the radio-opaque version of DC Bead: DC 

Bead LUMITM (Bosten Scientific, United States), HepaSphereTM/QuadrasphereTM 
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(BioSphere Medical, France), OncozeneTM/Embozene TANDEMTM (Varian Medical 

Systems, United States), and LifePearl® (Terumo International Systems, Belgium). 

Commercial DEBs are typically offered in a size range (e.g., 70-150 μm, 100-300 μm, 

300-500 μm, 500-700 μm). The most common bead sizes are 100-300 μm, 300-500 μm 

and 500-700 μm [62], while DEBs in 100-300 μm provide the a better treatment response 

and fewer major complications than beads with larger diameters [63,64]. 

Table 2.4 Overview of commercially available DEBs. 

 

Y: yes, N: no. 

Commercial DEBs carry negative charges and allow the loading of chemodrugs with 

counter ions (e.g., DOX, epirubicin and cisplatin). DC BeadTM is made of PVA 

functionalized with sulfonate groups on the bead surface [65]. DC BeadTM microparticles 

are usually packaged in 2 mL vials at a hydrated state in a sodium phosphate solution and 

provide a DOX loading capacity of up to 45 mg/mL [64,65]. DC Bead LUMITM is 

derived from DC BeadTM and the PVA backbone is covalently bonded with imaging 

moieties iodine, therefore allows standard fluoroscopy and CT imaging [66]. 

HepaSphereTM is a poly(vinyl alcohol-co-acrylic acid) microsphere packaged in a dry 

state. This type of beads expands to four times in volume upon exposure to saline. The 

presence of carboxylate groups allows binding of positively charged drugs throughout the 
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beads and can achieve a DOX loading ~40 mg/mL beads [22]. Likewise, TANDEMTM is 

composed of poly(methylacrylic acid) microspheres with perfluorinated coating. The 

pendant carboxylate groups allow up to 50 mg/ml loading of DOX [67,68]. LifePearl® 

beads consist of a poly(ethylene glycol) (PEG) modified with sulfonate groups and can 

provide a DOX loading at ~37.5 mg/ml [69]. 

The in vitro drug loading and eluting profile provide helpful information to determine the 

dosing regimen and predict the pharmacokinetics of the drugs. Baere et al. conducted a 

comparative study of the four DEBs (DC BeadTM, HepaSphereTM, Embozene TANDEM 

TM and LifePearl®) [22]. All four types of DEBs can reach maximum loading in ~ 2 h, 

with larger particles generally take a longer time to reach the plateau. The drug elution 

profile was examined under sink condition in flow cells, all four types of DEBs exhibited 

incomplete drug release, and the maximum release achieved within 5 hours. The results 

also showed a decline in eluted DOX, indicating degradation and adsorption of DOX at 

neutral pH [70].  

The future direction in DEBs is in the development of size-tunable, imageable, 

degradable beads. DEBs that are in support of combination treatments is another research 

focus. The design criteria and rationales for DEBs will be discussed in detail in the 

following section. 

2.5 Design Criteria for Drug-eluting Microparticles 

Multiple parameters that could significantly affect the clinical benefits of DEB-TACE. 

The morphological characteristics can affect the vascular distribution and occlusive 

behavior of the microparticles. Imageability/detectability is useful in guiding the 

intervention. More importantly, the co-localization of contrast agent with drug allows a 

more precise tracking of drug distribution relative to the position of the tumor. 

Targetability allows tumor-specific delivery through magnetic resonance navigation 

(MRN), potentially minimizing the unwanted toxicity to healthy tissue. Advantages of 

controlled release formulations include an effective drug concentration in tumor tissue 

and reduction of systemic exposure. The purpose of having degradable DEBs is to 

prevent tumor hypoxia and allow repeated interventions. Moreover, the ability to deliver 
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multiple therapeutics is desired as it could enable comprehensive and multimodal 

therapies for certain cancer patients. A multifunctional delivery system, as its name 

suggests, can exert multiple functions with one platform. Such system is highly 

advantageous for the locoregional treatment of complex diseases, such as cancer. In this 

section, the design considerations for multifunctional drug-eluting microparticles are 

rationally discussed. 

2.5.1 Shape 

The shape of DEBs has a significant impact on the efficacy and safety of the TACE 

treatment. Non-spherical poly(vinyl alcohol) (PVA) particles emerged in the 1970s as a 

permanent embolic option complementing degradable gelatin sponge. It was marketed as 

Ivalon® and distributed as a sheet or block form. For each use, PVA particles were 

manually produced by a sawblade or a rotating rasp. And the shavings were subsequently 

filtered with sieves and sorted into particles of different sizes [71]. The resulting PVA 

particles are irregular in shape due to the preparation method. This led to two issues: (1) 

the actual size does not coincide with the dimension provided by the vendor and (2) the 

tendency for aggregation. Derdeyn et al. [72] studied the size of PVA particles and found 

that many were larger than the advertised minimum size. This could mislead the 

radiologist in selecting the agent compatible with the dimension of vessels to be 

occluded. In addition, the PVA particles possessed a huge size deviation. The oblong 

particles may have an extremely short axis (< 20 μm) or sharp fragments. Such fractions 

could cause off-target embolization or end-organ damage [73]. The irregular surface and 

broad size distribution also led to clumps that made catheter administration very difficult. 

In addition, this tendency to form aggregates resulted in a larger effective size, which 

contributed to a more proximal rather than distal occlusion [74]. Nevertheless, particulate 

non-spherical PVA holds its utility in widespread scenarios where proximal occlusion is 

desired, such as in embolizing uterine fibroid, managing epistaxis, treating solid organ 

bleeding [75,76]. In situations where deeper tissue penetration is required, spherical 

particles would be the more suitable option.  

The clinical disadvantages of irregular-shaped PVA particles prompted the development 

of calibrated microspheres. During the past three decades, a number of commercial 
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products have become available. Depending on the purpose of the application, 

commercial products can be classified into two categories: bland embolic agents (e.g., 

Contour SETM, Embosphere® and Bead Block®) and embolic DEBs (e.g., DC/LC 

BeadTM, HepaSphere/QuadraSphereTM, Embozene TANDEMTM and LifePearl®). 

Microspheres with calibrated sizes have demonstrated improved distal penetration and 

physiologic outcomes than non-spherical PVA particles, hence becoming a preferred 

choice for physicians [77–79].   

2.5.2 Size and Size Distribution 

Size and size distribution are critical in determining flow behavior and physiologic 

outcome of the DEB-TACE treatments. Smaller particles tend to penetrate deeper into the 

vasculature and reach more distal locations [78,80]. Regarding the size distribution, most 

commercial products are offered in a size range (e.g., 70-150 μm, 100-300 μm, and 300-

500 μm) rather than in one size. A broad size range did not render significant targeting 

disadvantages over a narrow one. In a comparative study conducted by Laurent et al., 

microspheres with a broader size distribution demonstrated similar vasculature 

distribution in animal models as compared to narrow microparticles [81]. This study 

suggests that microparticles with a broad size range might provide the same level of 

vessel embolization as unisize beads.  

Moreover, the size and shape of DEBs play a critical role in regulating the drug-eluting 

profile. Smaller DEBs provide faster release than larger ones due to the greater surface-

to-volume ratio [82]. In addition, irregular-shaped DEBs produced a faster drug release 

rate compared to microspheres. This might be associated with a larger surface area 

[83,84]. As such, the geometrical factors of DEBs must be considered in the development 

of DEBs to achieve the desired embolization and drug delivery outcome.  

2.5.3 Imageability/Detectability 

As stated in section 2.1, vascular imaging plays an integral role in TACE by providing 

intra-procedural guidance for catheters, confirming complete occlusion, and post-

procedural monitoring on beads distribution and tumor progression [85,86]. DEBs with 

intrinsic CT and (or) magnetic resonance imaging (MRI) detectability, in this regard, can 
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possibly be used as an indicator of drug/bead distribution and fulfil the imaging needs 

without multiple usages of toxic contrast agents. Imageable drug delivery systems were 

initially prepared by mixing radiopaque Lipiodol emulsions with the drug. However, 

animal studies revealed the discordance between the contrast and drug. More specifically, 

the spatial distribution of contrast agents did not correlate with the distribution of the 

drug. This could be due to the instability of the formulation and rapid passage of the drug 

to the systemic circulation after administration, as the bonding between the Lipiodol 

emulsion and the drug is relatively weak [5,30,87]. 

DEBs with integrated contrast agents are therefore highly sought-after in clinical practice. 

Since the chemotherapeutics and contrast components are held together, the location of 

DEBs represents the exact drug location. In addition, the intensity of the signal can be an 

indicator of local drug concentration. The most common approach to constructing an 

imageable DEB system is by incorporating magnetic nanoparticles (NPs) into the 

hydrogel matrix. The generation of large magnetic dipoles thereby local magnetic field 

gradient within the NPs will strongly alter the relaxation times of surrounding water 

protons, resulting an enhanced imaging contrast [88]. Commonly used magnetic NPs are 

superparamagnetic iron oxide nanoparticles (SPIONs), tantalum NPs, cobalt NPs, and 

lanthanide moieties [89].  

2.5.4 Targetability 

Targeted drug delivery represents another future direction for locoregional therapy, and 

this can be achieved by magnetic targeting. In this approach, magnetic particles are 

embedded in the drug carriers to localize the drugs at the site of action. The drug-carrier 

complex is first injected intra-arterially. High-gradient, external magnetic fields 

generated by rare earth permanent magnets are used to maneuver magnetic particles to 

achieve an exclusive drug accumulation at the tumor site [90]. The magnetic carriers 

contain SPIONs have demonstrated improved tumor suppressive behaviors in treating 

brain [91,92], lung [93] and bone cancers [94]. The limitations with magnetic targeting 

are that the gradient-induced forces decline rapidly with the distance from the magnet, 

and it is also difficult to tailor the shape of the gradient field to the anatomy. These 
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drawbacks limit the application of magnetic targeting to superficial tumors or small 

animals. 

Magnetic resonance navigation (MRN), also referred to as magnetic resonance targeting 

(MRT), has been developed to overcome the weakness of magnetic targeting. Clinical 

MRI coils are explored as the source of steering (propelling) force. The distance from the 

magnet is no longer a restraint as MRI gradient coils can offer constant amplitude over 

depth as distant as 50 cm [95]. The physical principle behind MRT is to use the three 

orthogonal gradient coils inside the MRI bore to induce a 3D directional magnetic force 

to propel the magnetic particles along a predefined trajectory [96]. The majority of the 

state-of-art facilities use MRI machines with a magnetic field strength of 1.5 or 3T [97]. 

The clinical magnets (≥1.5 T) are considered to be sufficient for saturating the 

ferromagnetic materials throughout the body so a maximum magnetic force/response 

could be exerted on the particles [96,98].  

A significant challenge with MRN is that the magnetic gradient amplitudes are 

insufficient for navigating smaller particles. For navigation purposes, MRI gradient coils 

need to generate a propelling force that could overcome the drag force. The magnetic 

force increases at a cubic power with the particle radius (proportional to the volume), 

while drag force increases in a linear fashion in laminar flow (e.g., small arteries, 

arterioles or capillaries) [96,99]. This suggests that larger millimeter particles can be 

navigated more efficiently than smaller particles. Additional gradient coils (also referred 

to as steering coils) could be installed in the MRI bore to acquire stronger magnetic 

gradients to navigate smaller particles. Upgraded gradient coils could strengthen the 

magnetic gradients of a 1.5-T clinical scanner from 40 mT/m to up to 400 mT/m [95]. 

The configurational modification allowed efficient steering of microparticles with a 

diameter of 11 𝜇m in a y-shaped microfluidic channel.  

As the SPIONs inside the DEBs can also serve as the contrast agents to guide the 

delivery, simultaneous steering and imaging are possible with a tailored MRI pulse 

sequence. Felfoul et al. designed an MRI pulse sequence that reserved 90% of the 

maximum propelling force that can be applied while imaging [100]. The author 
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demonstrated simultaneous steering and tracking of millimeter particles using a vascular 

network phantom. However, this study was lack of clinical relevance as it was conducted 

in the absence of flowing fluid. Further research should include the simulation of 

physiological fluids and tests on animal models to examine the clinical viability of the 

combination of steering and imaging.  

In summary, the validity and efficacy of MRN have been demonstrated in vitro and in 

vivo. MRN provides a promising approach to deliver drugs in a non-invasive and highly 

targeted fashion. In imaging arena, coil configuration, control scheme, and pulse 

sequence must be upgraded for clinical use. In the realm of material science, efforts could 

be made in finding the suitable type and combination of polymers and magnetic 

components to ensure both imageability and targetability.  

2.5.5 Controlled Release  

The drug release profile has huge impact on clinical outcome of TACE. Due to the weak 

association between the drug and oil, Lipiodol emulsions render rapid drug release in vivo 

and quickly elevate plasma drug concentration. This burst release could lead to post-

embolization syndrome and inadequate treatments [101,102].  

In contrast, DEBs allow controlled drug release mainly through two mechanisms: (1) ion 

exchange between the positively charged drug and the same charge ions in the release 

medium and (2) diffusion of the drug through the polymeric network and into the release 

medium. Commercial DEBs including DC BeadTM, HepaSphereTM, Embozene 

TANDEMTM and LifePearl® are made of the ionic polymeric matrix, and the drug release 

typically follows the first mechanism [103]. The second release mechanism is prevalent 

in DEBs composed of non-ionic polymers, such as poly(vinyl alcohol) [104]. For drug 

delivery systems consisted of degradable polymers (e.g., PLGA and chitosan), other 

mechanisms such as erosion/ degradation of the matrix cohabits with the diffusion and 

can dominate over diffusion in many cases [105,106].   

DEBs with controlled release functions could improve safety and efficacy of TACE 

through maintaining the drug concentration in tumor tissue within a therapeutic range and 
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lowering its levels in the systemic circulation. In a phase II clinical trial, DEB-TACE 

group significantly decreased the drug-related systemic and liver toxicity versus the 

cTACE group. In addition, the response rate and disease control rate was higher in the 

DEB-TACE group [31]. 

2.5.6 Degradability 

As suggested by Ha et al., TACE was performed every 6-8 weeks to eradicate tumors 

until thromboses and/or metastases were developed or patients cannot tolerate more 

hepatic damage [107]. Degradable DEBs could be beneficial in TACE to (1) prevent 

extended periods of tumor hypoxia, as it can stimulate the expression of vascular 

endothelial growth factor (VEGF), which adversely promote tumor growth [108], and to 

(2) allow repeat treatments. 

Over the past decade, numerous multifunctional DEBs composed of degradable materials 

were explored (Table 2.5). Such systems are typically composed of hydrogel matrix with 

cleavable linkers that can disintegrate in the presence of acidic hydrolysis, enzyme or 

reactive oxygen species (ROS) environment in vivo [109]. Future work could be 

dedicated to the study of degradation rate, degradation products and the effect of 

degradation on angiogenesis.  

Table 2.5 Overview of the degradable drug-eluting microparticles. 
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a encapsulation efficiency (%) =
actual amount of DOX in microspheres

mass of feed drug
× 100%      

DOX: Doxorubicin, CMs: chitosan microspheres, ACMs: acetylated CMs, PLGA poly(lactide-co-

glycolide) (PLGA), MSs: microspheres, PEG: poly(ethylene glycol), PEGMA: poly(ethylene glycol) 

methacrylate, N/A: not available.  

2.5.7 Delivery of Multiple Therapeutics 

The co-delivery of multiple therapeutics with complementary modes of action represents 

another future direction for DEBs. TACE leaves the chemotherapy-damaged HCC cells 

under hypoxic conditions, transforming the cancer cells into a more aggressive phenotype 

[110]. Studies have demonstrated the embolization stimulated the expression of VEGF 

that will promote angiogenesis [111]. Systemic administration of antiangiogenic drugs 

such as thalidomide [111], vandetanib [112] and sorafenib/sunitinib (both are antitumoral 

and anti-angiogenetic) [113,114] combined with TACE have demonstrated satisfying 

angiogenesis-suppressing effects in animal models. It is therefore logical to 

locoregionally co-deliver these drugs with anti-tumor agents using DEBs [115]. Forster et 

al. loaded DC BeadTM with several drug combinations and compared their treatment 

safety and efficacy [116]. The co-delivery of two drugs displayed synergistic activity and 

reduced cellular toxicity versus the single-drug loaded DEBs.  Other types of therapeutics 

such as anti-inflammatory agents (e.g., ibuprofen) can be considered as they may reduce 

post-embolization inflammation and pain [117].  

2.6 Design of Multifunctional Materials for Drug 
Delivery 

Science, technology and medicine are continuously looking for new and improved 

treatments for diseases, which tremendously catalyzed research on less toxic, effective 

and cost-effective drug delivery options [118]. The mixing of known materials: 

nanoparticles and hydrogels, offers a simple and effective material strategy to address the 

clinical needs.  

The structural combination of nanoparticles with hydrogels creates a composite platform, 

often referred to as nanocomposite hydrogel or nanoparticle-hydrogel composite [119]. 

Such material bears great potential to integrate the desirable properties of both 
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components (i.e., nanoparticle and hydrogel) into a single system and enable additional 

functions through the nanoparticle-hydrogel interactions [120].  

Nanocomposite hydrogels can be prepared through four main routes. For the first route, 

nanoparticles are entrapped in the polymeric network by the gelation of hydrogel 

monomers in the presence of preformed NPs [119]. Alternatively, the incorporation of 

NPs can be accomplished after hydrogel gelation by allowing the polymeric network to 

swell and ‘breathe in’ the suspended NPs [121]. Moreover, the NPs could be introduced 

into the gel matrix by loading the hydrogels with the metallic nanoparticle precursors, 

followed by a reduction reaction to form metal NPs [122,123]. Another approach to 

prepare nanocomposite hydrogels is to use NPs as hydrogel crosslinkers (referred to as 

the grafting-onto method in section 2.7.2). Depending on the end groups, the particles are 

anchored in the hydrogels through covalent or non-covalent bonds (e.g., ionic or 

coordination interactions) with the polymeric chains [124,125].  

The properties of the nanocomposite hydrogels are dependent on the innate properties of 

the individual components and particle-hydrogel interactions. As shown in Figure 2.2, 

commonly used nanoparticles and hydrogels with their desirable properties are listed. 

Nanoparticles can bring many unique functions: magnetic responsiveness [99], diagnostic 

imaging [126], electrical conductivity [127], antimicrobial activity [128], and 

compatibility with both hydrophilic and hydrophobic drugs [129]. Hydrogels are known 

for their stimuli-responsive [130], mechanical toughness [131], bioadhesive [132,133] 

and controlled release properties [130]. To satisfy the application requirements, the 

materials and the preparation methods must be carefully selected. 
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Figure 2.2 Design and processing of a multifunctional hydrogel system for 

biomedical applications. 

The structural and dimensional diversity between the nanocomponents and hydrogels 

provide an effective strategy for the independent delivery of one or more drugs. A 

composite system containing PLGA nanoparticles and hyaluronan (HA)/methylcellulose 

(MC) hydrogel allowed fast drug release from the hydrogel while slow release from the 

nanocarriers [134]. This unique feature was adopted by Zhao et al. to deliver two types of 

drugs independently [135]. The authors achieved dual drug delivery by formulating PTX-

loaded PLGA NPs into temozolomide (TMZ)-loaded hydrogel. The co-delivery of PTX 

and TMZ resulted in a synergistic effect on glioblastoma cells.  In addition to loading one 

drug in hydrogel while the other in nanocarriers, an independent delivery can be achieved 

by incorporating distinct drug-loaded carriers. For example, Patel et al. prepared 

curcumin-encapsulated poly(L-lysine-b-L-phenylalanine) micelles and amphotericin B-

encapsulated poly(L-glutamic acid-b-L-phenylalanine) micelles, separately [136]. 

Hydrogel matrix was created by cross-linking the pendant groups of the polypeptides 

using genipin as a crosslinker. The different pH responsiveness of the two nanocarriers 

permitted independent and switchable release of the corresponding drug. The drug release 

rate can also be tuned by varying the dosage of genipin. The realization of dual drug 
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delivery might be helpful in post-surgical cancer management or wound healing, as it 

may provide a synergistic effect.   

The constitution of nanocomposite hydrogels can potentially address the challenges in 

which the nanoparticles or hydrogels are used alone. For example, the incorporation of 

lipophilic nanocarriers can potentially address the incompatibility of hydrogels with 

hydrophobic therapeutics. In turn, the presence of hydrogel can prolong the drug release 

from nanoparticles. Yu et al. utilized lipid nanocarriers to encapsulate a hydrophobic 

drug, quercetin, and reached an encapsulation efficiency greater than 97% [137]. The 

drug-loaded nanoparticles were then physically embedded in a mixture of carboxymethyl 

chitosan (CMCS) and Pluronic® F-127. The resulting delivery system provided a slower 

release rate than that of drug-lipid nanoparticles in the absence of hydrogel. This was 

believed to be contributed by the three-dimensional and water-dense polymeric network, 

which imposed a longer diffusion path and additional diffusion barrier to drug molecules 

[138]. In a comparative study, drug release was performed on two formulations: 

kartogenin (KGN)-loaded halloysite nanotubes (HNT) and KGN-HNT embedded in 

laponite (Lap) hydrogel (KGN-HNT-Lap) [139]. The release kinetics showed that the 

composite formulation greatly prolonged the KGN release compared with KGN-HNT 

system. The authors substantiated that the hydrogel could act as an inert medium to slow 

down KGN release. 

In addition, the nanoparticle and polymeric network interactions can render the composite 

material with unique properties that are not found in individual components. For 

example, Bannerman et al. developed a composite hydrogel comprised of IONPs and 

PVA [140]. The biostable PVA developed degradation behavior under an acidic and iron-

chelating environment. It was believed that the IONPs participated in the cross-linking of 

PVA. As a result, the gradual removal of IONPs would weaken the PVA matrix and 

allowed the degradation to occur. Nasajpour and coworkers fabricated a microfibrous 

membrane of zinc oxide (ZnO) NPs in PCL [141]. It was found that the composite 

membranes degraded faster than plain PCL membranes (pH 7.4 and 8.5). The authors 

believed that the incorporation of ZnO NPs created cavities within the polymer matrix, 
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which may facilitate water diffusion into the PCL. Moreover, the hydrophilic nature of 

ZnO NPs may also play a role in promoting PCL-water interaction [141].  

Taken together, the combination of nanoparticles with hydrogels provides a 

multifunctional platform for drug delivery applications. Such platform endows function 

integration from each component and can potentially overcome the limitations of 

nanoparticle and hydrogel systems when they are used independently. Moreover, it 

provides an additional degree of freedom in designing or tailoring delivery systems 

through nanoparticle-polymer interactions.  

With the employment of different material processing techniques, the biomedical 

application of nanocomposite hydrogels has gone far beyond what a macroscopic system 

can reach (Figure 2.2). Electrospraying [142], electrospinning [143], microfluidics [144] 

and 3D printing [145] have been used to produce drug delivery systems in the forms of 

fiber, microbead and scaffold. The diversity in the geometry could even expand the 

application spectrum of nanocomposite hydrogels into regenerative medicine and 

multimodal cancer treatments [146–148].  

2.7 Choice of Materials and Proposed Systems 

2.7.1 Poly(vinyl alcohol) 

Poly(vinyl alcohol) (PVA) is one of the most commercially important water-soluble 

thermoplastics in use. It has widespread pharmaceutical and biomedical applications, 

including drug carriers, scaffolds, wound dressing, contact lens and orthopedic implants 

[149]. 

PVA must be stabilized by crosslinking to form a hydrogel before many of its 

applications in biomedical research. Hydrogels are regarded as hydrophilic, crosslinked 

polymeric networks that are able to imbibe larger amounts of fluids and swell when 

placed in water or biological fluids without losing their structure [150].  The crosslinking 

strategies for PVA can be classified as physical and chemical crosslinking. 
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Chemical crosslinking use crosslinkers to form covalent bonds between PVA's secondary 

hydroxyl groups. Commonly used crosslinkers are monoaldehydes (e.g., acetaldehyde 

and formaldehyde),  bifunctional aldehydes (e.g., glutaraldehyde and glyoxal)[151] and 

dicarboxylic acids (e.g., citric acid and maleic acid) [152,153]. The hydroxyl groups of 

PVA react with the crosslinking agents to form intermolecular acetal bridges (bonds) 

where crosslinking could occur [154]. In addition to crosslinkers, sulfuric acid, acetic 

acid or methanol must be used to form the acetal bridges. PVA hydrogel formed by 

chemical crosslinking always retains toxic crosslinkers, which could result in unwanted 

biological effects. The residue of initiators, stabilizers and chain transfer agents could 

also hinder the in vivo application of PVA [155].  

High energy irradiation offers an alternative approach to prepare chemically crosslinked 

PVA. During this process, electron beam or 𝛾 irradiation is used to generate free radicals 

on the polymeric chain. The radicals would subsequently combine through covalent 

bonds to form a crosslinked network. The advantages of this strategy are: no crosslinkers 

are required; no residual impurities; the degree of crosslinking and the pore size of PVA 

gels are tunable by radiation dose and concentration of the polymer solution [156]. The 

limitation with this method is that the radiation exposure may damage the bioactive 

payloads if the crosslinking is performed after the loading [157].  

Physically crosslinked PVA prepared by freezing-thawing technique has generated 

significant interest in biomedical research due to the avoidance of toxic crosslinking 

agents and impurities. In a typical preparation, a homogenous PVA solution is placed 

under repeated freezing and thawing cycles. The gel obtained from such cryogenic 

treatment is often referred to as a cryogel [158]. Phase separation and crystallization are 

the major mechanisms for cryogel formation and impact independently during the freeze-

thaw cycles [159]. The formation of the crosslinked microstructure consists of multiple 

stages. During the freezing process, ice crystals formed within the homogenous PVA 

solution. The water volume expansion and phase separation expel PVA into close contact 

with each other and result in the formation of polymer-rich regions and polymer-poor 

regions. In the polymer-rich regions, PVA chains come into close contact with each 

other, facilitating the intra- and intermolecular interaction through hydrogen bonding 
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[159,160]. Repeated freezing processes allow polymer chains to fold into highly 

structured crystallites in PVA-rich regions as network junctions. In thawing stages, ice 

crystals melt, leaving water-filled micrometer-sized pores that make up the polymer-poor 

regions [158].  

A number of process parameters in the preparation could be used to tailor the structure 

and properties of PVA cryogels. These parameters include but are not limited to 

temperature limits of thermal cycling, number of freezing-thawing cycles, polymer 

concentration in the solution and molecular weight of PVA [161]. These parameters 

affect the properties through chain mobility and intermolecular hydrogen bonding, 

resulting in variations in the size and number of crystallites. PVA cryogels with more 

crystalline structures (higher crystallinity) generally display a smaller porosity and higher 

rigidity [155,158].  

Among all the characteristics, the diffusivity of PVA gels attracted particular attention in 

the areas of drug delivery. The porous polymeric network of PVA cryogels, which 

consists of crystalline regions (~3nm) and amorphous regions (~19 nm), regulates the 

transport process of drugs throughout the matrix [158]. The research concluded that the 

diffusion of solutes from hydrogels is related to the mesh size (i.e., the open space 

between polymer chains), which is inversely correlated to crystallinity. Hydrogels with 

higher crystallinity generally have smaller mesh sizes, which would impede the release of 

entrapped macromolecular drugs [162]. Small drug molecules with a dimension smaller 

than the mesh can move freely through the network, while the migration of larger 

molecules such as proteins will be retarded [163,164]. As such, the mesh size can be an 

effective tool for modulating drug loading and controlled release.  

The biodegradation, in contrast to the stability, represents an event where the materials 

degrade, the products become resorbed and disappear via metabolic routes [165]. 

Biodegradable/bioresorbable materials are particularly advantageous to be used for DEBs 

as they allow multiple benefits such as reduced tissue inflammation, controlled drug 

release, and repeatable interventions [166]. PVA-based commercial DEBs: DC Bead® 

and DC Bead LUMI® are not degradable. Luckily, material compounding and blending 
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provides two effective strategies to make PVA gels degradable. Bannerman et al. 

introduced IONPs to the PVA hydrogels through in situ co-precipitation [140]. IONPs 

were allowed to interact with PVA chains during the subsequent freezing-thawing cycles 

and provide a certain degree of crosslinking to PVA. As a result, the gradual dissolution 

of IONPs in an acidic environment would weaken the linkages and lead to the 

dissolution/degradation of PVA. Another approach to construct degradable PVA 

hydrogels is through blending. PVA has been blended with degradable hydrogels such as 

chitosan [167], sodium alginate [168] and gelatin [150]. As intermolecular hydrogen 

bonding is formed throughout the polymer blends, the degradation of the other polymers 

can unfold the crystal chains and result in PVA dissolution [169,170].  

2.7.2 Iron Oxide Nanoparticles 

Nanotechnologies have emerged as a powerful tool in cancer therapy and the diagnosis of 

diseases [171]. Among all the nanomaterials, iron oxide nanoparticles (IONPs) have 

gained particular interests due to their excellent magnetic properties and biocompatibility. 

IONPs have been extensively investigated for widespread biomedical applications, such 

as magnetic drug targeting, magnetic resonance imaging (MRI), gene therapy and 

hyperthermia/thermal ablation [172]. The most studied IONPs are magnetite (Fe3O4), 

maghemite (𝛾-Fe2O3) and hematite (𝛼-Fe2O3) nanoparticles (NPs).  

IONPs are commonly prepared by two chemical approaches: co-precipitation and thermal 

decomposition. Co-precipitation involves the simultaneous precipitation of ferrous (Fe2+) 

and ferric (Fe3+) ions in an alkaline environment. The mechanism of magnetite NPs 

formation can be described by the following reactions [122]: 

Fe3+ + 3OH− = Fe(OH)3 

 

(1) 

Fe(OH)3 = FeOOH + H2O 

 

(2) 

Fe2+ + 2OH− = Fe(OH)2 

 

(3) 

2FeOOH + Fe(OH)2 = Fe3O4 + 2H2O 

 

(4) 
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The overall reaction can be represented by: 

2Fe3+ + Fe2+ + 8OH− = 2Fe(OH)3Fe(OH)2 → Fe3O4 + 4H2O 

 

(5) 

The size, shape and composition of the magnetite NPs can therefore be tuned by altering 

the experimental parameters, including Fe2+/Fe3+ molar ratio [173], pH [122], 

temperature [174], choices of iron precursors (e.g., chloride, sulfate or nitrate) and 

alkaline agents (e.g., NaOH, NH4OH or isopropanolamine) [175–177]. While the co-

precipitation process is the most simple and efficient approach to synthesize IONPs, the 

products often develop a low degree of crystallinity and large size distribution [177].  

In contrast to co-precipitation, thermal decomposition is performed in a non-aqueous 

environment and can better control the size, shape, and polydispersity of IONPs [178]. In 

a thermal decomposition reaction, organic complexes of iron (e.g., iron oleate, iron 

oxyhydroxide or iron pentacarbonyl) decompose at elevated temperatures in the presence 

of non-polar solvents and surfactant capping agents [179]. Surfactants are crucial in this 

process because they modulate the nucleation and growth of the IONPs to ensure good 

mono-dispersity [180]. The concerns with thermal decomposition are high temperatures 

and toxic residuals of the organic chemicals employed [178]. In addition, the non-

hydrolytic nature of the reaction renders IONPs with hydrophobic surfaces, which 

imparts additional modification steps to make water-dispersible and stable IONPs that are 

suitable for biomedical applications [181].  Of note, for both synthesis routes, with the 

addition of oxidizing agents (e.g., HNO3), 𝛾-Fe2O3 or 𝛼-Fe2O3 can be synthesized [182].  

Iron oxide nanoparticles must be endowed with the specific characteristics required for 

targeted biomedical applications. The first and foremost properties are always 

biocompatibility and toxicity [183]. IONPs are generally considered as safe, 

biocompatible and non-toxic materials. The median lethal dose (LD50) of the bare IONPs 

is 300-600 mg/kg body weight. Dextran coating could effectively improve the stability 

and biocompatibility of IONPs and increase this number to 2,000-6,000 mg/kg [184]. 

Due to the broad safety margin of IONPs, a number of surface-coated IONPs have been 

clinically approved as MRI contrast agents, such as ferumoxide, ferumoxtran and 

ferumoxytol [185].  
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The biodistribution of IONPs is dependent on the administration route and 

physicochemical factors, such as size, porosity, charge and surface chemistry [186]. For 

intravenously injected IONPs, they are removed from the circulation majorly by the 

mononuclear phagocyte system. It has been reported that IONPs with a hydrodynamic 

size (dH) > 100 nm quickly accumulate in the liver and spleen through macrophage 

phagocytosis. In contrast, particles with dH <10-15 nm are most likely to be eliminated 

through the kidney in a non-phagocytizing pathway [183]. The internalized IONPs are 

metabolized in the lysosomes. The acidic pH environment and intracellular iron chelators 

(e.g., phosphate, nucleotides and dicarboxylic acids) can solubilize IONPs into free irons 

[187]. These irons would subsequently enter the intracellular iron pool and be utilized in 

the production of hemoglobin and transferrin, thereby becoming part of the normal iron 

pool [185]. The excess irons are stored in ferritin or exported by ferroportin, in order to 

maintain the iron concentration within limits to avoid toxicity [188,189]. 

Another crucial property to support the biomedical applications is the magnetic 

properties, particularly superparamagnetism, as it is highly relevant to MRI, hyperthermia 

and magnetic drug targeting. In the presence of a magnetic field, the magnetic moments 

of superparamagnetic materials could align with the direction of the field without any 

remanence magnetization. Fe3O4 and 𝛾-Fe2O3 NPs are the two major superparamagnetic 

iron oxide nanoparticles (SPIONs) employed in research and clinical studies. Their high 

saturation magnetization values (Ms 70-100 emu/g) [190–192] allow generation of large 

magnetic dipoles thereby local magnetic field gradient within the NPs, which will 

strongly alter the spin-spin (i.e., transverse, T2) relaxation times of surrounding water 

protons, resulting an enhanced imaging contrast [88]. Generally, SPIONs (~16-200 nm) 

are used as negative contrast agents for T2-weighted MRI, while smaller (<15 nm) IONPs 

are effective as T1 (i.e., positive) contrast agents [193]. In addition, the relatively high Ms 

values of SPIONs would also allow precise spatial control over the particles in the blood 

using an external magnetic field generated by a magnet or MRI coil. This activity has 

been translated into magnetic drug targeting and MRN, as described in section 2.5.4. The 

current challenges with MRN are in designing gradient coils to ensure stronger propelling 

force [194]. 
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Moreover, SPIONs can respond to an alternating magnetic field and convert the magnetic 

energy to heat within the particles. The heat generated can be used to elevate the 

temperature of the surrounding tissue. The effectiveness of hyperthermia relies on the 

fact that a temperature between 41-43 °C can cause tumor cell death, as they are less 

tolerant to heat than normal cells [195,196]. In hyperthermia treatments, SPIONs can be 

administered intravenously or intratumorally. Particle concentration should be large 

enough to deliver a sufficient heating effect.  

Despite the great potential of IONPs in diagnostic imaging and drug delivery, the 

limitations with using such particles as an individual delivery system are also obvious: 

poor colloidal stability, short blood circulation, burst release, limited drug loading 

capacity, plasma protein adsorption, and unregulated biodistribution and 

pharmacokinetics [183].  

To address these limitations and further expand the applications of IONPs, a composite 

platform named ferrogel (i.e., the combination of hydrogels with IONPs) was developed 

[197]. Ferrogels can be prepared mainly via three routes: blending, in situ co-

precipitation, and grafting-onto. They can be further classified into polymer-first (in situ 

co-precipitation) and particle-first (blending and grafting-onto) approaches [198]. The 

scheme for the three approaches is shown in Figure 2.3. Depending on the choice of 

materials and the preparation methods, IONPs can form different interactions with the 

hydrogel matrix. The blending method consists of a sequential preparation, where IONPs 

are synthesized separately and added to a hydrogel precursor solution. The mixture is 

then stabilized by the crosslinking of the hydrogel. While being facile, the blending 

method fails to achieve a uniform nanoparticle distribution within the polymeric network. 

Moreover, particles remain attached mainly through physical entanglement and hydrogen 

bonding with the polymer chains [199]. Due to the limited particle-hydrogel interactions, 

IONPs might diffuse out from the hydrogel upon swelling [200]. In the in situ co-

precipitation process, the hydrogel matrix acts as the reactor. In detail, hydrogels are 

firstly crosslinked through chemical or physical routes. The IONP precursors (Fe2+ and 

Fe3+) are prepared in a stoichiometric ratio and mixed with the crosslinked hydrogel to 

form a homogenous solution [122]. The gels are subsequently immersed into an alkali 
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solution for the IONPs to precipitate. The mechanism with which IONPs are immobilized 

in the gel was not fully elucidated. However, it is believed that the IONPs participate in 

the polymeric network formation through hydrogen bonding with the hydrogel chains 

[140,201,202]. In situ co-precipitation provides improved IONP dispersion in the 

hydrogels. However, this method is limited to alkali-resistant polymers and should also 

be avoided in hydrogel systems containing bioactive compounds, such as proteins and 

cells, as the harsh environment may damage their bioactivity [203]. Compared to 

blending and in situ precipitation methods, the grafting-onto approach provides particle-

hydrogel interactions through covalent bonds in addition to hydrogen bonds and van der 

Waals forces [204]. In the grafting-onto method, IONPs serve as the crosslinkers to the 

hydrogel monomers. In detail, IONPs are initially functionalized with reactive moieties 

(e.g., -NH2 and -COOH). The nanoparticles are then added into a monomer solution to 

form covalent bonds with the monomers when polymerized. As the IONPs are covalently 

bonded to the network, the stability of ferrogel is guaranteed [125]. In the future, the 

grafting-onto method would benefit from research efforts in simplifying the preparation 

cycle and fabrication process [200].  

 

Figure 2.3 Schematic of ferrogel preparation. (A) The blending method. (B) The in 

situ precipitation method. (C) The grafting-onto method. 
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Overall, IONPs have been helpful in the development of multimodal therapeutic 

strategies, enabling a simultaneous exertion of therapeutic effect, hyperthermia and 

diagnostic imaging. Further research could focus on the development of self-healing 

materials and magnetically sensitive smart hydrogels [203]. Despite the wide range of 

applications, the cytotoxicity and long-term fate of magnetic materials, including 

individual particles and ferrogels, have yet to be fully revealed. As such, in vivo studies 

using animal models should be continued to supplement in vitro findings.  

2.7.3 Silica Particles 

Considerable research efforts have been made in developing silicate materials for 

biomedical applications. Silica (also known as silicon dioxide, SiO2) has been "generally 

recognized as safe" by the FDA for more than five decades and is widely used in the food 

industry as a color or formulation stabilizer [205,206]. Among all types of silica, SiNPs 

plays a particularly critical role in fulfilling the rigorous clinical requirements for disease 

diagnosis and controlled drug release. The presence of abundant surface silanols (Si-OH) 

allows the conjugation of various organic functional groups, rendering SiNPs with a high 

level of versatility for drug delivery applications [207]. 

SiNPs are predominantly synthesized via the sol-gel process. Both hydrolysis and 

condensation can be acid- or base-catalyzed. Sol-gel process typically involves the 

hydrolysis and condensation of alkoxide precursors [e.g., Si(OC2H5)4 or TEOS] in the 

presence of alcohols (e.g., ethanol), water and catalysts (e.g., NaOH or HCl). The 

simplified reactions that form SiNPs can be represented by [208]:  

Hydrolysis: Si-(OR)4 + H2O ⇌ HO-Si-(OR)3 + ROH 

 

(6) 

Condensation: (OR)3-Si-OH + HO-Si-(OR)3 ⇌ (OR)3-Si-O-Si-(OR)3 + H2O 

 

(7) 

where R=alkyl group 

The reaction forms a discrete, colloidal suspension (i.e., sol). The colloidal particles (1-

100 nm) within the sol then condense to form an interconnected, rigid network with pores 

and polymeric chains (i.e., gel). The viscosity of the solution increases sharply at gelation 

and can eventually form a solid object in the shape of the mold [209]. The final product 
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of the sol-gel process is profoundly affected by the rate of hydrolysis and condensation 

reaction [210]. In an acidic environment, hydrolysis is slow. The silica tends to form a 

linear, weakly crosslinked network. Gelation proceeds by the formation of additional 

branches and the entanglement of polymeric chains. As a result, acid-catalyzed sol-gel 

generally leads to a gel structure [211]. In contrast, hydrolysis and condensation are fast 

in the basic-catalyzed process [208]. This results in the rapid formation of highly 

branched and non-interpenetrable clusters [209].  The clusters collide and lead to larger 

aggregates through hydrogen bonding and van der Waals interactions. At a critical 

concentration, the aggregates will precipitate in the form of discrete species as SiNPs 

[210]. Various mechanical (e.g., centrifugation) and physical (e.g., oven drying and 

alcohol dehydration) techniques can accelerate the water removal hence the formation of 

SiNPs [211].  

As the pH conditions lead to silica networks with distinct properties, it is not surprising to 

see that each catalytic condition has its own characteristic applications. Acid-based sol-

gel synthesis is predominately utilized in the development of nanocomposite hydrogels. 

Namely, the reaction occurs in the presence of hydrogels to form SiNPs-embedded 

hydrogels. The relatively slow hydrolysis step would result in molecular chains contain 

sufficient silanol groups to participate in hydrogen bonding with the hydrogel polymers 

[209]. The formation of SiNPs-hydrogel interaction affects the intramolecular bonding of 

the polymeric chains; therefore could help modify the mechanical properties and 

permeability of the gels [212–214]. For example, a silica/PVA composite hydrogel was 

prepared by in situ sol-gel synthesis [213]. SiNPs possessed good dispersion in the 

hydrogel matrix and developed strong interaction with PVA through Si-O-C bonds. 

Results showed that SiNPs served as a stiffness enhancer to PVA. A greater mass 

percentage of SiNPs in the PVA increased Young's modulus by up to ~14 folds. 

Similarly, silica/PVA nanocomposite hydrogel was prepared and electrospun into 

nanofibers [215]. The author found that the in situ formation of SiNPs contributed to the 

crosslinking of PVA, which reduced the -OH available for hydrogen bonding with water. 

As a result, the PVA exhibited improved aqueous stability. 
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Base-catalyzed mechanism is widely employed in the preparation of discrete SiNPs. Such 

a process is considered simple, fast and allows precise size and morphology control 

[216]. Stöber and Fink pioneered this approach in synthesizing non-porous silica spheres 

in the range of 50-2000 nm [217]. The authors found that particle size was dependent on 

the type of alcoholic solvents, silica precursors, and the concentration of water and 

ammonium hydroxide. The resulting non-porous silica particles are extensively used as 

hydrogel nanofillers [218], stabilizing agents [205,206] and matrix for protein adsorption 

study [219]. The applications of non-porous silica particles have been extended into drug 

carriers after surface modification with appropriate functional groups [220].  

Base-catalyzed sol-gel process has also been adopted to prepare mesoporous SiNPs (i.e., 

SiNPs with pores sizes in the range of 2-50 nm) [221,222]. Amphiphilic copolymers or 

cationic surfactants are essential in the synthesis of porous SiNPs, as they serve as pore 

template and determine pore size. Templates with longer chain lengths typically result in 

larger pores [223]. As the drug transportation within non-functionalized porous SiNPs is 

through diffusion, the pore size and volume must be carefully designed to modulate the 

payload loading and release. Greater pore size and volume generally result in larger 

loading and faster release than particles with smaller pores [224]. This could be explained 

by the steric hindrance effects inside the mesopores [225]. Mesoporous SiNPs with extra-

large pores (~25 nm) are extremely helpful in the loading and release of proteins, 

enzymes and DNA vaccines [223,226,227]. 

Sol-gel SiNPs, either in porous or non-porous form, are semicrystalline material and 

susceptible to hydrolytic attack, which encourages the degradation and clearance of 

SiNPs in vivo. The degradation process contains multiple stages: hydration, hydrolysis 

and ion exchange. The silica framework will eventually be converted to silicic acid 

(Si(OH)4, pKa 9.6), a water-soluble compound [228]. The rate of dissolution is largely 

dependent on the physicochemical properties of the particles [229], pH [230] and 

composition of the dissolution media [231]. Silicic acid is non-toxic and has a natural 

promoting effect on bone mineral density [232]. The degradation product can diffuse 

through the bloodstream or the lymphatic system. The ultimate excretion is through urine 

by the kidney [233]. 
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In conclusion, SiNPs have gained growing interests as an advanced platform for 

biomedical applications. For future directions, more studies are expected in the 

evaluation of the toxicity, biological stability, and efficacy of SiNP-based delivery 

systems. Innovations could be made in designing targeted, stimuli-responsive platforms 

for gene and vaccine delivery [234]. 

2.7.4 Proposed Systems 

This thesis covers three multifunctional delivery systems. The research work of Chapter 3 

and Chapter 5 is based on composite hydrogel microparticles, while Chapter 4 contains 

work on the silica nanoparticles.  

Chapter 3 PVA-IONP microparticles 

Chapter 3 describes a multifunctional ‘nano-on-micro’ drug delivery system. Figure 2.4 

shows the composition of the system. In detail, magnetite (Fe3O4) nanoparticles were 

immobilized in the PVA matrix via in situ co-precipitation followed by freezing-thawing 

process. The targeted particle size is 100-300 𝜇m, as the beads in this size range are 

preferred in clinics due to the effective local necrosis and less systemic complications 

compared to larger ones [62–64]. 

 

Figure 2.4 Schematic drawing of a multifunctional PVA-IONP microparticle. 

The PVA-IONP microbeads are promising candidates for embolic DEBs in TACE 

therapy due to the following reasons: the avoidance of toxic chemical crosslinkers; the 
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ability to embolized tumor-supplying vessels; drug loading and controlled release 

capacities; the co-localization of drug with contrast agent; the potential for targeted drug 

delivery through image-guided magnetic resonance navigation (MRN) of the 

superparamagnetic microparticles; the possibility for repeatable TACE treatments, as the 

degradation of microbeads can occur with the dissolution of IONPs and the disintegration 

of PVA matrix. 

Chapter 4 SiO2 nanoparticles 

The protein delivery system is based on non-porous SiNPs, as shown in Figure 2.5. 

SiNPs were synthesized by Stöber process and loaded with bioactive proteins via 

adsorption. SiNPs interact with proteins through hydrogen bonding and electrostatic 

interactions. The targeted size of the protein carrier is 100-400 nm, as it can provide a 

reasonable residence time on the ocular surface [235–237]. Such delivery system can 

potentially fulfill several roles: protection from protein decomposition, sustained release 

and tunable release profile. The system is hypothesized to be helpful in topical delivery 

of protein therapeutics to treat dry eye disease by reducing the dosing frequency and 

allowing personalized drug dosage.  

 

Figure 2.5 Schematic drawing of the bioactive protein delivery system. 
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Chapter 5 PVA-SiO2-IONP microparticles 

The formulation described in this chapter is a continuation and optimization of the PVA-

IONP system. The multifunctional drug carrier in Chapter 5 is comprised of a PVA 

matrix, loaded with IONPs and SiO2 microparticles (Figure 2.6). Similar to the PVA-

IONP system, PVA-SiO2-IONP microparticles are anticipated to be beneficial for 

application as DEBs for TACE treatment.  

 

Figure 2.6 Schematic drawing of a multifunctional PVA-SiO2-IONP microparticle. 

2.8 System Assembly using Microfluidics 

Microfluidics will be used to produce our microparticulate multifunctional drug carriers. 

The materials and fabrication techniques for microfluidic chips, droplet generation 

mechanisms, and channel configurations will be reviewed in this section. The advantages 

of using microfluidics in fabricating drug delivery systems will also be discussed. The 

detailed fabrication approach will be described in Chapter 3 and Chapter 5. 

2.8.1 Materials and Fabrication Techniques for Microfluidic Chips 

Poly(dimethylsiloxane) (PDMS) is the most common microfluidic material employed in 

research laboratories due to its convenient fabrication by soft lithography and reasonable 

cost [238]. Devices with 3D structures or multilayers can be prepared via curing 

individual pieces at mild temperatures (40-70 °C) and stacking [239]. The ability to 

exchange oxygen and carbon dioxide expands its application into cell-related research 
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(e.g., biological interactions, cell sorting, bioanalysis and diagnostics) [240–242]. 

However, the alkyl groups attached to PDMS’s Si-O backbone lead to nonspecific 

adsorption and swelling. More specifically, hydrophobic molecules and biomolecules 

could adhere to channel walls and lead to channel clogging and inaccuracy in the 

measurements [243,244]. Another drawback is the incompatibility with organic solvents 

[245]. Upon exposure to organic solvents such as acetone, swelling of the channel would 

affect droplet generation and device deformation [246]. Surface modifications of the 

PDMS with hydrophilic moieties can address these issues, but the challenges arose in 

maintaining the long-term stability and hydrophilicity of the modified surface [247,248].  

PMMA has gained interests as an alternative to PDMS. PMMA is particularly useful for 

disposable chips because of its fairly good rigidity, chemical resistance, transparency and 

biocompatibility [249].  In general, PMMA microfluidic microdevices consist of channel 

plates and cover plates that need to be sealed together. The channel plate can be created 

using a wide range of techniques [250], including hot embossing, laser ablation, 

imprinting, molding and solvent etching, making them desirable for mass manufacturing. 

However, creating uniform surface bonding of the two plates without deforming the 

channel structure represents a significant barrier for industrial fabrication. A number of 

approaches have been explored: thermal, solvent, adhesive, or polymerization bonding 

have demonstrated robust bonding [250]. Similar to PDMS, biocompatible PMMA 

microdevices with predefined geometry are extremely useful in bio-related fields. 

However, the hydrophobic nature of PMMA resulted in nonspecific adsorption and poor 

wetting properties at the channel wall. To overcome these challenges, various surface 

modification [251] and bulk modification [252] methods been developed. 

Hydrogel is another class of material that can be used to make microfluidics. Chips made 

from hydrogels have particular interests in biological applications and biomimicking due 

to their similarity with extracellular matrix (ECM). The porous, 3D and water-rich 

polymeric environment allows the diffusion of cell nutrients and growth factors, making 

it a promising substrate for cell culture and encapsulation [253]. Gel-based microfluidic 

devices can be fabricated by soft lithography, flow solidification and gel 

photopolymerization [254]. The limitations with gel-based microchips are: (1) low spatial 
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resolution in microfabrication (micrometer scale) compared with other polymers 

(nanometer scale), (2) limited capacity supporting thick layer cell culture, (3) channel 

sealing (surface bonding) is difficult [254–256]. Efforts in exploring alternative 

micropatterning and integrative methods as well as materials could possibly address these 

challenges in the future.  

Inorganic materials, including silicon and glass have been used for microchips even 

before the concept of 'microfluidics' has emerged. Silicon and glass microfluidic channels 

are typically made by photolithography and chemical etching [257]. Due to their good 

thermostability and solvent resistance, silicon/glass microdevices become a key platform 

for lab-on-chip design, droplet generation and bio-separation [258]. The drawbacks with 

such devices are associated with the sealing of the two plates and the relatively expensive 

and time-consuming fabrication process [257,259]. A picosecond pulsed laser system has 

been adopted and demonstrated feasibility in addressing the issues mentioned above 

[259].  

2.8.2 Droplets Generation Mechanisms 

Droplet microfluidics (or droplet-based microfluidics) is a subdivision of microfluidics 

that aims at producing and manipulating individual droplets. The generation of slugs or 

discrete volumes in microchannels replies upon immiscible multiphases [260]. A 

continuous phase is referred to the liquid in which droplets flow, while a dispersed phase 

is the droplet phase. 

The mechanisms of droplet formation have been studied in depth. Reynolds number (Re) 

is the dimensionless parameter in fluid mechanics used to predict flow patterns [261]. It 

correlates the relative effect of inertia forces to viscous forces [262]. Re is defined as: 

Re =
ρDν

μ
 

(8) 

where 𝜌 is the density of the fluid, D is the diameter of the passageway, 𝜈 is the velocity 

of the liquid, and 𝜇 is the viscosity of the liquid. Laminar flow represents a flow with 

parallel streamlines without disruption. Turbulent flow characterizes non-linear, irregular 

fluctuations for mixing in the liquid. The limit of laminar flow between laminar and 
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turbulent flows is marked by Re of ~1,800-2,000 [263]. As the diameter D and velocity 𝜈 

are relatively small for the fluids in the microchannels, droplet microfluidics typically 

falls in a low Reynolds number (usually much less than 100, often less than 1.0) laminar 

regime [264,265]. As such, inertial effects in the flow are negligible-the flow is 

dominated by viscous stresses [265].  

In a microfluidic device, the confinement of the channels enhances the surface-to-volume 

ratio of the fluids, which consequently leads to the enhancement of surface tension and 

fluid viscous force [264].  The negligible inertial effects leave interfacial tension and 

viscosity in competition with each other [266]. When the two immiscible phases were 

introduced together, the continuous phase disrupts the dispersed phase due to the viscous 

forces. The mixing would introduce nonlinearity and instability at the junction of two 

microchannels where the dispersed phase would break into droplets or plugs due the 

tendency of surface tension to minimize the interfacial area [267,268].  

The relative effect of viscous force and surface tension can be measured by the capillary 

number Ca: 

Ca =
μν

γ
 (9) 

where 𝜇 is the viscosity of the continuous phase, 𝜐 is the superficial velocity of the 

continuous phase, and 𝛾 is the interfacial tension or surface tension between the two 

fluidic phases. At low capillary numbers, surface tension dominates, and the droplets 

remain spherical (dripping model). As the Ca increases, viscous forces increase. The 

shear stress applied to the droplet is large enough to overcome the surface tension. The 

initially spherical droplet becomes ellipsoidal plugs and eventually breaks into smaller 

droplets further downstream (jetting model) [269–271]. The balance of the two forces 

determines the flow pattern whether droplets (dripping) or plugs (jetting) form under a 

given condition. In general, droplets generated in dripping regimes are smaller in 

diameter with narrower size distribution [271,272]. As such, the dripping mode is 

preferred in droplet microfluidics. 



47 

 

 

2.8.3 Geometrical Design of Microchannels 

The droplet generation mechanisms are adapted to guide the microparticles fabrication. 

Both passive and active techniques can be used to produce uniform and evenly 

distributed droplet volumes ranging from femtoliters to nanoliters. In active droplet 

production, microchannels in predesigned configurations are required to enhance the 

viscous shear force to secure the continuous formation of droplets.  

Three primary microfluidic channel geometries are used: co-flow, T-junction and flow-

focusing (Figure 2.7). In a co-flow geometry, also called coaxial flow, a cylindrical glass 

capillary is coaxially inserted into square glass tubes. The dispersed phase flows in the 

capillary in parallel to the continuous phase placed in a larger-diameter glass tube. The 

continuous phase surrounds the dispersed phase, and the droplets are generated mainly by 

the instability of the dispersed phase due to surface tension (Rayleigh-Plateau instability) 

[268]. The size of droplets can be tuned by the fluid properties and flow rates [271]. The 

cylindrical geometry of the center capillary limits the geometry of co-flow devices to a 

3D architecture. In contrast, the T-junction and flow-focusing are applicable in planar 

geometries but possess more complicated droplet breakup mechanisms [266]. T-junction 

design is a subdivision of cross-flow designs, where the dispersed phase is sheared at an 

angle θ (0° < θ < 180°). In the T-junction category, the dispersed and continuous phase 

flow in orthogonal channels meet at a cross-junction. The viscosity of two fluids, 

interfacial tension and channel geometries can affect the droplet formation [273]. The 

flow-focusing design is similar to co-flow. The continuous streams flow on both sides of 

the dispersed phase to a focus unit, where the three streams are forced through in a 

condensed passageway. The extended pressure and shear stress generated by the 

continuous phase breaks the dispersed phase inside or downstream of the orifice [274]. 

The droplet size can be controlled by the viscosity of the two phases, flow rates and inlet 

pressure [275]. In general, passive technique allows the coefficient of variation (CV), 

defined as the standard deviation in size divided by the mean droplet diameter, to remain 

less than 3% [276]. 
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Figure 2.7 Schematic illustration of different channel geometries of a microfluidic 

device. (A) Co-flow; (B) T-junction; and (C) flow-focusing. Solid arrows indicate the 

flow direction. 

Active methods implement external forces to exert local actuation to break up the fluid 

stream physically. The co-flow, T-junction and flow-focusing channel geometries still 

apply, and additional pneumatic, acoustic forces and magnetic forces are introduced to 

produce droplets on demand [277]. Active mixing purposely creates chaotic motion in the 

device, which promotes mass transfer. This expands the application of microfluidics into 

bioreactors for cells or bacteria since it accommodates fast and adequate oxygen and 

nutrients transfer [278]. 

2.8.4 Droplet Microfluidics in Drug Delivery 

Droplet-based microfluidics enables precise and reproducible production of micro- or 

nanocarriers as drug delivery systems. This technique renders several advantages over 

conventional bulk production, including tailored particle size and encapsulation of 

various types of drugs. 

Tailor microparticle size to tumor arterial anatomy 

DEB size is one of the key parameters that would affect the procedure outcome. Animal 

studies have suggested that smaller size DEBs (70-150 𝜇m) had deeper tissue penetration 

and greater drug coverage (i.e. amount of tissue exposed to drug) than the beads in the 

standard size range (100-300 𝜇m) [279]. Eddy and Casarett claimed that tumor vessels 

maintained a capillary-like structure. Capillaries are typically less than 12 𝜇m in 

diameter, and some vessels that could progressively dilated and reached diameters ~200 

𝜇m based on their studies on the hamster [280].  It has been advised that the human 

tumor blood vessels were much larger in diameter than what would be predicted based on 

(A) Co-flow (B) T-junction (C) Flow-focusing
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animal models [281]. Moreover, the diameter of tumor is also histology- and location-

dependent [18]. These variants in tumor vasculature suggest that providing DEBs in 

several size ranges is necessary. 

Microfluidic fabrication allows reproducible fabrication of particles of size over a broad 

size range (10-1000 𝜇m). Particles of different sizes can be simply prepared by tuning the 

flow rates or properties of the dispersed phase or continuous phase [282,283]. The 

particles are highly uniform in size with CV < 3% [276]. Microparticles in defined 

geometry could be advantageous in DEB application, as they can provide predictable 

drug eluting profile and embolization outcome.  

Encapsulation of various types of drugs 

In microfluidics, drug molecules could be encapsulated into the carriers through single 

emulsions, multiple emulsions or hierarchical porous particles. For single emulsion 

templated particles, drugs can be suspended in a dispersed phase and encapsulated into 

the particles through forming oil (O)-in water (W) or W/O emulsions [284,285]. For 

double emulsion systems, W/O/W configuration is typically used. Drugs are encapsulated 

in the internal water phase of the double emulsion and can improve the stability and 

solubility of the drugs [286,287]. In addition to encapsulation, porous nanoparticles-in-

microcarriers provide another approach for high drug loading via physical adsorption at 

pore surfaces [288,289].  

Microfluidics techniques expand the material selection and ease the loading of drugs with 

various properties. In conventional preparation of delivery systems, hydrophilic drugs are 

generally loaded into hydrogel particles [106], while lipophilic drugs are mostly limited 

to liposomes and solid lipid nanoparticles [290]. With the aid of microfluidic techniques, 

both hydrophilic and lipophilic payloads can be encapsulated into the delivery vehicles 

[144]. Multiple drugs loading can be realized by microfluidic fabrication of 

microparticles with multiple compartments for separate encapsulation of drugs. For 

example, core-shell particles were prepared via double emulsion templates, hydrophilic 

therapeutics DOX was loaded into gelatin methacryloyl (GelMA) cores, while 

hydrophobic actives camptothecine (CPT) was loaded into the PLGA shells [291]. 
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Similarly, Winkler et al. prepared Janus particles for simultaneous delivery of a 

hydrophilic-hydrophobic drug pair. Acetaminophen (APAP, hydrophilic) was entrapped 

in inner water droplets within an oil phase containing naproxen (NPX, hydrophobic), the 

W/O emulsion was then stabilized in another aqueous solution to form a W/O/W 

emulsion [292]. He et al. fabricated dual-/triple-compartmental microparticles using a 

novel W/W template [293]. Each compartment is a W/W droplet consist of calcium 

alginate (Ca-Alg) as the shell material and sodium carboxymethylcellulose (CMC) as the 

inner fluids. The compartments were aligned by needles and then fixed via Ca2+ 

crosslinking in the outer layer of Ca-Alg. The dual compartments in the resultant capsules 

were used separately to load two distinct model drugs.  

2.9 Clinical Applications and Future Translational 
Opportunities 

Multifunctional microparticles offered several improvements to the current DEBs (Table 

2.6). Namely, the prepared system could be delivered through a catheter or even MRN. 

The co-localization of contrast agent and drug allows a more precise tracking of the drug 

distribution relative to the tumor site through MR imaging. This would provide useful 

information for intra- and post-procedural evaluation of the TACE procedure. Moreover, 

the delivery system can potentially render a controlled drug release to maintain an 

effective local drug dosage. The IONPs and silica particles participate in the crosslinking 

of PVA and render additional functionality through the particle-PVA interactions. More 

specifically, the composite hydrogel would disintegrate as the IONPs and (or) silica 

dissolve, which would allow the elimination from the embolization site with due course 

of time, which would allow repeatable TACE treatments. Besides, one or more drugs can 

be possibly loaded. In addition to treating the intermediate HCC, multifunctional 

microparticles can be applied in managing colorectal liver metastases [294]. 
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Table 2.6 Comparison of current DEBs with multifunctional microparticles. 

 

New polymeric platforms must be developed to allow the integration of multiple 

desirable functions described in section 2.5. The development of novel material strategies 

will also expand the drugs amendable to hydrogel-based systems. A combinational 

treatment regimen might be possible with a wide range of functional particles and 

bioactive molecules becoming compatible with the DEBs. Several microparticulate 

platforms have demonstrated the viability for combined regimens, including 

hyperthermia-TACE [295] and stem cell therapy-chemotherapy [296]. These may 

improve the clinical outcome of the treatments.  

Multifunctional nanoparticles provide protection and sustained availability to therapeutics 

compared to free dosage forms. Improvements could be made through surface 

functionalization and introducing porous structure [211]. Nanocarriers can be used alone 

or incorporated into existing platforms, such as hydrogels or contact lenses to construct 

drug-eluting medical devices. Future studies on the safety and effectiveness must be 

warranted to validate their potential benefits. 
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Chapter 3  

3 Development of Multifunctional PVA-IONP 
Microparticles for TACE1 

3.1 Introduction 

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third 

most common cause of cancer-related death [1]. Potentially curative treatments, including 

liver transplantation, surgical resection, or radiofrequency ablation, are reserved for 

patients with early-stage HCC. However, 50% of patients with HCC are diagnosed at 

intermediate or advanced stages due to the poor prognosis, precluding curative-intent 

options [2]. 

Transarterial chemoembolization (TACE) plays a vital role in the clinical management of 

HCC. According to the most frequently used BCLC algorithm for HCC, TACE is 

recognized as first-line therapy for patients with multinodular HCC and preserved liver 

function (BCLC stage B) [3,4]. Besides, TACE is commonly recommended as the 

bridging therapy to downstage patients waiting for liver transplantation [5]. The role of 

TACE in HCC management continues to evolve, as TACE was evidenced to be an 

effective option in managing recurrent HCC after curative treatments [6,7].  

TACE combines transarterial embolization (TAE) with the infusion of 

chemotherapeutics. It can be performed through conventional TACE (cTACE) and drug-

eluting beads TACE (DEB-TACE). cTACE involves the catheter-guided delivery of 

antineoplastic drugs using Lipiodol-based emulsion, followed by administration of 

embolic agents to achieve a synergistic effect of drug cytotoxicity and ischemia [8]. For 

DEB-TACE, embolic particles are loaded with anti-tumor drugs before their transarterial 

administration. As such, a simultaneous exertion of both therapeutic and embolic effects 

can be possible. Although clear evidence of the superiority of DEB-TACE over cTACE 

 

1
 A version of this chapter will be submitted to Polymers under the title: Development of multifunctional 

poly(vinyl alcohol) hydrogel microparticles for transarterial chemoembolization therapy. Xinyi Li will be 

the first author. 
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is yet to be found, the former technique offers a favorable pharmacokinetic profile with 

an improved loading capacity and release profile, along with a more standardized and 

repeatable hospital protocol [9–12]. 

The most commonly used commercial DEBs are DC BeadTM (Biocompatibles, United 

Kingdom) and HepaSphereTM (BioSphere Medical, France), Embozene TandemTM 

(Varian Medical Systems, United States) and LifePearl® (Terumo International Systems, 

Belgium). These products are non-degradable, making repeat treatment impossible. Also, 

imaging contrast agents have to be administered separately, leaving the location of the 

beads and therefore the anti-tumor drugs rather imprecise. 

Over the past decade, there has been a growing interest in designing magnetic and 

degradable DEBs. Magnetic characteristic allows post-operational evaluation of particle 

biodistribution and tumour response. Superparamagetism would be preferred as it permits 

magnetic resonance imaging (MRI)-guided TACE. Degradable DEBs could address the 

concerns of non-target embolization, ischemia-induced angiogenesis, and allow 

repeatable treatments [13,14]. In addition, the integration of multiple functions, including 

embolization, imageability, controlled release and degradation, would ideally permit a 

safer, more effective and repeatable TACE treatment.  

 

Physically crosslinked PVA hydrogel prepared using the low temperature thermal cycling 

(LTTC) process has many desirable properties for DEB-TACE therapy [15]. However, 

PVA hydrogel is known to be biostable and nondegradable. Our prior work demonstrated 

that it is possible to design a ‘degradable’ PVA hydrogel with incorporated iron oxide 

nanoparticles (IONPs) using the LTTC process. In this composite system, IONPs 

contribute to the crosslinking of the PVA-IONP hydrogel. Since IONPs can degrade and 

become soluble under physiological conditions and the slightly acidic tumor 

environment, the composite hydrogel would ‘degrade’ via removal of the crosslinks and 

redissolution [16]. The anti-cancer drug, doxorubicin (DOX), can be loaded into this 

hydrogel system for locoregional delivery. 
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In this work, we first fabricated iron-containing PVA hydrogels in the form of 

microbeads using the microfluidic technique. Superparamagnetic iron oxide nanoparticles 

were formed and anchored into the microbeads through in situ co-precipitation and LTTC 

process. The morphological and structural characteristics of the resulting PVA-IONP 

microparticles were examined by electron microscopy. The magnetic properties, MRI 

contrast effect, and degradation were evaluated. Finally, DOX loading and in vitro 

release were studied in simulated healthy tissue and tumorous conditions. PVA-IONP 

microparticles obtained can successfully integrate multiple functions into a single system, 

therefore it could be promising to be used as DEBs for TACE. 

3.2 Materials and Methods 

3.2.1 Materials 

Poly(vinyl alcohol) (MW 146,000-186,000, 99+% hydrolyzed), iron (III) chloride 

(FeCl3), iron (II) chloride tetrahydrate (FeCl2∙4H2O) and phosphate-buffered saline were 

purchased from Sigma-Aldrich, sodium hydroxide (NaOH) pellets and Dulbecco’s 

modified Eagle’s medium (DMEM) were obtained from ThermoFisher Scientific. 

Hydrochloric acid (36.5%-38%) was acquired from Caledon. Span80 was obtained from 

Fluka. Doxorubicin hydrochloride was purchased from Cayman Chemicals. Phosphate 

buffer solution (pH 5.5) was prepared by a procedure reported elsewhere [17]. The rest of 

the chemicals were all in ACS reagent grade and purchased from Sigma-Aldrich. 

3.2.2 Assembly of the Microfluidic Device 

A planar microchannel was milled out of a poly(methyl methacrylate) (PMMA) slab (50 

x 25 x 12 mm) with a flow-focusing configuration. The continuous phase flow channel 

dimensions were about 500 m in width, while the measured channel dimensions for the 

dispersed phase were about 200 m. A second PMMA slab (50 x 25 x 12 mm) was 

sealed onto the slab containing channels by screws. Liquids were supplied to the 

microfluidic channel separately using two syringe pumps (NE-1000, New Era Pump 

Systems Inc.). A 0.038” outer diameter tubing (Intramedic polyethylene tubing, BD) was 

connected to the outlet hole to guide the droplets.  
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3.2.3 Preparation of Dispersed Phase 

Dispersed phase containing IONP precursors were prepared as described elsewhere [16]. 

Briefly, a 5.88 wt.% PVA stock solution was prepared by dissolving PVA powder in a 

reactor at 90°C for 3 hours. Iron chloride solution was prepared by dissolving 6.20 g 

FeCl3 and 3.80 g FeCl2•4H2O in 20 mL distilled water. The iron solution and PVA 

solution were then mixed proportionally to make a final mixture containing 5 wt.% PVA, 

1 wt.% FeCl3 and 0.6 wt.% FeCl2•4H2O. The resultant mixture was filtered through a 

5μm filter (Acrodisc® syringe filter, Pall Laboratory) and used as the dispersed phase. 

3.2.4 Microfluidic Fabrication of Microparticles 

Undecane containing 1 wt.% Span80 was used as the continuous phase. The flow rate of 

the continuous phase was set at 20 mL/h, while the dispersed phase flow rate was kept at 

1 mL/h. The continuous phase was flushed through the microfluidic device for at least 30 

seconds to convert the microchannel wall to completely hydrophobic. Droplets were 

collected after a steady state was reached (~5min). A high-speed camera (Redlake 

MotionScope M with a frame rate up to 1000 frames/sec) was used to image the beads 

formation process.  

The microdroplets generated were subsequently guided to a container containing 0.5 

mol/L sodium hydroxide (NaOH) solution, whereby IONPs formed and the droplets 

solidified. The resulting microbeads were further collected and washed with 50v/v% 

ethanol in water several times and subject to six freeze-thaw cycles (FTCs) (from 20°C to 

-20°C then to 20°C at 0.1°C/min, held for one hour at the temperature limits). After that, 

the microbeads were stored in phosphate-buffered saline (PBS) at room temperature until 

future use. 

3.2.5 Microscopy Observation 

Morphological observation and size analysis were first acquired from an optical 

microscope (Olympus BX60) equipped with an OMRX A35100U camera. Samples were 

prepared by dropping microbeads suspension on the microscope glass slides. The area of 

the beads was measured manually using Image J software for over 100 samples (see 
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Appendix A for an image used in this measurement) and then converted into an 

equivalent spherical diameter using the following equation:  

d = 2√A/π 

 

(1) 

where d is the equivalent spherical diameter and A is the measured sectional area of the 

microbead. 

Surface morphology was examined with a scanning electron microscope (SEM, LEO 

(Zeiss) 1540XB FIB/SEM). Microbeads were dehydrated through to 100% ethanol by 

incrementally increasing ethanol concentration. Critical point drying (Samdri PVT-3B) 

was performed on the microbeads loaded onto a p-type silicon wafer with 0-10 Ohm-cm 

resistivity and orientation of 100 (University Wafers). Before imaging, samples were 

sputtered with a 5 nm osmium coating (Plasma Coater, Filgen). EDX was also performed 

on these samples for elemental analysis. 

Transmission electron microscopy (TEM, PhillipsCM10) was performed to reveal the 

beads' microstructure and acquire the size and shape of internal IONPs. TEM samples 

were prepared by dropping the microbead suspension onto the Formvar carbon-coated 

400 mesh copper grids (Electron Microscopy Sciences) and dried in air.  

3.2.6 Magnetic Properties 

The PVA-IONP microbeads (75.24 mg/mL) were suspended were placed in a 

microcentrifuge tube (ThermoFisher Scientific) filled with 1 mL PBS solution. A 

permanent magnet was then introduced close to the tube for a selected time interval. The 

movement of microbeads towards the magnet and their settling upon magnet removal was 

recorded using a camera.   

The hysteresis loop of dried microparticles was tested using a vibrating sample 

magnetometer (VSM, LakeShore 7407, Lake-ShoreCryotronics Inc.) at 298 K.  
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3.2.7 MR Contrast Effect 

For the MR images, PVA-IONP microbeads were placed in 1.5mL centrifuge tubes at 

varying masses. Neat 5wt% PVA hydrogel was homogenized and used as the control. All 

tubes were filled with agar phantom material described elsewhere [18] and then placed in 

a large plastic container also containing agar phantom material.  

MRI contrast enhancement was examined using a clinical 3T MRI scanner (Siemens 

Healthcare, Erlangen, Germany). Scans were performed at 350 ms repetition, 3.5-15 ms 

echo-time, 3mm (axial) and 4mm (coronal) section thickness, 4.8 mm (axial) and 3.6 mm 

(coronal) intersection spacing, 88x192 matrix size and 65x141mm field of view to 

acquire T2-weighted images. 

3.2.8 In vitro Degradation Measurements 

Degradation of the PVA-IONP microbeads was studied by placing 1.5mL hydrated beads 

(76 mg/mL) into a dialysis kit (2mL Mini Dialysis Kit, 1kDa, GE Healthcare) and 

performing dialysis against 3 mL DMEM (pH=7.4, used as received; pH=5.5, adjusting 

pH using HCl) at 37 C. At predetermined time points, the solution outside the dialysis 

kit was collected, and the amount of released iron content was analyzed using atomic 

absorption spectroscopy (AAS, Varian Spectra AA-55) at the wavelength of 248.3 nm. 

Once the degradation medium was removed, the dialysis kit was placed in an equal 

volume of fresh release medium. Each experiment was carried out in triplicate. To 

determine the percentile of released iron, the total iron content of microbeads was 

extracted by dissolving the microbeads using diluted HCl. The solubilized iron content 

was subsequently quantified using AAS. 

3.2.9 Loading and in vitro Release of DOX 

Loading of DOX was achieved by soaking PVA-IONP hydrated microbeads (0.25 mL) 

into a doxorubicin solution (equivalent DOX concentration 0.25 mg/mL, 1mL) at room 

temperature overnight. The resulted products were collected by a permanent magnet and 

washed several times with PBS to removed non-specifically absorbed drugs.  
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The amount of doxorubicin in the supernatant was quantified using a UV 

spectrophotometer (Cary 60 UV-Vis, Agilent Technologies Inc.) at 485 nm.  The loading 

capacity of doxorubicin was determined by Equation 2: 

Doxorubicin loading(
mg

mL
) = (W0 − Wt)/V b (2) 

 

Loading efficiency was determined by Equation 3 as follows: 

Loading efficiency (%) =
(𝑊0−𝑊𝑡)

𝑊0
× 100% (3) 

 

where W0 is the initial weight of DOX in solution, Wt is the weight of DOX in the 

supernatant, and Vb is the volume of hydrated PVA-IONP beads. 

To study the in vitro release of DOX, drug-loaded microbeads were resuspended into 15 

mL release buffer (PBS, pH=7.4 and phosphate buffer, pH 5.5) and then placed in a 

shaking water bath (New Brunswick Scientific, USA) maintained at 37 C with gentle 

shaking (rpm=110). At predetermined release intervals, a supernatant of 1 mL was 

withdrawn from each sample and analyzed as described before. Subsequently, 1 mL of 

fresh release media was added to the microbeads to keep the total volume constant.  

The cumulative DOX release was calculated by Equation 4: 

Cumulative DOX release (%) =
Mt

M∞
× 100% 

(4) 

where Mt is the amount of DOX released at time t, M∞ is the amount of DOX loaded on 

the microbeads. 

3.2.10 Statistical Analysis 

For DOX loading study, a sample size of six was used. For DOX release and microbeads 

degradation study, a sample size of three was used at each experimental condition. 

Statistical analysis was performed using Microsoft Excel and OriginLab 2019b 

(OriginLab Corporation, MA). Results are reported as the mean ± standard deviation. 
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3.3 Results 

3.3.1 Droplets Generation and Size Analysis 

The dispersed phase was broken into droplets at the narrow orifice by continuous phase 

(Figure 3.1). The droplets solidified in the NaOH solution and retained a teardrop shape. 

All the microbeads exhibited brownish-yellow color (Figure 3.2 A). The microbeads 

followed a relatively narrow size distribution with an equivalent spherical diameter of 95 

± 22 μm (Figure 3.2 B). 

 

Figure 3.1 Fabrication of PVA-IONP microbeads using a flow-focusing microfluidic 

channel. The red arrow indicates flow of the dispersed phase, the blue arrow 

indicates flow of the continuous phase, and the black arrow indicates the generated 

microbeads. Droplets were successfully fabricated using a flow-focusing 

microfluidic device. 
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Figure 3.2 (A) Optical microcopy image of fabricated PVA-IONP microbeads and 

(B) histogram of microbead equivalent spherical diameter fit to a Gaussian 

distribution. Microbeads were in a teardrop shape with a relatively narrow size 

distribution. 

3.3.2 Morphological, Elemental and Structural Features of 
Microparticles 

The morphology of the beads was examined using SEM and results are shown in Figure 

3.3 A-C. EDX analysis of the microbeads confirmed the presence of iron inside of the 

beads (Figure 3.3 D-E). 
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Figure 3.3 (A)-(C) SEM images of PVA-IONP microbeads. (A) displays a whole 

bead, (B) and (C) show surface morphology. (D) Whole microbead with a square 

specifying the location of EDX sampling. (E) EDX spectrum indicating the presence 

of iron in the PVA-IONP microbeads. 

Inspection of beads by TEM revealed the presence of iron in the form of IONPs with a 

uniform spherical shape (Figure 3.4 A) with minimum aggregation. The size distribution 

histogram showed a narrow size distribution of IONPs with a mean diameter of 11 nm 

(Figure 3.4 B). IONPs were distributed at the interface of polymer-rich and polymer-poor 

regions. 
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Figure 3.4 (A) TEM micrograph of PVA-IONP microbeads. The black arrow 

indicates an individual iron oxide nanoparticle, the red arrow indicates a polymer-

rich region, and the blue arrow indicates a polymer-poor region. (B) Histogram of 

diameter of dispersed IONPs fit to a Gaussian distribution. IONPs were in spherical 

shape with minimum aggregation. IONPs were observed to distribute at the 

interface of polymer-rich and polymer-poor regions. 

3.3.3 Magnetic Properties 

The magnetic properties of microbeads were first examined visually in stagnant PBS. 

Upon introducing the magnet, the beads moved towards it. Once the magnet was 

removed, all beads slowly settled down due to gravity (Figure 3.5 A).  

The magnetization study of PVA-IONP microbeads was performed at 25 C. The 

symmetrical sigmoidal shape of the magnetization curve in the absence of a hysteresis 

loop indicated a superparamagnetic behavior (Figure 3.5 B). A saturation magnetization 

(Ms) of 9.36 emu/g was obtained from the curve.   
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Figure 3.5 (A) Magnetic responsiveness of PVA-IONP microbeads upon introducing 

of a permanent magnet close to the sample. The microparticles were attracted by 

the magnet and would completely settle down due to gravity after the magnet was 

removed. (B) Magnetic susceptibility of the microbeads. The absence of a hysteresis 

loop indicates a superparamagnetic behavior of the PVA-IONP microbeads. The 

saturation magnetization Ms of the microbeads was measured to be 9.36 emu/g

3.3.4 MR Contrast Effect 

As shown in Figure 3.6, a darkening effect was observed in the T2-wei

ghted images. An enhanced contrast against background was observed relative to a 

control sample of neat PVA, thus confirming the effectiveness of iron oxide as a contrast 

agent. In addition, a more prominent darkening effect was observed with a greater 

amount of microbeads, indicating the contrast effect is correlated to the density of 

microbeads hence the IONPs. 

 

Figure 3.6 T2-weighted MRI images of microbeads at different quantities (3T, 

repetition time 350 ms, echo-time 3.5-15 ms). The white arrow indicates the 

presence of PVA-IONP microbeads and their contrast effect on T2-weighted images. 
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3.3.5 In vitro Degradation 

Degradation of PVA-IONP microbeads was studied in DMEM at pH 7.4 and 5.5 for more 

than 50 days. The degradation is measured quantitatively as iron release and qualitatively 

as PVA matrix disintegration.  

As depicted in Figure 3.7 A, iron release from microbeads appeared to be a two-stage 

release with non-significant dependence on pH. Iron release rate remained slow at the 

first stage (day 0-day 17), with less than 2.5% of total iron was released from microbeads 

under both conditions. The release rate was faster at the second stage (day 18-day 52) 

without reaching a plateau by the end of the measurements. After day 17, more than 20% 

of total iron was released in 5 weeks, resulting in a ~26% cumulative release for 

microbeads under acidic pH, while this number reached ~23% for samples under 

physiological pH.  

Due to the small value of the sample weight, we were not able to measure the weight loss 

of the sample directly. However, the development of transparent beads (Figure 3.7 B and 

C) revealed the release of IONPs, which can be taken as part of mass loss hence 

degradation of PVA-IONP beads. In addition, SEM images of the beads at day 30 (Figure 

3.7 D) showed changes in morphology, which confirmed the dissolution and 

disintegration of the polymer matrix.  

 



91 

 

 

 

Figure 3.7 Degradation of the PVA-IONP beads. (A) Cumulative iron released from 

the microbeads. (B) and (C) are optical images of beads at day 0 and day 30, 

respectively. (D) SEM micrograph of beads at day 30. Degradation study was 

performed in DMEM at pH 5.5, 7,4 and 37 ℃. More than 20% of total iron was 

released in 5 weeks for both conditions. The removal of IONPs can be further 

visualized through the color change of the microparticles. The PVA-IONP 

microparticles lost the original teardrop shape during the incubation. The release of 

IONPs and disintegration of the polymeric matrix indicate the degradation of the 

microbeads. 
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3.3.6 DOX Loading and in vitro Release 

Due to the abundant presence of hydroxyl groups in the PVA matrix, the microbeads are 

anticipated to be capable of loading with hydrophilic drugs such as DOX, through van 

der Waals interaction and hydrogen bonding [19]. The PVA-IONP microbeads allowed a 

DOX loading capacity of 0.49 ± 0.02 mg/mL with a loading efficiency of 48.8 ± 2.5%.  

As shown in Figure 3.8, a sustained and pH-dependent DOX release profile was observed 

during the course of 7 days. For microparticles at pH 7.4, ~20% of DOX was released 

within 1 hour and a maximum release of 32% was reached within 7 days. Acidic 

environment significantly accelerated the DOX release such that ~33% of the drug was 

released within the first hour and ~ 53% of Dox was released within a week. 

 

Figure 3.8 Profiles of cumulative percent doxorubicin release with time from PVA-

IONP beads in PBS at pH 7.4, 5.5 and 37 ℃. The DOX loading was 0.49 ± 0.02 

mg/mL with a loading efficiency of 48.8 ± 2.5%. Microparticles can provide a 

controlled release for DOX for 7 days. Acidic environment contributes to a faster 

and greater DOX release.  
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3.4 Discussion 

3.4.1 Fabrication of PVA-IONP Microparticles 

Microfluidic fabrication was effective in producing PVA-IONP microparticles, resulting 

in an equivalent spherical diameter of 95 ± 22 μm. In a flow-focusing geometry, at the 

intersection, the central fluid (dispersed phase, PVA with IONP precursors) was 

hydrodynamically flow focused by the fluid (oil phase, 1 wt.% Span80 in undecane) in 

the two side channels. A pressure gradient along the long axis of the device forced two 

liquids through the narrow orifice. Due to the wettability of the two phases to the 

hydrophobic PMMA channel [20], only the oil phase can adhere to the channel wall, 

hence the flow of the dispersed phase was pinched off by the oil phase to create droplets 

[21,22], forming downstream water-in-oil droplets. These iron salts containing droplets 

fell into the NaOH solution, which triggered the reaction shown in Equation 5, leading to 

the formation of Fe3O4 nanoparticles inside the solidified PVA hydrogel microbeads. 

These beads were further processed using the LTTC process to impart enhanced stability.  

2FeCl3 + FeCl2 + 8NaOH ⟶ Fe3O4 + 8NaCl + 4H2O (5) 

Interestingly, the shape of the PVA-IONP microparticles was non-spherical. The initial 

generation of non-spherical droplets was suspected to result from the viscous dispersed 

phase. According to Nie et al. [23], for high viscosity liquids, the surface tension-driven 

collapse of the neck at the last stage is slow, which would take longer for droplets to 

break up. In addition, the planar design of the microchannel only allows quasi-2-D 

contact of fluids. While fully shearing off the viscous disperse phase, the flow of disperse 

phase was elongated into a teardrop shape due to the combined outcome of shear force 

and viscoelastic effect [23–26].  Although the droplets would attempt to recover a 

spherical shape in order to minimize the interfacial free energy after leaving the 

microchannel [27], as the droplet fell into the NaOH solution, the combined forces 

applied to the surface of the droplet (e.g., gravity, buoyancy, interfacial tension and drag 

force), as well as the rigidity change induced by the co-precipitation, would preserve the 

teardrop shape of the microdroplets [27].   
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Apart from the shape, the size and size distribution of the microbeads must also be 

considered. The equivalent spherical diameter of the beads was measured as 95 ± 22 m, 

which size falls in the range of large arteries and capillaries [28,29]. For TACE therapy, 

particles with a diameter smaller than 500 m would be desired [30], as they can be 

easily administered by a catheter and reach the reach in close proximity to a tumor and 

adequately occlude the vessels [12,31,32].  

Despite the teardrop geometry, the PVA-IONP microparticles were fairly uniform in 

shape with a reproducible size, making them suitable for serving as embolic agents. Some 

irregularly shaped materials, such as ContourTM (Boston Scientific/Target Therapeutics, 

USA) and Ivalon PVA blocks, have been used for artery embolization [33]. Although it 

has been suggested that particles with uniform size and shape may reach more distal 

locations and has a low probability to form proximal aggregates than irregular materials 

or material with irregular shape [34–36]. Modifications to address the irregular shape can 

be made by diluting dispersed phase to reduce the viscosity of the fluid, or by adopting a 

3-D coaxial design for the flow-focusing channel [37]. 

3.4.2 Morphological, Elemental and Structural Features of 

Microparticles 

EDX confirmed the successful incorporation of IONPs into the PVA matrix. The size, 

shape and dispersity of IONPs were further examined by TEM. IONPs formed were very 

uniform in size with little or no aggregation (Figure 3.4 A). They were also found to be 

distributed at the water-rich regions, adjacent to the interface of polymer-rich and water-

rich regions. This type of distribution could be explained by the partition behavior of 

IONP precursors between the two phases, as iron salts have higher solubility and 

diffusivity in the aqueous phase (i.e., polymer-poor region) [15]. 

Size uniformity and good dispersity of IONPs are crucial factors as they govern the 

magnetic behavior and the performance as a T2 contrast agent [39]. From the TEM 

micrographs, the size of IONPs in the PVA matrix was 11± 2 nm with minimum 

aggregation. IONPs at this size range are anticipated to be single domain particles hence 
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behave superparamagnetically [40], which was confirmed by the VSM result (Figure 3.5 

B).  

3.4.3 Magnetic Properties  

The magnetic property of PVA-IONP beads was confirmed by their movements towards 

a permanent magnet, which indicated the potential application in magnetically-guided 

drug delivery (Figure 3.5 A). Kumar et al. [28] were able to steer a group of 

microparticles (D=200 m) with a cylindrical magnet (B=2T) in a simulated body fluid. 

The beads can be propelled in parallel, antiparallel and angular directions in a linear 

assembly. It is to be expected that these magnetic particles will be exposed to a more 

complicated in vivo hydrodynamic environment where a combined effect of gravity, drag 

force, magnetic force and intermolecular repulsive force will govern the locomotion of 

particles [28,41]. However, with a deeper understanding of fluid dynamics and mechanics 

and proper MRI gradient coil and designed algorithm, the particle trajectory can be 

designed and controlled. For example, Chanu et al. [42] has successfully applied a 

closed-loop control scheme and achieved automatic guidance of a single magnetic bead 

(D=1.5 mm) in the carotid artery of a 25 kg living swine.  

The superparamagnetic property of the PVA-IONP microparticles was evident from the 

absence of coercivity and remanence magnetization, suggesting the in situ co-

precipitation was effective in preparing superparamagnetic hydrogels. During the 

reaction, the PVA network can potentially prevent agglomeration of IONP and makes it 

low nanometer in size and well-dispersed [43]. In addition, PVA can serve as a stabilizer 

to prevent Fe3O4 nanoparticles from exposure to O2, therefore prevent them from 

oxidization [44].  

A decrease in the Ms value (9.36 emu/g) compared to bulk magnetite (~90 emu/g) was 

apparent [45]. This can be contributed by the reduced particle size of superparamagnetic 

IONPs [46,47] and the dilution effect from adsorbed water and hydroxyl (-OH) content 

[45]. Also, the PVA matrix could act as a dead layer to restrict the magnetic coupling 

interaction and diminish the net moment, resulting in a reduction in Ms [48,49].  
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Taken all together, the development of superparamagnetic microparticles is useful in 

magnetic field-related applications such as magnetically-guided drug delivery. These 

particles can follow the pre-designed route to reach the targeted site through a fine spatial 

control [50]. This superparamagnetic property can potentially be helpful in MRI, as it can 

filter background effects of biological paramagnetic materials (e.g., deoxymyoglobin and 

deoxyhemoglobin) to obtain images with better contrast [51]. 

3.4.4 MR Contrast Effect 

With an increased IONPs weight in the sample, a darkening effect in T2 image was 

observed as expected. It was reported by Wabler et al. [52] that T2-weighted contrast 

positively correlated with a total iron concentration in the samples, this can be understood 

that the transverse proton relaxation rate (R2) increased with an increased IONP 

concentration due to the signal dephasing effects of magnetic nanoparticles [53–55].  

The detectability of beads will be extremely helpful in clinical practice to address the lack 

of feedback during DEB-TACE procedure [56]. The distribution of beads can provide a 

real-time location to guide the intervention. More importantly, since the drugs and the 

IONPs are co-localized in the microbeads, the location of beads can serve as a surrogate 

to report on local drug concentrations. 

3.4.5 In vitro Degradation 

It was found that negligible iron content (less than 2.5%) was released in the first 17 

days, indicating a strong binding between the IONPs and PVA (Figure 3.7 A). The 

relatively faster release in the following weeks could be a result of fast dissolution and 

diffusion of IONP at the outmost layer of the gel beads [19]. However, this iron release 

profile could still be helpful in TACE therapy, as imaging is usually required after 2-7 

days and 3-6 weeks after the first treatment to assess the tumor response [57]. This IONP 

release rate can potentially provide sufficient amount of IONPs for each imaging session 

[4,57,58].  

It is worth noting that the pH effect on IONP release was not significant, which may be 

caused by the complex nature of such a process. In this regard, we hypothesized that 
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IONP release from swellable hydrophilic PVA matrix could be contributed by a series of 

physical and chemical process, involving liquid penetration into the polymer network, the 

hydration and swelling of PVA matrix, dissolution reaction, solubilized iron content 

diffusion throughout swollen matrix and, possibly with, the degradation of polymer 

matrix [59]. Among all the processes, the diffusion process can be rate-controlling. 

Therefore, all IONPs accessed by HCl can be reacted and converted to soluble iron salts 

within the sampling interval. However, dissolved iron content was retained in the PVA 

hydrogel and diffused into the medium at a pace determined by the diffusivity, hence the 

degradation of the polymer matrix [60].  

In our previous study on the PVA-IONP bulk material, we have demonstrated the 

removal of iron mechanically weakens the hydrogel and contributes to the total mass loss 

of the sample [16]. The authors hypothesized that the stability of the hydrogel was 

provided by the IONP crosslinking and the physical crosslinking by the LTTC process. 

The degradation of the material can be regarded as the total mass loss of the hydrogel 

contributed by the loss or release of iron and the material dissolution.  

In this study, the release of IONPs was quantified by the AAS. The SEM observation 

(Figure 3.7 D) provided qualitative evidence. The shape loss and polymer matrix 

disintegration were clearly observed on the microparticles at day 30, indicating the 

degradation of PVA-IONP microbeads.  

Degradable materials could be advantageous in tumor embolization as they provide 

transient embolic effects, which can potentially prevent the occurrence of the post-

embolization syndrome, tissue inflammation and fibrosis, and risks from non-target 

embolization [13,14]. Particularly for patients with HCC, it is reported that over 90% of 

patients need repeated treatments. As such, degradable microparticles would ideally 

permit multiple TACE procedures hence better treatment outcomes [33].   

3.4.6 DOX Loading and in vitro Release 

The PVA-IONP microbeads supported sustained DOX release at pH 7.4 and pH 5.5, and 

the trend suggested the drug release was pH-responsive. The released anticancer drug 
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contents reached 51.0 ± 2.2% by 7 days, almost 1.6 times of the release at healthy 

physiological pH. This greater release may be resulted from the protonation of the 

primary amine groups (-NH2) of DOX under an acidic environment, depriving the sites 

available for hydrogen bonding with PVA. 

The microparticles developed incomplete DOX release at both pH conditions, indicating 

the solute release may be controlled by hydrogen bonding and degradation of 

microparticles. Taken the degradation measurements together, it is likely that the slow 

degradation of PVA contributes to the incomplete release of DOX. Nevertheless, the 

DOX release was in a controlled manner for one week, which could potentially result in a 

more significant impact on tumor kill. 

3.5 Conclusion 

This work successfully synthesized novel composite hydrogel microbeads using 

microfluidic fabrication and in situ co-precipitation for IONP synthesis within the PVA 

matrix. The resulting drug delivery systems were in a teardrop shape with a relatively 

narrow size distribution. The microparticles exhibited superparamagnetic properties and 

were effective in producing a contrast-enhancing effect on MR images. Such properties 

also suggest the feasibility of magnetically-guided drug delivery and in vivo imaging 

during/post the intervention. Moreover, PVA-IONP microparticles were degradable, 

allowing repeatable TACE to be applied. Degradation occurred in the form of iron release 

and matrix disintegration. Moreover, these microparticles acted as a suitable carrier for 

DOX and rendered a controlled release for a course of one week. All these outstanding 

characteristics make PVA-IONP microparticles an improved DEB system in TACE 

therapy. 
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Chapter 4  

4 Development of a Multifunctional Bioactive 
Protein/Peptide Delivery System for Dry Eye Disease2 

4.1 Introduction 

Dry eye disease (DED) is a multifactorial disease characterized by inflammation that 

damages the ocular surface and tear producing glands [3,4]. Tear film instability or 

osmolarity changes, among others, stress underlying corneal epithelial cells, inducing 

further release of pro-inflammatory cytokines, including interferon-γ (IFNγ) and tumor 

necrosis factor (TNF) [3,5,6]. All severities of DED substantially reduce health-related 

quality of life [7]. Worldwide prevalence is estimated at 5.5–33.7% with Canada at 25%, 

but underestimates may result from patients’ failure to recognize or report symptoms, 

indicating a large public health issue [4,8]. 

Eye drops are widely used to deliver artificial tears and anti-inflammatory agents to the 

ocular surface of DED patients [5]. This method fails to sustain drug delivery, with less 

than 5% of the topically applied drug dose reaching target corneal tissue. Rapid drug 

elimination can be attributed to blinking, the tear film barrier, reflex tearing, and drainage 

through tear ducts [9]. Losing over 95% of the formulation’s dose during drug delivery 

not only impairs cost-effectiveness but also requires diligent patient compliance with 

frequent dosing throughout the day to maintain adequate efficacy within target tissues. 

Such high patient compliance is not consistently attainable, likely decreasing therapeutic 

effectiveness.  

Current pharmaceutical agents commonly used to treat DED are also unfavorable as long-

term solutions. Artificial tears provide only temporary lubrication without addressing the 

underlying pathology of DED, with most formulations lacking bioactive tear components 

[10,11]. Long-term use of corticosteroid eye drops may increase the risk of developing 

 

2
 A version of this chapter will be submitted to Clinical & Experimental Ophthalmology under the title: 

Lacritin peptide (N-94)-conjugated solid silica nanoparticles as a novel drug delivery system for dry eye 

disease. Xinyi Li shares the co-first authorship with Angela Chang. 
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glaucoma, cataracts, and bacterial infections [3,5,10]. Prolonged use of cyclosporine can 

lead to complications such as lid maceration and corneal epitheliopathy [12]. Indeed, few 

physicians in White et al.’s study were satisfied with the ability of cyclosporine and 

lifitegrast to manage DED symptoms and improve quality of life [13]. 

The development of protein and peptide-based therapeutics is rapidly increasing for the 

treatment of a wide variety of clinical indications [14]. Inorganic nanoparticles such as 

gold nanoparticles (AuNPs), iron oxide NPs (IONPs), and silica NPs (SiNPs) have also 

been extensively investigated. They are highly biocompatible, with some formulations 

proceeding to the clinical trial stage [15]. Among these, SiNPs are especially promising 

as carriers for ophthalmic therapeutics to overcome the bioavailability limitation of 

traditional eye drops. Generally Recognized as Safe (GRAS) by the FDA, SiNPs are 

generally not cytotoxic to human corneal epithelial cells (HCECs), with larger diameters 

having a lower risk of cytotoxicity [16–18]. Lysozyme is widely used in the study of 

silica-protein interactions due to its conformational stability and similar properties to 

numerous bioactive proteins [19,20]. In addition to its prototypical features, lysozyme 

possesses antimicrobial, anti-inflammatory properties and is also a major component of 

the tear film [21–23].  

Lacritin has many desirable properties conducive to its development as a therapeutic 

agent for DED. It is a human tear glycoprotein secreted by the lacrimal glands and 

downregulated in DED tears [24,25]. Topical application enhances basal tearing in 

rabbits [10,26]. It is mitogenic and cytoprotective on HCECs in vitro [27,28]. Its C-

terminus is bactericidal and rescues HCECs stressed by inflammatory mediators IFNγ 

and TNF by stimulating an autophagy pathway to clear damaged organelles and proteins 

[29–31]. Because its C-terminus has a heparanase-dependent binding mechanism to 

syndecan-1, lacritin binding targets areas of the eye highly associated with DED [32,33]. 

Since lacritin’s C-terminus mediates receptor activation and thus prosecretory, 

bactericidal, and cytoprotective activity, the N-94 fragment should be equipotent to the 

complete protein. We investigated a synthetic 25-amino acid lacritin peptide (N-94) 

derived from lacritin’s C-terminal side as a candidate drug to be delivered by SiNPs. N-
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94 is smaller and has a more suitable isoelectric point than lacritin, maximizing its 

loading potential onto SiNPs. Preliminary studies indicate that N-94 has a predicted 

isoelectric point (IEP) of 10.5 while lacritin has an IEP of 5 [34]. At physiological pH, N-

94 would be positively charged to aid in its adsorption to the negatively charged SiNP 

surface [35]. 

The use of SiNPs as a controlled release delivery system for the N-94 offers several 

advantages for the treatment of DED. Since the N-94 fragment decomposes readily on the 

inflammatory and oxidative ocular surface, the N-94-SiNPs would allow for sustained 

availability of N-94 over time [2]. Furthermore, the loading, release time profile, and 

dosage can be tuned based on clinical needs.  

While an existing study found that lacritin reduces HCEC death induced by pro-

inflammatory cytokines, it was unconfirmed whether N-94 had similar cytoprotective 

effects [29]. The biocompatibility of N-94 and N-94-conjugated SiNPs (N-94-SiNPs) 

with HCECs was also yet to be elucidated.  

In is study, we synthesized the SiNPs using the Stöber method. Their drug loading and 

controlled release properties were characterized using lysozyme as a model protein. 

Dissolution of the SiNPs was also demonstrated. N-94 was subsequently conjugated to 

SiNPs, its release profile, presence of toxicity to HCECs, and cytoprotective activity were 

also studied to assess the feasibility of the conjugated system for treating DED. 

4.2 Materials and Methods 

4.2.1 Materials 

All chemicals were used as received without further purification. Tetraethylorthosilicate 

(TEOS, 99+%) and lysozyme from chicken egg white (minimum 23,500 units/mg 

protein) were purchased from Alfa Aesar, ammonium hydroxide (28%-30% NH3 in H2O) 

was obtained from Caledon. Phosphate buffered saline tablets and dimethylsulfoxide 

(DMSO) were purchased from Sigma-Aldrich. Ethanol (95%) was obtained from 

Commercial Alcohols. Inflammatory cytokines IFNγ and TNF were acquired from 

Thermo Fisher Scientific. Peptide N-94 was obtained from GenScript (Piscataway, NJ), 
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custom-made with fluorescein isothiocyanate (FITC) and a seven-atom aminohexanoyl 

spacer covalently conjugated to the peptide’s N-terminus to allow for quantification via 

fluorescence spectrophotometry. Distilled water was used for all experiments.  

4.2.2 Preparation and Characterization of Protein/Peptide-SiNPs 

Conjugates  

SiNPs were synthesized by the Stöber method [217]. In a typical synthesis, solution 

containing 5 mL ethanol and 10 mL ammonia was prepared. After equilibration at room 

temperature (23  1C), 100 L TEOS was added dropwise and the reaction was 

maintained at the same temperature for 1 hour under constant stirring. The resulting white 

precipitate was separated by centrifugation (Sorvall RC5C, Sorvall Instruments, USA), 

washed with water and ethanol, and dried at 60 C under vacuum overnight for future 

use.  

To prepare lysozyme loaded SiNPs for characterization, conjugates were prepared from a 

relatively concentrated lysozyme solution (10 mg/mL, 1 mL) and 15 mg SiNPs. To load 

N-94 onto the SiNPs, a 20:1 ratio (w/w) of SiNP:N-94 each suspended in equal volumes 

of PBS were combined in Eppendorf tubes. Adsorption was allowed for 48 hours at room 

temperature for both formulations. Pellets were separated and rinsed with PBS to remove 

loosely attached lysozyme molecules. FTIR (Bruker Vector, USA) and scanning electron 

microscopy (SEM, LEO1540XB FIB/SEM, ZEISS, USA) were performed on both air-

dried bare SiNPs and protein/peptide-SiNPs conjugates. 

4.2.3 Protein Adsorption Kinetics and Isotherms 

For the adsorption kinetics studies, lysozyme-SiNP conjugates were prepared by mixing 

100 mg of SiNPs in a beaker containing 12 mL of a 0.5 mg/mL lysozyme in 1x PBS 

solution (pH 7.4). Adsorption was performed at room temperature in an orbital shaker 

(New Brunswick Scientific) at 75 rpm. All experiments were performed in triplicate.  

At pre-determined time points, 0.5 mL supernatant was retrieved. Lysozyme 

concentration in the supernatant was determined by a Cary UV-vis spectrophotometer 

(Agilent Technologies) at =280 nm.  
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The amount of lysozyme adsorbed onto SiNPs at time t, Qt was determined by the 

concentration difference between the stock solution and supernatant: 

Qt =
(C0 − Ce)V

m
 

(1) 

where C0 and Ct are the concentration of lysozyme in the stock solution and in the 

suspension at time t (mg/L), respectively. V is the total volume of the solution (in L), and 

m is the weight of SiNPs (g).  

Isotherm studies were performed with a constant dosage of SiNPs (15 mg/mL in the final 

mixture) and varying concentrations of lysozyme (C0)  in the range of 133 mg/L to 3000 

mg/L. The mixture was shaken at 160 rpm for 48 h at ambient temperature. Finally, 

samples were centrifuged for 5 minutes at 8,000 rpm to retrieve supernatant, which was 

subject to UV-vis for lysozyme quantification. 

4.2.4 Protein/Peptide Release in the Absence of Cells 

The release of bioactive protein/peptide from SiNPs were characterized using lysozyme 

and N-94 as the prototypical molecules. Lysozyme-SiNP and N-94-SiNP conjugates were 

prepared separately by mixing SiNPs and corresponding adsorbates at a 20:1 ratio (w/w). 

Adsorption was maintained at room temperature in an orbital shaker at 75 rpm for 48 

hours. The resulting conjugates were rinsed with PBS and transferred to microcentrifuge 

tubes (Sigma-Aldrich) containing 1 mL PBS in each. Release was then carried out at 

37C in the orbital shaker at 75 rpm. At pre-determined time points, supernatant was 

replaced with fresh PBS to maintain the total volume constant.  

The amount of adsorbed/released adsorbates was determined by UV-vis in the case of 

lysozyme, while for N-94 quantification, a SpectraMax M3 Multi-Mode Microplate 

Reader (Molecular Devices, LLC, CA) was used. Samples were excited at 496 nm and 

emission intensity at 520 nm was acquired. In addition, matrix assisted laser desorption 

ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to verify the 

integrity of pre-conjugated and released N-94 samples obtained at 8 hours, suspended in 

ultrapure water. Samples were mixed at a 1:1 ratio (v/v) with an α-cyano-4-

hydroxycinnamic acid MALDI matrix (5 mg/mL in 50% acetonitrile and 0.1% 
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trifluoroacetic acid) and spotted on the MALDI plate in duplicates. MS data were 

obtained using an AB Sciex 5800 TOF/TOF System (Framingham, MA).  Data 

acquisition and processing were done using an AB Sciex TOF/TOF Series Explorer and 

Data Explorer. 

4.2.5 Dissolution of SiNPs in the Absence of Cells  

In vitro degradation was studied in PBS at 37C with SiNPs alone. Typically, 10 mg of 

SiNPs were added into 5 mL of PBS and samples were incubated in a shaker at 75 rpm. 

PBS was replaced every 5 days to prevent solution saturation. At pre-determined time 

points, solid SiNPs were retrieved, washed, and resuspended in water. Transmission 

electron microscopy (TEM, PhillipsCM10) graphs were taken to examine the structural 

changes of SiNPs during the degradation. TEM samples were prepared by dropping this 

suspension onto a Formavar carbon-coated copper grid. 

4.2.6 Cell Culture 

Primary human corneal epithelial cells (HCECs) obtained from three different donors 

were purchased from American Type Culture Collection (ATCC, Manassas, VA). 

HCECs at the second passage at the time of purchase were cultured in colorless, 

keratinocyte-serum free Corneal Epithelial Cell Basal Medium with Corneal Epithelial 

Cell Growth Kit supplements (ATCC). For all experiments, cultured cells were seeded in 

24-well plates directly into the wells or into trans-well inserts at a density of 2×105 

cells/cm2 and treated when 80% confluent. 

4.2.7 Determination of Optimal Pro-inflammatory Cytokines IFNγ & 

TNF Concentration 

Using Wang et al.’s study as a guideline, a fixed IFNγ concentration of 100 U/mL was 

combined with varying concentrations of TNF to insult HCECs for 16 or 20 hours [29]. 

The combination that reduced cellular metabolic activity from 100% to about 65–75% 

was used to stress HCECs.  The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay was used to measure cellular metabolic activity. 
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4.2.8 Effects of N-94 on HCECs  

Effect of N-94 on HCECs was evaluated in terms of cytotoxicity and cryoprotection. To 

detect potential cytotoxicity, HCECs were treated with 1–10 000 nM of N-94 for 1–24 

hours. Cells cultured in medium without the addition of N-94 were used as negative 

controls (“vehicle control”).  

At designated times, cell viability was determined by the measurement of cellular 

metabolic activity using the MTT assay. Briefly, cells were incubated in 24-well plates in 

serum-free conditions with 450 μg/mL MTT solution (Sigma-Aldrich) for 3 hours at 

37oC. After aspirating excess MTT, dimethylsulfoxide (DMSO, Sigma-Aldrich) was 

added and plates were shaken. Samples were transferred to 96-well plates in triplicate, 

with a few wells reserved for DMSO only. Absorbances were read at 575 nm by the 

iMark Microplate Reader (Bio-Rad Laboratories). The DMSO absorbance was subtracted 

from all other absorbances. The cellular metabolic activity of experimental groups was 

normalized by the vehicle control group (100%) in all cellular studies and expressed as 

percentages. 

To investigate the cytoprotective effects of N-94 on HCECs, HCECs were 

simultaneously treated with 1–10 000 nM of N-94 and pro-inflammatory cytokines of the 

optimal concentration combination for 16 and 20 hours. The positive control consisted of 

HCECs stressed by cytokines in the absence of N-94 (“insult only”). The negative control 

was untreated, healthy HCECs incubated in cell medium only (“vehicle control”). The 

MTT assay was performed to determine cellular metabolic activity. 

4.2.9 Effect of N-94-SiNPs on HCECs  

Cytotoxicity and cytoprotective effect of the complete delivery system (i.e., N-94-SiNPs) 

on HCECs were assessed. N-94-SiNPs were prepared as per section 2.4 in concentrations 

of 5.6–5600 nM. Based on preceding experiments, it was assumed that 90% is adsorbed 

and 40% is maximally released, along with a 50% dilution during treatment, yielding 

final treatment concentrations of 1–1000 nM. Release of N-94 was conducted in a water 

bath shaker at 37 oC for 8 hours. The resulting mixtures were vortexed and used as the 

treatments.  
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N-94-SiNPs treatments were then performed in a non-contact manner. HCECs were 

cultured in trans-well inserts (0.4 µm pores, Falcon, Canada) placed into compatible 24-

well plates. Each well contained treatment basolateral to the cells and cell culture 

medium apical to the cells. The controls were cell culture medium with PBS only 

(“vehicle control”) and SiNP treatment only. 

At designated times, cells in the culture inserts were subjected to the MTT assay, while 

apical and basolateral supernatants were combined from each well and subjected to the 

lactate dehydrogenase (LDH) assay. LDH standards were prepared and loaded with 

supernatant samples in triplicate into 96-well plates. Reaction solution was prepared 

using an LDH assay kit (Sigma-Aldrich) then added to each sample and standard. Plates 

were incubated for 10 minutes at 37 oC and absorbances were read using a dual filter at 

490 nm and 655 nm by the iMark Microplate Reader. LDH concentrations were 

calculated using the standard curve. LDH release of experimental groups was normalized 

by the vehicle control group (100%) and expressed as percentages. 

To evaluate the cytoprotective property of released N-94, N-94 loading and release were 

performed as per section 4.2.4. After release was complete, tubes were centrifuged and 

supernatant samples containing the released N-94 were extracted as the treatment. 

HCECs were then co-treated with 100 U/mL of IFNγ and 12.5 ng/mL of TNF and 1–

1000 nM of released N-94 in PBS for 16 and 20 hours. The controls were cell culture 

medium with PBS only (“vehicle control”) and cytokine insult only (“insult only”). 

Afterwards, apical supernatants were collected and analyzed using LDH and MTT 

assays. 

4.2.10 Statistics 

A one-way analysis of variance (ANOVA) was performed on the diameter of the silica 

nanoparticles using OriginLab 2019b (OriginLab Corporation, MA). For protein/peptide 

release and biological studies, three biological replicates (i.e., cell lines from distinct 

donors) and three technical replicates of each cell line were performed for each cellular 

experiment. GraphPad Prism v8.01 (La Jolla, CA) was used to conduct one- and two-way 
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ANOVAs and post-hoc tests. Values of P < 0.05 were considered statistically significant. 

All results are reported as the mean ± standard deviation. 

4.3 Results 

4.3.1 Preparation and Characterization of Protein/Peptide-SiNPs 

Conjugates  

SiNPs were synthesized using a Stöber procedure [36]. The product nanoparticles were 

characterized in terms of their morphology, size, and size distribution. The SEM 

micrograph in Figure 4.1 A shows that the SiNPs are spherical and non-porous with a 

fairly uniform size and minimum aggregation. Uniformity of the SiNPs’ size was 

confirmed by the narrow size distribution shown in the insert. The average diameter was 

determined to be 251  19 nm. In the N-94 study, a new batch of SiNPs with good size 

uniformity (374 ± 15 nm) was prepared and used (Figure 4.1 B). Particle size can be 

tuned by varying a combination of reaction time, temperature and reactants ratio [37].  

 

Figure 4.1 SEM of SiNPs used in (A) lysozyme and (B) N-94 study. Insert is the 

particle size distribution.  

Lysozyme and N-94 molecules were conjugated to the SiNPs by batch adsorption. The 

adsorption of such molecules onto the surface of the SiNPs is visible (Figure 4.2 A). 

Lysozyme loading was further confirmed by FTIR. The absorption band at ~1650 cm-1 in 

the FTIR spectrum corresponds closely to the amide I peak for proteins [38]. the major 

band for silicon dioxide is located at ~1077 cm-1. As seen in Figure 4.2 B, the peptide N-
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94 was also successfully conjugated onto the SiNPs. The amount of N-94 conjugated was 

too small for FTIR analysis. However, characterization of the N-94 recovered in 

controlled release experiments shown in Figure 4.4 D serves as indirect evidence of 

loading success. 

 

Figure 4.2 (A) SEM of lysozyme-loaded SiNPs. The red arrow indicates the presence 

of lysozyme. Insert: FTIR spectrum of SiNPs, lysozyme powder and lysozyme-

SiNPs. The red arrow indicates the characteristic bands of proteins, and the black 

arrow indicates the characteristic bands of silica. (B) SEM of N-94-loaded SiNPs. 

The SEM micrographs and FTIR spectrum confirm the loading of lysozyme and N-

94 onto the SiNPs surface. 

4.3.2 Adsorption Kinetics and Isotherms  

To better understand the adsorption mechanism, kinetic data was analyzed using pseudo-

first-order and pseudo-second-order models, according to ref. [39] 

Pseudo-first-order kinetic: 

log(Qe − Qt) = logQe −
k1t

2.303
 

(2) 

 Pseudo-second-order kinetic: 

t

Qt
=

1

k2Qe
2

+
t

Qe 
 

(3) 
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where Qe (mg/g) represents the amount of lysozyme being adsorbed at equilibrium. k1 

(h−1) and k2 (g·mg-1·h-1) are the rate constants of pseudo-first- and second- order 

adsorption respectively. 

Time dependent adsorption data was collected for up to 72 hours at room temperature (23 

 1 oC). Results are shown in Figure 4.3 A. Kinetic data is found to be best fitted to the 

pseudo-second order model (𝑅2 > 0.99). The parameters, Qe and k2, derived for 

Equation 3 were determined to be 34.97 mg/g and 0.012 g·mg-1·h-1 respectively, the 

calculated adsorption time course curve is also shown in Figure 4.3 A, demonstrating the 

validity of the kinetic model. 

Isotherm data were fitted into Freundlich and Langmuir models. The linearized forms of 

these two models are shown in below [39,40]: 

Freundlich isotherm: 

logQe = logkf +
1

n
logCe 

(4) 

where Ce is the equilibrium concentration of lysozyme (mg/L) in the solution, and kf 

(mg/g) and n are the Freundlich isotherm constants related to adsorption capacity and 

intensity respectively. 

Langmuir isotherm: 

Ce

Qe
=

Ce

Qm
+

1

Qmb
 

(5) 

where Qe (mg/g) is adsorbed lysozyme at equilibrium, Qm (mg/g) is the maximum 

adsorption amount at complete monolayer coverage, and b (L/mg) is the Langmuir 

constant representing the energy of adsorption. 

Fitting results are shown in Figure 4.3 B. Among the two adsorption isotherm models, it 

was found that the data fit well with the Langmuir model (R2=0.94) as shown by the line 

in Figure 3B.  The fitting parameters for the Langmuir isotherm were determined to be 

Qm=76.34 mg/g, b=0.0026 L/mg. The complete fitting parameters and curves for 

adsorption kinetics and isotherms can be found in Appendix D. 
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Figure 4.3 (A) Adsorption kinetics and (B) isotherm at 296 K. Error bars for some 

data points are too small to be displayed. The black square shows the experimental 

data, and the red dash curve shows the best-fit curve. Kinetic data is fit with 

pseudo-second order kinetic (R2 > 0.99). Isotherm data fits well with the Langmuir 

isotherm (R2 = 0.94).  

4.3.3 Protein/Peptide Release in the Absence of Cells  

SiNPs provided controlled release for both lysozyme and N-94 over the course of 8 

hours. Approximately 50% of the loaded lysozyme was released within the first 3 hours 

with complete release from SiNPs within 24 hours (Figure 4.4 A). N-94 exhibited a 

similar release profile (Figure 4.4 B). ~30% release was achieved within the first 3 hours, 

while a plateau was reached after 8 hours, where ~45% of the total loaded N-94 was 

released. 
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Figure 4.4 (A) Lysozyme release from SiNPs in PBS at pH 7.4 and 37 ℃ in the 

absence of cells. Lysozyme loading (i.e., 𝑴∞) was 21.74 ± 2.32 mg/g. (B) N-94 release 

from SiNPs, N-94 loading (i.e., 𝑴∞) was 44.94 ± 0.42 mg/g. SiNPs can providde 

controlled release for both lysozyme and N-94 over the course of 8 hours. 

Representative spectra of various masses (m/z or Da) of lacritin peptide (N-94) (C) 

prior to its conjugation to SiNPs, and (D) after release from SiNPs. The conjugation 

to SiNPs and release do not affect peptide integrity. 

The integrity of N-94 was maintained throughout its release. MALDI-TOF mass 

spectrometry of pre-conjugated N-94 (Figure 4.4 C) as well as N-94 that was released 

after being conjugated to SiNPs (Figure 4.4 D) revealed high intensity peaks of the full 

25-amino acid long peptide, both with FITC at 3400 Da and without FITC at 3000 Da. 

There were no peptide fragments of less than 3000 Da in either spectrum, indicating that 

conjugation to SiNPs does not affect peptide integrity.   

 

(A) (B)

(C) (D)
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4.3.4 Dissolution of SiNPs in the Absence of Cells 

SiNPs degradation was studied under physiological conditions in PBS for up to 30 days. 

Progress of the degradation process was monitored in terms of SiNPs diameters as a 

function of time using TEM (Figure 4.5). Results for Days 0, 10 and 30 were found to be 

113 ± 15 nm, 103 ± 20 nm and 98 ± 15 nm, respectively. One-way ANOVA confirmed 

that the size reduction of SiNPs was statistically significantly over the period of the 

experiment (P < 0.05). 

 

Figure 4.5 SEM images of SiNPs with an increasing immersion time in PBS, (A) t=0, 

(B) t=10 days, and (C) t=30 days. (D) Size variation of SiNPs after immersion in PBS 

for 0, 10, and 30 days. Each value is presented as mean ± SD. Based on the one-way 

ANOVA test, size of SiNPs significantly decreased with a prolonged immersion time 

(*, P < 0.05), indicating the degradation of the nanoparticles. 

4.3.5 Toxicity of N-94 to HCECs 

Toxicity of N-94 to HCECs was examined over a N-94 concentration range of 1–10 000 

nM for up to 24 hours and measured using cellular metabolic activity. Exposure of HCEC 

to N-94 up to the maximum peptide concentration and exposure time used did not result 

in significant changes in cellular metabolic activity (Figure 4.6).  
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Figure 4.6 Mean cellular metabolic activity (% relative to vehicle control ± SD) of 

primary human corneal epithelial cells obtained from three donors (N=3) following 

treatment of lacritin peptide (N-94) (1, 10, 100, 1000, 10 000 nM). Vehicle control 

(dotted line, 100%) was cell culture medium treatment only. MTT assays were 

performed after 1, 2, 6, and 24-hour treatment durations. There were no significant 

differences in cellular metabolic activity between the varying concentrations and 

durations of N-94 treatment, including vehicle control. 

4.3.6 Cytoprotective Effects of N-94 to HCECs 

The concentration of pro-inflammatory cytokines used to insult cells were first optimized 

to decrease cellular metabolic activity to 65–75% of that of “healthy” vehicle control 

cells to test the cytoprotective effects of N-94 (Figure 4.7 A). Treatment of HCECs with 

an insult combination of 100 U/mL IFNγ and 12.5 ng/mL TNF for 16 and 20 hours 

respectively decreased cellular metabolic activity to 74.80 ± 6.25% and 66.09 ± 1.92%. 

HCECs insulted with the optimized concentrations of IFNγ and TNF were co-treated with 

N-94 (Figure 4.7 B). Compared to insult only by IFNγ and TNF, there were significant 

increases in cellular metabolic activity when co-treated with 1 nM (P < 0.05) or 10 nM (P 

< 0.001) of N-94 after 20 hours. The effect of co-treatment with 100 nM and 1 000 nM 

N-94 on insulted HCECs were statistically non-significant. However, treatments of 10 

000 nM of N-94 at 16 and 20 hours significantly (P < 0.01) decreased cellular metabolic 
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activity in comparison to insult only. This higher N-94 concentration was removed from 

the subsequent experiments that tested with N-94-SiNPs. 

 

Figure 4.7 . Mean cellular metabolic activity (% relative to vehicle control ± SD) of 

primary human corneal epithelial cells obtained from three donors (N=3) following 

(A) insult by 100 U/mL of IFNγ and varying concentrations of TNF (0, 6.25, 12.5, 25, 

50, 100 ng/mL) and (B) co-treatment of lacritin peptide (N-94) (0, 1, 10, 100, 1000, 

10 000 nM) along with insult by 100 U/mL IFNγ and 12.5 ng/mL TNF. In both, 

vehicle control (dotted line, 100%) was cell culture medium treatment only. MTT 

assays were performed after 16- and 20-hour treatment durations. *, **, and *** 

indicate statistical significance versus insult only. ***, P < 0.001; **, P < 0.01; *, P < 

0.05. 
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4.3.7 Toxicity of N-94-SiNPs to HCECs 

HCECs were treated with the mixture containing SiNPs, released N-94, and any potential 

dissolution products of SiNPs. Statistical analysis showed no significant differences in 

cellular metabolic activity between treatments of any concentration of N-94-SiNPs up to 

1 000 nM or SiNPs and vehicle control at 16 and 20 hours (Figure 4.8 A). There were 

also no significant differences in LDH release between treatments of any concentration of 

N-94-SiNPs up to 1 000 nM or SiNPs and vehicle control at either time point (Figure 4.8 

B).  

 

Figure 4.8 (A) Mean cellular metabolic activity (% relative to vehicle control ± SD) 

and (B) mean lactate dehydrogenase (LDH) release (% relative to vehicle control ± 

SD) of primary human corneal epithelial cells obtained from three donors (N=3) 

following treatment of lacritin peptide-conjugated silica nanoparticles (N-94-SiNPs) 

(1, 10, 100, 1000 nM). There was a vehicle control (dotted line, 100%) of phosphate-

buffered saline and cell culture medium treatment only and a group of bare SiNP 

treatment only. MTT and LDH assays were performed after 16- and 20-hour 

treatment durations. There were no significant differences in cellular metabolic 

activity and LDH release between the various treatments and vehicle control at 

either time point. 

(A)

(B)



122 

 

 

4.3.8 Cytoprotective Effect of Released N-94 on Stressed HCECs 

Compared to insult only, treatment equivalent to 1 nM of released N-94 significantly (P < 

0.05) increased the cellular metabolic activity of insulted cells at 16 and 20 hours while 

10 nM of released N-94 significantly (P < 0.001) increased the cellular metabolic activity 

of insulted cells at 20 hours (Figure 9A). Compared to insult only, co-treatment with 10 

nM (P < 0.01) and 1000 nM (P < 0.05) of released N-94 significantly reduced the LDH 

release of HCECs at 20 hours (Figure 4.9 B). 

 

Figure 4.9 (A) Mean cellular metabolic activity (% relative to vehicle control ± SD) 

and (B) mean lactate dehydrogenase (LDH) release (% relative to vehicle control ± 

SD) of primary human corneal epithelial cells obtained from three donors (N=3) 

following co-treatment of lacritin peptide (N-94) (0, 1, 10, 100, 1000 nM) released 

from silica nanoparticles along with 100 U/mL IFNγ and 12.5 ng/mL TNF. Vehicle 

control (dotted line, 100%) was phosphate-buffered saline and cell culture medium 

treatment only. MTT and LDH assays were performed after 16- and 20-hour 

treatment durations. *, **, and *** indicate statistical significance versus insult 

only. ***, P < 0.001; **, P < 0.01; *, P < 0.05. 

(A)

(B)
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4.4 Discussion 

The Stöber process provides a facile pathway towards the synthesis of fairly uniform 

SiNPs using the silica precursor TEOS [36].  Uniformity in size (Figure 4.1) allows for 

precise drug loading. SiNP size can be tuned as a function of reaction pH and 

temperature. SiNPs in the size range of 100-400 nm are promising for drug delivery 

applications, as they render a sufficient surface area to volume ratio to enable a high 

loading and would not induce significant cytotoxicity [16]. 

Lysozyme loading onto SiNPs is demonstrated by both SEM and FTIR. Aggregation of 

lysozyme can be seen which has been attributed to lysozyme-SiNP interaction on the 

particle surface [41]. Lysozyme conjugation to SiNPs is further confirmed by the FTIR 

spectrum (inset, Figure 4.2 A). For lysozyme, the amide I peak intensity is low at 1649 

cm-1, likely due to its low concentration relative to the SiNPs, but its presence serves as 

direct evidence of successful conjugation of lysozyme to SiNPs [42]. The amide II peak 

at 1550 cm-1 was not observed due to its lower intensity compared to the amide I peak 

[43].   

Results of adsorption experiments over a 72-hour period are shown in Figure 3A. The 

results indicated that equilibrium adsorption was attained at around 45–50 hours. At the 

early stage (0–12 hours), adsorption was fast due to the high concentration of lysozyme 

and the number of binding sites. As adsorption proceeded, the rate slowed down, possibly 

due to the depletion of lysozyme and occupation of binding sites [40].  

Pseudo-second order kinetics suggests that chemisorption is the rate controlling step 

throughout the adsorption process [44], the adsorption of lysozyme on SiNPs is most 

likely a combined effect of both physical and chemical interactions.  

Equilibrium loading capacity is an important parameter in assessing the suitability of 

SiNPs as a carrier for the controlled release of a protein for therapeutic applications as it 

can be used to determine the maximum loading capacity for the release of a protein 

within the therapeutic dose range by a carrier. Among the several models available, the 

Langmuir model was found to be the best to describe the experimental data (R2 = 0.94) 
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[41,45,46]. This adsorption isotherm assumes monolayer adsorption with minimal 

interaction among the adsorbate molecules. With macromolecular proteins such as 

lysozyme with surface functional groups, the process is more complex. The difference 

IEPs between SiNPs (IEP ~3.0) and lysozyme (IEP=10.9) would lead to the adsorption of 

positively charged protein onto SiNPs, resulting a protein monolayer on the surface 

SiNPs [38,47]. The existence of intermolecular repulsive electrostatic interactions will 

prevent second layer of adsorption.  The maximum monolayer adsorption capacity (Qm) 

of lysozyme on silica nanoparticles typically falls in the range of 50-520 mg/g, depending 

on the pH and ionic strength, with the greatest Qm achieved at a pH near the IEP of 

lysozyme in the absence of electrolyte [46,48]. The deviation from this maximum loading 

could be explained by the salts in PBS and the suboptimal loading pH. 

The release process of cargo is governed by the concentration gradient of the 

protein/polypeptide at the SiNPs surface followed by its rapid diffusion into the medium 

(Figure 4.4 A and B). This type of release profile makes this system a promising 

candidate in the topical treatment of aliments such as DED which require relatively rapid 

drug release at the target site that is still sustained for a few hours. The release rate can be 

tuned by varying the initial protein loading on the SiNPs or by silica surface modification 

for other clinical applications. In contrast to the lysozyme-SiNP system where all the 

adsorbed protein was released over time, only about half of the N-94 was released from 

the N-94-SiNPs. N-94 is a much smaller and flexible molecule than lysozyme. This could 

allow for more than one conformation of the adsorbed N-94. The relative stability of 

these conformations could lead to the incomplete release observed. This could be a 

concern that has to be addressed in the design and development of a N-94-SiNP treatment 

system for DED. Nevertheless, the molecular integrity of N-94 was retained during the 

release, as demonstrated by the MALDI results. Overall, the sustained delivery of N-94 

can increase its bioavailability when applied to the cornea as compared to the current 

drop treatment approach.  

The SiNPs degradation was evident from the time dependent change of the particle 

diameter. The degradation rate of SiNPs can been tuned to meet the requirements of a 

particular delivery application. According to Yamada et al., in general, smaller sizes 
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particles have higher degradation rates [49]. The ultimate dissolution time in vivo is 

dependent on the particle size, synthesis method, and the properties of fluid it is subjected 

to [49,50]. The degradation of the material is favorable for drug delivery application as 

the carriers serve no other useful purposes after the therapeutics are delivered. 

The clinical significance of the N-94-SiNP delivery system was supported by 

experiments demonstrating that neat N-94 was non-toxic to HCECs and can effectively 

reduce cell damage imparted by pro-inflammatory cytokines across a wide time and 

concentration range (Figure 4.7 B). We found that release products from N-94-SiNPs 

were non-cytotoxic, and N-94 released from SiNPs remained cytoprotective (Figure 8 

and 9). We observed optimal cytoprotective effects at 10 nM and potentially 1 nM. This 

corroborates existing lacritin studies that determined a 10 nM optimal concentration for 

cytoprotective effects on HCECs and a 1–10 nM optimum for bactericidal activity 

[29,30]. We applied N-94 for 16 and 20 hours to check cytoprotective effects over a long 

period of cell stress and found that an exposure to 10 nM of N-94 for 20 hours was most 

effective in our model. It is possible that the autophagy pathway that restores homeostasis 

during inflammation was gradually triggered by increasing amounts of N-94 binding 

syndecan-1 on the HCECs, reaching an optimum at 20 hours [29].  

A limitation in the translatability of our study is the gap between the complete release of 

N-94 from SiNPs after 8 hours and its optimal cytoprotective effects at 20 hours after 

release. As mentioned, it may be worthwhile to study release kinetics in a solvent 

containing tear proteins such as lacritin to possibly prolong release. Treating cells with 

the conjugated N-94-SiNPs without first inducing release would also be useful in 

studying optimal treatment durations once release kinetics are established in tear-

mimicking cell culture media. Future studies should also extend the study duration: 

supplementing with additional N-94 daily as it is depleted can mimic daily drug 

administration. In addition, other cell models could be explored to investigate the 

preventative effect and rescue ability of N-94. More specifically, pre-treating HCECs 

with N-94 before cytokine and post-treating insulted cells with N-94 could be employed. 
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Trans-well inserts were used to separate N-94-SiNPs from HCECs to avoid the 

endocytosis of SiNPs [17]. In clinical application, it must be ensured that the N-94-SiNPs 

can remain on the ocular surface for the entire duration of N-94 release. This challenge 

presents opportunities to create novel approaches for implementation. Future studies 

could explore a secondary drug carrier for our proposed drug delivery system, such as 

silicone hydrogel contact lenses. Embedding N-94-SiNPs into contact lens would further 

ensure sustained drug delivery. While hydrogel contact lens itself can be considered as a 

primary drug carrier, the SiNPs intermediate confers flexibility: it may be difficult to 

synthesize different types of complex hydrogen matrices personalized for different 

amounts of drug release, but we can more easily vary the amount of SiNPs embedded 

into contact lenses for patients with varying degrees of dry eye. 

4.5 Conclusions 

As an excellent option for bioactive protein and peptide delivery, the SiNP-based 

delivery system mediated the controlled release of cargo for a period of eight hours. This 

type of release profile could be useful in dry eye treatment, as it could allow patients to 

encounter the drug-elution at night, ideally while sleeping, and then to have 16 hours of 

relief during waking hours. We have demonstrated that N-94 is functionally equipotent to 

its parent protein lacritin and cytoprotective of stressed HCECs in its free dosage form. 

The constitution of the N-94-SiNP delivery system successfully retained the peptide’s 

molecular integrity and biological functionality. The peptide carrier was degradable and 

was non-toxic to cells. The system has potential for incorporation into other ophthalmic 

devices such as silicone hydrogel contact lens or new multifunctional devices. Overall, 

the N-94-SiNPs delivery system represents a promising approach that can be further 

developed for the treatment of DED.  
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Chapter 5  

5 Development of Multifunctional PVA-SiO2-IONP 

Microparticles for TACE3 

5.1 Introduction 

Drug-eluting microparticles are characterized as matrix systems in which the drug is 

homogeneously dispersed, either in dissolved or suspended form [1]. These micron-sized 

delivery packages hold great utility in the clinical management of numerous diseases. 

Plentiful microparticles composed of biocompatible polymers, such as chitosan, alginate, 

poly(vinyl alcohol) (PVA) and poly(lactic-co-glycolic acid) (PLGA) were developed for 

treating gastric diseases, lung cancer and hepatocellular carcinoma (HCC) [2–4]. Such 

particles could be prepared via a wide array of processing techniques, including 

microfluidics, electrospray and spray drying [1,5,6]. In addition to being used solely, 

such particles can be used as a component in existing platforms, such as microfibers, 

scaffolds, or bulk hydrogels for many applications, including drug delivery and tissue 

regeneration [7–10]. 

Multifunctional drug-eluting microparticles have been a center of research in the past 

decade. Such particles can fulfill two or more functions after administration, making 

them promising in treating complex systems, such as tumors [11]. Targeted drug delivery 

can localize the drug to the site of action, minimizing the unwanted toxicity to healthy 

tissue [12]. Controlled release capability can avoid burst release and maintain an effective 

drug concentration for a prolonged time [13,14]. Degradation of the delivery system is 

beneficial as drug release can be modulated by the degradation rate of the carrier. In 

addition, device removal is not required. Repeatable treatment is possible because the 

carriers can be broken down into innocuous products and eliminated from the body after 

the therapeutic is depleted [15]. Furthermore, imageable drug carriers facilitate the 

 

3 A paper under the title: Microfluidic fabrication of drug-eluting composite hydrogel microparticles is in 

the preparation stage. Xinyi Li will be the first author. 
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diagnosis and postoperative feedback, which is particularly advantageous in 

interventional radiology for cancer treatment [16].  

Composite hydrogels provide a powerful platform to construct multifunctional drug-

eluting systems. The idea behind it is to use nanoparticle fillers, biological factors, or a 

combination of polymers to enhance and diversify the properties of traditional hydrogels 

[17,18]. Poly(vinyl alcohol) (PVA) is one of the most commercially important 

biocompatible polymers in use. PVA can be stabilized via physical crosslinking through 

the freezing-thawing technique, in which no toxic chemical crosslinkers are required. The 

porosity and mechanical properties can be altered by adjusting the process parameters, 

polymer concentration in the solution and molecular weight of PVA [19]. The non-toxic 

crosslinking approach, along with the tunable properties, renders PVA widespread 

biomedical applications, including drug delivery, wound dressing and orthopedic 

implants [20]. Iron oxide nanoparticles (IONPs) have gained particular interests due to 

their excellent magnetic properties, making them good candidates as magnetic resonance 

imaging (MRI) contrast agents and drug carriers for targeted delivery [21].  Furthermore, 

the incorporation of IONPs into the PVA could endow the system with degradability. 

Bannerman et al. introduced IONPs to the PVA hydrogels through in situ co-precipitation 

[22]. IONPs were allowed to form hydrogen bonding with PVA chains and participate in 

hydrogel crosslinking during the subsequent freezing-thawing cycles. As a result, the 

gradual dissolution of IONPs in an acidic environment would weaken the linkages, and 

therefore the stability of the matrix, leading to the ‘degradation’ of PVA. Silica (also 

known as silicon dioxide, SiO2) has been "generally recognized as safe" by the FDA for 

more than five decades and is widely used in the food industry as a color or formulation 

stabilizer [23,24]. The presence of abundant surface silanols (Si-OH) allows the 

conjugation to various organic functional groups, rendering silica nanoparticles (SiNPs) 

with a wide range of applications in disease diagnosis and controlled drug release [25]. In 

addition to SiNPs, silica-based materials in the form of composite hydrogels have 

attracted significant attention. For example, silica-PVA hydrogels derived from acid-

catalyzed sol-gel synthesis possess improved permeability and mechanical properties 

compared to neat PVA hydrogels [26–28]. It is speculated that the relatively slow 

hydrolysis step resulted in molecular chains contain sufficient silanol groups to 
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participate in hydrogen bonding with the hydrogel polymers [29]. The formation of 

silica-hydrogel interaction affects the intramolecular binding of the polymeric chains and 

could reduce the crystallinity while improving the PVA's diffusivity [27,30]. This 

improvement is particularly beneficial for drug delivery as it would facilitate the 

permeation of drug molecules [31,32].  

In this chapter, we continued the previous work on multifunctional PVA-IONP 

microparticles (Chapter 3). However, we introduced silica to the composite hydrogel to 

modify the loading and release ability of the delivery system. This material was prepared 

via the acid-catalyzed sol-gel process and in situ co-precipitation. The microparticulate 

PVA-SiO2-IONP system was fabricated by microfluidics and stabilized by the low 

temperature thermal cycling (LTTC). The detailed scheme of the preparation of the 

particles is presented in Figure 5.1. Various flow rates of the continuous phase and 

dispersed phase were explored to make microparticles of adjustable sizes. The resulting 

PVA-SiO2-IONP microparticles were comprehensively characterized in the aspects of 

morphology, composition, magnetic properties, drug loading/release and degradation. 

This multifunctional delivery system can potentially be used as drug-eluting 

microparticles in different interventional radiology therapies, such as transarterial 

chemoembolization (TACE) treatment of HCC.  
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Figure 5.1 Schematic illustration for the preparation of PVA-SiO2-IONP 

microparticles. 

5.2 Materials and Methods 

5.2.1 Materials 

PVA (MW 146,000-186,000, 99+% hydrolyzed), iron (III) chloride (FeCl3), iron (II) 

chloride tetrahydrate (FeCl2•4H2O) were purchased from Sigma-Aldrich. 

Tetraethylorthosilicate (TEOS, 99+%) was acquired from Alfa Aesar. Hydrochloric acid 

(36.5%-38%, HCl) was obtained from Caledon. Sodium hydroxide (NaOH) pellets were 

purchased from ThermoFisher Scientific. Doxorubicin hydrochloride was obtained from 

Cayman Chemicals. Span80 was purchased from Fluka. Ethanol (95%) was acquired 

from Commercial Alcohols. Phosphate buffer solution (pH 5.5) was prepared by a 

procedure reported elsewhere [33]. All other chemicals were purchased from Sigma-

Aldrich and were used without any purification. 

5.2.2 Preparation of PVA Solution 

A 2.99 wt% PVA solution was prepared at 90 °C under mechanical stirring (rpm 100). 

The temperature was maintained for at least 3 h. The PVA was stored at room 

temperature overnight to degas naturally. 
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5.2.3 Preparation of Iron Chloride Solution 

An iron chloride solution containing 20.66 wt% FeCl3 and 12.66 wt% FeCl2∙4H2O (2:1 

molar ratio) in distilled water was prepared at room temperature. 

5.2.4 Preparation of PVA-SiO2-Fe (II, III) Gel 

First, a silica sol was prepared by slowly adding 2.76 mL TEOS into a solution 

containing 2.7 mL of H2O, 2.95 mL of ethanol and 70 µL concentrated HCl. The 

resulting mixture was maintained at 60 °C under magnetic stirring (rpm 150) for one 

hour. To prepare the PVA-SiO2 gel, 1.36 g of silica sol was mixed with 13.64 g 2.99 wt% 

PVA solution. The resultant gel was then aged at 60 °C under magnetic stirring (rpm 

150) for five hours. The PVA-SiO2 gel, after cooling, was blended with 2.78 g iron 

chloride solution. The resulting PVA-SiO2-Fe (II, III) gel was filtered through a 5 μm 

filter (Acrodisc® syringe filter, Pall Laboratory) and stored at room temperature. 

5.2.5 Fabrication of the Flow-focusing Microfluidic Device 

A planar microfluidic system, comprising a flow-focusing configuration, was prepared 

using poly(methyl methacrylate) (PMMA) slab (50 x 25 x 12 mm) by milling. The width 

of the continuous phase and dispersed phase channels were 500 m and 200 m, 

respectively. A second PMMA slab (50 x 25 x 12 mm) was sealed onto the channel slab 

by screws. Two needles (20 gauge, Hamilton Company) attached with silicone tubes 

(0.062 x 0.125’’, VWR International) were inserted into the inlet of the top slab to allow 

independent injection of continuous phase and dispersed phase at selected rates 

controlled by two syringe pumps (NE-1000, New Era Pump Systems Inc.). The droplets 

generated were directed into a NaOH tank through an outlet tubing (0.023 x 0.038’’, 

IntramedicTM PE tubing, BD). 

5.2.6 Fabrication of PVA-SiO2-IONP Microparticles 

Undecane containing 1 wt.% Span80 was used as the continuous phase, while the PVA-

SiO2-Fe (II, III) gel was used as the dispersed phase. Microparticles were fabricated at 

various flow conditions. The microfluidic fabrication was first conducted at a fixed 

continuous phase flow rate (Qc=20 mL/h) while different dispersed phase flow rate 
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(Qd=1-9 mL/h). Subsequently, the fabrication was conducted at two different Qd’s (Qd=1 

mL/h and 3 mL/h) with various continuous phase flow rates (Qd=5-45 mL/h). The 

produced droplets were collected in a reservoir containing 1.0 mol/L NaOH for 

solidification. The resulting PVA-SiO2-IONP microparticles were collected and 

thoroughly cleaned by 50 v/v% ethanol.  

In later experiments (section 5.2.7-5.2.14), dispersed phase (Qd=3mL/h) was focused by 

the continuous phase (Qc=20 mL/h). The droplets were guided into NaOH, collected and 

washed as stated before. The cleaned microparticles were subsequently placed into a 

programmed cryobath for three freeze-thaw cycles (FTCs) (from 20°C to -20°C then to 

20°C at 0.1°C/min, held for one hour at the temperature limits). The microbeads were 

stored in phosphate buffered saline (PBS) at room temperature until future use. 

5.2.7 Drug Concentration Effect on DOX loading 

Doxorubicin (DOX) was loaded into microparticles by immersion approach.  Briefly, 

0.25 mL microparticles were added into 1 mL of DOX stock solution of various 

concentrations (C0=0.125 mg/mL, 0.25 mg/mL and 0.50 mg/mL) under mild shaking 

condition overnight. Afterwards, the loading solution was retrieved and subject to UV-vis 

measurements (Cary 60 UV-Vis, Agilent Technologies Inc.) at 485 nm. The drug-loaded 

microbeads were carefully washed with PBS to remove the surface-associated DOX. 

The loading capacity of doxorubicin was determined by Equation 1: 

Doxorubicin loading(
mg

mL
) = (W0 − Wt)/V b (1) 

Loading efficiency was determined according to Equation 2: 

Loading efficiency (%) =
(W0−Wt)

W0
× 100% (2) 

where W0 is the initial amount of DOX in solution, Wt is the amount of DOX in the 

supernatant, and Vb is the volume of hydrated PVA-SiO2-IONP beads in each sample. 

Results were expressed as mean ± standard deviation (n=9). 
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5.2.8 In vitro Release of DOX 

The in vitro release profiles of DOX from PVA-SiO2-IONP microbeads were studied in 

three release media at 37 °C with shaking at 110 rpm (shaking water bath, New 

Brunswick Scientific). Microparticles with various DOX loading (i.e., C0=0.125 mg/mL, 

0.25 mg/mL and 0.50 mg/mL) were added into 15 mL corresponding release media (PBS 

pH 7.4, phosphate buffer pH 5.5 and acidic water pH 5.5). At predetermined time 

intervals, 1 mL of liquid was retrieved from each sample, and 1 mL of fresh media was 

replenished. The DOX concentration in the liquid was quantified, as stated before. 

5.2.9 Degradation of PVA-SiO2-IONP Microparticles 

The degradation of microbeads was studied at 37 °C in PBS and phosphate buffer. In 

detail, 0.25 mL blank PVA-SiO2-IONP microbeads were incubated with 15 mL 

corresponding buffer. The degradation medium was replaced with a fresh one every 5 

days. At designated time points, samples were retrieved and dried for microscopic 

imaging. 

5.2.10 Size Analysis 

The size of microparticles was measured by an optical microscope (Olympus BX60) 

coupled to an OMRX A35100U camera. Samples were prepared by dropping microbeads 

suspension on the microscope glass slides. The sectional area of the beads was measured 

manually using Image J software for over 100 samples and then converted into an 

equivalent spherical diameter using Equation 3:  

d = 2√A/π 

 

(3) 

where d is the equivalent spherical diameter and A is the measured sectional area of the 

microbead. Results are expressed as the mean ± standard deviation of more than 100 

particles in each sample.  
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5.2.11 Scanning Electron Microscopy (SEM)/Energy-Dispersive X-
ray (EDX) 

Samples were critical point dried (K850 Critical Point Dryer, Electron Microscopy 

Sciences) and fixed on a carbon tape. A layer of 5 nm osmium coating was sputtered onto 

the surface of the samples using a plasma coater (OPC80T, Filgen) before imaging. 

Scanning electron micrographs and elemental mapping were obtained using an SEM 

coupled with energy EDX spectroscopy (LEO (Zeiss) 1540XB FIB/SEM). 

5.2.12 Transmission Electron Microscopy (TEM) 

To visualize the silica particles, silica sol was properly diluted using water, sonicated and 

dripped onto a Formvar carbon-coated 400 mesh copper grid (Electron Microscopy 

Sciences), air-dried and observed under TEM (CM10, Philips). 

The internal structure of PVA-SiO2-IONP microbeads was analyzed using TEM. Samples 

were dehydrated in acetone and embedded in epoxy resin. After that, embedded beads 

were ultramicrotomed (Reichert-Jung Ultracut E) with a diamond knife and the resulting 

slices were placed on copper grids (Electron Microscopy Sciences) for imaging at 80 kV. 

5.2.13 Fourier Transform Infrared Spectroscopy (FTIR) 

The samples of neat PVA, PVA-SiO2 gel and PVA-SiO2-IONP microparticles were dried 

in an oven at 60 °C overnight. FTIR analysis (Perkin-Elmer, Massachusetts, USA) was 

then performed in the region of 4000-500 cm-1 at a resolution of 2 cm-1. 

5.2.14 Vibrating Sample Magnetometry (VSM) 

PVA-SiO2-IONP microparticles were oven-dried at 60 °C overnight. The magnetization 

curve of the microparticles was obtained using a vibrating sample magnetometer 

(LakeShore 7407, Lake-ShoreCryotronics Inc.) at 298 K. 

5.2.15 Statistical Analysis 

For DOX loading and release experiments, a sample size of three or nine was used for 

each condition. For degradation study, a sample size of three was used for each buffer 
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condition. Statistical analysis was performed using Microsoft Excel and GraphPad Prism 

v9 (La Jolla, CA). Results are reported as the mean ± standard deviation.  

5.3 Results 

5.3.1 Microfluidic Fabrication of Size-tunable PVA-SiO2-IONP 
Microparticles 

The flow-focusing microfluidic device was effective in producing tadpole-shaped PVA-

SiO2-IONP microbeads with tunable sizes (129-272 𝜇m). The polydispersity index (PDI), 

defined as the ratio between the standard deviation and the mean diameter of particles 

multiplied by 100, was calculated for each flow condition. The droplets developed PDI 

values ~10%, suggesting that a reasonably monodisperse population [34,35]. 

 

Figure 5.2 Relationship between particle diameter and flow rates. (A) Diameter as a 

function of dispersed phase, Qc=20 mL/h, Qd=1-9 mL/h. (B) Diameter as a function 
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of continuous phase, Qd=1 mL/h, 3 mL/h, Qc=5-45 mL/h. (C)-(E): Optical 

microscope images and size distributions of microbeads fabricated under different 

flow rate conditions. For a fixed Qc=20 mL/h, the particle size decreased first and 

then increased as the Qd increased. At a fixed Qd, the particle size decreased with an 

increased Qc. 

5.3.2 Characterization of PVA-SiO2-IONP Microparticles 

The morphology of PVA-SiO2-IONP microbeads was shown in Figure 5.3 A. The EDX 

analysis (Figure 5.3 D) confirmed the co-existence of iron oxide and silica throughout the 

microparticles.  

 

Figure 5.3 (A) and (B): surface morphology of microparticles (Qd=3 mL/h, Qc=20 

mL/h). (C) and (D): EDX spectrum of microparticles with a square indicating the 

area of analysis. (E) is the EDX elemental mapping of the entire sample in (C). The 

EDX analysis confirmed the presence of iron and silica content in the PVA-SiO2-

IONP microparticles. 

(A) (B)

(E)

(C) (D)
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The silica and iron oxide components were visualized by TEM (Figure 5.4). Silica 

microparticles were found in a spherical shape with a diameter of 1.3 ± 0.5 𝜇m. IONPs 

were well dispersed in the PVA matrix. The diameter of IONPs was measured to be 2.3 

± 0.8 nm.  

 

Figure 5.4 TEM images of (A) silica sol and (B) PVA-SiO2-IONP microbeads. Acid-

catalyzed sol-gel process contributed to spherical silica microparticles with a 

diameter of 1.3 ± 0.5 𝝁m. IONPs were 2.3 ± 0.8 nm in diameter and were well-

dispersed in the microbeads. Due to the large variance of the dimension of silica 

microparticles and IONPs, individual silica microparticle cannot be displayed in (B) 

with IONPs. 

The FTIR spectrum of neat PVA, PVA-SiO2 gel, PVA-SiO2-IONP microparticles were 

shown in Figure 5.5. The neat PVA sample showed characteristic bands at 3220 cm-1, 

2897 cm-1 and 1078 cm-1 due to the O-H stretching, C-H stretching, and C-O-C, 

respectively [36].  

The PVA-SiO2 composite gels showed a new band at 946 cm-1, attributed to the Si-OH 

stretching [37]. The spectra in the range of 1040-1100 cm-1 indicated the co-existence of 

C-O-C, Si-O-Si and C-O-Si stretching [36,37]. The increase in the width of the peaks and 

its slight shift towards a lower wavenumber could be associated with the formation of Si-

O-Si groups (~1060 cm-1) and intermolecular reaction between TEOS and PVA (C-O-Si 

stretching, 1080-1120 cm-1) [37,38]. This hypothesis was supported by the considerable 

reduction of the intensity of the O-H band (3220 cm-1), which might be attributed to a 
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condensation reaction between the hydroxyl groups from silicate (i.e., silanol groups) and 

PVA [39].  Compared with the O-H bands (3220 cm-1) of PVA and PVA-SiO2 gels, an 

increase in the width of O-H band after IONPs incorporation was observed for PVA-

SiO2-IONP beads, indicating a possible formation of intermolecular bonding between the 

IONPs and PVA through hydroxyl groups.  

 

Figure 5.5 FTIR spectra of neat PVA, PVA-SiO2 gel, and PVA-SiO2-IONP 

microbeads. The emergence of C-O-Si peak and reduction of O-H peak indicates the 

condensation reaction between -OH groups of PVA and surface silanols of silica. 

To characterize the magnetic properties of the delivery system, VSM was performed on 

the PVA-SiO2-IONP microparticle sample. The magnetization curve (Figure 5.6 A) 

revealed the paramagnetic nature of the microparticles. 
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Figure 5.6 Magnetization curve of PVA-SiO2-IONP microparticles. The 

microparticles exhibited paramagnetic behavior. (B) Microparticles dispersed in 

PBS attracted by a permanent magnet. 

5.3.3 Drug Concentration Effect on DOX Loading 

PVA-SiO2-IONP microparticles were incubated with DOX solution of 0.125 mg/mL, 

0.25 mg/mL and 0.50 mg/mL, the results of drug loading were summarized in Table 5.1. 

A higher loading while lower entrapment efficiency was observed when a more 

concentrated DOX stock solution was used. The DOX loading was 0.45 ± 0.03, 

0.79 ±  0.08 and 1.34 ± 0.09 mg/mL, respectively. Under these loading conditions, the 

entrapment efficiency was 89.8 ± 6.6%, 79.3 ± 7.9% and 66.9 ± 4.5%, respectively.  

Table 5.1 Drug concentration effect on DOX loading. 

 

5.3.4 In vitro Release of DOX 

Figure 5.7 shows the release profile of PVA-SiO2-IONP microparticles with various 

DOX loading (i.e., 0.45 ± 0.03, 0.79 ±  0.08 and 1.34 ± 0.09 mg/mL) in different 

release buffers. The drug release was fast on the first day and sustained release was 

(A) (B)
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observed afterwards. The release plateau was reached at 7 days for all subgroups. Within 

the same DOX loading group, the release rate increased with a higher ionic concentration 

in buffer or a lower pH value.  

The loading effect on DOX release was illustrated in Figure 5.7 D. PVA-SiO2-IONP 

microspheres with a higher loading rendered a slower release. At day 21, the cumulative 

release for microspheres with 0.45 ± 0.03, 0.79 ±  0.08 and 1.34 ± 0.09 mg/mL loading 

were 44.94 ± 0.88%, 45.33 ± 2.82% and 33.50 ± 1.62%, respectively.  

 

Figure 5.7 In vitro drug release from DOX-loaded PVA-SiO2-IONP microparticles: 

(A)-(C) effect of release conditions on DOX release; (B) effect of drug loading on 

DOX release. Within the same DOX loading subgroup, the release rate increased 

with a higher ionic concentration in buffer or a lower pH value. At the same buffer 

condition, microparticles with a higher DOX loading contributed to a slower and 

lower percentage of release. 

5.3.5 Degradation of Microparticles 

The degradation of microparticles was evidenced by the morphological change during the 

test period (Figure 5.8). PVA-SiO2-IONP microbeads degraded faster in acidic phosphate 
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buffer than in PBS, as the uneven surface and deformation of the original tadpole shape 

were more apparent from SEM images.  

 

Figure 5.8 SEM images of the PVA-SiO2-IONP microparticles at two buffer 

conditions. Pictures were obtained after 0, 14, 35 and 56 days’ immersion in the 

corresponding buffer. Error bar: 20 𝝁m, except for day 14 PBS (error bar 100 𝝁m). 

The degradation of microparticles at both buffer conditions was evidenced by the 

morphological change during the test period. 

5.4 Discussion 

5.4.1 Microfluidic Fabrication of Size-tunable PVA-SiO2-IONP 
Microparticles 

During the microfluidic fabrication process, a dispersed fluid composed of PVA, SiO2 

and iron oxide precursors was sheared by the two continuous oil streams at the junctions 

of three microfluidic channels to form droplets. The resulting droplets were directed into 

the NaOH bath, where ferric and ferrous iron salts co-precipitate to form magnetite 

(Fe3O4) nanoparticles. The co-precipitation reaction can be represented by:  

2Fe3+ + Fe2+ + 8OH− = 2Fe(OH)3Fe(OH)2 → Fe3O4 + 4H2O (4) 

Buffer 

Condition

Time (day)

0 14 35 56

PBS (pH 7.4)
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buffer (pH 5.5)



147 

 

 

The flow rate of the dispersed phase and continuous phase are important parameters in 

determining the diameter of the microbeads. The size of the droplets decreased with an 

increased Qc at a fixed Qd, which was consistent with the literature [283,297]. It has been 

reported that within a certain Qc range, a greater Qc value would result in more rapid 

thread collapse and the breakup of the dispersed phase, leading to a reduced particle size 

[42]. The literature also suggests that the increase in Qd will increase the size of 

microparticles [40], which was partially contradicted to our results, where the particle 

diameter first decreased with a larger Qd. When Qd exceeded the threshold value (i.e., 3 

mL/h), larger microparticles with broader size deviation were generated. The initial 

downward trend could be resulted from the instability of droplet breakup at the early 

operating conditions or the transition of breakup pattern (e.g., from dripping to jetting) 

[43]. However, the droplet generation process must be microscopically examined along 

with the computation of relevant parameters (i.e., capillary number and Weber number) 

to fully understand fluid mechanics and the effect of flow rates on the size of final 

droplets [42,44].  

The tadpole shape of PVA-SiO2-IONP microparticles could be attributed by the 

solidification process that emerged at the oil phase/NaOH interface. In the NaOH 

collection bath, the continuous phase (i.e., oil phase) would form a separate layer on the 

top of the NaOH phase with extended fabrication time. It was speculated that during the 

slow passage of PVA-SiO2-Fe (II, III) droplets through the oil phase/NaOH interface, the 

droplets deformed into tail shape due to the combined effect of gravity, interfacial 

tension, impact and tangential stress [45,46]. The co-precipitation of iron precursors 

proceeds in the presence of PVA and gradually increased the rigidity of microgel, which 

would prevent further changes in particle morphology. Indeed, non-spherical hydrogel 

microparticles are expected in droplet generation with a subsequent “external gelation” 

procedure. Alginate microparticles with different tailed morphologies have been 

intentionally produced by changing the viscosity of the polymer solution, the 

concentration of the crosslinker and collecting distance [47,48].  

Monodisperse, size-controlled and tail-shaped PVA-SiO2-IONP microparticles are 

attractive as drug-eluting microparticles for TACE. The uniform morphology could 
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facilitate the catheter delivery, which could potentially avoid the off-target embolization 

and allow a more proximal occlusion [49,50]. The non-spherical microparticles render a 

higher surface area compared to spherical ones, which makes faster drug release possible 

[48].  

5.4.2 Characterization of PVA-SiO2-IONP Microparticles 

Silica microparticles were formed in the acid-catalyzed sol-gel process. The reaction is 

generally carried out through simultaneous or successive reactions of hydrolysis and 

polycondensation of silica precursors in the presence of an organic cosolvent [29]. The 

net reactions can be described by:  

Hydrolysis: ≡Si-OR + H2O ⇌ ≡Si-OH + R-OH 

 

(5) 

Polycondensation: ≡Si-OH + HO-Si≡ ⇌ ≡Si-O-Si≡ + H2O (6) 

The size of generated silica particles was found to be similar to what was developed 

using the acidic catalysis procedure [51] but much larger than the particles derived from 

basic conditions [52]. The large diameter and broad size distribution can be explained by 

the gel formation scheme. In an acid-catalyzed sol-gel procedure, the hydrolysis rate is 

greater than the condensation rate. The silica tends to form linear polymeric networks that 

are occasionally crosslinked. In contrast, hydrolysis is a lot faster than condensation 

under basic conditions, which results in uniform and discrete silica particles [29].  

The incorporation of silica into the PVA is beneficial as it can potentially improve the 

drug loading and release capability of the delivery system. In a hydrogel-based delivery 

system, the microscopic structure of the polymeric network governs inward and outward 

molecular diffusion [53]. It was believed that the crystalline regions of polymers are 

impermeable to solutes [30,31]. This was supported by the reduction in diffusion 

coefficients through PVA gels with a greater degree of crystallinity or denser polymeric 

network.  Moreover, PVA with a denser network has stronger intermolecular interactions 

displays a smaller degree of swelling and, therefore pore expansion. This was believed to 

hinder drug penetration and release from the PVA matrix. The incorporation of silica 

components could reduce the density of polymer mesh and the degree of crystallinity, 

therefore improve the permeation of drug molecules [54–56]. It was evidenced that the 
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incorporation of silica nanoparticles (SiNPs) can interact with -OH groups from PVA and 

interfere with the PVA chain arrangement, which would diminish the crystallinity of 

PVA and contribute to an improved solute permeability [26–28].  

TEM micrographs confirmed the formation of well-dispersed and relatively uniform 

IONPs (D=2.3 ± 0.8 nm). The ultrasmall size (<50 nm) and good dispersity could be 

attributed by the protective effect of PVA [57]. In a study conducted by Lee et al., IONPs 

of average diameter 4-7 nm were synthesized via in situ co-precipitation. The ferric and 

ferrous ions co-precipitate in the PVA solution, during which PVA irreversibly adsorbed 

on the surface of IONPs [58]. It was hypothesized that the interaction of PVA hydroxyl 

groups with IONPs could protect the nanoparticles from growth and aggregation through 

steric stabilization [59,60]. 

The formation of IONPs within the microparticles is desirable for their applications as 

DEBs. First, IONPs could contribute to the crosslinking of the hydrogel and allow the 

delivery system to ‘degrade’ [22]. IONPs could provide contrast enhancement to 

magnetic resonance (MR) images [61]. More importantly, the co-localization of the 

contrast agent with drug contributes to more definitive and precise location of the drug, 

which could be useful for intraprocedural guidance and post-operative assessment. 

Moreover, the IONPs endow the microparticles with magnetic properties, making them 

promising in magnetically-guided drug delivery [62].  

The PVA-SiO2 interaction was revealed by the FTIR spectrum. Through the acidic 

hydrolysis of TEOS in the presence of PVA, the silanol groups not only condense with 

each other but also react with the hydroxyl groups of PVA to form C-O-Si bonds 

[26,39,63]. This PVA-SiO2 interaction could be desirable as it would affect the overall 

crosslinking of the hydrogel and render a more drug-permeable matrix. The contribution 

of SiO2 to the PVA crosslinking should also be considered for the degradation process.  

Compared with the O-H peak of PVA-SiO2 samples, the PVA-SiO2-IONP gave a peak 

with a weaker intensity and broader width. This could be attributed by the consumption 

of -OH groups during the crosslinking between PVA and IONPs [22]. Furthermore, a 

significant reduction of the peak in the range of 1040-1100 cm-1 was observed. The 
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variation in this peak was consistent with the decrease in the concentration of PVA, SiO2 

in the PVA-SiO2-IONP formulation, as compared to neat PVA and PVA-SiO2 gels. This 

could also be an indication that the complex interactions among PVA, SiO2 and IONP 

have weakened certain interactions.  

The near-linear magnetization curve implied the paramagnetic property of the PVA-SiO2-

IONP microparticles, which was commonly found in FeO and Fe2O3 [64–66]. The 

formation of non-magnetite impurities could be due to the presence of oxygen and/or the 

unconfined stoichiometric and pH condition [67]. In a co-precipitation reaction, 

stoichiometry and pH are crucial to ensure the formation of Fe3O4 nanoparticles. The 

ideal ratio of Fe2+/ Fe3+ is approximately 0.5, while the optimal pH window remains 8.5-

10 [68,69]. The presence of oxygen and strong alkaline solutions could induce the 

oxidation of Fe2+ ions to Fe3+ ions, making the effective Fe2+/Fe3+ < 0.5 [67]. In the 

context of the pH effect, re-dissolutions of Fe(OH)3 and Fe(OH)2 begin at pH >11, which 

could change the composition of formed IONPs [70]. To ensure the formation of Fe3O4 

nanoparticles, excess Fe2+ ions (e.g., Fe2+: Fe3+=2:3) could be used. An alternative 

approach would be to employ argon or nitrogen to eliminate the oxygen in the system 

[71]. Nevertheless, PVA-SiO2-IONP microparticles demonstrated magnetic response and 

zero residual magnetization was produced. This suggests that these microparticles do not 

retain any magnetization after the external magnetic field is removed, which can 

potentially avoid the particle agglomeration in vivo [72]. Magnetic PVA-SiO2-IONP 

microparticles may find their application in MRI contrast enhancement and magnetic 

targeting.  

5.4.3 Drug Concentration Effect on DOX Loading 

PVA-SiO2-IONP microparticles could achieve a greater DOX loading and lower 

entrapment efficiency at a higher initial DOX concentration. This phenomenon could be 

attributed to the finite number of binding sites when the amount of microparticles was 

fixed. Moreover, the increase in loading (in percentile) was smaller than in the DOX 

concentration, indicating a longer incubation time might be necessary. The competition 

between DOX molecules would need a longer time to reach equilibrium.  
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5.4.4 In vitro Release of DOX 

The effect of ionic concentration and pH on DOX elution was shown in Figure 7 A-C. At 

all loading levels, DOX release was faster in pH 5.5 phosphate buffer than in the H2O of 

the same pH, indicating the presence of ions in elution medium can accelerate the release. 

Acidic phosphate buffer rendered faster release compared with saline. As the ionic 

concentration and pH were different for the two buffers, it is challenging to claim the pH 

effect on DOX release. However, we believe that an acidic pH plays an essential role in 

DOX release. DOX is an amphoteric drug that presents predominantly in its cationic form 

[73]. It contains deprotonable phenolic groups (-OH, pKa 9.5) and a protonable amine 

group (-NH2, pKa 8.2) [74]. Yang et al. assembled a DOX-loaded delivery system using 

graphene oxide. DOX elution profile was studied at three pHs (2, 7 and 10), and the 

acidic pH environment provided the fastest and greatest release. It was hypothesized that 

the DOX interacted with the carrier through the hydrogen bonding between the -OH 

groups on the graphene sheet with the -OH and -NH2 groups in DOX. In an acidic 

environment, the protonation of amine groups accelerates the DOX release by reducing 

the number of functional groups available for hydrogen bonding [75]. Such pH-

dependent release is particularly attractive for drug delivery applications. It can 

potentially allow tumor-specific release, because the pH value in tumor tissue (pH 6.5-

6.8) is different from healthy tissue (pH 7.35-7.45) [76]. 

As shown in Figure 7 D, PVA-SiO2-IONP microparticles with a higher loading provide a 

slower DOX release. This could be explained by the increased hydrophobicity of the 

microparticles after loading. It was found that the DOX molecules could introduce π − π 

drug-drug interactions, which increased the hydrophobicity of the drug carriers [4]. As 

such, microparticles with greater DOX loading became more hydrophobic than those 

with lower loading. As a consequence, the water penetration hence drug diffusion would 

be retarded, resulting in a slower drug release [77].  

For all subgroups, an incomplete drug release was observed, which could possibly be 

explained by the entrapment of DOX in the hydrogel matrix and/or the adsorption of 

DOX to the surface of the glass vials [78,79]. The plateau phase in DOX release could be 

followed by a sustained but slow release of the rest of the payload as the degradation 
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progresses. Future study could be conducted for an extended period of time to fully 

reveal the drug release profile. Nevertheless, the release was sustained for 7 days, and the 

release rate was adjustable by altering the DOX loading. Such release profile could be 

engineered to comply with the frequency of TACE treatments and provide a better tumor 

response due to the prolonged drug release [16].  

5.4.5 Degradation of Microparticles 

It has been hypothesized that the degradation of microbeads was contributed by the iron 

dissolution and PVA matrix disintegration (Chapter 3). This study provides additional 

quantitative data to support the hypothesis. However, we are not able to conclude the 

degradation mechanism of PVA-SiO2-IONP microbeads because the impact of silica 

dissolution on degradation is yet to be elucidated. Future studies on sample weight loss, 

thermal properties, compositional analysis of the degradation medium are required to 

understand the degradation process fully. The degradation data should also be compared 

with DOX release profile to better understand the role of carrier degradation in drug 

release. 

5.5 Conclusion 

Multifunctional microparticles were successfully prepared from poly(vinyl alcohol), 

silica and iron oxide via sol-gel synthesis, in situ co-precipitation and microfluidics. The 

size of the microparticles was tunable by adjusting the flow rate of the continuous phase 

and dispersed phase. The PVA-SiO2-IONP microparticles were able to load DOX and 

provide a controlled release for 7 days. This could be followed by a sustained but slow 

release of the rest of the payload as the degradation progresses. The release profile was 

adjustable by altering the drug loading. It was speculated that the DOX release from the 

system was co-dependent on the ionic concentration and pH of the release medium. 

Furthermore, the microparticles were subject to degradation in physiological conditions. 

Taken together, multifunctional PVA-SiO2-IONP microparticles can be potentially used 

as drug-eluting agents for locoregional therapy, such as transarterial chemoembolization 

and wound healing. Further research in the PVA-silica interaction and microparticle 

degradation is required to comprehensively evaluate this drug delivery system.  
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Chapter 6 

6 Conclusion and Recommendations 

6.1 Summary and Conclusion 

The overall objectives of this thesis are to develop multifunctional drug delivery systems 

for locoregional therapy (Figure 6.1). Nano- and microparticulate systems were prepared 

using organic or inorganic biomaterials. These delivery systems were characterized in 

their composition, morphology, drug loading/release and degradation. The results 

demonstrated sustained drug release capacity and in vitro degradability. The summary of 

each delivery system is presented below. 

 

Figure 6.1 Schematic of the research work described in Chapter 3-5. 

In Chapter 3, multifunctional PVA-IONP microparticles were developed as DEBs for 

TACE treatment. The superparamagnetic IONPs were entrapped in the PVA matrix 

through in situ coprecipitation and freezing-thawing cycles. Droplet microfluidics was 

employed to fabricate microparticles. The resulting beads were in a teardrop shape with a 

relatively narrow size distribution. PVA-IONP microbeads have demonstrated multiple 
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functionalities relevant to the application as DEBs, including targetability, detectability, 

controlled DOX release and degradation. The highlights of this project are: 

1. Targetability. PVA-IONP microparticles were superparamagnetic and can be 

attracted by a permanent magnet. 

2. Imageability/Detectability. Microparticles were effective in producing a contrast 

enhancing effect on T2-weighted MRI images. 

3. DOX loading and release. PVA-IONP microparticles provided a DOX loading of 

0.49 ± 0.02 mg/mL. The release was in a sustained manner during the course of 

one week.  

4. Degradability. The degradation of the microbeads was in the form of iron release 

and PVA matrix disintegration.  

5. Co-localization of contrast agent with DOX. This would about a precise location 

of the carrier and drug in relevance to tumor site. 

Chapter 4 described the development of bioactive proteins and peptides delivery system 

using non-porous SiNPs. The system was first assembled using lysozyme as the model 

protein. The adsorption kinetics and isotherm were studied to reveal the loading 

mechanism. Protein release and the dissolution of SiNPs in PBS were investigated. The 

SiNPs were then loaded with N-94, the peptide derived from a tear glycoprotein, lacritin, 

that is effective in dry eye treatment. The SiNP system is attractive as a drug delivery 

formulation for treating dry eye disease. 

The highlights of this work are shown below: 

1. Protein loading is driven by chemisorption and will form a monolayer on SiNP 

surface at low protein concentration. As such, it is expected to be a maximum 

loading capacity determined by the number of binding sites and hindrance effect.  

2. SiNPs can provide a controlled release for proteins and peptides for 8 hours. 

3. The nanocarriers can protect molecular integrity and biofunctions of the peptides. 

4. SiNPs are dissolvable in PBS. The dissolution is time-dependent and results in 

reduced particle size and a porous structure.  

5. N-94 is functionally equipotent to its parent protein, lacritin. 

6. SiNPs are non-toxic to cells. 
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Chapter 5 introduced the development of PVA-SiO2-IONP system, which gives improved 

performance over the PVA-IONP microparticles in terms of increased loading capacity 

and tunable drug release. The multifunctional PVA-SiO2-IONP beads were in a tadpole 

shape and developed a paramagnetic response. SiO2 microparticles participated in the 

hydrogen bonding with PVA and improved the loading and release capacity of the 

delivery system. These microparticles are attractive as DEBs for locoregional treatment 

of diseases. The highlights of this work are listed below: 

1. The size of the microparticle could be tuned by varying the flow rates of the 

continuous and dispersed phase. 

2. PVA-SiO2-IONP microparticles rendered a 61.2% increase in DOX loading 

capacity compared with the original system. 

3. PVA-SiO2-IONP microparticles can provide a controlled release of DOX for 7 

days. The release profile is tunable by varying the drug loading. 

4. DOX release is dependent on the pH and ionic concentration of the release media. 

A more acidic pH and higher ion concentration would contribute to a faster and 

greater drug release. 

6.2 Significance of Research 

This thesis explored the development of nanoscopic and microscopic drug delivery 

systems. In Chapter 3 and Chapter 5, chemical (e.g., coprecipitation and sol-gel process) 

and physical routes (e.g., freezing-thawing cycling) were employed to prepare 

multifunctional drug carriers. Material processing techniques such as droplet microfluidic 

demonstrated efficiency and stability in producing hydrogel microparticles. The resulting 

particles exhibited the integration of several desirable properties, including targetability, 

visibility/detectability, co-localization of contrast agent with drug, sustained drug release 

and degradation. The robust and scalable microfluidic fabrication of microparticles would 

aid the success of clinical translation. The physical crosslinking method allows the 

stabilization of the hydrogel without using toxic crosslinkers, which would make the 

resulting system advantageous for in vivo applications. The resulting multifunctional 

delivery platform holds the promise to address the limitations of current DEBs, which 

would ultimately lead to improved efficacy and safety of TACE treatments.  



163 

 

 

In Chapter 4, a simple drug nanocarrier composed of SiNPs was developed using Stöber 

synthesis. The protein adsorption kinetics and isotherms were studied to reveal the 

loading mechanism. The adsorption pattern is helpful in determining, altering the loading 

and regulating the protein release. The SiNPs are effective in protecting molecular 

integrity and biofunction of protein therapeutics during release. The SiNP-protein system 

is a proof-of-concept design towards many applications for ocular drug delivery.  

In summary, my Ph.D. work involved significant research work in the design, synthesis, 

and processing of multifunctional materials for drug delivery applications. The choice of 

materials and fabrication techniques would guide future work in developing novel 

delivery systems. The delivery formulations we developed could be used as drug carriers 

alone. The primary application would be in TACE-HCC treatment. Other potential 

applications include TACE therapy for colorectal liver metastases and hyperthermia 

treatment for brain tumor. The application could be further expanded if they were 

combined with other delivery platforms, such as microfibers, scaffolds and contact lens to 

serve as drug-eluting medical devices.  

6.3 Future Studies 

Based on the length scale of the delivery system we designed, this thesis could be 

aggregated into two main projects. Chapter 3 and Chapter 5 described the development of 

multifunctional ‘nano-on-micro’ microparticles. Chapter 4 involved work on the 

development of silica-based nanocarriers for protein delivery. Future studies will be 

discussed for Chapter 3 and 5 together, and separately for Chapter 4, due to the similarity 

of the work.  

Development of multifunctional hydrogel microparticles (Chapter 3 and Chapter 5) 

The co-flow or three-dimensional (3D) flow-focusing microcapillary devices should be 

explored to produce the microparticles [1]. This architecture would allow a better sealing 

than quasi-2D planar devices, which is expected to secure the driving force (i.e., the 

relative pressure difference between the inlet and outlet of the microfluidic channel) in 
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robustly delivering the fluids [2]. In addition, a 3D geometry would circumvent the 

unstable breakup of droplets, as the fluids do not contact the walls [3].  

To examine the targetability of the multifunctional ‘nano-on-micro’ microparticles, MR 

steering could be tested in bifurcated fluidic tubing using a clinical MRI scanner [4]. The 

distribution of particles should be recorded to evaluate the spatial control of system. 

Steering ratio and mass loss can be quantified to assess the sensitivity and reliability of 

this approach.  

In the degradation study, additional quantitative and qualitative experiments could be 

conducted. Size exclusion chromatography (SEC) can be employed to examine the 

microbeads. Changes in molecular weight and molecular weight distribution could 

indicate the degradation of PVA [5]. Differential scanning calorimetry (DSC) could be 

performed to monitor the changes in glass transition temperature during the degradation. 

Dynamic light scattering (DLS) can be utilized to measure the size reduction caused by 

the disintegration of the matrix. Moreover, the degradation could be quantified 

gravimetrically.  

Future work should also be dedicated to revealing the biocompatibility and efficacy of 

the drug eluting microparticles. For biocompatibility study, normal cells (e.g., epithelial 

cells) could be incubated with drug-free microparticles. Cell apoptosis should be 

analyzed by flow cytometry. To study the efficacy of the delivery system, cancer cells 

(e.g., HepG2 cells) could be treated with drug-loaded particles. The antitumor effect of 

the system against HepG2 cells could be evaluated using a methyl thiazolyl tetrazolium 

(MTT) assay. Morphological changes of cells in response to the treatments will be 

microscopically examined to reveal the apoptosis pathway [6]. 

To explore the full application spectrum of our multifunctional delivery systems, studies 

on drug release and heating effect could be conducted with the presence of an alternating 

magnetic field (AMF). This would allow the assessment of their clinical applicability in 

magnetic-responsive drug release and magnetic hyperthermia cancer therapy [7]. 
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Development of silica nanocarriers for bioactive protein delivery (Chapter 4) 

This study demonstrated the feasibility of using SiNPs as protein carriers. Future work 

should focus on improving the loading capacity and demonstrating the superiority of the 

drug delivery systems over free drugs. In detail, porous SiNPs could be synthesized to 

improve the loading capacity. Alternatively, non-porous SiNPs could be functionalized to 

introduce more surface binding sites. A cell study could be performed to examine the 

effectiveness of delivery systems. Stressed corneal cells could be treated with free 

bioactive proteins and SiNP-protein systems separately. A comparative study on cell 

viability and metabolism should be performed. 
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Appendices 

Appendix A: PVA-IONP microbeads size measurement 

 

Equivalent spherical diameter is calculated using the following equation:  

𝑑 = 2√𝐴/𝜋 

where d is the equivalent spherical diameter, while A is the measured sectional area of a 

microbead. 

 

  



167 

 

 

Appendix B: Preparation of pH 5.5 phosphate buffer 

Solution I: dissolve 13.61 g of potassium dihydrogen phosphate (KH2PO4) in distilled 

water and dilute to 1000 mL. 

Solution II: Dissolve 35.81 g of disodium hydrogen phosphate (Na2HPO4) in distilled 

water and dilute to 1000 mL.  

Mix 96.4 mL of solution I and 3.6 mL of solution II.  
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Appendix C: Calibration curve for doxorubicin at 485 nm 
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Appendix D: Fitting parameters and curves for lysozyme adsorption kinetics and 

isotherms 

Adsorption kinetics: 

Pseudo-first order 

𝑙𝑜𝑔10(𝑄𝑒 − 𝑄𝑡) = 𝑙𝑜𝑔10𝑄𝑒 − 𝑘1𝑡 

Pseudo-second order 

𝑡

𝑄𝑡
=

1

𝑘2𝑄𝑒
2

+
𝑡

𝑄𝑒
 

 

Table S1 Pseudo-first-order, pseudo-second-order parameters for lysozyme adsorption. 

Adsorption isotherms: 

Langmuir isotherm 

𝐶𝑒

𝑄𝑒
=

1

𝑄𝑚
𝐶𝑒 +

1

𝑄𝑚𝑏
 

Freundlich isotherm 

log10 𝑄𝑒 =
1

𝑛
log10 𝐶𝑒 + log10 𝐾𝐹 

Redlich-Peterson isotherm 

𝑄𝑒 =
𝐾𝑅𝐶𝑒

1 + 𝛼𝑅𝐶𝑒
𝛽

 

Dynamic

Model

Pseudo-First Order Pseudo-Second Order

Qe

(mg/g)

k1 (h
-1) R2 Qe

(mg/g)

k2 (g mg-1h-1) R2

17.77 0.016 0.90 34.97 0.012 >0.99
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Table S2 Fitting parameters for Freundlich, Langmuir and Redlich-Peterson isotherms. 

 

Figure S1 Comparison between the measured and modelled equilibrium isotherm profile.  
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