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Abstract

In this thesis, we study two continuous-time optimal control problems. The first
describes competition in the energy market and the second aims at robust portfo-
lio decisions for commodity markets. Both problems are approached via solutions
of Hamilton-Jacobi-Bellman (HJB) and HJB-Isaacs (HJBI) equations.

In the energy market problem, our target is to maximize profits from trading
crude oil by determining optimal crude oil production. We determine the optimal
crude oil production rate by constructing a differential game between two types
of players: a single finite-reserve producer and multiple infinite-reserve producers.
We extend the deterministic unbounded-production model and stochastic monop-
olistic game to bounded-production and construct an N -player stochastic game
using analytical and numerical solutions to the corresponding HJB equation. In
this way, we compute the optimal strategies of oil production for four stylized
players. As an example, applying the game-theory model above, we construct a
deterministic and a stochastic differential-game model between four countries,
and compare the real production and the forecast production in order to test the
accuracy of the model.

In the robust portfolio optimization problem, we assume the investor allocates
funds among a bond, a bank account, and a commodity that either pays a mean-
reverting convenience yield, or follows an exponential Ornstein-Uhlenbeck (OU)
process. In our settings, the interest rate of the bond follows a Vasicek model.
We optimize the expected utility of terminal wealth, solving the corresponding
HJBI equation via an exponential affine ansatz, which can be used to generate
an optimal portfolio strategy. As part of our study, we fit our model to prices
of crude oil, gold, copper and interest rates, leading to a meaningful empirical
analysis. We concluded from the suboptimal analysis that the mis-specification of
parameters and incompleteness of market lead to severe wealth-equivalent losses.
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Summary for Lay Audiences

This thesis addresses two problems in the theory of commodity markets, uni-
fied by the HJB stochastic optimal control methodology employed and solves
associated HJB partial differential equation systems.

The first problem involves applying differential game approaches to model
the production strategy of energy producers. In the game, each player determines
their own production rate schedule, which affects the world energy market supply-
demand relationship and hence price. We perform this in a deterministic system
and in a system in which energy demand has a stochastic driver. In both cases
we consider the impact of participant production and profit bounds.

The second topic treated is the robust optimization of portfolios which include
commodity assets. Here an investor solves for an optimal wealth allocation in
order to maximize their expected terminal wealth, in a worst-case expected return
scenario. The worst-case scenario is due to ambiguity in asset return parameters.
We also compute the scale of losses by, alternatively, ignoring the ambiguity but
considering a case in which parameters are incorrectly estimated.

These studies will be helpful for oil or other resource producing blocs to select
their production strategies and for ambiguity-averse investors to determine their
optimal investment strategy.
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Chapter 1

Background and Motivation

1.1 Introduction

Economics and finance require producers, consumers and investors to design optimal strate-
gies aiming to maximize their wealth or minimize their cost in a certain project. Mathematical
finance explores quantitative methods to actually do this. In general, producers aim to max-
imize their profits when selling their goods while investors hope to optimize their wealth.
Control theory provides a mathematical method of optimization in economic and financial
fields to address the challenges facing these producers and investors. Control theory is flex-
ible enough to handle different settings: discontinuous time versus continuous time, single
player versus multiple players, and deterministic process versus stochastic process, etc. In
our studies, we consider continuous-time control problems in two areas: crude oil production
and portfolio optimization.

The Bellman principle and the related Hamilton-Jacobi-Bellman (HJB) equation is one
of the most popular approaches for computing the value function and the associated optimal
control. Most HJB Partial Differential Equations (PDEs) are not solvable in closed form,
but in many cases, for large families of underlying processes and objectives, an ansatz of
the PDEs with terminal or boundary conditions is available. Moreover, one can also explore
numerical solution to these PDE problems. In such case, convergence and consistency must
be ensured at the expense of heavily computational algorithms due to the continuous-time
nature of our setting. This thesis is not primarily about numerically solving HJB equations,
instead mathematical analysis is employed to simplify and transform the PDEs to Ordinary
Differential Equations (ODEs). These ODEs may require numerical solution but are simpler
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than the original PDE.

In the next sections we split our overview into the topics managed in the thesis: Differ-
ential games in energy market (Section 1.2 and Section 1.3) and Robust portfolio analysis
(Section 1.4 and Section 1.5). In Section 1.3 and Section 1.5 we list all the contributions of
our work.

1.2 Literature Review for Differential Games in En-
ergy Markets

1.2.1 Origination of Game Theory

Many researchers were involved in presenting, motivating and formulating the mathematical
settings of game theory. The single-period game among players dates back to 19th century.
[Cournot (1838)] gives the very first introduction and formulation to Cournot games, where
two firms maximized their profits by setting a fixed production. The Cournot game assumes
the price of products follows the supply-demand relationship. It included the concept of
the Nash equilibrium but did not create the generalized definition. Later, [Bertrand (1883)]
and [Edgeworth (1889)] create the so-called Bertrand game based on the Cournot model,
where the firms determined their own selling price of products rather than the production.
In the Bertrand game, the optimal strategy for each firm sets their price equal to the cost
of production hence producers cannot make extra profit.

[Von Neumann and Morgenstern (1944)] and [Nash (1951)] introduce the concept of mixed
strategy and proved the existence of Nash equilibrium. Mixed strategy is an assignment of
probability to a set of pure strategies. Their contribution led to a new era of modern game
theory. After that, game theory has been widely applied to different fields of studies, includ-
ing economics, politics, psychology, etc.

In our studies of differential game, oil producers are players in a Cournot game in which
they profit from oil production net of asymmetric production costs. Producers aim to maxi-
mize their own profits, hence their optimal production strategies form a Nash equilibrium.
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1.2.2 Stochastic Driver of Oil Price

Researchers and policy makers have explored oil price models through regressions, time-series
analysis or stochastic differential equations (SDEs). Some models are homogeneous stochas-
tic process which do not consider external factors. [Schwartz (1997)] presents an exponential
Ornstein–Uhlenbeck (OU) process, and a three-factor model for crude oil price capable of
future curve modeling using PDEs. [Morana (2001)] uses a GARCH(1,1) model to describe
the volatility of crude oil price. Furthermore, [Hou and Suardi (2012)] uses different non-
parametric GARCH models to describe the volatility of oil price (WTI and Brent) return.
These studies of crude oil price are purely mathematical and do not consider macro-economic
factors.

Oil prices are subject to supply-demand relationship, affected by the behaviors of produc-
ers. [Griffin (1985)] fits the competitive model, lnQ = α+ γ lnP , to production data of the
Organization of the Petroleum Exporting Countries (OPEC), where γ is the price elasticity,
lnQ is log oil production, and lnP is log price. The regression results show that elasticities γ
of five OPEC countries are significantly negative. Based on this result, [Ramcharran (2002)]
adds a time variable T as the trend factor into the competitive model and fits regression
models to OPEC and non-OPEC countries.

[Rehrl and Friedrich (2006)] presents the Long-term Oil Price and Extraction (LOPEX)
model. The model investigates oil price and production in the long-term future before 2100.
They describe the production of non-OPEC countries using a model called a Hubbert curve,
and obtain the production of OPEC countries via maximization of an intertemporal objective
function (the total profit). [Dées et al. (2007)] subsequently analyzes models of crude oil de-
mand, supply and price from multiple macro-economic factors, including GDP, oil stocks for
OPEC and non-OPEC countries, production costs, OPEC capacity, etc. This previous study
focused on the influence of OPEC behavior on the oil market. Similarly, [Hamilton (2009)]
applies a regression model exploring the change of oil price using GDP, supply and demand.
The article also analyzed the role of buy-sell speculation and behavior of OPEC countries.

The papers described above provide us with specific economic factors to construct an
oil price model. The comparative model in [Griffin (1985)] provides the concept of linear
price model. In our work, we combine the properties of stochasticity and supply-demand
relationship, assuming producers control the demand factor. As [Dées et al. (2007)] and
[Hamilton (2009)] indicate, long-term economic growth and inflation lead to stochastic changes
in oil price. As economic growth generally leads to increased crude oil demand, we consider
the stochastic demand to be a Geometric Brownian Motion (GBM).
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1.2.3 Optimization and Differential-game Problems in Energy Mar-
ket

A key problem of energy finance is that of production control. To make an optimal profit
from the production process, optimal control methods have been applied to obtain optimal
production strategies. This has been a popular topic of study for a long time. The earliest
research comes from [Hotelling (1931)], where price and energy quantity follows a determin-
istic differential equation. Hotelling derived the dynamics of the price of exhaustible energy,
demonstrating that it grows exponentially with the discount rate. [Hubbert (1956)] intro-
duces the concept of “peak oil”, in which he argued the production of exhaustible energy
initially increased because of discovery, and eventually decreased due to resource exhaustion.
Therefore, the shape of production curve should follow a bell shape with a peak, mathemat-
ically the derivative of a logistic curve.

[Kamien and Schwartz (1978)] investigates the optimal wealth consumption, and research
& development (R&D) rate. The study analyzed the path of these two variables as a function
of time. [Deshmukh and Pliska (1983)] develops a theory for optimal consumption of a ex-
haustible resource with two kinds of uncertainty: resource discovery and changing economic
environment.

A classical problem is that of how a duopoly or oligopoly manages a renewable com-
mon resource such as fish. Fish stocks regenerate, dependent on their population, with a
given growth rate and each player may harvest fish, reducing the population. The price of
harvested fish satisfies the supply-demand relationship and enables players to earn prof-
its. The so called productive asset problem is to maximize the accumulated profit of each
player by deciding the production strategy for each as a control in continuous time. The
resulting model is an example of a differential game. Differential game models have been
widely applied to productive asset duopoly problem (see [Benchekrown (2003)]) and to the
productive asset oligopoly problems (see [Benchekrown (2008)], [Benchekrown et al. (2009)]
and [Colombo and Labrecciosa (2013)]).

In recent years, differential games have been widely applied to energy markets. Ronnie
Sircar and his co-workers were key pioneers bringing differential game ideas to the study of
energy markets. The productive asset problem can be applied to exhaustible energy produc-
tion as a special case with a zero growth rate. They apply differential-game models, including
the Cournot game, the Bertrand game and the mean-field game to energy production prob-
lems. For instance, [Harris et al. (2010)] uses the price model of relative prudence ρ of price
P and computed a bound of ρ = −QP ′′(Q)

P ′(Q) in static Cournot games to ensure the existence of
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Nash equilibrium. This is assuming all producers held infinite reserves. For the dynamic case,
they obtained an approximate solution to dynamic games where all producers held low-cost
exhaustible resources and high-cost inexhaustible resources. [Ledvina and Sircar (2011)] in-
vestigates the stochastic Bertrand oligopolistic game, where demand function was individual
for each player. For a duopoly case, they obtained an approximate solution using an expansion
based on the interaction parameter δ, which measures the substitutability of energy produced
by different players, and a numerical solution to the HJB PDE. [Chan and Sircar (2015)] ex-
tends the stochastic Bertrand oligopolistic game into a mean-field game. They found an
asymptotically approximate solution using an expansion in the interaction parameter ε as
well.

In terms of Cournot games, [Ledvina and Sircar (2012)] finds the solution to oligopolis-
tic games with asymmetric costs in energy market, where only one producer had an ex-
haustible (finite) reserve and others held renewable (infinite) reserve. They assumed a lin-
ear and deterministic price model and computed so-called “blockading points” for high-
cost infinite-reserve producers. Based on the solution to asymmetric oligopolistic game,
[Dasarathy and Sircar (2014)] adds the effects of R&D, varying costs, resource discovery
and energy policy and computed numerical solutions to the problem.

These deterministic games can be extended by adding stochastic factors. For example,
[Ludkovski and Yang (2015)] constructs a two-player differential-game model by assuming
the aggregate price as a Markov switch regime Mt, where the discovery of new oil reserve
is allowed with a discovery rate ai. [Chan and Sircar (2017)] considers the mean-field games
with infinite-reserve players in the continuous-time Cournot competitions via an asympotic
expansion of the production cost, and concluded that producers would not decrease their
production, despite falling oil price. In the meantime, [Brown et al. (2017)] analyzes the
dynamic games of oil price where demand is a stochastic process. They obtained an ODE in
the case that the price level Yt followed a GBM process, and a numerical solution when Yt
followed an exponential OU process.

1.3 Introduction to Differential Game in Energy Mar-
ket

Game theory uses matheamatics to study the competition between two or more players.
With a long history, the first mathematical game theory problem can be traced back to
the prisoner’s dilemma. This two-player zero-sum game models the decisions made by two
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prisoners who independently choose between admitting their crimes or staying silent. Their
combined selection will have different results. In order to solve this type of problem, the
Nash equilibrium gives the most general mathematical formulation of this game. In the Nash
equilibrium, all players aim to maximize their own profits, while assuming their opponents
have already maximized their profits. In other words, each player cannot profit more by
unilaterally changing their strategy. In a general mathematical setting of an N -player game,
the goal for player i is to find q∗i to achieve

sup
qi
πi(q∗1, q∗2, . . . , qi, . . . , q∗N). (1.1)

where qi is the strategy of player i, q∗j is the optimized strategy of player j, and πi is the
profit function of player i corresponding to those strategies.

Today, there are many different types of games according to the number of players,
equilibrium concepts, types of strategies, whether they are cooperative or non-cooperative,
etc. [Cournot (1838)] and [Bertrand (1883)] games, which deals with production problems
among multiple players, are perhaps closest to our problems. In a Cournot game, players set
production, pay for the associated production costs, and take the associated market price.
According to the price-demand relationship, players can maximize profits by conveniently
setting their amounts of production. In contrast, players in the Bertrand game set their price,
from which a quantity emerges with associated profit.

In this thesis, we study an application of differential games to the world energy mar-
ket. Energy markets are impacted by diverse forces like market price, level of production,
location and geography, developments in technology, geopolitics, etc. For example, in 2020,
the Coronavirus pandemic spread across the whole world and dramatically cut down the
demand for crude oil. Even worse, the oil price war between Saudi Arabia and Russia, as a
chain reaction of Coronavirus, led to an intentional increase in oil production and a slump
in oil prices. In our thesis, we focus on extraction (production) strategies of exhaustible en-
ergies among different countries as players. Exhaustible energies such as crude oil and coal
are important energy sources for our daily life, because producers can cheaply extract them
to produce power efficiently and smoothly at a very low cost. In particular, crude oil plays a
significant role in transportations, electricity supplies, and composition of plastic products.
In the world, there is a huge demand for crude oil. Countries with sufficient crude oil reserves
can make considerable profits by extracting and exporting those crude oil to others. Those
countries can be reasonably treated as “infinite-reserve producer”. Representative countries
such as Saudi Arabia, the US (shale oil) and Russia hold a large amount of oil reserves, which
can be modelled as infinite. According to the U.S. Energy Information Administration∗, the

∗https://www.eia.gov/energyexplained/index.php?page=oil_where
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top three oil-producing countries each accounted for more than 12% of total production in
2018. On the other hand, countries or companies in locations with limited crude oil reserves
for the foreseeable future have to treat and use those resources more efficiently/optimally.
We call these countries “finite-reserve producers”.

Using a Cournot-game setting, our goal is to maximize the profit of oil-production coun-
tries by designing optimal strategies. We assume the price of crude oil follows a supply-
demand relation affected by inflation. As the economy develops, the overall demand for
crude oil increases and drives oil price up. The supply and demand factor can be represented
by the worldwide total production and consumption, respectively.

Given the price model, we obtain the profit model for oil-production entities. Oil-producing
countries must consider both their own traits and those of their opponents to make optimal
profits. They should also consider the behavior of their opponents, and the balance between
current and future production. Optimal strategies are functions of time. This constitutes
a differential game involving those countries as players. The mathematical solution to this
game yields optimal production strategies and maximum profits for those countries.

A differential-game model is a particular type of continuous-time control problem, where
we need to find the possible time-varying strategies (optimal controls) for the multiple players
underlying. Mathematically, the player i aims to compute the objective function in integral
form,

Ji(t,x) = sup
qi

E
[ˆ T

t

πi(t,X(t), q∗1(t), q∗2(t), . . . , qi(t), . . . , q∗N(t)) dt
]
. (1.2)

where T is either a fixed value or a stopping time, πi( · ) is the player i’s profit, X(t) is the
associated state variable with X(t) = x. X(t) follows a particular dynamic

dX(t) = a(t,X(t), q(t)) dt+B(t,X(t), q(t)) dW (t), (1.3)

where a,B are a particular vector and matrix, dW (t) is a vector of Brownian motion, and
q is the vector of strategies of players. An N -player differential game leads to a system
of Hamilton–Jacobi–Bellman (HJB) equations. Solving the HJB equations analytically or
numerically can give optimal production strategies. Depending on the type of solution, our
research makes the following contributions:

• We construct asymmetric differential-game problems, obtain the feedback optimal
strategy and compute the accumulated profit in both deterministic and stochastic
settings as a function of reserve x and a stochastic profit level y.
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• The deterministic problem is based on [Ledvina and Sircar (2012)]. We add constraints
to the production and profit of the finite-reserve player, assuming the behavior of the
finite-reserve player is controlled by external factors. We confirm that an upper bound
on production reduces the accumulated profit of the finite-reserve producer. On the
other hand, a lower bound on production to protect a minimum oil price would increase
the total accumulated profit compared to the unconstrained case.

• We obtain the relationship between production and profit of each player versus the
reserve x and stochastic level y. In particular, the profit of the finite-reserve player has
marginal effect with an increase of y, which shows that the reserve x restricts the effect
of increasing y on the profit.

• We analyze the share of world total production taking US (conventional) as an exhaustible/finite-
reserve producer, as well as US (shale) + Canada, Saudi Arabia, Russia as inexhaustible/infinite-
reserve players. We estimate the parametric set of differential-game models via regres-
sion of the price by the ratios production/consumption. The fitting model shows that
an increase in the ratio generally lead to lower oil price.

• We forecast production using the price model above, and compare the predicted oil
productions and historical real productions among selected players. The plots com-
paring the predicted production versus the real production shows a partially linear
pattern with R2 ranging from 0.68 – 0.82 and F -statistic p-values < 0.001, proving
that the prediction using the differential model is partially useful indication of the real
production.

To sum up, Table 1.1 describes existing literatures and our studies in differential games
in energy market.

1.4 Literature Review of Robust Portfolio Optimiza-
tion

1.4.1 Origination of Modern Portfolio Optimization

Modern portfolio optimization could be traced back to [Markowitz (1952)], who created the
mean-variance portfolio problem. The mean-variance model assumes investors maximize the
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Studies Game Players Descriptions
[Harris et al. (2010)] Cournot N Exhaustible

[Ledvina and Sircar (2011)] Bertrand Duopoly Exhaustible
[Ledvina and Sircar (2012)] Cournot N One Exhaustible

[Dasarathy and Sircar (2014)] Cournot N Poisson reserve, one exhaustible
[Chan and Sircar (2015)] Bertrand ∞ Exhaustible
[Brown et al. (2017)] Cournot Duopoly Stochastic demand, one exhaustible

[Chan and Sircar (2017)] Cournot ∞ Brownian reserve, Exhaustible
Chapter 2 Cournot N Production bounds, one exhaustible
Chapter 3 Cournot N GBM demand, Exhaustible
Appendix C Cournot 4 Application to real-world data

Table 1.1: Table of studies of differential games in energy finance

expected wealth given a particular level of risk tolerance measured in variance in a single time
period. The optimal strategy achieved lies on the “efficient frontier” in the plot of variance
versus portfolio return.

[Von Neumann and Morgenstern (1944)] proposes the 4-axiom expected utility theorem,
in which a rational individual aims to maximize the expected value. The theorem includes
a risk-aversion property if the utility function is assumed to be concave. Based on the ex-
pected utility theory, [Merton (1971)] maximizes the expectation of consumption and termi-
nal wealth, assuming the stock follows a GBM and a risk-free bank account is available in a
continuous-time scheme. Based on Merton’s results, many studies on portfolio optimization
problems follow the optimal expected utility paradigm. Relevant examples with closed-form
solutions are provided next. [Munk et al. (2004)] assumes asset allocations on a bond, a
stock and risk-free account. The interest rate and the excess return on the stock follows the
Vasicek process. [Kraft (2005)] maximizes the expected power utility using a stock and a
risk-free bank account, where the stock follows a Heston’s stochastic volatility. Furthermore,
[Escobar et al. (2016)] extends the problem of [Kraft (2005)] to asset-allocation problem us-
ing priciple component stochastic volatility (PCSV) model. PCSV model includes multiple
correlated assets with Heston’s volatilities.

The mean-variance problem and optimization of terminal wealth are two of the main
types of portfolio optimization problems developed by economists. In our thesis, we assume
a risk-averse investor maximizes the expected terminal wealth using the power utility U =
x1−γ/(1− γ). The investor can invest into three assets: a commodity, a bond and a risk-free
bank account. The commodity follows either an exponential OU process, or pays a mean-



10

reverting convenience yield, from [Schwartz (1997)].

1.4.2 Developments in Portfolio Optimization with Model Uncer-
tainty

Model uncertainty or parameter mis-specification is known in the literature as ambiguity
aversion analysis. Both types of optimization problem address parameter mis-specification.
[Ellsberg (1961)] presents the earliest concept of “ambiguity”, which could not be measured
in the probability distribution like “risk”. He indicated that investors were not only risk-
averse, but also ambiguity-averse.

Continuous-time robust portfolio optimization considers the worst-case scenario of finan-
cial parameters, as measured in an entropy in the objective function. Since the seminal work
of [Maenhout (2004)], there have been numerous studies on the topic of robust portfolio
analysis, i.e. optimal portfolio allocation for risk- and ambiguity-averse investor. The author
takes the setting in [Merton (1971)] with a single stock and a riskless asset and assumed am-
biguity about the expected rate of return on the stock. His adaptation of the robust control
framework of [Andreson et al. (2003)] permits closed-form solutions for the key objects in the
analysis, namely: allocation, terminal wealth, worst-case measure and value function. Here,
an investor has a favourite portfolio allocation derived from a so-called “reference model”,
but the study also acknowledges that the model may be mis-specified. The investor then
studies optimal allocations based on a family of alternative models and prepares for a worst-
case scenario, namely the optimal alternative model, this is compatible with the axiomatic
of [Gilboa and Schmeidler (1989)]. As every source of risk (probability distribution) conveys
its own level of ambiguity aversion, the literature has progressively studied these sources.
[Liu et al. (2005)] considers an investor who is ambiguous about the jumps of the process for
the state variable and in [Liu (2011)] regime-switching expected stock return were treated.
[Branger and Larsen (2013)] models the stock price by a jump-diffusion process with differ-
ent levels of ambiguity aversion about the diffusion and jump parts. [Flor and Larsen (2013)]
considers stochastic interest rate with an investor allocating between bonds and stocks. They
assume different ambiguity aversion levels on the expected returns of short rates and stocks.
[Munk and Rubtsov (2014)] studies the impact of ambiguity about expected inflation on the
choice of portfolio. [Escobar et al. (2015)] and [Bergen et al. (2018)] treat the cases of am-
biguity aversion on stochastic volatility, covariance and stocks for complete and incomplete
markets.

Surprisingly, the topics of portfolio optimization and ambiguity aversion has been barely
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studied for commodity-based investors. The complexity of commodity modeling is well-
known, and most literature highlights several factors that are needed to explain the term
structure of future prices. For instance, [Schwartz (1997)] proposes three factors: spot price,
short interest rates and convenience yield; while [Schwartz and Smith (2000)] suggests two
factors, short-term and long-term dynamics. In the absence of ambiguity, the leading analy-
sis is provided by [Mellios et al. (2016)], who established the portfolio optimization problem
using a spot commodity, a future contract and a bond; the commodity price model is based
on Model III of [Schwartz (1997)]. This is a complete market model, where the market price
of risk is assumed a function of convenience yield and spot prices. We have found there are
only two examples of robust analysis in commodities. The first is the theoretical work of
[Cartea et. al (2016)], who considered ambiguity-aversion on the diffusive (short-term fac-
tor) and jump (long term) components for a model adjusted for seasonal effects and a single
stochastic volatility driver. The authors do not study portfolio allocations in this context.
The second is our published study described in Chapter 4, [Chen et al. (2021)]. This study
involved a log Ornstein-Uhlenbeck for the spot commodity and stochastic interest rates us-
ing a combination of Models I and II of [Schwartz (1997)]; the focus is on an insurance-type
investor with a Cramer-Lundberg surplus. We observed that uncertainty in the commodity
asset class is more disruptive to portfolio managers than uncertainty in the equity asset class
(i.e. commodity managers shall be more attentive to uncertainty than equity managers).

All these studies consistently report significant losses and under-performance for investors
who acknowledge ambiguity aversion but choose to ignore such uncertainty. As revealed in
the literature, some sources of ambiguity, for instance coming from changes in the distribution
of interest rates, the distribution of asset returns, or the distribution of volatilities, are more
harmful than others. This observation leads to the key question to be addressed in Chapter 5
of our thesis: what is the impact and the most important source of uncertainty for commodity
investors?

To answer the question, we consider ambiguity as per [Ellsberg (1961)]. Due to this
parametric ambiguity, the investor in our model aims to maximize the expected utility in a
worst-case scenario of expected return. We take the wealth equivalent losses analysis, compare
the losses in different cases of parametric mis-specifications, including min-specification of
market prices of risks, volatilities, and incomplete markets.
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1.5 Introduction to Robust Portfolio Optimization

Portfolio optimization aims to maximize the wealth and consumption of an investor. The
investor can allocate in assets following certain stochastic processes, while consuming goods.
The stochasticity of assets makes a dynamic and optimal portfolio strategy necessary. For
a given objective function/utility, robust portfolio optimization maximizes the utility in the
worst-case scenario. The worst-case scenario represents the worst expected return on the
asset, derived from an optimal change of measure using the Girsanov theorem. In return for
the decreasing expected return, we compensate the objective function by using entropy as a
quadratic function, because the compensation can be interpreted as a distance to a favorable,
usually a best estimate, of the targeted parameters. Mathematically, the general problem to
be solved is

sup
π,ct

inf
ut

E


ˆ T

t

uTt β
−1ut ds︸ ︷︷ ︸

entropy

+
ˆ T

t

e−rsU1(cs) ds︸ ︷︷ ︸
consumption

+ U2(XT )︸ ︷︷ ︸
terminal wealth


where ct is the consumption amount, Xt is wealth at time t, πt is the investment allocation,
ut is the change of parameter values using the Girsanov theorem, and U1( · ), U2( · ) are utility
functions.

In our studies, we consider two types of dynamics of commodities. The first is a generic
investment company with a surplus X(t) that follows a Cramér-Lundberg process and a
Vasicek interest rate model correlated to a mean-reverting log-asset process representing
commodity price process. This is a general setting that addresses banking and insurance
companies alike. This company invests the surplus into bonds, commodities and a bank ac-
count with the goal of maximizing the expected utility of terminal wealth, but it is concerned
with the uncertainty in the fixed-income and commodity markets. The second dynamics of
commodity process directly comes from the three-factor model of [Schwartz (1997)], which
includes mean-reverting stochastic interest rate and mean-reverting convenience yield. In this
study, other alternative investment choices are completely the same as the first, including
bonds and a risk-free bank account.

We are the first to consider these robust portfolio optimization problems. A closely re-
lated work is [Chiu and Wong (2013)], who studied the optimal strategy for a similar type of
company with mean-reverting underlyings within expected utility theory, they provided con-
ditions for existence of a solution but no reference to ambiguity-aversion or full estimation.
We contribute to the existing literature on several levels:
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• By casting our optimal asset allocations described above as an HJBI PDE, we obtain
closed-form solutions for all four relevant functions: optimal allocation, worst market
conditions, optimal terminal wealth and value function. Explicit conditions for exis-
tence and well-behaved solutions are also provided.

• All parameters are estimated using current data from short rates, bond prices as well
as two representative commodities, West Texas Intermediate (WTI) oil and Gold. Full
estimation of commodity models is rare in the literature.

• We demonstrate that ambiguity has a significant impact on optimal trading strate-
gies and terminal wealth. In particular, plausible ambiguity levels result in decreasing
kurtosis, standard deviations and excess returns on the optimal portfolio.

• We perform a wealth equivalent losses analysis thanks to quasi-closed-form solutions
for relevant suboptimal optimization problems. Our analyses exhibit that investors
who ignore model uncertainty incur in drastic losses. In particular, we find that ig-
noring commodity uncertainty is more costly than neglecting interest rate uncertainty.
Commodity markets are also more sensitivity than stock markets to uncertainty.

• The importance of working on a complete market (investing in bonds) for commodity
investors is confirmed, welfare-equivalent losses could easily reach 45% when working
with incomplete markets.

• We also found that parameter mis-specifications, particularly incorrect larger corre-
lation, smaller variances or differing market prices of commodity risk, could lead to
drastically large wealth-equivalent losses.

• The three factors model is calibrated to empirical data via a combination of maximum
likelihood estimation (MLE) and Kalman filter (KF) techniques. Moreover, we use the
West Texas Intermediate (WTI) spot and future prices, and the 1-month Treasury
Constant Maturity Rate. We also studied a second commodity, copper future prices,
to strengthen the results (see Section E.2).

• The empirical analysis established three key insights. First, small changes in conve-
nience yields lead to large variation on forward contract allocation; second, small vari-
ations on convenience yield covariance parameters could lead to substantial wealth
equivalent losses (WELs); and finally and more importantly, uncertainty about conve-
nience yield could be a largest contributor to the under-performance of the portfolio.
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To sum up, the existing literature and our studies of robust portfolio optimization are
shown in Table 1.2.

Studies Models Ambiguities of drifts
[Maenhout (2004)] GBM stock Stock

[Liu (2011)] Region-switching return State variable
[Branger and Larsen (2013)] GBM stock with jumps Jump diffusion
[Flor and Larsen (2013)] Vasicek interest Stock, interest
[Escobar et al. (2015)] Stochastic volatility Stock, volatility
[Bergen et al. (2018)] Stochastic covariance Stock, covariance

Chapter 4 Mean-reverting commodity Commodity, interest
Chapter 5 Three-factor commodity Commodity, interest,

convenience yield

Table 1.2: Table of studies of differential games in robust portfolio optimization

1.6 Connections among Chapters

This thesis presents the application of stochastic control problem to energy markets and ro-
bust portfolio optimizations. Based on [Ledvina and Sircar (2012)], Chapter 2 demonstrates
the effects of production bounds on the profits of players with different costs of production.
Also based on [Ledvina and Sircar (2012)], Chapter 3 incorporates a stochastic factor Y (t)
and computes the solution to the problem by using a Puiseux series and finite difference
method. Considerable numerical and mathematical challenges are shown to exist in this
chapter, some of which require more exploration. Appendix C executes the application of
the deterministic and stochastic models in Chapter 2 and Chapter 3 to real-world data, and
compare the forecast productions to real productions by years. Those three chapters study
the differential games in energy markets and are connected with one another.

Chapter 4 and Chapter 5 study the robust portfolio optimization problems for commodi-
ties following the exponential-OU process and the three-factor model in [Schwartz (1997)].
Chapter 4 combines the Vasicek interest rate model and exponential-OU process and deter-
mines the portfolio strategy over a bank account, commodities and a bond. Chapter 5 studies
the effects of stochastic convenience yields and determines the optimal portfolio over a bank
account, a bond and two forwards with different maturities. In addition, we also perform an
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empirical analysis of the two models to WTI, gold and copper data and determine the effects
of parameter misspecifictions on the WELs.

All these chapters share the same mathematical techniques. We maximize the accumu-
lated profits/terminal expected utility as objective functions, by deciding the optimal strate-
gies, generating HJB and HJBI equations, simplifying the PDEs into ODEs and numerically
solving the ODEs.

1.7 Mathematical Preliminaries

In this section, we present some general results, in order to establish notation and some
key, but and well, but not widely-known mathematical techniques used in the thesis. We ex-
pect readers to have elementary knowledge of ODEs (e.g. [Coddington (2012)]), PDEs (e.g.
[Strauss (2007)]), SDEs (e.g. [Øksendal and Sulem (2007)], [Øksendal (2013)]) with their nu-
merical methods (e.g. [Corless (2013)], [Iacus (2009)]), quantitative finance (e.g. [Hull (2003)]),
probability theory (e.g. [Ross (2014)]) and mathematical statistics (e.g. [Rice (2006)]). Read-
ers not familar with those topics can refer to relevant books described above.

1.7.1 General notation

We start with abbreviations and general notations used in our thesis. Abbreviations and
notations are summarized in Table 1.3, Table 1.4 and Table 1.5.
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Abbreviations Description
tr trace of a matrix

ODE ordinary differential equation
PDE partial differential equation
RDE Riccati differential equation
HJB(I) Hamilton-Jacobi-Bellman(-Isaacs)
dim dimension
diag diagonal elements of a matrix
WTI West Texas Intermediate
OU Ornstein–Uhlenbeck
GBM Geometric Brownian Motion
MLE maximum likelihood estimate
WEL wealth equivalent loss
KF Kalman filter
csmp crude oil consumption

Table 1.3: Abbreviation
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Notation used in Chapters 2 and 3

Symbol Description
si cost of production of player i
an an = 1+

∑n−1
i=1 si−ns0
n

bn bn = r
(
n+1
n

)2

θn(x) θn(x) = βneβn−
bnx
2an

βn βn = −1 +
√
bnv(xn

b
)

an

δn δn := (n+ 1)sn −
(
1 + s0 +∑n−1

i=1 si
)
> 0

ck,n ck,n = 1+
∑n−1

i=0 si

n+1 − sk
K K = min{k : δn > 0}

x,X(t) remaining energy reserve
vi accumulate profit of player i
qi production of player i
Q sum of productions of opponents
r discount rate
xnb blockading point of player n
τ stopping time

W ( · ) Lambert-W function
c maximal production bound
vc,i profit of player i under limited-production constraint
qc,i production of player i under limited-production constraint
p minimal profit bound
vp,i profit of player i under minimal-profit constraint
qp,i production of player i under minimal-profit constraint

y, Y (t) stochastic factor
Z(t) Brownian motion
µ drift of Y (t)
σ volatility of Y (t)
ξ ξ = x

y

H( · ) v(x, y) = y2H
(
x
y

)
Table 1.4: Notations for Chapters 2 and 3
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Notation used in Chapters 4 and 5

Symbol Description
X0(t) Cramér-Lundberg process
c premium

S(t) commodity price
r(t) interest rate
a mean-reverting rate of commodity price

r̄ or m mean-level interest rate
κ or a mean-reverting rate of interest

P (t, r(t)) price of the bond
λi,λ market price of risk
δ(t) convenience yield
α mean level of convenience yield
κ mean-reverting rate of convenience yield

ρ, ρij correlation
Wi(t),W (t) Brownian motion
WQ
i (t),WQ(t) Brownian motion with change of measure
x,X(t) surplus/wealth process
J( · ) value function
βi,β ambiguity-aversion parameter
γ level of risk aversion

ui,u change of drift
πi,π amount of investment
σi,σ volatility
πs amount of investment in wealth-equivalent analysis
τi time to maturity

Table 1.5: Notations for Chapters 4 and 5
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1.7.2 Basic Knowledge of Stochastic Differential Equations and
Optimal Control Problems

Our problems are about continuous-time optimal control problems and differential games.
Therefore, we rely on mathematical techniques of HJB or HJBI equations.

Theorem 1.7.1 (Itô’s Formula). Let X(t) ∈ Rn be an n-dimensional Itô-Lévy process of
the form

dX(t) = µ(t,X(t)) dt+ σ(t,X(t)) dW (t) +
ˆ
Rl
γ(t,X(t), z)N (dt, dz) (1.4)

where µ ∈ Rn,σ ∈ Rn×m,γ ∈ Rn×l, W is an m-dimensional Brownian motion and N is a
l-dimensional independent Poisson random measure as

NT (dt, dz) = (N1(dt, dz1), . . . , Nl(dt, dzl))T . (1.5)

Let f(t,X(t)) ∈ C1,2(R,Rn). Then

df(t,X(t)) = ∂f

∂t
dt+ ∂f

∂xT
(µ(t,X(t)) dt+ σ(t,X(t)) dW (t))

+ 1
2 tr

(
σT (t,X(t)) ∂2f

∂x ∂xT
σ(t,X(t))

)
dt

+
l∑

i=1

ˆ
Rl
f(t,X(t−) + γ(i)(t,X(t), z))− f(t,X(t−))N (dt, dz)

(1.6)

where γ(k) is the k-th column vector of the matrix γ.

HJB(I) equations are the fundamental mathematical technique of this thesis. Time-
invariant HJB equations without a jump are used in Chapter 2 and Chapter 3. Time-variant
HJBI equations with jump diffusion are used in Chapter 4 and Chapter 5. The following
theorems on HJB(I) equations are based on Section 4.2 of [Øksendal and Sulem (2007)] and
Section 11.2 of [Øksendal (2013)].

Theorem 1.7.2 (Time-variant HJB equation). Assume there are N players in a differential
game. The value function of player i is

Ji(t,x) = sup
qi

E
[ˆ T

t

πi(s,X(s), qi(s), Q∗−i(s)) ds+ U(X(T ))
∣∣∣∣X(0) = x

]
. (1.7)

where T is a fixed terminal time. qi is the strategy of player i, and Q−i = {q1, . . . , qi−1, qi+1, . . . , qN}
is the set of undetermined strategies of the opponents.
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Let X(t) ∈ Rn be an n-dimensional Itô-Lévy process of the form

dX(t) =µ(t,X(t), qi(t), Q∗−i(t)) dt+ σ(t,X(t), qi(t), Q∗−i(t)) dW (t)

+
ˆ
Rl
γ(t,X(t), qi(t), Q∗−i(t), z)N (dt, dz)

(1.8)

where the assumption of the jump diffusion process follows Theorem 1.7.1.

If T is a fixed terminal time, then the system of HJB PDEs will be
∂Ji
∂t

= sup
qi

{
πi(t,x, qi, Q∗−i) + ∂Ji

∂xT
(µ(t,x, qi, Q∗−i)

+ 1
2 tr

(
σT (t,x, qi, Q∗−i)

∂2Ji
∂x ∂xT

σ(t,x, qi, Q∗−i)
)

+
l∑

i=1

ˆ
Rl
Ji(t,x+ γ(i)(t,x, qi, Q∗−i, z))N (1, dz) + Ji(t,x)

}
J(T,x) = U(x).

(1.9)

Remark 1.7.1. We can think of Theorem 1.7.2 as time varying because of the explicit ∂
∂t
.

But if T is not a fixed terminal time, but either infinity or a stopping time which depends
only on state factor x, the optimal control problem does not explicit depends on time, as
the following theorem states.

Theorem 1.7.3 (Time-invariant HJB equation). Assume the value function is

Ji(x) = sup
qi

E
[ˆ τ

0
e−rsp(X(s), qi, Q∗−i) ds+ e−rτU(X(τ))

∣∣∣∣X(0) = x

]
. (1.10)

where qi is the strategy of player i, and Q−i = {q1, . . . , qi−1, qi+1, . . . , qN} is the set of strate-
gies of the opponents. Therefore, p only depends on state variable X(s) and those undeter-
mined controls. τ is a stopping time,

τ = inf{t : x ∈ Rn/D} (1.11)

where D is a dense domain of Rn. τ can be either infinite or a finite stopping time. Let
X(t) ∈ Rn be an n-dimensional Itô-Lévy process of the form

dX(t) =µ(X(t), qi(t), Q∗−i(t)) dt+ σ(X(t), qi(t), Q∗−i(t)) dW (t) (1.12)

where µ,σ are all independent of time, γ = 0 (i.e., there is no jump).

Then the HJB equations to this value function will be

rJi = sup
qi

{
p(x, qi, Q∗−i) + ∂Ji

∂xT
(µ(x, qi, Q∗−i) + 1

2 tr
(
σT (x, qi, Q∗−i)

∂2Ji
∂x ∂xT

σ(x, qi, Q∗−i)
)}

Ji(x) = U(x) when x ∈ D̄
(1.13)
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where D̄ is the boundary of domain D. In other words, this system of HJB PDE is indepen-
dent of time.

Remark 1.7.2. If we predetermine the optimal control q∗n(x) as a function of only state
variables x, the objective function will, in fact, be initial-time invariant. Mathematically,

J(x) =E
[ˆ τ

0
e−rsp(X(s), q∗i (X(s)), Q∗−i(X(s))) ds+ e−rτU(X(τ))

∣∣∣∣X(0) = x

]

ertJ(x) =E
[ˆ τ

t

e−rsp(X(s), q∗i (X(s)), Q∗−i(X(s))) ds+ e−rτU(X(τ))
∣∣∣∣X(t) = x

]
,

(1.14)

as the stopping time τ will corresponding increase t because of time-homogeneous X(t), if
we take X(t) = x as a new initial time. This property ensures the time-invariant property
of the HJB equation in Theorem 1.7.3, which in turn specifies the explicit formula of q∗n(x).

Remark 1.7.3. To illustrate the time-invarant property of Theorem 1.7.3, we can recall
pricing of the American put option on stock S(t) with maturity T , strike K and exercise
boundary θ(t) as comparison, although it is not an identical problem, where we assume

dS(t) = µS(t) dt+ σS(t) dW (t). (1.15)

The pricing of American put option follows the optimal stopping problem for stopping
time τ ,

V (S, t) = sup
θ(t)

E[e−rτ (K − S(τ))+|S(t) = S] s.t. τ = inf{t : S(t) ≤ θ(t)}. (1.16)

The corresponding PDE system is

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
= rV

lim
S→∞

V (S, t) = 0, V (θ(t), t) = K − θ(t),
∂V

∂S
(θ(t), t) = −1, V (S, T ) = max(K − S, 0).

(1.17)

Therefore, the control of exercise boundary depends on time t.

If T → ∞, the option becomes a perpetual American put, and the time variable disap-
pears. The system becomes

1
2σ

2S2 ∂
2V

∂S2 + rS
∂V

∂S
= rV

V (∞) = 0, V (θ) = K − θ.
(1.18)

In this case, the exercise boundary no longer depends on time t, and the value of the perpetual
put does not depend on t either.
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Similarly, we also present the theorem of the HJBI equation in the form of sup inf problem.

Theorem 1.7.4 (Time-variant HJBI equation). Assume the value funtion is a sup inf prob-
lem,

J(t,x) = sup
q

inf
u
E
[ˆ T

t

π(s,X(s), q(s), u(s)) ds+ U(X(T ))
∣∣∣∣X(0) = x

]
. (1.19)

where T is a fixed terminal time. q(s), u(s) are the undetermined strategies at time s.

Let X(t) ∈ Rn be an n-dimensional Itô-Lévy process of the form

dX(t) =µ(t,X(t), q(t), p(t)) dt+ σ(t,X(t), q(t), p(t)) dW (t)

+
ˆ
Rl
γ(t,X(t), q(t), p(t), z)N (dt, dz)

(1.20)

where the assumption of the jump diffusion process is identical to Theorem 1.7.1.

If T is a fixed terminal time, then the system of HJBI PDEs will be

∂J

∂t
= sup

q
inf
u

{
π(t,x, q, u) + ∂J

∂xT
(µ(t,x, q, u) + 1

2 tr
(
σT (t,x, q, u) ∂2J

∂x ∂xT
σ(t,x, q, u)

)

+
l∑

i=1

ˆ
Rl
J(t,x+ γ(i)(t,x, q, u, z))N (1, dz) + J(t,x)

}
J(T,x) = U(x).

(1.21)

Theorem 1.7.5 (Girsanov’s Theorem). Set γ = 0 in Equation (1.4). Taking the change of
measure

dQ
dP = exp

(
−
ˆ T

0
uT (t) dW (t)

)
(1.22)

leads to the SDE in the measure Q, where u ∈ Rm is an F-adapted process.

Then
dW (t) = dWQ(t)− u(t) (1.23)

and Equation (1.4) becomes

dX(t) = (µ(t,X(t))− σ(t,X(t))u(t)) dt+ σ(t,X(t)) dWQ(t) (1.24)



Chapter 2

Deterministic Asymmetric-cost
Differential Games for Energy
Production with Production Bounds

2.1 Introduction

We study a continuous optimal control problem which models competition in the energy
market. Competing agents maximize profits from crude oil by determining optimal crude
oil production via solution of Hamilton-Jacobi-Bellman (HJB) equations. We design the
crude oil production rate by constructing a differential game between two types of players: a
single finite-reserve producer and multiple high-cost infinite-reserve producers. We extend the
deterministic unbounded-production model from [Ledvina and Sircar (2012)] to a bounded-
production game, in which we show that the upper (lower) bound decreases (increases)
the profit of finite-reserve player and the low-cost opponents, and increases (decreases) the
profit of high-cost opponents, due to the effects on the finite-reserve player’s exit time and
the market price.

We utilize the linear price model as profits per time unit and explain its rationale in
Section 2.2 using the oil price-production data. Section 2.3 gives the complete results of the
N -player asymmetric-cost static and dynamic games from [Ledvina and Sircar (2012)]. Our
research makes the following contributions, as discussed in Section 2.4:

• Taking the setting of the deterministic problem based on [Ledvina and Sircar (2012)],

23
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we add production constraints to the production/price of the finite-reserve players,
assuming that the behavior of the finite-reserve player is controlled by external cir-
cumstances. We confirm that an upper bound on production reduces the accumulated
profit of the finite-reserve producer.

• We set a lower bound on production to protect a minimum oil price. An unexpected
result shows an increase trend of the total accumulated profit with the minimal-
production constraint compared to the unconstrained case.

• We analyze why the upper and lower bounds on the production of the finite-reserve
producer have different directions of impacts on the opponents, depending on their
costs of production. The profits of higher-cost opponents decrease with the upper
bound, while the lower-cost opponents show an inverse trend. The opposite trends
hold for the lower bound.

• We presents the impacts of minimum-profit and maximum-production constraints on
oil prices.

2.2 Price Model

The basis of economics is the supply-demand relationship. In the website
https://www.britannica.com/topic/supply-and-demand, the curve “supply and demand” in-
dicates that the demand will decrease, as the price increases, but the supply curve shows the
inverse relationship. Therefore, they form an equilibrium point called the “market equilib-
rium”. The curve “A shift in supply” shows that the price will increase if the supply decreases
while keeping the demand level constant.

In a multi-player market, players affect the supply by changing their own production.
Theoretically, each player increasing the production will push the price down, leading to
decreasing production of their opponents, and vice versa. Therefore, those players form a
game-theory problem in the market. Finally, each player obtains an equilibrium production
point to optimize their own profit.

Figure 2.1 gives the relationship between the annual WTI oil price/GDP and world total
production between 1998-2014. We can observe a clear linear relationship between them.
Therefore, a linear model can be appropriately considered as a price model for crude oil,
given a steady economic level.
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Figure 2.1: Plot of WTI price versus oil production/GDP

Typically price is a decreasing function of demand and, for a commodity that is difficult
to store in large quantities like crude oil, production must nearly meet demand. As such
Equation 5 of [Ledvina and Sircar (2012)] presents a non-dimensionalized linear price model,
widely used by economists and statisticians because it is easy to apply linear regression
between price P (Qtotal) and oil production Qtotal to fit data. Mathematically, the price model
is

P (Qtotal) = M − αQtotal, (2.1)

where Qtotal, M and α are measured in barrel/day, dollar/barrel and dollar*day/barrel2

respectively.

To apply the linear model, we assume Qtotal represents production measured in barrels,
and P (Qtotal) is the price function. The reason for not using production directly is that the
demand for oil increases with GDP. Moreover, we also assume the technology of oil production
remains unchanged throughout the price model. It helps to work in nondimensional units,

P (Qtotal)
M

= 1− αQtotal

M
. (2.2)

We define P0(Qtotal) := P (Qtotal)
M

, as nondimensionalized price. Since α
M

is a constant measured
in 1/barrel, we can ignore the constant and control our production through q := αQtotal

M
,

instead of Qtotal. Therefore, the linear nondimensionalized price model which we will use in
all subsequent sections is

P0(qtotal) = 1− qtotal. (2.3)

Similarly, the cost of production S, measured in dollars per barrel, may be nondimensional-
ized by s := S

M
, s as the corresponding nondimensional production cost.
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2.3 Deterministic Game of Finite-reserve producer ver-
sus Infinite-reserve producers

We assume a differential game with N players in total, including one player with finite reserve
and N − 1 players with infinite reserves. We follow the setting of [Tsur and Zemel (2003)],
[Lafforgue (2008)] and [Ledvina and Sircar (2012)], in which the finite-reserve producer has
initial reserve x(0) = x, which depletes until exhausted thus,

dx(t) = −q0(t)1{x(t)>0} dt. (2.4)

Here q0(t) ≥ 0 is the rate at which the finite-reserve producer extracts the resource. It is
both the rate of depletion and the rate of production of the finite-reserve producer.

We let qi(t) be the production rates of the infinite-reserve players, where i = 1, 2, . . . , N−
1. We need not track the reserve for infinite-reserve producers.

The solution to the differential game is based on a Nash equilibrium, in which players aim
to select their optimal strategy, given that their opponents have selected their own optimal
strategies. A mathematically precise definition is provided in Definition 2.3.1.

Definition 2.3.1. Assume there are N players. Player i has a control qi ∈ Qi and a profit
function Ji(qi,Q−i), where Q−i = (q1, . . . , qi−1, qi+1, . . . , qN) are the controls of the oppo-
nents. The Nash equilibrium is the set of controls q = (q∗1, . . . , q∗n) such that

Ji(q∗i ,Q∗−i) ≥ Ji(qi,Q∗−i)

for i = 1, . . . , N and ∀qi ∈ Qi.

The Nash equilibrium of Definition 2.3.1 means that each player will optimize their own
profit function, under the assumption that the opponents have obtained their own optimal
strategies. Hence, each cannot profit more by unilaterally changing their own strategy. How-
ever, the Nash equilibrium may not result in the largest-profit strategy for any given player,
or even the total profit for all players, as illustrated in Section 2.4.2.

From the perspective of control qi, Definition 2.3.2 provides different types of controls for
player i.

Definition 2.3.2. A closed-loop strategy is a decision rule qi(x0, x(t), t), which is continuous
in t and uniformly Lipschitz in x for each t. This strategy depends both current state x(t)
and time t.
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By Definition 2.3.1, the goal of the finite-reserve producer (player 0) is to find q0(t) by
maximizing the total profit given q∗1(t), . . . , q∗n(t). This is presented in Equation (2.5):

v(x) = sup
q0(t)≥0

ˆ τ

0
e−rtq0(t)

(
1− q0(t)−

N−1∑
i=1

q∗i (t)− s0

)
dt, (2.5)

This fits in the general objective function in Equation (1.2) and price function in Equa-
tion (2.2). Similarly the infinite-reserve producer (player n ≥ 1) wants to find qn(t) by
Equation (2.6)

vn(x) = sup
qn(t)≥0

ˆ ∞
0

e−rtqn(t)
1− qn(t)−

N−1∑
i=0,i 6=n

q∗i (t)− sn

 dt, (2.6)

where s0, . . . , sN−1 are the cost of production, r is the interest rate, and the stopping time of
the finite-reserve player is τ := inf{t : x(t) = 0}. We maintain the condition qn(t) ≥ 0 because
oil cannot be put back into the ground. The production strategy qi depends on the level of
x, which indicates that the strategies of players should be closed-loop by Definition 2.3.2.
With the production, the nondimensionalized price given value functions Equation (2.5) and
Equation (2.6) is

P0(q0 +Q) = 1− q0 −Q (2.7)

where q0, Q = ∑N−1
i=1 qi denote the production of finite-reserve player, total production of

infinite-reserve players, respectively. In the next sections, we will use the nondimensionalized
price model in our value functions. Since this is a theoretical model, we do not consider a
exact unit for time t, which is often measured in years. In the following examples, we do not
specify the unit of t.

2.3.1 Monopolistic Case with One Finite-reserve Producer

In this section, we consider the case with only one finite-reserve producer (N = 1). In this
case, our target is to find the control q0(t). This is not really a game any longer, but it is
important to solve this case, of which the solution is helpful to analyze the multiple-player
situation.

Solution to the HJB Equation in the Monopolistic Situation

The integrand except e−rt, which can be handled with a change of variable, in time-unit
profit Equation (2.5), and the dynamics Equation (2.4) of with production rate do not
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explicitly involve time t and hence the problem is time-invariant. The time-invariant version
Theorem 1.7.3 can be used to derive the HJB equation. The HJB equation for v(x) is

sup
q0≥0

q0(1− q0 − s0 − v′) = rv (2.8)

Taking the supremum in Equation (2.8) leads to q∗(x) = 1−s0−v′(x)
2 ≥ 0. Therefore, we must

require v′(x) ≤ 1− s0 for x ≥ 0 to ensure the positivity of production rate. Inserting this q∗0
gives

1
4(1− s0 − v′)2 − rv(x) = 0, (2.9)

In fact, v′(x) can be recognized as a “shadow cost” which is described as the cost of producing
at present and hence not in the future. The inequality shows that the shadow cost cannot
be higher than 1− s0, the unit profit at zero production.

To understand the novel result which follows and to build notation, it is important to
quickly revisit work due to [Ledvina and Sircar (2012)].

Lemma 2.3.1. Consider the ODE (a− v′)2 = bv

v(x0) = v0,
(2.10)

where v(0) ≥ 0 and a, b > 0. The solution to the ODE is

v(x) = a2

b
(1 +W (θ(x− x0)))2 (2.11)

where W ( · ) is the Lambert-W function, θ(x) = βeβ− bx2a and β = −1 +
√
bv0
a

. The Lambert-W
function satisfies z = W (z)eW (z) given z ≥ −e−1.

Proof. See Appendix A.1.

We have the boundary condition v(0) = 0 because, if no resource remains, the producer
cannot have any profit. So by Lemma 2.3.1, taking a = 1 − s0 and b = 4r, the solution
to Equation (2.8) is

v(x; r, s0) = (1− s0)2

r

1 +W
(
−e−1− 2rx

1−s0

)
2


2

(2.12)

Figure 2.2 shows the plot of the profit function v(x; r, s0). As initial reserve x increases,
the present value v(x; r, s0) decreases because we can obtain more profit from more crude oil
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resources. But the marginal profit (i.e., the increase of profit per unit of x) decreases as x
increases. In the meantime, as the cost s0 and interest rate r increases, the profit decreases.
We will prove that the conclusion is financially true in the next subsection.
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Figure 2.2: Monopolistic profit function. Left: Different s0 given r = 0.05; Right: Different r
given s0 = 0.1.

Financial Explanation of the Solution

Since the Lambert-W function W ( · ) is an increasing function, when x increases, v(x) will
increase as well. By Lemma 2.3.1, the derivative of v(x; r, s0) w.r.t. x is

∂v

∂x
(x; r, s0) = −(1− s0)W

(
−e−1− 2rx

1−s0

)
. (2.13)

From the property of the Lambert-W function,W (z) < 0 given−e−1 < z < 0. So ∂v
∂x

(x; r, s0) >
0 for all x > 0. In financial words, as the finite-reserve producer possess more initial reserves,
the profit will increase. This appears reasonable, as for instance, the producer with larger
reserve can use the same strategy as the producer with smaller reserve. At the time when
the smaller one has exhausted the entire resource, the larger one can still exploit more and
profit from the resources.

Moreover, as x increases, ∂v
∂x

(x; r, s0) will decrease. So the rate of increasing profit is
decreasing as the initial reserve increases. This phenomenon can be seen by noting that
more initial reserve leads to both more future production traded at a discount rate, and
more present production with reduced marginal profit. So the finite-reserve producer will
have more discounted profit, given that production rate is finite. When there is infinite
reserve, i.e., x→∞, v(x; r, s0)→ (1−s0)2

4r .
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For interest rate r, the first derivative is

∂v

∂r
(x; r, s0) = −(1− s0)2

r2

1 +W
(
−e−1− 2rx

1−s0

)
2


2

− 1− s0

r
xW

(
−e−1− 2rx

1−s0

)
(2.14)

As r → 0, the profit will be
v(x; 0, s0) = (1− s0)x. (2.15)

The function in Equation (2.15) is just the product of price and reserves. This represents
that any strategies are optimal whenever oil is extracted.

Intuitively, as r increases, the lifetime profit will decrease so there should be ∂v
∂r

(x; r, s0) <
0. This is easily proven. From Equation (2.13), taking derivative w.r.t. r, we will compute

∂2v

∂x ∂r
(x; r, s0) =

−2xW
(
−e−1− 2rx

1−s0

)
1 +W

(
−e−1− 2rx

1−s0

) > 0. (2.16)

So ∂v
∂r

(x; r, s0) is an increasing function w.r.t. x. Let x→∞, by W ′(0) = 1, it can be proved
that

∂v

∂r
(x; r, s0) < ∂v

∂r
(∞; r, s0) = −(1− s0)2

4r2 < 0. (2.17)

for ∀x, r ∈ R and s0 ∈ [0, 1].

Now consider the influence of s0. Similarly, by taking derivative w.r.t. s0,

∂v

∂s0
(x; r, s0) = −2(1− s0)

r

1 +W
(
−e−1− 2rx

1−s0

)
2


2

− xW
(
−e−1− 2rx

1−s0

)

= − r

1− s0

∂v

∂r
(x; r, s0)− 1− s0

r

1 +W
(
−e−1− 2rx

1−s0

)
2


2 (2.18)

As s0 = 1, i.e., the cost is exactly equal to profit, then v(x; r, 1) = 0. So we will make no
profit in this case. From Equation (2.18), obviously, ∂v

∂s0
(x; r, s0) < 0 by given ∂v

∂r
(x; r, s0) < 0.

In practice, raising the production cost will decrease the profit.

Optimal Control q0(x)

From the computation of the supremum in Equation (2.8), the optimal production rate for
the monopolistic case is

q∗0(x) =
1− s0 − ∂v

∂x
(x; r, s0)

2 (2.19)
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By inserting Equation (2.13), q∗0 can be expressed as

q∗0(x) = 1− s0

2

(
1 +W

(
−e−1− 2rx

1−s0

))
(2.20)

Since −1 < W (z) < 0 is a monotonically increasing function given −e−1 < z < 0, q∗0(x) > 0
for x > 0. As x→∞ (infinite reserve), the production rate will be a constant q∗0(∞) = 1−s0

2 ,
which is the maximum point of the quadratic profit q0(1−q0−s0) in Equation (2.5). Moreover,
this case is the infinite-resource case. This discussion prove that 1− s0 − ∂v

∂x
(x; r, s0) ≥ 0 for

x ≥ 0

Given initial reserve x0, we consider optimal control at time t. From the differential
equation for x(t) and the optimal extraction rate q∗0,

dx = −q∗0(x) dt = −1−s0
2

(
1 +W

(
−e−1− 2rx

1−s0

))
dt

x(0) = x0.
(2.21)

By differentiation of Lambert-W function, as shown in Appendix A.2, computing the integral
from Equation (2.21) gives

t =
ˆ t

0
ds =

ˆ x(t)

x0

− 2
1−s0

dy

1 +W
(
−e−1− 2ry

1−s0

) = 1
r

ˆ 2rx(t)
1−s0

2rx0
1−s0

e−1−yW ′(−e−1−y) dy
W (−e−1−y)

= 1
r

ˆ 2rx(t)
1−s0

2rx0
1−s0

d
(
ln
(
−W

(
−e−1−y

)))
= 1
r

ln

W
(
−e−1− 2rx(t)

1−s0

)
W
(
−e−1− 2rx0

1−s0

)
.

(2.22)

Taking the inverse function of Equation (2.22), we can obtain the remaining reserve at time
t

x(t;x0) = −1− s0

2r

(
1 + rt+ ln

(
−W

(
−e−1− 2rx0

1−s0

))
+ ertW

(
−e−1− 2rx0

1−s0

))
. (2.23)

Inserting this returns the optimal control as a function of time t

q∗0(x(t;x0)) = 1− s0

2

(
1 + ertW

(
−e−1− 2rx0

1−s0

))
. (2.24)

Optimal Stopping Time τ

We already define the stopping time τ := inf{t : x(t) = 0}. Therefore, setting initial reserve
x0 = x and x(τ) = 0 in Equation (2.22) returns the optimal stopping time τ as a function
of initial reserve x

τ(x) = −1
r

ln
(
−W

(
−e−1− 2rx

1−s0

))
. (2.25)
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Figure 2.3 plots for stopping time τ w.r.t. initial reserve x0 and time t. From the left plot,
the curve will be a nearly straight line when x is large enough, because the production rate
will converge to a positive constant as x→∞. The right plot demonstrates the relationship
of production rate and time t given different level of x0 = 10, 20, 30, which leads to the
stopping time to be around τ = 30, 52, 74.
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Figure 2.3: Monopoly: Left: Stopping time vs initial reserve; Right: Remaining reserve given
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In fact, we can observe that d
dtv
′(x(t)) = rv′(x(t)) because v′(x) = −(1−s0)W (−e−1− 2rx

1−s0 ).
This is the so-called Hotelling rule. By the Hotelling rule, the discounted shadow cost at time
t, obtained by inserting x = x(t) into v′(x), will lead to

e−rtv′(x(t)) = v′(x0). (2.26)

Therefore, the present value of the shadow cost, in a monopoly, is constant.

2.3.2 Oligopoly with One Finite-reserve Producer versus Multiple
Infinite Producers

Now turn to the asymmetric-cost oligopolistic game of [Ledvina and Sircar (2012)] in which
there are N > 1 players. In that case, assume production from opponents with asymmetric
costs s1 < s2 < · · · < sN−1 < 1. Assuming s0 as the lowest cost results in the most
complicated calculations. The other cases in which s0 is not the lowest are simpler to handle.
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Since τ is the stopping time for the exhaustible energy producer, when t > τ , the finite-
reserve producer will exit the game. So we can divide the profit function of the infinite-reserve
producers into two parts:

vn(x) = sup
qn(t)≥0

ˆ ∞
0

e−rtqn(t)
1− qn(t)−

N−1∑
i=0,i 6=n

q∗i (t)− sn

 dt

vn(x) = sup
qn(t)≥0

ˆ τ

0
e−rtqn(t)

1− qn(t)−
N−1∑

i=0,i 6=n
q∗i (t)− sn

 dt+
ˆ ∞
τ

e−rtGn dt

= sup
qn(t)≥0

ˆ τ

0
e−rtqn(t)

1− qn(t)−
N−1∑

i=0,i 6=n
q∗i (t)− sn

 dt+ 1
r

e−rτGn,

(2.27)

where Gn is the constant equilibrium profit of player n in a static game among infinite
resource producers.

2.3.3 Static Game

We first discuss the simple static game with no finite-reserve player and N−1 infinite-reserve
players. This case will occur after the finite-reserve player exits the game at t > τ . This static
game involves players with an invariant price function and a constant optimal strategy over
time for each player. This is the static Cournot game. We must solve this to determine the
residual values of the infinite-reserve players.

The profit of player n is

Gn = q∗n

1− q∗n −
N−1∑

i=1;i 6=n
q∗i − sn

 = sup
qn

qn

1− qn −
N−1∑

i=1;i 6=n
q∗i − sn

. (2.28)

By maximizing value Gn with qn, the production rate for player n is

q∗n = max
(

1−∑N−1
i=1;i 6=n q

∗
i − sn

2 , 0
)
, (2.29)

where n = 1, 2, . . . , N − 1.

We present a proposition illustrating the exact number of players.

Proposition 2.3.1. Define ρn := 1+
∑n−1

i=1 si

n
and ρ̄ := min{ρi|i = 2, . . . , N}. In this N − 1-

player game, just n− 1 players are active where n is given by

n = min{i|ρi = ρ̄, i = 2, . . . , N}. (2.30)

Then players 1, 2, . . . , n− 1 are active, and players n, n+ 1, . . . , N − 1 are not.
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Proof. See Proposition 2.1 of [Dasarathy and Sircar (2014)] in absence of player 0.

[Dasarathy and Sircar (2014)] makes the assumption ρN > sN , to ensure that all infinite-
reserve producers are active in the market. With the assumption, there are N − 1 producers
in the game, with production q∗ solving simultaneous linear equations and

q∗n = 1 +∑N−1
i=1 si −Nsn
N

, (2.31)

where we must assume 1+
∑N−1

i=1 si

N
> sn, for all n, in order to ensure that all producers will

be active.

The time-unit profit Gn =
(

1+
∑N−1

i=1 si−Nsn
N

)2
= (q∗n)2. Moreover, the total static produc-

tion is
Q∗ =

N−1∑
i=1

q∗i = N − 1−∑N−1
i=1 si

N
. (2.32)

Example 2.3.1 (A counter-intuitive result of static game). We consider an simple example
of static game. If a two-player static game takes s1 = 0.05, s2 = 0.2, the Nash equilibrium
production strategy in the static game (q∗1, q∗2) = (0.3667, 0.2167) with computation given
in Appendix A.1. We also manually increase the production of player A to be q1 = 0.4 and
obtain the corresponding optimal production for player B, q2 = 0.4.

Performing the similar computation of profits with the setting of q∗1 = 0.3667, q∗2 = 0.2167,
and q1 = 0.4, q2 = 0.2, we compute the profits as in Table 2.1:

B
Strategy q∗2 = 0.2167 q2 = 0.2

A
q∗1 = 0.3667 (0.1344, 0.0469) (0.1406,0.0467)
q1 = 0.4 (0.1333, 0.0397) (0.1400, 0.0400)

Table 2.1: Simple game

We plot the movement from the unconstrained case to the constrained case in Figure 2.4,
which shows that the constraint of q1 = 0.4 will also shift the production of player 2. The
orange and green contours are the profits of players 1 and 2 respectively. If the production
rate of player 2 is not changed, changing player 1’s production rate naturally decreases its
profit, according to Definition 2.3.1 of the Nash Equilibrium. But, Figure 2.4 shows that an
increase of player 1’s production sacrifice player 2’s production and profit. Therefore, this
production constraint benefits player 1.
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Figure 2.4: Movement from the unconstrained case to the constrained case of static game.

Therefore, although the Nash equilibrium is (q∗1, q∗2) = (0.3667, 0.2167), setting q1 = 0.4
returns a larger profit of (0.1400, 0.0400) for player 1 (0.1400 > 0.1344). Hence, a seemingly
counter-intuitive result occurs because a constraint on the strategy of player 1 benefits that
player’s profit. This counter-intuitive conclusion is due to the property of the Nash equilib-
rium. Unlike the single-player optimization problem, the Nash equilibrium may not give the
optimal strategy for any given player but an equilibrium between/among players.

2.3.4 Dynamic Game

To understand the novel result which follows, we quickly revisit and review the work of
[Ledvina and Sircar (2012)]. We discuss the case of dynamic games at 0 < t < τ . The term
“dynamic” denotes that the strategy for each player may change over time. This is because
the finite-reserve player producer at each t < τ , balances varying current and residual values.
We need to consider the production of the finite-reserve producer. The HJB equations for
players n = 0, 1, . . . , N − 1 are

sup
q0≥0

q0

(
1− q0 −

N−1∑
i=1

q∗i − s0 − v′
)

= rv

sup
qn≥0

qn

1− qn −
N−1∑

i=0,i 6=n
q∗i − s0

 = rv + q∗0v
′
n.

(2.33)

However, not all producers will produce energy at all times during the game. The level
of reserve x(t) affect the production of the finite-reserve player, and this production of the
finite-reserve player will affect the production of these opponents. Therefore, we define the
so-called blockading points for the infinite-reserve producers n.



36

Definition 2.3.3. The blockading point of player n is

xnb = inf{x > 0: q∗n(x) = 0}. (2.34)

The blockading time for player n is defined to be

τnb = sup{t > 0: q∗n(x(t)) = 0}. (2.35)

We use Figure 2.5 to explain the blockading points and blockading times. As the reserve
x decreases past xnb , player n starts production and enters the market. Equation (2.4) demon-
strates that the reserve is monotonically decreasing with regard to time t. So the number of
players increases as x(t) passes the blockading points xnb .

Reserve x

Blockading
points 0 xN 1

b xN 2
b xN 3

b xK + 1
b xK

b

# of Players N N 1 N 2 ... K + 1 K

Time t

Blockading
times N 1

b
N 2
b

N 3
b

...

K + 1
b

K
b

Figure 2.5: Picture explaining blockading points and blockading times

Intuitively, if all opponents have blockading points, it should be that x1
b > x2

b > · · · >
xN−1
b because s1 < s2 < · · · < sN−1 by assumption. In other words, producers with higher

costs are more easily excluded. Then, in the interval [xnb , xn−1
b ), there are n−1 active infinite-

reserve producers. Moreover, the production rate of producers would satisfy

q∗0 = 1−∑n−1
i=1 q

∗
i − s0 − v′(x)
2

q∗k =
1−∑n−1

i=0,i 6=k q
∗
i − sk

2 ,

(2.36)
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where k = 1, 2, . . . , n−1, while q∗k = 0 for k = n, n+ 1, . . . , N −1. So, by taking s0 + v′(x) as
the total “cost” for finite-reserve producer and v′(x) as the “shadow cost” of depleting the
reserve, we can easily obtain the production rate for all acting producers in Equation (2.37)

q∗0(x) = 1 +∑n−1
i=1 si − n(s0 + v′(x))

n+ 1

q∗k(x) =
1 + s0 + v′(x) +∑n−1

i=1,i 6=k si − nsk
n+ 1 .

(2.37)

However, if the costs of infinite-reserve producers are low enough, they will not have a
blockading point, as every producer is profitable in all price conditions. Assume that there
are N −K players having blockading points {xN−1

b , xN−2
b , . . . , xKb }. We will provide an exact

formula for K later. By plugging in the q∗n’s, the HJB equation for the finite-reserve producer
will be

rv =
N∑

n=K

1
(n+ 1)2

(
1 +

n−1∑
i=1

si − n(s0 + v′)
)2

1{xnb≤x<xn−1
b } (2.38)

where v(0) = 0, xk−1
b := ∞ and xNb := 0. Indeed, Equation (2.38) is a piecewise differential

equation between two consecutive blockading points [xnb , xn−1
b ], w.r.t. the reserve of the finite-

reserve producers x.

Using Lemma 2.3.1 assuming vNb = 0 leads to Proposition 2.3.2.

Proposition 2.3.2. The solution to Equation (2.38) is

v(x) =
N∑

n=K

a2
n

bn
(1 +W (θn(x− xnb )))21{xnb≤x<xn−1

b } (2.39)

where coefficients an = 1+
∑n−1

i=1 si−ns0
n

, bn = r
(
n+1
n

)2
, θn(x) = βneβn−

bnx
2an and βn = −1 +√

bnv(xn
b

)
an

. The notation an, bn, θn(x), βn are used over this whole chapter. Moreover, since con-
tinuity of v(x) is required at xn−1

b , we must ensure that the terminal condition over [xnb , xn−1
b )

satisfies

v(xn−1
b ) = a2

n

bn
(1 +W (θn(xn−1

b − xnb )))2 (2.40)

for n = N,N, . . . ,K + 1. We can give an explicit solution to v(x) recursively with initial
condition v(xNb ) = 0.

Moreover, by Lemma 2.3.1, we can compute the piecewise derivative for v(x) for every
interval, which is

v′(x) = −
N∑

n=K
anW (θn(x− xnb ))1{xnb≤x<xn−1

b }. (2.41)
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Proof. Over the interval [xnb , xn−1
b ), Equation (2.38) can be transformed into

r(n+ 1)2

n2 v =
(

1 +∑n−1
i=1 si
n

− s0 − v′
)2

. (2.42)

Therefore, taking a = an, b = bn, v0 = v(xnb ) as parametric setting in Lemma 2.3.1 piecewisely
leads to Equation (2.39).

Blockading Points

Now we present the explicit formula for the blockading point xnb for n = K,K+1, . . . , N−1.
By the definition of blockading points in Equation (2.34) and the formula of q∗n−1(x) in
Equation (2.37), we obtain the formula of blockading point,

q∗n−1(xn−1
b ) = 1 + s0 + v′(xn−1

b ) +∑n−2
i=1 si − nsn−1

n
= 0

v′(xn−1
b ) = nsn−1 −

n−2∑
i=1

si − s0 − 1.
(2.43)

Define δn = (n + 1)sn − (1 + s0 + ∑n−1
i=1 si). By taking v′(xn−1

b ) from Equation (2.43), the
condition of existing a blockading point for n is v′(xn−1

b ) = δn−1 > 0, this is because v(x)
must be an increasing function. In other words, the profit function should increase with the
reserve.

As [Ledvina and Sircar (2012)] indicate, intuitively, q∗k(x) is continuous w.r.t. x, because
q∗k adjusts itself with the change of reserve x. Therefore, we require the continuity of derivative
v′(x) = ∑N

n=1 anW (θn(x− xnb ))1{xnb≤x<xn−1
b } in Equation (2.41). This gives

lim
x→xn−1

b
−0
v′(x) = v′(xn−1

b ) = −anW (θn(xn−1
b − xnb )). (2.44)

Equating Equation (2.44) and the v′(x) in Equation (2.43) gives the formula of blockading
points in Proposition 2.3.3.

Proposition 2.3.3. Let K = min{n : δn > 0} and define xK−1
b := ∞ and xNb := 0. Then

the infinite-reserve producers K,K + 1, . . . , N − 1 have blockading points, given by

xN−1
b = 1

µN

(
−1 + δN−1

aN
− log

(
δN−1

aN

))
(2.45)

and for n = N − 1, N − 2, . . . , K + 1,

xn−1
b = xnb + 1

µn

(
log
(
δn
δn−1

)
− (n+ 1)(sn − sn−1)

an

)
. (2.46)
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where we define µn = bn
2an = r

2an

(
n+1
n

)2
.

Moreover, the value function at the blockading points v(xnb ), n = N − 1, N − 2, . . . , K + 1
is

v(xnb ) = 1
r

(sn − s0 − δn)2. (2.47)

which ensure the continuity of v′(x) at xnb . But the second derivative v′′(x) is not necessarily
continuous at xnb .

Proof. See Appendix A.3.

This proposition provides exact formulae for the blockading points. At blockading points
xnb the second derivative v′′(x) is not continuous, intuitively because the production q∗k(x),
which contains the item v′(x) decrease with x, and suddenly stops at zero after x passes xkb .

Optimal Production of Each Player

From the definition of Lambert-W function, v′(x) is a positive and decreasing function. So
the production rate function is

q∗0(x) =
N∑

n=K

nan(1 +W (θn(x− xnb )))
n+ 1 1{xnb≤x<xn−1

b }. (2.48)

From the property of W (θ( · )) ≥ −1, we can easily prove that q∗0(x) ≥ 0. Therefore, we
confirm that the production of the finite-reserve player q∗0(x) must be positive over x ∈ (0,∞),
and q∗0(x) always depends on x and is a closed-loop strategy. The limit

lim
x→0

q∗0(x) = NaN(1 +W (θN(0)))
N + 1 = 0. (2.49)

which that absence of reserve of the finite-reserve producer leads to zero production. More-
over, q∗0(x) is a increasing function. By taking x → ∞, the supremum of production is
q∗0(∞) = 1+

∑k−1
i=1 si−ks0
k+1 . In this case, this game becomes a static game with N players with

the finite-reverse player becoming infinite-reserve.

In fact, the condition on the cost s0 to keep the production q∗0 > 0 in Equation (2.48)
can be relaxed to an > 0. By assumption on ρn where n = 1, 2, . . . , N in Section 2.3.3, we
can easily derive that a1 > a2 > · · · > aN > 0. Therefore, the condition for s0 is equivalent
to

ρN = 1 +∑N−1
i=1 si
N

> s0. (2.50)
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Moreover, this condition on s0 is equivalent to the case in which the finite-reserve producer
must be in the game, which becomes a N -player static game as the reserve x→∞.

Over the interval [xnb , xn−1
b ), we can also derive the closed-loop strategy of production of

opponents by inserting this v′(x) into Equation (2.37),

q∗k(x) = max
(

1 + s0 − anW (θn(x− xnb )) +∑n−1
i=1,i 6=k si − nsk

n+ 1 , 0
)
. (2.51)

where x is in the interval [xnb , xn−1
b ). Over the interval, the relative value of k and n decide

whether player k is blockaded. In particular, when k < n, this production takes positive part
and player k is not blockaded. Otherwise, player k is blockaded and q∗k(x) = 0.

Given the production of each player, we can easily obtain the total optimal production
of opponents and all players over the interval [xnb , xn−1

b ),

Q∗(x) =
N−1∑
i=1

q∗i = (n− 1)(1 + s0 − anW (θn(x− xnb ))− 2∑n−1
i=1 si)

n+ 1

q∗0(x) +Q∗(x) = n− s0 + anW (θn(x− xnb ))−∑n−1
i=1 si

n+ 1 .

(2.52)

where we define Q∗(x) as the total production of all active opponents. Since W (θn(x −
xnb )) increases with x, the production of opponents, q∗k(x), Q∗(x) is decreasing with x, due
to increasing production q∗0(x). In contrast, the total production q∗0(x) + Q∗(x) is overall
increasing. The following Example 2.3.2 gives the visual effects of the production, profit and
blockading points.

Parameter r s0 s1 s2 s3 s4 c p x0

Values 0.05 0.05 0.3 0.32 0.5 0.52 0.1 0.05 5

Table 2.2: Parametric setting of Ex. 2 – 10

Example 2.3.2. In all examples which follow in this chapter, the set of parameters are listed
in Table 2.2. Given the blockading points xnb in Equation (2.45) and Equation (2.46), as well
as the profit function v(x), the production rate of each producer q∗i (x) for i = 0, 1, . . . , 4 are
given in the upper-left plot. The vertical dotted lines are the two blockading points x4

b and
x3
b . In that plot, players 0, 1, 2 hold their production while players 3, 4 stop their production

at x > x3
b ≈ 0.76 and x > x4

b ≈ 0.07 respectively. In other words, the increase of production
q∗0(x) with x expels players 3, 4 from the market.

The profit function is the upper-right plot of Figure 2.6, where we observe that v(x)
increases with x, including the marginal effect. The total production of opponents Q∗ and
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all players q∗0 + Q∗ in Equation (2.39) are also displayed. Q∗ is decreasing with x, because
increases of x squeezes the market share of opponents. But the total production q∗0 + Q∗

increases with x overall. As a result, the lower-right plot addresses the decreasing trend of
energy price. Those results naturally hold because larger x allows the finite-reserve player to
account for a greater market share, and increases the accumulated production.
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Figure 2.6: Production rate of each player (upper-left), profit (upper-right), total production
(lower-left) and price (lower-right) in the game with parameters as in Table 2.2

Blockading Time and Optimal Stopping Time

Given initial reserve x(0) = x0, we compute the remaining reserve x(t) and production rate
q∗(x(t)) at time t. By Equation (2.48), we obtain the ODEdx(t) = −∑N

n=K
nan(1+W (θn(x(t)−xnb )))

n+1 1{xnb≤x<xn−1
b } dt

x(0) = x0.
(2.53)

Solving the ODE leads to the relationship between time t and reserve x as presented in
Proposition 2.3.4.

Proposition 2.3.4. Assume that xlb ≤ x0 < xl−1
b and xmb ≤ x < xm−1

b where m ≤ l. Then
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the relationship between t and x is

t(x;x0) = 2(l − l)
rl

ln
(
v′(xl−1

b )
v′(x0)

)
+

l−1∑
n=m+1

2n
r(n+ 1) ln

(
v′(xn−1

b )
v′(xnb )

)
+ 2m
r(m+ 1) ln

(
v′(x)
v′(xmb )

)
.

(2.54)

Proof. See Appendix A.4.

Equation (2.35) defines the blockading time τ lb as the time at which player l starts oil
production while initial reserve satisfies xmb ≤ x < xm−1

b , over which playersm,m+1, . . . , N−
1 do not yet participate in the market. The blockading times follow from Equation (2.54),

τmb (x0) = 2(l − l)
rl

ln
(
v′(xl−1

b )
v′(x0)

)
+

l−1∑
n=m+1

2n
r(n+ 1) ln

(
v′(xn−1

b )
v′(xnb )

)
(2.55)

where the initial number of players l = m,m+1, . . . , N−1. Without loss of generality, define
τ 0
b (x0) := 0. If we set m = N , we can obtain the stopping time τ bN(x0).

Moreover, we can compute the inverse function of t(x), the remaining reserve at time t,

x(t;x0) = xmb +2am
bm

[
βm + v′(xm−1

b )
am

e
r(m+1)

2m (t−τm−1
b

(x0)) − r(m+ 1)
2m (t− τm−1

b (x0))− ln
(
−v′(xm−1

b )
amβm

)]
(2.56)

where t ∈ [τm−1
b , τmb ) and t− τm−1

b the time remaining after the last blockading point before
x(t;x0). Therefore, based on this result, the production rate at time t will be

q∗0(x(t;x0)) = mam − v′(xm−1
b )e

r(m+1)
2m (t−τm−1

b
)

m+ 1

q∗k(x(t;x0)) = max
1 + s0 + v′(xm−1

b )e
r(m+1)

2m (t−τm−1
b

)/m+∑m−1
i=1,i 6=k si −msk

m+ 1 , 0
. (2.57)

Example 2.3.3. The upper-left plot of Figure 2.7 gives the stopping time τ bN(x). The green
vertical line in the right plot represents the stopping time for τ 3

b (5) and τ 4
b (5). As is shown,

the stopping time τ(x) increases with the initial reserve x, containing a marginal effect. When
x becomes sufficiently large, the slope becomes almost linear because q∗0(∞) is a constant.

The production rate q∗0(x(t)) given initial reserve x0 = 5 is given in the upper-right plot.
The stopping time is approximately t = 34.0. As the reserve x(t) is depleted, the production
rate is decreasing with higher rate. On the other hand, the opponents’ total production rate
Q∗(x(t)) shows an opposite increasing trend. Overall, the total production q∗0(x(t))+Q∗(x(t))
is decreasing. Given the connection between production and price it is not surprising that
the energy price increases with t, as x(t) depletes.
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Figure 2.7: Stopping time (upper-left), production rate (upper-right) and energy price (lower)
in dynamic game, parameters as in Table 2.2

This is also a game-version Hotelling’s rule containing opponents. As Proposition 5.6 of
[Ledvina and Sircar (2012)] indicates, taking d

dtv
′(x(t)) leads to the differential equation

d
dtv

′(x(t)) =
(1

2 + 1
2m

)
rv′(x(t))

where t ∈ [τm−1
b , τmb ). This result shows that the growth rate of profit, 1

2 + 1
2m depends on

the number of players. More players gives an effect of low growth rate of profit. In particular
in the m = 1 (monopoly) case, the rate equals the interest rate.

Using the result with initial reserve x0, the present shadow cost will be

e−rtv′(x(t)) = v′(x0) exp
(
r

2

(
−(m− 1)t+ τm−1

b

m
+

m−1∑
n=l

τnb − τn−1
b

n

))
. (2.58)
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Profits of Opponents

We finished the discussion on the finite-reserve producer. Now consider the value function
of player k, vk(x). Recall Equation (2.51) for the closed-loop production rate of player k,

q∗k(x) =


1+s0−anW (θn(x−xnb ))+

∑n−1
i=1,i 6=k si−nsk

n+1 when n ≥ k

0 Otherwise.
(2.59)

Inserting this q∗k into the HJB Equation (2.33) leads to Proposition 2.3.5:

Proposition 2.3.5. The profit function of player k is a piecewise function over interval
[xnb , xn−1

b )

vk(x) =


An(x)vk(xnb ) when n < k

An(x)vk(xnb ) + c2
k,n

r
(1− An(x))− 4anck,nn

r(n−1)(n+1)(W (θn(x− xnb ))− βnAn(x))
− na2

n

r(n+1)2 (W 2(θn(x− xnb ))− β2
nAn(x)) when n ≥ k,

(2.60)

where An(x) :=
(
W (θn(x−xnb ))

βn

) 2n
n+1 , ck,n := 1+

∑n−1
i=0 si

n+1 − sk and the initial condition is vk(0) =
1
r
Gk, given n = N,N − 1, . . . , K.

Proof. See Appendix A.5.

Example 2.3.4. For each player, the plots of profits given x ∈ [0, 3] are presented in
Figure 2.8. All of the accumulated profits decrease with the initial reserve x of the finite-
reserve player. But the decreasing trends of players 1 and 2 with lower costs are almost
linear but not exponential and have higher profits (from 1.04 to 0.88 for player 1, and from
0.87 to 0.73 for player 2), because they are active in the game for arbitrary value of x. In
comparison, players 3 and 4 with higher costs has an exponentially decreasing trend when
they are expelled from the market (x > 0.76 for player 3, and x > 0.07 for player 4).

2.4 Oligopolistic Game with Constrained Production
on the Finite-reserve Producer

In this section, we extend the work of [Ledvina and Sircar (2012)] to include upper and
lower production constraints. [Simaan and Takayama (1978)] consider a duopoly model in
which each firm has a maximum capacity. They compute some structural properties of the
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Figure 2.8: Profit function for Opponents, parameters as in Table 2.2

solution without computing it exactly. In this sense similarly, [Benchekrown (2003)], in a
duopoly sharing the same renewable resource, find production restrictions result in appar-
ently counter-intuitive behavior.

We introduce similar constant production constraints and find a similar counter-intuitive
result in what follows. Additional computations from these results are also included to build
intuition of how our production bounds work.

2.4.1 Limited Production for Finite-reserve producer

In this section, we consider the maximal production limit. The finite-reserve producer may
encounter a case in which oil production amount is restricted. This case is possible because
organizations such as OPEC may make an agreement on production reduction, or extractors
have physical limitations. There may also be geological production constraints.

Assume that the maximal production for the finite-reserve producer is a constant c. In
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this case, the profit function in Equation (2.5) changes to

vc,0(x) = sup
0≤qc,0(t)≤c

ˆ τ

0
e−rtqc,0(t)

(
1− qc,0(t)−

N−1∑
i=1

q∗c,i(t)− s0

)
dt. (2.61)

And the HJB Equation (2.33) will become

sup
0≤qc,0≤c

qc,0

(
1− qc,0 −

N−1∑
i=1

q∗c,i − s0 − v′c,0

)
= rvc,0. (2.62)

We discuss Equation (2.62) in detail. In the last part of Section 2.3.4, we have derived
the maximal production q∗0(∞) of finite-reserve producer. So if q∗0(∞) ≤ c, the constraint
will not bind. But for q∗0(∞) > c, the production will be limited at least some of the time.
We define the constraint-touching point xc to be the point at q∗0(xc) = c. Then the bounded
closed-loop strategy of production rate will be

q∗c,0(x) =

q
∗
0(x) if x ≤ xc

c if x > xc
. (2.63)

Assume that xc is on the interval [xncb , xnc−1
b ), i.e., q∗0(xncb ) ≤ c ≤ q∗0(xnc−1

b ). Over this
interval, players nc, . . . , N − 1 are blockaded. By Equation (2.48), the expression of xc is

xc = xncb −
2anc
bnc

[
ln
(

1
βnc

(
−1 + (nc + 1)c

ncanc

))
− 1 + (nc + 1)c

ncanc
− βnc

]
(2.64)

The production of opponents are already computed in Equation (2.51). Therefore, with
the upper bound of player 0, the closed-loop production of player k becomes

q∗c,k(x) =


q∗k(x) when x ≤ xc

max
(

1−c+
∑nc−1

i=1,i 6=k si−(nc−1)sk
nc

, 0
)

when x > xc
. (2.65)

The lower part (i.e., x > xc) indicates that the number of players are nc, where players
nc, . . . , N − 1 are blockaded out.

Summing production of opponents results in the HJB equation for the finite-reserve
player,

rvc,0 =


∑N
n=nc

1
(n+1)2

(
1 +∑n−1

i=1 si − n(s0 + v′c,0)
)2
1{xnb≤x<xn−1

b } when x ≤ xc

c
(

1−c+
∑nc−1

i=1 si−ncs0
nc

− v′c,0
)

when x > xc.
(2.66)
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Therefore, if x > xc, the HJB equation for the producer is a first-order linear ODE. To
simplify, we define ac = 1−c+

∑nc−1
i=1 si−ncs0
nc

. So the solution to Equation (2.66) is

vc,0(x) =


v(x) when x ≤ xc

e−
r(x−xc)

c v(xc) + c
r
ac

(
1− e−

r(x−xc)
c

)
when x > xc

(2.67)

Figure 2.9 can explain the effect of the limited-production bound. When x ≤ xc, the
constraint is inactive and production is identical to unconstrained case. And the blockading
points xnb for n = N,N − 1, . . . , nc are effective. But when x > xc, the number of players
stays at nc, and blockading points larger than xc no longer play a role.

Reserve x
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points 0 xN 1

b xN 2
b xnc

b xc xnc 1
b

# of Players N N 1 . . . nc nc, active constraint

Time t

Blockading
times N

b
N 1
b . . . nc 1

b

Figure 2.9: Picture explaining blockading points and times in the case of limited production

Example 2.4.1. The upper-left plot of Figure 2.10 presents production rates of the finite-
reserve player q∗c (x) and the opponents Q∗c(x), where we set the limit c = 0.15. Corresponding
to the upper limit, the red vertical line is the constraint-touching point xc ≈ 1.3. When
x ≤ xc, the production is identical to the unconstrained case. In contrast, when x > xc, this
constraint is active hence the production q∗c and Q∗c are constants. Moreover, this maximal-
production constraint sets a lower bound of the price at P0(q∗c +Q∗c) = 0.490.

The lower-left plot gives the profit function vc,0(x), and the lower-right plot compares
profits between constrained and unconstrained cases by taking the difference v(x) − vc(x).
When x > xc, the curve is bent upwards and indicates v0(x) > vc,0(x). Therefore, the
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Figure 2.10: Production (upper-left), energy price (upper-right), profit (lower-left) and profit
difference (lower-right) for the limited-production constraint, parameters as in Table 2.2

upper constraint has the effect of reducing profits. This result appears trivial because the
production bound directly reduces the profit. However, the stopping time is extended due
to the maximal-production bound. Therefore, strictly speaking, the effect of the maximal-
production bound on lowering profit per time unit is larger than the effect of extending the
production time.

Remaining Reserve and Stopping Time

Assume that the initial reserve is x0. From the production rate in Equation (2.63), we can
easily conclude that the remaining reserve xc(t) is

xc(t;x0) =


x(t;x0) when x0 ≤ xc

x0 − ct when x0 > xc and 0 ≤ t < x0−xc
c

x
(
t− x0−xc

c
;xc

)
when x0 > xc and t ≥ x0−xc

c

(2.68)

where x(t;x0) is given in Equation (2.56). Moreover, we define the time x0−xc
c

to be the
constraint-touching time. As t passes this constraint-touching time, the constraint stops
binding and production of each player is identical to that from the unconstrained case.
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Inserting xc(t;x0) into q∗c (x), we obtain the production rate at time t,

q∗c (xc(t;x0)) =


q∗(t;x0) when x0 ≤ xc

c when x0 > xc and 0 ≤ t < x0−xc
c

q∗
(
t− x0−xc

c

)
when x0 > xc and t ≥ x0−xc

c

. (2.69)

with the associated stopping time,

τc(x0) =

τ
b
N(x0) when x0 ≤ xc
x0−xc
c

+ τ bN(xc) when x0 > xc
(2.70)

where τ bN is given in Section 2.3.4.

Example 2.4.2. The upper-left plot of Figure 2.11 gives stopping time τ bN(x) versus initial
reserve x. We set the limited production rate to be c = 0.15. The constraint-touching point
xc, as the red vertical line indicates, addresses that production rate when x > xc is a constant
hence the slope is a strictly constant. Moreover, compared to the stopping time in Figure 2.7,
the constraint naturally extend the stopping due to lower production when x > xc.

The production rate q∗0(x(t)) given initial reserve x0 = 5 versus t are given in the upper-
right plot. The production rate of all players are constant initially, because the constraint
is active. After the time touches x0−xc

c
and the reserve falls below the constraint-touching

point xc, the constraint stops binding. So when t > x0−xc
c

, the production will be complete
at the same time as unconstrained case. At the stopping time t = 40.6, the finite-reserve
player stops. For total production of opponents, Q∗c , this constraint allows them to have the
minimal production rate. But the total production of all players, q∗c +Q∗c is constrained. As
a result, as the energy price in the lower plot indicates, the constraint sets the lower price
bound until x0−xc

c
.

Comparison of Profits of Opponents

In order to compute the profits of opponents of player k, we list the ODEs for opponents
depending on the constraint-touching point xc, in a similar fashion as done in Section 2.4.1.rvc,k(x) + q∗0(x)v′c,k(x) = (q∗k(x))2 when 0 < x ≤ xc

vc,k(x) + cv′c,k(x) = u2
c,k when x > xc.

(2.71)

where uc,k = max
(

1−c+
∑nc−1

i=1 si

nc
− sk, 0

)
is a constant. When x ≤ xc, the ODE is identical to

the unconstrained case in Section 2.3.4. The constraint is active so q∗c = c when x > xc. To
be more specific, Proposition 2.4.1 gives the exact solution.
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Figure 2.11: Stopping time (upper-left), production rate (upper-right) and energy price
(lower) in the limited-production case

Proposition 2.4.1. The profit function of player k with the limited-production boundary is

vk(x) =



An(x)vk(xnb ) when n < k, x ≤ xc

An(x)vk(xnb ) + c2
k,n

r
(1− An(x))− 4anck,nn

r(n−1)(n+1)(W (θn(x− xnb ))− βnAn(x))
− na2

n

r(n+1)2 (W 2(θn(x− xnb ))− β2
nAn(x)) when n ≥ k, x ≤ xc

exp
(
r(x−xc)

c

)
v(xc) + u2

c,k

r

(
1− exp

(
r(x−xc)

c

))
when x > xc.

(2.72)

where the parametric setting follows Proposition 2.3.5.

Proof. Over the interval x ≤ xc, the solution is identical to Proposition 2.3.5. When x > xc,
the ODE is a constant-coefficient first-order ODE.

Example 2.4.3. To make a explicit comparison of profits to Figure 2.8, the difference of
profits are shown in Figure 2.12. The three plots shows that the upper bound on the finite-
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reserve producer affects the profits of opponents in different ways. The profits of lower-cost
players 1 and 2 decrease. In contrast, players 3 and 4 benefit from player 0’s upper production
bound. But overall, the lower plot indicates that this production bound does not benefit the
whole market, as total profit v +∑4

k=1 vk > vc +∑4
k=1 vc,k.
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Figure 2.12: Difference of profits of low-cost opponents (upper-left), high-cost opponents
(upper-right) and all players (lower) in the limited-production case

In fact, the upper bound on production of the finite-reserve player has two impacts
on opponents: prolonged stopping time resulting in longer non-maximal production, and
increased production with large reserve leading to more profits per time unit. Players 1 and
2 already have sufficiently large productions owing to their lower cost of production. Hence
their negative effect of the prolonged stopping time overwhelms the positive effect of increased
production. In contrast, this effect is opposite for higher-cost opponents 3 and 4. The high-
cost opponents account for only a tiny share of the market. The limited production of q∗c
allows them to profit more because the positive effect of increased production overwhelms
the negative prolonged stopping time.
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2.4.2 Minimal Profit for Finite-reserve producer

In this section, we consider an entity which must maintain sufficient production to keep
running. For example, an energy company may need to ensure a minimal profit per time
unit for fixed consumption. A country whose economy mostly depends on oil exports, may
also need to keep a level of oil production rate to maintain its economy.

Assume that p is the required minimal profit per time unit. Then by Equation (2.5), the
producer must ensure that the profit satisfies:

qp,0

(
1− qp,0 −

N−1∑
i=1

q∗p,i − s0

)
≥ p. (2.73)

Proposition 2.4.2. The minimal profit constraint in Equation (2.73) is equivalent to setting
a minimal close-loop production strategy as

q∗p,0(x) =


npanp−

√
n2
pa

2
np−4pnp

2 when x ≤ xp

q∗0(x) when x > xp
, (2.74)

where we similarly define xp to be the constraint-touching point with regard to minimal-
production case. The expression of xp is

xp = x
np
b −

2anp
bnp

[
ln
(

1
βnp

(
−1 +

(np + 1)q∗p,0
npanp

))
− 1 +

(np + 1)q∗p,0
npanp

− βnp
]
, (2.75)

where np is the number of total players when the constraint is active. In order to find np,
the number of total players, we can test the condition np = #{k : q∗k > 0} + 1 by trying
np = 1, 2, . . . , N .

Proof. See Appendix A.6.

Define the constant production of the finite-reserve player, cp = npanp−
√
n2
pa

2
np
−4pnp

2 when
the constraint is active. The value function of the finite-reserve player becomes

vp,0(x) = sup
q0>cp

ˆ τ

0
e−rtqp,0(t)

(
1− qp,0(t)−

N−1∑
i=1

q∗p,i(t)− s0

)
dt. (2.76)

Given xp and np in Proposition 2.4.2, we can compute closed-loop production of opponent
k,

q∗p,k(x) =


max

(
1−cp+

∑np−1
i=1 si

np
− sk, 0

)
when x ≤ xp

q∗k(x) when x > xp

(2.77)
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Therefore, summing the production of opponents from Equation (2.77) and inserting into
Equation (2.62) results in the following HJB equation:

rvp,0 =


q∗p,0

(
1−q∗p,0+

∑np−1
i=1 si−nps0

np
− v′p,0

)
when 0 ≤ x ≤ xp∑N

n=np
1

(n+1)2

(
1 +∑n−1

i=1 si − n(s0 + v′p,0)
)2
1{xnb≤x<xn−1

b } when x > xp
. (2.78)

Therefore, if x ≤ xp, the HJB equation for the producer is a first-order linear ODE. For
simplicity, we define ap = 1−cp+

∑np−1
i=1 si−nps0
np

. So the solution to Equation (2.78) is

vp,0(x) =



cp
r
ap
(
1− e−

rx
cp

)
when x ≤ xp

a2
np

bnp
(1 +W (θnp(x− xp)))2 when xp < x ≤ x

np+1
b∑N

n=np+1
a2
n

bn
(1 +W (θn(x− xnb )))21{xnb≤x<xn−1

b } when x > x
np+1
b

(2.79)

where θnp(x) = βnpe
βnp−

bnpx

2anp and βnp = −1 +
√
bnpvp,0(xp)
anp

.

Figure 2.13 can explain the effect of the limited-production bound. In contrast to the
case of limited-production boundary, when x > xp, the constraint is inactive and production
is identical to unconstrained cases. And the blockading points xnb for n = np, np + 1, . . . , K
are effective. But when x ≤ xp, the number of players stays at np, and blockading points less
than xp are not effective.

Reserve x

Blockading
points 0 xnp

b xp xnp 1
b xK + 1

b xK
b

# of Players np, active constraint np ... K + 1 K

Time t

Blockading
times np 1

b

...

K + 1
b

K
b

Figure 2.13: Picture showing blockading points and times in the case of minimal-profit con-
straint



54

Example 2.4.4. The upper-left plot of Figure 2.14 shows the production rates of the finite-
reserve player q∗p(x) and the opponents Q∗p(x), where the minimal profit is p = 0.05. The red
vertical dotted line is the constraint-touching point xp ≈ 0.62. When x < xp, the constraint
is active and the production rate q∗p(x) ≈ 0.12. When x > xp, the constraint does not play a
role hence q∗p(x) and q∗0(x) become equal. On the contrary, the total production of opponents
has a upper bound, because of this constraint. And the total production of all players, q∗p+Q∗p,
has a similar trend as q∗p. Therefore, as the upper-right plot indicates, the energy price has an
upper-bound of approximately 0.503. Moreover, there is only one green line x3

b in each plot
of Figure 2.14, which demonstrates that the player 4 with the highest cost never participates
in the game until the player 0 depletes its own reserves.
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Figure 2.14: Production (upper-left), energy price (upper-right), profit (lower-left) and dif-
ference of profit (lower-right) in the minimal-profit case, parameters as in Table 2.2

The lower-left plot of Figure 2.14 gives the profit function vp,0(x). And the lower-right
plot compares the constrained and unconstrained cases, represented by the difference v0(x)−
vp,0(x) are presented in the upper-right and lower plots. The difference v(x)− vp(x) < 0 over
the whole [0,∞) excludes the initial region, which means v(x) < vp,0(x). This result indi-
cates that the profit vp,0(x) in the Nash equilibrium with minimal profit constraint is higher
than v(x) without the constraint. The result also appears counter-intuitive as discussed in
Example 2.3.1.
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For a simple optimization problem with a single decision maker operating outside a
game setting, unconstrained control cannot perform worse than the constrained control.
Otherwise, the decision maker would change the control accordingly. But a game using the
Nash equilibrium does not give a strategy with the highest profit. The effect of this lower
bound of production ensure the profit per time unit of the finite-reserve player, but makes
an earlier stopping time. As a result, the higher profit per time unit overwhelms the harm
of shorter earning time.

Remaining Reserve and Stopping Time

We can also give the remaining reserve x(t) based on the result in Section 2.3.4 for this case.
For initial reserve x0, the remaining reserve is

xq(t;x0) =


x(t;x0) when 0 ≤ t < t(xp) and x0 > xp

x(t(xp);x0)− cp(t− t(xp)) when t(xp) ≤ t < t(xp) + xp
cp

and x0 > xp

x0 − q∗p,0(t− t(xp)) when 0 ≤ x0 ≤ xp

.

(2.80)

We define the time t(xp) to be the constraint-touching time of the minimal-profit bound.
When t < t(xp), the bound is not active and q∗p(x(t)) = q∗0(x(t)). When t ≥ t(xp), the
production bound binds and q∗p(x(t)) reaches the constraint.

Then, we can easily compute the rate of production at time t.

q∗p,0(xq(t;x0)) =

q(x(t;x0)) when 0 ≤ t < t(xp) and x0 > xp

cp Otherwise
. (2.81)

Moreover, the stopping time τp(x0) will be

τp(x0) =


x0
cp

when 0 ≤ x0 < xp

t(xp;x0) + xp
q∗p,0

when x0 ≥ xp
. (2.82)

Example 2.4.5. The upper-left plot of Figure 2.15 gives stopping time τp(x). When x < xp,
the constraint of minimal profit is active, hence the stopping time increases linearly with
a constant production rate q∗p,0. And when x ≥ xp, the production rates are the same for
constrained and unconstrained cases.

The upper-right plot shows the production rate q∗0(x(t)) given initial reserve x0 = 5. At
first, the constraint makes no difference. The red vertical line t(xp;x0) = 23 is the constraint-
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touching time. On the approximate interval 23 < t < 29, the production rate become a
constant 0.11 to achieve a minimal profit of p = 0.05. When t ≈ 29, the reserve is completely
depleted hence the finite-reserve producer exits the market and the production rate falls to
0. On the contrary, the production of opponents Q∗p jumps to 0.49.

As the result from the production, the lower plot presents the energy price as a function
of t. The curve over t < xp is identical to the unconstrained case. But the energy price remain
constant when the bound is active, and jump to 0.528 after the finite-reserve player depletes
the reserve.
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Figure 2.15: Stopping time (left) and production rate (right) in the minimal-profit case,
parameters as in Table 2.2
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Profits of Opponents

The computation of the profits of opponents in the minimal-profit case is similar to the
limited-production case. We need to list the ODEs for opponents depending on the constraint-
touching point xp. vp,k(x) + cpv

′
p,k(x) = l2p,k when 0 < x ≤ xp

rvp,k(x) + q∗0(x)v′p,k(x) = (q∗k(x))2 when x > xp
. (2.83)

where lp,k = max
(

1−cp+
∑np−1

i=1 si

np
− sk, 0

)
is a constant. When x ≤ xp, the constraint is active

and q∗p = cp. When x > xp, the constraint is not active hence the ODE is the same as
Section 2.3.4, except for the initial conditions. Proposition 2.3.5 gives the exact solution to
the ODE.

Proposition 2.4.3. The profit function of player k with minimal-profit boundary is

vk(x) =



exp
(
− rx
cp

)
+ l2p,k

r

(
1− exp

(
− rx
cp

))
when 0 ≤ x ≤ xp

Ap(x)vk(xp) when np < k, xp < x ≤ xnp−1

Ap(x)vk(xp) +
c2
k,np

r
(1− Ap(x))− 4anpck,npnp

r(np−1)(np+1)(W (θn(x− xnpb ))−W (θnp(xp − xnb ))Ap(x))
− npa2

np

r(np+1)2 (W 2(θnp(x− x
np
b ))−W 2(θnp(xp − xnb ))Anp(x)) when np ≥ k, xp < x ≤ xnp−1

An(x)vk(xnb ) when n < k, x > xnp−1

An(x)vk(xnb ) + c2
k,n

r
(1− An(x))− 4anck,nn

r(n−1)(n+1)(W (θn(x− xnb ))− βnAn(x))
− na2

n

r(n+1)2 (W 2(θn(x− xnb ))− β2
nAn(x)) when n ≥ k, x > xnp−1,

(2.84)

where Ap(x) =
(
W (θnp (x−xnb ))
W (θnp (xp−xnb ))

) 2np
np+1

, and other parametric setting follows Proposition 2.3.5.

Proof. When x ≤ xp, the ODE is a constant-coefficient first-order ODE. When x > xp, the
solving process is identical to the unconstrained case except that the initial condition is xp
but not the blockading points over the interval xp < x < xnp−1.

Example 2.4.6. To make an explicit comparison of profits to Figure 2.8, the profit difference
of low-cost, high-cost opponents and all players are shown in Figure 2.16. The three plots
show that the upper bound on the finite-reserve producer affects the profits of opponents
in different ways. The profits of lower-cost players 1 and 2 decreases. In contrast, players 3
and 4 benefit from the minimal-profit production bound. But the whole market depends on
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the initial reserve x. Setting this minimal-profit bound, as lower plot of Figure 2.16 presents,
increases (resp. decreases) the total profit when x is high (resp. low).
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Figure 2.16: Difference of profits of high-cost opponents (upper-left), low-cost opponents
(upper-right) and all players (lower) in the minimal-profit case, parameter as in Table 2.2

In contrast to Section 2.4.1, the lower bound on production of the finite-reserve player has
two impacts on opponents: reduced stopping time resulting in shorter production period, and
decreased production given small reserve leading to less profits per time unit. Players 1 and
2 already have sufficiently large productions owing to lower cost of production. Therefore,
the decreased amount of production when the constraint is active has limited impact. In
contrast, for players 3 and 4, who already account for only a tiny share of the market, the
impact of their decreased production outweighs the earlier stopping time.

Similar to Example 2.3.1, we also obtain a counter-intuitive result the player 0 manually
lifting the production and obtaining a higher profit. Via the analysis of the profits of oppo-
nents, the manual increase in the production has different direction impact on opponents.
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But as a whole, since the lower-cost opponents take advantages over those with higher costs,
who possess a much larger market share, the overall effect benefits the finite-reserve player.

2.4.3 Price comparison
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Figure 2.17: Comparison of prices over time in difference cases, parameter as in Table 2.2

The price for the unconstrained, upper-bound and lower-bound cases is available in Fig-
ure 2.17. Compared to the unconstrained case (blue curve), the upper bound (orange curve)
is initially higher (t < 18), then presenting a parallel trend of price movement when the
constraint does not bind (t > 25).

In contrast, the lower bound (green curve) follows identical price path when this profit
constraint does not bind (t < 23), and presents a lower price between 23 < t < 29. All of
those price curves eventually lead to the same price of 0.53 as t passes the stopping times of
τ = 34.0, 40.6, 28.9, at which x depletes in the unconstrained, upper-bound and lower-bound
cases, respectively.

2.5 Conclusion

In this chapter, we construct a type of differential game models between a finite-reserve player
and multiple infinite-reserve players. We focus on the relationship between the production
rate q∗i and the profit vi(x) for player i w.r.t. the oil reserve x of the finite-reserve player.

Theoretically, a higher initial oil reserve x lifts the production rate of the finite-reserve
player q∗0(x) and the profit v0(x) up with marginal effect because higher reserve enables the
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Stopping
Time

Player 0 The High-cost The Low-cost All Players

Unconstrained
Production

34.0 – – – –

Limited Produc-
tion

40.6 ↓ ↓ ↑ ↓

Minimal Profit 28.9 ↑ ↑ ↓ Depending on x

Table 2.3: Summary of constraints on production to profits of players

finite-reserve player to produce more crude oil. But the finite-reserve player cannot increase
production rate q∗0 without limit due to potential loss of profit from the effect of price model
P (Q) from a higher total production Q. On the other hand, the opponents have to decrease
their production rate q∗i for i ≥ 1 because their market shares are squeezed by the finite-
reserve producer.

We also manually set the cases of limited production and minimal profit for the finite-
reserve producer, represented by the upper and lower production bounds. The upper and
lower production bounds have opposite effects on the profits of different types of players,
as Table 2.1 indicates. The upper (lower) bound increase (decrease) the profits of low-cost
players and decrease (increase) the profit of the high-costs. The reason behind this result is
due to the aggregated effect of profits and losses of changed production and stopping time.

Minimal-profit constraints on the finite-reserve producers help high-cost producers when
they are blockaded out at high x because they are hurt by decreased market price when they
are blockaded out, but are benefited by earlier exit of the finite firm. It hurts low-cost firms
when they are not blockaded out. The reader may consider the impact of this game theoretic
insight on the understanding of the world oil market.



Chapter 3

Asymmetric-cost Differential-game
Model with Stochastic Profit in
Energy Market

3.1 Introduction

In this chapter, we constructed a continuous-time, stochastic differential energy market game
which includes a finite-reserve player and multiple infinite-reserve players. The study in this
chapter is derived using the asymmetric-cost game from [Ledvina and Sircar (2012)] and
stochastic profit factor from [Brown et al. (2017)]. Each player aims to maximize the accu-
mulated profit affected by a stochastic factor Y (t) which follows a GBM process. A Nash
equilibrium setting provides a HJB representation for the problem. A similarity method
transforms this PDE into a very interesting 2nd-order nonlinear ODE with internal moving
boundaries and internal singularities, between which the interactions lead to numerical chal-
lenges. This system will require future study beyond the analysis in this thesis. We use the
method of dominant balance, to obtain an asympotic Puiseux series solution to the ODE
applicable near the initial value and extend the solution using a finite difference method.
With the resulting approximate solution, we design the Nash equilibrium strategy for each
player and perform the Monte-Carlo simulation of these production strategies to provide
intuition.

This chapter can be read in two different ways. Those interested in the energy finance
application can focus on the problem in Section 3.2 and Section 3.3, which gives the con-
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struction of the price model and derivation process of the ODE. Others, who may wish to
dig right into the mathematical challenges posed by the singular ODE problem arising, can
start in Section 3.4, which provides our mathematical approach to solving this problem.
Both classes of reader are united in Section 3.5 where the numerical solution obtained in
Section 3.3 is unpacked to give some economic insight. Finally, Section 3.6 concludes with a
summary. We made the following contributions in this chapter:

• We construct a type of stochastic differential game model with a stochastic factor Y (t)
and obtain an interesting ODE using a similarity method.

• We used the dominant balance method to obtain a solution to the ODE on the interval
[0, ξ0], and extend the solution over [0,∞) using finite difference method.

• We develop numerical techniques in order to properly treat the singularities.

• We analyze the effect of the stochastic factor Y (t) and the level of reserve X(t) on the
profit of the finite-reserve player and production of each player.

3.2 Mathematical Assumption

3.2.1 Stochastic Profit Model

Recall the deterministic linear price model in Section 2.2, proposed by Equation (5) of
[Ledvina and Sircar (2012)] and Equation (1) of [Constantinides et al. (1981)],

P (Q) = M − αQtotal, (3.1)

whereM and α are measured in dollar/barrel and dollar*day/barrel2 respectively, and Qtotal

is the actual total production measured in barrels/day. This linear model is useful to con-
struct the relationship between production and price, given a constant demand. However,
this model has its limits. For example, extremely large production leads to an improbable
negative price. Therefore, we only consider the positive part of this price model.

With this price model, the economic notation of “contribution margin”, proposed by
Equation (1) of [Kim (1973)], is the profit from selling a single item (barrel), which is the
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price minus unit cost of production in the absence of fixed cost∗

Π(Qtotal) = P (Qtotal)− S = M − αQtotal − S (3.2)

where S < M is the actual cost of production measured in dollar/barrel.

In order to simplify the price model, we nondimensionalize it by dividing both sides by
M and obtaining

P0(qtotal) = P (Qtotal)
M

= 1− qtotal (3.3)

where qtotal = α
M
Qtotal, as Equation (26) of [Ledvina and Sircar (2012)] indicates†. This

nondimensionalized price in Equation (3.3) implies that the highest possible price, at zero
market production, is 1. This is called the “choke price”.

We similarly obtain a simple bilinear nondimensionalized contribution margin that de-
pends on the total market production q

π(qtotal; s) = Π(Qtotal)
M

= 1− s− qtotal. (3.4)

Here s < 1 is the nondimensionalized cost of production with s = S
M
.

Following the setting of Section 3.4 of [Brown et al. (2017)]‡, we introduce a stochastic
index, Y (t) into the linear model. This model is fruitful and tractable, as well as plausible,
as we shall see. In our setting, we take Y (t) to be a driver of the economy, such as demand
for energy, which affects both the price and cost of production. Increased profit, which is
price minus cost, also drive up the total production Qtotal, upon which game results depend.
In fact, increased demand for an item generally leads to proportional increase demand for
materials and equipment used to make this item, in turn leading to proportional increase
of those costs. A related work supporting this conclusion is [Akinyemi et al. (2012)], which
states that the global finance environment affects both the price and the cost of production.
The figure “Cost by year for 2014 well parameters” available from [EIA (2016)], along with
Figure 3.1, depicts a parallel movement of cost of oil drilling per well and WTI oil price over
2006 – 2015.

∗The contribution margin is computed as the selling price per unit, minus the variable cost per unit. Also
known as dollar contribution per unit, the measure indicates how a particular product contributes to the
overall profit of the company. Link: https://www.investopedia.com/terms/c/contributionmargin.asp

†Equation (26) of [Ledvina and Sircar (2012)] also proposed this nondimensionized model, further sim-
plifying it by manually setting M = α = 1.

‡Section 3.4 of [Brown et al. (2017)] uses P (qtotal, Y ) = Y − qtotal without considering the cost of produc-
tion.



64

Unfortunately the report only provides the plot of cost without explicit data. Therefore
we can only compare and describe the plots visually. Before 2008, the cost and WTI price
increased and experienced a sharp decrease between 2008 and 2009, when financial crisis
happened. The cost peaked in 2012 after continuous increases and fell from 2012 – 2015. In
contrast, the WTI price also experienced an increasing trend from 2009, peaked in 2013 and
decreased sharply after that. Therefore, this data suggests that the oil cost and price share
a parallel trend.
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Figure 3.1: WTI oil price over 2006 – 2015.

Therefore, the nondimensionalized contribution margin is

π(qtotal, Y (t); s) = Y (t)(1− s)− qtotal, (3.5)

where we assume the dynamics of Y (t) is stochastic time-homogeneous (i.e., dynamics of
Y (t) is independent of time),

dY (t) = µ(Y (t)) dt+ σ(Y (t)) dZ(t). (3.6)

We assume the drift µ(y) and volatility σ(y) are both time-homogeneous. We also assume
Y (t) to be a positive stochastic process since the demand, in practice, should be a positive
value.

The model in Equation (3.5) represents a situation in which marginal contribution of
each barrel of crude oil is determined by the general economic state Y (t). Increased total
production brings the overall price down, so the “sales” follows Y (t) − qtotal. The cost of
production also scales with the general economic state Y (t), for a total nondimensionalized
production function.

Y (t)(1− s)− q = Y (t)︸ ︷︷ ︸
economic index

− q︸︷︷︸
simplified production

− Y (t)s︸ ︷︷ ︸
nondimensionalized cost

. (3.7)
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As we already indicated, the price model is a nondimensionalized model, and Y (t) is an
index of economic driver and does not include a unit. Instead, multiplying M on both sides
can return Equation (3.5) to original contribution margin,

Π(Qtotal) = MY (t)︸ ︷︷ ︸
demand

−SY (t)︸ ︷︷ ︸
cost

−αQtotal. (3.8)

where MY (t), SY (t) are the practical level of demand, and real production cost, measured
in dollar/barrel. Therefore, if we use the nondimensionalized model to constitute a objective
function, this is equivalent to using the original model because the only difference is the
division of coefficient M . The price model is

P (Qtotal) = MY (t)− αQtotal. (3.9)

where we omit the variable cost SY (t). This price model perhaps breaks the mean-reverting
property of crude oil stated by [Schwartz (1997)], if Y (t) is not a mean-reverting process.
However, [Meade (2010)] proposes that mean-reversion model has ceased to be an suitable
model for oil price since 2004.

With the nondimensionalized contribution margin π(q, Y (t); s), the actual stochastic
profit of a producer with production q is the product of contribution margin and production,

qπ(qtotal, Y (t); s) = q(Y (t)(1− s)− qtotal). (3.10)

In the next sections, we would use this nondimensionalized stochastic profit model as Equa-
tion (3.10) for simplicity.

3.2.2 Construction of the Game Model

In this section, we refer to the setting of [Tsur and Zemel (2003)], [Lafforgue (2008)] and
[Ledvina and Sircar (2012)] to construct reserve dynamics for energy resources. Assume the
finite producer, labelled by player 0, has initial reserve X(0) = x, and that this reserve X(t)
depletes as follows:

dX(t) = −q0(t)1{X(t)>0} dt (3.11)

where q0(t) ≥ 0 is the production rate at which the finite producer extracts the resource.

Assume there are N − 1 opponents in the game with infinite reserve, each having an
infinite-reserve labelled by player i, where i = 1, 2, . . . , N − 1. For those opponents, we let
qi(t), si be the production rates and cost of production of player i. N is the total number
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of producers including the finite-reserve player. Infinite producers do not need differential
equations to describe their reserve because their resources always remain infinite given finite
production rate.

A Nash equilibrium provides the players in the game with a solution, an “optimal” strat-
egy. In Nash equilibrium, players in the game aim to select their optimal strategy, given
that their opponents have selected their own optimal strategies. Definition 3.2.1 gives a
mathematically precise definition.

Definition 3.2.1. Assume there are N players in total. Player i has a control qi ∈ Qi,
where Qi is a set of admissible controls, and a profit function Ji(qi,Q−i), where Q−i =
(q1, . . . , qi−1, qi+1, . . . , qN) are controls of opponents. The Nash equilibrium is the set of con-
trols q = (q∗1, . . . , q∗n) such that

Ji(q∗i ,Q∗−i) ≥ Ji(qi,Q∗−i)

for i = 1, . . . , N and ∀qi ∈ Qi.

The Nash equilibrium in Definition 3.2.1 means that each player will optimize their own
profit function, given the opponents have obtained their own optimal strategies. In other
words, no player can profit more by changing their own strategy unilaterally.

Assume the discount rate agreed by each player is r, and Y (t) is a positive stochastic
process defined on a filtered probability space

(
Ω,F , {Ft}t,P

)
, where {Ft}t is the filtration

generated by Y (t). Then for player i, the discounted profit at time t is the product of quantity
and profit of each unit of energy, as Equation (3.10) indicates,

e−rtqi(t)π
(
N−1∑
i=0

qi(t), Y (t); si
)

= e−rtqi(t)
(
Y (t)(1− si)−

N−1∑
i=0

qi(t)
)
. (3.12)

Hence integrating this leads to player i’s accumulated discounted profit.

We denote E[ · |X(0) = x, Y (0) = y] = Ex,y[ · ]. By Definition 3.2.1, with the profit at
time t, the goal of the finite-reserve producer (player 0) is to find q0(t) by maximizing the
expected accumulated discounted profit given q∗1(t), . . . , q∗n(t) in Equation (3.13),

v(x, y) = sup
q0(t)≥0

Ex,y
[ˆ τ

0
e−rtq0(t)

(
Y (t)(1− s0)− q0(t)−

N−1∑
i=1

q∗i (t)
)

dt
]

(3.13)

while similarly the infinite producer (namely, player n) wants to find qn(t) by Equation (3.14)

vn(x, y) = sup
qn(t)≥0

Ex,y

ˆ ∞
0

e−rtqn(t)
Y (t)(1− sn)− qn(t)−

N−1∑
i=0,i 6=n

q∗i (t)
 dt

 (3.14)
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where s1 < s2 < · · · < sN−1 is assumed to be the unit costs of production without a loss
of generality. Moreover, the boundary value is v(0, y) = v(x, 0) = 0. Therefore, the domain
is D = R+ × R+ with the boundary {(x, 0) : x > 0} ∪ {(0, y) : y > 0}, using the setting of
Theorem 1.7.3.

X(t), Y (t) is time-invariant, and the integrands except for e−rt in the value function in
Equation (3.13) and Equation (3.14) only include undetermined controls q∗k(t) and Y (t), so
those integrands do not directly depend on time variable t but state variable Y (t). Therefore,
the time-invariant version in Theorem 1.7.3 is applied to generate the corresponding HJB
equation in the following sections.

3.3 Derivation of the Differential Game

3.3.1 Infinite-reserve Producers

We first consider the differential game only involving infinite-reserve players. This is equiv-
alent to assuming the initial reserve of the finite-reserve producer is x = 0 and x = ∞, as
at x = 0, the finite-reserve player stops production (i.e., q0(0, y) = 0, dX(t) = 0) and only
infinite-reserve players remain in the market. At x = ∞, the reserve X(t) of finite-reserve
producer always remain infinite, however large the production q0(X(t), Y (t)). Without loss
of generality, we discuss the case of x = 0. The movement of reserve X(t) no longer plays a
role in this market, as explained in the case of X(t) = X(0) = x = 0 in Appendix B.2.

As a result, there are only N − 1 active players in the game, and the only remaining
variable is Y (t). Using Theorem 1.7.3, the HJB equation for player k is

rvk = sup
qk≥0

qk

y(1− sk)− qk −
N−1∑

i=1,i 6=k
q∗i

+ µ(y) dvk
dy + 1

2σ
2(y) d2vk

dy2 . (3.15)

The solution in qk leads to a second order ODE. By taking the supremum, we can obtain
the production rate for player k

q∗k(y) =
y(1 +∑N−1

i=1,i 6=k si − (N − 1)sk)
N

(3.16)

and the total production rate Q∗(y)

Q∗(y) =
N−1∑
i=1

q∗i (y) = y(N − 1−∑N−1
i=1 si)

N
. (3.17)
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where we make the assumption 1+
∑N−1

i=1,i 6=k si−(N−1)sk
N

> 0 to ensure that all players are active
in the game. Obviously, the production rates only depend on, and are proportional to, the
profit level y. Financially, as the profit level increases, producers will increase the production
to achieve more profit.

Therefore, by inserting the total production rateQ∗(y), the differential equation for player
k will be

rvk = y2w2
k + µ(y) dvk

dy + 1
2σ

2(y) d2vk
dy2 . (3.18)

where wk := 1
N

(
1 +∑N−1

i=1 si −Nsk
)
.

Now we give an example of a SDE for Y (t). Although the base assumption used in the
body of this chapter is to model Y (t) as a Geometric Brownian Motion (GBM), Appendix B.1
provides a generalization to other price processes.

Example 3.3.1. Assume the stochastic profit dynamics follow a GBM,

dY (t) = µY (t) dt+ σY (t) dZ(t). (3.19)

i.e., µ(y) = µy and σ(y) = σy. Using Itô’s lemma of ln Y (t) simply presents the expression
of Y (t)

Y (t) = ye(µ− 1
2σ

2)t+σZ(t). (3.20)

Then the ODE for player k will be

rvk = y2w2
k + µy

dvk
dy + 1

2σ
2y2 d2vk

dy2 . (3.21)

The ansatz vk(y) = αy2 leads to

rαy2 = y2w2
k + 2µαy2 + σ2αy2. (3.22)

Therefore, we can obtain the coefficient α = w2
k

r−2µ−σ2 and the total profit is

vk(y) = w2
ky

2

r − 2µ− σ2 . (3.23)

This solution tells that the total profit is quadratic with regard to the profit level y. Moreover,
in order to make vk(y) > 0, the condition r > 2µ + σ2 must be satisfied. This condition
illustrates the expected value function in Equation (3.14) at x = 0 should be finite, given
y > 0. If r ≤ 2µ+ σ2, the expected accumulated profit will be infinite and vk(y) will not be
a reasonable solution to the HJB equation.

In fact, Proposition 3.3.1 gives the sufficient and necessary condition for vk(y) =∞.
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Proposition 3.3.1. If Y (t) follows Equation (3.19), the profit of infinite-reserve player at
x = 0 is proportional to Y 2(t) and grows with a rate of 2µ + σ2. Therefore, vk(0, y) < ∞ if
and only if r > 2µ+ σ2.

Proof. Inserting the production in Equation (3.16) for each k = 1, 2, . . . , N − 1 into Equa-
tion (3.14) with y = Y (t) at time t, the expected accumulated profit of player k will be the
expected integral

vk(0, y) = E0,y

[ˆ ∞
0

e−rtY 2(t)w2
k dt

]

=
ˆ ∞

0
e−rtw2

kE0,y
[
Y 2(t)

]
dt

(3.24)

Therefore, the profit of the player k is Y 2(t)w2
k. This profit per time unit is quadratic with

the economic level Y (t). Since Y (t) is a GBM, the expected profit at time t can obtained by
taking integral into the expectation,

E0,y[Y 2(t)] = y2E[e(2µ−σ2)t+2σZ(t)] = y2e(2µ+σ2)t. (3.25)

Therefore,
vk(0, y) = w2

ky
2
ˆ ∞

0
e−(r−2µ−σ2)t dt. (3.26)

If r > 2µ+ σ2, the value function is finite. Otherwise, it is infinite.

As in Assumption 5.2 of [Brown et al. (2017)]∗, we proposed an assumption to ensure the
value function of infinite players to be finite.

Assumption 3.3.1. The infinite-reserve player k’s value function is finite, where k =
1, 2, . . . , N − 1. Mathematically,

vk(0, k) =
ˆ ∞

0
e−rtE0,y

[
qk(t)

(
Y (t)(1− sk)−

N−1∑
i=1

qi(t)
)]

dt <∞. (3.27)

This assumption indicates the discount rate r larger than the expected profit growth rate
2µ+σ2, as per Proposition 3.3.1, which corresponds to Remark 5.3 in [Brown et al. (2017)].
If we take r only as interest rate, this assumption seems unreasonable. Therefore, we cannot
simply interpret r as the interest rate. Instead, the discount rate r includes not only the factor
of interest rate, but also other factors representing future negative uncertainty. For example,
the producers may endure potential dangers such as survival risk, destruction of their reserve,

∗The assumption takes zero costs for those infinite-players. But the mathematics is identical.
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and accidental collapses of production blocs. Those potential dangers also contribute to a
higher discount rate.

In the next sections, vk(y) will be used as the boundary solutions at x =∞ because the
finite-reserve player at x = ∞ becomes infinite-reserve player, which leads to an N -player
game with only infinite-reserve players.

3.3.2 A Finite-reserve Producer versus Infinite-reserve Producers

In this section, we maintain the GBM stochastic profit model in Equation (3.19) and assume
the finite-reserve player is active in the game (i.e. x > 0). Therefore, the variables to be
considered become (x, y).

The production rate should not take a negative value (i.e., qk ≥ 0). Therefore, with the
change of X(t) and Y (t) over time will affect the production of the finite-reserve player.
Also, the changed production of the finite-reserve player affects all its opponents. Therefore,
producers with higher production costs are perhaps blockaded out, if the finite-reserve player
has a high production rate.

We already know that X(t) is a decreasing function of time. A higher reserve x seems
to induce a higher production of the finite-reserve player. Later we will show our model in
fact does follow this claim. As x becomes smaller, the finite-reserve player produces less,
either increase the price or leave production room for competitors to produce more at the
same time. As a result, more opponents will participate into this game. Similar to definition
of blockading points in Equation (29) of [Ledvina and Sircar (2012)], the blockading curve
is the minimum level of x at which player k does not produce. Therefore, we define the
blockading curve of player k in the x− y plane using the infimum of x.

In Equation (3.14), qk(t) is a undetermined production rate of player k. In the following
sections we will shows that the optimal production q∗k(t) = q∗k(X(t), Y (t)), which depends
on the current states X(t), Y (t) only. We use the notation q∗k(x, y) to define the blockading
curve.

Definition 3.3.1. The blockading curve of the player k is the set of points

inf
x
{(x, y) : q∗k(x, y) = 0,∀y ∈ [0,∞)}. (3.28)

In other words, the blockading curve should be a curve for lowest value of reserve x given
any profit level of y.
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Remark 3.3.1. Some low-cost players are never blockaded if the condition q∗k(x, y) = 0 is
never satisfied. This means that the production of player k never touches zero for any values
of (x, y). In this case, we say player k does not have a blockading curve.

Assume there are currently n players in the game (i.e., q∗i = 0 for n ≤ i ≤ N−1 so players
n or greater are blockaded out). As time-variant version of Theorem 1.7.3 presents, the value
function does not depend on time. The HJB equation for the finite-reserve producer is

rv = sup
q0≥0

q0

(
y(1− s0)− q0 −

N−1∑
i=1

q∗i −
∂v

∂x

)
+ µy

∂v

∂y
+ 1

2σ
2y2 ∂

2v

∂y2 ,

rvk = sup
qk≥0

qk

y(1− sk)− qk −
N−1∑

i=0,i 6=k
q∗i −

∂v

∂x

+ µy
∂vk
∂y

+ 1
2σ

2y2 ∂
2vk
∂y2 ,

(3.29)

where the sketch of derivation of the corresponding HJB equation is in Appendix B.2. This
sketch explains the time-invariance of the HJB equation, because the integral of accumulated
profit in Equation (3.13), and dynamics of X(t), Y (t) are independent of time, except for
the undetermined q∗0. This argument is also suitable for the value function of player k in
Equation (3.14) for k = 1, 2, . . . , N − 1.

Therefore, with the time-invariant property of the HJB Equation (3.29), the production
rate can be obtained by computing the supremum.

q∗0(x, y) =
y(1 +∑n−1

i=1 si − ns0)− n ∂v
∂x

n+ 1

q∗k(x, y) =
y(1 + s0 +∑n−1

i=1,i 6=k si − nsk) + ∂v
∂x

n+ 1 .

(3.30)

where k = 1, 2, . . . , n − 1. Therefore, production of each player is also time-invariant. Our
focus is on the profit of finite-reserve player v(x, y). With production rate given as in Equa-
tion (3.30), the HJB PDE for v(x, y) becomes

rv = n2

(n+ 1)2

(
yan −

∂v

∂x

)2

+ µy
∂v

∂y
+ 1

2σ
2y2 ∂

2v

∂y2 . (3.31)

where an := 1+
∑n−1

i=1 si−ns0
n

.

Using the similarity method†, we can simplify the PDE into an ODE by taking the ansatz
v(x, y) = y2H

(
x
y

)
. The form of this ansatz, with y2 as a multiplying factor, corresponds to the

†Example of similarity method is available in https://www.ucl.ac.uk/ũcahhwi/LTCC/sectionB-
similarity.pdf. In our setting, if we introduce transformation x̄ = εax, ȳ = εby, v̄ = εcv and insert into
Equation (3.29) following the example, we would obtain c = 2a = 2b. This indicates v(x, y) = y2H( x

y ) is the
ansatz for the PDE.
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accumulated profit vk(0, y) of the game with only infinite-reserve players in Example 3.3.1.
Later we will take the corresponding result as our boundary condition at x = ∞. The
simplified ODE is

(r − 2µ− σ2)H = n2

(n+ 1)2 (an −H ′)2 −
(
µ+ σ2

)
ξH ′ + 1

2σ
2ξ2H ′′. (3.32)

where we let ξ := x
y
, the reserve x per unit of profit level y.

Recall Definition 3.3.1. Blockading curves describe where the infinite-reserve player k
enters (resp. leaves) the game as ξ rises (resp. falls). In this sense, a blockading curve is a
function y(x). Intuitively, we require that vx > 0, because the larger reserve of the finite-
reserve producer leads to larger profit, given a constant profit level y. With this requirement,
we can find the blockading curve.

To give an example, we compute the blockading curve for player n− 1, when n players,
including the finite-reserve player, are active. Among those active players, player n has the
highest cost and tend to be blockaded out with increasing x. At q∗n−1(x, y) = 0, by Equa-
tion (3.30), the partial derivative is

∂v

∂x
(x, y) = yH ′

(
x

y

)
= y

[
nsn−1 −

(
1 + s0 +

n−2∑
i=1

si

)]
= yδn−1 (3.33)

where we denote δn := (n + 1)sn −
(
1 + s0 +∑n−1

i=1 si
)
. With this, we can determine the

number of players with blockading curves in the following proposition.

Proposition 3.3.2. Let K = min{k : δn > 0}. Then players K,K + 1, . . . , N − 1 have
blockading curve, and players 1, 2, . . . , K − 1 do not.

Proof. Because v(x, y) should be increasing with x (i.e., ∂v
∂x

> 0), δn > 0 should be the
prerequisite of the existence of blockading curve for player n in Equation (3.33) to satisfy
q∗n−1(x, y) = 0.

As x is sufficiently large and every player with a blockading point is expelled from the
market, there are K active players in total.

The profit level y in Equation (3.33) can be cancelled on both sides. Therefore, the x− y
blockading curve degenerates into 1-dimensional ξ, and the blockading curves can be found
by checking the relationship between H ′(·) and δn. We can equivalently define the blockading
point using the notation of ξ in Definition 3.3.2.
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Definition 3.3.2. The blockading point of the player k using notation of ξ is

ξkb = inf{ξ : q∗k(yξ, y) = 0}. (3.34)

Definition 3.3.2 and Equation (3.33) lead to the following proposition addressing the
formula of blockading curve.

Proposition 3.3.3. The blockading point for player n from the perspective of ξ is

ξnb = inf{ξ : H ′(ξ) = δn}. (3.35)

Transforming ξnb to x− y plane gives the blockading curve{
(x, y) : x

y
= ξnb

}
. (3.36)

Moreover, for simplicity, we denote ξNb := 0 and ξK−1
b :=∞ to ensure ξ to cover R+.

Proof. With Equation (3.33), the infimum of x s.t. q∗n(x, y) = 0 is equivalent to H ′(ξ) = δn,
because monotonic increasing of v(x, y) w.r.t. x is equivalent to increasing of H(ξ) w.r.t.
ξ.

Referring to the blockading lines, define the region

An :=
{

(x, y) : ξnb <
x

y
< ξn−1

b

}
=
{
ξ : ξnb < ξ < ξn−1

b

}
. (3.37)

In the region An, there are n active players in the game and the HJB PDE in Equation (3.31)
holds. In other words, the ODE in Equation (3.32) is a piecewise ODE defined in [ξnb , ξn−1

b ).
Figure 3.2 gives a representation of the blockading points of and curves described by ξ

and (x, y) respectively. The upper ξ line in Figure 3.2 presents the blockading points from
the perspective of ξ. The number of players is decreasing to K, as ξ goes past ξnb where
n = N − 1, N − 2, . . . , K. The lower x− y plane addresses the blockading curve in the plane
of (x, y) with ξ = x

y
. The region An is the region between the two straight lines x

y
= ξn+1

b

and x
y

= ξnb .

Moreover, ∂2v
∂x2 (x, y) < 0 at any value of y, or equivalently H ′′(ξ) < 0, because we assume

larger reserve x has a marginal effect on the profit. H ′′(ξ) < 0 is equivalent to H ′(ξ) being
monotonically decreasing.



74

= x
y

Blockadingpoints 0 N 1
b

N 2
b

N 3
b

K + 1
b

K
b

# of Players N N 1 N 2 ... K + 1 K

AN

N 1
b

AN 1

N 2
b

...

AK + 1

K + 1
b

AK

K
b

x

y

0

Figure 3.2: Figures explaining the blockading points and curves. Upper: from perspective of
ξ. Lower: from perspective of x− y plane

Therefore, in region An, i.e., ξ ∈ [ξn+1
b , ξnb ) where n = K,K + 1, . . . , N − 1, we can

theoretically obtain the value of the blockading points ξnb by setting q∗n(ξnb ) = 0, i.e.,

H ′(ξnb ) = δn. (3.38)

Since H ′(ξ) is strictly monotonically decreasing to zero as ξ → ∞, H ′(ξ) is a one to one
positive function. Given the prerequsite δn > 0, the blockading point ξnb = (H ′)−1(δn) is
well-defined. Proposition 3.3.4 proves the continuity of the piecewise ODE at blockading
points.

Proposition 3.3.4. The piecewise ODE in Equation (3.32) is continuous given the blockad-
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ing point defined in Equation (3.38). Equivalently,

n2

(n+ 1)2 (an − δn−1)2 = (n− 1)2

n2 (an−1 − δn−1)2 (3.39)

Hence the original PDE in Equation (3.31) is also continuous.

Proof. See Appendix B.3.

Boundary Values

In this section, we determine the boundary values for each piecewise ODE. On the interval
of [ξn+1

b , ξnb ) for n = N,N − 1, . . . , K, each HJB PDE is subjected to a boundary condition.

We first compute the initial boundary condition at x = 0. In the region AN , where all
players but the finite-reserve are active, the boundary conditions become

v(0, y) = 0 (3.40)

The first boundary condition is the absence of reserve, which leads to zero profit, at any
value of the profit level y.

Also, at x = 0, the absence of reserve leads to zero production rate. Therefore, as the
first-order derivative with regard to x is given by setting the production rate q∗0(0, y) = 0
in Equation (3.30)

∂v

∂x
(0, y) = yaN . (3.41)

Transforming these two boundary value functions yields

H(0) = 1
y2v(0, y) = 0

H ′(0) = 1
y

∂v

∂x
(0, y) = aN .

(3.42)

Then, the terminal condition at ξ = ∞ can be computed using Example 3.3.1, because
in this case where (x, y) will finally enter the region AK−1, the finite-reserve player be-
comes infinite-reserve, and the game includes only K infinite-reserve players with the costs
s0, s1, . . . , sK−1. Players K,K + 1, . . . , N − 1 are blockaded out. Therefore, the boundary
condition becomes

H(∞) = 1
y2v(∞, y) = 1

r − 2µ− σ2

(
1 +∑K−1

i=0 si −Ks0

K + 1

)2

(3.43)
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To ensure that the boundary value is bounded (i.e., 0 < H(∞) <∞), we assume 2µ+σ2 < r.
As we indicated in Example 3.3.1, r is not an interest rate but the discount rate set by
producers. µ is the drift of the economic growth and 2µ + σ2 is the profit growth given
this economic growth. Therefore, the condition is needed because financial problem occurs
when cash flows, on average, grow faster than the discount rate and lead to infinite profit.
Otherwise, we do not need this optimization due to this theoretic infinite profit.

3.4 Numerical Solution

To summarize the discussion of ODEs and boundary conditions from Section 3.3.2, we list
the mathematical problem as a complex piecewise ODE. Given an, δn defined in Section 3.3.2,

(r − 2µ− σ2)H = n2

(n+ 1)2 (an −H ′)2 −
(
µ+ σ2

)
ξH ′ + 1

2σ
2ξ2H ′′ (3.44)

on interval [ξn+1
b , ξnb ) where ξnb is determined by H ′(ξnb ) := δn for n = N−1, N−2, . . . , N−K.

In other words, the ODEs are different on each interval [ξn+1
b , ξnb ) with moving boundaries.

Other conditions are

H(0) = 0, H ′(0) = aN

H(∞) = 1
r − 2µ− σ2

(
1 +∑K−1

i=0 si −Ks0

K + 1

)2

H ′′(ξ) < 0 on (0,∞)
H(ξ) is continuous at blockading points ξnb .

(3.45)

This ODE is a non-linear piecewise second order ODE. The solution of each interval
[ξnb , ξn−1

b ) will give the boundary value at ξn−1
b , because of continuity of H(ξ). Therefore,

tradition ansatz a0ξ
2 + a1ξ + a2 is not suitable for this piecewise ODE, because the bound-

ary condition will result in a “2-unknown, 3-equation problem”. Instead, rearranging Equa-
tion (3.44) by letting G = H ′ leads to the system

G = H ′

G′ = 2
σ2ξ2

[
(r − 2µ− σ2)H − n2

(n+ 1)2 (an −G)2 +
(
µ+ σ2

)
ξG

]
.

(3.46)

The formula of G′(ξ) shows that limξ→0H
′′(ξ) =∞ and result in a pole at ξ = 0. Therefore,

we cannot compute the numerical solution to Equation (3.32) directly by treating it as a
traditional initial value problem, or a boundary value problem. In the next sections, we
introduce the asympototic expansion over the small interval on [0, ξ0).
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3.4.1 Solution with Method of Dominant Balance

Before discussing the solution to the ODE, we discuss the singularity. Unfortunately, there
is no common definition of singularity for a nonlinear ODE due to its complexity. To give
an intuition of singularity, we present several simple examples using linear ODEs there.

Example 3.4.1. Consider the ODE

dx
dt = x

2t , x(0) = 0. (3.47)

The solution x(t) = t
1
2 is singular at x = 0 with limt→0 x

′(t) =∞. Therefore, this differential
is singular at t = 0.

Example 3.4.2. The Bessel differential equation,

x′′ + 1
t
x′ +

(
1− α2

t2

)
x = 0. (3.48)

where 1
t
, 1− α2

t2
have a pole of orders 1, 2 respectively. It is also singular at t = 0.

Therefore, we can claim that the singularity of a function x(t) at t = a happens if
limt→a x

(n)(t) =∞ for an ODE f(t, x, x′, . . . , xn) = 0. In other words, the singularity problem
occurs when the derivatives of x, xk(t) in the ODE, perhaps has at least one point with infinite
value. But this is not a formal definition of singularity, due to the complexity of nonlinear
ODE.

The problem Equation (3.44) is singular at ξ = 0, and the most common packages for
solving initial-value or boundary-value problems for ODE do not handle this case, here G′ can
have a point of infinite value. Specialised methods exist, see [Roswitha and Weinmüller (2001)]
for instance, but in our case we can use the simple method first proposed by Euler, namely
expanding in series of fractional powers in a small neighbourhood of the singular point; once
an accurate solution is obtained in this small interval, standard numerical methods can then
be used over the rest of the interval. See the discussion in Section 1.5 of [Hairer et al. (1993)]
for a historical view of this technique. Such fractional power series are now known as Puiseux
series.

We apply the method of dominant balance to obtain an approximate solution around
ξ = 0. First, we start with H(ξ) = aNξ + P 3

2
ξ

3
2 +O(ξ4) and plug it into

(r − 2µ− σ2)H = N2

(N + 1)2 (aN −H ′)2 −
(
µ+ σ2

)
ξH ′ + 1

2σ
2ξ2H ′′, (3.49)
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and obtain the equationaN(µ− r) +
9N2P 3

2

2

4(N + 1)2

ξ +
(
−1

8σ
2P 3

2
+ 1/2P 3

2
µ− P 3

2
r
)
ξ

3
2 +O(ξ4) = 0. (3.50)

Around ξ = 0, ξ 3
2 and O(ξ4) are the higher order terms (h.o.t.) of the equation; we hence

set an(µ− r) + 9n2P3/2
2

4(N+1)2 = 0 and compute the solution

P 3
2

= ±
2
√
aN(r − µ)(N + 1)

3N (3.51)

where we assume r > 2µ+ σ2. We choose the negative part of the solution because we have
assumed H ′′(ξ) < 0 on (0,∞). Similarly, we can genertate a Puiseux series P2, P 5

2
, . . . by the

following iterative steps:

• Insert the assumed approximate solution H(ξ) = ∑m
i=2 P i

2
ξ
i
2 + O(ξm+1

2 ) into Equa-
tion (3.49).

• Obtain an equation M(Pn
2
)ξ n−1

2 + O(ξn) = 0 where M(Pn
2
) is a certain function ob-

tained by rearranging the ODE.

• Solve the coefficient Pn
2
from M(Pn

2
).

• Repeat the whole process in the case of n + 1 and obtain an ODE with higher order
terms.

To be more specific, we insert the summation H(ξ) = ∑∞
i=2 P i

2
ξ
i
2 with P1 = aN into the

ODE. Then we obtain

(r − 2µ− σ2)
∞∑
i=2

P i
2
ξ
i
2 = N2

(N + 1)2

( ∞∑
i=2

i

2P
i
2
ξ
i
2−1

)2

−
(
µ+ σ2

)( ∞∑
i=2

i

2P
i
2
ξ
i
2

)

+ 1
2σ

2
( ∞∑
i=2

i(i− 2)
4 P i

2
ξ
i
2

)
.

(3.52)

Taking square and rearranging the equation yields

∞∑
i=2

(r − (2− i

2

)
µ−

(
1− i

2 + i(i− 2)
8

)
σ2
)
P i

2

− N2

(N + 1)2

 i∑
j=2

(i+ 3− j)(j + 1)
4 P i+3−j

2
P j+1

2

ξ i2 = 0.
(3.53)
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Setting the coefficients to zero from i = 2, 3, . . . ,∞ and solving P i
2
generates the same

series {P i
2
}i≤2. Moreover, the formula of coefficients shows that except the case of i = 2, the

coefficient of ξ i2 is a linear function with regard to P i+1
2

hence determining only one solution
of P i+1

2
. Using those equations, we can imply the iteration formula for P i+1

2
for i = 3, 4, . . . ,

P i+1
2

= 2
3(i+ 1)P 3

2

(N + 1)2

N2

(
r −

(
2− i

2

)
µ−

(
1− i

2 + i(i− 2)
8

)
σ2
)
P i

2

−
i−1∑
j=3

(i+ 3− j)(j + 1)
4 P i+3−j

2
P j+1

2

 (3.54)

Given the formula for computing P i
2
, we observe that the Puiseux series is divergent and

the solution H(ξ) is actually an asymptotic solution,

H(ξ) ∼
∞∑
i=2

P i
2
ξ
i
2 . (3.55)

As a result, we must truncate the series of H(ξ) to a finite term of Hm(ξ) = ∑m
i=2 P i

2
ξ
i
2 as

an approximation to the solution.

To plot the approximation effect of Hm, we assume the parametric setting of the game
as shown in Table 3.1.

Parameter r s0 s1 s2 s3 s4 µ σ

Values 0.05 0.05 0.3 0.32 0.5 0.52 0.01 0.07

Table 3.1: Parametric setting

We move all terms of the ODE in Equation (3.44) to the left in the form ofD(ξ,H,H ′, H ′′) =
0. The log-log plot of (ξ,D) in Figure 3.3 presents the absolute residual |D(ξ,Hm, H

′
m, H

′′
m)|

between consecutive solutions Hm of Puiseux series. The plot demonstrates that the residual
decreases in the scale from 10−2 to 10−10, as the term m increase from 2 to 9. Therefore,
over the small interval around ξ = 0, Hm returns a good approximation.

In Appendix B.4, we presents several exact solutions when µ, r, σ2 satisfies special rela-
tionship, by setting the terms of Puiseux series to be zero. But those exact solutions are not
relevant to the discussion afterwards, because the relationship perhaps break our assumption
r > 2µ+ σ2.
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Figure 3.3: Plot of residual of the ODE with the approximation Hm(ξ)

3.4.2 Numerical Solution Extended to Infinity

Finite Difference Method

We constrained the interval of the approximate solution on [0, ξ0] where H ′(ξ0) = δN−1.
Now we extend this solution to the interval [ξ0,∞). Define the central difference be H ′i :=
Hi+1−Hi−1

2h . Since the ODE is defined over [0,∞), we must assume a sufficiently large number
ξM to replace the infinity and partition [ξ0, ξM ] into {ξi}i=0,1,...,M . Then with the boundary
condition on ξ0, ξM , we can change Equation (3.44) via the finite difference method into

Di(H1, . . . , HM−1) := n2
i

(ni + 1)2

(
ani −

Hi+1 −Hi−1

2h

)2
−
(
µ+ σ2

)
ξi
Hi+1 −Hi−1

2h

+ 1
2σ

2ξ2
i

Hi+1 − 2Hi +Hi−1

h2 − (r − 2µ− σ2)Hi = 0.
(3.56)

where ni is determined by checking the inequality δni+1 ≤ Hi+1−Hi−1
2h < δni and i = 1, 2, . . . ,M−

1. Here we use central difference for the first and second derivatives and obtain the simulta-
neous quadratic equations for {Hi}i=1,2,...,M−1 with boundary condition H0 = H(ξN−1

b ) and
HM = H(∞). Based on the system of quadratic eqautions in Equation (3.56), the algorithm
for computing the solution is given in Table 3.2.

We take the algorithm in Table 3.2 and obtain the plot in Figure 3.4. The plot illustrates
that profit is an increasing function with marginal effect, with regard to ξ, the reserve per unit
profit. Moreover, the two blockading points are ξN−1 = 0.096 and ξN−2 = 0.99 respectively.
As expected, profit of the finite-reserve player is increasing with the value of reserve x and
the profit level y. The increase with x has a marginal effect as x is large enough while the
increase with y does not.
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Algorithm
1. Give the initial guess of solution H0(ξ), step h, sufficient large value ξmax and
tolerance ε. In our case, we set the initial guess be a quadratic function H0(ξ) =
HM + (ξ−ξM )2

(ξM−ξ0)2 (H0 −HM).
2. Partition the interval [ξ0, ξmax] into {ξi}i=0,1,...,M and let H0(ξi) = Hi. The guess
in step 1 automatically sets the boundary conditions be H0(ξ0) = H0 and H0(ξM) =
HM .
3. Compute the first order derivative using central difference methodH ′i = Hi+1−Hi−1

2h .
4. Determine the interval ni for each point ξi by checking which of ni = N −
2, . . . , N −K satisfies the condition δni+1 ≤ H ′i < δni .
5. Obtain {Hnew

i }i=0,1,...,M given Equation (3.56) using a step of Newton’s method
and compute the error ‖Hnew −H‖.
6. If ‖Hnew − H‖ < ε, stop the algorithm and make cubic intepolation; else, redo
step 3 – 5.

Table 3.2: Algorithm for computing solution using finite difference method (H0 = H(ξN−1
b )

and HM = H(∞))

In order to analyze the accuracy of the finite difference method, we use the backward
error analysis. Given the estimated {(ξi, Hi)}i=0,1,...,M , we make a cubic interpolation of H(ξ)
(hence H ′(ξ), H ′′(ξ) are quadratic, linear respectively). Figure 3.5 gives D(ξ,H,H ′, H ′′), the
error with regard to the step h = 10−1, 10−2, 10−3. As Figure 3.5 indicates, the error decreases
by a scale of 10−2 when h increases by a scale of 10−1, meaning that the central difference
has an error of O(h2).

3.5 Computation of Solutions for given parameters

We have already finished the computation of the value functionH(ξ) in the former section. In
this section, we insert thisH(ξ) into the production q∗0 to study the relationship of production
q∗0(x, y), Q∗(x, y) and x, y. Moreover, given the expressions of the dynamics X(t), Y (t), we
perform the Monte Carlo Simulation to make the blockading time visible.
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Figure 3.4: Plot of profit function
Upper-Left:H(ξ) vs ξ ; Upper-Right:H(x, y) vs (x, y); Lower-left:H(x, y) vs x given different
y; Lower-right: H(x, y) vs y given different x

3.5.1 Expressions of Dynamics and Production

Dynamic of ξ(t)

If the solution to H(t) can be solved numerically, the dynamics of the reserve X(t) and
the profit level Y (t) can be explicitly expressed using H(t). Applying Itô’s lemma to the
dynamics of ξ(t) := X(t)

Y (t) leads to

dξ(t) =
[
− n

n+ 1(an −H ′(ξ(t)))− (µ− σ2)ξ(t)
]

dt− σξ(t) dZ(t) (3.57)

over the interval ξnb ≤ ξt < ξn−1
b . We have already ensured ξnb > ξNb = 0 hence the indicator

of X(t) > 0 disappears. Obviously this SDE is time-homogeneous and does not depend on
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Figure 3.5: Plot of residual of the ODE w.r.t. different steps h

outer variables. Therefore, the passing time and the blockading time of player i can only
depend on the property of ξ(t). First we give the definition of passing time and blockading
time using this ξ(t).

Definition 3.5.1. The passing time for player n is the set

{ξ : ξ(t) = ξnb }. (3.58)

And the blockading time for player n is the supremum of the passing time,

τnb = sup{ξ : ξ(t) = ξnb }. (3.59)

Those blockading points ξnb ’s are already computed as fix values in Section 3.4.2. The
property of ξ(t) at these blockading points requires further investigation.

As ξ(t) follows a stochastic dynamic, the random factor dZ(t) leads to multiple passing
time. Therefore, the blockading time is the last time when ξ(t) passes by the blockading
point ξnb . In other words, this blockading time is a random variable that we cannot find
explicitly.

Formulae of Production Rates

Given Equation (3.30) and the formula of H(ξ), it is easy to compute the formula of pro-
duction rate

q∗0(x, y) = yn

n+ 1

(
an −H ′

(
x

y

))
(3.60)
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when there are n active players 0, 1, . . . , n−1, (i.e., ξnb ≤ x
y

= ξ < ξn−1
b , n = N,N−1, . . . , K).

As stated, over this interval X(t) > 0 hence the indicator ensuring the positive disappears.
Therefore, the dynamics of X(t) over this interval is

dX(t) = −nY (t)
n+ 1

(
an −H ′

(
X(t)
Y (t)

))
dt (3.61)

For those opponents, the production rates of player k = 1, 2, . . . , N − 1 are

q∗k(x, y) =


y

n+1

(
1 + s0 +∑n−1

i=1,i 6=k si − nsk +H ′
(
x
y

))
when k < n

0 Otherwise.
(3.62)

Therefore, summing the equations of q∗k(x, y) above can generate the total production of all
opponents

Q∗(x, y) =
n−1∑
k=1

q∗k(x, y) = y

n+ 1

(
(n− 1)

(
1 + s0 +H ′

(
x

y

))
− 2

n−1∑
k=1

sk

)
(3.63)

Inserting all production rates in Equation (3.30) into the price function Equation (3.5),
the energy price P (x, y) with n active players is

P (x, y) = y −
N−1∑
i=0

q∗i = y

n+ 1

(
1 +

n−1∑
i=0

si +H ′
(
x

y

))
. (3.64)

All formulae above show that the production rates and oil price are determined by the
factors Y (t) and H ′(ξ(t)). ξ(t) is the ratio between the reserve and the stochastic factor.
Keeping the ratio ξ(t) = X(t)

Y (t) constant, the stochastic factor Y (t) is proportional to the
price P (X(t), Y (t)) and the production rates q∗k(X(t), Y (t)). A higher Y (t) leads to faster
production rates and decreases the reserve X(t) more rapidly.

Proposition 3.5.1. Over the region near x
y

= ξ = 0, the production of the finite-reserve
player will be

q∗0(x, y) = yO

(x
y

) 1
2
. (3.65)

In other words, given constant x, q∗0 increase with an order of y 1
2 as y →∞; Given constant

y, q∗0 decrease with an order of x 1
2 as x→ 0.

Proof. Over the interval 0 = ξNb < ξ < ξN−1
b , given the asymptotic solution in Equa-

tion (3.55)

H(ξ) ∼
∞∑
i=2

P i
2
ξ
i
2 = aNξ + P 3

2
ξ

3
2 +O(ξ2). (3.66)
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where P1 = aN . Then the production q∗0 follows

q∗0(x, y) = yN

N + 1

(
aN −H ′

(
x

y

))
= yO

(
−P 3

2
ξ

3
2 +O(ξ2)

)
. (3.67)

Given the formulae of q∗0(x, y), Q∗(x, y) and P (x, y), the plots of production rates q∗0(x, y),
Q∗(x, y) are given in Figure 3.6. The upper plots presents the q∗0(x, y) with x (resp. y) given
different level of y (resp. x) and the total production of all infinite-reserve players is presented
in the lower plots. Proposition 3.5.1 tells us the asymptotic relationship between q∗0 and (x, y),
as indicated below.

The left two plots in Figure 3.6 addresses that given different level of y a higher reserve
x lead to higher production of finite-reserve player q∗0 with a marginal effect, at the cost of
productions of opponents. As expected, price level y lifts productions of all players because
higher profit will induce more intense production.

But the effect of y is different between the finite-reserve producer and the infinite-reserve
opponents. The finite-reserve producer also has a marginal effect as profit level y goes up. This
is because the production of the finite-reserve producer has a reserve limit. Even though y is
high enough, the existence of the limited reserve X(t) will limit the increase of production.
In contrast, for the infinite-reserve player, there is no marginal effect of y.

3.5.2 Monte Carlo Simulation

With all explicit dynamics X(t), Y (t), ξ(t) and formulae of P (x, y), q∗0(x, y), Q∗(x, y), we per-
form the Monte Carlo simulation of paths of reserves, profit level, prices and production
rates, using the parametric set Table 3.1 with the initial value X(0) = 5, Y (0) = 2. In our
simulation, we use Euler’s discretization of SDE. The path of production rates, price and oil
reserve are shown in Figure 3.7.

The upper-left plot is the production of the finite-reserve player 0. The plot indicates
an overall decrasing trend of q∗0 with slight fluctuations. As time t goes large enough, the
production decreases to almost zero, due to monotonically decrease of reserve X(t) without
stochasticity, as the middle-left plot indicate. In contrast, the upper-right plot shows an
overall increasing trend significant fluctuations. Those fluctuation is due to the stochasticity
of the profit level Y (t). Similarly, the middle-right plot of the price level also indicates an
overall increasing trend with fluctuations, because of apparently decreasing trend of X(t)
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Figure 3.6: Plot of production Rate q∗0 or Q∗ vs x, y

at t < 18 approximately. At t > 18, X(t) does not decrease much but converges zero. As a
result, the stochasticity of Y (t) plays a more intense role than X(t) and displays a significant
fluctuation.

Moreover, the green lines are the passing times for player 4 and player 3. We can observe
that the left passing time (player 4) is “heavier”. This path result shows that player 4, with
the highest cost of production, enter, exits and re-enter the differential game.

The bottom plot shows the relationship between X(t) and Y (t) in this simulation. As we
indicate, X(t) is monotonic decreasing without random factor. At first, the starting poing
of (x, y) is on the region A3. As X(t) decreases, the point (x, y) gradually passes ξ3

b to the
region A4, and passes ξ4

b . Finally, the point reach to the region A5 where all producers start
their production.
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Figure 3.7: Monte Carlo Simulation

3.6 Conclusion

In this chapter, we investigate a stochastic differential game with one finite-reserve player and
N − 1 infinite-reserve players, by incoporating the stochastic factor of [Brown et al. (2017)]
into the profit function in [Ledvina and Sircar (2012)]. In this stochastic model, a GBM Y (t)
is used to represent a general economic driver affecting both the price and the cost for each
player. Then, we obtain a simplified ODE for the solution of the HJB problem by taking
ξ = x

y
with a singular point at ξ = 0 and inserting an ansatz into the HJB PDE. This ODE
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allows us to construct the blockading points where the high-cost infinite-reserve player enter
the market as ξ goes up.

To solve the ODE, we use the method of dominant balance to obtain the solution H(ξ)
on [0, ξ0]. Therefore, the existence of solution at ξ0 enables us to solve the equation on the
whole domain [0,∞) via finite difference method.

We also make an analysis of the behaviour of different types of players in the market.
With the solution to the HJB PDE, we study the effect of reserves X(t) and profit levels Y (t)
on the profit and productions of each player. The increase in profit level generally increases
the production of each player. Larger x presents a marginal effect on the production of the
finite-reserve player, given a constant y. On the contrary, larger x decrease the production of
opponents with a marginal effect. Production of each player increases with y, but only the
finite-reserve player endures a marginal effect, due to the limited reserve.

Due to the stochasticity of the profit level Y (t), infinite-reserve players with high costs
of production may enter, leave and re-enter the market as the profit level fluctuates. But as
the oil reserve decreases and the price is driven up, all players would eventually enter the
market.



Chapter 4

Robust Portfolio with Commodities
and Stochastic Interest Rates

Note: Brownian Motion becomes W in Chapters 5 and 6 while it was Z so far to maintain
consistency with regard to published literature.

4.1 Introduction

This chapter addresses a gap in the literature concerning robust portfolio analysis for com-
modity markets in the presence of stochastic interest rates. For generality, we study an
ambiguity-averse investor with a Cramér-Lundberg surplus to be allocated into a mean-
reverting asset representing a commodity and a bond with a Vasicek interest rate model.
Our framework allows for closed-form solutions for the optimal strategy, worst case measure,
terminal wealth and value functions. We provide necessary conditions for a well-behaved so-
lution. A full estimation is conducted on two commodity representatives: WTI oil prices and
gold prices. We find strong evidence that optimal exposures to commodity risk and interest
rate risk, as well as the performance of the portfolio, are significantly affected by the level of
ambiguity aversion. Our analyses demonstrate that investors who ignore uncertainty incur in
drastic equivalent welfare losses, in particular ignoring commodity uncertainty is more costly
than neglecting interest rate uncertainty. In a comparison between stocks and commodities,
ignoring uncertainty on the latter is also more damaging. We also confirm the importance
of working on a complete market (investing in bonds) for commodity investors, otherwise
welfare losses could easily reach 45%. In terms of parameter mis-specifications, we find that

89
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incorrect larger correlation, smaller variances or simply wrong market price of commodity
risk, could lead to drastically large wealth-equivalent losses.

The chapter is organized as follows. Section 4.2.1 gives the formulation of surplus X(t)
following the Cramér-Lundberg process, Vasicek interest rate model r(t) and the mean-
reverting asset with correlation. Section 4.2.2 formulates the optimization problem using
expected terminal surplus. The solution for the value function is found via Riccati ODEs
using the exponential affine quadratic ansatz for the derived HJBI PDE, the optimal strat-
egy π∗ and worst change of measure are also provided explicitly. Section 4.3 provides the
main elements for a full wealth-equivalent loss analysis (suboptimal analysis) Lπs in different
cases, through solving HJB PDE as well but with specially given investment (suboptimal)
strategies. The empirical part, Section 4.4, describes the estimation methodology and report
the numerical findings, in particular optimal strategies, probability distribution of termi-
nal surplus and plots of equivalent losses for relevant suboptimal cases. The last section
concludes. We make the following contributions:

• We construct an robust portfolio optimization for investors to maximize the expected
terminal wealth and obtain a closed-form solution to the problem via an HJBI PDE.
Provided the solution, the robust portfolio is obtained as a function of time, interest
rate and log price.

• We compute the parameters given WTI and gold data, and analyze the effect on the
optimal strategies and wealth equivalent losses due to absence of ambiguity, parametric
misspecification and incomplete market.

4.2 Formulation of the Surplus Optimization Problem

We consider a company who can invest its surplus on a commodity, a bond, and a money
market account. The model presented here assumes only one commodity in the portfolio but
all our results can be easily extended to multiple assets following mean-reverting processes.
Details on the evolution of the underlyings and the problem of interest are provided next.
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4.2.1 Assumptions

A classic model for the surplus of a company is the exponential Cramér-Lundberg process
which consists of a premium and decreasing jumps, this is:

dX0(t) = X0(t−)
(
c dt−

ˆ
R+

yN(dt, dy)
)
, (4.1)

where N(dt, dy) is a Poisson random measure with intensity, µ,
´
R+ E[N(dt, dy)] = µ dt, c

is the premium percentage. We assume the initial surplus X0(0) = x leading to the integral
form:

X0(t) = x+ c

ˆ t

0
X0(s) ds−

N(t)∑
i=1

X0(T−i )Yi. (4.2)

For i = 1, 2, . . . , N(t), Ti are the times when a jump occurs, and Yi are positive random
variables with first moment µ1 > 0 and second moment µ2. In order to make sure 0 ≤ Yi ≤ 1,
we refer to the setting of [Chiu and Wong (2013)], Yi = e−Zi where Zi is a non-negative
random variable with well-defined MGF. In this process, the claim amounts are X0(T−i )Yi
which is proportional to the amount of surplus.

The company can invest this surplus into three assets: a risk-free bank account, a risky
bond and a commodity. We assume the commodity follows a mean-reverting process, i.e., in
real-world measure,

dS(t) = (r(t) + λSσS − a lnS(t))S(t) dt+ σSS(t)
(
ρ dW1(t) +

√
1− ρ2 dW2(t)

)
, (4.3)

where W1(t),W2(t) are independent Brownian motions, the drift is r(t) + λSσS − a lnS(t),
volatility σS and we require λS > 0 to ensure that the return will be larger as the volatility
increases. The interest rate r(t) follows a Vasicek model, where the correlation of random
part between asset and interest rate is ρ. Mathematically, under the risk-neutral measure,
we have:

dr(t) = κ(r̄ − r(t)) dt+ σr dWQ
1 (t), (4.4)

with infinity yield y∞ := r̄ − σ2
r

2κ2 . We invest πS(t) into the commodity and πP (t) into a
(rollover) bond with a fix time to maturity T−t. The price of the bond under the risk-neutral
measure is:

P (t, r(t);T ) := P (t, r(t)) = exp(−I(t;T )r(t) + A(t;T )), (4.5)

where
I(t;T ) = 1− e−κ(T−t)

κ

A(t;T ) =
(
r̄ − σ2

r

2κ2

)
(I(t;T )− (T − t))− σ2

r

4κI
2(t;T ).

(4.6)
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For simplicity, we transform the dynamics of the rollover bond into

dP (t, r(t)) = (r(t) + λrIτ )P (t, r(t)) dt− IτσrP (t, r(t)) dW1(t), (4.7)

where Iτ := I(t; t + τ) = 1−e−κτ
κ

is a constant. λr is the market price of risk on the bond
return. In the risk-neutral measure, the bond price can be represented via a PDE

Pt + Pr(κ(r̄ − r)) + σ2
r

2 Prr = rP. (4.8)

Transforming to real-world measure using Girsanov theorem, the joint dynamics for the bond
and the interest rate are

dr(t) = [κ(r̄ − r(t))− λrσr] dt+ σr dW1(t)
dP (t, r(t)) = (r(t) + λrI(t;T ))P (t, r(t)) dt− I(t;T )σrP (t, r(t)) dW1(t).

(4.9)

We assume the jumps of the surplus, hence N(t) and Yi to be independent of W1(t) and
W2(t). By letting Z(t) = lnS(t), we can simplify the representation of the asset price:

dZ(t) =
(
r(t) + λSσS −

1
2σ

2
S − aZ(t)

)
dt+ σS

(
ρ dW1(t) +

√
1− ρ2 dW2(t)

)
. (4.10)

The model in the previous equations is called the reference model. The surplus process
becomes

dX(t) = [(c+ r(t))X(t) + πS(t)(λSσS − aZ(t)) + πPλrI(t)] dt

+ πS(t)σS
(
ρ dW1(t) +

√
1− ρ2 dW2(t)

)
− πP (t)I(t)σr dW1(t)−X(t−)

ˆ
R+

yN(dt, dy).
(4.11)

Note Xt is not self-financing because there are cash inflows, constant premium c and cash
outflows, claims Yi. Moreover if both c = 0 and µ = 0, the surplus X(t) will be a constant
hence the problem starts simply with an initial budget.

4.2.2 Optimal Portfolio Problem

We consider an ambiguous agent with constant relative risk aversion (CRRA) utility:

U(x) = x1−γ

1− γ , (4.12)

where the parameter controlling the level of risk aversion is γ. The CRRA utility not only
gurantees a closed-form solution to the next HJBI PDE, but also ensures that a proportional
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change of wealth, has an idential effect on the investor regardless of initial amount. The
investor wants to maximize the expected utility from the terminal wealth under worst case
conditions parameterized by its level of ambiguity-aversion (φ), the objective function in this
optimal problem is (see [Maenhout (2004)]):

J(t, x, r, z) = sup
π∈Π

inf
u
EQux,z,r

[ˆ T

t

1
2

(
u2

1(s)
φ1(s) + u2

2(s)
φ2(s)

)
ds+ U(X(T ))

∣∣∣∣∣Ft
]
, (4.13)

where EQx,z,r[U(X(T ))|Ft] := EQ[U(X(T ))|Ft, X(t) = x, Z(t) = z, r(t) = r], Π is the set of
all admissible strategies, (φ1(t), φ2(t)) are preference parameters for ambiguity-aversion, and
Qu is defined in Equation (4.14). By setting u = (u1, u2)T , dW (t) = (dW1(t), dW2(t))T , and
letting Q represent the set of admissible probability measures by Girsanov Theorem, we can
mathematically define the Radon-Nikodym derivative as follows:

Q =
{
Qu : dQu

dP

∣∣∣∣∣
Fs

= exp
(
−
ˆ s

0
u1(t) dW1(t)− 1

2

ˆ s

0
u2

1(t) dt

−
ˆ s

0
u2(t) dW2(t)− 1

2

ˆ s

0
u2

2(t) dt
)

= exp
(
−
ˆ s

0
uT (t) dW (t)−

ˆ s

0
uT (t)u(t) dt

)}
.

. (4.14)

This means we consider changes of measure of the form:dW1(t) = dWQ
1 (t)− u1(t) dt

dW2(t) = dWQ
2 (t)− u2(t) dt.

(4.15)

Hence the dynamics under the new measures, also known as the alternative models, are:

dr(t) = [κ(r̄ − r(t))− σr(λr + u1(t))] dt+ σr dWQ
1 (t)

dZ(t) =
(
r(t) + λSσS − 1

2σ
2
S − aZ(t)− σS

(
ρu1(t) +

√
1− ρ2u2(t)

))
dt

+σS
(
ρ dWQ

1 (t) +
√

1− ρ2 dWQ
2 (t)

)
dX(t) =

[
(c+ r(t))X(t−) + πS(t)

(
λSσS − aZ(t)− σS

(
ρu1(t) +

√
1− ρ2u2(t)

))
+(λr + u1(t))πP (t)Iτσr

]
dt+ πS(t)σS

(
ρ dWQ

1 (t) +
√

1− ρ2 dWQ
2 (t)

)
−πP (t)Iτσr dWQ

1 (t)−X(t−)
´
R+ yN(dt, dy).

(4.16)

Set y(t) = (r(t), z(t))T , dWQ(t) = (dWQ
1 (t), dWQ

2 (t))T and π = (πP , πS)T . We can represent
the dynamics compactly as:dy(t) = [(θ −Ay(t))− σu] dt+ σ dWQ(t)

dX(t) = [(c+ r(t))X(t−) + πTBb(y(t))− σu)] dt+ πTBσ dWQ(t)−X(t−)
´
R+ yN(dt, dy).

(4.17)
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where vectors and matrices are

A =
 κ 0
−1 a

, σ =
 σr 0
ρσS

√
1− ρ2σS

, B =
−Iτ 0

0 1

,
θ =

 κr̄ − σrλr
λSσS − 1

2σ
2
S

, b(y(t)) =
 −λrσr
λSσS − aZ(t)

.
(4.18)

Then the HJBI equation is:

sup
π∈Π

inf
u

{
[κ(r̄ − r)− (λr + u1)σr]Jr +

[(
r + λSσS −

1
2σ

2
S − az

)
− σS

(
ρu1(t) +

√
1− ρ2u2(t)

)]
Jz

+
[
(c+ r)x+ πS

(
λSσS − az − σS

(
ρu1(t) +

√
1− ρ2u2(t)

))
+ (λr + u1)πP Iτσr

]
Jx

+ 1
2σ

2
rJrr + 1

2σ
2
SJzz + (ρπSσSσr − πP Iτσ2

r)Jrx + ρσSσrJzr

+ (πSσ2
S − πP IτρσSσr)Jzx + 1

2
(
(πSσSρ− πP Iτσr)2 + π2

Sσ
2
S(1− ρ2)

)
Jxx

+ u2
1

2φ1
+ u2

2
2φ2

}
+ µE[J(t, x(1− Y ), r, z)− J ] + Jt = 0,

(4.19)
where Y is a r.v. with the same distribution as Yi.

For analytical tractability, [Maenhout (2004)] provides suitable forms for φ1(t) and φ2(t)
are

φ1(t) = β1

(1− γ)J(t, x, r, z) > 0, φ2(t) = β2

(1− γ)J(t, x, r, z) > 0, (4.20)

where β1 and β2 are the ambiguity-aversion parameters. β1 can be interpreted as ambiguity
aversion about the interest rate distribution, while β2 is ambiguity aversion on the distribu-
tion of the commodity return. Let β = diag(β1, β2) and Σ = σσT . In matrix form, the HJBI
equation becomes:

sup
π∈Π

inf
u

{
Jt + [(θ −Ay)− σu]TJy + [(c+ r)x+ πTB(b(y)− σu)]Jx + 1

2 tr(JyyTΣ)

+ πTBΣJxy + (1− γ)J
2 uTβ−1u+ Jxx

2 πTBTΣBπ
}

+ µE[J(t, x(1− Y ), r, z)− J ] = 0.

(4.21)

The proposition next exhibit the implicit solution to the first order conditions.

Proposition 4.2.1. The optimal change of measure is

u∗ = βσT (Jy + JxBπ)
(1− γ)J . (4.22)
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The corresponding optimal investment strategy is

π∗ = −B−1
(
JxxΣ−

J2
x

(1− γ)Jσβσ
T

)−1(
Jx

(
b(y)− σβσ

TJy
(1− γ)J

)
+ ΣJxy

)
. (4.23)

The HJBI PDE becomes

Jt + (θ −Ay)TJy + 1
2 tr(JyyTΣ) + (c+ yTe1)xJx −

JTy σβσ
TJy

2(1− γ)J

− 1
2

(
Jx

(
λ− aE2y −

σβσTJy
(1− γ)J

)
+ ΣJxy

)T(
JxxΣ−

J2
x

(1− γ)Jσβσ
T

)−1

×
(
Jx

(
λ− aE2y −

σβσTJy
(1− γ)J

)
+ ΣJxy

)
+ µE[J(t, x(1− Y ), r, z)− J ] = 0.

(4.24)

where I is 2 × 2 identity matrix, e1 = (1, 0)T , E2 = diag(0, 1) and λ = (−λrσr, λSσS)T so
b(y) = λ− aE2y.

Proof. The Equation (4.19) is quadratic w.r.t. u. Therefore, it is easy to obtain the optimal
change of measure u∗ by computing first order derivative of u and set it be 0. Substituting
u∗ into the HJB Equation (4.21), we can also compute the optimal trading strategy for π by
setting the derivative w.r.t. π of RHS to be 0, because Equation (4.21) is also quadratic w.r.t.
π. We present the straightforward but laborious computational detail in Appendix C.1 using
a matrix representation. Second order conditions ensure the solutions are indeed a minimum
and maximum respectively.

Before simplifying and solving the HJBI, we present Lemma 4.2.1, which gives a sim-
ple way to compute the explicit solution to a Matrix Riccati differential equation (RDE)
encountered in the representation of the solution (M2 in Proposition 2.2).

Lemma 4.2.1. Assume an n× n Matrix RDE R(t, T ) satisfying
dR
dt = RBR+RA+ATR+Q

R(T ) = S,
(4.25)

where B, Q and S are symmetric and non-negative definite. The solution to the RDE will
be

R = K2K
−1
1 , (4.26)

where n× n matrices K1,K2 are defined by

K(t, T ) = exp
 A B

−Q −AT

(T − t)
In×n

S

 :=
K1

K2

. (4.27)
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Proof. See [Abou Kandil et al. (2003)].

Now given the PDE in Proposition 4.2.1, we are ready to solve for J(t, x, z, r) and compute
explicitly u∗ and π∗. This is provided in the next Proposition.

Proposition 4.2.2. The optimal value function has the representation:

J(t, x, r, z) = x1−γ

1− γ exp
(
M0(t) + yTM1(t) + 1

2y
TM2(t)y

)
, (4.28)

where M1(t) is a 2× 1 vector and M2 is a 2× 2 symmetric matrix with terminal condition
J(T, x, r, z) = x1−γ

1−γ . Here the matrices M0(t),M1(t) andM2(t) follow Matrix Riccati ODEs:
M

′
2 +D0 +D1M2 +M2D

T
1 +M2D2M2 = 0

M2(T ) = 02×2,
(4.29)

M
′
1 +C0 +M2(t)C1 + (M2(t)D2 +D1)M1 = 0

M1(T ) = 02×1,
(4.30)

M
′
0 +B0 +MT

1 (t)C1 + 1
2M

T
1 (t)D2M1(t) = 0

M0(T ) = 0,
(4.31)

where matrices D0, D1, D2, vectors C0, C1 and scalar B0 are given in Appendix C.2.

After obtaining the solutionM2(t) in Proposition 4.2.2 using Lemma 4.2.1, we can simply
obtainM1(t) and M0(t) sequentially by computing numerical solution to the corresponding
ODEs. Now we are ready to compute the optimal strategies and changes of measure.

Theorem 4.2.2. The optimal trading strategy and change of measure are

π∗ = xB−1
(
σ(γI + β)σT

)−1
[
λ− aE2y + σ

(
I − β

1− γ

)
σT (M1(t) +M2(t)y)

]

u∗ = βσT

1− γ

(
(M1(t) +M2(t)y) + 1− γ

x
Bπ∗

)
.

(4.32)

Proof. Plugging the ansatz in Equation (4.28) into π∗ and u∗ in Proposition 4.2.1 can easily
derive the equations. The results with plugged π∗ are shown in Appendix C.3.
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In fact, we can rewrite the trading strategy as follows:

π∗

x
= B−1

(
σ(γI + β)σT

)−1
[
λ+ σ

(
I − β

1− γ

)
σTM1(t)

+
(
σ

(
I − β

1− γ

)
σTM2(t)− aE2

)
y

]
.

(4.33)

This demonstrates that the investment fraction π∗

x
, and u∗ are linear w.r.t. y. Particularly,

the part
B−1

(
σ(γI + β)σT

)−1
λ, (4.34)

represents the standard mean-variance portfolio. Moreover, compatible with [Flor and Larsen (2013)],
when a = 0, i.e., if there is no mean-reverting effect on the asset, the optimal investment
strategy will be:

1
x
π∗a=0 = B−1

(
σ(γI + β)σT

)−1(
λ− Iτσ2

r [(1− γ)− β1]e1
)
, (4.35)

where the second component is from Vasicek stochastic interest rate, and the third component
is from ambiguity. Therefore, the value 1

x
(π∗−π∗a=0) captures the effect of the mean-reverting

term.

Proposition 4.2.2 provides a candidate for the solution J(t, x, r, z) to the HJBI in Equa-
tion (4.21), this solution is expressed in terms of M0(t),M1(t) andM2(t). In order to verify
the candidate is well-defined, we must first guarantee that the change of measure determined
in the worst-case scenario (the inf part) denoted u∗ satisfies the Novikov’s condition. In a
second step we use existing results for a verification theorem on the sup part.

Theorem 4.2.3. If Frobenius norm ‖M2(t)‖F <∞ for 0 ≤ t ≤ T , i.e.,M2 is a well-defined
matrix function, then the Novikov’s condition holds for u∗(t). Moreover π∗(t) is the optimal
strategy in the worst-case scenario u∗(t).

Proof. See Appendix C.3.

4.3 Wealth-equivalent Losses Analysis

In this section we quantify the wealth-equivalent utility loss the investor suffers by follow-
ing meaningful suboptimal strategies. In particular, we study the effects of ignoring model
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uncertainty ∗, the impact of ambiguity on the utility loss incurred from not investing in
bonds (market incompleteness), and the impact of wrongly selecting specific parameters of
the model (due to estimation error for instance). Similar to [Flor and Larsen (2013)], we
measure the utility loss in terms of the percentage of wealth lost when using the suboptimal
strategies.

First, we need to find a representation for the value function given a suboptimal trading
strategy πs, this is:

Jπ
s(t, x, r, z) = inf

Q∈Q
EQx,r,z

[ˆ T

t

1
2

(
u2

1(s)
φ1(s) + u2

2(s)
φ2(s)

)
ds+ U(X(T );πs)

∣∣∣∣∣Ft
]
. (4.36)

The wealth-equivalent loss of optimal strategy is denoted Lπs and it is the solution to the
equation:

J(t, x(1− Lπs), r, z) = Jπ
s(t, x, r, z). (4.37)

Given the strategy πs, the HJBI equation is

inf
u

{
Jt + [(θ −Ay)− σu]TJy + [(c+ yTe1)x+ (πs)TB(λ− aE2y − σu)]Jx

+ 1
2 tr(JyyTΣ) + (πs)TBΣJxy + (1− γ)J

2 uTβ−1u+ Jxx
2 (πs)TBTΣBπs

}
+ µE[J(t, x(1− Y ), r, z)− J ] = 0.

(4.38)

The proposition next provides a representation up to Riccati equations of the value
function for the suboptimal problem.

Proposition 4.3.1. Assume the suboptimal strategy is of the form πs = x(h(t) +H(t)y),
i.e., proportional to x and linear w.r.t. y, then Equation (4.38) also has an exponential affine
form:

Jπ
s(t, x, r, z) = x1−γ

1− γ exp
(
Mπs

0 (t) + yTMπs

1 (t) + 1
2y

TMπs

2 (t)y
)
. (4.39)

The differential equations for Mπs

0 (t), Mπs

1 and Mπs

2 (t) are given below:(Mπs

2 )′ −HT (t)Ds
0H(t)−Ds

3 +Ds
1M2 +M2(Ds

1)T +Mπs

2 D
s
2M

πs

2 = 0
Mπs

2 (T ) = 02×2
(4.40)

∗This is either investors ignoring their own level of uncertainty due to, for example, technical limitations,
or ignoring market analyst recommendations about documented levels of ambiguity on the distributions of
the assets at hand
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
(Mπs

1 )′ +C0 +Mπs

2 (t)C1 + (Mπs

2 (t)Ds
2 +Ds

1)Mπs

1 +Cs
0

+[(Mπs

2 (t))TDs
2 − aE2]Bh(t)(1− γ)− (H(t))TDs

0h(t) = 0
Mπs

1 (T ) = 02×1.

(4.41)


(Mπs

0 )′ +Bs
0 + [(Mπs

1 (t))TDs
2 + λT ]Bh(t)(1− γ) + 1

2(Mπs

1 (t))TD2M
πs

1 (t)
−1

2(h(t))TDs
0h(t) = 0

Mπs

0 (T ) = 0.

(4.42)

where matrices Ds
0, Ds

1, Ds
2, Ds

3, vectors Cs
0 and scalar Bs

0 are given in Appendix C.4.

In particular, if πs = xh(t), the ansatz will exclude the quadratic term yTMπs

2 (t)y and
become

Jπ
s(t, x, r, z) = x1−γ

1− γ exp
(
Mπs

0 (t) + yTMπs

1 (t)
)
. (4.43)

Hence we only need to focus on Mπs

0 and Mπs

1 in this case. Moreover Lemma 4.2.1 can lead
to the solution for Mπs

2 (t).

Proof. See Appendix C.4.

Proposition 4.3.1 gives us the wealth-equivalent losses in the form:

Lπ
s = 1−exp

(
1

1− γ

(
(Mπs

0 (t)−M0(t)) + yT (Mπs

1 (t)−M1(t)) + 1
2y

T (Mπs

2 (t)−M2(t))y
))

.

(4.44)

Plugging a suboptimal parametric set denoted by hat “(â, σ̂, . . . )” into the ODEs of
M0(t),M1(t) andM2(t) in Equation (D.8) allow us to computeMπs

0 (t),Mπs

1 (t) andMπs

2 (t)
hence we can obtain the trading strategy πs(t) from Theorem 4.2.2.

In other words, with Mπs

0 (t), Mπs

1 (t) and Mπs

2 (t), the functions h(t) and H(t) of the
suboptimal strategy are

h(t) = B̂−1
(
σ̂(γ̂I + β̂)σ̂T

)−1
λ̂+ σ̂

I − β̂

1− γ̂

σ̂TMπs

1 (t)


H(t) = B̂−1
(
σ̂(γ̂I + β̂)σ̂T

)−1
σ̂

I − β̂

1− γ̂

σTMπs

2 (t)− âE2

.
(4.45)

where Mπs

1 (t), Mπs

2 (t) are solutions presented in Proposition 4.2.2 with parametric set
denoted generically by θ̂.
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We are interested in three families of suboptimal strategies, which will be studied in
detail in the upcoming sections:

1. First, strategies from ambguity averse investors who choose to ignore ambiguity on
either the distribution of the commodity S(t), the interest rate r(t) or both. This
means three cases, β̂1 = 0, β̂2 = 0, or β̂1 = β̂2 = 0. This will allow us to measure the
total impact of ignoring ambiguity and which source of ambiguity is more harmful.
Given πs(t) from Theorem 4.2.2, we can apply Proposition 4.3.1 to obtain M s

0 (t),
M s

1 (t) and M s
2 (t), then producing Lπs .

2. The second type of suboptimal strategies is derived by considering investor who fail to
allocate to bonds as a way of hedging the interest rate risk. This is a case of incomplete
markets. Here we need to find the optimal allocation on commodity given the constraint
πP = 0. This can be achieved by equivalently substituting E2π for π in Equation (4.21)
to force πP = 0. Using the notation derives this results leading to:

us = βσT (Jy + JxE2π)
(1− γ)J

πs = −E2P
−1
(
Jx

(
b− σβσ

TJy
(1− γ)J

)
+ ΣJxy

) (4.46)

where P is the diagnoal matrix with the diagonal elements below,

diag
(
JxxΣ−

J2
x

(1− γ)Jσβσ
T

)
(4.47)

Plugging us and πs produces a new HJBI PDE. The solution Jπ
s(t, x, r, z) and loss

Lπ
s can be generated by taking similar steps.

3. The third and final group of suboptimal strategies arises from wrong estimation of the
reference parameters. Some parameters in our model are either very difficult to esti-
mate due to lack of data, like market price of rate risk λ̂r and commodity λ̂S, or are
not stable due to mis-measurement and inaccuracies in the chosen values, examples of
these are volatilities σ̂r, σ̂S and the correlation ρ. This wrong values affects the identi-
fication of the parameters in the reference model, therefore leading to wrongly crafted
strategies.
This direction is conceptually different to point 1 above as it escapes the worst case
analyses of the ambiguity aversion framework. To see this note two aspects, first we
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work in a setting of equivalent changes of measures to accommodate the worst case
preferences of ambiguous investor, this does not capture concerns about covariance
mis-specifications (see [Fouque et al. (2016)] for non-equivalent ambiguity framework).
Second, by changing the estimates to different values, we effectively work with a dif-
ferent reference model, i.e. coming from wrong estimations, hence affecting the level of
ambiguity of the alternative models.

4.4 Empirical Analysis

This section is divided into three part. First we provide details about the data from com-
modities and interest rates as well as the estimation approach. Then we report the optimal
solutions, i.e. allocation, value and terminal surplus, for the representative commodity mar-
kets. The last section studies the impact of various suboptimal strategies.

4.4.1 Data and Estimation Methodology.

We target two commodities: WTI oil prices and gold prices, which can be seen as represen-
tative of this asset class. In particular, we work with weekly WTI oil prices extracted from
https://fred.stlouisfed.org/series/DCOILWTICO, as well as gold prices from
https://fred.stlouisfed.org/series/GOLDAMGBD228NLBM. For bond prices and interest rate
calibration we use data from the Federal Reserve Banks of St.louis (FRED) †. We collect
weekly US 1-month Treasury Bill rate from https://fred.stlouisfed.org/series/DGS1MO as
short rates. For calibration of market price of risk of bond, we also collected the monthly
10-year govt bond yield from https://fred.stlouisfed.org/series/IRLTLT01USM156N. In all
cases we choose the period from Aug 2001 to Sep 2019.

For estimation purposes, we first discretize our model, assuming a time step h with
ri = r(ti). From dynamic processes in Equation (4.9) in real-world measure, using explicit
solution to OU process, we can obtain:

ri+1 = rie−κh + r̄P(1− e−κh) + σ(1)
r ε

(1)
i+1 (4.48)

where for simplicity, we define the real-world interest rate be rP := r̄ − λrσr
κ

. Both κ and rP

†see [Cooke and Gavin (2015)] and literature therein.
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can be computed via a linear regression analysis. The variance would be:(
σ(1)
r

)2
= var

(
σr

ˆ h

0
e−κ(h−s) dW1(ti + s)

)
= 1− e−2κh

2κ σ2
r . (4.49)

Using r(ti), we can write a discretization of Z(t) as follows:

Zi+1 = e−ahZi + (ri − r̄P)e−κh − e−ah
a− κ

+
(
r̄P + λSσS −

1
2σ

2
S

)1− e−ah
a

+ σ
(1)
Z ε

(2)
i+1 (4.50)

where the variance(
σ

(1)
Z

)2
= var

 ˆ h

0
σr

e−κ(h−s) − e−a(h−s)

a− κ
+ σSρe−a(h−s) dW1(ti + s)

+
ˆ h

0
σS
√

1− ρ2e−a(h−s)W2(ti + s)


= σ2
r

(a− κ)2

(
1− e−2κh

2κ − 2(1− e−(κ+a)h)
κ+ a

+ 1− e−2ah

2a

)

+ 2ρσrσS
a− κ

(
1− e−(κ+a)h

κ+ a
− 1− e−2ah

2a

)
+ σ2

S

1− e−2ah

2a ,

(4.51)

and covariance between residuals is
cov(σ(1)

r ε
(1)
i , σ

(1)
Z ε

(2)
i )

= cov
σr ˆ h

0
e−κ(h−s) dW1(ti + s),

ˆ h

0
σr

e−κ(h−s) − e−a(h−s)

a− κ
+ σSρe−a(h−s) dW1(ti + s)

+
ˆ h

0
σS
√

1− ρ2e−a(h−s)W2(ti + s)


= σ2
r

a− κ

(
1− e−2κh

2κ − 1− e−(κ+a)h

κ+ a

)
+ ρσrσS

2(1− e−(κ+a)h)
κ+ a

.

(4.52)

The two regressions are intended to compute the coefficients (κ, σr, r̄P, a, λS, σS, ρ), 7
parameters in total.

Table 4.1 gives the regression result for the coefficients. Only p-values of constant of
interest rate shows no significance, because of long-term quantitative easing between 2009
and 2015.

Along the lines of Appendix B in [Flor and Larsen (2013)], we compute the infinite yield
as y∞ = r̄ − σ2

r

2κ2 and the market price of risk of the bond as:

λr = κ

σr

(
y∞ + σ2

r

2κ2 − r̄
P
)
,
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Regression Result
Coef Value p-values Sgn. Overall p-values

Interest Rate
Const. 3.442× 10−5 0.473

0.000e−κh 0.9960 0.000 (***)
Std.err 0.1116%

Crude Oil

Const. 0.0259 0.043 (*)

0.000
e−ah 0.9938 0.000 (***)

Std.err 4.1676%
Cor. 3.4246%

Gold

Const. 0.0165 0.037 (*)

0.000
e−ah 0.9978 0.000 (***)

Std.err 1.9818%
Cor. -9.4518%

Table 4.1: Regression results.

where y∞ = 3.2702% can be represented as the mean value of the long-term yield. From the
perspective of p-value, the coefficients are all significant.

Table 4.2 summarizes all parameters from the regressions. For a comparison to existing
literature, see Appendix D.5.

A visual comparison between the estimates for gold and those for oil (WTI), show im-
portant differences between these two commodities. In particular, volatility of WTI price is
much larger with a higher reversion frequency, on the other hand correlation between gold
and interest rate is slightly larger and negative than that of WTI and interest rates. This va-
riety in behaviour helps cement the case for representativeness of our choices of commodity.

4.4.2 Optimal Strategy and Terminal Surplus

In this section we use the representation of the optimal terminal surplus and allocation in
Proposition 4.2.2 and Theorem 4.2.2 to understand their behaviour. For this we simulate via
Monte Carlo the optimal strategy π∗ and the terminal surplus X(T ) given an initial value y
and paths for interest rate r(t) and log-price Z(t). For the simulation, we use 50,000 paths
and daily time step ∆t = 1/252. We pick up the initial price of S(0) = 90 and 1200 for crude
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Parameters

Surplus

Premium percentage c 0.1
Claim rate µ 5
Claim size e−Z Z ∼ Lognormal(−4, 1)

Initial surplus X(0) 10

Interest Rate

Mean-reverting rate κ 0.2062
Risk-neutral measure interest r̄ 3.3468%
Real-world measure interest r̄P 0.8699%

Market price of risk λr 0.6331
Volatility σr 0.8067%

Initial interest rate r(0) 2%

Crude Oil

Market price of risk λS 4.6109
Mean-reverting rate a 0.3229

Volatility σS 30.1460%
Correlation ρ 3.4246%

Initial price (bear) S(0) 110
Initial price (bull) S(0) 50

Gold

Market price of risk λS 6.0297
Mean-reverting rate a 0.1138

Volatility σS 14.3068%
Correlation ρ -9.4518%

Objective Function

Time horizon T 10
Relative risk aversion γ 4
Ambiguity parameter 1 β1 3
Ambiguity parameter 2 β2 3

Table 4.2: Parameters of the problem
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Figure 4.1: Density of X(T )−X(0)
X(0) for β1 = β2 = 3 (blue) and β1 = β2 = 0 (orange). Oil

portfolio on the left, gold portfolio on the right.

oil and gold respectively.

Figure 4.1 shows the density of the terminal return rate X(T )−X(0)
X(0) for the ambiguous

(blue) and non-ambiguous (orange) investors, as well as oil-based portfolio (left) and gold-
based portfolio on the right. As expected, the absence of ambiguity-aversion (β1 = β2 = 0)
leads to more extreme behaviour (higher probability on tails). This is also confirmed with the
statistics for all four cases (oil, gold; absence and presence of ambiguity) reported in Table 4.3.
Table 4.3 demonstrates larger moments across the board for non-ambiguous investors (twice
in value as those of ambiguity-averse companies). This is also the case for allocations on the
commodity, which is 1.5 times as high for non-ambiguous agents. This pictures a less risky
and aggressive behaviour for ambiguity-averse investors.

Commodity Exp. Return Std. Deviation Skewness Kurtosis πS(0)
Oil (Ambiguity) 13.25% 26.12% 0.7756 3.4581 −14.45%

Oil (Non-ambiguity) 19.86% 56.82% 1.8810 9.2383 −21.99%
Gold (Ambiguity) 11.90% 23.03% 0.7709 3.5443 54.85%

Gold (Non-ambiguity) 17.96% 48.90% 2.0313 11.2388 87.36%

Table 4.3: Outcome of simulation results

We also perform an analysis of fractional allocation w.r.t. γ, σS, β1 and β2 in Figure 4.2
at t = 0. Higher risk-aversion parameter γ and volatility of commodity σS leads to decreasing
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Figure 4.2: Relationship of fractional allocation at t = 0 with γ (upper-left), σS (upper-right),
β1 (lower-left), β2 (lower-right).

long investments in the bond, and short allocations to the commodity. This is because, higher
risk aversion and volatility leads to decreasing allocations in risky assets. This is identical to
higher β1 and β2, which result in decreasing long position in the bond, and short position in
the commodity, respectively.

Next we study optimal strategies for two market scenarios: first a bear market, defined as
a situation where the initial price is larger than the mean reverting level, therefore the market
is very likely to drop. Second a bull market case, where initial price lower than the mean
reverting level, hence it is highly likely for prices to go up. Figure 4.3 and Figure 4.4 report
the optimal investments in bonds, Commodity and Bank account for a path representing
bear market conditions and a path representing a bull market, respectively.

In a bear market, the percentage of wealth invested in the oil portfolio drops significantly
from a maximum of long 80% on the commodity to shorting 20%. The situation partially
reverse in bull market conditions as per Figure 4.4. Here the investor allocates more on the
commodity at the expense of less investment in bonds, this is to take advantage of the better
returns in the commodity boom. The cash account does not show a clear pattern.
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Figure 4.3: Plot of investment in a bear market, oil portfolio.

4.4.3 Equivalent Losses in Suboptimal Analysis

Here we study equivalent losses Lπs from the suboptimal strategies described in Section 4.3.

Group I: Ignoring Ambiguity, Commodities versus Stocks

In this section we compare the wealth-equivalent utility loss due to ignoring ambiguity for
the two commodities at hand: crude oil and gold. Figure 4.5 captures the oil portfolio while
Figure 4.6 is about the gold portfolio.

The investor’s ambiguity aversion level is depicted in the x-axis while the y-axis displays
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Figure 4.4: Plot of investment in a bull market, oil portfolio.

the wealth-equivalent losses from ignoring such level of ambiguity, e.g using the "suboptimal"
strategy that assumes β̂1 = β̂2 = 0. Recall β1 is about ambiguity-aversion on the interest rate
and therefore bond market, while β2 captures the ambiguity on the targeted commodity. It is
remarkable to see that ignoring ambiguity about the commodity could be quite detrimental
for an investor, the right side of Figure 4.5 and Figure 4.6 demonstrate quite large losses for
even low aversion levels. The damaging effect of ignoring ambiguity depends of the mean-
reverting rate a. Heavier mean-reverting effect leads to a more severe wealth-equivalent loss.
As for ignoring ambiguity on bonds, the left hand side of Figure 4.5 and Figure 4.6 show a
larger impact in the gold portfolio compared to the oil portfolio. This can be attributed to
the larger exposure to bonds in the former portfolio compared to the later.

For the purpose of assessing the impact of ignoring ambiguity in the asset class of com-
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Figure 4.5: Plot of suboptimal loss given β using WTI crude oil price
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Figure 4.6: Plot of suboptimal loss given β using gold price

modities compared to the asset class of stocks, we also include the effect of ignoring ambiguity
assuming the underlying follows a Geometric Brownian motion (GBM). This is comparable
to [Flor and Larsen (2013)] where the authors study bonds and Stocks. Such setting can be
accommodated here by setting the mean-reverting rate a = 0 and lowering the excess return
hence treating the dynamics of commodities as a GBM-growth asset. Note, the resulting
stocks would have acceptable volatility values (14.3% and 30.1%), as well as reasonable ex-
cess returns (7.1647% for oil and 9.3748% for gold). The suboptimal losses in this "stock
market scenario" are shown in Figure 4.7 and Figure 4.8. Comparing Figure 4.5 to Figure 4.7
(oil price) and also Figure 4.6 to Figure 4.8 (gold), we can see that for the same level of
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ambiguity-aversion (β = 1) the wealth-equivalent utility losses are substantially larger in
commodity markets compare to stock markets. The difference can be around four fold.
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Figure 4.7: Plot of suboptimal loss given β and a = 0 using WTI crude oil price
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Figure 4.8: Plot of suboptimal loss given β and a = 0 using gold price

Group II: Incomplete Market: No Bond Investment

Here we explore the performance of suboptimal strategies obtained due to incomplete mar-
kets, i.e. failing to invest in bonds. Figure 4.9 and Figure 4.10 show the wealth-equivalent
losses as a function of ambiguity levels: β1 and β2, for oil and gold portfolios respectively.
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β1 play a significant role in incomplete markets, with losses of up to 45% (3-% for gold)
due to market incompleteness. On the other hand, as β1 increases the wealth-equivalent
losses decrease. This can explained as follows, ambiguity-aversion on r(t) leads to higher
expected short rates; in the absence of bonds, the investor can not take advantage of this
improvement in performance hence suffering even worse losses.

Not surprisingly ignoring β2 (right hand side of Figure 4.9) plays little role for crude
oil, see the right plot in Figure 4.9. This is because β2 affects only the expected return of
the asset, which has very small correlation (3.42%) with interest rate. However, for larger
correlations (-9.45%), the spillover is more important and as Figure 4.10 shows, one can
detect significant impact of up to 25% in losses.
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Figure 4.9: Plot of suboptimal loss without bond using crude oil price investment

Group III: Incorrect Parameters

This section focuses on wealth-equivalent losses due to mis-specification of important pa-
rameters, in particular market prices of risk, volatilities and correlations. The analysis here
displays results only for oil prices, similar observations were produced with the gold portfolio.

Figure 4.11 shows the losses due to wrongly calibrated market prices of risk. We assume
the correct values are those presented in Table 4.2, then the x-axis represents the chosen
values: either λ̂r (left plot) or λ̂S (right plot). We would not be incurring in an error only if
λ̂r = λr or λ̂S = λS, in such cases we would have selected the right parameters. As one can
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Figure 4.10: Plot of suboptimal loss without bond using gold investment

observe, the losses are far more sensitive to a wrong choice of λ̂S than of λ̂r. This highlights
the importance of a proper estimation exercise.
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Figure 4.11: Plot of suboptimal loss given λ̂r, λ̂S

We also study the losses due to mis-specification of volatilities: σ̂r and σ̂S. The patterns
in losses are similar to those encountered before, emphasising the importance of estimating
commodity parameters more precisely than bond’s parameters. Interestingly, wrongly as-
suming lower values of volatilities could be far more consequential than assuming incorrect
large values, which tell a story of better overestimating than underestimating the risk.
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Figure 4.12: Plot of suboptimal loss given σ̂r, σ̂S

Lastly, we study the impact of correlation between bonds and commodities. There is a
large body of literature on the absence of such dependence. Hence we assume the correct
value is ρ = 3.4246% and plot the losses due to incorrectly assuming a value of ρ̂. The
further away of ρ̂ with the true ρ, the higher the utility loss. Incorrect large positive (> 0.4)
or negative (< −0.4) correlation creates heavy loss to 100%, while no obvious distinguished
pattern is shown between the negative part and the positive part.
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Figure 4.13: Plot of suboptimal loss given ρ̂
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4.5 Conclusion

In this chapter, we consider a robust portfolio optimization of company’s surplus consisting
of a bond and a mean-reverting asset representing a commodity. The surplus is assumed to
be a geometric Cramér-Lundberg. We also assume a interest rate to be a Vasicek model and
the commodity to be an exponential-OU process. Via a maximization of CRRA utility and
applying ambiguity-aversion entropy, we generated analytical, closed-form solutions for the
optimal investment, worst-case change of measure, optimal wealth and value function for the
insurer (investor).

Thanks to the analytical representations we explore the behaviour of optimal solutions
and the impact of various meaningful suboptimal strategies on the investor’s portfolio. For
these exercises we consider and estimate two assets representatives of commodity market:
oil prices and gold prices. Some important findings are: ignoring ambiguity either on bonds
or commodities could lead to drastic wealth-equivalent losses, harsher if ignoring ambiguity-
aversion on commodities than on bonds. Even more, ignoring ambiguity-aversion on com-
modities is more damaging than ignoring such on the asset class of stocks (GBMs). As
reported by many authors, working on an incomplete market could be detrimental for a
portfolio, we demonstrate losses of up to 45% due to incompleteness in the commodity mar-
ket. Lastly, mis-specifications in the parameters toward either larger correlation, smaller
variances or incorrect market price of commodity risk, could lead to drastically large wealth-
equivalent losses, hence an unnecessary under-performances of the investor portfolio.



Chapter 5

Model uncertainty on commodity
portfolios, the role of Convenience
Yield

5.1 Introduction

This chapter investigates the effect of model uncertainty on the performance of commodity-
based portfolios. We consider a constant relative risk aversion (CRRA) utility maximizer
investor in a complete market, with independent ambiguity-aversion levels on the three fac-
tors explaining the term structure of future prices, namely, spot prices, convenience yield and
interest rates, as proposed in the seminal work of [Schwartz (1997)]. This generic investor
is interested in the speculative component of the investment rather than possessing/con-
suming the physical commodity. We obtained closed-form solutions for optimal investments,
optimal perturbations (alternative model) and value functions along in line with the robust
portfolio setting of [Maenhout (2004)]. Our main focus is on the effect of convenience yield’s
uncertainty on the optimal analysis. We estimate the model using a combination of maxi-
mum likelihood estimation (MLE) and Kalman Filter (KF) techniques, on two commodities:
West Texas Intermediate (WTI) and copper future prices. The analysis demonstrates that
uncertainty on the convenience yield factor could be the largest contributor to the under-
performance of a commodities portfolio, with wealth equivalent losses (WELs) in the range
33% to 88% (WTI), 7% to 31% (copper). Moreover, small variations, of up 25%, on conve-
nience yield’s covariance parameters could lead to a WEL of up to 40% (WTI, lesser volatility
of convenience yield).
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The chapter is structured as follows. Section 5.2 describes the mathematical model and
the robust optimization problem. The analytical solutions are then detailed in Section 5.3.
Thereafter, Section 5.4 first explain the estimation of parameters, before exploring optimal
investment allocation with regard to covariance parameters of convenience yield. A WEL
analysis is also performed for several key suboptimal cases, namely, parametric misspecifi-
cation on the convenience yield, incompleteness of the market, and more importantly the
impact of ignoring the various sources of uncertainty. Section 5.5 concludes the chapter. We
make the following contributions:

• We construct an robust portfolio optimization for investors to maximize the expected
terminal wealth and obtain a closed-form solution to the problem via an HJBI PDE.
Provided the solution, the robust portfolio is obtained as a function of time.

• Using the MLE and KF techniques, we analyze the WTI and coppter future data, and
successfully compute the parameters.

• The effects of absence of ambiguity, parametric misspecifiction of convenience yield
and incomplete market are analyzed to present the WELs.

5.2 Mathematical Settings

Model III of [Schwartz (1997)] is presented first in this section. The model considers stochas-
tic spot prices, stochastic interest rate and stochastic convenience yield, with the latter two
following mean-reverting processes. Some results regarding the model-implied term struc-
ture of future prices, bond prices and prepaid forwards are described. The robust portfolio
optimization problem is then introduced.

5.2.1 Three-Factor Model

We assume the stochastic processes describing the financial market are defined on a complete
probability space (Ω,F ,Q) with a right-continuous filtration {Ft}t∈[0,T ]. [Schwartz (1997)]
presented Model III on the risk-neutral probability measure Q. Let S(t) denote the spot price
of a commodity; the model can then be described via three stochastic differential equations
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(SDEs): 
dS(t) = (r(t)− δ(t))S(t) dt+ σSS(t) dWQ

1 (t)
dδ(t) = κ(α̂− δ(t)) dt+ σδ dWQ

2 (t)
dr(t) = a(m̂− r(t)) dt− σr dWQ

3 (t)

(5.1)

with correlations among all Brownian motions,

dWQ
1 (t) dWQ

2 (t) = ρSδ dt, dWQ
2 (t) dWQ

3 (t) = ρδr dt, dWQ
1 (t) dWQ

3 (t) = ρSr dt. (5.2)

Here the convenience yield δ(t) and interest rate r(t) are mean-reverting processes with
reverting rates of κ and a and mean values of α̂ and m̂, respectively. Moreover, convenience
yield is the benefit to the investor while holding the commodity. If convenience yield is
negative, then it is equivalent to having a cost of carry. Therefore, if an investor holds the
commodity directly, then the reduced amount of return on the commodity offsets the benefit;
this is similar to the behavior of dividends in a stock.

The investment problem deals with the returns on the real-world probability P. We use
Girsanov’s change of measure with dWQ(t) = dW (t) + λ dt where we set

λ =


λS

λδ

λr

, W (t) =


W1(t)
W2(t)
W3(t)

 WQ(t) =


WQ

1 (t)
WQ

2 (t)
WQ

3 (t)

. (5.3)

Hence, λS, λδ, λr are the market prices of risks of the commodity, convenience yield and
interest rate. Under P, Equation (5.1) becomes

dS(t) = (r(t) + λSσS − δ(t))S(t) dt+ σSS(t) dW1(t)
dδ(t) = κ(α− δ(t)) dt+ σδ dW2(t)
dr(t) = a(m− r(t)) dt− σr dW3(t)

(5.4)

where
α = α̂ + λδσδ

κ
, m = m̂− λrσr

a
. (5.5)

We refer to Equation (5.4) as the reference model.

5.2.2 Dynamics of Assets

Similar to [Mellios et al. (2016)], we consider three types of assets in which to invest, in
addition to the cash account. These assets are a spot commodity, a prepaid forward and a
bond. The dynamics of the last two assets are specified next.
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Dynamics of Prepaid Forward

In the real world, commodities are usually traded in the form of futures but not immediately;
these are called prepaid forwards. We first need the process of a risk-neutral future price for
a maturity T , as [Schwartz (1997)] indicated:

F (S, δ, r, T ) = EQ[S(T )] = S exp
[
−δ(1− e−κT )

κ
+ r(1− e−aT )

a
+ C(T )

]
, (5.6)

where C(T ) satisfies the formula

C(T ) =(κα̂ + σSσδρSδ)((1− e−κT )− κT )
κ2 − σ2

δ (4(1− e−κT )− (1− e−2κT )− 2κT )
4κ3

− (am̂+ σSσrρSr)((1− e−aT )− aT )
a2 − σ2

r(4(1− e−aT )− (1− e−2aT )− 2aT )
4a3

+ σδσrρδr

((1− e−κT ) + (1− e−aT )− (1− e−(a+κ)T )
κa(κ+ a)

+ a2(1− e−κT ) + κ2(1− e−aT )− κa2T − aκ2T

κ2a2(κ+ a)

)
(5.7)

Given that the future price is the delivery price at time T , we would need to discount
this future price to present value to obtain the prepaid forward, mathematically,

P (S, δ, r, T ) = EQ
[
exp

(
−
ˆ T

0
r(s) ds

)
S(T )

∣∣∣∣Ft
]
. (5.8)

where P denotes the price of a prepaid forward for the commodity. [Schwartz (1997)] pre-
sented the PDE of the prepaid forward as well as its solution:

1
2σ

2
SS

2PSS + 1
2σ

2
δPδδ + 1

2σ
2
rPrr + σSσδρSδSPSδ + σrσδρδrPδr + σSσrρSδSPSr

+ (r − δ)SPS + κ(α̂− δ)Pδ + a(m∗ − r)Pr − PT = rP.

P (S, δ, r, T ) = S exp
[
−δ(1− e−κT )

κ
+D(T )

]
.

(5.9)

where

D(T ) = (κα̂ + σSσδρSδ)((1− e−κT )− κT )
κ2 − σ2

δ (4(1− e−κT )− (1− e−2κT )− 2κT )
4κ3 . (5.10)

Therefore, by setting the maturity to be T − t and denoting PT (t) := P (S, δ, r, T − t),
the dynamics of this prepaid forward is

dPT (t) = r(t)PT (t) dt+ ∂PT (t)
∂S

SσS dWQ
1 (t) + ∂PT

∂δ
(t)σδ dWQ

2 (t). (5.11)
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Going back to the real-world probability, the dynamics would be
dPT (t)
PT (t) = (r(t) + λSσS − AT−tλδσδ) dt+ σS dW1(t)− AT−tσδ dW2(t). (5.12)

where AT−t = 1−e−κ(T−t)

κ
≥ 0.

This dynamics indicates that the value of this prepaid forward PT (t) is affected by two
Brownian motions: WQ

1 (t) and WQ
2 (t). Moreover, the excess returns (i.e. λSσS − AT−tλδσδ)

on prepaid forwards are also impacted by their maturities. Larger maturities T − t result in
smaller returns and smaller volatilities.

Dynamics of bonds

We consider investing in a bond due to the presence of a stochastic interest rate r(t). The
price of the bond with a maturity of T under the risk-neutral measure is as follows:

P (t, r(t);T ) := P (t, r(t)) = exp(−IT−tr(t) + JT−t) (5.13)

where
IT−t = 1− e−a(T−t)

a

JT−t =
(
m− σ2

r

2a2

)
(I(t;T )− (T − t))− σ2

r

4aI
2
T−t.

(5.14)

For simplicity, we can define the “infinity yield” as y∞ := m− σ2
r

2a2 .

In the risk-neutral measure, the bond price follows a PDE:

Pt + Pr(κ(r̄ − r)) + σ2
r

2 Prr = rP. (5.15)

Transforming to a real-world measure using Girsanov’s theorem, the joint dynamics for the
bond and the interest rate are

dr(t) = [a(m− r(t))− λrσr] dt− σr dW1(t)
dP (t, r(t)) = (r(t) + λrσrIT−t)P (t, r(t)) dt+ IT−tσrP (t, r(t)) dW1(t).

(5.16)

Therefore, for the return on the bond λrσrIT−t is the excess return.

5.2.3 Portfolio Wealth Process

Now, we consider a portfolio consisting of multiple prepaid forwards with different maturities
T1, ..., Tn, a bank account and the bond. Let π1, π2, . . . , πn and πn+1 be the amount of wealth
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invested into the n prepaid forwards and the bond respectively. We write �[0, T ] for the
set of all admissible strategies; that is, Ft-progressively measurable processes with sufficient
integrability conditions for the optimization problem to be well defined.

We work with portfolio managers who prefer to invest in the commodity rather than
to physically possess or consume it; they use what is called rollover investments. Here, we
consider rollover investment of the prepaid forwards and the bond by setting τi = Ti− t and
τ respectively. In this setting, the dynamics of the portfolio wealth will be

dX(t) =
(
r(t)X(t) + πTσλ

)
dt+ πTσ dW (t) (5.17)

where

π =



π1

π2
...
πn

πn+1


, σ =



σS −Aτ1σδ 0
σS −Aτ2σδ 0
...
σS −Aτnσδ 0
0 0 Iτσr


. (5.18)

5.2.4 The Robust Portfolio Optimization Problem

As per the setting of [Maenhout (2004)], there is a reference model, Equation (5.4), which
offers the best representation of the data to the investor. Alternative models also exist
that cannot be statistically distinguished from the former model. Girsanov’s theorem for
correlated Brownian motions allow us to generate alternative models via a perturbation u:

dQu

dP = exp
(
−
ˆ T

0
uT (t) dW (t)−

ˆ T

0
uT (t)ρ−1u(t) dt

)
(5.19)

where

ρ =


1 ρSδ ρSr

ρSδ 1 ρδr

ρδr ρSδ 1

, dW (t) =


dW1(t)
dW2(t)
dW3(t)

, and u(t) =


u1(t)
u2(t)
u3(t)

 (5.20)

We write U [0, T ] for the set of all Ft-progressively measurable processes such that the Radon–
Nikodým derivative process is well defined. Using the change of measure P to Qu, the dy-
namics become

dS(t) = (r(t)− δ(t) + λSσS − σSu1(t))S(t) dt+ σSS(t) dWQu

1 (t)
dδ(t) = [κ(α− δ(t))− σδu2(t)] dt+ σδ dWQu

2 (t)
dr(t) = [a(m− r(t)) + σru3(t)] dt− σr dWQu

3 (t)

(5.21)
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Therefore, with the changed drift, the dynamics for the prepaid forward becomes

dPT (t)
PT (t) = (r(t) + (λS − u1(t))σS − AT−t(λδ − u2(t))σδ) dt+ σS dWQu

1 (t)− AT−tσδ dWQu

2 (t).

(5.22)
and the wealth process is

dX(t) =
(
r(t)X(t) + πTσ(λ− u(t))

)
dt+ πTσ dWQu(t). (5.23)

Now, we construct the formal optimization problem. We consider an ambiguous investor
with CRRA utility who wants to maximize the expected utility from terminal wealth XT .
As per [Andreson et al. (2003)], the value function shall include a penalty term that can be
interpreted as the relative entropy for deviating from the reference model. We adopt the
most analytically favorable setting of [Maenhout (2004)]:

J(t, x, r) = sup
π

inf
u
E
[
J(1− γ)

2

ˆ T

t

uT (t)β−1
ρ u(t) dt+ U(XT )

]
(5.24)

where ρ = BBT is a Cholesky decomposition with

B =


1 0 0
ρSδ

√
1− ρ2

Sδ 0

ρSr
ρδr−ρSδρSr√

1−ρ2
Sδ

√
1−ρ2

δr
−ρ2

Sδ
−ρ2

Sr+2ρSrρδrρSδ√
1−ρ2

Sδ

. (5.25)

Here, β = diag(β1, β2, β3) is the diagonal matrix of parameters representing ambiguity-
aversion levels on the underlying processes: interest rate, convenience yield and the spot
commodity. For simplicity we have βρ := BβBT and U(x) = x1−γ

1−γ .

5.3 Solution to the Robust Portfolio Problem

Given the wealth process, we derive the HJBI equation for Equation (5.24):

sup
π

inf
u

{
Jt + Jx(rx+ πTσ(λ− u)) + 1

2Jxxπ
TσρσTπ + [a(m− r) + σrur]Jr + 1

2Jrrσ
2
r

− JxrπTσρrσr + J(1− γ)
2 uTβ−1

ρ u
}

= 0,
(5.26)

where we set ρr = dW (t) dW3(t) = [ρSr, ρδr, 1]T dt. Proposition 5.3.1 gives the solution to
Equation (5.26), assuming an exponential affine form of the value function.
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Proposition 5.3.1. The solution to Equation (5.26) is J(t, x, r) = x1−γ

1−γ exp(A0(t)+A1(t)r),
where

A1(t) = 1− γ
a

(1− e−a(T−t))

A0(t) = 1− γ
2 λT (γρ+ βρ)−1λ(T − t)

+
(
am+ λT (γρ+ βρ)−1(−ρr(1− γ) + βρe3)σr

)1− γ
a

[
T − t− 1

a
(1− e−a(T−t))

]
+ σ2

r

2

(
1− e

T
3 βρe3

1− γ + 1
1− γ (−ρr(1− γ) + βρe3)T (γρ+ βρ)−1

× (−ρr(1− γ) + βρe3)
)

× (1− γ)2

a2

[
T − t− 2

a
(1− e−a(T−t)) + 1

2a(1− e−2a(T−t))
]
.

(5.27)

Proof. See Appendix E.1.1.

We discuss the completeness of market in Proposition 5.3.2. This result demonstrates
that a complete market requires at least two prepaid forwards (one could be the spot price)
and a bond to control for the sources of risk in the model.

Proposition 5.3.2. Let Jπ|m,s denote the value function when investing in m prepaid for-
wards, and s ∈ {0, 1} indicates the existence of bonds (s = 1 if the bond exists, s = 0
otherwise); then, we have

• Jπ|n>2,s = Jπ|n=2,s ≥ Jπ|n=1,s,

• Jπ|m,1 ≥ Jπ|m,0

Proof. Proving that Jπ|n>2,s ≥ Jπ|n>2,s is equivalent to proving it in a semi-definite sense. For
n > 2, we can see that the supremum in Equation (E.2) can be transformed into:

sup
σTπ

{
Jt + Jxrx+ πTσ

(
Jxλ− Jxrρrσr + JxJr

βρe3σr
J(1− γ)

)
+ a(m− r)Jr + 1

2Jrrσ
2
r

− J2
r e

T
3 βρe3

2J(1− γ)σ
2
r + 1

2π
Tσ

(
Jxxρ−

J2
x

J(1− γ)βρ
)
σTπ

}
= 0.

(5.28)
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In our setting, the matrix Jxxρ− J2
x

J(1−γ)βρ is assumed to have a full rank of 3. Therefore, to
achieve the supremum, one must have span(σTπ) = R3, which can be ensured if n ≥ 2 with
the form of σ in Equation (5.18).

However, if n ≤ 1 or s = 0, then span(σTπ) is a subspace of R3. In this case, the optimal
value will not be achieved except when the optimal point σTπ∗(t) is in the subspace, which
would not be possible.

This means that, in our setting, the utility of investing into two prepaid forward is higher
than investing in one prepaid forward. Moreover, investing in three or more prepaid forwards
would not generate a higher utility. Lastly, including a bond investment also leads to a higher
utility.

If we have a complete market with the least number of prepaid forwards, the matrix σ
is an invertible 3× 3 matrix. Then, the optimal investment allocation becomes

π∗(t) = −(σT )−1
(
Jxxρ−

J2
x

J(1− γ)βρ
)−1(

Jxλ− Jxrρrσr + JxJr
βρe3σr
J(1− γ)

)

= x
[
σ(γρ+ βρ)σT

]−1
σλ

+ x
[
σ(γρ+ βρ)σT

]−1
σA1(t)

(
−ρr + βρe3

1− γ

)
σr.

(5.29)

The expression of the optimal allocation has two components: a Merton’s type, myopic
term, which is driven by all three market prices of risk λ (i.e. spot price, convenience yield
and interest rate) and a time-dependent term driven by the stochastic nature of the interest
rates.

In addition, the expression shows that the variability of the proportion of wealth allocated
to risky assets over time (i.e. π

x
) should be small, given that σr, the volatility of interest rate

is sufficiently small.

Theorem 5.3.1. Minkovski’s theorem holds for change of measure u∗(t), given a well defined
|A1(t)| < ∞ for 0 ≤ t ≤ T . Hence π∗ is the optimal strategy in the worst-case scenario
provided that the change of drift term, u∗(t) is a pure function of t.

Proof. See Appendix E.1.2.
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5.3.1 Wealth-Equivalent Loss Analysis

In this section we study WELs implied by a variety of important suboptimal allocations of
the form πs(t) = xh(t), where h(t) is a deterministic function.
The objective function associated with the suboptimal strategy πs(t) can be defined as
follows:

Jπs(t, x, r) = inf
u
E
[
J(1− γ)

2

ˆ T

t

uT (t)β−1
ρ u(t) dt+ U(XT )

]
(5.30)

The HJB equation for Equation (5.30) is

inf
u

{
Jt + Jx(rx+ πTs (t)σ(λ− u)) + 1

2Jxxπ
T
s (t)σρσTπs(t) + [a(m− r) + σrur]Jr

+ 1
2Jrrσ

2
r − JxrπTs σρrσr + J(1− γ)

2 uTβ−1
ρ u

}
= 0.

(5.31)

The solution to Equation (5.31) is given in Proposition 5.3.3.

Proposition 5.3.3. The optimal solution to Equation (5.31) is Jπs(t, x, r) = x1−γ

1−γ exp(As0(t) + rAs1(t)),
where

As1(t) = 1− γ
a

(1− e−a(T−t))

As0(t) =
ˆ T

t

−(1− γ)
2 hT (s)σ(γρ+ βρ)σTh(s) + 1

2A
2
1(s)σ2

r

(
1− e

T
3 βρe3

1− γ

)

+ amA1(s) + hT (s)σ((1− γ)λ+ A1(s)(−(1− γ)ρr + βρe3)σr)
]

ds

(5.32)

Proof. See Appendix E.1.3.

Now, we are ready to define the wealth-equivalent “utility” loss (WEL), which is the L
solution to the equation Jπs(t, x, r) = J(t, x(1− Lπs), r), this is:

Lπs = 1− exp
(
As0(t)− A0(t)

1− γ

)
, (5.33)

where one should note that A1(t) = As1(t). We consider two general families of suboptimal
strategies and therefore two sources of WEL.
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Misspecification of Parameters

The most important suboptimal strategies are the result of selecting embedded models; this
can hence be seen as wrong choice of parameter values. We denote the set of mis-specified
parameters with a hat (e.g. σ̂). Then the suboptimal investment allocation would be:

h(t) =
[
σ̂
(
γρ̂+ β̂ρ̂

)
σ̂T
]−1
σ̂

λ̂+ A1(t)
−ρ̂r + β̂ρ̂e3

1− γ

σ̂r
. (5.34)

Plugging this investment into Equation (5.30) returns a closed-form solution for Jπs ,
which is not listed here for the sake of simplicity. In particular, this allows us to study the
impact of misspecification on the single most difficult parameter to estimate from financial
time series, namely, the market price of risk (i.e. λ) for an investor who ignores ambiguity
aversion on any of the factors (e.g. β̂i = 0 for some i). The next proposition provides some
insight into the implied WEL.

Proposition 5.3.4. Keeping all parameters constants, the WEL from assuming the alter-
native ambiguity matrix β̂ is a quadratic function of λ.

Proof. See Appendix E.1.4.

We can therefore study the impact of ignoring the ambiguity-aversion on a particular
factor (e.g. first factor) by setting β̂ = diag(0, β2, β3), in terms of the factor’s market price
of risk (λ1). As a result, the matrix affecting λ is

(γI + β) 1
2 (γI + β̂)−1 − (γI + β)− 1

2 =


β1

γ
√
γ+β1

0
0

. (5.35)

Therefore, the matrix form B in Equation (5.25) gives us

(
(γI + β) 1

2 (γI + β̂)−1 − (γI + β)− 1
2
)
B−1λ (5.36)

which, together with Equation (E.17), means that WEL depends only on λ1 in a quadratic
form.
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Incomplete Markets

An incomplete market means a constraint on allocation, in particular πi = 0 for some
i ∈ {1, 2, 3} in Equation (5.26).

sup
π|πi=0

inf
u

{
Jt + Jx(rx+ πTσ(λ− u)) + 1

2Jxxπ
TσρσTπ + [a(m− r) + σru3]Jr + 1

2Jrrσ
2
r

− JxrπTσρrσr + J(1− γ)
2 uTβ−1

ρ u
}

= 0.
(5.37)

In this case, the optimal solution to such constrained problem is required, which is presented
in the corollary next.
First, let us use the notation “|−1

(i,j)∈{(i,j):πi,πj 6=0}” for the inverse of the matrix whose rows
and columns are constrained so that the corresponding investment allocation is not 0, while
keeping other elements to 0. For example,


a11 a12 a13

a21 a22 a23

a31 a32 a33


∣∣∣∣∣∣
−1

(i,j)∈{1,2}

=


 a11 a12

a21 a22

−1

0

0 0

 (5.38)

Corollary 5.3.1.1. The optimal investment allocation using Equation (5.37) is

πs(t) = xPσ

(
λ+ A1(t)

(
−ρr + βρe3

1− γ

)
σr

)
. (5.39)

where
P =

[
σ(γρ+ βρ)σT

]∣∣∣∣−1

(i,j),πi,πj 6=0
. (5.40)

Proof. See Appendix E.1.5.

5.4 Empirical Analysis

The data we used to estimate the parameters related to the commodity and convenience
yield are spot prices from WTI quotes ∗. We also utilized NYMEX future prices of 1- to
4-month horizons †, which are available from the U.S. Energy Information Administration.

∗https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
†https://www.eia.gov/dnav/pet/pet_pri_fut_s1_d.htm
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For interest rate data, we used the 1-month Treasury Constant Maturity Rate‡ available
from the Federal Reserve Bank of St. Louis. We fit the data between Aug 2001 and Jan
2020, which avoided the shock due to the Covid-19 pandemic.

Similarly to the setting of [Mellios et al. (2016)], we invested in a spot commodity (τ = 0)
and a prepaid forward with a maturity of one quarter (τ2 = 1/4). The parameters are
estimated in Section 5.4.1 and summarized in Table 5.1. In particular, the parameters of
ambiguity-aversion and risk aversion come from [Flor and Larsen (2013)], where we assumed
a larger range of ambiguity aversion for convenience yield due to its unobservability (hidden
Markov process) and therefore the extra difficulty for an investor to trust the reference
parameters (higher uncertainty)§. Section 5.4.2 presents the optimal strategies and the WELs
from suboptimal strategies.

5.4.1 Estimation of Parameters

Referring to [Schwartz (1997)], the parameters in a real-world measure can be estimated
through discretizing Equation (5.4). We assume the time variable t is partitioned into
0 = t0 < t1 < · · · < tN = T , where time difference ∆t = T

N
.

Define Xi = lnS(ti), δi = δ(ti), ri = r(ti) and ∆Wj(ti) = Wj(ti+1) −Wj(ti) ∼ N(0,∆t).
The discretized process is as follows:

Xi+1 −Xi = (ri + λSσS − δi −
1
2σ

2
S)∆t+ σS∆W1(ti)

δi+1 − δi = κ(α− δi)∆t+ σδ∆W2(ti)
ri+1 − ri = a(m− ri)∆t− σr∆W3(ti)

(5.41)

which can help us to obtain the estimates of all above-mentioned parameters and the corre-
lation between the Brownian motions W1(t),W2(t),W3(t).

For the mean-reverting level parameters m̂ and α̂, we use the expression of log commodity
future price based on Equation (5.6)

lnFi,j = lnSi −
δi(1− e−κT )

κ
+ ri(1− e−aT )

a
+ C(τj) (5.42)

where Fi,j := F (S(ti), δ(ti), r(ti), Tj), and ti, τj are current times and the time to maturi-
ties respectively. Furthermore, m̂ and α̂ can be estimated from the formula of C(T ) (i.e.
Equation (5.7)).

‡https://fred.stlouisfed.org/series/DGS1MO
§See [Escobar et al. (2015)] for a similar situation of unobservable processes, and a detection-error-

probability analysis concluding aa feasible large range for ambiguity-aversion levels.
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Given the relationship between the log future price in Equation (5.42) and the stochastic
processes in Equation (5.41), we combine the MLE of parameters with a KF. We create
a system of a state-space model with regard to log future prices and convenience yield, as
indicated below. Given the data of future prices, spot prices and interest rate, we define the
known term

Gi,j := lnFi,j − lnSi −
ri(1− e−aTj)

a
(5.43)

where i, j represent the time and the time to maturity, respectively. Using the notation of
Gi,j, our state-space model is changed into

δi+1 = κα∆t+ (1− κ∆t)δi + σδ∆W2(ti)
Gi = A+Kδi + vi.

(5.44)

where wi = σδ∆W2(ti) ∼ N(0, σ2
δ∆t), Gi,j is the given measurement, δi is the state model to

be estimated, and

Gi =


Gi,1

Gi,2

Gi,3

Gi,4

, A =


C(τ1)
C(τ2)
C(τ3)
C(τ4)

, K =


− (1−e−κT1 )

κ

− (1−e−κT2 )
κ

− (1−e−κT3 )
κ

− (1−e−κT4 )
κ

, vi =


vi,1

vi,2

vi,3

vi,4

 ∼ N(0, R) (5.45)

where we set R = diag(σ1, σ2, σ3, σ4).

Due to the absence of sufficient time to maturities, we cannot directly estimate all co-
efficients in C(T ) from Equation (5.7). Rather, we approximate the term C(T ) via Taylor
expansion on ex,

(1− e−κT )− κT
κ2 = 1− (1− κT + 1/2κ2T 2 +O(T 3))− κT

κ2

= 1
2T

2 +O(T 3)

4(1− e−κT )− (1− e−2κT )− 2κT
4κ3 = 4(κT − 1/2κ2T 2 +O(T 3))

4κ3

− (2κT − 1/2(2κT )2 +O(T 3))− 2κT
4κ3 = O(T 3)

(1− e−κT ) + (1− e−aT )− (1− e−(a+κ)T )
κa(κ+ a) + a2(1− e−κT ) + κ2(1− e−aT )− κa2T − aκ2T

κ2a2(κ+ a)
= O(T 3)

(5.46)
By omitting the term O(T 3), the approximation of C(T ) is

C(T ) ≈ [(κα̂ + σSσδρSδ)− (am̂+ σSσrρSr)]
T 2

2 := bT 2, (5.47)

and the parameters to be estimated hence become b, and A = b[τ 2
1 , τ

2
2 , τ

2
3 , τ

2
4 ]T .
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Parameters

Convenience Yield

Mean-reverting rate κ 4.3799
Risk-neutral measure α̂ -11.94%
Real-world measure α -3.76%
Market price of risk λδ 0.9344

Volatility σδ 38.33%

Interest Rate

Mean-reverting rate a 0.2131
Real-world measure interest m 0.77%

Market price of risk λr 0.6731
Volatility σr 0.80%

Commodities

Market price of risk λS 0.1322
Volatility σS 29.86%
Maturity 1 τ1 0
Maturity 2 τ2 1/4

Correlation
Commodity and convenience yield ρSδ 49.65%

Commodity and interest rate ρSr 3.51%
interest rate and convenience yield ρrδ -1.04%

Objective Function

Time horizon T 10
Relative risk aversion γ 4
Ambiguity Parameter 1 β1 3
Ambiguity Parameter 2 β2 3,6,9
Ambiguity Parameter 3 β3 3

Table 5.1: Parameters from calibration

5.4.2 Optimal Strategy and Suboptimal Analysis

In this section, we first demonstrate the impact of convenience yield parameters on the
optimal strategy. Then we study WEL in three different context. First, we analyze WEL
for a misspecification of covariance-related parameters in Section 5.4.2. This is a type of
misspecification not accounted for by ambiguity-aversion in the setting of [Maenhout (2004)].
It addresses the impact on wealth of using a wrong value for a parameter, any strategy
produced with the wrong value (e.g. bad estimate) of a parameter would be suboptimal
compared to the strategy produced by the true value of the parameter. The section shed
light on how serious estimation inaccuracy could be on the WEL. Section 5.4.2 addresses
WEL in a second context, this is as a consequence of an investor disregarding its own true
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level of ambiguity-aversion. This means the investor acts as if she has perfect knowledge of
the true distribution of the underlying factors (stock, interest rate and convenience yield),
i.e. as if β = 0. Such behaviour would be suboptimal if there is clear evidence, e.g. due to lack
of data or expertise, that the investor do not know with total confidence those distributions,
i.e. β > 0. Another common reason why investors may choose the β = 0 solution, even
when acknowledging aversion to ambiguity, is due to the lack of a mathematical framework
and closed-form solutions to implement their intentions (e.g. solely risk-averse solutions are
well known); this paper fill this gap for the first time on commodity investors. It is also
important to notice that the ambiguity-averse solution (β > 0) comes from a worst-case
analysis axiomatized in [Gilboa and Schmeidler (1989)]. It is common to think that investors
would be better off using a non-ambiguous solution as this would avoid the apparent penalty
embedded in taking a worst-case solution. To see the pitfall in the reasoning here, one can use
the insight from Section 5.4.2; which clearly demonstrates that using the wrong value of the
parameter (acting as if it were correct) could lead to huge WEL consequences. The robust
analysis theory provides a sound and optimal approach to handle such lack of knowledge.
Lastly, Section 5.4.2 focuses on a third context of WEL. Here, we study the implications of
investors acting as if the market were incomplete, i.e. not hedging all sources of randomness
impacting prices and therefore using the incomplete market solution. Such solution would
be suboptimal in the context of solutions hedging all risk (a.k.a complete market solution).
This is a very common and costly mistake, documented in many papers in the area. Given
the lack of analysis on convenience yield, we focus on incompleteness due to failing to hedge
convenience yield movements.

Impact of Parameters on Optimal Strategy

Figure 5.1 illustrates the relationship between the optimal allocation versus one of the four
parameters associated with the convenience yield: σδ, ρSδ, α and κ, while keeping all other
parameters constant. These parameters have little impact on the size of the investment in
bonds, although there is a slight decrease in the allocation to bond in terms of ρSδ, α and κ.
This is likely explained by the low positive correlation between interest rates and convenience
yield (i.e. negative correlation between the return on the bond and convenience yield).

In contrast, all of the parameters significantly impact investments in the two prepaid
forwards. The investments in the prepaid forwards looks symmetrical, which means that,
on the one hand, the absolute allocation in these risky assets remain constant for changes
in these parameters. On the other hand, it highlights a so-called “mis-match investment of
maturity”. The reason for this comes from Equation (5.12), i.e. a shorter maturity implies
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Figure 5.1: Fractional investments in assets

a larger excess return on the commodity and smaller variance (if ρSδ ≥ 0) hence more
profitability. Moreover, a larger maturity could lead to prepaid forward negatively correlated
to shorter maturities, thus explaining the shift from negative to positive positions.

A larger volatility σδ, and a small mean-reverting rate κ tend to decrease the scale of
the mis-match investment. The decreasing trend with regard to σδ is due to the products
becoming less appealing to risk-averse investors. Smaller mean-reverting rate κ results in
a smaller market price of risk AT−tλδ and volatility AT−tσδ, this can also be seen from
Equation (5.12). As a result, the increase in overall volatility impacts more than the increase
in the drift. Therefore, additional investment is allocated to the shorter-maturity Forward 1.
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Parametric Misspecification of Convenience Yield

Figure 5.2 displays WELs with regard to a mis-specified volatility of the convenience yield,
as well as misspecifications of the correlations between convenience yield and the other two
factors (spot price and interest rate).
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Figure 5.2: Loss versus volatility of convenience yield

All three plots exhibit relatively large losses due to discrepancies in the real value of the
parameters. It must be noted that these are parameters that are not controlled by the robust
approach in [Maenhout (2004)], as these are covariance related and therefore they can not
be perturbed via a Girsanov change of measure.

The left plot demonstrates that working with smaller-than-true convenience yield volatil-
ities could be more damaging than working with larger-than-true volatilities. For instance
a smaller mis-specified volatility, σ̂δ, of approximately 0.15, when the true volatility is 0.38,
could result in close to 99.5% WEL. This means that a 5-cent investment by an optimal
investor can produce the same utility as a 1-dollar investment for the suboptimal manager.
On the other hand, using a σ̂δ of about only 1 leads to a 30% WEL.

For a mis-specified ρ̂Sδ, the perfect correlations (−1 and 1) lead to roughly a 50% WEL.
In contrast, a mis-specified ρ̂δr to −1 and 1 leads to 95% and 25% WELs respectively. This
indicates that misspecifications of convenience yield correlations play a lesser role in the
performance of a commodities portfolio.
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Ignoring Ambiguity-Aversion

Similarly to [Branger and Larsen (2013)] and [Escobar et al. (2015)], among others, we com-
pute the WEL when an ambiguity averse-investor decides to follow the portfolio allocation
that either ignores model uncertainty or works with the wrong level.

For the left-most in Figure 5.3, we assume the actual level of ambiguity-aversion is βi = 3,
for i = 1, 2, 3, but the investor acts suboptimally; that is, our computation uses the strategy
from Proposition 5.3.1 while forcing either β̂1 = 0 (i.e. ignoring spot price uncertainty),
β̂2 = 0 (i.e. ignoring convenience yield uncertainty) or β̂3 = 0 (i.e. ignoring interest rate
uncertainty). Each subfigure in Figure 5.3 hence displays the WEL for each of the three
uncertainties separately, as well as a fourth curve capturing the joint WEL (i.e. the investor
ignores all uncertainty β̂1 = β̂2 = β̂3 = 0). The second and third subfigures repeat the analysis
assuming β2 = 6 and β2 = 9 respectively. This means we allow for a higher ambiguity-
aversion on convenience yield because it is unobservable, and its parameters can therefore
be estimated less accurately.

As can be seen, convenience yield ambiguity version plays the larger role in WEL. In par-
ticular, ignoring convenience yield uncertainty can lead to WELs ranging from 34% (β2 = 3)
to 89% (β2 = 9). Furthermore, ignoring interest rates uncertainty leads to WELs between
17% and 52%, while spot uncertainty ranges from 0.01% to 48%. The low WELs on spot
prices are due to the low value of the market price of risk on the commodity (λS = 0.1322),
while the simultaneous increase on all WELs from Subfigure 1 Subfigure 3 is due the corre-
lation among the factors. Particularly interesting to see is that ignoring uncertainty on all
factors together leads to WEL from 43% to 91% for the WTI, highlighting the subadditivity
of WEL in the context of commodity uncertainty.

Wealth-Equivalent Loss due to Incomplete Market

It is well known that incomplete markets are a major cause of poor performance in portfolios;
see [Liu et al. (2005)]. In this section, we compare the WELs for three types of incomplete
markets: absence of a prepaid forward of shorter maturity (e.g. spot price), the absence of
longer maturity prepaid forward, and the absence of bonds. We also investigate the extreme
case of a cash-only investment.

As indicated in the left of Figure 5.4, the smallest WEL comes from the absence of bonds,
and it stands at 35%, which is non-negligible. Moreover, incompleteness due to not investing
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Figure 5.3: Wealth-equivalent loss for ignoring ambiguities

in the spot commodity leads to a larger WEL of approximately 49.5%, while not investing in
the longer-maturity prepaid forward yields the largest WEL at 50.5%. Hence, incompleteness
due to spot commodity investment is slightly less damaging than avoiding prepaid forwards.

Moreover, the absence of all assets (only investing into a bank account) leads to a WEL
of about 69%, confirming again the subadditivity of the individual losses.
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Figure 5.4: Wealth-equivalent loss comparison
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5.5 Conclusion

In this thesis we studied model uncertainty in the context of portfolio analysis for the asset
class of commodities. We focused on a popular model among practitioners (Model III in
[Schwartz (1997)]) that highlights the three more important known factors explaining com-
modity term structures, namely, spot prices, convenience yields and interest rates. We are
the first to compare the impact of these three potential sources of uncertainty on the per-
formance of a portfolio.
In this study we took advantage of the affine structure of the model and the analytical robust
portfolio setting of [Maenhout (2004)] to derive closed-form solutions for an ambiguity-averse
utility of terminal wealth maximizer investor. We estimated the parameters of the full model
using empirical data on oil future prices and short rates via a combination of MLE and KF.
Our empirical analysis demonstrates that convenience yield is the most influential source of
uncertainty for a commodities manager. For WTI, convenience yield is twice as critical as
bond prices and substantially more important than spot prices, even under mild assumptions
of ambiguity-aversion. For copper, it quickly becomes the most important factor albeit for
higher ambiguity-aversion values (β2 = 7 versus β3 = 3). The convenience yield covariance-
related parameters are also critical in terms of damages to the performance of the portfolio
due to estimation imprecisions. As a byproduct, we observe that hedging the convenience
yield source of risk (i.e. completing the market in terms of convenience yield) is of higher im-
portance compared to the randomness or market-incompleteness from spot prices or interest
rates.
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Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we study applications of stochastic optimal control to two types of prob-
lems. First we anayzed differential games in energy market. We set minimal-production
and minimal-profit bounds on an asymmetric-cost differential game model and compute the
profit functions of each player. We also incorporate a GBM process affecting the price and
production costs and successfully solve the profit function using a Puiseux series. This re-
search makes three contributions to this topic. First, given the asymmetric-cost differential
game model, we analyze the effects of bounds on the production and profit of players for
different production costs. Second, we analyze the effect of a stochastic factor which affects
energy prices and costs on the solution to the asymmetric-cost differential game. Third, we
successfully apply the two models to real-world data and forecast production.

Next we perform a study of the construction of portfolios including commodities and fixed
income instruments. We determine the robust optimal investment strategy for commodity
prices following an exponential-OU model combined with stochastic interest rate. In addition,
we find optimal investment for a three-factor price model. We achieve two contributions there.
First, we develop the robust optimal investment into spot commodities, prepaid forwards, a
bond and a risk-free bank account. Second, we analyze the effects of parametric (e.g. drifts,
correlations, volatility, etc) misspecifications on the wealth-equivalent losses, with empirical
analysis of WTI, gold and copper data.

Our studies provide an insight on the application of differential game models in an energy
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market and portfolio investments. With our differential game model, energy producers, such
as oil countries and companies, may design their own production strategies and analyze
the behaviours of their opponents. Commodity investors may use our results to adapt their
investment strategy to better prepare for uncertainty in the distributions. Our studies are of
academic value for future researchers. In this thesis, existing models are extended by adding
multiple marco-economic and financial factors.

6.2 Future Works

Although we successfully make considerable contributions to differential game in energy
market and robust portfolio, our models still face numerous limitations. As such, several
extensions can be accomplished in the future in both theoretical and practical ways. Further
investigations could, without being constrained to, include the followings:

• The single GBM stochastic factor in Chapter 3 can be developed into multiple factors
affecting price and costs. This extension would enable the model to accommodate a
more complicated energy market with more factors, such as extreme disasters, economic
boomings, technology development, etc.

• The assumption of r > 2µ + σ2 in Chapter 3 directly refer to [Brown et al. (2017)].
But in reality, if r corresponds to interest rate, r cannot be larger than the economic
growth. Therefore, we may set a finite time horizon over [0, T ].

• In the application of differential game model to real world in Appendix C, the re-
maining resource is not a completely observable variable, due to existence of enormous
undiscovered energy source in the world. Therefore, it is meaningful to incorporate the
effect of both proven reserve and undiscovered reserves.

• Chapter 4 and Chapter 5 assumed constant volatilities in the robust investment in
commodities. Yet, the volatilities should be fluctuating and unobservable all the time,
depending on the changing financial environments. Hence, it is worthwhile to consider
stochastic volatilities in commodity price models.

• The convenience yield in Chapter 5 is a simple mean-reverting model. This model,
while adding randomness, does not directly affect investor’s utility of future. It would
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be interesting to investigate if and how a more complicated model for the convenience
yield would influence investor’s utility.
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Appendix A

Appendix to Chapter 2

A.1 Nash Equilibrium Computation in Example 2.3.1

q∗1 = 1 +∑N−1
i=1 si −Nsn
N

= 1 + 0.05 + 0.2
3 − 0.05 = 0.3667

q∗2 = 1 +∑N−1
i=1 si −Nsn
N

= 1 + 0.05 + 0.2
3 − 0.2 = 0.2167.

(A.1)

In the Nash equilibrium, the profits for the two players become

G1 =
(

1 +∑N−1
i=1 si −Nsn
N

)2

= 0.36672 = 0.1344

G2 =
(

1 +∑N−1
i=1 si −Nsn
N

)2

= 0.21672 = 0.0469.
(A.2)

If player 1 were to increase the production to q1 = 0.4 slightly, then for player 2, the
optimal q2 = 1−0.4−0.2

2 = 0.2. Then the profit becomes

G1 = q1(1− q1 − q2 − s1) = 0.4(1− 0.4− 0.2− 0.05) = 0.1400
G2 = qn(1− q2 − q1 − s2) = 0.2(1− 0.4− 0.2− 0.2) = 0.0400.

(A.3)

A.2 Proof of Lemma 2.3.1

From the definition of Lambert-W function, z = W (z)eW (z), we can compute the derivative
for W (z) to be

W ′(z) = W (z)
z(1 +W (z)) . (A.4)
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Therefore, the derivative for v(x) is

v′(x) = 2a2

b
θ′(x)W ′(θ(x))(1 +W (θ(x)))

= −aθ(x)(1 +W (θ(x))) W (θ(x))
θ(x)(1 +W (θ(x)))

= −aW (θ(x))

(A.5)

Then, it is easy to see that

(a− v′(x))2 = a2(1 +W (θ(x)))2 = bv(x). (A.6)

So the solution satisfies the ODE. Moreover, it also satisfies the initial condition

v(0) = a2

b
(1 +W (βeβ))2 = a2

b
(1− β)2 = v(0). (A.7)

A.3 Proof of Proposition 2.3.3

By combining Equation (2.43) and Equation (2.44), and considering the first blockading
point xN−1

b , we can compute that

W (θN(xN−1
b − xNb )) = −δN−1

an
. (A.8)

Therefore, by the definition of the Lambert-W function and since xNb = 0, the first
blockading point xN−1

b is

xN−1
b = 1

µN

(
−1 + δN−1

aN
− log

(
δN−1

aN

))
(A.9)

where we define µn = bn
2an = r

2an

(
n+1
n

)2
. Inserting Equation (A.8) into Equation (2.40) in the

case of n = N reveals that

v(xN−1
b ) = 1

r
(sN−1 − s0 − δN−1)2. (A.10)

Let K = min{n : δn > 0}. Then the infinite-reserve producers K,K + 1, . . . , N − 1 have
blockading points. Now we find other blockading points xKb , xK+1

b , . . . , xN−2
b .

By a similar calculation as for v(xN−1
b ), it can be computed that for n ∈ {K,K +

1, . . . , N − 1}

v(xn−1
b ) = 1

r
(sn−1 − s0 − δn−1)2 = a2

n

bn
(1 +W (θn(xn−1

b − xnb )))2. (A.11)
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By taking xn−1
b −xnb out of the Lambert-W function, Equation (A.11) can indicate the relation

between xn−1
b and xnb as

xn−1
b = xnb + 1

µn

(
log
(
δn
δn−1

)
− (n+ 1)(sn − sn−1)

an

)
. (A.12)

where n = K,K + 1, . . . , N − 1.

We already know that the left limit

lim
x→xn

b
−0
v′(x) = −an+1W (θn+1(xnb − xn+1

b )) = δn, (A.13)

Given these v(xnb ) = 1
r
(sn − s0 − δn)2, we can compute

lim
x→xn

b
+0
v′(x) = −anW (θn(0)) = an −

√
bnv(xnb ) = an −

n+ 1
n

(sn − s0 − δn)

= 1 +∑n−1
i=1 si
n

− s0 −
n+ 1
n

(
sn − s0 + (n+ 1)sn +

(
1 + s0 +

n−1∑
i=1

si

))
= δn.

(A.14)
Therefore, this confirms that v′(x) is also continuous at xnb .

However, using the property to compute the second derivative of v(x),

v′′(x) = −
N∑

n=K

bn
2

W (θn(x− xnb ))
1 +W (θn(x− xnb ))1{xnb≤x<xn−1

b }. (A.15)

Using the left and right limits of v′(x) simply leads to

lim
x→xn

b
−0
v′′(x) = − bn+1δn

2(an+1 − δn)

lim
x→xn

b
+0
v′′(x) = − bnδn

2(an − δn) .
(A.16)

This may not be equal given that different set of {si}i=0,1,...,N−1 can lead to an 6= an+1, bn 6=
bn+1. So the second derivative v′′(x) is not continuous at xnb .

A.4 Proof of Proposition 2.3.4

First we use the chain rule with Lemma 2.3.1 to indicate that

d
dxW (θn(x− xnb )) = − bnW (θn(x− xnb ))

2an(1 +W (θn(x− xnb ))) . (A.17)
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Over the interval [xnb , xn−1
b ), we transform Equation (2.4) given q∗0(x) as

dt = − n+ 1
nan(1 +W (θn(x− xnb ))) dx(t)

= 2n
r(n+ 1)W (θn(x− xnb )) d(W (θn(x− xnb )))

= 2n
r(n+ 1) d(lnW (θn(x− xnb ))).

(A.18)

We have demonstrated that the derivative

v′(x) = −
N∑

n=K
anW (θn(x− xnb ))1{xnb≤x<xn−1

b } (A.19)

which simplifies this ODE into

dt = 2n
r(n+ 1) d(ln v′(x)). (A.20)

Aggregating each interval [xnb , xn−1
b ) from n = l, l − 1, . . . ,m leads to Equation (2.54).

A.5 Proof of Proposition 2.3.5

Inserting explicit formula of q∗0(x) and q∗k(x) into the HJB Equation (2.33), we can obtain
for player k,

rvk(x) + q∗0(x)v′k(x) = (q∗k(x))2, (A.21)

which is a first order ODE with initial condition vk(0) = 1
r
Gk at x = 0. When n < k, the

equation reduces to the homogeneous ODE

v′k(x) + r(n+ 1)
nan[1 +W (θn(x− xnb ))]vk(x) = 0. (A.22)

The integrating factor for this ODE is W− 2n
n+1 (θn(x − xnb )). Then we can easily obtain the

solution

vk(x) =
(
W (θn(x− xnb ))

βn

) 2n
n+1

vk(xnb ). (A.23)

For n ≥ k, player k is not blockaded and q∗k(x) takes the positive part. Using the same
integrating factor, we need to find the solution to the inhomogeneous ODE

d
dx
[
W− 2n

n+1 (θn(x− xnb ))vk(x)
]

= (n+ 1)W− 2n
n+1 (θn(x− xnb ))

nan[1 +W (θn(x− xnb ))]

[
ck,n −

anW (θn(x− xnb ))
n+ 1

]2

(A.24)
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where we define that ck,n := 1+
∑n−1

i=0 si

n+1 − sk. Taking integral on both sides, we can obtain an
explicit solution

vk(x) =An(x)vk(xnb ) +
c2
k,n

r
(1− An(x))− 4anck,nn

r(n− 1)(n+ 1)(W (θn(x− xnb ))− βnAn(x))

− na2
n

r(n+ 1)2 (W 2(θn(x− xnb ))− β2
nAn(x)),

(A.25)
where An(x) :=

(
W (θn(x−xnb ))

βn

) 2n
n+1 .

A.6 Proof of Proposition 2.4.2

Assume n players are active in the game. First the total production of opponents is

Q∗ =
N−1∑
i=1

q∗i = (1− q0)(n− 1)−∑n−1
i=1 si

n
(A.26)

given q0 is a undetermined production, which can either be a constant or a function of x.
Inserting the total production into the equality Equation (2.73) leads to

q0

(
− 1
n
q0 + an

)
≥ p, (A.27)

which indicates the solution to this inequality,

nan −
√
n2a2

n − 4pn
2 ≤ q0 ≤

nan −
√
n2
pa

2
n − 4pn

2 . (A.28)

Now we already demonstrate that q∗0(x) = n
n+1(an − v′(x)) is a increasing function in

Equation (2.48). Therefore, profit of the finite-reserve producer is
n

(n+ 1)2

(
na2

n − (n− 1)anv′(x)− (v′(x))2
)
. (A.29)

over the interval [xnb , xn−1
b ). We have already confirmed that that v′(x) > 0 is a decreasing

function. So this unit profit increases with x. To achieve the minimal profit, the focus should
be on left interval, i.e.,

q0 ≥
nan −

√
n2a2

n − 4pn
2 . (A.30)

The remaining problem is to find the number of players the constraint-touching point xp
is achieved. To find xp, we must testing each n so that when

q0 =
nan −

√
n2a2

n − 4pn
2 , (A.31)
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the number of active players #{q∗k : q∗k > 0} = n− 1 from n = N,N − 1, . . . , K. Denote this
value to be np. And denote the corresponding constant production as q∗p,0.

Inserting this q∗p,0 into formula of q∗0(x) leads to

xp = x
np
b −

2anp
bnp

[
ln
(

1
βnp

(
−1 +

(np + 1)q∗p,0
npanp

))
− 1 +

(np + 1)q∗p,0
npanp

− βnp
]
, (A.32)

Therefore, the production with minimal profit is

q∗p,0(x) =


npanp−

√
n2
pa

2
np
−4pnp

2 when x ≤ xp

q∗0(x) when x > xp
. (A.33)



Appendix B

Appendix to Chapter 3

B.1 Other assumptions on the processes of Y (t)

Example B.1.1. Assume the dynamic of stochastic profit follows a OU process:

dY (t) = κ(ȳ − Y (t)) dt+ σ dZ(t). (B.1)

Here a good ansatz is the quadratic model vk(y) = α0 + α1y + α2y
2 and make the equation

be

α2 = ωk
r + 2κ, α1 = 2κȳωk

(r + 2κ)(r + κ) , α0 = ωk
r

(
2κ2ȳ2

(r + 2κ)(r + κ) + σ2

2(r + 2κ)

)
(B.2)

Example B.1.2. Assume the dynamic of stochastic profit follows a Cinterest rate process:

dY (t) = κ(ȳ − Y (t)) dt+ σ
√
Y (t) dZ(t). (B.3)

The ansatz here is the quadratic model vk(y) = α0 + α1y + α2y
2 and which yields

α2 = ωk
r + 2κ, α1 = ωk

(r + 2κ)(r + κ)

(
2κȳ + σ2

2

)
, α0 = κȳωk

r(r + 2κ)(r + κ)

(
2κȳ + σ2

2

)
(B.4)

Example B.1.3 (Multiple Stochastic Factors). This problem can be generalized into the
case of multiple stochastic factor. Assume the profit of producing each unit of crude oil is

π(Q) = Y (t)− C(t)−Q (B.5)

where Y (t) and C(t) can be recognized as stochastic demand and stochastic cost of pro-
duction, respectively. If Y (t) and C(t) follow GBM, OU or Cinterest rate processes, the
analytical solution to the problem can be achieved, using the objective function below,
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vn(y, c) = sup
qn≥0

E

ˆ ∞
0

e−rtqn

Y (t)− C(t)− qn(t)−
N−1∑

i=1,i 6=n
q∗i (t)

 dt
. (B.6)

B.2 Sketch of Derivation of HJB Equation (3.29)

Using Bellman’s principle of optimality, and denote the optimal strategy for the finite-player
to be q∗0(t), the value function in Equation (3.13) can be decomposed into two components,
accumulated profit over [0, s], and the value function using (X(s), Y (s)) as a “new” initial
state, given X(0) = x > 0.

v(x, y) = Ex,y
[ˆ ∞

0
e−rtq∗0(t)

(
Y (t)(1− s0)−

N−1∑
i=0

q∗i (t)
)

dt
]

= Ex,y
[ ˆ s

0
e−rtq∗0(t)

(
Y (t)(1− s0)−

N−1∑
i=0

q∗i (t)
)

dt

+ e−rs
ˆ ∞
s

e−r(t−s)q∗0(t)
(
Y (t)(1− s0)−

N−1∑
i=0

q∗i (t)
)

dt
]

= Ex,y
[ˆ s

0
e−rtq∗0(t)

(
Y (t)(1− s0)−

N−1∑
i=0

q∗i (t)
)

dt
]

+ e−rsEx,y[v(X(s), Y (s))]

(B.7)

To be specific, q∗i (t + s) for i = 0, . . . , N − 1 is the optimal strategy for player i, taking
(X(s), Y (s)) as our new initial state.

Using Ito’s lemma results

lim
s→0

{1
s
Ex,y

[ˆ s

0
e−rtq∗0

(
Y (t)(1− s0)−

N−1∑
i=0

q∗i

)
dt
]

+1
s

(e−rsEx,y[v(X(s), Y (s))]− v(x, y)))
}

= 0

q∗0

(
y(1− s0)− q∗0 −

N−1∑
i=0

q∗i

)
+ lim

s→0

1
s

(
− v(x, y) + e−rs

(
v(x, y)+

Ex,y
[ˆ s

0

(
−q∗0

∂v

∂x
+ µy

∂v

∂y
+ 1

2σ
2y2 ∂

2v

∂y2

)
dt+

ˆ s

0
σy dZ(t)

]))
= 0

q∗0

(
y(1− s0)− q∗0 −

N−1∑
i=0

q∗i −
∂v

∂x

)
+ µy

∂v

∂y
+ 1

2σ
2y2 ∂

2v

∂y2 − rv(x, y) = 0

sup
q0≥0

q0

(
y(1− s0)− q0 −

N−1∑
i=1

q∗i −
∂v

∂x

)
+ µy

∂v

∂y
+ 1

2σ
2y2 ∂

2v

∂y2 = rv

(B.8)

Therefore, given x, y and other q∗i , i = 1, 2, . . . , N − 1 independent of time t, the optimal
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production q∗0 will also depend on time. This is the example for player 0. The strategy of q∗i
derived from Equation (3.14) will take a similar computation and be independent of time t.

In particular, if X(0) = x = 0, X(s) = 0 for s > 0, because dX(t) = q∗0(t)1{X(t)>0} dt = 0.
Therefore, the derivation process of the HJB equation above does not include the term of
q∗0

∂v
∂x
, where we replace µ(y) = µy, σ(y) = σy. Therefore, Equation (3.15) does not include

any item of x.

B.3 Proof of Proposition 3.3.4

n2

(n+ 1)2 (an − δn−1)2 = (n− 1)2

n2

(
1 +∑n−1

i=1 si − ns0

n
− nsn−1 +

(
1 + s0 +

n−2∑
i=1

si

))2

= n2

(n+ 1)2

(
(1 +∑n−2

i=1 si)(n+ 1)
n

− (n+ 1)(n− 1)
n

sn−1

)2

= (n− 1)2

n2

(
(1 +∑n−2

i=1 si)n
n− 1 − nsn−1

)2

= (n− 1)2

n2

(
1 +∑n−2

i=1 si
n− 1 − s0 − nsn−1 + 1 + s0 +

n−2∑
i=1

si

)2

= (n− 1)2

n2 (an−1 − δn−1)2.

(B.9)

B.4 Some Special Exact Solutions Using the Puiseux
Series

Using the consecutive relationship of Puiseux series in Equation (3.54), we can approximate
the solution near ξ = 0 at m = 8 using Maple. The formulae of coefficients of Puiseux series
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of m = 3, . . . , 8 are

P 3
2

=−
2
√
aN(r − µ)(N + 1)

3N

P2 =(N + 1)2(σ2 − 4µ+ 8r)
48N2

P 5
2

=(N + 1)3(4µ− 8r − σ2)(4r + 4µ− σ2)
2880N3

√
aN(r − µ)

P3 =− (N + 1)4(4r + 4µ− σ2)(16µ− 7σ2 − 8r)(4µ− 8r − σ2)
207360N4aN(r − µ)

P 7
2

=(N + 1)5(4µ− 8r − σ2)(95σ4 − 376µσ2 + 188rσ2 + 368µ2 − 368µr + 32r2)(4r + 4µ− σ2)
15482880N5aN(r − µ)

√
aN(r − µ)

P4 =− (N + 1)6(4r + 4µ− σ2)(4µ− 8r − σ2)
1114767360N6a2

N(r − µ)2

(
− 1877σ6 + 9864µσ4 − 4932rσ4

− 17040µ2σ2 + 17040µrσ2 − 2208r2σ2 + 9728µ3 − 14592µ2r + 3840µr2 + 512r3
)
.

(B.10)

The coefficients of Puiseux series in Equation (B.10) also allow us to obtain several exact
solutions, in the case where r, µ and σ satisfy particular equations to make the series of
coefficients to be zero. For example, if we set σ2 − 4µ + 8r = 0, then all terms of P i

2
for

i = 4, 5, . . . are exactly zero. Similarly, setting 4r + 4r − σ2 = 0 also leads to P i
2

= 0 for
i = 5, 6, . . . . Therefore,

H(ξ) =

aNξ −
2
√
an(r−µ)(N+1)

3N ξ
3
2 when µ = 2r + σ2

4

aNξ −
2
√
an(r−µ)(N+1)

3N ξ
3
2 + (N+1)2(σ2−4µ+8r)

48N2 ξ2 when µ = σ2

4 − r.
(B.11)

where we made an unrealistic assumption that aN(r−µ) < 0, which means that the discount
rate is smaller than the expected growth rate of the profit.

For another, in the case of r = µ, the exact solution will be

H(ξ) = aNξ + r(N + 1)2

4N2 ξ2. (B.12)



Appendix C

Application of Differential-game
Model to Real-world Energy Market

C.1 Introduction

In this appendix, we apply the deterministic and stochastic differential-game model from
Chapter 2 and Chapter 3 to better understand the real-world data on production, consump-
tion, and oil reserve. We include this as an appendix because we did it as an exercise to
see how empirical data might be incorporated into our model. The econometric rigor of this
work is appropriate for this feasible sudy purpose but we do not feel ready for immediate
publication in its current form. In the game-theory model, the finite-reserve producer is the
U.S. conventional oil producer. The conventional oil reserve is assumed to be exhaustible in
the foreseeable future. In fact, [Hubbert (1956)] already predicted a timeline for the exhaus-
tion of U.S. conventional oil supplies, this is now called the “Hubbert curve”. On the other
hand, the other players, which include North America (U.S. shale oil and Canada heavy oil),
Russia and Saudi Arabia, are infinite-reserve producers modelled to hold oil reserves which
are modelled as inexhaustible. The GDP, which we relate to aggregate crude oil consump-
tion which in turn defines production, represents the stochastic factor in our model. Using
the differential-game models, we forecast productions and compare the forecast and actual
productions over the period 1986 – 2016. It can be concluded that the forecast production
at least visually fits the actual production. In fact, simple linear regression even show decent
fits with R2 ranging between 0.68 – 0.82.

After this introduction, Section C.2 analyzes the production data of countries accounting
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for the most market share, consumption and cost of production by considering the effect of
specific events on the energy market. Section C.3 regresses the oil price against the GDP
per unit oil consumption and analyzes the results. Section C.4 takes the consumption data
as a stochastic factor to calibrate a differential game models as described in Chapter 2
and Chapter 3 and production rates. Section C.5 concludes. In this appendix, we made the
following contributions:

• We describe sources of oil prices, production and consumption data. We use this to
motivate a simple set of participants in our differential game, and provide numerical
parameter values for the game.

• Using linear regression, we obtain the relationship between the total crude oil pro-
duction and the economic growth as shown in terms of GDP and consumption. We
conclude that total oil production increases with economic growth.

• We forecast the crude oil production among producers in each year using the differential
game model, and make a comparison between the forecast and practical production.

C.2 Data Sources

Oil production data is summarized in Table C.1. The data in Table C.1 includes cost of pro-
duction and percentage of world production between 1994-2018. In the following initial data
analysis, we choose the four countries with the highest production, admittedly accounting
for slightly more than 40% of the world production in aggregate and 42.95% in 2018. The
U.S. data includes both conventional and shale production, so we split the data accordingly.

C.2.1 Crude Oil Production

Production data is available from several different sources. We investigated the US Energy
Information Adminstration (EIA), OECD and the International Energy Agency (IEA), but
in the end used EIA which provides the most comprehensive data.

Source title “international petroleum and other liquids production” from US Energy In-
formation Administration (EIA) provides the data of production in the unit of Barrels/Day
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Name Code Percentage (1994-2018) Percentage (2018) Cost of Production ($)
Brazil BRA 2.39 - 34.99
Canada CAN 3.66 5.15 26.64
China CHN 5.01 4.55 -
Iran IRN 5.24 5.13 9.08
Iraq IRQ 3.35 5.57 10.57

Nigeria NGA 3.06 2.40 28.99
Norway NOR 3.30 1.83 21.31
Russia RUS 11.72 12.99 19.21

Saudi Arabia SAU 12.44 12.58 8.98
U.K. GBR 2.32 1.21 44.33

U.S. (shale)
USA 11.72 13.23

23.35
U.S. (conventional) 20.99

Venezuela VEN 3.57 1.79 27.62

Table C.1: Total production information in each country

(BPD)∗. The data provides monthly world production as well as production in seven re-
gions: Africa, Asia & Oceania, Central & South Africa, Eurasia, Europe Middle East and
North America. Specifically, we consider the world production data of crude oil as the total
production data Qi.

EIA also provides monthly and annual crude oil production and consumption for certain
countries†. However, only world consumption is available monthly.

Another data source is OECD (Tons/year)‡, which is only available at an annual fre-
quency. We use the conversion of 1 Ton/year = 0.023 BPD.

At present, the top five oil producing countries are USA, Russia, Saudi Arabia, Canada
and China. Figure C.1 gives the plot of production amount and percentage between 1994
and 2019. From the two plots, we can observe that Russia increased its production amount
gradually, by about 3500 from 1999-2007 KBPD (Thousand Barrels/day), and maintained
a relatively stable percentage (13%) after 2007. The U.S. experienced a sharp decrease until
2009, after which it gradually increased to have the highest production in the world. This
growth resulted from the so-called shale oil revolution, as [Mǎnescu and Nuño (2015)] indi-

∗https://www.eia.gov/beta/international/data/browser/
†https://www.eia.gov/totalenergy/data/browser/?tbl=T11.01B
‡https://data.oecd.org/energy/crude-oil-production.htm#indicator-chart
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cates. Both Saudi Arabia and China maintained a stable production percentage (12.5% and
5% respectively), while China’s production decreased very slightly after 2015. As for Canada,
the production amount and percentage has been increasing over the entire period.
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Figure C.1: Plot of production amount (left) and production percentage (right)

C.2.2 Consumption

From the same EIA source, we can also find oil consumption data among different countries
and continents. Data for G7 countries is available monthly and shows seasonal periodicity
which we prefer not to consider. Data for continents is available annually.
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Figure C.2: Plot of oil consumption amount

Figure C.2 gives two plots of consumption data. In the left plot, annual data of continents
reveal that consumption has increased during the whole period except during the financial
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crisis of 2007 – 2008. It is notable that the consumption in Asia & Oceania has greatly
increased from about 10000 to 35000 KBPD, owing to the rapid economic growth of Asian
countries. On the other hand, oil consumption for highly economically developed continents
in North America and Europe has remained stable.

The right plot of Figure C.2 gives the monthly consumption of crude oil in several de-
veloped countries. This plot displays the seasonal effect of crude oil consumption. The con-
sumption in the US increased from 16000 to 20000 KBPD approximately but experienced
a heavy fall during the financial crisis. Japan, Italy and France displayed periodic monthly
consumption because those countries are located in northern regions, where heating may
require more energy from fuel oil.
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Figure C.3: Plot of oil consumption versus production

Figure C.3 shows the relationship between worldwide oil consumption and production.
The linear pattern of the scatter plot is extremely obvious. A linear regression on the data
confirms this, yielding the linear equation

Consumption = −20118.9 + 1.45× Production, (C.1)

where R2 = 0.990 significance of coefficients (p-value < 0.001). The explanation of the plot
is that, at least on an annual basis, very little crude oil is stored due to the high storage
cost of crude oil. This means, we can model aggregate oil production as being driven by oil
demand.

Figure C.4 also gives the relationship between productions by countries and the total
consumption. There are obvious linear patterns for Saudi Arabia and Canada. Russia shows
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Figure C.4: Plots of oil consumption versus production by countries

a increasingly linear pattern only after 1999. There is no such an increasingly linear pattern
for U.S. because the conventional oil reserves were depleted in the period 1986 – 2010.

C.2.3 Cost of Production

Recent costs of crude oil production (Dollars/barrel)§ are available from the Wall Street
Journal. The costs may be divided into several parts: gross taxes, capital spending, pro-
duction costs and administrative/transportation costs. But the data is limited to just a few
countries, including the U.S., Saudi Arabia, and Russia.

From Table C.1, costs of production in U.S. is divided between shale and conventional.

§http://graphics.wsj.com/oil-barrel-breakdown/
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The production cost of shale oil ($23.35) is slightly higher than the cost of conventional oil
($20.99). Conventional oil is extracted from shallower depths to deep water, while shale oil
is extracted using advanced technologies: horizontal drilling and hydraulic fracturing.

For OPEC countries, such as Iran, Iraq and Saudi Arabia, the costs of production are
the lowest among almost all countries (all are around $10). The reason for these low costs is
about depth of reserve and other geological properties. Oil in Russia ($19.21) is also cheaper
than U.S. but more expensive than OPEC countries. The reason is that Russia has plentiful
onshore oil, cheap labors and mature infrastructure.

WTI Oil Price

Historical WTI oil prices in USD/barrel ¶ are available from the St. Louis Federal Reserve
Economic Database (FRED). We selected the WTI price from Jan 1994 to Jan 2019.

The crude oil price is affected by both the macro-economic environment and specific
events which sharply change the supply and demand for crude oil. Wars and economic de-
velopment require more crude oil while financial crisis decreases the oil demand. Moreover,
development of drilling technologies may result in higher production, which increase the sup-
ply and decrease the crude oil price. On the other hand, our model considers variation in oil
demand driven by GDP fluctuation.
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Figure C.5: Plot of oil price

¶https://fred.stlouisfed.org/series/
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Figure C.5 gives the WTI oil price over the period. Starting from $20, oil prices first
vibrated around $20, gradually went up because of the Gulf War, and peaked at about $140
in 2009. After the recession from the 2007-2009 financial crisis, oil price went down to $40
but shifted up again. It is worthwhile to notice that the U.S. applied “fracking” technology
in 2014 and increased the production greatly. Perhaps as a result, another sharp decrease
from $105 to $50 happened after 2014.

C.2.4 Proven Oil Reserve and Explicit Oil Production in US
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Figure C.6: Plot oil reserves (left) and daily production (right)

The left plot of Figure C.6 presents the proven oil reserve‖ from 1980 – 2019. The proven
reserve data includes shale oil and conventional oil, but not the undiscovered oil reserve.
Before 2009, the amount of total oil decreased by 10 billion barrels to 21 billion barrels. This
is because most of oil resources are conventional oil, as the right plot of Figure C.6 presents.
Note that the data of proven oil reserve in the U.S. does not exactly represent all oil reserve
in the U.S. because the undiscovered conventional oil always remains.

The right plot of Figure C.6 depicts the production of shale and conventional oil in the
United States. Initially, the U.S. conventional oil production before 2009 is only 400 KBPD,
accounting for only 7.5% of U.S. total production. The plot also indicates that the total
production of conventional oil exceeds the decreasing amount in reserve in the meantime.
Therefore, it is also reasonable to infer that conventional oil was extracted all the time,
although the total conventional oil reserve is decreasing.

‖https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RCRR01NUS_1&f=A
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After 2009, the production of shale oil increased by 8000 KBPD owing to technology
breakthrough. On the other hand, the production of conventional oil is decreasing all the
time. The production of shale oil exceed the conventional oil in 2016 and no longer takes the
dominant portion of total U.S. production.

This information provides us with an approach to obtain a more accurate conventional oil
reserve. Reserve quoted by oil companies are the quantity of oil which can be economically
extended at current price conditions. Reserves, so defined, are dependent on time and price
as well as on past production. In contrast, the reserve, as defined in our model, is independent
of economic value. This difference in definition makes oil market modelling more challenging.
We take the data in 2009 as a critical time frame, before which the shale oil does not account
for oil production. Then the conventional oil reserve in the year t is

Reservet = Reserve2009 − Total Production from 2009 to t. (C.2)

If t < 2009, the “total production” in the equation amount is negative. But even though we
use the more accurate equation for oil reserve, there should be a large amount of undiscovered
conventional oil reserve in the U.S. As a result, the prediction of conventional oil reserve
should be underestimated.

C.2.5 Choice of Discount Rate

In Example 3.3.1, we illustrate that r > 2µ+ σ2, which requires the discount rate of players
must bigger than the growth rate of profit per time unit. Therefore, we cannot directly select
r to be interest rate in our model. Moreover, the interest rate also depends on economics
and hence is correlated with the oil market. Therefore, we decided to consider a alternative
constant discount rate of those countries.

In this case, we decided to select r = 0.1 as our discount rate, which includes the interest
rate and discount of future uncertainty as explained in Example 3.3.1.

C.3 Regression Model and Non-dimensionalization

In this section, we create the regression models to obtain the relationship between oil price
and the economic growth. Our target in this section is to determine the price model and
parameters for our differential game, and investigate the effect of each country’s produc-
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tion. We also apply regression over production of four countries to investigate the effect of
production of particular countries on the WTI price.

Theoretically, when technology does not have a dramatic development, oil prices tend to
increase due to either inflation or increase of consumption. Therefore, we have two alternative
choices for the growth of the oil price factor:

1. The growth of real GDP∗ (measured in billions of dollars). In this case we make an
assumption that the profit of oil companies grows with the same speed as real GDP
growth. The reasoning behind the assumption is that real GDP includes only the real
economic growth without inflation. Economic growth requires the use of crude oil to
provide energy for transportation or electricity.

2. The consumption of crude oil†. This choice is more reasonable because crude oil con-
sumption directly affects oil prices and profits without considering inflation as well. But
unfortunately we often lack monthly consumption data and even we have, it contains
challenging seasonal effects. So we use annual data, with far fewer observations.

Since we do not consider the effect of inflation, we set the price Pi to be the WTI price
discounted by CPI in year i. There are two types of regression model to be generated. The
first one comes from the nondimensional price model in Chapter 2,

Pi = M − αQi

Yi
(C.3)

where Qi
Yi

is the production amount divided by the stochastic factor, K and α are coefficients.
In the next section we name this model as “deterministic model”.

Another model comes from the stochastic profit model in Chapter 3. In this case we made
the assumption that the actual cost of production and crude oil price grows with the same
rate.

Pi = MYi − αQi (C.4)

where Yi is the stochastic factor and Qi is the production amount. A plausible assumption
is that when the stochastic term Yi = 0, there is no demand for crude oil so Qi = 0 as well.
Therefore, no constant term exists in this regression and the price will be Pi = 0. In the next
section we name it as “stochastic model”.

∗https://fred.stlouisfed.org/series/GDPC1
†The data is available from EIA “Total oil (petroleum and other liquids) consumption”
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Although the two models share the same parametric set Pi, Yi, Qi, their explanations are
different. The model in Chapter 2 assumes Qi

Yi
as a whole, is the production per unit of

economic level in terms of GDP or consumption. For another, the model in Chapter 3 takes
Yi as the driver of oil price and the production Qi is the real production.

C.3.1 Growth of Real GDP

Given the data between Jan 1990 and Jan 2018, we constructed four linear regression models
between monthly average WTI oil prices and monthly production/GDP w.r.t. four prime
regions: World, U.S., Russia and Saudi Arabia. The coefficients for parameters are shown
in Table C.2. All regression models with p-value = 0.000, which is rounded at three decimals,
show excellent fits, among which the world regression has the “best” fit with R2 = 0.358.
However, the regression on Russian data presents the worst R2 = 0.087 with an totally
inverse trend with regard to production.

We also create regression models of WTI oil prices versus GDP and production. The
results are shown in Table C.3. The regression of the world production has a R2 = 0.871. The
four regressions do not perform well with a low significance of those coefficients. Therefore,
the driver of real GDP is perhaps not a good representative as driver of the market.

Regression
Data Param. Coef. Std. Error p-value Sgn. R2

World
Intercept 108.28 5.80 0.000 (***)

0.358
WLD/GDP -15.15 1.11 0.000 (***)

U.S.
Intercept 60.09 2.52 0.000 (***)

0.321
USA/GDP -61.95 4.92 0.000 (***)

Russia
Intercept -12.00 7.79 0.123

0.087
RUS/GDP 72.08 13.23 0.000 (***)

Saudi Arabia
Intercept 78.45 4.83 0.000 (***)

0.238
SAU/GDP -75.08 7.34 0.000 (***)

Table C.2: Parameters in regression using real GDP (determinstic model) corresponding to
data plotted in Figure C.7

Although the real GDP is not a good indicator of the oil market, we still use the regression
over the world production to test the forecast. Figure C.8 compares the predicted and real
discounted prices using their ratio with the GDP-based deterministic model. If we compute
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Figure C.7: Regression over world production and participants corresponding to parameters
in Table C.2
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Figure C.8: Ratio of predicted and actual prices corresponding to Table C.2

the ratio of Predicted
Actual , the lowest (2.5% quantile) and highest (97.5% quantile) would be 0.46

and 2.29 respectively. The comparison is based on monthly data hence it includes numerous
extreme prices due to sudden change.

Overall, the regressions using deterministic model perform well with a high significance
except Russia. The negative coefficients of WLD/GDP, USA/GDP and SAU/GDP indicates
a decreasing effect as production increases. Moreover, the coefficient ratios of WLD:USA:SAU
(-15.15:-61.95:-75.08) indicates the effects of increased production in those countries. If boom-
ing economics drives up the production of crude oil everywhere in the same way, thus the
increase of production in any particular country is assumed proportional. If we use the world
GDP to fit production of a particular country, which accounts for partial world production,
increase of production of this country also implicitly indicates production of other countries.
Therefore, coefficients of the country are much larger than the coefficient of WLD.

The regressions using the real GDP and stochastic model do not perform very well from
the perspective of parameter significance, although our target, the regression over the WLD
production, gives an expected result, the higher the production, the lower the price. Moreover,
the significance of the parameters in each regression are not high enough as determined by
p-value. In contrast, the R2 performs relatively better than the deterministic model, ranging
from 0.87 to 0.88. In the regressions over those particular countries, the coefficients of the
deterministic model also indicates a similar conclusion as the deterministic model, increase of
production of each country is also proportional (WLD:USA:ASU = -0.36:-2.52:-1.86) given
the driver of the economics.
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Regression (Scale: ×10−3)
Data Param. Coef. Std. Error p-value Sgn. R2

World
GDP 3.90 1.51 0.016 (*)

0.871
WLD −0.36 0.30 0.236

U.S.
GDP 3.27 0.61 0.000 (***)

0.882
USA −2.52 1.26 0.055 (·)

Russia
GDP −1.99 1.92 0.309

0.881
RUS 6.84 3.22 0.044 (*)

Saudi Arabia
GDP 3.24 1.27 0.017 (*)

0.868
SAU −1.86 2.02 0.365

Table C.3: Parameters in regression using real GDP (stochastic model). Multiple regression
results does not directly correspond to any figure plotted.

C.3.2 Growth of Consumption

In this section, we use the growth of the consumption as the driver of the oil market. Table C.4
and Table C.5 give the regression results of deterministic and stochastic models respectively.
The data are annual from 1986-2016. Therefore, the number of data points is much fewer
than for the monthly dataset in Section C.3.1. In those tables, the term “csmp” represents
the crude oil consumption.

The regression of our deterministic model in Table C.4 shows that the world regres-
sion gives a good fit with R2 = 0.453 and p-values < 0.001. Like Table C.2, the regres-
sion with regard to Russia performs the worst with a relatively insignificant evidence, the
p-value = 0.081 and a relatively low R2 = 0.127. All those regression models present a
better significance level and accuracy of the deterministic price model than Table C.2. An-
other improvement is that all of those coefficients present a negative trend of the price over
productions, which fits the intuition of supply-demand relationship. Moreover, the ratio of
WLD/csmp:USA/csmp:RUS/csmp:SAU/csmp = -53.5:-234.68:-544.66:-577.48 indicates the
proportional decreasing price given the drive of economic level. The reason behind this is
identical to our discussion of GDP regression. Increase of production in a particular country
includes increase of production in other countries.

For the regression in Table C.5, all models shows evident significance with a high R2

ranging from 0.866 to 0.922. The p-value does not presents much better performance com-
pared to GDP regression in Table C.3. But the factor of fewer available observations must
be considered so those low p-values are more acceptable than those in Table C.3. Moreover,
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the negative coefficients of WLD, USA and SAU also present a negative trend, with the
ratio of WLD:USA:SAU = -2.94:-3.01:-1.24. The coefficient of WLD is not much closer to
zero because the coefficient of “csmp” w.r.t. world regression is much larger than others
(2.86 > 0.57, 0.45), compared to Table C.4.

In contrast to Figure C.8, Figure C.10 shows the ratio of predicted and actual discounted
price using consumption-based deterministic model. The corresponding 2.5% (resp. 97.5%)
quantile is 0.34 (resp. 1.33). Compared to the result (0.46, 2.29), this prediction addresses an
overall lower ratio range. Ratios of 97.5% over 2.5% quantiles are 4.98 for GDP and 3.92 for
consumption respectively. Therefore, from the perspective of forecasting prices, consumption
performs better.

Overall, compared to Table C.2 and Table C.3, regressions using consumption data pro-
vide results with stronger significance and higher accuracy in terms of acceptable p-values;
this is due to fewer observations, and higher R2. Therefore, in the next section, we will use
parameters extracted from consumption regressions.

Regression
Data Param. Coef. Std. Error p-value Sgn. R2

World
Intercept 54.97 6.45 0.000 (***)

0.453
WLD/csmp −53.50 10.92 0.000 (***)

U.S.
Intercept 38.36 8.942 0.000 (***)

0.336
USA/csmp −234.68 61.32 0.001 (***)

Russia
Intercept 134.92 38.58 0.002 (**)

0.127
RUS/csmp −544.66 297.94 0.081 (·)

Saudi Arabia
Intercept 141.64 16.17 0.000 (***)

0.501
SAU/csmp −577.48 107.01 0.000 (***)

Table C.4: Parameters in regression using consumption (deterministic model) corresponding
to data plotted in Figure C.9

C.4 Differential-game Model

In this section, we apply our models to the data using the estimated parameters. According
to the significance levels, p-values and values of R2 in Table C.2 – Table C.5, we select the
consumption model with the best performance as the stochastic factor in our differential
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Figure C.9: Regression over world production and participants corresponding to parameters
in Table C.4

game model. In our case, the coefficients for the “world” regression are the corresponding
nondimensional parameter.

C.4.1 Deterministic Oil Price Model

In the deterministic model, we assume there is no stochastic term in real GDP and consump-
tion. This assumption seems to be unreasonable over a long period so this model can only
be applied over a short time interval where the stochastic term does not change much.

Table C.6 give the non-dimensionalized costs. The non-dimensionalized costs are the
ratios Cost

K
where K is the constant coefficient in the regressions (deterministic).
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Regression (Scale: ×10−3)
Data Param. Coef. Std. Error p-value Sgn. R2

World
Csmp 2.86 0.059 0.000 (***)

0.917
WLD −2.94 0.069 0.000 (***)

U.S.
Csmp 0.57 0.069 0.000 (***)

0.897
USA −3.01 1.098 0.005 (**)

Russia
Csmp −0.51 0.193 0.014 (*)

0.922
RUS 8.33 1.90 0.456

Saudi Arabia
Csmp 0.45 0.022 0.050 (*)

0.866
SAU −1.24 2.09 0.557

Table C.5: Parameters in regression using consumption (stochastic model). Multiple regres-
sion results does not directly correspond to any figure plotted.
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Figure C.10: Ratio of predicted and actual prices corresponding to Table C.4

Regression USA(shale) USA(conventional) SAU RUS

Modified Cost
Real GDP 0.1156 0.1039 0.0446 0.0951

Consumption 0.1952 0.1745 0.0747 0.1597

Table C.6: Nondimensionalized Cost of Crude Oil Production

C.4.2 Stochastic Profit Model

In this section, we work on the data using model in Chapter 3. The non-dimensional costs
are the ratios between the cost and the predicted discounted 2016 price, Cost

Y2016
, when the costs

were generated.
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Regression USA(shale) USA(conventional) SAU RUS

Modified Cost
Real GDP 0.1822 0.1638 0.0701 0.1499

Consumption 0.0840 0.0755 0.0323 0.0691

Table C.7: Nondimensionalized Cost of Crude Oil Production (stochastic)

Figure C.11 and Figure C.12 plot the comparisons between the predicted production
using formulae of stochastic and deterministic cases and the actual production in Chapter 2
and Chapter 3. From the form of q∗i , we know that the production will be affected by Y (t)
and X(t). q∗i is proportional to Y (t) for constant X(t)

Y (t) .
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Figure C.11: Predicted versus real production (deterministic model)

The deterministic and stochastic plots comparing the forecast production and historical
real production in Figure C.11 and Figure C.12 indicate a new linearly increasing trend
between forecast and real production. The upper-left plots, “U.S. predicted production versus
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Figure C.12: Predicted versus real production (stochastic model)

real production” in Figure C.11 and Figure C.12, shows a bent shape among data points.
The bent shape comes from underestimation of the conventional oil reserve, as Section C.2.4
indicates. The unavoidable underestimation of U.S. conventional oil reserve leads to reduction
of the forecast. However, all prediction plots present high linear fit R2 ranging from 0.67 to
0.83, which illustrates that the prediction gives a relative accurate result.

Moreover, although we assume only four primary players in the oil production role in the
differential-game model, this is not a practical assumption, because in real world, almost all
countries plays a greater or lesser role in oil production. As a result, the scales of x-axis and
y-axis in each plot are different, as the Figure C.11 and Figure C.12 indicate.



178

C.5 Conclusion

This study applies the differential-game models from Chapter 2 and Chapter 5 to a dataset of
oil production, oil reserves and consumptions from EIA. First we apply the linear regression
between WTI oil price and productions among countries, which shows significant linear
relationship (p-value < 0.001 and R2 = 0.990). We conclude that oil demand proportionally
increases oil supply in each year studied.

To study the world oil demand and individual countries, the data also shows an overall
increasing trend except for U.S. production. We also compare the predicted production using
the differential-game model versus the real production in the past. The pattern between the
predicted and the real shows a increasing, albeit nonlinear trend, which fits our expectation.
But the exact value of predicted production and the real production are different in scale and
present partially linear shape, one reason may be that we only consider four representative
countries as players. In reality, there are more players in the world. For example, Iran and
Iraq account for great market share with low costs of production. If we take Saudi Arabia
as the infinite-reserve player, those two countries are included in the predicted production
because they share the similar condition. There are several other probable reasons: energy
markets in those participating countries do not follow the worldwide energy market trend;
the assumption of finite reserve of conventional oil is inappropriate, etc.

To sum up, this appendix created a model simple enough to be tractable but complex
enough to capture real world behaviour, and illustrated present challenges in adapting the
model to real data. Despite the challenges of our model, it did still have some explanatory
power and some ability to assist in anomaly detection. For example, Russia’s production
between 1993 – 2002 did not present a reasonable trend due to instability in the country. We
believe that the partial success of this exercise shows that future investigation of differential
game in world oil market may bear fruitful results.
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Appendix to Chapter 4

D.1 Proof of Proposition 4.2.1

The first derivative of the HBJI w.r.t. u leads to:
0 = (−JTy σ − JxπTBσ) + (1− γ)J(u∗)Tβ−1

u∗ = βσT (Jy + JxBπ)
(1− γ)J .

(D.1)

More explicitly,
u∗1 = β1(σSρJz + σrJr + (πSσSρ− πP Iτσr)Jx)

(1− γ)J

u∗2 = β2
√

1− ρ2(σSJz + πSσSJx)
(1− γ)J .

(D.2)

Plugging u into Equation ( Equation (4.21)), produces:

sup
π∈Π

{
Jt +

[
(θ −Ay)− σβσ

T (Jy + JxBπ)
(1− γ)J

]T
Jy + 1

2 tr(JyyTΣ) + πTBΣJxy

+
[
(c+ r)x+ πTB

(
b− σβσ

T (Jy + JxBπ)
(1− γ)J

)]
Jx + Jxx

2 πTBTΣBπ

+ (Jy + JxBπ)TσβσT (Jy + JxBπ)
2(1− γ)J

}
+ µE[J(t, x(1− Y ), z, v)− J ] = 0.

(D.3)

This is also quadratic w.r.t. π. Taking derivative for π again, we can obtain

0 = B

(
Jx

(
b− σβσ

TJy
(1− γ)J

)
+ ΣJxy

)
+B

(
JxxΣ−

J2
x

(1− γ)Jσβσ
T

)
Bπ∗

π∗ = −B−1
(
JxxΣ−

J2
x

(1− γ)Jσβσ
T

)−1(
Jx

(
b− σβσ

TJy
(1− γ)J

)
+ ΣJxy

) (D.4)
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By plugging u∗1 and u∗2 into from Equation ( Equation (D.2)), the explicit formulation is

π∗ =
π∗P
π∗S

 = P−1q (D.5)

where the matrix P and vector q are

P =
 I2

τσ
2
r

(
Jxx − β1

(1−γ)J J
2
x

)
−ρσSσrIτ

(
Jxx − β1

(1−γ)J J
2
x

)
−ρσSσrIτ

(
Jxx − β1

(1−γ)J J
2
x

)
σ2
S

(
Jxx − β1ρ2+β2(1−ρ2)

(1−γ)J J2
x

) 
q =

 Iτ
(
ρσSσr

(
Jxz − β1

(1−γ)J JxJz
)

+ σ2
r

(
Jxr − β1

(1−γ)J JxJr
)
− λrσrJx

)
σ2
S

(
β1ρ2+β2(1−ρ2)

(1−γ)J JxJz − Jxz
)

+ ρσSσr
(

β1
(1−γ)J JxJr − Jxr

)
− (λSσS − az)Jx

 (D.6)

Plugging π∗ into the HJBI PDE, we can obtain the final PDE in Equation ( Equation (4.24)).

D.2 Proof of Proposition 4.2.2

Inserting the ansatz in Equation ( Equation (4.28)) into the PDE in Equation ( Equa-
tion (4.24)) and grouping conveniently, we obtain a system of ODE

M ′
0 + yTM ′

1 + 1
2y

TM ′
2y + θTM1 + yT (MT

2 θ −ATM1)− 1
2y

T (ATM2 +MT
2 A)y

+ 1
2 tr(M2Σ) + c(1− γ) + yTe1(1− γ) + 1

2M
T
1 σ

(
I − β

1− γ

)
σTM1

+ yTMT
2 σ

(
I − β

1− γ

)
σTM1 + 1

2y
Tσ

(
I − β

1− γ

)
σTy

+ 1
2

(
λ+ σ

(
I − β

1− γ

)
σTM1

)T(
σ

(
γI + β
1− γ

)
σT
)−1(

λ+ σ
(
I − β

1− γ

)
σTM1

)

+ yT
(
σ

(
I − β

1− γ

)
σTM2 − aE2

)T(
σ

(
γI + β
1− γ

)
σT
)−1(

λ+ σ
(
I − β

1− γ

)
σTM1

)

+ 1
2y

T

(
σ

(
I − β

1− γ

)
σTM2 − aE2

)T(
σ

(
γI + β
1− γ

)
σT
)−1(

σ

(
I − β

1− γ

)
σTM2 − aE2

)
y

+ µE[(1− Y )1−γ − 1] = 0.
(D.7)
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Arranging constant parts, first order part yT ( · ) and second order part 1
2y

T ( · )y can result
in the Riccati ODE:



M ′
0 + c(1− γ) + µE[(1− Y )1−γ − 1] + 1

2 tr(M2Σ) + 1
2λ

T
(
σ
(
γI+β
1−γ

)
σT
)−1
λ

+MT
1

[
θ + σ

(
I − β

1−γ

)(
γI+β
1−γ

)−1
σ−1λ

]
+1

2M
T
1 σ

(
I − β

1−γ

)((
γI+β
1−γ

)−1
+
(
I − β

1−γ

)−1
)(
I − β

1−γ

)
σTM1 = 0

M0(T ) = 0,

M ′
1 − aE2

(
σ
(
γI+β
1−γ

)
σT
)−1
λ−

(
AT + aE2(σT )−1

(
γI+β
1−γ

)−1
(I − β

1−γ )σT
)
M1

+MT
2

(
σ
(
I − β

1−γ

)(
γI+β
1−γ

)−1
σ−1λ+ θ

)
+ (1− γ)e1

+MT
2 σ

(
I − β

1−γ

)((
γI+β
1−γ

)−1
+
(
I − β

1−γ

)−1
)(
I − β

1−γ

)
σTM1 = 0

M1(T ) = 02×1

M ′
2 + a2E2

(
σ
(
γI+β
1−γ

)
σT
)−1
E2 −

(
AT + aE2(σT )−1

(
γI+β
1−γ

)−1(
I − β

1−γ

)
σT
)
M2

−MT
2

(
AT + aE2(σT )−1

(
γI+β
1−γ

)−1(
I − β

1−γ

)
σT
)T

+MT
2 σ

(
I − β

1−γ

)((
γI+β
1−γ

)−1
+
(
I − β

1−γ

)−1
)(
I − β

1−γ

)
σTM2 = 0

M2(T ) = 02×2

(D.8)

For simplicity, we set the notation

D0 := a2E2

(
σ(I − β

1− γ )σT
)−1

E2

D1 := −
AT + aE2(σT )−1

(
γI + β
1− γ

)−1(
I − β

1− γ

)
σT


D2 := σ

(
I − β

1− γ

)(γI + β
1− γ

)−1

+
(
I − β

1− γ

)−1
(I − β

1− γ

)
σT

C0 := (1− γ)e1 − aE2

(
σ

(
γI + β
1− γ

)
σT
)−1

λ

C1 :=
σ(I − β

1− γ

)(
γI + β
1− γ

)−1

σ−1λ+ θ


B0 = c(1− γ) + µE[(1− Y )1−γ − 1] + 1
2 tr(M2(t)Σ) + 1

2λ
T

(
σ

(
γI + β
1− γ

)
σT
)−1

λ.

(D.9)

to transform the Riccati ODEs in Equation (D.8) into the three ODEs in Proposition 4.2.2.
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D.3 Proof of Theorem 4.2.3

We first rewrite the optimal change of measure u∗(t) after inserting explicit π∗(t)

u∗ = A1(t) +A2(t)y(t) (D.10)

where

A1(t) = βσT

1− γ

M1(t) + (1− γ)
(
σ(γI + β)σT

)−1
(
σ

(
I − β

1− γ

)
σTM1(t) + λ

)

A2(t) = βσT

1− γ

[
M2(t) + (1− γ)

(
σ(γI + β)σT

)−1
(
σ

(
I − β

1− γ

)
σTM2(t)− aE2

)]
.

(D.11)
Now we return to the lemma. In order to prove Novikov’s condition, we rewrite

EP
[
exp

(
1
2

ˆ T

0
‖u∗(t)‖2 dt

)]

=EP
[
exp

(
1
2

ˆ T

0
AT

1 (t)A1(t) + 2AT
1 (t)A2(t)y + yT (t)AT

2 (t)A2(t)y(t) dt
)] (D.12)

Therefore, we need to prove the boundness of A1(t),A2(t) and y(t). By ODE of M1 in
Theorem 4.2.2, the Lipschitz condition of existence and uniqueness ofM1 holds for 0 ≤ t ≤ T

if M2 holds. Therefore, ‖M1(t)‖ <∞ is a well-defined vector function.

Also by the form of A1(t) and A2(t). Obviously ‖A1(t)‖ < ∞ and ‖A2(t)‖F < ∞ by
Minkovski’s inequality and Schwartz’s inequality.

Now we plug u∗(t) to obtain the dynamic of y(t) in worst-case scenario

dy(t) = [θ −A1(t)− (A+A2(t))y(t)] dt+ σ dWQ(t). (D.13)

The Lipschitz condition for y(t) to be well-defined also holds. Therefore,

E
[ˆ T

0
‖y‖2 dt

]
<∞. (D.14)

Using Minkovski’s inequality and Schwartz’s inequality again for Equation ( Equation (D.12)),
we successfully prove

EP
[
exp

(
1
2

ˆ T

0
‖u∗(t)‖2 dt

)]
<∞. (D.15)

With the explicit formula for y(t) in the worst-case scenario, the sup-inf problem degen-
erates into an HJB problem studied in [Chiu and Wong (2013)]. The proof of the second
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part follows along the lines of their Section 3.2. The only difference is that in their thesis the
mean-reverting matrix A is constant, while our mean-reverting matrix is A +A2(t) in the
worst-case scenario.

D.4 Proof of Proposition 4.3.1

Taking derivative on the left side of Equation Equation (4.38), we can obtain

0 = −σT (Jy + JxBπ
s) + (1− γ)β−1u∗

u∗ = βσT (Jy + JxBπ
s)

(1− γ)J .
(D.16)

Plugging u∗ back into the HJB in Equation ( Equation (4.38)), we obtain

Jt + (θ −Ay)TJy + (c+ r)xJx −
JTy σβσ

TJy

2(1− γ)J + 1
2 tr(JyyTΣ)

+ (πs)TB
(

(λ− aE2y)Jx + ΣJxy −
Jxσβσ

TJy
(1− γ)J

)

+ 1
2(πs)TBσ

(
JxxI −

J2
x

(1− γ)Jβ
)
σTBπs + µE[J(t, x(1− Y ), z, v)− J ] = 0.

(D.17)

Using the ansatz J(t, x, r, z) = x1−γ

1−γ exp
(
Mπs

0 (t) +Mπs

1 (t)y + 1
2y

TMπs

2 (t)y
)
and the form

πs = x(h+Hy) where h := h(t) and H := H(t), we obtain

(Mπs

0 )′ + yT (Mπs

1 )′ + 1
2y

T (Mπs

2 )′y + (θ −Ay)T (Mπs

1 +Mπs

2 y) + (c+ yTe1)(1− γ)

− (Mπs

1 +Mπs

2 y)TσβσT (Mπs

1 +Mπs

2 y)
2(1− γ) + 1

2(Mπs

1 +Mπs

2 y)TΣ(Mπs

1 +Mπs

2 y)

+ (h+Hy)TB[((λ− aE2y) + Σ(Mπs

1 +Mπs

2 y))(1− γ)− σβσT (Mπs

1 +Mπs

2 y)]

− 1
2(h+Hy)TBσ[(1− γ)(γI + β)]−1σTB(h+Hy) + 1

2 tr(Mπs

2 Σ)

+ µE[(1− Y )1−γ − 1] = 0
(D.18)

Then we can arrange Equation (D.18) to obtain the differential equation for Mπs

0 ,Mπs

1 and
Mπs

2 in Equation (D.19) below. For simplicity, we just represent them as M0, M1 and M2.
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

M ′
0 + c(1− γ) + µE[(1− Y )1−γ − 1] + 1

2 tr(M2Σ) + 1
2M

T
1 σ

(
I − β

1−γ

)
σTM1

+hTB
[
λ+ σ

(
I − β

1−γ

)
σTM1

]
(1− γ) + θTM1

−1
2h

TBσ[(1− γ)(γI + β)]−1σTBh = 0
M0(T ) = 0,

M ′
1 +

[
(1− γ)HTBσ

(
I − β

1−γ

)
σT −AT

]
M1 + yTM2σ

(
I − β

1−γ

)
σTM1

+(1− γ)e1 +MT
2 θ +

[
MT

2 σ
(
I − β

1−γ

)
σT − aE2

]
Bh(1− γ)

+HTBλ(1− γ)−HTBσ[(1− γ)(γI + β)]−1σTBh = 0
M1(T ) = 02×1

M ′
2 −HTBσ[(1− γ)(γI + β)]−1σTBH − a(1− γ)(HTBE2 +E2BH)

+MT
2 σ

(
I − β

1−γ

)
σTM2 +

[
(1− γ)HTBσ

(
I − β

1−γ

)
σT −AT

]
M2

+MT
2

[
(1− γ)HTBσ

(
I − β

1−γ

)
σT −AT

]T
= 0

M2(T ) = 02×2

(D.19)

For simplicity, if we let

Ds
0 = Bσ(1− γ)(γI + β)σTB

Ds
1(t) = (1− γ)HT (t)Bσ

(
I − β

1− γ

)
σT −AT

Ds
2 = σ

(
I − β

1− γ

)
σT

Ds
3(t) = a(1− γ)(HT (t)BE2 +E2BH(t))

Cs
0(t) = (1− γ)e1 +MT

2 θ +HT (t)Bλ(1− γ)

Bs
0(t) = c(1− γ) + µE[(1− Y )1−γ − 1] + 1

2 tr(M2(t)Σ) + θTM1,

(D.20)

we can obtain the ODEs in Proposition 4.3.1.

Moreover, if we set an strategy with H(t) = 0, we can easily derive the differential for
M2 in Equation (D.19) to obtain:M

′
2 +MT

2 σ
(
I − β

1−γ

)
σTM2 = 0

M2(T ) = 02×2
(D.21)

Which leads to M2(t) = 02×2. Then the quadratic term disappears in the exponentially
affine form.
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D.5 Our Estimates and those in [Schwartz (1997)]

In order to compare our model with Schwartz’s one-factor model of oil, we make a match be-
tween the two parameter sets. We extract the stochastic process of oil price using parametric
set of 1/2/90 to 2/17/95 in Table IV from [Schwartz (1997)]. Plugging the parameters and
assuming a constant interest rate of 6%, we obtain

dX(t) = (0.06 + 6.301× 0.326− 0.694X(t)) dt+ 0.326 dW (t). (D.22)

Table D.1 shows all coefficients of the WTI oil price as well as those from Schwartz’s
thesis in our notation. We observe that the estimated parameters can match parameters
from Schwartz’s thesis quite closely.

Parameters

Asset

Market price of risk λS 6.5253
Mean-reverting rate a 0.6539

Volatility σS 31.281%
Correlation ρ 0.5317%

Schwartz

Market price of risk λS 6.301
Mean-reverting rate a 0.694

Volatility σS 32.6%

Table D.1: Parameters, comparison to [Schwartz (1997)]
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Appendix E

Appendix to Chapter 5

E.1 Proofs

E.1.1 Proof of Proposition 5.3.1

Taking the infimum w.r.t u, the change of measure u is

u∗ = 1
J(1− γ)βρ(Jxσ

Tπ − Jrσre3) (E.1)

Plugging the result lead to the PDE

sup
π

{
Jt + Jxrx+ πTσ

(
Jxλ− Jxrρrσr + JxJr

βρe3σr
J(1− γ)

)
+ a(m− r)Jr + 1

2Jrrσ
2
r

− J2
r e

T
3 βρe3

2J(1− γ)σ
2
r + 1

2π
Tσ

(
Jxxρ−

J2
x

J(1− γ)βρ
)
σTπ

}
= 0.

(E.2)

The expression of σ indicates a rank of 3. So σTπ can be projected into the full 3-
dimension space. Taking supremum w.r.t σTπ with a full rank, we obtain

(σTπ)∗ = −
(
Jxxρ−

J2
x

J(1− γ)βρ
)−1(

Jxλ− Jxrρrσr + JxJr
βρe3σr
J(1− γ)

)
(E.3)
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and the final PDE,

Jt + Jxrx+ a(m− r)Jr + σ2
r

2

(
Jrr −

J2
r e

T
3 βρe3

J(1− γ)

)

− 1
2

(
Jxλ− Jxrρrσr + JxJr

βρe3σr
J(1− γ)

)T(
Jxxρ−

J2
x

J(1− γ)βρ
)−1

×
(
Jxλ− Jxrρrσr + JxJr

βρe3σr
J(1− γ)

)
= 0.

(E.4)

Substituting the ansatz J(t, x, r) = x1−γ

1−γ exp(A0(t) + A1(t)r) gives the PDE

A′0 + amA1 + σ2
r

2

(
1− e

T
3 βρe3

1− γ

)
A2

1 + 1− γ
2

(
λ+

(
−ρr + βρe3

1− γ

)
σrA1

)T
(γρ+ βρ)−1

×
(
λ+

(
−ρr + βρe3

1− γ

)
σrA1

)
+ r(A′1 + 1− γ − aA1) = 0.

(E.5)
Utilizing the separation of variables w.r.t. r returns the ODEs with terminal conditions,

A′0 + amA1 + σ2
r

2

(
1− eT3 βρe3

J(1−γ)

)
A2

1 + 1−γ
2

(
λ+

(
−ρr + βρe3

1−γ

)
σrA1

)T
(γρ+ βρ)−1

×
(
λ+

(
−ρr + βρe3

1−γ

)
σrA1

)
= 0

A0(T ) = 0A
′
1 + 1− γ − aA1 = 0

A1(T ) = 0.

(E.6)

Solving the simultaneous ODEs returns the solution in Proposition 5.3.1.

E.1.2 Proof of Theorem 5.3.1

First, we present the change of measure u∗ in the worst-case scenario as a pure function of
t,

u∗(t) = 1
J(1− γ)βρ(Jxσ

Tπ − Jrσre3)

= βρ
1− γ

(
(1− γ)(γρ+ βρ)−1

(
λ+ A1(t)

(
−ρr + βρe3

1− γ

)
σr

)
− A1(t)σre3

) (E.7)

Therefore, given a well-defined set of parameters and the function |A1(t)| < ∞ for 0 ≤
t ≤ T , the Novikov’s condition for Girsanov’s theorem holds, i.e.,

EP
[
exp

(
1
2

ˆ T

0
‖u∗(t)‖

)]
<∞. (E.8)
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Hence the change of measure in the worst-case scenario is well-defined. Following Corollary
1.2 in [Kraft (2012)] provides the proof that π∗ is in fact the optimal strategy.

E.1.3 Proof of Proposition 5.3.3

Taking infimum of Equation (5.31) w.r.t. u, we obtain

u∗ = 1
J(1− γ)βρ(Jxσ

Tπs(t)− Jrσre3) (E.9)

The HJB equation is changed into

Jt + Jxrx+ πTs (t)σ
(
Jxλ− Jxrρrσr + JxJr

βρe3σr
J(1− γ)

)
+ a(m− r)Jr + 1

2Jrrσ
2
r

− J2
r e

T
3 βρe3

2J(1− γ)σ
2
r + 1

2π
T
s (t)σ

(
Jxxρ−

J2
x

J(1− γ)βρ
)
σTπs(t) = 0.

(E.10)

To simplify the notation, we omit the superscript s of As0 and As1. Plugging the ansatz
J(t, x, r) = x1−γ

1−γ exp(A0(t) + A1(t)r) and the assumption πs(t) = xh(t) leads to:

A′0 + A′1r + r(1− γ) + (1− γ)hT (t)σλ− γ(1− γ)
2 hT (t)σρσTh(t) + a(m− r)A1

− 1
2(1− γ)

(
(1− γ)2hT (t)σβρσTh(t)− 2(1− γ)hT (t)σβρe3σrA1 + eT3 βρe3σ

2
rA

2
1

)
+ 1

2A
2
1σ

2
r − (1− γ)A1h

T (t)σρrσr = 0
(E.11)

Via separation of variables w.r.t. r, the ODE for the HJB equation is:
A

′
1 + 1− γ − aA1 = 0

A1(T ) = 0
A0 +

[
(1− γ)hT (s)σλ− (1−γ)

2 hT (s)σ(γρ+ βρ)σTh(s) + amA1(s)

+1
2A

2
1(s)σ2

r

(
1− eT3 βρe3

1−γ

)
+ A1(s)hT (s)σ(−(1− γ)ρr + βρe3)σr

]
= 0

A0(T ) = 0.

(E.12)

which returns to the solution in Proposition 5.3.3.
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E.1.4 Proof of Proposition 5.3.4

Taking β̂ gives us the suboptimal allocation

h(t) =
[
σ
(
γρ+ β̂ρ

)
σT
]−1
σ

λ+ A1(t)
−ρr + β̂ρe3

1− γ

σr
. (E.13)

With the notation ρ = BBT and βρ = BβBT , plugging the investment allocation into
Equation (5.32) gives us

As0(t) =
ˆ T

t

−1− γ
2

λ+ A1(t)
−ρr + β̂ρe3

1− γ

σr
T (BT )−1(γI + β̂)−1

× (γI + β)(γI + β̂)−1B−1

λ+ A1(t)
−ρr + β̂ρe3

1− γ

σr


+ 1
2A

2
1(s)σ2

r

(
1− e

T
3 βρe3

1− γ

)
+ amA1(s)

+ (1− γ)
λ+ A1(t)

−ρr + β̂ρe3

1− γ

σr
T (BT )−1(γI + β̂)−1

×B−1
(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

)
ds

(E.14)

In order to compute the WEL in Equation (5.33), we first compute the difference

As0(t)− A0(t) =
ˆ T

t

−1− γ
2

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr
T (BT )−1(γI + β̂)−1

× (γI + β)(γI + β̂)−1B−1

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr


+ (1− γ)
λ+ A1(s)

−ρr + β̂ρe3

1− γ

σr
T (BT )−1(γI + β̂)−1

×B−1
(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

)

− 1− γ
2

(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

)T
(B−1)T (γI + β)−1B−1

×
(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

)
ds.

(E.15)
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We can easily obtain the quadratic form

As0(t)− A0(t) =
ˆ T

t

−1− γ
2

(γI + β) 1
2 (γI + β̂)−1B−1

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr


− (γI + β)− 1
2B−1

(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

)T
(γI + β) 1

2 (γI + β̂)−1B−1

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr


− (γI + β)− 1
2B−1

(
λ+ A1(s)

(
−ρr + βρe3

1− γ

)
σr

) ds.

(E.16)

Rewriting it:

As0(t)− A0(t) =
ˆ T

t

−1− γ
2

((γI + β) 1
2 (γI + β̂)−1 − (γI + β)− 1

2
)
B−1

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr
T

((γI + β) 1
2 (γI + β̂)−1 − (γI + β)− 1

2
)
B−1

λ+ A1(s)
−ρr + β̂ρe3

1− γ

σr
 ds.

(E.17)

Therefore, the WEL is an quadratic function of λ.

E.1.5 Proof of Corollary 5.3.1.1

To simplify and generalize the problem, we consider the quadratic maximization problem of

max
x|x2=0

1
2x

TAx+ bTx+ c (E.18)

where we set

x =
x1

x2

, b =
b1

b2

, A =
A11 A12

AT
12 A22

 (E.19)

Then the quadratic maximizer point would be:

x∗ = −A−1
1 b1 = −

A−1
11 0
0 0

b (E.20)
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E.2 Estimation and Results with Copper Future Data

The copper future price data is available from Wiki Continuous Futures∗ using the code
“CME_HG1.”. To fit the data structure, we chose weekly future prices with maturity of 1 –
9 months over the period of Aug 2001 – Jan 2020 (the future prices in Nov 2011 are missing
so we ignored this period). However, the spot copper price is not available via this website;
hence, for simplicity, and adapting the formulas accordingly, we took the 1-month future as
the spot price, and n-month future to be the (n−1)-month future price. Applying MLE and
KF with the available dataset leads to the estimations provided in Table E.1 below.

Parameters

Convenience Yield

Mean-reverting rate κ 1.7874
Risk-neutral measure α̂ -2.33%
Real-world measure α 1.60%
Market price of risk λδ 0.5122

Volatility σδ 13.70%

Interest Rate

Mean-reverting rate a 0.2798
Real-world measure interest m 0.90%

Market price of risk λr 0.6803
Volatility σr 0.98%

Commodities

Market price of risk λS 0.4270
Volatility σS 27.47%
Maturity 1 τ1 0
Maturity 2 τ2 1/12

Correlation
Commodity & convenience yield ρSδ 31.04%

Commodity & interest rate ρSr 6.76%
interest rate & convenience yield ρrδ 12.58%

Table E.1: Parameters from Calibration

We created for copper data figures similar to the WTI analyses in Figure 5.3 and Fig-
ure 5.4. In Figure E.2, the plot depicts the WEL due to ignoring ambiguities. The absence of
ambiguities on the spot commodity, convenience yield, and interest rate lead to WEL of 7%,
6% and 19.5% respectively. For a larger ambiguity aversion level on convenience yield (i.e.
β2 = 9, the last subfigure), the WEL from convenience yield goes up to 31%, larger than the
27% from ignoring ambiguity on bonds or the 16% from ignoring ambiguity on spot prices.

∗https://www.quandl.com/data/CHRIS-Wiki-Continuous-Futures



193

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure E.1: Wealth-equivalent loss for ignoring ambiguities

As for incompleteness of the market, the plot in Figure E.2 illustrates that not investing
in bond accounts for 44% of WELs, which is a larger than WELs due to incompleteness of
the spot (15%) and the longer-maturity prepaid forward (18%). Moreover, the absence of all
assets leads to WEL of 55%, also satisfying the subadditivity of individual losses.
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Figure E.2: Wealth-equivalent loss for Incomplete Markets



194



Curriculum Vitae

Name: Junhe Chen

Post-Secondary PhD in Statistics (Financial Modeling), 2017 – 2021
Education and Western University, London, ON, Canada
Degrees:

MSc in Statistics (Financial Modeling), 2016 – 2017
Western University, London, ON, Canada

BSc in Applied Mathematics, 2012 – 2016
South China University of Technology, Guangdong, China

Honours and Western Graduate Scholarship, 2016 – 2021
Awards: MITACS-Internship Award, 2021 – 2022

Related Work Teaching Assistant, Research Assistant, 2016 – 2021
Experience: Western University

Publications:

Chen, J., Davison, M., Escobar-Anel M., Zafari G. (2021). Robust portfolio with commodi-
ties and stochastic interest rates. Quantitative Finance 21(6): 991-1010.

Chen, J., Davison, M. (2021). Deterministic Asymmetric-cost Differential Games for En-
ergy Production with Production Bounds. Accepted by SN Operational Research Forum.

Chen, J., Escobar-Anel M., (2021). Model uncertainty on commodity portfolios, the role
of Convenience Yield. Annals of Finance, 1-28.

195


	Application of Stochastic Control to Portfolio Optimization and Energy Finance
	Recommended Citation

	Abstract
	Co-authorship Statement
	Co-authorship Statement
	Acknowledgements
	1 Background and Motivation
	1.1 Introduction
	1.2 Literature Review for Differential Games in Energy Markets
	1.2.1 Origination of Game Theory
	1.2.2 Stochastic Driver of Oil Price
	1.2.3 Optimization and Differential-game Problems in Energy Market

	1.3 Introduction to Differential Game in Energy Market
	1.4 Literature Review of Robust Portfolio Optimization
	1.4.1 Origination of Modern Portfolio Optimization
	1.4.2 Developments in Portfolio Optimization with Model Uncertainty

	1.5 Introduction to Robust Portfolio Optimization
	1.6 Connections among Chapters
	1.7 Mathematical Preliminaries
	1.7.1 General notation
	1.7.2 Basic Knowledge of Stochastic Differential Equations and Optimal Control Problems


	2 Deterministic Asymmetric-cost Differential Games for Energy Production with Production Bounds
	2.1 Introduction
	2.2 Price Model
	2.3 Deterministic Game of Finite-reserve producer versus Infinite-reserve producers
	2.3.1 Monopolistic Case with One Finite-reserve Producer
	2.3.2 Oligopoly with One Finite-reserve Producer versus Multiple Infinite Producers
	2.3.3 Static Game
	2.3.4 Dynamic Game

	2.4 Oligopolistic Game with Constrained Production on the Finite-reserve Producer
	2.4.1 Limited Production for Finite-reserve producer
	2.4.2 Minimal Profit for Finite-reserve producer
	2.4.3 Price comparison

	2.5 Conclusion

	3 Asymmetric-cost Differential-game Model with Stochastic Profit in Energy Market
	3.1 Introduction
	3.2 Mathematical Assumption
	3.2.1 Stochastic Profit Model
	3.2.2 Construction of the Game Model

	3.3 Derivation of the Differential Game
	3.3.1 Infinite-reserve Producers
	3.3.2 A Finite-reserve Producer versus Infinite-reserve Producers

	3.4 Numerical Solution
	3.4.1 Solution with Method of Dominant Balance
	3.4.2 Numerical Solution Extended to Infinity

	3.5 Computation of Solutions for given parameters
	3.5.1 Expressions of Dynamics and Production
	3.5.2 Monte Carlo Simulation

	3.6 Conclusion

	4 Robust Portfolio with Commodities and Stochastic Interest Rates
	4.1 Introduction
	4.2 Formulation of the Surplus Optimization Problem
	4.2.1 Assumptions
	4.2.2 Optimal Portfolio Problem

	4.3 Wealth-equivalent Losses Analysis
	4.4 Empirical Analysis
	4.4.1 Data and Estimation Methodology.
	4.4.2 Optimal Strategy and Terminal Surplus
	4.4.3 Equivalent Losses in Suboptimal Analysis

	4.5 Conclusion

	5 Model uncertainty on commodity portfolios, the role of Convenience Yield
	5.1 Introduction
	5.2 Mathematical Settings
	5.2.1 Three-Factor Model
	5.2.2 Dynamics of Assets
	5.2.3 Portfolio Wealth Process
	5.2.4 The Robust Portfolio Optimization Problem

	5.3 Solution to the Robust Portfolio Problem
	5.3.1 Wealth-Equivalent Loss Analysis

	5.4 Empirical Analysis
	5.4.1 Estimation of Parameters
	5.4.2 Optimal Strategy and Suboptimal Analysis

	5.5 Conclusion

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Works

	References
	Appendix A Appendix to 2
	A.1 Nash Equilibrium Computation in 2.3.1
	A.2 Proof of 2.3.1
	A.3 Proof of 2.3.3
	A.4 Proof of 2.3.4
	A.5 Proof of 2.3.5
	A.6 Proof of 2.4.2

	Appendix B Appendix to 3
	B.1 Other assumptions on the processes of Y(t)
	B.2 Sketch of Derivation of HJB 3.29
	B.3 Proof of 3.3.4
	B.4 Some Special Exact Solutions Using the Puiseux Series

	Appendix C Application of Differential-game Model to Real-world Energy Market
	C.1 Introduction
	C.2 Data Sources
	C.2.1 Crude Oil Production
	C.2.2 Consumption
	C.2.3 Cost of Production
	C.2.4 Proven Oil Reserve and Explicit Oil Production in US
	C.2.5 Choice of Discount Rate

	C.3 Regression Model and Non-dimensionalization
	C.3.1 Growth of Real GDP
	C.3.2 Growth of Consumption

	C.4 Differential-game Model
	C.4.1 Deterministic Oil Price Model
	C.4.2 Stochastic Profit Model

	C.5 Conclusion

	Appendix D Appendix to 4
	D.1 Proof of 4.2.1
	D.2 Proof of 4.2.2
	D.3 Proof of 4.2.3
	D.4 Proof of 4.3.1
	D.5 Our Estimates and those in sch97

	Appendix E Appendix to 5
	E.1 Proofs
	E.1.1 Proof of 5.3.1
	E.1.2 Proof of 5.3.1
	E.1.3 Proof of 5.3.3
	E.1.4 Proof of 5.3.4
	E.1.5 Proof of 5.3.1.1

	E.2 Estimation and Results with Copper Future Data

	Curriculum Vitae

