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Abstract

In this thesis, the Heston-Nandi GARCH(1,1) (henceforth, HN-GARCH) option pric-
ing model is fitted via 4 maximum likelihood-based estimation and calibration ap-
proaches using simulated returns and/or options. The purpose is to examine the
benefits of the joint estimation using both returns and options over the fundamental
returns-only estimation on GARCH models. From our empirical studies, with the
additional option sample, we can improve the efficiency of the estimates for HN-
GARCH parameters. Nonetheless, the improvements for the risk premium factor,
both from empirical standard errors, and sample RMSEs, are insignificant. In addi-
tion, option prices are simulated with a pre-defined noise structure and with different
noise levels, to demonstrate the consequence when we have a noisy option sample
versus a less noisy one. The result shows that, with added option samples the RM-
SEs for estimated GARCH parameters are reduced dramatically, even with a very
noisy option data set. This suggests that calibrating GARCH option pricing models
with a relatively short return series of around 6 years, plus an option sample is more
ideal than using a long return series of 20 years alone. Finally, as a by-product, we
studied which type of options leads to the larger calibration improvements. Our con-
trolled experiment confirms that out-of-the-money, short-maturity options are the
best choices.

Keywords: Heston-Nandi GARCH, Simulation, Joint Calibration-Estimation, Max-
imum Likelihood Estimation
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Summary for Lay Audience

The development of option pricing models has been a productive research area ever
since the first Nobel prize-winning proposal of the Black-Scholes-Merton model in
the 1970s. In 2000, Heston and Nandi proposed a particular GARCH(p, q) condi-
tional volatility model with a closed-form option pricing formula for European option
prices. The filtering and estimation of conditional volatility of this model can be com-
pleted solely from daily observables. Yet, many questions remain unanswered. For
instance, is the model calibration process robust and reliable? How accurate and
valid are the parameter estimates? In this thesis, we simulated market data based
on the Heston Nandi-GARCH(1,1) model, and then examined and compared the
4 maximum likelihood-based estimation and calibration approaches using returns
and/or options. We first followed Bollerslev (1986) and Heston and Nandi (2000)
to investigate the fundamental returns-only estimation on GARCH models, during
which we found that the price of risk parameter, is particularly difficult to estimate
from returns data only, and its estimator is highly influenced by the average level of
simulated daily noises. Hence, we simulated option prices with a pre-defined noise
structure, calibrated the model jointly with options data, and compared its perfor-
mance with the benchmark returns-only MLE method. We conjectured beforehand
that bringing in option data shall help calibrate all parameters, with the potential
of capturing the risk premium more precisely. From our empirical studies, with the
additional option sample, we can improve the efficiency of the estimates for HN-
GARCH parameters. Nonetheless, the improvements for the risk premium factor,
both from empirical standard errors, and sample RMSEs, are insignificant. In addi-
tion, we simulated the option sample with different noise levels, to demonstrate the
consequence when we have a noisy option sample versus a less noisy one. The result
shows that, with added option samples the RMSEs for estimated GARCH parame-
ters are reduced dramatically, even with a very noisy option data set. This suggests
that calibrating GARCH option pricing models with a relatively short return series
of around 6 years, plus an option sample is more ideal than using a long return series
of 20 years alone. Finally, as a by-product, we studied which type of options leads
to the larger calibration improvements. Our controlled experiment confirms that
out-of-the-money, short-maturity options are the best choices.
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Chapter 1

Introduction

In recent years, we have witnessed great developments of option pricing models that
incorporate different stylized facts observed in financial markets. Researchers tend
to spot the disparity between model assumptions and realities, and build upon previ-
ous models. As an example, Heston proposed a continuous-time stochastic volatility
model that replaced the constant volatility term σ in the fundamental Black-Scholes-
Merton (henceforth B-S) model by the famous Cox-Ingersoll-Ross (CIR) process (see
Heston, 1993). The resulting stochastic volatility model can capture the correla-
tion between spot asset return with conditional volatility, while remaining an affine
structure in order to efficiently price options. However, continuous-time stochastic
volatility models often contain latent conditional volatility dynamics, hence it is dif-
ficult to estimate volatility parameters using discretized asset prices. To overcome
this issue, Heston and Nandi (2000) developed a closed-form option pricing model
where the spot asset price follows a particular GARCH(p, q) process. Thanks to its
configuration, the HN-GARCH model captures stylized facts of seasonal conditional
volatility, yet much easier to implement and test, due to its discrete-time feature
with a 1-day lag.

The flexibility of HN-GARCH motivated several extensions. We have seen that
Christoffersen, Heston, and Jacobs (2013) equipped the original HN-GARCH model
with a variance-dependent pricing kernel by adding another parameter to explain
some stylized market anomalies (such as the U-shaped pricing kernel) hence allowing
better empirical fitting. Moreover, Orthanalai (2014) proposed a GARCH process
by adding Levy jumps to the HN-GARCH model to capture the non-Gaussianity of
asset returns, and argued that the infinite-activity jumps are more representative of
shocks in asset prices than the Brownian increment. Very recently, Escobar, Raste-
gari, and Stentoft (2019) proposed a multivariate analogy of the HN-GARCH model
to allow correlation between multiple assets in pricing multi-asset options, while
maintaining the affine structure. Undoubtedly, these extensions open up new hori-
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zons for GARCH option valuation models and yielded rich applications. Nonetheless,
the literature in this field mostly focuses on addressing the shortcomings of current
models and exploring their fixes, without giving attention to the equally important
question regarding the validity and accuracy of the model estimation and calibra-
tion process.1 In particular, the literature regarding the model always includes the
model fitting results with real market data, from which one does not know the true
parameters, hence creating uncertainty on the validity of the finite sample estimates.
Therefore, in this thesis, we hope to fill the gap to investigate the performance and
properties of the popular calibration and estimation approaches, with the help of
simulated market data. We focus on the 4 popular approaches to estimate the model
parameters for option pricing models:

1. Maximum likelihood estimation with stock returns data only (see Bollerslev,
1986 on estimating GARCH models, and Heston and Nandi, 2000 on estimating
HN-GARCH). This is the most fundamental method to fit GARCH models,
and so this approach is called “Returns-only (MLE) estimation”.

2. Non-linear least square approach that fits the model implied option prices
with the observed prices via the vega-weighted Gaussian likelihood function,
where the daily conditional variances are kept fixed. We name this approach
“Options-only calibration method 1”.

3. Non-linear least square approach that fits the model implied option prices
with the observed prices via the vega-weighted Gaussian likelihood function,
where the daily conditional variances are updated from observed returns. This
method is comparable to Options-only calibration method 1, however, we would
also need return observations. In each iteration of the numerical optimiza-
tion process, we compute the implied conditional variances, based on which
we compute model option prices. This particular method of filtering the vari-
ances from returns is popular in existing literature, including Heston and Nandi
(2000), Christoffersen and Jacobs (2004), and many others. Combining further
with the vega-weighted Gaussian likelihood function, we name this approach

1Throughout the thesis, we use “estimation” to refer to estimating the model parameters via
asset return observations, and we use “calibration” to refer to estimating model parameters via
option prices.

2



“Options-only calibration method 2”.2

4. Joint maximum likelihood estimation that estimates the parameters by max-
imizing the combined return and option likelihood, whereas in “Options-only
calibration method 2”, we also filter conditional variances from returns. This
method is largely seen in recent works (for example, in Kanniainen, Lin, and
Yang, 2014). The only difference between the joint estimation and the “Options-
only calibration method 2” approach is that the latter only maximizes the op-
tion likelihood alone, where the joint approach contains the return likelihood.
We call this approach “Joint returns-options estimation-calibration”.

The idea of using market option prices in model calibration, in both using options
alone, or jointly with return data to further enhance the accuracy of parameter
estimates has been widely applied. However, the existing literature is particularly
silent about the properties and performance of such joint estimation, when the data is
generated by the true model. In particular, what are the finite sample and asymptotic
properties of the estimation procedure? Do we have a conclusion when we compare
the various estimation approaches using returns and options? Such questions cannot
be answered without simulation studies, which motivates our work.

The main objective of this thesis is twofold. First, we examine the validity and dif-
ficulty of the model estimation and calibration process with the help of simulated
market return and option data. In this thesis, in addition to the assumed return
structure of HN-GARCH, we fix a statistical structure for observational noises of
option prices, which leads to inference methodologies utilizing return and option ob-
servations. We first present a detailed explanation of the financial intuition behind
the model and the parameters, and we give a brief introduction to model calibration
methodologies, for instance, the MLE procedure and the standard error estimates
for parameters. Since the end goal is to study the properties and performance of the
joint estimation using both returns and options, we conducted extensive simulation-
based studies by first generating 100 samples for various sample sizes of stock returns
and option prices, optimizing each sample, and then extracting basic statistics, such
as RMSEs, and empirical distributions of the parameter estimates. We focus on

2In the literature, this approach is rarely used alone, as the standard approach (as seen in
Christoffersen, Heston, and Jacobs, 2013, Kanniainen, Lin, and Yang, 2014, and many others)
will combine the option likelihood with the return likelihood for a joint estimation (see point 4).
From practical perspectives, such joint estimation approach should always be considered over the
options-only approach. Nonetheless, since part of our objective is to understand the information
and predictability of the model parameters contained in the option prices, we mention and use this
approach in our studies, and further compare its estimating result with the joint estimation result.

3



confirming convergence, and finite-sample properties of the maximum likelihood es-
timator and its standard error estimates, and concluded that the above 4 estimation
and calibration procedures are indeed valid. Throughout the process, we also discuss
some of the numerical challenges and their potential fixes.

Second, we compare the above estimation and calibration methods to examine the
benefit of the Options-only calibration and Joint estimation-calibration approaches
over the benchmark Returns-only estimation approach. The HN-GARCH model
contains 5 parameters, where λ is the risk premium factor, and ω, α, β, and γ are
GARCH parameters that governs the conditional variances (see Section 2). Based on
our previous findings, the risk premium parameter, λ, cannot be effectively estimated
from return data only, since the standard error for λ and the estimate of λ are of
similar sizes in Returns-only MLE with N = 4500 (see Table 4.2 for example).
Hence, although we compare the estimation result for all the parameters, we are
curious whether the calibration methods involving options have any benefits on λ. To
carry out the comparison, we compare 12 groups of Joint estimation-calibration with
different numbers of returns and options in the sample (hence different percentage of
options, from 0% to 90%, where 0% of options refers to the Returns-only estimation)
to validate the importance of options in the joint estimation.

As a summary, we outline the main contributions of our work:

1. Inspired by practical implementations in the literature, we assume observed
option prices follow the true model prices plus vega weighted normal noises.
The details of this particular structure is included in Chapter 2. This setup
allows us to do a joint maximum likelihood-based inference on Heston-Nandi
stock returns and option prices, with details explained in Chapter 3.

2. In Chapter 4, we demonstrated the validity of such joint estimation via a
simulation study, where the model is the true data generating process. We
demonstrated consistency of both the parameter estimators, and the standard
error estimates based on the outer product of gradients.

3. Also in Chapter 4, the advantages of the Joint estimation-calibration are pre-
sented in comparison to Options-only calibration and to Returns-only MLE.
In particular, we demonstrate the impact of increasing sample sizes (returns
and options), and with different variances of options’ vega errors (i.e. when the
option sample is more noisy and less noisy). The result shows that the gains
in RMSEs and standard errors for GARCH parameters α, β, and γ when we
increase either the return or option observations is noticeable. However, the

4



change in RMSEs for λ is only significant when we increase the sample size of
returns.

4. As a by-product, we studied which type of options leads to the larger calibration
and estimation-calibration improvements by comparing the sample RMSEs of
option samples consisting of different types of options. Our controlled experi-
ment confirms that out-of-the-money, short maturity call options are the best
choices. The results and discussions are in Appendix A.

The structure of the remaining thesis is as follows: Chapter 2 and Chapter 3 describe
basic properties of the model and statistical inference methods. Chapter 4 describes
the data generating process, and discusses the numerical estimation and calibration
results. Chapter 5 discusses current problems, concludes, and gives directions for
future work. The appendix includes work in progress, and also supporting infor-
mation and results. In particular, Appendix A discusses which type of options, in
terms of moneyness and maturity, is the best in the calibration with options only. In
Appendix B, we present the results from the same experiment, but with a different
set of true parameters, to confirm the main results.

5



Chapter 2

HN-GARCH Model Description

We begin with a detailed introduction to the HN-GARCH model. In this chap-
ter, we state the dynamics of the return and conditional variance processes under
physical and risk-neutral measures. We further outline the model assumptions and
some properties, including the closed-form option pricing formula, and explain the
intuitions and restrictions behind each model parameter.

2.1 Assumptions

We begin by stating the two assumptions used in HN-GARCH. The first assumption
directly gives the historical process of the risky asset in the market while the second
assumption implies the risk-neutral process.

Assumption 2.1. The Heston-Nandi GARCH(1,1) model assumes the spot asset
price follows a GARCH-type process specified as

log(S(t)) = log(S(t− 1)) + r + λh(t) +
√
h(t)z(t) (2.1)

h(t) = ω + βh(t− 1) + α
(
z(t− 1)− γ

√
h(t− 1)

)2
, (2.2)

where t = 0, 1, ..., St is the stock price at time t, r is the continuously compounded
interest rate, h(t) (known at t− 1), is the variance of S(t) given all the information
up to t− 1, and z(t) is a sequence of independent and identically distributed (i.i.d.)
standard normal noises. We will impose conditions later to ensure the conditional
variance process h(t) is stationary with finite mean.

Besides the setting for the physical distribution, one also needs assumptions for
the stock process under the risk-neutral measure. A common way to deduce the

6



risk-neutral dynamics is by stating a (any) pricing kernel and use the implied risk-
neutral process (see Christoffersen, Heston, and Jacobs (2013) for an example of
using a variance-dependent pricing kernel). In this thesis, since the focus is to study
the theoretical benefits of bringing in options into calibration, we will follow Heston
and Nandi (2000)’s original assumption for simplicity.

Assumption 2.2. The single period European call option price with strike price K
and spot asset price St obeys the Black-Scholes formula

C(St, K, T, σ) = StN(d1)−Ke−rTN(d1)− σ
√
T (2.3)

d1 =
ln(ST/K) + (r + σ2/2)T

σ
√
T

, (2.4)

where T = 1/252, σ is the annualized spot conditional volatility, and N(·) is the
cumulative density function for a standard normal variable.

Assumption 2.2 implies that the risk-neutral expectation of S(t+1) given S(t) equals
S(t)er, hence, by merely applying some transformations to replace λ by −1/2 and
γ by γ∗ = γ + λ + 1/2, we realize the risk-neutral process takes the same GARCH
form as

log(S(t)) = log(S(t− 1)) + r − 1

2
h(t) +

√
h(t)z∗(t) (2.5)

h(t) = ω + βh(t− 1) + α
(
z∗(t− 1)− γ∗

√
h(t− 1)

)2
, (2.6)

where z∗(t) is the i.i.d. standard normal noises under the risk-neutral measure (see
Heston and Nandi (2000) for proof and explanations of this implication).

By the previous assumption, we can price European options with any maturity.
However, in our calibration process, we also need to give distributional assumptions
to the observational errors, in order to draw inference such as deriving standard
errors for our parameter estimation. Many researchers tend to give financial inter-
pretations of the existence of such observational errors on market option prices, for
example, Hentschel (2003) discussed 3 major sources of observational errors: errors
due to finite quote precisions; errors from bid-ask spread, and errors from the mis-
uses of non-synchronous prices and their magnitudes. Also, Jacquier and Jarrow
(2000) claimed that market option price contains errors from mispricing or inaccu-
rate observations, and gave a statistical framework that the observed prices equal a
log-normally distributed error coefficient multiplied by the true price. We will rely
on the widely popular vega weighted MSE metric to assume that the vega weighted
option errors follow a normal random variable with mean 0, as stated in the next
assumption.

7



Assumption 2.3. The vega weighted option errors

ei = (Ci − Ci(θ))/νi, (2.7)

are independent and identically distributed normal random variables (which are also
independent of the daily return innovations zi in (2.1)) with mean 0 and variance
σ2, where Ci is the ith observed option price, Ci(θ) is the ith true option price given
by the model (see Section 2.3 for its representation) with a vector of parameters θ,
and νi is the Black-Scholes vega computed at the market level of implied volatility.

As standard in the finance literature, the popular use of the vega weighted Gaussian
log-likelihood function is merely from the assumption that the Black-Scholes implied
volatility of observed option prices follows the implied volatility of true option prices
plus normal noises. Because inverting the Black-Scholes formula is computationally
expensive, we use the linear vega estimate for the difference in implied volatility.
Examples of the prevalent uses of such objective function are seen in Christoffersen
and Jacobs (2001), the Bank of Canada working paper by Christoffersen, Feunou,
Jacobs, and Meddahi (2012), and Kanniainen, and Lin and Yang (2014). With the
presence of this assumption, the market observables, namely, historical asset prices
and option prices, are solely based on model parameters, plus structured random
noises. Furthermore, the (Gaussian) likelihood of single return or option observa-
tion can be computed effortlessly. Therefore, with the help of Assumption 2.3, the
simulated option prices is consistent with the standard calibration approaches in the
literature.

2.2 Properties of HN-GARCH

We outline some of the basic properties implied by equations (2.1) and (2.2). Note
that because the physical and risk-neutral process takes the same GARCH form,
and the only differences are the parameter replacement on λ and γ, we only outline
the properties based on physical processes. We can always alter λ and γ to get
the properties for the risk-neutral processes. We begin by computing some basic
statistics.

Proposition 2.4 (Conditional distribution of S(t + 1)). Conditional on all the in-
formation up to F t, the next-day asset price S(t+1) is a log-normal random variable
specified as:

S(t+ 1)|Ft ∼ LN (log(S(t)) + r + λh(t+ 1), h(t)) . (2.8)
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The proof is trivial by noting that h(t + 1) is known at t. Hence, we see that
log(S(t + 1))|Ft ∼ N(log(S(t − 1)) + r + λh(t), h(t)). This proposition has some
interesting implications:

1. The next-day stock price conditioning on the previous day is log-normally dis-
tributed. This is consistent with the Black-Scholes setup.

2. In contrast to traditional Black-Scholes, the model uses a specific GARCH
process for conditional volatility. As a result, we would have a (stochastic)
discrete-time series h(t) specifying the daily conditional variance. From (2.8),
we see that h(t) is indeed the daily conditional variance.

3. The log stock price logS(t + 1) conditional on Ft has an expected value of
logS(t)+r+λh(t). Hence, based on our specification, the degree of conditional
volatility has an impact on the average 1-day stock return through the risk
premium parameter λ. When λ > 0, then per unit risk the expected next-
day log stock price would increase by λ. In reality, we would often see that
a more volatile stock has a higher price. This is because higher volatility
implies a higher probability for the stock price to rise, hence resulting in higher
extreme gains. Although on the other hand, the probability for extreme losses
is also bigger due to higher volatility, the maximum loss is bounded by the
current stock price S(t), hence on average, we should expect stocks with higher
volatility to have higher returns, which suggests that λ > 0. On the other hand,
for risk-less assets, the terms λh(t) and

√
h(t)z(t) will vanish hence the next-

day asset price S(t + 1) will just be today’s price S(t) multiplied by er. Thus
the introduction of λ does not induce arbitrage problems.

As addressed by Duan (1995), although many empirical observations show
evidence of the appearance and importance of the risk premium factor (λ in
the HN-GARCH context), most models do not have this configuration. Hence,
we emphasize the importance of λ and its implications in option pricing here.

We now introduce two propositions that focus on the conditional volatility process
h(t).

Proposition 2.5 (Expectation of h(t)). With the standard GARCH assumptions on
h(t), we have the following:

a) The long-run unconditional daily variance, E(h(t)), equals

E(h(t)) =
ω + α

1− β − αγ2
, (2.9)
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from which we can approximate the expected annual volatility of stock

σannual =
√

252× E(h(t)) =

√
252× ω + α

1− β − αγ2
. (2.10)

b) The conditional next-day variance is a linear function of today’s variance:

Et−1(h(t+ 1)) = (β + αγ2)h(t) + (1− β − αγ2)E(h(t)). (2.11)

As a consequence, the conditional variance h(t) reverts to its unconditional
level exponentially, with a rate of 1− β − αγ2.

c) The conditional variance h(t) and asset log return are correlated as

Covt−1 (h(t+ 1), log(S(t)/S(t− 1))) = −2αγh(t). (2.12)

Proof. We first expand the brackets in the expression of h(t) to get

h(t+ 1) = ω + βh(t) + α
(
z(t)− γ

√
h(t)

)2
= ω + βh(t) + α

(
z2(t) + γ2h(t)− 2γ

√
h(t)z(t)

)
= ω + βh(t) + αz2(t) + αγ2h(t)− 2αγ

√
h(t)z(t).

Taking expectation (conditional on Ft−1) on both sides gives (note that h(t) is known
at t− 1)

Et−1(h(t+ 1)) = ω + βh(t) + αEt−1(z2(t)) + αγ2h(t)− 2αγ
√
h(t)Et−1(z(t))

= ω + βh(t) + α + αγ2h(t).

Taking expectation on both sides again (and by tower property) gives

E(h(t)) = E(h(t+ 1)) = E(Et−1(h(t+ 1)))

= ω + α + (β + αγ2)E(h(t)),

so

E(h(t)) =
ω + α

1− β − αγ2
,
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as seen in a). Also, re-arranging terms in the second equality gives

Et−1(h(t+ 1)) = (β + αγ2)h(t) + ω + α

= (β + αγ2)h(t) + (1− β − αγ2)E(h(t)),

which shows b). To prove c), one have to note that

Covt−1(X, Y ) = 0

whenever X is Ft−1-measurable. Hence, by bi-linearity of conditional covariance, we
have

Covt−1

(
h(t+ 1), log

(
S(t)

S(t− 1)

))
= Covt−1

(
h(t+ 1), r + λh(t) +

√
h(t)z(t)

)
=
√
h(t) Covt−1 (h(t+ 1), z(t))

=
√
h(t) Covt−1

(
α
(
z2(t)− 2γ

√
h(t)z(t)

)
, z(t)

)
,

where we note that

Covt−1
(
z2(t), z(t)

)
= E(z3(t))− E(z2(t))E(z(t)) = 0,

thus,

Covt−1 (h(t+ 1), log(S(t)/S(t− 1))) =
√
h(t) Covt−1

(
α− 2γ

√
h(t)z(t), z(t)

)
= −2αγh(t) Cov(z(t), z(t))

= −2αγh(t).

These properties also have meaningful implications:

Property a) helps us calculate the long-run daily variance, as well as the annualized
variance and volatility given a set of parameters. This is particularly helpful in
the data generation process, as they provide basic statistics of the generated return
series.

Property b) shows the exponential mean-reverting property of conditional variance
process h(t). In model calibration using return data, assume we observe a vector of
stock prices. In order to compute the log-likelihood vector given a set of parameters,
we need the initial volatility h(1) to find the implied daily noises recursively. Because
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of the mean-reverting property, the backward computation of the vector z(t) and
h(t) is not heavily dependent on the choice of initial variance h(1). In other words,
depending on the level of persistence (β + αγ2), after hundreds of iterations, the
conditional variances h(t) will be close to the true variances once we are given the
true set of parameters. Hence, as long as we drop a leading portion of the data, the
calibration result will be insensitive to the choice of initial volatility h(1). A more
detailed discussion is presented in Chapter 4.

Property c) tells us the configuration of HN-GARCH allows arbitrary correlation
between asset return and volatility. In particular, if α = 0, then the volatility is a
non-random, time-varying process. Hence, there is no correlation between volatility
and return. However, if α > 0, then a positive γ brings a negative correlation between
asset log return and volatility, which is consistent with empirical findings captured
by Black (1976) and Christie (1982), commonly known as the leverage effect. Also,
Campbell and Hentschel (1992) and Bekaert and Wu (2000) find evidence of the
volatility feedback effect (or news effect) that also confirms such negative correlation
(see Bae, Kim, and Nelson (2004) for a discussion).

The GARCH process given by equations (2.1) and (2.2) assumes discrete observations
of asset prices with an interval of 1 unit of time. If we replace the prescribed interval
by an arbitrary amount, denoted by ∆, then we have the following result when ∆
shrinks to 0. As h(t) is the conditional variance of returns for the next ∆ period,
when ∆ shrinks we must see h(t) converging to 0. Hence we define the variance per
unit time v(t) = h(t)/∆ and we can formulate limiting properties of v(t). Because
the variance and return process (h(t) and R(t)) of HN-GARCH depends on the same
noise z(t), its continuous-time limit remains the same structure, where the dynamics
d logS(t) and dv(t) depends on the same Wiener process W (t), resulting in a special
Heston model where the log return and variance processes are perfectly correlated.

Proposition 2.6 (Continuous-time limit). If the time interval ∆ shrinks to 0, then
the stochastic process v(t) converges to a special Cox-Ingersoll-Ross (CIR) process,
that is driven by the same Brownian motion as the continuous-time limit of log asset
prices. As a consequence, the HN-GARCH model contains the perfectly correlated
Heston (1993) stochastic volatility model as the continuous-time limit.

Proof. See Heston and Nandi (2000) Appendix B. Convergence to Continuous Time.
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2.2.1 Parameter intuition

In the HN-GARCH model, the parameter vector θ contains 5 distinct parameters,
namely,

θ = (λ, ω, α, β, γ). (2.13)

We have seen earlier that each parameter has its individual interpretation and intu-
ition. In this section, we focus on describing the implication and meaning of each
parameter.

• λ: Parameter λ is also referred to as the risk premium. We have discussed
earlier that the asset with higher volatility usually has a higher price, due
to higher expected extreme gain. The parameter λ governs, how much per
unit variance, the physical average of log asset return increases. The fact that
risky assets have higher average returns than risk-free assets is not only from
economical reasoning, but also confirmed by empirical evidence. By having the
risk premium parameter in HN-GARCH, the model fits better, especially with
long return series.

• ω and β: The volatility process h(t) has an autoregressive component, where
part of the next-day variance, h(t+1), equals a fixed number (ω) plus a percent-
age of previous day’s variance (βh(t)). It is intuitively clear that the conditional
variances of two consecutive days are highly positively correlated. If the mar-
ket is highly volatile today, then with a very high probability the next day will
remain the same. The parameter β, usually close to 1, suggests that a consid-
erable portion of today’s variance goes to the next day, while ω is constantly
added on each day.

• α and γ: The parameter α determines the heaviness of the tail distribution
of h(t). Because α is the coefficient of the random portion of h(t), a bigger
coefficient gives a heavier tail and vice versa. In the extreme case where α = 0,
then the process h(t) is non-random, hence no tail. On the other hand, γ
controls the level of asymmetry of the distribution of h(t). If γ = 0, then the
resulting distribution is symmetrical, because the extreme positive or negative
values of daily noise have equal effects on h(t). However, when γ > 0, then a
large negative noise is more influential than a large positive noise with an equal
amount, hence creating asymmetry. Also, parameters α and γ govern jointly
the correlation between asset log return and volatility, as seen in (2.12). Hence,
with a positive α, γ > 0 implies a negative correlation, which is consistent with
empirical findings.
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Besides the effects introduced above, it should be mentioned that these parameters
determine all the moments of the conditional variance h(t). Among these useful
statistics, we only include the derivation of persistence and mean in Proposition 2.5.
The formulas for the first four moments can be found in the appendix in Lahouel
and Hellara (2017). Next, we show how each parameter influences the physical stock
price series by comparing two parameter sets.

2.2.2 A comparison of parameter set

Different choices of parameters can have a huge impact on the model, since the
parameters fully characterize the stock returns and determine the moments and
correlations. In our work, we want the simulated data to be close to reality, we
therefore choose three sets of parameters that are the maximum likelihood estimation
results in Heston and Nandi (2000), Christoffersen, Heston and Jacobs (2006), and
Christoffersen, Heston and Jacobs (2013). Henceforth, we will refer to these sets
of parameters as the H-N 2000, C-H-J 2006, and C-H-J 2013 parameters. We now
examine the effect of these parameter sets.

Heston-Nandi 2000 parameters From Heston and Nandi (2000), we obtain
the MLE estimates for the parameters using daily S&P 500 cash index level from
January 8, 1992 to December 30, 1994 for a total of 755 observations.1 The estimated
parameters are: 

λ = 0.205,

ω = 5.02× 10−6,

α = 1.32× 10−6,

β = 0.589,

γ = 421.39,

(2.14)

with these parameters, and

r = 0, S(0) = 100, h(1) = 3.59e-5, (2.15)

we are able to generate (recursively) arbitrarily long sample paths.2 The following
graph shows 4 different sample trajectories generated by the parameters in (2.14)
and (2.15) with N = 5000.

1The daily cash level closest to (before) 2:30 P.M. (central standard time) on each day are used.
2The value 3.59e-5 is the long-run average conditional variance for parameters from (2.14). The

daily disturbances are generated from Matlab’s random number generator for i.i.d. standard normal
distributions.
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Figure 2.1: Sample trajectories for N = 5000, with parameters in (2.14) and (2.15)

With this set of parameters, the estimated annual expected return equals 0.634%,
and the annual expected volatility is 9.491%, both calculated via Monte Carlo simu-
lation with M = 100, 000 trajectories. The theoretical annual expected return equals
0.633%.3 Using equation (2.10), the estimated theoretical annual expected volatility
is 9.511%, and the degree of mean reversion β + αγ2 is 0.823.4

Note that the excepted annual return of 0.633% and expected annual volatility of
9.511% shows that the H-N 2000 parameters lead to rather unusual risk-return levels,
compared to more recent data. Although the risk-free rate r is set to 0, because of
the log-normal distribution and the existence of the risk premium factor, we should
expect higher annual returns. In Figure 2.1 we simulated 4 sample paths in a time
horizon of 5000 trading days (or roughly 20 years), and the average stock price is close
to the initial price, which implies that the risky asset almost has no excess return.
This is quite uncommon for the stock market. Also, the low β and degree of mean
reversion means that only a small portion of today’s volatility goes into the next
day, and this effect vanishes quickly over time. In comparison, the MLE result seen
in Christoffersen and Jacobs (2004), Kanniainen, Lin and Yang (2014), and many
others who used a longer time series (around 20 years) give a beta of around 0.9 and
GARCH persistence close to 1. It should not be surprising that we should aim to
fit the model with the relative long return series, because different economical cycles

3The theoretical annual expected return is computed using the conditional generating function
of St. See Heston and Nandi (2000) for the formula and proof.

4The approximated annual volatility has a 0.02% absolute difference with the result from Monte

Carlo estimation. One error source is that equation (2.10) estimates E
(√

h(t)
)

by
√

E(h(t)).
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will give different conditional variances that will help identify model parameters, as
argued by Christoffersen and Jacobs (2004, online appendix). We now compare these
parameter set with C-H-J 2006 parameters.

Christoffersen-Heston-Jacobs 2006 parameters From Christoffersen, Heston
and Jacobs (2006), we also obtain the MLE estimates for the parameters using Daily
S&P 500 returns from January 3, 1989 to December 30, 2001 for a total of 3324
returns.5 The estimated parameters are:

λ = 2.772

ω = 3.038× 10−9

α = 3.660× 10−6

β = 0.9026

γ = 128.4

(2.16)

We keep the same initial values and zero interest rate

r = 0, S(0) = 100, h(1) = 9.884e-5, (2.17)

and generate 4 different sample trajectories with the parameters in (2.16) and (2.17)
and N = 5000.6

Figure 2.2: Sample trajectories for N = 5000, with parameters in (2.16) and (2.17)

5The daily total index returns from CRSP are used (see Christoffersen, Heston and Jacobs,
2006). Also, the number 3324 is not from the cited paper, but rather an estimate using the number
of trading days during this period.

6The value 9.884e-5 is the long-run average conditional variance for parameters in (2.16). The
daily disturbances z(t) are exactly the same as the ones in Figure 2.1.

16



With this set of parameters, the estimated annual expected return equals 8.304%,
and the annual expected volatility is 15.626%, both calculated via Monte Carlo
simulation with M = 100, 000 trajectories. The theoretical annual expected return
equals 8.271%. Using equation (2.10), the approximated annual expected volatility
is 15.782%, and the degree of mean reversion β+αγ2 is 0.963.7 From the graph, the
4 simulated paths show a much higher mean excess return. Also, the 16% annual
volatility and the persistence of 0.963 are closer to reality, compared to H-N 2000
parameters.

Christoffersen-Heston-Jacobs 2013 parameters From Christoffersen, Heston
and Jacobs (2013), we obtain the MLE estimates for the parameters using Daily S&P
500 returns from January 1, 1990 to December 31, 2010 for a total of 5272 returns.8

The estimated parameters are:

λ = 1.094

ω = 0

α = 3.364× 10−6

β = 0.838

γ = 196.82

(2.18)

We keep the same initial values and zero interest rate

r = 0, S(0) = 100, h(1) = 1.0617e-4, (2.19)

and generate 4 different sample trajectories with the parameters in (2.18) and (2.19)
and N = 5000.9

7The approximated annual volatility has a 0.16% absolute difference with the result from Monte

Carlo estimation. One cause is that equation (2.10) estimates E
(√

h(t)
)

by
√

E(h(t)).
8The MLE is carried such that ω is restricted to 0, so the model only has 4 parameters. The

number 5272 is not from the cited paper, but rather an estimate using the number of trading days
during this period.

9The value 1.0617e-4 is the long-run average conditional variance for parameters in (2.18). The
daily disturbances z(t) are exactly the same as the ones in Figure 2.1 and 2.2.
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Figure 2.3: Sample trajectories for N = 5000, with parameters in (2.18) and (2.19)

With this set of parameters, the estimated annual expected return equals 4.204%,
and the annual expected volatility is 15.632%, both calculated via Monte Carlo
simulation with M = 100, 000 trajectories. The theoretical annual expected return
equals 4.195%. Using equation (2.10), the approximated annual expected volatility
is 16.357%, and the degree of mean reversion β + αγ2 is 0.968.10 As a comparison,
C-H-J 2013 parameters are more in line with C-H-J 2006 parameters, in terms of
values of parameters, implied persistence, and long-run conditional volatility, when
compared to H-N 2000 numbers. This is because the return data they use in the
parameter estimation has an overlapping period. As a contrast, we see that C-H-J
2013 has a much smaller λ of 1.094, which is slightly more than a third of 2.772,
the λ reported in C-H-J 2006. This directly results in a much smaller annual excess
return of 4.204%, compared to 8.304% of C-H-J 2006. Moreover, the higher γ implies
a higher leverage effect, higher asymmetry, and higher kurtosis compared to C-H-J
2006.

Parameter comparison The following table summarizes the stock price dynamics
implied by the choices of parameters

10The approximated annual volatility has a 0.725% absolute difference with the result from Monte

Carlo estimation. One cause is that equation (2.10) estimates E
(√

h(t)
)

by
√

E(h(t)).
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Table 2.1: A comparison of different sets of parameters

λ ω α β γ Mean1 Ann Vol2 Pers Skew3 Kurt4

H-N 0.205 5.02e-6 1.32e-6 0.589 421.39 0.63% 9.51% 0.823 0.0048 3.344

C-H-J 06 2.772 3.038e-9 3.66e-6 0.9026 128.4 7.76% 15.78% 0.963 0.0028 3.338

C-H-J 13 1.094 0 3.364e-6 0.838 196.82 4.20% 16.357% 0.968 0.0139 3.889

1The (annualized) expected return is estimated via Monte Carlo simulation with
M = 100, 000 paths.

2The (annualized) expected volatility is calculated based on (2.10).

3This is the sample skewness from 100,000 log returns.

4This is the sample kurtosis from 100,000 log returns.

In comparison, the H-N 2000 parameters are estimated with 3 years of data, the
C-H-J 2006 parameters are estimated with 13 years of data, while the C-H-J 2013
parameters are estimated with 21 years of data. The respective variance risk premium
factor (λ) estimates are: 0.205, 2.772, and 1.094, causing almost no excess return
(0.63% for H-N 2000), high degree of excess return (7.76%, for C-H-J 2006), and a
moderate amount of excess return (4.20%, for C-H-J 2013). The C-H-J 2006 and
C-H-J 2013 have close long-run volatility at around 16%, and persistence. In terms
of higher moments, all sets of parameters show positive skews, with C-H-J 2013
having the highest level of skewness, due to large α and γ. Also, the kurtosises of log
returns are all close to 3, implying that the conditional distributions of log returns
have slightly heavier tails than a normal distribution. We see significant differences
when comparing two C-H-J parameters with H-N 2000 ones, especially in annualized
expected returns and volatilities, and the set of parameters of C-H-J 2006 and C-H-J
2013 are more consistent with more recent financial data, as seen in the following
comparison figure.
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Figure 2.4: A comparison of 5000 log returns (generated using the same disturbances
z(t)) for 3 sets of parameters
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Figure 2.5: A comparison of the daily conditional variance process h(t) (generated
using the same disturbances z(t)) for 3 sets of parameters1

1The plot shows the simulated conditional variance process h(t), but with the daily
variance transformed into its equivalent annualized volatility via h(t)→

√
252h(t).

From both figures, we see that the simulated returns from the two C-H-J parameters
are more volatile. In Figure 2.5, we see that the H-N 2000 parameters imply a
10% volatility on average, while the C-H-J parameters both imply an average of
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volatility at around 16%. Furthermore, the high persistences from both sets of C-H-
J parameters are nearly 0.97, which are very close to 1, showing a high correlation
of conditional variance between temporally close days, and a relatively long memory
of the series h(t). The effect of long memory is clearly shown in Figure 2.4 and
Figure 2.5, since at the beginning, the volatility is at a relatively high level, and it
takes around 500 trading days for conditional volatility to reach a low level at 10%.
Clearly, both C-H-J parameters actively demonstrate a higher mean and variance of
the volatility, while the H-N 2000 parameter set is more stable at a lower level.

In conclusion, both the C-H-J 2006 parameters and the C-H-J 2013 parameters
are empirically closer to current data and stock behaviours, and are comparable to
the estimation results as seen in Kanniainen, Lin, and Yang (2014) and much other
recent literature. When comparing C-H-J 2006 parameters with C-H-J 2013, we only
see slightly different dynamics as the latter has higher moments for the conditional
variances but a substantially lower risk premium. Although the calibration in C-H-J
2013 is done with ω restricted to 0, the difference without this restriction is minimal
since the ω estimates are generally very close to 0. Because of numerical optimization
challenges, we also use the same restriction of ω = 0 as in Christoffersen, Heston,
and Jacobs (2013). As a consequence, we decided to focus mostly on the C-H-J 2013
parameters and regard (2.18) as the true parameters in our simulation study.

2.2.3 Parameter constraints

It is quite important to specify the parametric space, in particular, specifying the
range of feasible parameters that we would like to work with. This process is partic-
ularly useful in the simulation and calibration process. The parametric space must
be specified ahead, especially in the calibration process, as the objective function is
highly nonlinear. In this section, we will briefly discuss the issue when the constraints
are violated and hence deduce the parameter constraints. In the HN-GARCH model,
there are 5 parameters, including λ in the log return process and ω, α, β, γ in the
volatility process. The ultimate goal here is to find a set of parameters in which the
volatility process is strictly positive and stationary with finite variance.

Constrains for λ: Although empirical findings show a positive risk premium, i.e.
the level of risk adds value to the asset price, the model does allow λ to be either
positive or negative, with an unbounded range. This is because λ only influences
log asset return, which could be of an arbitrary amount. Even with a sufficiently
negative log return, the asset price still remains positive. Hence, the model does not
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disapprove a negative λ. As a consequence, there is no constraint for this parameter.
We start with the basic assumptions that the stationary GARCH process h(t) is
non-negative and has a finite second moment.

Constrains for ω, α and β: In Heston-Nandi (2000)’s original proposal of HN-
GARCH, the constraints for the GARCH parameters are not discussed. Hence, we
refer back to Bollerslev (1986)’s GARCH setup that all the GARCH parameters, ω,
α and β, are non-negative, because we want to avoid the issue that the conditional
variance h(t) reaches a non-positive value for any t. Recall equation (2.2)

h(t) = ω + βh(t− 1) + α
(
z(t− 1)− γ

√
h(t− 1)

)2
. (2.20)

As we discussed earlier, if α = 0, then the process becomes purely deterministic, and
if α = β = 0, then the conditional volatility is constant, determined by ω. Clearly,
by assuming that all parameters are non-negative, with a non-negative initial value
h(1), and a positive parameter (any of ω, α and β), we can see recursively that the
process h(t) will remain positive (if ω = α = β = 0, then h(t) = 0 for all t ≥ 2,
which is not of interest), however, if any of these restrictions are violated, then the
process h(t) might not be positive for some t, for a positive probability, as shown in
the following proposition.

Proposition 2.7. Suppose h(1) > 0, and

h(t) = ω + βh(t− 1) + α
(
z(t− 1)− γ

√
h(t− 1)

)2
for t ≥ 2. We have the followings:

a) If ω, β ≥ 0 but α < 0, then P(h(2) < 0) > 0.

b) If ω, α ≥ 0 but β < 0, then P(h(3) < 0) > 0.

c) If α ≥ 0, and 0 < β < 1, but ω < 0, then P(h(T ) < 0) > 0 if and only if

T > logβ

(
ω

h(1)(β − 1) + ω

)
+ 1. (2.21)

Proof. We prove each part individually.
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a) The proof is trivial by noting that

P(h(2) < 0) = P
((

z(1)− γ
√
h(1)

)2
>
ω + βh(1)

−α

)
> 0.

b) We see that if

h(2) >
ω

−β
,

then
h(3) ≤ ω + βh(2) < ω + β

ω

−β
= 0.

Hence,

P(h(3) < 0) > P
(
h(2) >

ω

−β

)
= P

((
z(1)− γ

√
h(1)

)2
>

ω

−β
− ω − βh(1)

)
> 0.

c) Consider the deterministic recursive sequence h′(t) defined as h′(1) = h(1), and

h′(t) = ω + βh′(t− 1)

for t ≥ 2. Clearly h′ ≤ h. Now, let T be the smallest integer such that

h′(T ) < 0.

Also, for ε > 0 consider the process h′′(t) defined by h′′(1) = h(1), and

h′′(t) = ω + ε+ βh′′(t− 1).

Because as ε→ 0, h′′(T )→ h′(T ), there must be a sufficiently small ε > 0 such
that

h′′(T ) < 0.

Now suppose that we have z(1), ..., z(T − 1) where(
z(t− 1)− γ

√
h(t− 1)

)2
< ε for t = 1, 2, ..., T .

Clearly, this event has a positive probability to occur. However, with our
construction,

h(i) < h′′(i) for i = 1, 2, ..., T ,
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in particular, h(T ) < h′′(T ) < 0. Also, since h′′(t) > h(t) for all t, if h′(t) ≥ 0,
then h′′(t) ≥ 0. In another word, T is the smallest integer that satisfies

P(h(T ) < 0) > 0.

Lastly, we provide a formula for finding T . One can easily verify that the
process h′(t) defined by the recursive equation has the solution

h(t) =

(
h(1) +

ω

β − 1

)
βt−1 − ω

β − 1
. (2.22)

Hence, by solving for t for the inequality h(t) < 0, we get

t > logβ

(
ω

h(1)(β − 1) + ω

)
+ 1.

In conclusion, this proposition gives a very clear message that we cannot have a
negative α, β, or ω. Negative parameters could make the conditional variance process
h(t) fall below 0, and when that happens, we cannot simulate the process, nor price
options. The cases for α and β are very clear, however for ω, we might actually allow
a very slight negativity, especially when the time interval T is short, as given by
the exact bound (2.21). When we simulate paths with a negative ω, because of the
probability for the simulated path to reach a negative h(t) is so small that everything
is likely to work just fine, however, due to the fact that option price is merely an
expectation under the risk-neutral probabilities, negative ω’s will break down the
HN-GARCH option pricing formula when T is greater than the bound (2.21), as
illustrated below.11

Table 2.2: Breakdown T for different parameters

ω -1e-9 -1e-9 -1e-12 -1e-12

β 0.9 0.95 0.9 0.95

Breakdown T (in days) 110 211 175 347

11The initial volatility h(1) = 1e-3, which corresponds to a 50.2% annual volatility. This number is
intentionally picked to be larger than usual, however breakdown periods are still short, to emphasize
the effect of a negative ω.
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It is clear from Table 2.2 that even if ω goes negative by a little amount (in absolute
value), the breakdown time T would still be quite short, and Proposition 2.6 would
imply that with these chosen parameters, the HN-GARCH analytical formula will
fail to perform. As a direct consequence, we cannot have a negative ω. In conclusion,
the three GARCH parameters, namely ω, α, and β cannot be negative.

Constraints for γ We see in (2.2) that because the parameter γ is in the squared
brackets, whether it is positive or negatives does not influence the negativity of
h(t). Therefore, there is no constraints for γ with that regards. However, when γ
is too large, the process h(t) may fail to have finite second moment, or fail to stay
stationary. Similar to the GARCH model introduced by Bollerslev (1986), we refer
to Heston and Nandi (2000) that the persistence of the HN-GARCH is β + αγ2, as
seen if we rewrite the conditional variance into

h(t) = (ω + α) + (β + αγ2)h(t− 1) + αv(z(t)), (2.23)

where v(z(t+ 1)) is a zero mean daily innovation defined by

v(z(t)) =

[(
z(t)− γ

√
h(t)

)2
− (1 + γ2h(t))

]
. (2.24)

Clearly when persistence equals 1, then we have an integrated (non-stationary) vari-
ance process since the long-run level of conditional variance is infinity. When persis-
tence is less than 1, then we have a stationary process with a finite second moment
(see Heston and Nandi, 2000).

GARCH stationary conditions As a summary, based on above discussions, we
restrict our parametric space with the following parameter constraints

(C1) -


β + αγ2 < 1

ω ≥ 0

α > 0

β > 0

(2.25)

Furthermore, with this setting, we have a (covariance) stationary GARCH process,
and h(t) > 0 for all t.
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2.3 Option pricing

With all the propositions with regards to the physical returns of HN-GARCH model,
we finally reach the fundamental goal of the model - to efficiently price options. One
favorable property about the model is that it provides an almost closed form valuation
formula for European options. The standard risk-neutral valuation approach says
the price for a European call option with strike price K and time to maturity T is
given by

c = e−rTE∗
(
(ST −K)+

)
(2.26)

where E∗ denotes expectations taken with respect to risk-neutral probabilities. The
spot asset price process takes the same GARCH(1,1) form in the risk-neutral world,
as seen earlier,

log(S(t)) = log(S(t− 1)) + r − 1

2
h∗(t) +

√
h∗(t)z∗(t) (2.27)

h∗(t) = ω + βh∗(t− 1) + α
(
z∗(t− 1)− γ∗

√
h∗(t− 1)

)2
(2.28)

with λ replaced by −1/2 and γ replaced by γ∗ = γ + λ + 1/2, where z∗(t) has
standard normal distribution. With this setup, we present the next proposition
regarding European options prices.

Proposition 2.8. An European call option with strike price K and time-to-maturity
T can be computed via

C =
1

2
x+

e−rT

π

∫ ∞
0

Re

[
K−iφf ∗(iφ+ 1)

iφ

]
dφ

−Ke−rT
(

1

2
+

1

π

∫ ∞
0

Re

[
K−iφf ∗(iφ)

iφ

]
dφ

) (2.29)

where x is the spot price, Re[·] denote the real component of a complex value, and

f ∗(φ) = E∗
[
S(T )φ

]
= S(t)φ exp (A(t) +B(t)h(t+ 1)) (2.30)

is the generating function of the risk-neutral process (2.27) and (2.28), and the coef-
ficients

A(t) = A(t+ 1) + φr +B(t+ 1)ω − 1

2
log (1− 2αB(t+ 1)) (2.31)

B(t) = φ (λ+ γ)− 1

2
γ2 + βB(t) +

1/2 (φ− γ)2

1− 2αB(t+ 1)
(2.32)
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A(T ) = B(T ) = 0 (2.33)

can be solved recursively (backwards) with the terminal conditions.

Proof. See Heston and Nandi (2000) Appendix A. Derivation of the Generating Func-
tion and Option Formula.

The reason why the pricing formula (2.29) is called almost closed form is that we
must rely on numerical estimation to invert the characteristic function, i.e. to com-
pute the two integrals in equation (2.29). For example, we could use computational
software, Matlab, to implement the analytical valuation function that first finds the
coefficients A(t) and B(t) recursively, and then numerically estimates the integral
(with a default accuracy of 1e-6) by Matlab’s integral function. The integration es-
timation could get time-consuming, especially leveraged by the number of options
we want to calibrate the model with. Thankfully, these integrals converge very fast,
both from our experience and as reported by Heston and Nandi (2000).

Besides the uses of an analytical formula, one can alternatively use a Monte Carlo
simulation-based approach to numerically generate sample processes from the risk-
neutral equations, and estimate the call price C. We now provide a brief comparison
to examine the efficiency of our analytical formula. We choose the C-H-J 2013
parameters (see (2.18)) of

(λ, ω, α, β, γ) = (1.094, 0, 3.364e-6, 0.838, 196.82)

and compute both the analytical (true) prices and the MC prices of at-the-money call
options with S0 = 100, r = 0, and different maturities (1 month, 3 month, 6 month
and 1 year). The computational time is the total time for 1000 evaluations. For
Monte Carlo price, each price is computed from generating M = 10, 000 trajectories,
and the sample mean and standard deviation are from 1000 prices.

Table 2.3: A comparison of analytical price and MC price of European call options

S0 = 100, r = 0, K = 100 T = 23 T = 69 T = 138 T = 276

Analytical price 1.8999 3.3225 4.7390 6.7531

Computational time (in sec) 1 2.48 5.65 11.92 33.93

MC price mean 1.8993 3.3220 4.7347 6.7487

MC price standard deviation 0.0254 0.0446 0.0673 0.1033

Computational time (in sec) 92.30 114.66 145.91 241.50
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1The computational time is the total time for 1000 function calls.

From Table 2.3, we can clearly see that using the analytical formula not only reduces
computational time dramatically, but also has an (almost) zero bias. Also, as time-
to-maturity T increases, the standard deviation of Monte Carlo prices gets larger, due
to the bigger variance of the terminal stock price distribution, making the analytical
formula appealing in those situations. Furthermore, since the recursive coefficients
A(t) and B(t) in (2.30) is independent of strike prices, spot variance and time-to-
maturity, it is even faster to compute a cross-section of options with different strike
prices, maturities, and dates under the same GARCH parameters.12 In conclusion,
the benefits of having a closed-form formula over non-affine GARCH option valuation
models bring many applications and extensions, including model calibration with
option prices, forecasting at a large scale, solving for hedging strategies, and etc.

12The recursive sequence of coefficients A(t), A(t+ 1), · · · , A(T ) and B(t), B(t+ 1), · · · , B(T ) for
short maturities are fully contained in (the pricing formula of) options with longer maturities.
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Chapter 3

Maximum Likelihood Estimation of HN-GARCH

The usage of maximum likelihood estimation (MLE) in time series has a rich history
since the appearance of the ARCH (see Engle, 1982) and GARCH type models (see
Bollerslev, 1986). The well-documented maximum likelihood estimation method, be-
sides its clear intuition, has several attractive properties, including consistency and
asymptotic efficiency. Thanks to the development of modern computers and numer-
ical optimization algorithms, once we derive the likelihood function, the process of
finding the global maximum parameter merely becomes an optimization problem,
that can be solved easily by computational tools, which greatly eases the implemen-
tations. In this section, we derive the likelihood function that is used for estimating
parameters based on Returns-only MLE, Options-only calibration, as well as Joint
estimation-calibration using both returns and options. We discuss the assumptions
used, and provide sample-based estimates for the covariance matrix, in order to
compute and estimate the standard error of the parameters.

3.1 MLE of return data only

When we only have discrete observations of stock prices, the estimation is very
similar to the MLE of the traditional GARCH models (as discussed in Bollerslev,
1986). Suppose we start with some initial time stamp, and based on the initial stock
price S(0) we observe the next N−day values of stock prices. We wish to establish
our maximum likelihood estimates for the parameters

θ′ = (λ, ω, α, β, γ).

Let Θ be a parametric space specified by our parameter constraints (2.25), and
assume further that the true parameter is an interior point in Θ to ensure the ter-
mination of the iterative optimization algorithm. With this setup, we can derive the
log-likelihood function.
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3.1.1 Log likelihood function

Our observation of stock prices S(0), S(1), ..., S(N) are generated from the model,
with some true parameter θ0.1 In order to find the joint likelihood function, we
first transform the stock prices into log prices, namely, x0, x1, ..., xN . Because the
N -day log stock prices follow some parameter-unknown joint density, denoted by
f(X(1),...,X(N)), the likelihood function is

L(x1, ..., xN |θ) = f(X(1),...,X(N))(x1, ..., xN |θ), (3.1)

where X(i) denote the random log stock price on day i. Because of the GARCH
specification, we cannot write the joint density explicitly, since the daily log returns
are not mutually independent, hence a conditioning trick needs to be applied, so that

f(X(1),...,X(N)) = fX(1) × fX(2)|X(1) × fX(3)|X(2),X(1) × · · · × fX(N)|X(N−1),··· ,X(1). (3.2)

Since X(t) only depends on X(t− 1), and conditioning on X(t− 1) and θ, we have
(note that h(t) is known given X(t− 1) and θ)

X(t)|(X(t− 1) = xt−1,θ) ∼ N
(
xt−1 + r + λh(t), h(t)

)
. (3.3)

Plugging directly the normal density of (3.3) into (3.2) gives

L(x1, ..., xN |θ) =
N∏
i=1

1√
2πh(i)

exp

(
−(xi − xi−1 − r − λh(i))2

2h(i)

)
, (3.4)

so the log likelihood function is

lnLR = l(x1, ..., xN |θ) = logL(x1, ..., xN |θ)

=
N∑
i=1

−1

2
log(2πh(i))− (xi − xi−1 − r − λh(i))2

2h(i)

= −1

2

N∑
i=1

(
log(2π) + log(h(i)) + z(i)2

)
, (3.5)

where the term z(i) is the implied daily noises, given parameters θ and observations
x1, ..., xN . With the log likelihood derived, the estimated parameters θ̂ is obtained
by

θ̂ = argmaxθ∈Θ l(x1, ..., xN |θ) (3.6)

1Note that we assume the initial stock price is non-random here. Hence, what we really observe
from the stock prices is the daily returns between the N + 1 days.

30



within our parametric space. Note that although we need the risk-free interest rate
r in computing the log-likelihood function, the parameter r is not estimated directly
from stock prices, but rather extracted from other market observables, such as the 3
month Treasury bill rates.

Initial value of h(t) In order to recursively recover the daily noises z(i) and
conditional variance h(i) required in the log-likelihood function, one needs the initial
values S(0) and h(1). Although stock prices, conditional variance h(t) and daily
noises z(t) are all observable given a set of parameters, one needs an initial value
for h(t) in order to compute the log-likelihood function. One obvious approach is to
add h(1), the initial variance, as a parameter into the optimization process. This is
rarely used because of the added complexity in the optimization process. In Heston
and Nandi (2000)’s original paper, it is suggested to pick an arbitrary initial value,
for example, the long-run average conditional variance implied by the parameters,
as the initial variance h(1). They argued that because of the strong mean-reverting
structure for the conditional variance process (as discussed in Proposition 2.4), when
given a non-accurate initial value h(1), the process will rapidly revert to the “true”
process h(t), making the estimation result insensitive to the choice of h(1). We
follow Christoffersen et al. (2012) and many others to improve upon this approach
by setting up an initial portion of the return series as the “warm-up” period (for
example, the first 50 observations), prepared for letting the initial variance to revert
to fairly close to the “true” variance. In the warm-up period, the computed variance
process h(t) will deviate from the “true” variance, making the calculation of the
log-likelihood function inaccurate. As a result, when computing the log-likelihood
function, we drop the warm-up period to get a more accurate likelihood value. By
doing this, we give up some observations, in exchange for a more accurate initial
variance h(1).2

3.1.2 Properties of the maximum likelihood estimator

The maximum likelihood estimation of HN-GARCH works similarly as standard
ARCH and GARCH time series, and the properties of the estimators are discussed
in Bollerslev (1986). Under standard regularity conditions, suppose the observed

2There are also other implementations. As an alternative, one can extract information of initial
variance from other observable, for example, the VIX series. We refer to Kanniainen, Lin and Yang
(2014, section 3.2) for the full discussion of filtering the conditional variances from VIX data.
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data is generated from the model with parameter θ0, we have:3

P-1 (Strong consistency): The maximum likelihood estimator converges almost
surely to the true underlying parameter

θ̂
a.s.−→ θ0. (3.7)

P-2 (Functional invariance): If θ̂ is the maximum likelihood estimator for θ0, and
g is any transformation on θ, then g(θ̂) is the maximum likelihood estimator
for g(θ0).

P-3 (Asymptotic normality): The maximum likelihood estimator θ̂ is asymptoti-
cally (multivariate) normally distributed with mean θ0 and covariance matrix
I−1, that is, √

n
(
θ̂n − θ0

)
d−→ N(0, I−1), (3.8)

where I is the Fisher information matrix

I = −E
[
∂2l(x|θ)

∂θ∂θ′

]
. (3.9)

The implications of these properties are uplifting. First, from strong consistency, we
are certain that the bias of all estimated parameters gets small as we increase the
sample size. This enhances the confidence in the estimation result, particularly for
large samples. The functional invariance property gives information on the maximum
likelihood estimates of a function of the HN-GARCH parameters. This is particularly
useful, because if we are interested in persistence (β+αγ2), long-run variance E(h(t)),
or other statistics that depend on the GARCH parameters, we can plug in the MLEs
of each parameter, and get the MLEs for these statistics. This property ensures that
the MLE of these statistics is transformed value of maximum likelihood parameters.
Lastly, the implications of the asymptotic normality are twofold: first, it helps build
standard errors and confidence intervals, as we will see shortly; second, it necessarily
implies that the maximum likelihood estimator reaches the Cramér–Rao bound, i.e.,
it is the (asymptotically) unbiased minimum variance estimator (see Cramér, 1999).

3The regularity and sufficient conditions are first discussed by Engle (1982) in Section 6 (page
998) where the paper cited the conditions from Crowder (1976). With a similar setup, the properties
are further confirmed by Bollerslev (1986) on GARCH models.
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3.1.3 Estimate standard error

The asymptotic distribution of our maximum likelihood estimator θ̂, could have
been used to construct our standard error estimate, however, the Fisher information
matrix is an expectation computed at the true parameter θ0. Hence, we have two
problems: first, we cannot compute the expectation directly, due to the complexity
of the log-likelihood function. As a result, we will need to compute the sample
estimation (i.e. the averages of the second partial derivatives) as a proxy for the
information matrix. Second, we normally do not know the true parameter. Hence,
we must replace the Fisher information matrix with its sample analogy, namely, the
observed information

J (θ) =
1

N

N∑
i=1

∂2

∂θ∂θ′
l (xi|θ) , (3.10)

where the matrix is often evaluated at the maximum likelihood estimate θ̂. Many
have stated the preference of using observed information matrix instead of the Fisher
information for finite samples (see Efron and Hinkley (1978) for a theoretical justifi-
cation and Maldonado and Greenland (1994) provides a simulation-based study that
also provides evidence). We have seen that θ̂ is a strongly consistent estimator of θ0,
and the fact that J (θ) is a strongly consistent estimator of I (θ) for any parameter
θ just follows from the strong law of large numbers (SLLN). However, it is also true
that J(θ̂) (the observed information evaluated at finite sample MLE) is a consistent
estimator for Fisher information I(θ). Note that because J(θ) is also a function
of N , so we cannot apply continuous mapping theorem, but need to rely on some
equicontinuity conditions for the class of functions JN . The proof can be found online
(see Dandar, 2013), and it is made possible thanks to the strong consistency of our
maximum likelihood estimator. Now, based on this fact, the asymptotic properties
of the maximum likelihood estimator and the Slutsky’s Theorem, we can write

θ̂
d−→ N(θ0,

1

N
J−1) = N(θ0, (NJ)−1). (3.11)

However, by Information Matrix Equality, the Hessian matrix equals the outer prod-
uct of the gradient (see Bollerslev (1986) for GARCH models, and Papadopoulos
(2004) for regularity conditions). As a direct consequence, we can compute the outer
product of the gradient for observations x1, ..., xN , via

V̂
−1

=
N∑
i=1

(
∂

∂θ
l(xi|θ̂)

)(
∂

∂θ′
l(xi|θ̂)

)
, (3.12)
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where V̂ is our sample based consistent estimator for the variance covariance matrix.
The estimated standard error can be obtained by taking the square root of the
diagonal elements of V̂ .

Simulation based standard error Alternatively, if we have the luxury of sim-
ulating samples based on a known true parameter, we can also estimate the MLE
standard errors by simulation M trajectories, each having N observations (N days),
and hence we can obtain M different MLE estimates. We calculate the sample
standard deviation of the M estimates as simulation-based standard error. By this
simulation-based standard error, we have an idea of the variability and efficiency of
our maximum likelihood estimators, when the model is correctly specified. Of course,
when M and N are sufficiently large, the simulation-based standard errors should
be close to Fisher-based standard errors (computed from any sample).

Confidence interval The estimated standard error from either approach can help
construct confidence intervals. Utilizing the asymptotic properties of our maximum
likelihood estimator, an (asymptotic) 100(1−α)% confidence interval for parameter
θi can be constructed by

θ̂i ± z1−α/2 × σ̂i(θ̂i), (3.13)

where σ̂i is the estimated standard error for θ̂i.

3.2 MLE of option data only

It is certainly believed that in addition to return data, observed option prices of-
ten contain valuable information that can be used to calibrate our option pricing
model. This is particularly helpful when our HN-GARCH model attains a closed-
form option valuation formula that allows efficient computation of option prices at
a large scale. Assuming that the model is correctly specified, a natural approach in
fitting the model is to find the parameters that match the observed/market option
prices with the model theoretical prices through the minimization of some loss func-
tion. The uses of loss functions in calibration with option prices are used in much of
the existing literature, including Bakshi, Cao, and Chen (1997), Heston and Nandi
(2000), Christoffersen and Jacobs (2004) and many others. We now outline some of
the popular loss functions in actual usage.
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3.2.1 Loss functions

Heston and Nandi (2000) originally considered a nonlinear least square approach,
that is essentially minimizing the sum of squared dollar errors, or the absolute MSE

$ MSE =
1

N

N∑
i=1

(Ci − Ci(θ))2, (3.14)

where Ci and Ci(θ) are respectively the observed (or market) option price and the
theoretical model price of the ith option. We find model parameters θ by minimizing
this loss function. From this approach, an apparent disadvantage is that the options
with higher price weight more than options with lower price, which makes deep
out-of-the-money options, that could contain valuable information with regards to
specific parameters, less significant during the calibration process.

To incorporate options with low prices into the fitting process, we could also consider
minimizing the relative MSE

% MSE =
1

N

N∑
i=1

((Ci − Ci(θ))/Ci)
2. (3.15)

Note that this loss function can be regarded as a weighted MSE where the weight is
the reciprocal of the observed option price. However, by doing this, the extremely
cheap options are given abnormally large weights in estimation.

As Christoffersen (2004) pointed out, because of the above scale considerations, and
also because of the historical convention of quoting option prices by its implied
volatility, we can use a implied volatility MSE

IVMSE =
1

N

N∑
i=1

(σi − σi(θ))2 (3.16)

as objective function, where the implied volatilities σi and σi(θ) are computed via
inverting the Black-Scholes formula

σi = BS−1 (Ci, Ti, Ki, St, r) , and σi(θ) = BS−1 (Ci(θ), Ti, Ki, St, r) . (3.17)

Despite that the IVMSE metric provides intuitive weightings across all strike prices
and maturities, and some other advantages as argued by Broadie et al. (2007), it is
quite computationally intensive, as the evaluation of our objective function involves
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2N numerical inversions of the Black-Scholes formula, which is computed from pure
numerical algorithms. As an alternative, we can approximate the option prices as a
linear function of implied volatility times vega

∆C = ∆σ
∂C

∂σ
(3.18)

and write out the vega weighted loss function, defined as

(Vega weighted) MSE =
1

N

N∑
i=1

((Ci − Ci(θ))/νi)
2, (3.19)

where νi is the Black-Scholes vega calculated at implied volatility by market option
price Ci. Note that the proposal of using vega weighted (VWMSE) is merely a
numerical trick to overcome the computational burden of IVMSE. In this thesis, we
follow Christoffersen et al. (2012) and others to focus on using vega weighted MSE
to calibrate our model.

3.2.2 Maximum likelihood-based inference

With Assumption 2.3, given a set of parameters, we can write out the likelihood
function of observing e1, ..., eN

LO =
N∏
i=1

1√
2πσ2

exp{− e2i
2σ2
}, (3.20)

so the log likelihood equals

lnLO = −1

2

N∑
i=1

ln(2π) + ln(σ2) +
e2i
σ2
, (3.21)

where the true standard deviation σ is estimated by the vega weighted root mean
squared error (VWRMSE)

VWRMSE =

√√√√ 1

N

N∑
i=1

e2i =

√√√√ 1

N

N∑
i=1

((Ci − Ci(θ)/νi)2, (3.22)

i.e., the square root of sample second moment, since vega error is assumed to have a
mean of 0. As a result, we can find the parameters θ that maximizes the option log
likelihood function

lnLO ∝ −1

2

N∑
i=1

{
ln
(
VWRMSE2

)
+ e2i /VWRMSE2

}
. (3.23)
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3.2.3 Conditional variances

The above estimation procedures seem complete, however, we need to note that, as
seen in (2.29), the option price on day t is not only a function of option specifi-
cations and HN-GARCH parameters, but also the conditional variance h(t). As a
consequence, if we have observed N option prices that come from k different days,
then we also need to add the conditional variances h(t1), ..., h(tk) into the optimiza-
tion arguments. As a consequence, the total number of parameters to be estimate
is k + 5. In reality, this approach is very rarely used, because of the added opti-
mization complexity from the additional arguments. Instead, the popular approach
relies on filtering the volatility series from existing market information. We intro-
duced earlier two methods of parameter calibration with option prices only, and the
only difference is that method 1 extracts the daily variance information from other
market data, and is kept fixed throughout the optimization process. As a compar-
ison, method 2 filters the daily variances from the returns, therefore the variances
are updated at each iteration of the optimization. As noted by Christoffersen and
Jacobs (2004), although method 2 does not compute the return likelihood, it still
requires daily return observations in order to filter out the variances. Based on the
online appendix of Christoffersen and Jacobs (2004), we can write out the volatility
updating equation

h(t+ 1) = ω + βh(t) + α
(log(S(t))− log(S(t− 1))− r − λh(t)− γh(t))2

h(t)
, (3.24)

and so given the asset returns, the initial variance and GARCH parameters, we
obtain the filtered variance series.

To our knowledge, the Options-only calibration method 1 is very rarely used. How-
ever, we can take advantage of our simulation studies, and pretend we know the
true variances, to compare the two calibration methods with options only. In the
comparison, we directly give method 1 the true variances, which are then kept fixed
throughout the numerical optimization process. Since method 2 needs to filter h(t)
from returns, we expect that it is superior to method 1, since filtered variances bring
more information. On the other hand, the filtered variances will never be exactly the
true ones, hence it is not clear beforehand which method gives a better calibration
result. Thus, the comparison between the two methods is motivated.
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3.2.4 Properties of MLE estimator

Unlike return MLE, since option prices are only a function of γ∗ = γ + λ + 1/2, we
could not distinguish between γ and λ in option only calibration.4 This leaves us with
only 4 HN-GARCH parameters, compared to 5 with Returns-only estimation. Also,
since the observations of different type of options are not identically distributed, we
can only refer to Hoadley (1971) for additional conditions required to obtain the
asymptotic properties for maximum likelihood estimation for the independent but
non-identical case.5 It is theoretically hard to check with the conditions proposed
by Hoadley (1971). However, from a standard non-linear regression point of view,
standard properties of MLE should still hold. Thus, we make the assumptions that
all the regularity assumptions hold, to finally get the standard error of estimators
and confidence intervals from the same formulas as in (3.12) and (3.13). Later on,
we will check the consistency of MLE estimators and their standard error estimates
by simulated samples.

3.3 MLE of return and option data jointly

In the previous sections, we have seen approaches that estimate model parameters
from returns or options alone. However, historical returns only contain past infor-
mation, while option prices are forward-looking. In addition, more observations will
indeed improve the accuracy of the estimation. Because of this, we follow Christof-
fersen et al. (2012) to provide a framework for the joint estimation using return and
option data. Note that the likelihood function LR for return data alone is derived
in (3.5), and the likelihood function LO for option data when assuming a normal
distribution for the vega weighted error is in (3.23). Since the daily disturbances of
stock returns and the option vega errors are assumed to be independent, we can add
the two-part log-likelihood functions to form a joint likelihood lnLJ

lnLJ = lnLR + lnLO. (3.25)

In equation (3.25), the idea of adding the single part likelihood functions is merely
from the hypothetical expectation that the noises in daily stock prices are inde-
pendent of the option errors. Nonetheless, this does not restrict the option error

4In (3.24), the terms λh(t) − γh(t) imply that λ is not identified from λ + γ from filtered
conditional variances.

5Note that option prices depend on strike prices K, time to maturity T and conditional variance
h(t). With different values of K, T and h(t), the distributions of observed option prices (with vega
errors) Ci are different, making the observations non identical.
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structure or the distributional assumption at all. If we wish, we could use other
structural and distributional specifications of the option errors and replace the vega
weighted Gaussian likelihood lnLO with other likelihood functions to suit different
hypotheses.

In writing such log likelihood function, although the calculation of option likeli-
hood requires conditional variances, such conditional variance process is already
filtered out from the return likelihood computations. As a result, the joint es-
timation contains the conditional variances, and so the estimated parameters are
θ = (λ, ω, α, β, γ)′, which can be obtained from solving the optimization problem

θ̂ = argmaxθ∈Θ lnLJ(θ). (3.26)

Likewise, because the observations in this joint maximum likelihood estimation are
independent but not identically distributed, in particular, the Returns-only MLE
has 5 parameters to be estimated, while the Options-only calibration only has 4, we
refer to Hoadley (1971), page 1983, for more conditions that are required to obtain
asymptotic properties.6 Under the non-linear regression context, we can positively
anticipate consistency to hold in an unusual way. When the number of return obser-
vations in the joint sample tends to infinity, the MLE estimates will converge to the
true parameters. However, if the number of option observations tends to infinity in
a joint sample, while the number of returns is bounded, then only the risk-neutral
GARCH parameters α, β, ω, and γ∗ = γ+λ+1/2 will converge to the true value. In
terms of the Fisher information-based standard errors for our estimated parameters,
the formula estimates the covariance matrix by inverting the observed information
matrix. Since the return and option observations have different log-likelihoods, the
original equation (3.12) should be changed to

V̂
−1

=
N∑
i=1

(
∂

∂θ
li(xi|θ̂)

)(
∂

∂θ′
li(xi|θ̂)

)
, (3.27)

where li is the log-likelihood observing the ith data. Since for an independent sample,
the Fisher information for the whole sample is the sum of single Fisher information,
regardless of the underlying distribution, we anticipate the estimating formula (3.27),
to be consistent as well.

6Here we only list the sufficient conditions if one wants to derive theoretically the asymptotic
properties of this joint estimation. However, considering the difficulties to directly check these
conditions, we show the results from simulation-based studies that provide a practical, empirical
confirmation of some of the properties.
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Chapter 4

Empirical Results

In chapter 3, we saw that once we derived the log-likelihood function for fitting return
data, and the loss function for option data, the maximum likelihood estimation
is merely an optimization problem. In this chapter, we discuss and analyze the
model estimation and calibration results when fitting our simulated data. In this
chapter, all the optimization is completed using Matlab’s solver fminsearch that
utilizes the derivative-free Simplex search algorithm for doing all the optimization.
We will focus on discussing the main results of optimization and their implications
in this chapter, and leave the details, including some other optimization results, and
numerical settings in the appendix.

4.1 Data simulation

While return data can be easily simulated through the recursive GARCH equations,
we still need to simulate option data with the aim to investigate the empirical proper-
ties of the joint maximum likelihood estimation. The option data simulation consists
of two steps. First, because HN-GARCH attains a closed-form option valuation for-
mula, we focus on determining the combination of strike prices K, time-to-maturities
T and conditional variances h(t), that creates a representative sample of option ob-
servations. Second, we need to impose noises on true option prices. If we only use
true price to calibrate the model, then 4 option prices are enough to pin down all
parameters, with any objective function (because the model has 4 identifiable param-
eters). Hence, the structure of noise is also important. Because of put-call parity,
we can easily transform out-of-money call options into in-the-money put options,
and vice versa. Therefore, in our studies, we only focus on simulating and using call
options.
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Simulation of true prices In determining the combination of K, T and h, a
natural approach is to use a grid of evenly spread combinations, so that the option
sample does not lose characteristics from certain types of options. As an example,
we could use a combination of

K = 95, 100, 105, 110, 115,

T = 23, 46, 69, ..., 276,

h(t) = 0.8e-5, 0.82e-5, 0.84e-5..., 1.18e-5,

(4.1)

and calculate the true price for every K, T and h(t). This gives a sample of 5× 12×
20 = 1200 options. Doing this grid approach has several benefits. First, our sample
contains options with any strike price, and maturity and any volatility. Second, we
can always change how fine the grid should be for certain K, T or h(t), to meet
different needs. Also, we can adjust the sample size by generating each option twice,
or 3 times, resulting in a larger sample. Third, the distribution of different types
of options is relatively even. In contrast, a real option sample of call options will
contain mostly short-term (less than 60 days) options, and fewer long-term (more
than 180 days) options. Moreover, we indeed expect that for deep out-of-money call
options, one with long maturity will be more liquid than one with a short maturity.
Also, for in-the-money call options, there will be more with short maturity than long
maturity, hence creating an imbalance, compared to our simulated sample.

In our simulation study, we will obey this grid approach in simulating option prices.
However, when we calibrate on option prices using Option-Returns-NLS, we would
use the filtered conditional variance from the return series into computing model
option price. Because of this, it also seems plausible to use the conditional variances
from the return series, instead of the grid. If we were not using simulated option
prices, but rather the market observed prices, a well-documented approach is to
use only the Wednesday option prices, because they are less likely to be affected
by day-of-the-week effects (see Christoffersen, Jacobs and Mimouni (2010)). As
a consequence, once we have the return series generated, we also have the true
conditional variance series h(t). Hence, we can use the days with a 5-day difference,
say h(1), h(6), h(11), ... to generate true option prices (the strike price K and time-
to-maturity T also follow the grid in (4.1)) which are understood as the true option
prices on Wednesdays. Because the stationary distribution of variances h(t) is close
to a shifted Chi-squared distribution, we expect the option sample will mimic the
reality in terms of the economical cycles, where the grid approach uses uniformly
distributed variances.
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Noise structure Recall that we have assumed that the observed option price
equals true price plus a vega weighted noise

ei = (Ci − Ci(θ))/νi, (4.2)

which is assumed to follow a N(0, σ2) distribution. Hence, we can generate random
errors e1, . . . , to generate true prices. Note that νi is the vega calculated by the
market price implied volatility, because the true price is unknown. Here we do (and
only) know the true price. Hence, in generating such sample, we need to compute
the implied volatility and option vega at true prices, and so the sample option price
(with noise) is

Ci = Ci(θ) + νiei, (4.3)

For the choice of σ (the standard deviation of option vega noises), we refer to Kan-
niainen, Lin and Yang (2014) that reported the estimation result (see table 1 and
table 4) on the “Options-Returns-NLS” volatility extraction approach using Wednes-
days option prices from January 1996 through December 2009, with a 4.9591% vega
weighted RMSE.1 Therefore, we will use this number as a benchmark.

A particular fact in generating option samples based on the vega errors is that when
the true option price is close to 0, equation (4.3) might give a negative sample price.
The probability of such scenarios is very low, and in such cases, we forget the financial
meaning behind option prices, and think of the fitting process as a regression. Hence,
a possible drawback is that because the calculation of the vega error (as in (4.2))
requires the calculation of the implied volatility and option vega at market price,
whereas the inverse of the Black-Scholes formula cannot take a negative price as an
argument. Luckily, we know the true vega (i.e. the vega computed at the true option
price) of the option, hence we could use the true vega instead of the market vega in
the numerical optimization process, which again alleviates the problem. When the
market price is close to the model price, by continuity the implied volatility and vega
should also be close. Hence, replacing the vega computed at market prices by the
true vega should not harm our results, considering this is a weighted least squares
approach.

Statistics of option sample First, we refer to Figure 4.1 for a surface of option
prices for each strike price K, where the x- and y-axis are the time to maturity T
and conditional variance h(t), and the parameters are kept fixed using (2.16). It is

1There are 28,096 call options and 40,432 put options in the sample. Also, the number 4.9591%
is the sample estimate of σ.
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(a) K = 90 (b) K = 95

(c) K = 100 (d) K = 105

(e) K = 110 (f) K = 115

Figure 4.1: Option prices for different K,T and h(t)1
1The x-axis represents the time-to-maturity T (in trading days), the y-axis is the
daily conditional variance h(t), and the z-axis is the option price.
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clear that option prices are monotonic in all of K, T and h(t). This is consistent
with the fundamental Black-Scholes option pricing framework.

Next, we generated our option sample set by first computing true prices with
K = 95, 100, 105, 110, 115,

T = 23, 46

h(5), h(10), ..., h(250),

(4.4)

where the h(t) are 50 conditional variance from the return series, for a total of 500
options. We present a histogram to show the empirical distribution of the conditional
variances h(t).

Figure 4.2: Empirical distribution (histogram) of weekly conditional variances h(t)

From this figure, we can see that the empirical daily conditional variances show the
shape of a non-central Chi-square distribution. Also, although the average level is
1.062e-4, as shown in the graph from the vertical line, the daily variances have a
large variation, from 0.2e-4 to 3.2e-4. More importantly, if the variances with 5-day
lag are drawn from the sample, we would expect most of the daily variances to be
below the long-run level, while a small number of daily variances could have up to
triple the size of long-run variance.

Next, we generate random errors ei from a zero-mean i.i.d. normal random variables
with σ = 4.9591%, and use (4.3) to compute the option prices in our sample. Our
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options have 5 categories of strike prices and 2 categories of time to maturities, and
the average option price (with noise) and the number of options (in parenthesis) are
reported in the table.

Table 4.1: Basic statistics of simulated option sample

Strike price
ccTime-to-maturity

Total
c1M c2M

K = 95
5.340
(50)

6.378
(50)

5.859
(100)

K = 100
1.796
(50)

3.210
(50)

2.503
(100)

K = 105
0.190
(50)

1.158
(50)

0.674
(100)

K = 110
0.005
(50)

0.206
(50)

0.105
(100)

K = 115
0.0003
(50)

0.028
(50)

0.0142
(100)

Total
1.466
(250)

2.196
(250)

1.831
(500)

We note that there are more out-of-money call options than in-the-money ones, be-
cause in general investors favour out-of-money call options due to their high leverage
and cheap price. We see from Kanniainen, Lin and Yang (2014, table 1) that in-the-
money call options, with moneyness (defined as S/K) greater than 1.03 only account
for 8.5% of the total option sample. In our sample this number is 20%, and the rest
are at-the-money and out-of-money call options, therefore our option sample reflects
this structure. Also, the deep out-of-money options may help to estimate certain
parameters, because of their high relevance to extreme events. As to our simulation
study, we can take advantage and increase the proportion of deep out-of-money call
options, as seen in our sample. In terms of time-to-maturity, we only have 1-month
and 2-month options to reduce the computational burden. We suspect the main
conclusion does not change whether we add options with longer maturity to the
sample.
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4.2 Returns-only estimation

We first showcase the results under Returns-only estimation, where we apply max-
imum likelihood estimation on simulated return data, and we analyze the MLE
results. Using the C-H-J 2013 parameters, we can generate our return series. We
use Matlab’s numerical optimizer fminsearch to solve for the MLE parameters that
maximize the return likelihood function (3.6). In fact, from our experience, the
numerical optimization under Returns-only estimation is stable, since fminsearch

can always converge to the same value with different initial values. This actively
confirms our estimation results. The complete result is reported in Table 4.2 where
the return series for various N is generated, and the estimates are included. Note
that the maximum likelihood estimates reported are for one sample, where the sam-
ple standard error is the sample standard deviation for 100 simulated samples. The
standard errors estimated via the outer product of gradients are shown in parenthe-
sis. In addition, we also report the persistence, defined as β + αγ2, and annualized
volatility (estimated via (2.10)). As we discussed in section 3.1.1, the estimation
result is insensitive to the choice of initial variance. Therefore, in the numerical es-
timation, we will assume the true initial variance h(1) is known and focus more on
the empirical demonstrations on the MLE properties.

The maximum likelihood estimates with N = 4500 are close to true sizes with avail-
able data, since the size of the sample (around 17.9 years of data) is in line with
typical empirical estimations. We see first that parameter λ has an estimated stan-
dard error of 1.473, and a sample standard error of 1.335. With the (maximum
likelihood) estimated value of 0.902, the size of estimated and true λ is smaller than
its standard error, implying that we cannot reject the hypothesis of λ = 0, and the
estimate of λ with N = 4500 return data is statistically insignificant. As a com-
parison, for the GARCH parameters α, γ, both the estimated and sample standard
errors are around a tenth of the true parameter value, and for β, the standard error
is two digits smaller than the true value. As a consequence, with a great probability,
the maximum likelihood estimate lies within ±15% of the true values for α and γ,
and ±3% for β. From the table, we see that the accuracy of the estimates is decent,
in terms of absolute error, except for λ. However, we have to note that the point
estimation result is highly dependent on the particular sample (random seed), hence
the standard errors should contain more information in evaluating the efficiency of
the estimator.

If we compare horizontally the estimated parameters with different N , we can in-
deed see a decrease in the difference between estimates and true parameter values.
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The comparison is more obvious if we compare the N = 4500 estimates with those
from N = 450000. Notice that N = 45000 will correspond to around 179 years of
data, which is impractical. Therefore, this exercise is to only empirically verify the
consistency of our MLE parameters. From the table, even with a very long series, we
can pin down parameters α, β and γ, but the accuracy for λ is still not favourable,
proving that the risk premium factor is certainly hard to estimate. Nevertheless,
the N = 4500 MLE parameters imply the persistence and annualized volatility, and
they are both close to the true values, because the persistence does not involve λ,
and the annualized volatility will highly match the volatility from the return series.
In terms of the estimated standard errors, by comparing horizontally we can see a
clear convergence as well. Note that the standard error estimates have errors from
2 sources: the Fisher information estimated by observed information (an average of
our N observations), and the replacement of true parameters by the MLEs. Hence,
for finite samples, because the MLEs may have a huge deviation from the true pa-
rameters, we might see standard error estimates that are not so accurate, and the
sample standard errors are more reliable. When fitting real data, although we have
to stick with the estimated standard errors, we do not require a high level of accuracy
because it only provides a broad indication for our maximum likelihood estimates.

As a summary, when the HN-GARCH model is the true data generation process, we
have the consistency of our maximum likelihood estimates, as well as our standard
errors estimated by the outer product of the gradient of the log-likelihood function.
When comparing the size of standard errors with true parameters, at the practical
level of N = 4500, the maximum likelihood estimates for α and γ will lie within±15%
region of the true parameters, and ±3% for β, implying a 15% (3% for β) the relative
estimation error. In addition, the estimated annualized volatility and persistence are
very accurate. From these, we conclude that the Returns-only estimation can capture
GARCH parameters, as well as persistence and long-run variance with good accuracy.
However, the estimation for λ is not significant, as the size of standard error exceeds
the size of the true λ value.

Moreover, the estimated standard errors do not show a large deviation (the deviation
varies from 0% to 20%), when compared with sample standard errors. When we
compare the standard error estimates with sample standard errors at N = 4500 level,
we see the numbers are very close for λ, β and γ. Also, if we compare horizontally,
we see that as N increases, the difference between standard error estimates and
sample standard errors tends to decrease. This confirms the fact that the standard
error estimates are asymptotically unbiased, and so we conclude that the gradient-
based estimation of standard errors provides a reliable reference to the unknown true
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standard errors.

4.2.1 Estimation of λ

Because of the financial intuitions behind the price of risk parameter λ, we explore
the factors behind the difficulties of estimating λ in the Returns-only MLE. The
first evidence appears when we observe that the log-likelihood is very insensitive
to change in λ. We plot the partial log-likelihood functions with respect to each
parameter, in Figure 4.3, where all other parameters are kept fixed at the true
parameter level. From the figure, we see in (a) that a change from λ = 0 to λ = 5
only decreases log-likelihood by 40. As a comparison, changing β from 0.84 (close
to the global maximum) to 0.82 decreases the log-likelihood function by 100. In
fact, all other parameters (besides λ) have much bigger impacts on the log-likelihood
function compared to λ, making λ very hard to estimate. This also explains the very
large standard errors and confidence intervals for λ estimates, as they are computed
by computing the first-order partial derivatives with respect to the log-likelihood
function.

Another observation that explains why λ estimates are very inaccurate for small
samples is that the particular random seed has a large impact on the λ estimate.
Although this is true for all parameters, we are particularly talking about the very
strong correlation between λ estimates and the mean of daily noises for the simulated
sample. Figure 4.4 is a scatter plot of the mean of noise versus λ estimate, from where
the correlation is very clear.

The reason behind such correlation is because estimating λ is similar to estimating
interest rate r. When we have a sample average of 0.02 for the noises, then the stock
prices will increase more than their expected value, and a higher λ is more likely to
explain this increase, making the maximum likelihood estimate higher than the true
value. Also, if we look at the Heston-Nandi model

R(t) = r + h(t)λ+
√
h(t)z(t), (4.5)

the daily variance h(t) is very small, say 10−4, hence the square root of h(t) will be
much bigger than h(t) (in this case the value is 10−2). Thus, the impact of λ to daily
log return is lesser than the particular random noises z(t) generated. In order to
confirm that it is indeed the return structure (4.5) that causes this, rather than the
specification of the conditional variance GARCH model, we do another experiment
by setting α = β = γ = 0, so we have constant conditional variances h(t) = ω for
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(a) Partial log likelihood w.r.t λ, N = 4500 (b) Partial log likelihood w.r.t α

(c) Partial log likelihood w.r.t β (d) Partial log likelihood w.r.t γ

Figure 4.3: Partial log likelihood functions with respect to each parameter
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Figure 4.4: Scatter plot of mean of noise versus λ MLE, for N = 5000 data sample,
M = 500 samples

all t. The following table summarizes the estimation result when the volatility is
constant.

Table 4.3: Constant volatility, only estimating λ, true λ = 5, N=5,000

Sample 1 Sample 2 Sample 3 Sample 4

True λ 5 5 5 5

Estimated λ 4.976 6.326 0.353 7.480

Mean of noise (×10−2) -0.022 1.322 -4.616 2.463

In the above experiment, we set the variance ω to be 1.062e-4, which is the long-run
level of the C-H-J 2013 parameters. We simulate N = 5, 000 data and only estimate
λ (i.e. assuming we know the true volatility ω). The true λ is set to be 5, which
is larger than the ordinary price of risk observed in the market. Larger true values
should help the estimation, however, we still see a large variety of different samples,
and a clear correlation with the mean of noise.

Note that under the assumption that the noises are i.i.d. N(0, 1) distributed, the
mean of noise for a N = 5000 sample has a N(0, 1/5000) distribution. A random
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sample of size 10 of such distribution is:

−0.471, −0.094, 0.511, 0.491, 0.694, −1.342, −1.302, 1.035, 1.402, 2.752 (×10−2)

Hence, we see that the mean of noise is reasonably distributed, i.e. the mean of
noise being this far from 0 should be expected, and not because of the quality of the
random number generator.

Estimation of λ with ordinary least squares Next, we compare the MLE
with ordinary least square (OLS) method. Luckily, when true volatility is a known
constant, the OLS of λ has an analytical solution. Similarly as before, when volatility
h(t) = ω is constant, the model becomes

R(t) = λω +
√
ωz(t), (4.6)

where R(t) is the daily log return, and z(t) is iid standard normal noise. In order to
find λ that minimize sum of squared error

S =
N∑
i=1

(√
ωz(i)

)2
=

N∑
i=1

(R(i)− λh(i))2 , (4.7)

we have

λ̂ =
∂S

∂λ
=

∑N
i=1R(i)ω∑N
i=1 ω

2
=
R(t)

ω
, (4.8)

and

Var(λ̂) =
1

ω2N2
Var

(
N∑
i=1

R(i)

)
=

Nω

ω2N2
=

1

Nω
, (4.9)

so

SE(λ̂) =
1√
Nω

. (4.10)

Now, we can simulate N = 3475 data with λ = 5, ω = 10−4 (corresponds to 15%
annualized standard deviation) to obtain OLS estimates:

Table 4.4: OLS of λ with true daily volatility h(t)

True value OLS SE1 Mean of noise
Matlab’s fitlm2

Estimate SE t-Stat p-Value

λ 5 6.529 1.696 0.01529 6.529 1.701 3.839 0.000126
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1Calculated based on (4.10).

2Output from Matlab’s fitlm linear regressor.

Note that a standard error of 1.696 is the theoretical standard deviation of the
estimator, and the result from Matlab is the sample standard error.

To summarize, we showed that λ is hard to estimate at a sample size of N = 5000
level. At first, we observed that the log-likelihood function is not sensitive to λ
changes. Next, we observed that there is a strong correlation between the mean of
noise and λ estimates. The variation of the mean of noise is the cause of the variation
of λ estimates, and this is further confirmed by OLS. The variation of the mean of
noise at N = 5000 level is too big to give a statistically meaningful estimate of λ. At
a level of N = 500000, with a large λ, say λ = 5, the estimation becomes significant.
In estimation with real data, another error source is added. Note that we assume the
risk-free rate to be constant throughout the period, however, this assumption is very
unrealistic. With such a vague estimate of risk-free rate we certainly cannot expect
a reliable estimate of λ. Combining what we have previously, in our simulation
study, we find that using a long stock return series (with around 18 years of data)
can estimate α, β, γ, as well as GARCH persistence and long-run variance, at a
maximum of 15% relative error, but the estimation of λ is not significant. This
motivates us to bring in option data to examine the benefits of using option prices
in capturing model parameters, including the risk premium λ.

4.3 Options-only calibration

Calibrating our model using option prices seems to be a natural idea, however, be-
fore we step into the joint estimation using returns and options, we explore some
properties and challenges of model calibration with option prices only. The cali-
bration with options has two immediate differences from the returns MLE. First,
we cannot distinguish the parameters λ and γ only from options, because option
prices only depend on the risk-neutral parameter γ∗ = γ + λ+ 1/2. Hence, we only
have 4 model parameters to be estimated. Second, we have seen in Proposition 2.6
that parameter ω cannot take negative values. Because the ω reported from various
sources (for example, 3.038e-9 from Christoffersen, Heston and Jacobs (2006), and
2.83e-12 from Christoffersen, Feunou, Jacobs and Meddahi (2012)) are very close
to the boundary, this means the objective function only changes by a little when
evaluated at, say, ω = 3.038e-9 and ω = 0. As a result, when we use the uncon-
strained optimizer fminsearch, the function would go into the negative ω region,
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causing the optimization function to abort. Because the particular focus of the sim-
ulation study is to generate many samples and obtain individual estimates, we would
require the numerical optimization procedure to be robust, and we need to ensure
the optimization gives global optimum, rather than local optimum. We state that
the calibration time with options is usually in hours, with a single CPU. As a conse-
quence, we cannot have 500 initial values to enhance the robustness.2 This motivates
us to follow Christoffersen, Heston and Jacobs (2013) to restrict ω = 0 for the entire
thesis to provide quick and stable calibrations (see Appendix C for a discussion of
incorporating ω in the calibration).

4.3.1 Plot of the objective function

From the preliminary work of model calibration with option prices, we have reached
many difficulties and failures with numerical optimization giving bizarre results far
from the true value. Therefore, it is worth comparing to doing calibration under
returns MLE, where the local optimizer almost always produce a convergent solution
of local minimum, while when involving options, we find that different initial values
are very likely to produce a different result, as observed as well by Kanniainen, Lin
and Yang (2014). This makes us wonder about the shape of the objective function.
During one of the experiments of calibrating N = 1200 simulated options with an
initial value of

(λ, ω, α, β, γ) = (−, 0, 3e-6, 0.05, 200), (4.11)

we obtain the following parameter estimation, as seen in Table 4.5, Estimate 1. From
the table, we see that even when the parameters are far off from the true values, we
do get fairly close persistence, and long-run expected daily variance. This provides
the first hint that the objective function (vega-weighted RMSE) has many local
minimums, and a necessary condition is that the persistence and long-run expected
variance are close to the true ones. This conjecture is valid because options only
capture the average (or expected) movement of spot asset price within a period,
whereas from spot prices we can filter out a conditional volatility series and hence
extract each GARCH parameter.

2Kanniainen, Lin and Yang (2014) calibrated one option sample with 500 randomly selected
initial values to remedy the defects for using a local optimizer. It would be computationally cum-
bersome to have 500 initial values for 100 samples.

54



Table 4.5: Vega-weighted least squares, N = 1200, starting at (−, 0, 3e-6, 0.05, 200)

True value Estimate 1 Estimate 2 (Corrected)

λ 2.772 - -

ω 3.038e-9 3.007e-6 4.108e-7

α 3.66e-6 6.047e-7 3.252e-6

β 0.9026 0.6706 0.9

γ 128.4 659.678 139.069

β + αγ2 0.9629 0.9632 0.9632

ω+α
1−β−αγ2 9.884e-5 9.819e-5 9.819e-5

To validate the conjecture, we make a surface of our objective function. Since we
have 4 risk-neutral parameters in HN-GARCH, we can make a surface where the x
and y axis are different values of β and γ, and we imply ω and α by the following
relations {

β + αγ2 = 0.9632,
ω+α

1−β−αγ2 = 9.819× 10−5,
(4.12)

and evaluate the objective function based on the parameters. The objective function
surface (Figure 4.5) clearly shows an increasing line where the objective function is
very low, however, when γ increases from 100 to 600, the lowest point still increases,
as we see the slope is not parallel to the xy−plane. As a result, the global minimum
is at the region when γ is between 100 and 200, which is where the true parameter
lies. We note that the parameter sets on this surface all satisfy the conditions (4.12),
hence, we conclude that the full objective function (of 4 model parameters) indeed
has many local minimums where the optimization algorithm could easily get stuck
with.

Repeating the same exercise with the C-H-J 2013 parameters shows a comparable
results. In Figure 4.6, we plot the surface of vega-weighted Gaussian log-likelihood
versus different value of β and γ, and imply ω and α by the following relations{

β + αγ2 = 0.9683,
ω+α

1−β−αγ2 = 1.0617× 10−4,
(4.13)
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where these values are the persistence and long-run daily conditional variance com-
pleted at true parameter value (the parameters in 2.18). Compared to Figure 4.5,
the difference is that now the z-axis shows the (negative of) log-likelihood values of
the option sample, and the z-axis is capped at -3600, for demonstration purposes.
By comparing the front and back view in Figure 4.6, the function shape is similar
to 4.5. Furthermore, from angle 3, we find two points which correspond to pairs of
(β, γ) = (0.84, 200) and (β, γ) = (0.66, 580) whose parameters differ greatly but the
log-likelihood only shows a 3 difference in absolute value. This also confirms with
our previous findings that the non-reduced objective function (with 4 HN-GARCH
parameters as inputs) must contain a great number of local minimums, making it
difficult to optimize the function numerically.

Figure 4.5: Surface of vega-weighted RMSE versus β and γ, with fixed persistence
and long-run expected variance
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(a) Angle 1 (front) (b) Angle 2 (back)

(c) Angle 3 (back and horizontal) (d) Angle 4 (side)

Figure 4.6: Surface of vega-weighted Gaussian log-likelihood versus β and γ, with
fixed persistence and long-run expected variance
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4.3.2 Numerical fixes

Motivated by the above observations, when the numerical optimization encounters a
local minimum, we can always use a three-step procedure to correct the optimization
result. The procedure is summarized as follows:

Step 1. We first estimate the persistence, β + αγ2. This is achieved by replacing
β by β + αγ2 in the objective function. Theoretically, this should not change
the optimization, however, we can manually make the algorithm focus more on
estimating persistence by increasing its scale in the parameter scaling process.

Step 2. Next, we estimate long-run expected volatility with fixed persistence. This
is done by replacing one parameter with the long-run volatility (usually α).

Step 3. Last, we estimate the remaining 2 parameters with fixed persistence and
long-run expected volatility to get better estimation results.

In brief, the three-step procedure takes into account the special structure of the
objective function (as seen in Figure 4.5) and provides a numerical trick to overcome
the local minimum issue. Note that this procedure can be applied with or without
setting ω = 0. We present the calibration result using the three-step procedure in
Table 4.5 (Estimate 2). By comparing the two estimation results we see the benefits
of applying the three-step procedure.

Although the three-step procedure brings better results, it is numerically complicated
to carry out three rounds of optimizations. Instead, considering the shape of the ob-
jective function, we can apply a numerical transformation that instead estimates the
maximum likelihood persistence, long-run variance instead of β and α respectively.
This replacement is applied because β accounts for most of the portion in persis-
tence, while α dominates ω in the long-run variance formula. The transformation
invariance property of MLE implies that when obtaining the maximum likelihood
values for persistence and long-run variance, we can transform back to obtain the
MLE for β and γ. To ensure we truly get the global optimum from the numerical
optimizer, for all the optimizations involving options, we use a fixed grid approach
to set 3 different initial values for λ, γ and long-run variance, giving 27 initial values
for each sample. From our result, most of the initial values, if not all, terminated
to the same value after the optimization algorithm, which confirms the effectiveness
of doing the one-to-one transformation of parameter mapping, and further validates
our results.
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Comparison of optimization result

Table 4.6 demonstrates the calibration result under the “Options-only calibration,
method 1” approach, with the Gaussian log likelihood of vega weighted errors as the
objective function, and the true daily conditional variance h(t) are assumed to be
known and directly used. Hence, we do not estimate or update the variance during
the optimization process. In comparison, Table 4.7 includes the result when we do
filter daily conditional variances h(t) from the return series. The option sample
are simulated based on the true parameters (C-H-J 2013 parameters, see (2.18) and
(2.19)) and the following specification (see Table 4.1 for the option sample statistics):

N = 500 specifications:


K = 95, 100, ..., 115,

T = 23, 46,

h(5), h(10), ..., h(250),

(4.14)

where the h(t) are the daily conditional variances from the simulated return series,
and the 5-day lag is understood as if the option prices are observed on each Wednes-
day. The true option prices are imposed with vega errors from an i.i.d. N(0, 4.95%)
distribution, and the N = 1500 and N = 4500 sample used the same specification
but generate the above option set for 3 and 9 times with different random error.3

From both tables, we can indeed see that, as we increase the number of options,
the estimates are closer to the true values, which validates the consistency. The
result with N = 4500 options is fairly close to the true values. Compared with
Returns-only MLE results, we see that using N = 1500 options has a comparable
sample standard deviation to using N = 4500 returns, which suggests that each single
option observation provides more information and predictability than one piece of
return. From both tables, the small sample (N = 500) estimates tend to show a 10%
relative error to the true value, however, the maximum likelihood long-run variances
only show 9.6% and 1.65% relative difference, respectively in Table 4.6 and Table
4.7. Moreover, the relative difference in persistence is at 0.63%. Hence, we conclude
that option prices are more sensitive to persistence and long-run expected variance,
rather than single parameters.

When comparing method 1 with method 2, we see that the sample standard error
for γ is greater in method 1, while the sample standard error for α and β are lower
in method 1 for all sample sizes (except for α with N = 500, where the difference is
minimal). Because this pattern is across all sample sizes, we might conclude that γ

3The number 4.95% is the vega weighted RMSE in Kanniainen, Lin and Yang (2014).
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benefits from the volatility updating and filtering, which provides additional infor-
mation (or sensitivity to γ), resulting in the lower sample standard error, whereas,
α and β benefit from having the true volatility.

In terms of the finite sample behaviour of standard error estimates, we see sample
standard deviations are in general reasonably close to the estimated standard errors,
computed at the maximum likelihood value, showing the validity of the formula.
For small samples, since the maximum likelihood estimates deviate a lot from the
true value, the standard error estimates are not so accurate. As we increase the
sample size, however, the standard error estimates are very close to sample standard
deviations, both relatively and absolutely.

4.4 Joint estimation-calibration with returns and options

Now we combine the return and option observations to demonstrate the effectiveness
of the joint estimation. The results are shown in Table 4.8. In order to test the
asymptotic properties, we triple the number of returns and options for each sample
size, without changing the ratio between the two, to establish a fair comparison.
From the table, we see that the estimation results are getting more accurate when N
is increased, which confirms consistency, Also, the estimated standard errors (from
the outer product of gradients) are close to the sample standard deviations of the
estimators. The relative difference of the estimated standard errors between the
sample realizations is comparable as in the return and option-only cases, hence con-
firming the validity of such estimation approach. This result is expected since it is
consistent with both returns- and options-only cases.

Because the return observation and option observations carry different information
regarding each parameter, one natural study for the joint estimation is to compare
the joint estimations with different numbers of returns and options. To answer that,
we propose a study that shows the joint estimation with Nr varies from 500, 1500,
and 4500 observations, and No varies from 0, 500, 1500, and 4500 observations, for a
total of 3 × 4 = 12 blocks. When No = 0, the joint estimation will be reduced to
Returns-only estimation. For each block, we simulate the returns and options using
the same seed (the random numbers generated for smaller samples will be present
again in larger samples) for 100 samples, and report the RMSE for each parameter as
in Table 4.10. We do the same simulation, but only changing the standard deviation
of vega-weighted noise to 1.24 % (4 times smaller than in Table 4.10) and 19.84% (4
times larger than in Table 4.10). In this way, when we compare both tables, we also
see how the joint estimation behaves when observed option prices are more noisy.
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Table 4.9: Comparison of the maximum likelihood estimator’s sample RMSE (of 100
samples) for different number of returns and options in joint estimation. Data is
simulated based on C-H-J 2013 parameters. Identical random seeds are used (the
seed for small samples are nested in big samples). The standard deviation of vega
noise is 1.24%.

Sample RMSE No. of options 0 500 1500 4500

No. of returns

500

λ 4.4204 4.3849 4.3721 4.3716

α 1.1512e-06 1.6084e-07 9.4525e-08 5.7253e-08

β 4.3444e-02 5.2676e-03 2.9494e-03 1.7749e-03

γ 58.3669 6.9269 4.8843 4.5805

1500

λ 2.3516 2.3507 2.3495 2.3481

α 6.4991e-07 1.5809e-07 9.5280e-08 5.7460e-08

β 2.3160e-02 5.3681e-03 2.8942e-03 1.7515e-03

γ 27.9832 5.6402 3.7619 2.8203

4500

λ 1.3329 1.3310 1.3314 1.3328

α 3.2247e-07 1.4891e-07 9.3197e-08 5.6282e-08

β 1.3335e-02 5.0599e-03 2.8306e-03 1.7078e-03

γ 16.4485 4.9961 3.3570 2.2458
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Table 4.10: Comparison of the maximum likelihood estimator’s sample RMSE (of
100 samples) for different number of returns and options in joint estimation. Data
is simulated based on C-H-J 2013 parameters. Identical random seeds are used (the
seed for small samples are nested in big samples). The standard deviation of vega
noise is 4.96%.

Sample RMSE No. of options 0 500 1500 4500

No. of returns

500

λ 4.4204 4.3754 4.3692 4.3979

α 1.1512e-06 5.4438e-07 3.6385e-07 2.1718e-07

β 4.3444e-02 1.8963e-02 1.1673e-02 6.8525e-03

γ 58.3669 23.0346 12.5457 8.1215

1500

λ 2.3516 2.3480 2.3450 2.3523

α 6.4991e-07 4.3240e-07 3.2572e-07 2.0948e-07

β 2.3160e-02 1.6352e-02 1.0387e-02 6.3956e-03

γ 27.9832 16.1635 11.2781 7.1267

4500

λ 1.3329 1.3308 1.3307 1.3345

α 3.2247e-07 2.9597e-07 2.4395e-07 1.7329e-07

β 1.3335e-02 1.0996e-02 8.1642e-03 5.4059e-03

γ 16.4485 12.1714 9.2328 6.2579
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Table 4.11: Comparison of the maximum likelihood estimator’s sample RMSE (of
100 samples) for different number of returns and options in joint estimation. Data
is simulated based on C-H-J 2013 parameters. Identical random seeds are used (the
seed for small samples are nested in big samples). The standard deviation of vega
noise is 19.84%.

Sample RMSE No. of options 0 500 1500 4500

No. of returns

500

λ 4.4204 4.3751 4.3448 4.4203

α 1.1512e-06 9.2688e-07 8.5886e-07 6.5108e-07

β 4.3444e-02 3.9436e-02 3.4136e-02 2.4259e-02

γ 58.3669 51.5553 41.9048 28.9388

1500

λ 2.3516 2.3473 2.3412 2.3510

α 6.4991e-07 6.3342e-07 5.9599e-07 4.9468e-07

β 2.3160e-02 2.2719e-02 1.9914e-02 1.6059e-02

γ 27.9832 26.0200 23.1370 19.0865

4500

λ 1.3329 1.3319 1.3317 1.3357

α 3.2247e-07 3.3707e-07 3.3724e-07 2.9666e-07

β 1.3335e-02 1.2950e-02 1.2262e-02 1.0561e-02

γ 16.4485 16.0470 15.2992 13.4823

66



From the blocks in both tables above, if we compare each column or row, we see that
when the number of options is fixed, increasing returns will lead to lower RMSEs.
The same will apply when we fix the number of returns as well. This should be
expected, because as we bring in more data, we expect to have estimates with lower
error, hence lower RMSEs. This observation is consistent across all sample sizes, and
for parameters α, β, and γ. For λ, however, whenever we increase the number of
returns, we see a decrease in RMSE. When compared horizontally, the RMSE of λ
stays at a similar level. From this, we conclude that there is no evidence suggesting
that adding only options can help capture the risk premium parameter λ. This result
implies that option sample, although further provides information on λ+ γ, cannot
help identify λ.

If we compare the diagonal symmetrical blocks in Table 4.10, we see that when the
total number of observations fixed, the samples with more options have lower RMSE
for all the GARCH parameters, except for λ. This implies that, regarding α, β and
γ, the return observations are noisier than option prices with the option vega noise
set to 4.96%, and we are better off using options to capture the model parameters.
The same conclusion can be drawn for Table 4.9, since the option noise is even
smaller. As a comparison, in Table 4.9, once we increase the option noise level, we
see that the estimation favors return data. With the default noise level as in Table
4.11, when adding an option sample that is a third of the existing return sample,
for example, 1500 returns plus 500 options, or 4500 returns plus 1500 options, the
RMSEs of GARCH parameters are halved, indicating the importance and efficiency
of adding an option sample. Even with quadrupled noises in Table 4.11, using 1500
returns plus 4500 options can still achieve comparably small RMSEs as using 4500
return series. Generally, since GARCH parameters could change over years, we could
get misleading information when fitting a long return series. The results in Table
4.11 demonstrates that a short return series plus a large option sample can achieve
sufficient accuracy, hence should be suggested over fitting a long return series.

4.4.1 Summary

In summary, we have shown empirically the consistency of the maximum likelihood
estimators for model parameters and the outer product of gradient for their standard
errors for the three types of estimations. Although a joint estimation with returns
and options does not help in capturing the risk premium factor, λ, the benefits of
adding an option sample into the joint estimation is noticeable to parameters α,
β, and γ. In particular, when we compare the Returns-only MLE with the joint
estimation, we see that adding option observations to return observations will help
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the estimation significantly when the option sample is less noisy (4.96% standard
deviation on the vega-weighted option noise). When we compare the calibration
result when using only Nr = 4500 returns, and Nr = 4500 returns with additional
No = 4500 options, we see that the sample standard errors decreases by 4 times
for parameters α, β, and γ (the standard errors for sample implied persistence and
annualized volatility also decreased by the same scale). On the other hand, once
we have more noisy option data, the estimation favors return observations, but the
estimation still benefits from having the additional option sample. This verifies that
one should fit GARCH option pricing models jointly with a short return series plus
a large option data.
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Chapter 5

Conclusion

In this thesis, we explored open problems regarding the Heston-Nandi model and its
estimation procedures. In the existing literature, we have seen many works, for exam-
ple, Heston, and Nandi (2000), and Christoffersen, Heston, and Jacobs (2013) that
incorporated real option prices into model calibration with various approaches. How-
ever, there have been no studies on the empirical behavior and theoretical benefits
of calibrating the HN-GARCH model with option prices, in a controlled experiment.
Motivated by this, we did an extensive amount of simulation-based studies and anal-
ysis, and confirmed the validity of the joint estimation approach. In particular, the
results actively demonstrate that, by adding the same number of options in the ex-
isting return sample, we could lower the standard error of the MLE estimates of
α, β, and γ by 2 to 4 times, depending on the nosiness of the option data. As a
consequence, the implied persistence and annualized volatility become more accu-
rate by the same scale. Furthermore, we demonstrated empirically the consistency
of the joint estimation and the standard error formula. In addition, we compared
the information that return and option data carries with respect to each parameter,
and illustrated the consequences when we add noisy data to the estimation. As one
expects, when the option sample is more noisy, the Joint estimation-calibration gains
more accuracy with additional return data over option data. However, even with a
noisy option data set, the joint estimation still benefits greatly from the additional
option observations. This suggests that one should fit GARCH option pricing models
with a medium-sized return series (of 6-8 years) and a large option sample, instead
of fitting the model with a very long return series. On the downside, since λ is not
identifiable with additional option data, the joint estimation with options cannot
capture more information of λ. As a consequence, with the assumed HN-GARCH
model, we can only reply on returns to estimate the price of risk.

Besides the concrete end-goal, we have reached many meaningful conclusions during
the discovery process. First, we give proofs of why the GARCH parameters, espe-
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cially ω, cannot take negative values. Second, we presented numerical tricks and
details, outlined several numerical challenges and their potential solutions. Lastly,
although this work is in progress due to time constraints, we studied which type of
options is the most effective in capturing HN-GARCH parameters, and concluded
that short-maturity, out-of-money options are the most valuable assets in an option
sample (see Appendix A).

Based on this research, we have several interesting problems for future directions.
These directions lie in many categories. For example:

1. (Numerical optimization) Is there a robust, computationally feasible way to
estimate the model with parameter ω (that does not rely on multiple initial
values)? How robust are the numerical tricks outlined in Appendix C?

2. (Model structure) The “vega” assumption essentially assumes the implied volatil-
ity errors are identical and independently distributed. How realistic is this
assumption? Will the result stays the same if we change the option noise
structure from vega noise to a relative noise?

3. (Model structure) We cannot distinguish λ and γ from option prices. Hence,
options do not provide much value in estimating λ. Is it realistic that risk
premium does not appear in option prices? For other GARCH-type pricing
models where λ is identifiable in option prices, how well can option data capture
lambda?

4. (Estimation) Which options, in terms of K, T and daily conditional variance
h(t), are the most effective in model calibration?

We hope we can answer all these questions in future works.
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Appendix A

Which Options to Use in Option Calibration

Option prices with different strike prices, maturities and spot variances distribute
differently. Therefore, various types of options should have nonparallel predictability
towards the model parameters. For example, the out-of-money call options are more
influenced by the tail behavior of stock returns, compared to at-the-money and in-
the-money calls. In addition, spot variances play a bigger role in options with a
shorter maturity, whereas for options with long maturities, the long-run level of
variance is more relevant. Hence, it is natural to investigate which type of options
is better in model calibration by restricting the option sample to include the specific
type of options and compare the RMSEs for 100 samples.

In this experiment, we choose an intermediate level of N = 1500 options. As seen in
(4.4), the benchmark N = 1500 option sample contains 500 different combinations
of K, T and h(t): 

K = 95, 100, 105, 110, 115,

T = 23, 46

h(5), h(10), ..., h(250),

(A.1)

where we simulate 3 random errors for each combination of options. We first compare
the influence by the strike prices, and the result is shown in Table A.1. To carry out
the comparison, the option sample in each column all have the same strike prices,
as specified in the column title, and the structure for T and h(t) is unchanged as in
(A.1). We generate 100 such samples, report the RMSEs of α, β, and γ, and further
compare the option sample with strike prices with the benchmark sample.1 In Table
A.1, the first half refers to the RMSEs when Options-only calibration method 1
(i.e. true h(t) is known and kept fixed), whereas the second half uses Options-only
calibration method 2 (i.e. h(t) is filtered from returns).

1Note that λ = 1.094 and ω = 0 are kept fixed in the optimization, so the RMSEs are 0.
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Table A.1: RMSEs for option samples with different strike prices

K = 90 K = 95 K = 100 K = 105 K = 110 Benchmark

Method 1
λ 0 0 0 0 0 0
ω 0 0 0 0 0 0
α 7.8594e-07 6.5765e-07 7.8206e-07 5.0149e-07 4.1100e-07 3.8133e-07
β 0.0900 0.1043 0.4242 0.0357 0.0202 0.0125
γ 96.9049 92.7515 199.5387 24.2059 14.2631 16.6518

Method 2
λ 0 0 0 0 0 0
ω 0 0 0 0 0 0
α 4.5102e-07 4.5813e-07 4.5599e-07 4.3479e-07 5.2424e-07 3.8718e-07
β 0.0316 0.0282 0.0224 0.0169 0.0236 0.0122
γ 30.6597 25.9927 20.3174 14.9570 12.3702 12.8472

Table A.2: Calibration result

True parameter Sample 1 calibration result

λ 1.094 1.094

ω 0 0

α 3.364e-6 4.818e-6

β 0.838 0.235

γ 196.82 388.68

β + αγ2 0.968 0.962

Annualized Vol. 16.35% 17.68%

In the table, one immediately observes large RMSEs for in- and at-the-money options.
In particular, for K = 100, the RMSE of α, β and γ is more than 2, 30 and 10 times
the benchmark value. When examining the calibration results for the first sample of
K = 100, as reported in Table A.2, we see that the implied persistence is very close
to the true values, and the annualized volatility is within ±1.5% range of the true
value, however, in terms of individual parameters, the calibrated values show large

76



errors compared to their true values. In fact, the calibration result is also obtained
using 9 different initial values, and the fact that all 9 optimizations return almost the
same calibration values partly validates our result.2 The sample 1 calibration result
confirms that option prices are more sensitive to persistence and long-run variance,
instead of individual parameters. When directly comparing method 1 with method 2,
we see that the RMSEs for method 2 are at a comparable level with the benchmark.
This is because when filtering variances from returns, a particularly small β, say 0.235
in our case, is easily rejected because the resulting (filtered) variances will not match
the true variances. This shows the benefits and robustness of using Options-only
calibration method 2 over method 1. Also, for method 1, the problem of large RMSEs
is not shown for out-of-money samples. One probable cause is that out-of-money
options capture tail behaviors (i.e. higher moments of stock returns) that might
pose extra conditions on individual parameters. When comparing horizontally for
Options-only calibration method 2, we see that the RMSEs for out-of-money option
samples are substantially better than at-the-money and in-the-money samples. In
particular, the RMSEs for α stays at a similar level across all maturities, whereas
the RMSEs for β and γ reduces by 50% and 60%, respectively. Although for method
2, we see that the RMSEs for the benchmark is still higher than almost all the other
samples (except γ for K = 110), we can still conclude that out-of-money options are
beneficial in capturing β and γ, and are essential assets to be included in the option
sample set, when calibrating HN-GARCH models using options.

2The optimizations with different initial values all converge to the same number within a 0.1%
relative difference. This is consistent for all the samples.
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Table A.3: RMSEs for option samples with different maturities

T = 23 (1m) T = 69 (3m) T = 138 (6m) Benchmark

Method 1
λ 0 0 0 0
ω 0 0 0 0
α 4.0075e-07 3.8638e-07 6.3700e-07 3.8133e-07
β 0.0115 0.0165 0.0329 0.0125
γ 19.7730 14.8046 20.4487 16.6518

Method 2
λ 0 0 0 0
ω 0 0 0 0
α 3.5933e-07 5.1038e-07 9.6436e-07 3.8718e-07
β 0.0107 0.0191 0.0452 0.0122
γ 13.7483 13.7895 18.4350 12.8472

Next, we repeat the experiment with different maturities. Note that the benchmark
sample only includes options expiring in 1-month and 2-month. For our comparison,
we include 3 additional option samples with T = 23 (1-month), T = 69 (3-month)
and T = 138 (6-month), and the RMSEs for 100 samples are reported in Table A.3.
The results for Options-only calibration method 1 show a non-monotonic pattern.
In particular, for α and γ, the RMSE first decreased when we swap from 1-month
options to 3-month, and then increased by 65% and 38% respectively, for 6-month
options. In contrast, for β, the RMSE when swapping from 1-month to 3-month
slightly increases, and then nearly doubled when the maturity is 6 months. For
method 2, the RMSEs are monotonically increasing as T increases. When we extend
the maturity from 1 month to 2 months, the RMSE for γ increases very slightly,
however the RMSE for α and β increases by 42% and 79% respectively. When
further moving to 6 months, the RMSEs shows significant increases, at 90% for α,
137% for β and 34% for γ. From either method, we see that the calibration favors
short-term options (with T = 23 and 69) than long-term options (with T = 138),
since the 6-month option sample has the lowest RMSE across all the samples for
both methods. In addition, for method 2, we see that the impact of maturities is
less significant on γ, but very substantial on α and β. In fact, the RMSEs is tripled
for α and quadrupled for β when moving from T = 23 to T = 138. This suggests
that when we filter h(t) from returns, short-term options give lower RMSE than
long-term options, and only using long-term options could increase the RMSEs for
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α and β by 3-4 times. The probable factor behind this may be that since the prices
of long-term options are less dependent on spot variances h(t) and more dependent
on its long-run level, when using long-term options, the information captured from
the filtered spot variances will not be as large as using short-term options, hence the
RMSEs are bigger.

Table A.4: RMSEs for option samples with different variances

h(t) = 0.5309e-4 h(t) = 1.0617e-4 h(t) = 2.1234e-4 Benchmark

Method 1
λ 0 0 0 0
ω 0 0 0 0
α 1.2114e-06 1.3700e-06 1.7379e-06 3.8133e-07
β 0.1485 0.1465 0.1987 0.0125
γ 47.4183 387.0449 423.4044 16.6518

Lastly, we present the comparison of RMSEs for different h(t). Note that the bench-
mark option sample uses the simulated true variances h(1), ..., h(250) as the variances
for our option sample. To control the volatility level, we simply fix the conditional
variance at the 0.5×, 1× and 2× of long-run level for all options, and only use
Options-only calibration method 1 to compare the RMSEs, because the variances
cannot be filtered from returns. Table A.4 shows the RMSEs for different level of
variances. We note that, although the RMSEs show an increasing pattern (except
only for β from h(t) = 0.5309e-4 to h(t) = 1.0617e-4), the numbers are much larger
than the benchmark sample, due to the fact that Options-only calibration method
1 fails to identify individual parameters. From this table, we might conclude that
small variances have lower RMSEs for all parameters compared to larger variances.
Nonetheless, because the RMSEs when restricting variances to be a constant in each
sample are much greater than the benchmark, the numbers tell that we should use
a variety option sample with a spread level of variances, instead of keeping the level
consistent.

Summary

From the above comparison, we can reach a few positive conclusions. First, the
Options-only calibration method 2 is superior to method 1, as the volatility filtering
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helps eliminate absurd calibration results. When focusing on method 2 specifically,
we see that the calibrated model parameters have lower RMSEs with out-of-money
options compared to in- and at-the-money options. In terms of time-to-maturity, the
RMSEs for all parameters are lower with the short maturity sample, than the sample
with longer maturities. Both findings show the importance of using out-of-money
and short maturity options in calibrating the model. The evidence also appears when
the benchmark option sample has a very low level of RMSEs. In the comparison,
only the sample with strike prices fixed at K = 110 has an RMSE of 12.370 for
γ, which is lower than the benchmark sample at 12.847. For α and β, only the
option sample with time-to-maturity fixed at T = 23 has lower RMSEs, at 3.593e-
7 and 0.011 respectively, compared to the benchmark group at 3.872e-7 and 0.012
respectively. While the superiority of the benchmark group is established because
it mostly contains out-of-money and short maturity options, it is also demonstrated
that one should use a complete cross-section of options in calibrating the model.
While it is better to include out-of-money and short maturity options, the calibration
also benefits when the sample contains a large variety of options with different time-
to-maturity, strike prices and spot variances.
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Appendix B

Calibration result with C-H-J 2006 parameters

In this appendix, we include the Joint estimation-calibration results when the C-H-J
2006 parameters are used when generating the data. The C-H-J 2006 parameters
behave similarly, compared to the C-H-J 2013 ones, and the approach to fix ω = 0
is used as well for this exercise. Therefore, as we will see, similar results also hold.
The purpose to report the numbers for the new set of parameters is twofold. First,
the numbers will demonstrate the validity of our previous conclusions, since different
sets of parameters have the same result. Second, the result shows the consequence
when the true ω is non-zero, but we fit the model with the (misspecified) restriction
of ω = 0. It turns out that such misspecification does not hurt the experiment nor
the result.

Similar to Chapter 4, we present the table for the Joint calibration-estimation for
various N , and also the block of RMSEs, as below. The MLE results in this appendix
are obtained with fminunc. We ran each estimation with 2 very different initial
values, and the optimization results are exactly the same, hence validated our results
that we obtained the global optimum.

81



T
ab

le
B

.1
:

E
st

im
at

io
n

re
su

lt
:

J
oi

n
t

es
ti

m
at

io
n

P
ar

am
et

er
T

ru
e

va
lu

e
N
r

=
N
o

=
50

0
N
r

=
N
o

=
15

00
N
r

=
N
o

=
45

00

M
L

E
(S

E
)

S
am

p
le

S
E

M
L

E
(S

E
)

S
am

p
le

S
E

M
L

E
(S

E
)

S
am

p
le

S
E

λ
2.

77
2

12
.8

23
(5

.1
46

)
4.

51
7

-1
.7

58
(2

.3
94

)
2.

42
2

2.
80

4
(1

.4
95

)
1.

39
0

ω
3.

03
8e

-9
0 -

-
0 -

-
0 -

-

α
3.

66
e-

6
3.

97
4e

-6
(7

.1
90
e-

7)
7.

00
5e

-7
2.

95
4e

-6
(3

.2
45
e-

7)
4.

69
9e

-7
3.

52
9e

-6
(2

.2
67
e-

7)
2.

35
5e

-7

β
0.

90
26

0.
90

1
(1

.5
04
e-

2)
1.

42
8e

-2
0.

91
4

(0
.7

21
e-

2)
0.

88
7e

-2
0.

90
9

(0
.4

90
e-

2)
4.

46
7e

-3

γ
12

8.
4

11
1.

42
(1

3.
28

2)
19

.9
16

14
3.

89
(1

0.
10

4)
9.

64
7

12
4.

84
(5

.0
73

)
5.

59
6

β
+
α
γ
2

0.
96

5
0.

95
0

0.
77

8e
-2

0.
97

5
0.

52
0e

-2
0.

96
4

0.
27

7e
-2

A
n
n
u
al

iz
ed

V
ol

.
15

.4
1%

14
.1

9%
0.

98
8%

17
.2

1%
0.

54
7%

15
.6

8%
0.

29
8%

T
h
e

ab
ov

e
ta

b
le

sh
ow

s
th

e
jo

in
t

ca
li
b
ra

ti
on

re
su

lt
s

w
it

h
d
iff

er
en

t
n
u
m

b
er

of
re

tu
rn

s
an

d
op

ti
on

s
u
si

n
g

th
e

G
au

ss
ia

n
jo

in
t

li
ke

li
h
o
o
d

(3
.2

3)
as

th
e

ob
je

ct
iv

e
fu

n
ct

io
n
.

T
h
e
N
r

an
d
N
o

ar
e

th
e

n
u
m

b
er

of
re

tu
rn

s
an

d
op

ti
on

s
in

th
e

sa
m

p
le

,
re

sp
ec

ti
ve

ly
.

W
e

in
cr

ea
se

th
e

n
u
m

b
er

of
re

tu
rn

s
an

d
op

ti
on

s
w

it
h
ou

t
ch

an
gi

n
g

th
ei

r
ra

ti
o

in
th

e
sa

m
p
le

.
T

h
e

op
ti

on
d
at

a
se

ts
ar

e
ge

n
er

at
ed

b
as

ed
on

th
e

tr
u
e

p
ar

am
et

er
s

(C
-H

-J
20

06
p
ar

am
et

er
s,

se
e

(2
.1

6)
an

d
(2

.1
7)

)
an

d
w

it
h

th
e

sp
ec

ifi
ca

ti
on

in
(4

.1
0)

.
T

h
e

ca
li
b
ra

ti
on

is
co

n
d
u
ct

ed
w

it
h
ω

re
st

ri
ct

ed
to

0,
to

en
h
an

ce
th

e
ro

b
u
st

n
es

s
of

th
e

n
u
m

er
ic

al
op

ti
m

iz
at

io
n

(t
h
is

is
al

so
ap

p
li
ed

b
y

C
h
ri

st
off

er
se

n
,

H
es

to
n

an
d

J
ac

ob
s

(2
01

3)
).

N
ot

e
th

at
th

e
ri

sk
-n

eu
tr

al
p
ar

am
et

er
γ
∗

=
γ

+
λ

+
0.

5
is

u
se

d
in

fi
n
d
in

g
op

ti
on

p
ri

ce
s,

w
h
er

e
2.

77
2

is
th

e
tr

u
e
λ

.
T

h
e

es
ti

m
at

ed
st

an
d
ar

d
er

ro
rs

ar
e

co
m

p
u
te

d
v
ia

th
e

ou
te

r
p
ro

d
u
ct

of
th

e
gr

ad
ie

n
t

an
d

is
sh

ow
n

in
p
ar

en
th

es
is

.
T

h
e

sa
m

p
le

st
an

d
ar

d
er

ro
r

is
co

m
p
u
te

d
b
y

sa
m

p
le

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

op
ti

m
iz

ed
p
ar

am
et

er
s

fo
r

10
0

si
m

u
la

te
d

sa
m

p
le

s
fo

r
ea

ch
N

.
T

h
e

p
er

si
st

en
ce

(β
+
α
γ
2
)

an
d

an
n
u
al

iz
ed

vo
la

ti
li
ty

(c
om

p
u
te

d
v
ia

(2
.1

0)
)

ar
e

co
m

p
u
te

d
at

M
L

E
va

lu
es

.

82



Table B.2: Comparison of the maximum likelihood estimator’s sample RMSE (of
100 samples) for different number of returns and options in joint estimation. Data
is simulated based on C-H-J 2006 parameters. Identical random seeds are used (the
seed for small samples are nested in big samples). The standard deviation of vega
noise is 4.96%.

Sample RMSE No. of options 0 500 1500 4500

No. of returns

500

λ 4.6540 4.4951 4.5766 4.4989

α 1.5606e-06 6.9711e-07 4.8890e-07 2.9249e-07

β 6.6727e-02 1.4326e-02 9.6849e-03 5.6824e-03

γ 131.8441 20.1938 10.0499 7.5250

1500

λ 2.5055 2.4137 2.4098 2.4093

α 7.8786e-07 5.9028e-07 4.7036e-07 2.9207e-07

β 1.5387e-02 1.3245e-02 9.0844e-03 5.4584e-03

γ 28.1684 15.0690 9.7247 6.4416

4500

λ 1.3885 1.3770 1.3777 1.3887

α 4.6034e-07 3.8791e-07 3.3864e-07 2.3433e-07

β 9.1951e-03 8.3457e-03 6.7347e-03 4.4522e-03

γ 14.9860 11.4223 8.1858 5.5898
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Appendix C

Approaches to incorporate the calibration with ω

The numerical calibration with ω has been a problem when we bring option prices into
the calibration. This is because the objective function f is not defined when ω < 0. In
particular, when we use an unconstrained optimization algorithm, because the true ω
is too close to the unacceptable region, the optimization algorithm will step into the
unacceptable region and hence break down the process. The widely applied approach
to this problem is to fix ω to be 0, as seen in Christoffersen, Heston and Jacobs (2013).
However, because the in-sample model fitting with the restricted model is always
worse than the full model, we always want to bring ω into the calibration as well.
During our empirical studies, we find the uses of constrained optimization algorithms
are not reliable. Overall, they can produce an optimized result, but the result gives
a lower log-likelihood than when we used to do unconstrained optimizations with
ω fixed to 0. Thus, in this appendix, we briefly outline some numerical tricks that
can be applied to this problem when we stick with unconstrained optimizations, and
state their effectiveness. The following numerical tricks try to extend the objective
function to make it defined on the whole Euclidean space.

• Trick 1: Fix f(ω) = f(0) when ω < 0. This method works theoretically,
however, in reality, the optimization will still go to the ω < 0 region regardless
of the initial value, and be stuck in there. Hence, the objective of effectively
estimate ω cannot be achieved in 90% of the cases.

• Trick 2: Define f(ω) = f(−ω) when ω < 0, where f is the objective function.
This is a fix to the previous method and indeed we shall see a meaningful ω
estimation. In a preliminary test of 20 samples, 13 of which showed higher
log-likelihood when this trick is applied, compared to the benchmark (ω = 0
fixed) approach.

• Trick 3: Use an exponential link function, so that the objective function be-
comes f(exp(ω)). However, this method is highly influenced by how we scale
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the parameters. Because of the exponential link function, if we give ω a larger
scale, then ω will dominate other parameters in the numerical optimization
process. If we give ω a small scale, then ω does not move far from the initial
value. From our previous experiments, the optimization achieved higher log-
likelihood values when restricting ω to 0. This suggests that this approach,
when applied, needs to be combined with other transformations to achieve
meaningful results.1

1An example of such transformations include estimating (λ, long-run variance (using exp(ω)),
persistence, α, and γ), instead of the usual (λ, ω, α, β, γ).
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