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Abstract

The field of human genetics has evolved from its initial narrow focus on single-gene
Mendelian disorders, which largely affect children, to our current understanding that for most
diseases there is continuum of rare to common variants which can exert a range of
phenotypic effects. Despite advances in sequencing capabilities and our overall
understanding of diseases, there remains a large proportion of heritability unexplained.
Through the use of next-generation sequencing technologies and DNA microarray, I have
explored a spectrum of genetic variations from rare, single and structural variants to common
variants in individuals with 1) “lone” atrial fibrillation; ii) familial hypercholesterolemia; and
ii1) familial partial lipodystrophy. From my research efforts, we implicated rare loss-of-
function variants in cardiomyopathy genes to “lone” atrial fibrillation, providing evidence
that atrial cardiomyopathy is a genetic sub-phenotype of atrial fibrillation. Additionally, we
determined that “lone” atrial fibrillation has a significant accumulation of common variants
that together elevate susceptibility to the disease. Also, considering the application of
genetics in Medicine, I directly evaluated the increasing responsibility that clinicians have to
adjudicate causality of various genetic factors. For instance, having successfully identified a
novel apparently pathogenic genetic variant in a family with hypercholesterolemia, I sought
to determine its pathogenicity by performing cascade screening and co-segregation analysis
in the extended family. My analysis demonstrated that the novel variant was independent of
the disease phenotype, preventing a potential misdiagnosis and emphasized the importance of
gathering additional confirmatory data in the clinical setting. Further, by studying a well-
genotyped and phenotype familial partial lipodystrophy cohort, I uncovered that the
prevalence of severe hypertriglyceridemia and its most severe complication, namely acute
pancreatitis was more common in affected individuals who had concurrently developed
diabetes. In spite of these contributions, significant work remains to explain the full genetic
contributions to complex diseases. The benefits of understanding the complete genetic
architecture of a disease are potentially immense, allowing advances in pre-symptomatic
detection to the development of novel targeted therapies. For the patients this could translate
into such benefits as earlier detection, screening for the family, personalized therapies, and a

confirmed diagnosis.



Keywords

Genetics, complex diseases, atrial fibrillation, rare and common variants, next-generation

sequencing (NGS), familial hypercholesterolemia, lipodystrophy.



Summary for Lay Audience

Despite great advances in our understanding of the role of genetics in complex diseases, most
patients with a complex disease have no identified genetic cause. This lack of understanding
poses significant limitations on the application of genetic testing in the clinical setting.

About 99.9% of the genetic code is practically unchanged among humans, however the
remainder 0.01% that is variable is a key contributing factor for differences we observe
between people, especially related to disease. The field of human genetics has evolved to our
current understanding that for most diseases there is a broad spectrum of rare to common
mutations that can determine susceptibility to or expression of a disease. To better
understand the contribution of different types of genetic variants — or “mutations” - I used
several genetic technologies to identify both rare genetic variants in individuals with 1)
“lone” atrial fibrillation; ii) familial hypercholesterolemia; and iii) familial partial
lipodystrophy. The work conducted over the course of my graduate studies determined that
rare mutations in cardiomyopathy genes contribute to atrial fibrillation without affecting the
ventricles. Additionally, for a significant portion of “lone” atrial fibrillation patients the
accumulation of many inherited common variants from across the genome increases their risk
for atrial fibrillation. As a future clinician-scientist, I am also interested in the application of
genetics in Medicine and how it can improve patient care. During my research, I used
pedigree extension to assess the potential causality of a novel apparently pathogenic mutation
in a family with hypercholesterolemia, and then demonstrated how feasible and helpful it is
for a clinician to perform such additional work to help determine causality by incorporating
such data. Lastly, I analyzed a genetically homogeneous group of familial partial
lipodystrophy patients and identified a risk factor for a severe complication, namely acute
pancreatitis. From my collective research efforts, we now have a better understanding of the
different genetic variants or mutations that can cause or increase risk for “lone” atrial
fibrillation. Further, careful use of genetics in the clinic has the potential for benefits in

medical care from the perspective of both the provider and patient.
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Chapter 1 Introduction

1.1. Overview

Materials from the following texts with appropriate modifications, were incorporated in Chapter
1:

1. Lazarte, J., Hegele R.A. (2019) "Can one overcome “unhealthy genes™?. npj Genom
Med. 4: 24. (PMID: 31602315)

2. Lazarte, J., and Hegele, R.A. (2020). DNA sequencing in familial
hypercholesterolaemia: the next generation. Eur J Prev Cardiol. Advance online
publication. (PMID: 33623969)

3. Lazarte, J., Hegele R.A. (2020) Can genetic testing help in the management
of dyslipidaemias? Curr Opin Lipidol. 31(4): 187-193. (PMID: 32520779)

4. Lazarte, J., and Hegele, R.A. (2021). Editorial comment: hazards of interpreting
genetic reports. Curr Opin Lipidol 32, 81-82. (PMID: 33606402)

1.2. Genetic variations

The human genome is composed of approximately three billion nucleotides found within 23
chromosome pairs in the nucleus and a small amount in the mitochondria. Although 99.9% of
the genomic sequence is identical between humans, the remaining 0.01% is the main driver for
the phenotypic diversity that is observed among humans (Reich et al., 2002). Most variations in
the human genome are hypothesized to be neutral, while some variations introduce an adaptive
or deleterious effect (Frazer et al., 2009). The contribution of genotype to phenotype is a subject
of intense research in biology and medicine, and the basis of my thesis (Genomes Project et al.,
2010). In the following section, I will begin by introducing the various types of genetic

variation.

1.2.1. Single nucleotide variants (SNVs)

The most prevalent genetic variation encountered in the human genome is the single-nucleotide
variant (SNV), which involves the change of a single nucleotide position (Frazer et al., 2009). It

has been estimated that there are about 11 million SNVs in the human genome pool (Frazer et



al., 2009). SNVs can be described by their sequence ontology. Within protein-coding regions of
the genome, a SNV can exert a “synonymous” or “non-synonymous” change. A synonymous
variant is defined by a nucleotide change that does not translate into an amino acid change,
ultimately producing no change to the protein. This is achieved by the redundancy of the genetic
code where the same amino acid can be called out by a variety of codons (sequence of three
nucleotides). Synonymous SNVs are mostly considered to be silent or neutral variants as they
have no impact on the encoded protein product and thus do not modify the phenotype. However,
that maybe an oversimplification, as research has shown that in some cases the RNA product
does not undergo the same folding process or is subtly different in shape (Kimchi-Sarfaty et al.,
2007; Pagani et al., 2005). Conversely, a non-synonymous variant is defined as a nucleotide
change that translates into a completely different amino acid or the introduction of a stop codon,
commonly described as “missense” or “nonsense” variants, respectively. Missense SNV
modify the protein product while nonsense SNVs cause an early truncation. SNVs that occur
within or near the exon/intron boundaries are referred to as “splice-donor” or “splice-acceptor”.
They can alter the mRNA splice junction and cause an early truncation in the protein product
(Cartegni et al., 2002). Lastly, outside of protein-coding regions, SNVs are classified according
to the region where they are found, such as within introns, 5’ or 3’ untranslated regions (UTRs),

promoters, enhancers, silencers, non-coding genes, or pseudogenes.

1.2.2. Insertion-deletion (indel) variants

Insertion—deletion variants (indels) are the addition or subtraction of one or more nucleotides in
the genome. Indels vary in length and can be up to 50 nucleotides long (Levy et al., 2007).
“Frameshift” variants are indels within protein-coding regions; they can have the potential to
significantly disrupt the protein product if the codon reading frame is altered. Frameshifts that
are out of frame can lead to the early truncation of a protein or an elongated protein with the loss
of a stop codon. Conversely, frameshifts within the reading frame, could pose minimal

disruption to the protein, given that just a single amino acid would be altered.

1.2.3. Structural variants

In contrast to SN'Vs, “structural variants” are genetic variations that involve at least 50

nucleotides (Frazer et al., 2009; Kosugi et al., 2019). They can be subclassified into: copy



number variations (CNVs) (deletions and duplications), inversions, translocations, insertions,
and aneuploidy (Frazer et al., 2009; Kosugi et al., 2019). Structural variants have been
associated with various diseased phenotypes, such as neurodevelopmental disorders, cancers,
metabolic disorders, atrial fibrillation, and others (Frazer et al., 2009; lacocca & Hegele, 2018;
Liu et al., 2015; Stankiewicz & Lupski, 2010; Sudmant et al., 2015).

1.2.3.1. Copy number variants (CNVs)

CNVs are large structural changes in the genome that involve deletion or duplication of DNA
segments ranging in size from 1 kb to millions of base pairs (Conrad et al., 2010). CNVs are
estimated to involve perhaps 5% of the total genomic sequence in healthy individuals and can
increase to 10% or more in certain diseases (Conrad et al., 2010; lacocca & Hegele, 2018).
CNVs are particularly relevant in the etiology of complex diseases given their potential impact
on gene expression: these large-scale changes can have greater impact than SN'Vs by altering
gene dosage and gene regulation, and by disrupting the DNA sequence through a large deletion
or duplications (Stranger et al., 2007). In fact, the effects of CNVs on disease have little overlap
with SNVs, making CNV analysis a complimentary and relevant area to explore in the overall
understanding of complex diseases (Girirajan et al., 2011; Stranger et al., 2007). Although CNV
detection alone would not explain the genetics of the vast majority of complex disease, the
contribution that CNVs have further advances our understanding of pathophysiology (Conrad et
al., 2010). Further, CNV analysis remains a relatively unexplored field in most human diseases

and represents an area with opportunity for much needed investigation.

1.2.3.2. Inversion, translocation, insertion and aneuploidy

An inversion occurs when the nucleotide sequence is reversed and a translocation when a section
of one chromosome reattaches to another chromosome. Both inversion and translocations are
balanced forms of structural change, meaning that there is no net change in the genomic size
(Kosugi et al., 2019). Insertions, on the other hand, like CNVs, are imbalanced forms, changing
the net genomic size (Kosugi et al., 2019). These types of chromosomal alterations can be large
enough to be identified using fluorescent in situ hybridization (Feuk et al., 2006), however not
large enough to be visualized with karyotyping. Chromosomal aneuploidy, on the other hand,

occurs when there is a loss (monosomy) or addition (trisomy) of a full chromosome altering the



karyotype of the individual from 46 XX/XY (female/males). Aneuploidies can easily be
identified at the karyotype level with cytogenic testing (Feuk et al., 2006).

1.2.4. Variant frequency

Genetic variants (SNVs and structural variants) can be classified by their minor allele frequency
(MAF). Each variant's MAF is determined from multiple databases containing thousands of
healthy controls; the MAF is calculated for the general global population and for each ancestral
group separately (Genomes Project et al., 2015; Lek et al., 2016). For a given variant, their
frequency, occurrence and population distribution is dictated by human evolutionary forces
(mutations, genetic drift and natural selection). Purifying selection decreases the frequency of
deleterious variants, however the size of the population in which the variant occurs, and the
disease effect of the variant can enhance or diminish the efficacy of purifying selection
(Quintana-Murci, 2016). Additionally, the demographic history such as the expansion out of
Africa, founder effect and/or population bottlenecks can potentially lead to an increase in the
frequency of deleterious variants. Hence, MAF varies by ancestral group due to different
evolutionary forces that acted on that population at various points in history, such as purifying

selection, founder effect and/or population bottlenecks (Quintana-Murci, 2016).

Rare variants, by definition have a MAF of < 1% in the population (MacArthur et al., 2014).
Rare variants tend to be specific to certain populations and have large deleterious effect
(Quintana-Murci, 2016). Once the MAF falls below 0.5%, it becomes very difficult to detect a
rare variant due to limited statistical power unless it has a disease effect size large and equivalent
to variants that cause monogenic diseases (Manolio et al., 2009). In addition, low-frequency
variants are defined by a 1% < MAF < 5% and common variants with a MAF of >5% (Manolio
et al., 2009). Low-frequency variants, just like rare and common variants, contribute to disease
susceptibility and in fact, explain part of the missing heritability (Manolio et al., 2009).
Common variants are sometimes referred to as genetic polymorphisms, e.g. “single nucleotide
polymorphisms” (SNPs) or “copy number polymorphisms”. Common variants, being relatively
frequent and common across population, are typically phenotypically neutral, or at most have
small deleterious effect. However, when their individual effects are considered in aggregate,
they can collectively have a large effect on a quantitative or qualitative trait can contribute to

susceptibility to a physiological or pathological phenotype (Khera et al., 2018).



Accordingly, variant frequency by ancestry is an important concept to consider when assessing
frequency differences of variants between cases and controls. If the ancestral population is
different between the cases and controls, then the difference is simply artifactual and not based

on true biological reasons.

1.3. Genetic diseases

1.3.1. Monogenic diseases

Monogenic diseases are caused by a rare genetic variation that typically occurs in a single gene
and follows Mendelian inheritance pattern (Nehring & Faux, 1999). The foundation of
monogenic diseases is based on Gregor Mendel’s three laws of inheritance. Briefly, “the law of
independent assortment” states that during gamete formation, each paternal and maternal allele
will segregate independently from each other; the second law “the law of segregation” states that
each gamete will receive a single allele for each gene and “the law of dominance” states that
after fertilization, the dominant allele will determine the phenotype and overshadow the effect of

the recessive allele (Castle, 1903).

Monogenic diseases follow distinct Mendelian inheritance patterns, such as autosomal dominant,
recessive, co-dominant, or X-linked (sex-linked) dominant or recessive. A dominant inheritance
pattern requires a single variant allele for the phenotype to be expressed; if a parent is the carrier
of dominant allele, each child has 50% chance of inheriting it (Winsor, 1988). Conversely, a
recessive inheritance pattern is only expressed when both pathogenic alleles are present; if a
parent is a carrier (homozygous for both diseased alleles) and the second parent is a non-carrier
(homozygous for normal allele), the chances of a child inheriting one pathogenic allele are 100%
but the child would not express the phenotype as it would maximum get one diseased allele.
However, if one parent is a homozygous carrier for the pathogenic allele and the second parent is
heterozygous for the pathogenic allele, the chances of a child inheriting one pathogenic allele are
100% and the chances of a child inheriting both pathogenic alleles and expressing the phenotype
are 50%. On the other hand, if one parent is heterozygous for the recessive allele and the other
parent is a non-carrier, then a child has a 50% chance of inheriting the recessive allele and no
chance of expressing the disease phenotype. Lastly, if both parents are heterozygote carriers,

there is a 25% chance that a child will inherit both pathogenic alleles and express the disease



phenotype, a 50% chance that the child will be a heterozygous carrier and a 25% chance of being
a non-carrier. Overall, the chances of a child expressing the disease phenotype are only 25%
(Winsor, 1988). Co-dominance occurs when there is co-expression from two distinct dominant
alleles resulting in a phenotype that is the mixture of both. X-linked inheritance applies to genes
only in the X chromosome, they have different inheritance pattern in each sex given that males
have a single X chromosome. Female carriers follow the dominant or recessive inheritance
pattern described above, while male carriers express the single allele, regardless of whether it is a
dominant or recessive. Hence, males are often affected, and females are usually unaffected
carriers (Winsor, 1988). The same situation is observed in variants found on the Y chromosome,
the single allele whether dominant or recessive will be expressed by default in the male carriers.

These principles are the major cornerstone of clinical genetics.

Monogenic diseases are an integral part of the current approach to decipher the totality of human
diseases and disease heritability (Antonarakis & Beckmann, 2006). Monogenic diseases are a
more probable consideration when: there is a positive family history; there is a recognized
inheritance pattern in the family; secondary factors are absent; age of the patient is relatively
young; syndromic features are present; and the biochemical perturbation is relatively extreme

(Berberich & Hegele, 2019c¢).

Monogenic diseases are largely unaffected by environmental factors and thus become perfect
cases to investigate with low environmental noise. However, environmental or non-genetic
factors can sometimes accelerate or alleviate the phenotype. For instance, individuals with
heterozygous familial hypercholesterolemia (FH) most often due to loss-of-function variants in
the LDLR gene have markedly elevated levels of low-density lipoprotein (LDL) cholesterol and
are strongly predisposed to develop premature heart attacks and strokes (Berberich & Hegele,
2019b). Observational studies show that daily statin use by FH patients reduces their
atherosclerotic cardiovascular disease (ASCVD) risk by 44% (Besseling et al., 2016). Indeed, it
is in individuals with extreme phenotypes (and their families) were scientist can discover a novel
gene, understand its functions in the disease pathophysiology, and expand those findings for

therapy development (Chakravarti & Turner, 2016).



1.3.2. Polygenic diseases

Polygenic (or complex) diseases are determined by the cumulative impact of many genetic
variants in combination with environmental factors and lifestyle choices (Khera & Kathiresan,
2017). Culprit variants can be rare as well as common and originate anywhere across the
genome (Choi et al., 2020; Dron & Hegele, 2019). Indeed, the majority of the common variants
are located outside of protein-coding genes in non-coding and intronic regions of the genome
believed to influence gene regulation (Boyle et al., 2017). Unlike causative variants in
monogenic diseases, most of these variants have a small to modest disease effect when
considered individually, which makes them challenging to study. However, when the effect of
all variants is combined, they cumulatively have been shown to influence susceptibility to many
diseases like coronary artery disease (CAD), atrial fibrillation (AF), etc. (Boyle et al., 2017; Choi
et al., 2020; Khera et al., 2018). Further in various diseases the aggregate effect of the genetic
variants across the genome can often approximate in magnitude the expected impact of a single
large-effect rare pathogenic variant in a monogenic disease (Khera et al., 2018). Although the
exact number of variants underlying polygenic susceptibility for each disease has not been fully
determined, genome-wide association study (GWAS) have associated several hundreds of loci
with numerous diverse phenotypes, in each case explaining a portion of the disease susceptibility
(Boyle et al., 2017; Manolio et al., 2009). However, the total number of common small-effect
alleles contributing to particular traits or diseases may number in the tens or hundreds of

thousands

As mentioned, polygenic diseases are also determined by environmental factors and lifestyle
choices in combination with the underlying genetic susceptibility. Thus, it is possible to
overcome a strong polygenic predisposition to certain diseases with risk factor modification,
such as proper diet and increased level of activity, and where appropriate, use of appropriate
medications. For instance, a study of 55,685 individuals showed that among those with the
highest polygenic risk (top quintile of PRS), a favorable lifestyle was associated with ~ 50%
lower relative risk of CAD (Khera et al., 2016a). Conversely, in AF the reduction in risk was not
as prominent, individuals with a high polygenic risk but low clinical risk factors had an overall
lifetime risk for AF of 44%, compared to individuals with high polygenic risk and high clinical
risk factors that had an overall lifetime risk of 48% (Weng et al., 2018). This emphasizes that for



different diseases, the weighting of genetic versus environmental or non-genetic determinants

can vary substantially.

1.4. Heritability

Heritability refers to the portion of variance of a trait or phenotype that can be attributed to
genetic factors (Manolio et al., 2009). Heritability varies by trait or disease. For atrial
fibrillation (AF) about 22% of the heritability can be explained by mostly common variants and a
small percentage by rare variants (Weng et al., 2017a). Unfortunately, for AF, the vast majority
of those common variants do not surpass the GWAS significance threshold indicating both their
small absolute effect size and the need for huge samples for the effects to be detected. This
highlights one aspect the missing heritability problem (Manolio et al., 2009). Despite great
advances in technology and genetic analysis tools, there remains a large portion of heritability
that remains unexplained even when large numbers of common variants are accounted for. The
missing heritability is estimated to lie in rare and common variants, including structural variants
like copy number variants, that have been mostly missed due to low statistical power and
technological limitations (Manolio et al., 2009). Indeed, there is no clear approach as to what
should be investigated first and depending on the disease the proportion of each type of variant
will differ. For instance, FH patients are more likely to carry rare variants compared to
hypertriglyceridemia patients that are more likely to harbour an accumulation of triglyceride
raising common variants (Dron et al., 2020). Hence a holistic approach to determine the genetic

burden of trait or disease will improve our current understanding of disease etiology and human

physiology.

1.5. Approaches to genetic investigations

In this section, I will introduce various approaches to study the genetics of human diseases from
rare variants to common variants in related to unrelated individuals. Two key factors in

determining the correct approach are a variant's disease effect size and allele frequency.



1.5.1. Rare variant

1.5.1.1. Family studies - Linkage analysis

Linkage analysis was ubiquitous in the pre-GWAS era to map the location of putative causal
genes. Recently, this analytic approach is resurging with the accessibility of exome or whole
genome sequencing data and the need to objectively identify causality with statistical criteria
(Bailey-Wilson & Wilson, 2011; Ott et al., 2015). Linkage analysis studies are powered to detect
rare variants with large effect sizes in families with a higher burden of a phenotype. Many

causative genes for monogenic diseases have been identified this way.

Classical linkage analysis is a statistical calculation that assesses whether two or more genetic
loci are in close proximity on the chromosome; the linkage algorithm determines the probability
of whether the two loci are transmitted together during meiosis or not (Bailey-Wilson & Wilson,
2011). If two genetic loci are inherited together at a significantly higher frequency than what
would be expected by chance, then they are said to be in genetic linkage. The recombinant
fraction considers the distance between the two loci within the same chromosome: if the distance
is wide, the likelihood that there will be recombination due to crossing over is 50%, such that
they appear to assort independently as if they were located on two different chromosomes. This
is due to the Mendel’s law of independent segregation. However, if the evaluated loci are
directly adjacent to each other or even in close physical proximity, the chance of recombination
due to crossing over is close to zero, meaning that they are more likely to be transmitted together
as a pair. Here, Mendel’s law of independent segregation does not apply. The LOD score (or
logarithm of odds) calculates the likelihood of linkage between two genetic loci assuming
various recombination fractions and compares the observed linkage with the likelihood of no
linkage at the maximal recombination fraction. The recombination fraction that produces the
highest LOD score represents the most likely distance between the two genetic loci. A
maximum LOD score >3 (i.e. odds of 1000:1 that co-segregation was occurring randomly) is the
traditional level accepted as indicating significant linkage, resulting in rejection of the null
hypothesis of independent assortment and would imply strong evidence to support co-

segregation of the two loci.



Indeed, linkage analysis is re-emerging as a tool to advance the study of rare variants within
families, instead of localizing two genetic loci, its contemporary use is to assess whether a
genetic locus identified by a DNA variant is linked to a phenotype with an implicit genetic basis.
It can also be applied to multiple families with the same phenotype were a joint LOD can be
calculated (Sun et al., 2021). The main limitations with these studies is that they are not power
to detect variants of modest effect or variants with incomplete penetrance (Altmuller et al.,

2001).

1.5.1.2. Population studies - Rare variant association studies

Next-generation sequencing (NGS) technologies have facilitated the investigation of rare
variants. Previous to the development of this technology, studies on rare variants were restricted
to families (linkage analysis), however with NGS it became possible to do genome or exome-
wide association studies in unrelated individuals exploiting the potential that more cases would
harbour causative rare variants in genes implicated with a disease compared to controls (Cordell
& Clayton, 2005). The low frequency of rare variants significantly hinders the statistical power
to detect them across unrelated individuals, forcing the development of novel statistical
techniques and analysis such as “rare variant association studies” (RVASs) to boost statistical

power (Lee et al., 2012).

Population stratification is a factor that can affect the interpretation of rare variant analysis
(Mathieson & McVean, 2012; Tintle et al., 2011). As discussed in section 1.2.4, MAF is specific
to ancestries and hence, what may be rare in a population may not be rare in another. This is a
confounding factor that can easily inflate type 1 error. Techniques like principal component
analysis (PCA) that adjust for population stratification by explaining the variance observe with
principal components (PC) are very important to reduce false positive errors (Bansal et al., 2010;

Price et al., 20006).

Below I will describe two approaches to investigating rare variants:

1.5.1.2.1. Single-variant approach

For variants with relatively large effect size and MAF not too rare, a “single-variant” approach

remains a useful test to evaluate the association of each variant with the disease trait following an
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additive genetic model (Lee et al., 2014). Variants with lower effect size can also be detected at

the cost of a larger study group.

1.5.1.2.1.1. Candidate gene approach

The candidate gene approach refers to a hypothesis driven study based on experimental data of a
biological or physiological relationship between a gene or set of genes and the disease of interest
(Jorgensen et al., 2009). This approach allows for the identification of rare genetic culprits with
moderate to low effect size and can serve as validation of previous findings (Jorgensen et al.,
2009). However, it is not suitable for novel diseases, where there are no established
relationships. Additionally, candidate gene analysis is based on our current imperfect
understanding of the disease mechanisms and hence, the genes are subject to change with new
knowledge. However, it is a hypothesis-driven analysis that can easily test out a signal noted

from GWAS.

1.5.1.2.2. Collapsing approach

For variants with moderate to low effect size, a common approach is to collapse rare variants
within genes or pre-defined regions (sliding windows) and compare the collective frequency
between the cohorts (Bansal et al., 2010). By collapsing the variants, the collective frequency is
compared between the cohorts. Collapsed rare variant associations are tested with either a
burden or variance-component test (Lee et al., 2014). Briefly, a burden test assumes that all the
rare variants have the same phenotypic effect direction, meaning all variants either increase or
decrease a quantitative trait or disease risk. Conversely, a variance-component test assumes that
variance have opposing effects for the same phenotype, meaning some variants could lead to an
increase or decrease in a quantitative trait or disease risk. Hybrid test were developed that
include both burden and variance-component (like optimal unified sequence kernel association
test [SKAT-O]) to maximize the statistical power to detect an association (Lee et al., 2014).
These collapsing methods can greatly increase the statistical power to detect a true difference and
lower the requirement of sample size, which are already quite high to detect these variants

(Bansal et al., 2010).

For non-coding rare variants, the same collapsing approaches can be applied however several

challenges arise. Unlike coding variants, that a natural testing unit is a gene, with non-coding
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variants it is a lot more difficult to decipher how to group the variants since the non-coding
genome organization is not as well understood (Bocher & Genin, 2020). One approach is to pool
variants by functional units (promoter or enhancer region) or apply agnostic approach such as
sliding windows. A second challenge is that the test applied must account for the inclusion of
neutral variants; for instance, burden tests assumes that all rare variants in a region are causal and
statistical power is lost when the assumption is violated while sequence kernel association tests
assume that there are a variety of variants that are neutral variants or have opposing effect (Lee
et al., 2012). Lastly, quantifying the functional impact of non-coding rare variants on phenotype
expression remain a difficult challenge. There are databases that determine the functionality of
non-coding variants but these remain limited and not applicable to novel variants (Bocher &
Genin, 2020). However, non-coding variants have an important role in disease susceptibility and

these challenges will need to be addressed to better understand the effect of all rare variants.

1.5.2. Common variants

1.5.2.1. Genotype-phenotype association

Before GWAS, the disease susceptibility of common variants was investigated in genotype-
phenotype association studies; the hypothesis was that the diseases-associated alleles should
occur in higher frequency in the disease cases versus controls. However, not all common
variants found in the genome can be investigated because many variants are linked in linkage
disequilibrium and thus, occur together at a higher frequency than just by chance alone. This is
particular common across population, where certain alleles from different loci occur together in
individuals of common ancestry. This would lead to an inflation of type I error, hence the
International HapMap Project sought to determine in diverse populations how many variants are
independent and not in linkage disequilibrium. The project determined that about 1 million loci
in the human genome are independent (International HapMap, 2005). This began the study of
common variants across large groups of individuals which was technically facilitated by the

advent of DNA microarrays, discussed in the following section (Hardy & Singleton, 2009).

1.5.2.2. Genome-wide association studies (GWAS)

GWAS employ DNA microarrays that genotype common variants, typically SNPs with allele
frequencies >5% (Manolio et al., 2009). GWAS have allowed for the cost-effective genotyping
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of millions of SNPs in large populations. This unbiased approach well powered for large-scale
genetic association studies has led to the identification of millions of loci or SNPs that contribute
to disease and advanced our understanding of the genetic underpinning of complex diseases
(Hardy & Singleton, 2009). Given that there are 1 million independent loci, GWAS have a
standard Bonferroni correction threshold of genome-wide significance (P- value = <5%10-8) to
adjust for the multiple independent tests (McCarthy et al., 2008). Despite the great improvement
in detecting genome-wide significant loci, the replication of the findings in an unbiased
population remains paramount to clearly demonstrate that the findings are not due to population
stratification (McCarthy et al., 2008). Further, it remains challenging to determine the
mechanism of disease of a GWAS significant locus. Indeed, the vast majority (~80%) of
associated loci fall outside coding regions (Manolio et al., 2009). Within a coding region, it
simply involves determining the effect of the amino acid substitution on the protein's function.
However, in non-coding regions, the loci itself is not causative, it just serves to identify a region
that is associated with the outcome. This is because the locus is a “sentinel” SNP that is linked
to a region that is inherited together (Tucker et al., 2016). The challenge is to identify the
functional gene among the various genes that can be found in that region (Roselli et al., 2020).
One approach is to use expression quantitative trait loci (eQTL) mapping, which links the
genotype of a disease associated SNP to the expression of one or more genes in that region
(Roselli et al., 2020). The genes found using eQTL are then likely to be causative genes at that
locus. Although this approach has been very helpful at narrowing down the list of causative
genes, it suffers from a few limitations including that it is tissue specific, availability of tissue
samples is variable (in particular for cardiac analysis), and the sample sizes remain low specially

if the tissue is hard to obtain (Roselli et al., 2020).

1.5.2.3. Polygenic risk scores

Despite great advances in identifying common variants associated with a particular phenotype,
the small effect size limits their predictive power and alone they are not informative when trying
to decipher disease heritability. Hence, to understand the overall cumulative impact of numerous
small effect variants each genome is quantified using polygenic risk scores (PRS). PRS are
derived using mathematical models that aggregates the burden of common variants on the trait of

interest. Individuals in the highest decile of a CAD PRS distribution have approximately
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threefold increased risk of ASCVD compared with individuals in the lowest decile (Khera et al.,
2018). The PRS quantifies an individual's total susceptibility for a phenotype by adding up the
disease effect of its common variants (Choi et al., 2020). Because these scores appear to add
prognostic information above and beyond traditional variables, they are extensively researched

as valuable clinical risk prediction tools and have the potential to serve as diagnostic tools

(Khera et al., 2018; Muse et al., 2018).

Each common variant, if biallelic, will have one allele associated negatively with the qualitative
trait or associated with a reduction of the quantitative trait and the second allele with the
opposing effect (Dron & Hegele, 2019). The disease effect of each SNP is considered
probabilistic given that healthy controls will undoubtedly carry some of the effect alleles. Most
of the information of estimated disease effect is obtained directly from GWAS summary

statistics and they are particular to a phenotype of interest.

Initially only a few SNPs were included in these calculation, only those that pass the stringent
genome-wide significant level (Dron & Hegele, 2019). However, as GWAS studies increase in
cohort size, more SNPs previously nonsignificant became significant, as it was clearly seen in
AF (Boyle et al., 2017; Christophersen et al., 2017b; Roselli et al., 2018). However, this ever-
growing list of significant SNPs came with very small effect size. Across different diseases,
polygenic scores grew in size by incorporating millions of loci. Khera et al. (2018) compared the
predicting performance of a 6 million SNP score for CAD versus smaller scores and found that
the genome-wide score of 6 million SNPs outperformed the smaller scores. Clearly, the trivial
incremental addition of those very small effect SNPs significantly improved the predicting

performance of the score.

Application of polygenic scores in the general population can aid in risk assessment. For
instance, a PRS can be applied prospectively to identify individuals at risk that would benefit
from early intervention. Despite growing appreciation for the importance of polygenic
determinants, for most diseases they remain a research tool. The main limitation is that no
consensus exists on how to quantify polygenic effects and there are no accepted reporting
standards (Dron & Hegele, 2019). For instance, for LDL cholesterol, at least 15 different

polygenic scores have been reported; however, none has been validated across different study
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samples. However, we anticipate that the role of polygenic scores in the assessment of various
complex diseases will be clarified within a couple of years with extensive research, and that such

scores may be shown to have clinical utility at some future time.

1.6. Variant pathogenicity classification

NGS technology has produced an ever-growing list of novel putative disease-causing variants
that require further validation to affirm their pathogenicity (Sunyaev, 2012). To address this, the
American College of Medical Genetics (ACMG) has recommended a multifactorial approach as
the standard for attributing clinical relevance to a previously unreported DNA variant (Richards
et al., 2015). The ACMG guidelines consider several lines of criteria: population MAF data,
functional data, predictive in silico algorithms, segregation data, de novo status, and allelic data

(Richards et al., 2015). Below I will briefly describe each criteria:
(1) Low allele frequency in the population

Through evolution, deleterious alleles are maintained at a very low frequency by purifying
selection (a form of natural selection) because they reduce the reproductive success of
individuals (Quintana-Murci, 2016). Hence, a true deleterious variant should be rare in the

population.
(2) Functional validation of the genetic variant

Experimental validation using cell lines (in vitro), or model organisms (in vivo), or patient-
derived tissue (ex vivo) provides strong evidence of the variant's effect on the protein and disease
pathway. However, this is a time-consuming and resource intensive effort and it may no exist

for novel variants.
(3) In silico predictive algorithm

Prediction algorithms assess the deleteriousness of a variant, by tracking evolutionary conserved
regions, changes in amino acid sequence, or changes on protein function and structure. Given

that the algorithms are predictive, the evidence is just supporting.

(4) Segregation data
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Segregation data is one of the ACMG criteria that requires pedigree extension by cascade
screening followed by genotype-phenotype co-segregation analysis (lacocca et al., 2018a;
Richards et al., 2015). Consistently observing the presence and absence of the disease phenotype
in family members who are carriers and non-carriers, respectively, of a newly discovered DNA
variant in a gene already known to cause the disease, helps to build a statistical case favoring
causality. Conversely, for a highly penetrant trait such as FH, even a single instance of a family
member who deviates from the expected phenotype-genotype relationship can be sufficient to
reject a causal role. Indeed, sampling the extended kindred and performing co-segregation
analysis is relatively more feasible and comprehensible for a clinician than laboratory

experiments; however, it is a time-consuming effort.

All the evidence for each criteria must be considered in aggregate to determine a final variant
classification: (i) pathogenic; (i) likely pathogenic; (iii) uncertain significance; (iv) likely
benign; or (v) benign (Richards et al., 2015). Obtaining all the corroborative evidence required
by the ACMG is essential to avoid misdiagnosis and false positive reports of causality; however,

this can be complex, time and resource intensive (MacArthur et al., 2014).

1.7. Genetic testing technologies

In this section, I will describe the different genetic technologies employed to interrogate from

rare variants to common variants in the human genome.

1.7.1. Sanger sequencing

Chain termination sequencing or Sanger sequencing is a sequencing method that creates DNA
fragments with variable lengths due to chain-terminating nucleotides (dideoxynucleotides
[ddNTPs]) (Sanger & Coulson, 1975). For a relatively small region such as a single exome or
small gene, the pre-specified DNA fragment is amplified with polymerase chain reaction, the
fragment is sequenced incorporating at random regular deoxynucleotides and ddNTPs that
terminate the sequence. The ddNTPs are labeled with fluorescent dyes that emit a different light
wavelength for each nucleotide (A, C, T, and G) (Heather & Chain, 2016). During capillary gel
electrophoresis, each DNA fragment moves according to its length from smallest to largest
across the gel. The fluorescence emitted by each fragment is read from 5’ to 3* by a

chromatogram. Sanger sequencing was the first-generation sequencing technology and although
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it advanced the field tremendously, it was costly and laborious. Currently, it is the gold standard
for confirming a variant found with NGS technology (Berberich & Hegele, 2019¢). It can also

be easily employed when performing family cascade screening.

1.7.2. Next-generation sequencing (NGS)

NGS is a massively parallel, high-throughput sequencing approach that amplifies and sequences
millions of fragments of DNA in parallel (Pfeifer, 2017). NGS has greatly advanced variant
discovery across all human diseases by providing a cost-effective method to do large-scale
sequencing and rapid access to large amount of data (Pfeifer, 2017). NGS is highly versatile, it
can sequence a targeted panel of genes, or all the exomes (protein-coding regions that amount to

1-2% of the human genome), or the whole genome (Rehm et al., 2013).

Given that each DNA fragments is amplified multiple times, those fragments once aligned to the
reference genome, become multiple overlapping reads for each region. The overlapping reads
form the NGS coverage and help elucidate allelic zygosity. Intuitively, as NGS coverage
increases variant calls become more accurate; for whole-genome sequencing a minimum of 30X
reads is reasonable for laboratories to use (Rehm et al., 2013). Further, NGS coverage can be
exploited to do CNV analysis, CNV detection methods have evolved from multiplex ligation-
dependent probe amplification (MLPA) to NGS-based detection algorithms improving the
accessibility and feasibility to detect CNVs (lacocca et al., 2017; Wang et al., 2005). Detection
algorithms that are sequence based are much more amenable to detecting a broad range of
structural variants, not just CNVs, and provide the opportunity to determine the breakpoint
location (Kosugi et al., 2019). Indeed, our laboratory compared the concordance of a CNVs
detection algorithm, VarSeq-CNV® caller algorithm (Golden Helix, Inc., Bozeman MT, USA)
that utilizes NGS data versus the gold-standard MLPA, and demonstrated that VarSeq-CNV®
caller algorithm had 100% concordance with MLPA (Iacocca et al., 2017).

1.7.21. LipidSeq

The relatively complete understanding of some monogenic diseases makes them prime
candidates for clinical application of NGS technology, particularly targeted DNA sequencing
(Hegele, 2019). Monogenic dyslipidemias are particularly amenable to DNA analysis because

there are many different possible causative rare variants and DNA sequencing is the preferred
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method to maximize their detection rate (Berberich & Hegele, 2019¢; Hegele et al., 2015). Dr.
Hegele's laboratory designed a targeted sequencing panel, termed “LipidSeq” to detect rare
causal variants in 69 genes underlying 25 monogenic dyslipidemias as well as the simultaneous
evaluation of polygenic forms by micro-sequencing 185 SNPs; the complete list of genes
included in the LipidSeq panel: LDLR, APOB, PCSK9, STAPI, APOE, LDLRAPI, LIPA,
ABCGS, ABCGS, MTTP, SARIB, ANGPTL3, LPL, APOC2, APOAS5, LMF1, GPIHBPI1, GPDI,
CETP, LIPC, SCARBI, LIPG, ABCAI, APOAI, LCAT, LMNA, PPARG, PLINI1, CIDEC,
ZMPSTE24, LIPE, LPIN1, AGPAT2, BSCL2, CAV1, PTRF, LMNB2, AKT2, DYRKIB, POLDI,
WRN, HNF4A4, GCK, HNF1A, PDXI1, HNF1B, NEURODI, KLF11, CEL, PAX4, INS, BLK,
KCNJ11, ABCCS, SORTI, MYLIP, NPCIL1, GALNT2, MLXIPL, TRIB1, APOA4, PPARA,
GCKR, CREB3L3, PLTP, ABCGI1, CAV2, PNPLA2, and APOC3 (Dron et al., 2020; Hegele et
al., 2015). Patients with suspected FH can access genetic testing with LipidSeq, that would scan
not just the three major FH-causing genes, but also ‘minor’ FH genes; allowing for the
interrogation of monogenic (SNVs and CNVs) and polygenic causes for FH (Dron et al., 2020).
Further we can identify the exact breakpoint of a CNV utilizing Sanger sequencing which helps
us determine the degree of disruption caused by a CNV (Newman et al., 2015). In theory, NGS
technology should improve the diagnostic yield and improve patient care and from our
experience with LipidSeq, we have observed an increase in diagnostic yield of rare variants by
10% as a result of simultaneous screening for CN'Vs (Iacocca et al., 2019); increased diagnostic
certainty, specifically upgrading patient diagnosis from ‘possible’ or ‘probable FH’ to ‘definite
FH’, which in turn; provided motivation to initiate cascade screening of family members; and
helped patients to obtain reimbursement for proprotein convertase subtilisin kexin type 9
inhibitor drugs. Although there is the propensity to obtain as much sequencing data as possible,
there are drawbacks to whole-exome or whole genome sequencing compared to targeted panels
in the context of diseases like monogenic dyslipidemias. For instance, there is a greater per-
sample cost than with a targeted panel; increased risk of incidental or secondary findings
unrelated to dyslipidemia, which the physician could be obliged to report; and diminished

resolution to detect certain types of genetic variants, specifically CNVs (Johansen et al., 2014).
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1.7.3. DNA microarray

DNA microarray technology genotypes common polymorphic variants (single nucleotide
polymorphisms or SNPs) that are spaced by an average <1 kilobase across the genome
(Bumgarner, 2013). This technology at a relatively economical cost produces data from
hundreds of thousands to more than 1 million loci genome-wide (Bumgarner, 2013). DNA
microarrays have been extensively used for GWAS studies that primarily target common variants
in thousands of individuals and it has proven to be very successful to have mapped many loci
that are associated with literally thousands of phenotypes, including complex diseases

(Christophersen et al., 2017b; Nielsen et al., 2018; Roselli et al., 2018).

1.8. Atrial fibrillation (AF)

Atrial fibrillation (AF) is a complex heritable disorder (Fatkin et al., 2017; Lubitz et al., 2010a).
It is the most common sustained cardiac arrhythmia, affecting 30 million people globally and its
prevalence is estimated to double in the near future (Kannel & Benjamin, 2009). AF causes an
irregularly irregular heart rhythm originating in the atria that leads to a loss of synchronized
contraction which in turn decreases cardiac output and increases predisposition to blood clot
formation. AF increases the risks of stroke, heart failure, and death independent of other cardiac
conditions (Benjamin et al., 1998; Lin et al., 1996; Stewart et al., 2002). AF mortality risk does
not change with increasing age (Benjamin et al., 1994). The majority of AF cases develop in the
presence of established clinical risk factors, including advancing age, obesity, hypertension,
diabetes mellitus, and cardiac diseases including coronary and valvular heart disease, and
ventricular cardiomyopathy (Huxley et al., 2011). There is also an increased risk for males and
individuals of European ancestry to develop AF over females and individuals of African,

Hispanic or Asian ancestry (Dewland et al., 2013; Magnussen et al., 2017).

Heritability studies have confirmed a genetic contribution to AF. A first-degree family members
with AF is a risk factor for AF especially among individuals with early-onset forms of AF, and
can confer a 40% increased hazard risk (Alzahrani et al., 2018; Fox et al., 2004; Lubitz et al.,
2010a). The heritability of AF has been estimated to be as high as 62% in a study on
monozygotic Danish twins (Christophersen et al., 2009). Most recently, the heritability of AF in
individuals of European ancestry has been estimated to be ~22% (Weng et al., 2017a). Indeed, a
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number of reports have identified rare and common variants that predispose to the condition,

though a significant portion of AF heritability remains unexplained.

1.8.1. “Lone” AF

“Lone” AF refers to a subset of AF patients who are diagnosed early in life (< 60 years of age)
and have no clinical or echocardiographic evidence of cardiopulmonary disease or hypertension
(Wyse et al., 2014a). Consequently, “lone” AF is predicted to have a strong genetic etiology
(Choi et al., 2018b). Like AF, “lone” AF is more frequent in males and its prevalence is
estimated to be around 3% but has ranged between 1.6% and 30% (Potpara & Lip, 2014; Wyse
et al., 2014a). The prognosis of “lone” AF patients from a 12-year follow-up study was
relatively favourable, as long as no other comorbidity developed (Potpara et al., 2012). Indeed,
most of the rare variants discussed in the preceding section have been identified in “lone” AF
families where AF segregates like a Mendelian trait and the variants have large disease effect

sizes (Fatkin et al., 2017).

1.8.2. Rare variants

The first genetic study on a “lone” AF family identified a novel missense gain-of-function
variant in the KCNQ1 gene, which encodes a voltage gated potassium channel (Chen et al.,
2003a). The variant likely shortened the atrial refractory period which increased the
susceptibility for AF by making it easier for impulse re-entry (Chen et al., 2003a). Since then,
numerous candidate genes with rare heterozygous variants of large disease-causing effect have
been identified, helping elucidate portions of the pathophysiology of AF (Fatkin et al., 2017). In
particular, it established a key role for ion channel defects with both gain-of-function and loss-
of-function (LOF) variants that either shorten or lengthen atrial action potential duration (Fatkin
et al., 2017). Atrial arrhythmogenesis is also associated with variants near cardiac transcription
factors however the disease mechanism of these variants remains inconclusive. Lastly, genes
associated with myocardial structure have also been implicated in atrial arrhythmogenesis. Two
separate reports have identified cases of early-onset AF that were found to be secondary to
mutations within MYL4, which encodes a sarcomere protein and whose expression is restricted to
the atria (Gudbjartsson et al., 2017a; Orr et al., 2016). Consistent with their chamber-specific

expression, the ventricles of these patients appeared normal. Since these original reports, other
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myocardial structural genes also implicated in ventricular cardiomyopathy have been associated
with AF. For instance, cohort studies have identified rare variants from 77N to associate with
“lone” AF incidence (Ahlberg et al., 2018; Choi et al., 2018b; Gudbjartsson et al., 2017b). TTN
encodes a sarcomere protein called titin that has a critical role in cardiac contractile function, is
expressed in both the atria and ventricles, and is a well-established culprit of various forms of
ventricular cardiomyopathy (Herman et al., 2012). Further, patients with “lone” AF were
identified with impaired myocardial energetics and LV dysfunction that would not correct post
ablation, indicating that in these patients AF presence possibly resulted from an occult
cardiomyopathy (Wijesurendra et al., 2016). Similar findings with 77N variants have been
reported in other ancestral populations, such as African American and Hispanic/Latinx
individuals (mostly individuals of Mexican heritage) (Chalazan et al., 2021). Indeed, the notion
that a gene implicated in ventricular cardiomyopathy could give rise to an atrial arrhythmia is
perhaps not surprising given that many genes are expressed in both the atria and ventricles.
Hence these reports lead us to ponder, do genes implicated in ventricular cardiomyopathy also
contribute to “lone” AF? Does the increased burden of these variants in “lone” AF patients
indicate a shared predisposition between AF and DCM? What implications would ventricular
cardiomyopathy genes have on AF? Considering the spectrum of genetic variants, what is the

contribution of rare CNVs to “lone” AF?

1.8.3.  Common variants

The genetics underlying AF are slowly being unravelled, indeed like many complex diseases,
both rare and common variants have been implicated in AF (Choi et al., 2020). Upwards of
hundreds of common variants have been associated with AF susceptibility through GWAS
(Christophersen et al., 2017b; Khera et al., 2018; Nielsen et al., 2018; Roselli et al., 2018; Roselli
et al., 2020). Indeed, the application of a single common variant to predict AF is limited, thus
the value of GWAS was to identify novel genes and pathways not previously implicated in AF
pathogenesis (Bapat et al., 2018). For instance, Nielsen et al. (2018) identified loci near genes
for structural integrity and function of cardiac muscle to associate with AF susceptibility.
However, bridging the gap from a GWAS significant locus to a functionally relevant gene is not
straight forward, many loci occur in non-coding regions, and that remains a major challenge

(Roselli et al., 2020; Tucker et al., 2016).
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In this context, polygenic risk scores that incorporate all the GWAS significant loci and stratify
AF risk in individuals have had tremendous uptake for their clinical utility (Khera et al., 2018).
One of the earliest PRS developed for AF had a modest incremental discrimination of AF over
clinical risk factors but it did associate strongly with cardioembolic stroke (Lubitz et al., 2017).
Another PRS applied to a community-based cohort identified that individuals in the highest PRS
tertile had a significantly higher AF lifetime risk compared to those in the lower PRS tertile
(48.2% versus 22.3%, respectively) (Weng et al., 2018). Lastly, Khera et al. (2018) identified
that 6% of the European population with a high PRS score had a 3-fold higher risk for AF than
individuals with a low PRS, and this risk was equivalent to having a single rare pathogenic AF
variant (Khera et al., 2018). Indeed, the role of PRS have begun to be evaluated in AF, but they
have yet to be assessed in a “lone” AF cohort, where their potential genetic impact is anticipated
to be the most dramatic. “Lone” AF is suspected to have a greater genetic burden than AF alone
and, as we have observed with our previous study, a significant portion of “lone” AF heritability
was not explained by rare variants alone (Lazarte et al., 2021d). Hence the exploration and
comparison of two validated polygenic scores in a “lone” AF cohort should unravel to what
extent are polygenic factors contributory in “lone” AF? And further elucidate which polygenic
score harbors the greatest predictive power, a concept that has yet to be evaluated in the AF

literature?

1.9. Familial hypercholesterolemia (FH)

Familial hypercholesterolemia (FH) is a common disorder with serious public health
consequences, characterized by elevated plasma low-density lipoprotein (LDL) cholesterol (=5
mmol/L for the heterozygous form ). FH is an autosomal co-dominant condition; its
heterozygous form is the most prevalent, affecting 1 in 300 individuals (Defesche et al., 2017,
Hu et al., 2020). A lifetime exposure to high levels of LDL cholesterol augments atherosclerosis
build-up and substantially increases the lifetime risk of ASCVD (Defesche et al., 2017). For
instance, the risk of premature ASCVD for someone with LDL cholesterol >5 mmol/L and a
pathogenic FH mutation is increased by 22-fold compared to a variant negative person with LDL
cholesterol <3.4 mmol/L (Khera et al., 2016b). Early statin treatment can reduce lifetime

ASCVD risk to near normal levels (Defesche et al., 2017). Furthermore, positive diagnosis of
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FH should trigger family cascade screening, since half of first-degree relatives will also be

affected (Defesche et al., 2017).

Blood LDL cholesterol levels are determined by environmental, as well as, monogenic and
polygenic etiologies (Lazarte & Hegele, 2019). Monogenic FH consist primarily of dominant
rare variants in the canonical genes: LDLR, APOB, and PCSK9; or in the minor genes:
LDLRAPI, ABCGS5, ABCGS8, APOE, and LIPA (Berberich & Hegele, 2019a). Conversely,
polygenic FH encompass a multitude of mutations scattered throughout the genome that,
combined into a score, determine the susceptibility to elevated LDL cholesterol (Dron & Hegele,
2019). Overall, 47.3% of patients seen in our clinic have a pathogenic SNVs (Wang et al.,
2016). Further an additional 6.4% of patients are found to harbour a pathogenic CNV (Wang et
al., 2016). Of the remainder, a significant portion of patients carry a high polygenic
predisposition to FH (Wang et al., 2016). Despite best efforts, FH remains underdiagnosed and
undertreated; in particular, FH patients on statin therapy remain at high risk for developing

ASCVD (Nordestgaard et al., 2013; Versmissen et al., 2008).

The growing availability of NGS technology and the relatively easy application of targeted NGS
panel for FH diagnosis, has created an ever-growing list of novel variants that clinicians are
increasingly expected to interpret for clinical decision-making. Following the Hippocratic oath’s
central dictum ‘primum non nocere’ (‘first do no harm’), minimizing genetic reporting errors is
essential for an accurate molecular diagnosis, family counselling and recommending the
appropriate treatment (Brown et al., 2020; Schaefer et al., 2019). Guidelines for variant
interpretation have been proposed by the ACMG and are explained in detail in section 1.6 but we
wondered, what supporting data from the ACMG guidelines can be easily gathered in the clinic
to improve variant assessment? How feasible would be it to be apply it on a novel variant and

interpret it?

1.10.Lipodystrophy

Lipodystrophy is a heterogenous group of rare congenital or acquired metabolic disorders
characterized by a complete or partial loss of adipose tissue that results in the storage of lipids in
the liver, muscle and other organs, and leads to insulin resistance (Brown et al., 2016). Insulin

resistance in turn triggers diabetes mellitus type 2, hypertriglyceridemia, polycystic ovarian
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syndrome (PCOS), and non-alcoholic fatty liver disease (Brown et al., 2016). The natural
progression for patients with lipodystrophy can include the development of cardiomyopathy,
heart failure, myocardial infarction, arrhythmia, liver failure, gastrointestinal hemorrhage,
hepatocellular carcinoma, kidney failure, acute pancreatitis, and sepsis. Given the heterogeneity
of the lipodystrophy group, there is a natural wide range of prognosis and outcomes;
lipodystrophies can be broadly classified into “familial or genetic” and “acquired” types
(Bhayana & Hegele, 2002). The main distinguishing factor between each form is the unique loss
of adipose tissue from specific regions of the body; for instance, congenital generalized
lipodystrophy involves loss of adipose tissue in the entire body while acquired partial

lipodystrophy spares the lower extremities of the subcutaneous fat loss (Gupta et al., 2017).

One type of lipodystrophy is familial partial lipodystrophy (FPLD) which is an inherited type of
body fat loss limited to the extremities, trunk and gluteal region (Brown et al., 2016). The most
common subtype of FPLD is Dunnigan-type (or FPLD2) (OMIM 151660) which is caused by
autosomal dominant pathogenic rare missense variants in the LMNA gene encoding lamin A/C
(Hegele et al., 2007). The FPLD2 clinical phenotype develops around puberty, with noticeable
loss of subcutaneous fat and a potential accumulation of fat in the face, neck, back and labia
majora. In some cases, muscular hypertrophy, acanthosis nigricans, hirsutism, menstrual
abnormalities, dyslipidemia, hepatosteatosis and PCOS can also occur. Later in life, many
patients develop type 2 diabetes mellitus, which increases the risk for microvascular and
macrovascular complications, and coronary heart diseases (Brown et al., 2016). Due to the rarity
of the lipodystrophy syndromes, understanding the natural history of each subtype has not been
possible and most of what we know originates from small case reports. We wondered, what role,

if any, could genetics have in elucidating the natural history of one FPLD subtype?

1.11.Thesis outline

1.11.1. Thesis hypothesis
1) Complex diseases, like “lone” AF, are determined by a mixture of rare and common

variants across the genome.

24



2) Twenty first century genetics has a valuable role in improving clinical medicine and in
the advancement of our understanding of diseases, but this must occur alongside a

rigorous assessment of novel putative variants.

1.11.2. Thesis aims

Aim 1: I propose to utilize NGS technologies to characterize the burden of rare SNVs and CNVs

in a “lone” AF cohort.

Aim 2: I propose to interrogate SNP microarray data to characterize for the overall burden of
common variants on a “lone” AF cohort and compare two discriminatory capabilities of two

polygenic scores.

Aim 3: I propose to apply cascade screening in the setting of a novel CNV to improve variant

assessment in clinical settings.

Aim 4: I aim to investigate the prevalence of severe hypertriglyceridemia and pancreatitis in

patients with FPLD2, utilizing genetic and health record data.

1.12.Conclusion

In this PhD Thesis, I describe my research efforts primarily dedicated to elucidating the genetic
contribution underlying “lone” AF as well as clinical lessons from the application of genetics on
clinical medicine. I have achieved this by investigating both rare and common variants captured
with NGS and DNA microarray technologies, on patients with AF, FH and FPLD. Specifically,
my findings on the “lone” AF cohort confirmed the contribution of rare variants from classical
cardiomyopathy genes and the substantial contribution of common variants (previously
unexplored). Collectively, my work has further advanced our understanding of “lone” AF and
highlighted the diverse genetic basis of the disease. My investigations on the FH family and
lipodystrophy cohort provide valuable clinical lessons about the application of genetics in
clinical medicine. In the case of the FH family, the lesson was on the importance of proper
variant interpretation. While with the FPLD2 cohort, the lesson was on the increased risk
FPLD2 patients with concurrent diabetes have for serious complications and how they should be

monitored more frequently.
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Chapter 2. Loss-of-Function and Copy Number Variants in
Ventricular Cardiomyopathy Genes in “Lone” Atrial Fibrillation

The work contained in this Chapter has been edited from its original publication in Europace for
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Aims Atrial fibrillation (AF) is a complex heritable disease whose genetic underpinnings remain largely unexplained,
though recent work has suggested that the arrhythmia may develop secondary to an underlying atrial cardiomyopa-
thy. We sought to evaluate for enrichment of loss-of-function (LOF) and copy number variants (CNVs) in genes
implicated in ventricular cardiomyopathy in ‘lone’ AF.
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Methods Whole-exome sequencing was performed in 255 early onset ‘lone’ AF cases, defined as arrhythmia onset prior to

and results 60years of age in the absence of known clinical risk factors. Subsequent evaluations were restricted to 195 cases
of European genetic ancestry, as defined by principal component analysis, and focused on a pre-defined set of 43
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controls (P=0.0014). Subsequent cascade screening in two families revealed evidence of co-segregation of a LOF
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Conclusion “Lone’ AF cases are enriched in rare LOF variants from cardiomyopathy genes, findings primarily driven by TTN,
and a novel TTN deletion, providing additional evidence to implicate atrial cardiomyopathy as an AF genetic sub-
phenotype. Our resilts also highlight that AF may develop in the context of these variants in the absence of a dis-
cernable ventricular cardiomyopathy.
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2.1. Study rationale

“Lone” atrial fibrillation (AF) is a relatively uncommon phenotype; however, the first ever
pathogenic variant (located in the KCNQ! gene) was discovered in a “lone” AF family (Chen et
al., 2003b). Since then, numerous novel variants in candidate genes, mostly encoding ion
channels, have been identified, helping elucidate portions of the pathophysiology of AF (Fatkin
et al., 2017). However, much remains to be explored with newer candidate genes that have been
mapped with genome-wide association studies (GWAS). For this investigation, we sought to
determine if “lone” AF patients carried a higher burden of rare variants in ventricular

cardiomyopathy genes.

2.2. Overview

AF is a complex heritable disease whose genetic underpinnings remain largely unexplained,
though recent work has suggested that the arrhythmia may develop secondary to an underlying
atrial cardiomyopathy. We sought to evaluate for enrichment of loss-of-function (LOF) and copy
number variants (CNVs) in genes implicated in ventricular cardiomyopathy in “lone” AF.
Whole-exome sequencing was performed in 255 early onset “lone” AF cases, defined as
arrhythmia onset prior to 60 years of age in the absence of known clinical risk factors.
Subsequent evaluations were restricted to 195 cases of European genetic ancestry, as defined by
principal component analysis, and focused on a pre-defined set of 43 genes previously implicated
in ventricular cardiomyopathy. Bioinformatic analysis identified 6 LOF variants (3.1%),
including 3 within the 77N gene, among cases in comparison with 4 of 503 (0.80%) controls
(Odds ratio: 3.96; 95% confidence interval [CI]: 1.11-14.2; P=0.033). Further, 2 AF cases
possessed a novel heterozygous 8,521 base pair 77N deletion, confirmed with Sanger sequencing
and breakpoint validation, that was absent from 4,958 controls (P=0.0014). Subsequent cascade
screening in 2 families revealed evidence of co-segregation of a LOF variant with “lone” AF.
“Lone” AF cases are enriched in rare LOF variants from cardiomyopathy genes, findings
primarily driven by 77N, and a novel TTN deletion, providing additional evidence to implicate
atrial cardiomyopathy as an AF genetic sub-phenotype. Our results also highlight that AF may
develop in the context of these variants in the absence of a discernable ventricular

cardiomyopathy.
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2.3. Introduction

AF is the most common sustained cardiac arrhythmia and is associated with increased risks of
stroke, heart failure, and death. The majority of AF cases develop in the presence of established
clinical risk factors, including hypertension, coronary and valvular heart disease, and ventricular
cardiomyopathy. However, cases of so-called “lone” AF that manifest in the absence of known
predisposing clinical conditions are well-documented, highlighting our limited insight into its
pathophysiology and the need to explore non-conventional risk factors, including genetic
contributors. Heritability studies have confirmed a genetic contribution to AF and a mounting
number of reports have identified rare and common variants that predispose to the condition,
though the majority of AF heritability remains unexplained (Lubitz et al., 2010b). Notably, a
potential contribution of copy number variants (CNVs), large genomic structural alterations, has

yet to be extensively explored.

Two separate reports have identified cases and families of early-onset AF that were found to be
secondary to mutations within MYL4, which encodes a protein critical to sarcomeric structure
and whose expression is restricted to the atria (Gudbjartsson et al., 2017a; Orr et al., 2016).
Consistent with their chamber-specific expression, the ventricles of these patients appeared
normal. Since these original reports, loss-of-function (LOF) TTN variants have also been
implicated in AF (Choi et al., 2018a). TTN encodes titin, a sarcomeric protein that has a critical
role in cardiac contractile function, is expressed in both the atria and ventricles, and is a well-
established culprit of various forms of ventricular cardiomyopathy (Ware et al., 2016). Aligning
with this cardiomyopathic theme, recent AF genome-wide association studies have also
identified common variants within or near genes associated with ventricular cardiomyopathy

(Roselli et al., 2018).

The concept of an underlying atrial cardiomyopathy being responsible for AF vulnerability and
potentially leading to a heightened stroke risk has been increasingly discussed in the literature in
recent years (Goette et al., 2016; Guichard & Nattel, 2017). Notably, multiple different clinical,
environmental, and genetic factors have been purported to give rise to different
pathophysiological and histological subtypes of atrial cardiomyopathy (Goette et al., 2016). In
this context, the notion that a gene implicated in ventricular cardiomyopathy could give rise to an

atrial cardiomyopathy and subsequently predispose to AF is perhaps not surprising given that
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many genes are expressed in both the atria and ventricles (McNally & Mestroni, 2017).
Motivated by these concepts, we sought to evaluate for a role of LOF variants and CNVs within

genes implicated in ventricular cardiomyopathy as causes of “lone” AF.

2.4. Methods
2.4.1. AF study cohort

Patients with early-onset “lone” AF, defined as development of arrhythmia in the absence of
known clinical risk factors prior to 60 years of age, were recruited from the referral bases for AF
management at the London Health Sciences Centre, London, Ontario, Canada and St. Paul’s
Hospital, Vancouver, British Columbia, Canada. All AF cases were unrelated and had at least
one episode of electrocardiographically documented AF characterized by erratic atrial activity
without distinct P waves and irregularly irregular QRS intervals lasting >30 seconds. Exclusion
criteria consisted of known risk factors for AF, including hypertension, coronary artery disease,
left ventricular ejection fraction <50%, moderate to severe valvular heart disease,
hyperthyroidism, obstructive sleep apnea, and presence of a known underlying inherited
channelopathy or cardiomyopathy. All patients underwent, at minimum, a clinical history,

physical examination, 12-lead ECG, and echocardiogram.

Familial cascade screening was attempted for all AF cases identified to possess an LOF variant
or a CNV within a screened cardiomyopathy gene. All family members that agreed to participate
in cascade screening underwent, at minimum, a baseline ECG and echocardiogram. Among
family members that did not possess AF on baseline ECG, Holter monitoring was performed
(minimum duration of 24 hours). Use of clinical and genetic data from family members was
restricted to genotype-phenotype segregation analyses and was not included in statistical
analyses for variant enrichment. Evidence of genotype-phenotype segregation was defined as 2

or more family members carrying the variant and possessing either an AF or a DCM phenotype.

Participants provided informed written consent under protocols that were approved by the
research ethics boards of Western University and the University of British Columbia. This study

complies with the Declaration of Helsinki.
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2.4.2. Genetics analyses

In preparation for whole-exome sequencing, genomic DNA for AF cases was isolated using the
Puregene® DNA Blood Kit (Gentra Systems, Qiagen Inc., Mississauga, Ontario, Canada).
Whole-exome enrichment was performed with Roche Nimblegen SeqCap EZ Human Exome
capture chemistry and sequencing (NovaSeq 6000 sequencer, Illumina), average coverage depth
was 80x. DNA-Seq was implemented with optimized BROAD institute germline best practices
standard operating procedures (Van der Auwera et al., 2013). The optimized procedure entailed
trimming raw reads derived from FASTQ files followed by alignment to the human reference
genome (build hgl9), post alignment refinements and variant calling. Trimmed reads were
aligned to the reference by the Burrows-Wheeler Aligner, bwa-mem (algorithm) (Li & Durbin,
2009). Refinements of mismatches near indels and base qualities were performed using GATK
indels realignment and base recalibration to improve read quality post alignment. Processed
reads were marked as fragment duplicates using picard mark duplicates (Van der Auwera et al.,
2013). SNP and small indels were annotated using either GATK haplotype callers or samtools
mpileup (Li et al., 2009). The Genome in a Bottle (Zook et al., 2016) dataset was applied to
select steps and parameters minimizing the false positive rate and maximizing the true positive
variants to achieve a sensitivity of 99.7%, precision of 99.1% and F1-score of 99.4%. Finally,
additional annotations were incorporated using dbNSFP (Liu et al., 2016) and/or Gemini (Paila
et al., 2013) and quality control metrics were collected at various stages and visualized using

MultiQC (Ewels et al., 2016).

Following raw data processing into variant call files (.vcf files), AF cases and control .vcf files

were uploaded to VarSeq v2.2.0 (Golden Helix Inc, Bozeman, MT, USA).

Microarray analysis of AF cases was performed with Infinitum™ Global Screening Array-24
v2.0 (Illumina). GenomeStudio software was utilized to retrieve the microarray data and export
it to SNP & Variant Suite (SVS) v8.8.3 (Golden Helix Inc, Bozeman, MT, USA). To improve
genotyping accuracy, data points were filtered out if they had a GenCall score cutoff <0.15,
removing unreliable genotypes that had not been assigned. Microarray data was further cleaned
by filtering samples with a low rate of autosomal SNP calls over the total number of SNP calls in
the dataset to avoid inappropriate results from faulty genotyping calls (Miyagawa et al., 2008).

Any sample with a call rate <95% was removed (n=2).
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2.4.3. Control cohorts

Various control cohorts were employed depending on the analysis undertaken. For the rare LOF
variant analysis, our reference was the European subgroup (503 individuals) of the 1000
Genomes Project (1KG), a multi-ancestry cohort of 2,504 individuals over the age of 18 that
self-reported as healthy (sequencing platform: Illumina, average depth of coverage: 7.4)
(Genomes Project et al., 2012). SNP genotyping of the 1KG cohort was performed with the
[llumina Omni 2.5M microarray. In order to evaluate the frequency of the 77N deletion
identified in 2 AF cases, whole-genome sequencing data from 4,958 unaffected parents
participating in an autism study was assessed (Yuen et al., 2017). Although these study
participants had not undergone AF screening, all were less than 50 years of age and hence < 1%
would be anticipated to possess AF (Zoni-Berisso et al., 2014). Among these 4,958 unrelated
individuals, sequencing was performed on either the Illumina HiSeq X (n=4466), HiSeq 2000
(n=472), or HiSeq 2500 (n=20) platforms.

2.4.4. Principal component analysis on ancestry

SNP & Variant Suite (SVS) v8.8.3 (Golden Helix Inc, Bozeman, MT, USA) was utilized to
correct for ancestry applying principal component analysis in order to confine the rare variant
analysis to a single population (Zhang et al., 2013). Utilizing X chromosome heterozygosity,
samples were removed if positive for sex discordance between clinical data and genotype
information (n=4). Linkage disequilibrium (LD) pruning was applied to all autosome
chromosomes to prepare the data for identity by descent estimation analysis. One father and son
pair was detected and the father was removed from further analysis (n=1). Principal component
analysis on patients and 1KG controls was performed on variants found in both datasets post LD
pruning using EIGENSTRAT (Price et al., 2006). Five eigenvalue components were formulated,
to which the top three were utilized to explain the majority of the stratification (Price et al.,
2006). Around the 1K Genome European population cluster, a centroid was mathematically
identified and any case sample that fell outside the 1.5 inter-quartile range was excluded from the

analysis as it was deemed outside the European population cluster (n= 44).
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2.4.5. LOF variant analysis

Bioinformatic analysis of whole-exome sequencing (WES) data was consistent for cases and
controls and was initially restricted to a previously used panel of 43 dilated cardiomyopathy
(DCM)-associated genes and then, in a subsequent analysis, to a subset of 12 genes recently
shown to have robust evidence as highly penetrant and monogenic culprits of DCM (Mazzarotto
et al., 2020; Ware et al., 2016). The panel of 43 genes included: ABCCY9, ACTCI, ACTN2,
ANKRDI, BAG3, CRYAB, CSRP3, CTF1, DES, DMD, DNAJC19, DSG2, DSP, DTNA, EMD,
FKTN, ILK, LAMA2, LAMA4, LAMP2, LDB3, LMNA, MYBPC3, MYH6, MYH7, NEXN,
PDLIM3, RBM20, SCN5A, SDHA, SGCB, TAZ, TCAP, TNNCI, TNNI3, TNNT2, TPM1, TTN,
VCL, CAV3, FXN, SYNEI, and SYNM (Ware et al., 2016). In the subsequent analysis, we
investigated the following 12 genes: BAG3, DSP, TTN, VCL, LMNA, MYH7, TNNCI1, TNNT?2,
TPMI, ACTCI, NEXN, and PLN (Mazzarotto et al., 2020). Variant calls were filtered for a minor
allele frequency of <0.1% or missing according to the Genome Aggregation Database (gnomAD;

https://gnomad.broadinstitute.org). A threshold of <0.1% was selected in an effort to capture

both high and intermediate penetrant rare variants given that autosomal dominant forms of AF
are extremely rare and hence highly penetrant rare variants are likely the exception rather than
the rule. Of the remaining variants, filters for in silico predictions of deleterious outcome were
retrieved from the prediction tool Combined Annotation Dependent Depletion (CADD;
http://cadd.gs.washington.edu/score). Variants with a CADD Phred score >20 were selected,
belonging to the top 1% of most deleterious variants in the human genome. The final filter
applied was for variant types that could be assumed to result in a LOF in the protein with a high
degree of confidence; only variants that were frameshift, splice acceptor, splice donor and stop-

gain were considered in the analysis.

2.4.6. Sanger sequencing

The validity of each LOF variant identified in AF cases was verified with bidirectional direct
DNA (Sanger) sequencing. Amplification of targeted genomic regions was performed using
polymerase chain reaction (primer sequences available upon request) followed by DNA
sequencing using the ABI PRISM dye terminator method (Applied Biosystems, Foster City, CA,
USA).
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2.4.7. CNV detection

Sequencing data in the form of FASTQ files for AF cases and the internal reference group were
processed utilizing a custom workflow in CLC Genomics Workbench v11.0.1 (CLC Bio,
Aarhus, Denmark) to generate variant calling files and coverage statistics. These, alongside a
Roche chemistry BED file defining the sequenced regions, were utilized for the CNV caller
function in VarSeq v2.2.0 (Golden Helix, Bozeman, MT). The internal reference group used for
the CNV caller algorithm was a composite of 16 unrelated self-reported healthy individuals of
European ancestry who had provided written consent for their DNA to be analyzed. Sequencing
of the internal reference group was performed on the Illumina NovaSeq 6000 and average depth
of coverage was 80x. Bioinformatic filters applied were consistent for cases and the internal
reference group. The CNV caller algorithm compares the coverage for each region between a
case and the mean internal reference group (n=16). Further, the algorithm computes the Z-score
metric for depth of coverage, which measures the number of standard deviations from the mean
internal reference group. A second metric is the ratio, which is the normalized mean of the AF
case divided by the average normalized mean of the internal reference group. It is considered
suspicious for a duplication if the ratio is >1.25 and a deletion if it is <0.75. The P-value is the
probability that a given Z-score for a particular area would occur by chance in a diploid region.
The Z-score threshold for CNV consideration was 2 (or -2); however, a lower threshold was

accepted in the presence of a strong P-value (P < 1x107).

2.4.8. CNV breakpoint analysis

PCR and Sanger sequencing based analysis was used to identify the exact nucleotide breakpoints
of a CNV. Briefly, long-range PCR primers were used to narrow the approximate regions
harboring the breakpoints and subsequent primer walking and sequencing were employed to
determine their exact locations. The exact locations were confirmed by sequence alignment of

the amplified product with a known reference sequence.

24.9. TTN CNV frequency in a control population

To identify any CNVs overlapping the detected 77N CNV region in a control population, we
evaluated sequencing data from 4,958 unrelated individuals. Sequencing data were aligned to

the GRCh38/hg38 reference genome using the Sentieon implementation of BWA-mem. The
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average depth of coverage was 43.5x for the 77N CNV frequency controls (n=4,958).
Bioinformatic filters applied to the 77N CNV controls were any CNVs >=1 kb in the
overlapping region of the detected TTN deletion.

The pipeline used to generate alignments (CRAM files) and small variant calls (VCF files) for
the MSSNG DB6 release is based on software by Sentieon. This pipeline was developed for
maximum concordance with the Broad Institute’s Best Practices workflows for Data pre-

processing for variant discovery (conforming to the CCDG functional equivalence standard) and

Germline SNPs and indels. For a detail description of the workflow:

https://dockstore.org/workflows/github.com/DNAstack/mssng-db6-ccdg-alienment-and-

calling:1.0.0?tab=info.

CNVs >=1 kb were detected using a previously described workflow (Trost et al., 2018)
involving the algorithms ERDS and CNVnator. The “intersect” function of BEDTools was used
to identify CNVs overlapping the detected 77N CNV location. Integrative Genomics Viewer
was used to visually verify the correctness of any CNVs detected (Trost et al., 2018).

2.4.10. Statistical analysis

Continuous variables are presented as means + standard deviation. Two-by-two contingency
tables with chi-square analysis were used to calculate odds ratios (ORs) of rare LOF variant
enrichment. Comparison of the 77N CNV frequency in AF cases versus 4,958 controls was
performed using Fisher’s exact test. Statistical analyses were performed using SAS version 9.3

(SAS Institute, Cary, NC). Statistical significance was defined as P < 0.05.

2.5. Results

2.5.1. Clinical characteristics of AF cases

A total of 255 early-onset “lone” AF cases underwent WES; principal component analysis
restricted the analysis to a total of 195 “lone” AF cases with European genetic ancestry. Their
clinical characteristics are summarized in Table 2.1. The average age at AF diagnosis was 44.47
+9.75 years and 81% were male. A total of 173 (88.7%) individuals had paroxysmal AF at the
time diagnosis, whereas the remaining 22 (11.3%) patients had persistent AF. Positive family

history of AF was noted in 59 (30%), defined as at least one first-degree relative possessing the
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arrhythmia. Mean body-mass index was 27.24 + 3.80, and the mean left atrial diameter was 3.96

+0.55 cm.

Table 2.1 Clinical Characteristics of the “Lone” AF Cohort

Clinical Variable

“Lone” AF Cohort

n=195

Age at diagnosis (years)

Sex (male)

Body mass index (kg/m?)*

Type of AF at diagnosis

Paroxysmal

Persistent

Family History of AF

ECG Values

PR-interval*

QRS duration

QTc

Left atrial diameter (cm)*

44.47 £9.75

157 (80.5%)

27.23 £3.81

173 (88.7%)

22 (11.3%)

59 (30.2%)

167.56 *+ 26.50

94.82 + 14.65

420.55 + 27.05

3.97 £0.56

Data are n (%) or mean + standard deviation.

AF = atrial fibrillation; * values for body mass index, PR-interval, and left atrial diameter were missing

for 1, 2, and 1 cases, respectively.



2.5.2. LOF variants in DCM genes

Genetic analysis revealed that 3.1% (6/195) of individuals from the AF cohort possessed a LOF
variant among the 43 screened DCM genes, including 4 novel variants and 2 that had been
previously observed (Table 2.2). Half of the variants identified in the AF cohort were present in
the TTN gene (3/6) and the remaining 3 variants were identified in the NEXN, SDHA, and
CRYAB genes. Evaluation of the 1KG controls revealed that 0.79% (4/503) possessed
heterozygous LOF variants in the SYNEI, MYBPC3, ABCC9 and MYH?7 genes. The majority of
the LOF variants in the AF cohort were stop-gain (4/6) and the remaining two were frameshift
mutations, while the majority of variants in the controls impacted splice acceptor sites (3/4). The
average CADD Phred score of the variants in all AF cases was 40.76 in comparison with 24.15
for controls. The odds ratio of rare LOF variants found in the AF cohort compared to the IKG
controls was 3.96 (95% CI: 1.10-14.2; P=0.033).

Restricting the analysis to the 12 highly penetrant DCM genetic culprits identified by Mazzarotto
and colleagues revealed that 2.05% (4/195) of AF cases possessed a LOF variant (77N (3/4) and
NEXN)(Mazzarotto et al., 2020). In comparison, 0.20% (1/503) of 1KG controls possessed a
heterozygous LOF variant (MYH7). These findings corresponded to 10.51-fold (95% CI: 1.73-
128.9; P=0.02) increased odds of a rare LOF variant being present in the AF cohort compared to
the 1KG controls.
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Table 2.2 Loss-of-Function and Copy Number Variants From Ventricular Cardiomyopathy Genes Identified in “Lone” Atrial

Fibrillation Cases

CADD Phred gnomAD
AF Family Gene Chr:Position  Ref/Alt Amino Acid Change  Variant Type rsID
Score MAF
1 2:179459226 T/- His19332Profs*18 Frameshift 57 rs397517633 -
2 TTN 2:179547542 A/C Tyr10992Ter Stop Gain 49 - -
3 2:179642033 G/A GIn1553Ter Stop Gain 36 - -
4 NEXN 1:78399009 C/T GIn366Ter Stop Gain 39 - -
5 SDHA 5:223624 C/T Arg31Ter Stop Gain 36 rs142441643 0.000411
Lys166Asnfs9 stoplos
6 CRYAB | 11:111779517 GC/- S, Frameshift 27.6 -
14stopgain -
7 2:179517952- - Heterozygous - -
TTN - =
8 179526473 - Deletion - -

Abbreviations: bp = base pairs; Chr = chromosome; Ref = reference; Alt = alternate; MAF = minor allele frequency from the Non-

Finnish European gnomAD . Genomic coordinates to GRCh37 (hg19) reference genome
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2.5.3. CNVsin AF cases and control cohort

CNV analysis with breakpoint confirmation revealed the presence of a novel heterozygous 8,522
base pair deletion in the 77N gene in two unrelated AF individuals among the 195 cases (Table
2.2). The heterozygous deletion encompasses 2 exons in the cardiac isoform (N2BA,

NM _001256850) and 9 in the inferred complete isoform (/C, NM_001267550) of the I-band
region and causes an in-frame deletion (Figure 2.1, 2.2, 2.3). The two deleted exons in the
cardiac isoform encode PEVK domains, which are considered important for the spring activity of
TTN. No CNVs overlapping the 77N deletion were detected in 4,958 control individuals
compared with 2/195 AF cases (P=0.0014).
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Figure 2.1 7TTN LOF Variants and a Novel CNV Identified in “Lone” AF Patients

(A) TTN gene, with coloured bands to denote different regions, highlighting locations of 77N LOF variants and a novel CNV found in “lone” AF
cases. (B) TTN heterozygous deletion identified using whole-exome sequencing ratio and Z-score values and Sanger sequencing tracing of
breakpoints. (C) PCR detection of deletion with electrophoresis in 2 AF cases (Families 7 and 8). Genomic coordinates to GRCh37(hgl9) reference

genome. AF = atrial fibrillation, IC isoform = inferred complete isoform, Chr = chromosome, bp = base pairs
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Figure 2.2 Region of the Heterozygous Deletion (8,581bp) and Location of the PCR and Sequencing Primers
P1 and P2 are the PCR primers that localized the zone of the deletion to a 13,529 bp region. SRP1 is the reverse sequence primer that binds to 2 sites
in a normal subject (before the 5’ and 3’ breakpoints) due to sequence similarity, while in the two AF cases (Family 7 and 8) it only binds and

sequences one I'CgiOl’l.
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Figure 2.3 Reverse Sequence of Family 7 with the 77N CNV (I) and Two Controls (11, III)

Given the high degree of repeated sequence, our primers bind to 2 different regions as observed on the sequences for controls II and III. However, in
both AF cases (Families 7 and 8) the primer binds in one area due to the deleted CNV, instead of two, displaying a single sequence. The same results
have been observed multiple times and utilizing multiple different controls. This is additional proof that both patients carry a deletion in the 77N
gene.
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2.5.4. Genotype-phenotype segregation

Familial cascade screening was conducted in 5 of the 8 families possessing an LOF variant or
CNV within a DCM gene; screening was either declined or not feasible in the remaining 3
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