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Abstract 

Due to the physical nature of the game, injuries are common in ice hockey.  Injury rates have 

been difficult to interpret due to the inconsistencies in the definitions of injury and athlete 

exposure.  Consensus statements on injury definitions have been developed for sports such as 

soccer and rugby but have not been established in ice hockey. Furthermore, many different 

off-ice tests are performed, but a hockey-specific performance test has not been promoted. 

Accordingly, the objective for this thesis was to investigate injury rates, injury definition, 

athlete exposure and injury type in men’s ice hockey, and providing information on a 

practical test practitioners can use to monitor fatigue and measure performance.  This was 

achieved through three research projects.  An integrative literature review was conducted to 

suggest a specific definition of injury and athlete exposure (Chapter 2). This study identified 

that the International Ice Hockey Federation’s definition of injury is preferred based on the 

clarity and relevance of the injury description and that the preferred athlete exposure metric 

is player game-hours based on accuracy and ease of use.  In addition, lower extremity 

injuries were identified as common and costly in men’s ice hockey.  The single leg, medial 

countermovement jump was identified as an appropriate hockey-specific performance test. 

This jump enables objective measures of frontal plane force and power and is particularly 

applicable for ice hockey players given that ice skating involves applying lateral forces. All 

twelve parameters of the jump showed moderate to excellent reliability (Chapters 3) 

suggesting that this jump is a reliable test for assessing frontal plane force and power in ice 

hockey players. Finally, normative values and asymmetry indices were presented in ninety-

one male youth hockey players aged 10–18 years (Chapter 4).  In conclusion, lower 

extremity injuries are common in hockey and injury rates are difficult to interpret as the 

definition is not consistent. The single leg, medial countermovement jump is an appropriate 

functional test for measuring skating performance. Ice hockey performance staff can use this 

evidence-based research to measure performance, monitor fatigue, and document recovery 

from injury. 
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Summary for Lay Audience 

Ice hockey is one of the most popular sports played in North America. Due to the physical 

nature of the game, injuries often occur.  Injuries in men’s elite ice hockey have been studied 

over the past 40 years, however, there is a lack of consensus on definitions of both injury and 

athlete exposure. These inconsistencies make it difficult to evaluate injury rates over time or 

between hockey leagues.  

Players’ skill and physical development change with age resulting in increased upper body 

strength and lower body power. Consequently, physical preparation training and functional 

performance testing are important for measuring performance and monitoring fatigue. These 

tests may also be used to evaluate whether injured players are recovered and able to return to 

play.  Numerous tests have been used in hockey, as illustrated by the NHL Scouting 

Combine™; however, the best tests must be selected based on reliability and relevance to 

sport. This thesis proposed that the single leg, medial countermovement jump is an appropriate 

performance test for ice hockey as it involves pushing to the side, like skating. 

This study determined that all twelve parameters of the single leg, medial countermovement 

jump were reliable enabling coaches to feel confident when testing their athletes. Normative 

values and asymmetry indices were also presented for ninety-one youth hockey players. 

These values provide age-specific reference to coaches and performance staff.  This permits 

coaches to compare their athletes’ performance with other athletes playing the same level of 

hockey.  The results of this thesis provide evidence that parameters of the single leg, medial 

countermovement jump can reliably be used in the sport of ice hockey. Performance 

specialists can use this information to assess performance, monitor fatigue, and document 

recovery from injury. 
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Chapter 1 

 Introduction: Background and Rationale 

Ice hockey is a fast, exciting sport. Unfortunately, injuries occur due to the physical nature of 

the game. It is important to track injury rates in order to compare inter league injury data and 

assess injury trends across time. Injury rates vary from as low as 13.8/1000 player games [1] 

to as high as 121/1000 player-game hours [2] depending on the level of play and the way that 

injury rates are defined. Unfortunately, studies use differing definitions of both components 

of injury rates (injury and athlete exposure). 

Different definitions have been described based on whether medical attention is required, or 

whether the injury caused the player to miss practices or games [3]. The various injury 

definitions include “all complaints”, where any complaint by the athlete is defined as an 

injury, “medical attention” which defines an injury only if it deems attention from a medical 

professional, and finally “time loss” which defines an injury that causes a player to miss one 

or more games or practices.  Youth [4], junior [2,5], collegiate [6], international [7-9], and 

professional leagues [10] all define injuries differently. Inconsistent definitions make it 

difficult to evaluate cross-sectional data across various leagues.  

In addition, the definition of athlete exposure differs between studies [5,9,11,12].  An athlete 

exposure is defined as one athlete participating in a practice or game in which there is a 

potential for athletic injury [13] and is typically expressed as injuries per 1000 games, or 

injuries per 1000 game-hours.   

These types of inconsistencies prompted soccer to create an injury consensus group, which 

developed consensus statements on injury definitions and data collection procedures in 

soccer [14]. This group was composed of experts involved in the study of soccer injuries. 

Injury definition and criteria for classifying injuries with regards to location, type diagnosis 

and causation were proposed [14]. In addition sports such as rugby union [15], track and field 

[16] and the International Olympic Committee [17] have also formed consensus statements to 

define health-related incidents (injuries and illnesses). These statements identify information 
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that should be recorded in epidemiological studies in athletics, and the criteria for recording 

their nature, cause and severity, as well as standards for data collection and analysis 

procedures [17]. These procedures enable for consistency and efficiency amongst 

performance professionals during data collection.   

Lower extremity injuries are extremely prevalent in ice hockey [18-20]. At the youth levels, 

lower extremity injures account for 16-40% of all injuries [21-24].  Based on data collected 

from the National Electronic Injury Surveillance System (NEISS) from 2001-2002, an 

estimated 32,750 adolescents with ice hockey related injuries were treated in US emergency 

facilities, including more than 18,000 under the age of 18 years old [22].  There was a total of 

3,029 lower extremity injuries, representing 16.1% of all ice hockey related injuries treated in 

US emergency facilities.  The junior, collegiate and professional levels of ice hockey have 

also identified the lower extremity, specifically the knee joint, as the most common location 

for lower extremity injury [1,11,12,18,19,25,26].  At the collegiate level, knee injuries 

represent 13.5% of all injuries in games and 10.1% of all injuries in practices [27]. Knee 

injuries such as MCL strains may take up to 8 weeks to heal depending on the grade of the 

injury [28] while surgical intervention of hip femoacetabular impingement may take 3-4 

months post-surgery to participate in skating [29]. Having a reliable and valid lower-

extremity test can be used to track performance, and guide recovery during a lower extremity 

injury.     

Returning to sport after a lower-extremity injury requires open communication and planning 

from player, coach, and rehab specialist.  During this time, a structured program is created 

that respects tissue healing timelines [30] and the athlete’s sporting background [31].  

Progress is measured in several ways including passive and active range of motion, and 

stabilization, strength and power assessments.  The need to individualize rehabilitation is 

critical.  One approach is the functional testing algorithm (FTA).  The FTA is an objective, 

quantitative and qualitative method to assess a patients progress from immediate post-surgery 

to complete return to sport [32].   The FTA involves various measures of progress including 

basic measurements, isokinetic testing, functional jump testing, functional hop testing and 

sports-specific testing. Many of the published strength and power assessments involve single 

leg hopping for distance in varying directions [33-35].  Distance-based tests do not directly 
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measure parameters such as ground reaction force, impulse and power which can be used to 

better objectify neuromuscular fatigue [36,37], and return to play timelines [38]. In addition, 

these distance-based tests do not measure jump strategy variables such as center of mass 

depth, unload, yielding and braking time. Researchers have identified significant associations 

between bi-lateral countermovement jump performance metrics and jump strategy metrics 

involving the center of mass [39].  Jump strategy has also been investigated for the single leg 

countermovement jump in English Championship football (soccer) [40] . Movement strategy 

was quantified as force-time history metrics differentiating between eccentric and concentric 

phases of the jump.  Researchers concluded that greater rate of force development in both 

phases produced the highest jumpers [40].   Finally, countermovement jump movement 

strategy differences have been identified in professional soccer players with previous injury 

despite not showing any performance deficits [38]. Previously injured athletes showed 

significantly greater asymmetry in  concentric and eccentric phase variables [38].   

Professional sports teams employ player profiling strategies to inform decision makers on 

player readiness, and injury risk [40].  Variations of countermovement jumps are commonly 

used as they are easy to use and sensitive to change [41,42]. 

Functional performance tests are useful for identifying physical limitations that may affect 

sports performance.  For example, tests such as the drop vertical jump have been used to 

assess landing mechanics in anterior cruciate ligament reconstruction patients [43], while 

various single leg hopping tests have been used to assess performance in patients with ankle 

instability [33]. Functional performance tests that replicate elements of the athlete’s activity 

are thought to be best [44].  Several tests such as the countermovement jump and squat jump 

have been incorporated by practitioners to assess the physical performance of ice hockey 

players [45,46].  However, propulsion in ice skating occurs by pushing laterally with the foot.  

In the vertical countermovement jump, the hip, knee and ankle all contribute to jump 

performance. However skating velocity is almost entirely determined by hip and knee 

motion, not ankle plantarflexion due to constraints of the skate [47].  Although the squat 

jump involves minimal stretch reflex, similar to ice skating [48],  it too is performed in a 

vertical direction and therefore is not relevant to skating with its lateral push off [49]. 
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Although there are many functional performance tests, it is unclear which test is best for 

measuring ice hockey skating performance. 

The hockey stride can be described as having three distinct phases: the wind up, release and 

follow through [50].  Each stride begins with the wind up where the player’s feet are directly 

underneath their hips in a V position with toes pointed approximately 45 degrees laterally.  

The V-shape allows the skate blade and lower leg to create a 45-degree angle relative to the 

ice. The release phase begins with the hips flexed 45 degrees and the torso flexed sixty 

degrees. The player releases the thrusting leg into a position of extension and abduction. 

Finally, the extension phase is a continuation of hip and knee extension.  This final position 

causes valgus force at the knee and tibial external rotation [31]. This position is known as the 

position of no return for players returning from knee injuries as it places large valgus stress 

on the knee joint. In addition researchers have observed that this position of maximal 

extension while retaining contact with the ice was found to be the third most important factor 

in skating skill [50]. This position should be targeted in a structured rehabilitation program 

through specific neuromuscular control exercises that stimulate skating [31].  Therefore, the 

selection of functional performance tests requires careful consideration of player safety, sport 

specificity, biomechanical understanding, practicality and the athlete’s current physical 

condition [51].  Construct validity and the degree to which a test measures what it proports to 

measure must also be addressed.  Researchers and performance professionals must have a 

deep understanding of sport as construct validity is theory dependent [52].   A different, 

direction-specific testing approach is needed in ice hockey to address the distinct features 

that make the game different from land-based sports.   

Interlimb asymmetry has been also investigated  [55-59].  Researchers have highlighted that 

asymmetry greater than 15% may be associated with an increase of injury incidence 

compared to groups below that threshold [60-62].  The vast majority of asymmetry testing 

has examined field, and court-based athletes [55,56,58,63].  There are notable differences 

between field sports and ice hockey.  Ice hockey is played on the ice, and therefore the 

minimal friction surface influences force production.  Unlike field-based sports such as 

soccer that may have dominant limbs for activities like kicking, there does not appear to be a 

dominant leg for ice hockey players as they must push forcefully with both limbs to 
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accelerate their center of mass.  Amplified interlimb asymmetries occur in sports with 

preferred limb dominance [64].  Interlimb asymmetry calculations have been reported in elite 

youth soccer players [55,58], but asymmetry has not been reported in elite youth ice hockey 

players.  Asymmetry has important implications for performance as the degree of asymmetry 

in the single leg, vertical countermovement jump was correlated with sprint times across 

distances of 5, 10 and 20 m in youth female soccer players [55].  Research with track and 

field athletes [65] shows performance drop-offs with larger interlimb asymmetries.  

However, in cycling [66] and American football [67] researchers observed that bilateral 

power deficits had no negative impact on performance.   The research is variable with 

regards to interlimb asymmetry and may be sport dependent.  Furthermore, asymmetry based 

on parameters such as distance and power may fail to capture subtleties of jump strategy 

[77]. These measurements have not been reported in ice hockey and may serve as functional 

baselines for comparison among multiple age groups.  

Finally, normative data has been useful for providing age and sex specific reference values 

for jumps [68], functional movement [69], kinematics [70], and asymmetry [71].  A large 

study conducted investigating the age, sex and activity level on countermovement jump 

performance in both children and adolescents observed that jump height increased 

significantly with increasing age [73].  This study provides researchers and practitioners with 

data to be used as normative references.  Normative data has also been collected by 

researchers investigating age and sex specific performance of the standing long jump for 

school children aged 9-18 [68], countermovement jump landing kinematics for both 

adolescent girls and boys [70], and to assess the side jump height differences during the 

single-leg vertical jump in men and women [71] .  In addition, normative values have been 

reported in other populations including the US military for parameters such as power, 

balance, flexibility, and functional movement [74].  Normative values are important so that 

other researchers and coaches can gauge their current players’ performance.   They may also 

be used to assess progress from structured strength and conditioning programs [75].  Jump 

parameters may be measured as means of documenting performance throughout the season. 

However, these measurements have not been assessed for elite youth ice hockey players.  
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Specifically, to the author’s knowledge, there are no normative reference values in elite 

youth ice hockey.    
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1.1 Overall Purpose 

The first objective of this thesis is to systematically review the literature to determine which 

injuries are most common in ice hockey, and to describe the injury rates. This review focuses 

on players 16 years of age and older playing junior, collegiate and professional hockey as 

bodychecking has already been introduced (U13 Hockey Canada, U12 USA Hockey), 

removing it as a confounding factor [76].   Given the unique biomechanics of skating, and the 

specific injury profile for injuries in ice hockey, a specific performance test should be 

identified to evaluate performance. The second objective of this thesis is to identify which 

performance test is most appropriate for elite youth ice hockey players, to define meaningful 

parameters to describe the performance, and to evaluate these parameters in order to develop 

a subset of reliable and independent parameters.   The third objective of this thesis is to 

describe the normative values for these parameters for a range of youth player ages that may 

be used for reference by researchers and performance professionals. Together, these 

objectives achieve three projects: investigating injury rates in elite ice hockey, calculating the 

reliability of the single leg, medial countermovement jump parameters, and describing 

normative values for these parameters for players between 10U and 18U age groups. Each of 

these objectives were addressed in individual chapters in this thesis.   
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Chapter 2 

 What is Injury in Ice Hockey: An Integrative Literature 
Review on Injury Rates, Injury Definition, and Athlete 
Exposure in Men’s Elite Ice Hockey 

A version of this manuscript has been published in the journal Sports. 

2.1 Introduction  

Ice hockey is a high intensity sport where players can reach speeds of up to 48 kph [1]. These 

speeds, and the nature of collision sports lead to musculoskeletal injuries at all levels of ice 

hockey [1-3]. There is a need to accurately quantify injury rates in men’s elite ice hockey 

both for assessing player risk [4] and the associated economic burden [5]. Injury rates in ice 

hockey have been investigated in order to assess injury trends, injury types, injury location, 

and underlying injury mechanisms [6]. Injury rates can also be used to quantify the effects of 

rule changes [7]. Accurate data is needed in order to better investigate areas of concern while 

objectifying the effects of rule changes and other preventative measures [8,9].  

Differences in the definitions for injury and athlete exposure (AE) lead to inconsistencies 

between studies and obscure the resulting injury rates. Consensus statements on injury 

definitions and data collection procedures have been developed for soccer [10] and rugby 

[11], but have not been developed for ice hockey. Consistent definitions and methods to 

evaluate ice hockey injuries are required [12] to improve the comparability of published data 

[8]. Our objective was to review musculoskeletal injury rates in men’s elite ice hockey, as 

well as definitions of injury and athlete exposure. We focused on elite players aged 16 years 

and older playing junior hockey (United States Hockey League, North American Hockey 

League, Canadian Hockey League), US and Canadian College Hockey (NCAA Div. 1 and 

Div. III, Canadian Inter-University Sport), international or minor professional and 

professional hockey (Finnish Elite League, Swedish Elite League, Japanese Elite League, 

International Ice Hockey and the National Hockey League) as this cohort has not been as 

extensively studied as other levels such as high school and youth hockey [13,14]. In addition, 
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injury rates in ice hockey increase with the introduction to body checking which occurs at 

later ages  [15]. Finally, the economic burden of injury at this level is high. During two 

seasons in the National Hockey League (NHL), injuries represented a total salary cost of 

US $218 million per year. While salary losses represent a significant financial burden, it is 

hoped that improved injury surveillance will reduce these costs.  

2.2 Methods 

We conducted an integrative literature review to evaluate musculoskeletal injury rates, injury 

definition and athlete exposure measurement in elite ice hockey, using a published review 

framework [16]. We formulated four research questions a priori to focus our review: What is 

the rate of musculoskeletal injuries in men’s elite ice hockey? In elite ice hockey, what injury 

definition is best suited to enable direct comparisons among research studies? In elite ice 

hockey, what measure of athlete exposure is best suited to achieve consistent and comparable 

injury rates? What are the common lower-extremity injury types in men’s elite ice hockey? 

Literature Search 

A PubMed search strategy was created with the assistance of a University research librarian. 

PubMed was chosen as a search engine as it is the optimal tool in life sciences and 

biomedicine [17]. The literature search was performed May 9-10, 2019. The search strategy 

used the key words: hockey AND (injury OR injuries) AND (NHL OR national OR 

international OR world OR competitive OR professional OR elite OR high caliber OR high 

caliber OR collegiate OR university OR intercollegiate OR NCAA OR “National Collegiate 

Athletic Association”). In addition, the same search strategy was performed on 

SPORTDiscus. The PubMed and SPORTDiscus records of these references were pooled and 

screened based on established inclusion and exclusion criteria (Table 1). Articles that were 

not relevant to our research questions were excluded. The references in the remaining papers 

were reviewed to identify additional relevant articles. All studies were reviewed by both 

authors for their relevance to the four research questions. 

Original, peer-reviewed, English language research articles evaluating the injury rates in elite 

ice hockey were included. Editorials, abstracts, books, excerpts from conference proceedings 
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and unpublished data were excluded. Articles were also excluded if they did not contain 

information related to one or more of the following variables: injury definition, injury rate, 

athlete exposure, or injury location. 

Table 2.1 Inclusion/exclusion criteria for literature search. 

Title Inclusion Criteria Exclusion Criteria Rationale for This Criterion 

Publication Type 
Peer-reviewed original 

research articles only 

Review papers, non-peer 

reviewed articles, editorials, 

abstracts, book chapters and 
conference proceedings 

For practical reasons, it was deemed to exclusively 
review primary research articles, rather than non-

peer reviewed or abbreviated sources.  

Language  English language Non-English 
For practical reasons, it was deemed acceptable to 

only include studies published in English. 

Publication Date 
November 1976 to 

April 2019 

Publications prior to November 

1976 

The characteristics of ice hockey injury reporting 

may change over time due to rule changes, 

technological advancements and education. 
Literature was captured backdated to 1988 to capture 

these potential developments.  

Study Design 

Multi-center studies, 

randomized control 
trials, cohort studies, 

case-controlled studies 

and cross-sectional 
studies.  

Case studies 

Study design was chosen to ensure reasonable 
empirical support, and high methodological rigor in 

defining injury and injury rates amongst competitive 

hockey players. 

Gender and Age 

Men athletes aged > 

16-years participating 

in a competitive 
league/team 

Women only studies or men 
ages < 16, age unspecified 

involved in youth sport 

The primary outcome of interest was injury 

definition and injury rate calculation in competitive 
ice hockey played by men. Studies that compared 

rates between males and females and have separate 

data for both genders were also included for baseline 
comparisons. 

Men athletes aged > 16 were considered appropriate. 

This age demographic represents elite players.  

Playing Level 
Competitive 

participation 
Recreational sport/training 

The primary outcomes of interest are injury 
definition, injury rates, mechanism and anatomical 

location sustained during competitive ice hockey.  

Sport  

Injuries must be 
sustained during ice 

hockey games and 

practices 

Any sport other than ice hockey 
Sports included other than ice hockey may result in 

definitions, and injury rates that are too broad. 

Types of Injury 

Injuries to the 

musculoskeletal 

system, including 
strains, sprains, breaks 

Concussions, spinal injuries, 

head/face, lacerations 

The primary outcomes of interest are soft tissue 
injuries of the upper and lower extremity during 

competitive ice hockey 

Outcome Measures 

Injury definition, injury 

rates, athlete exposure, 

mechanisms, 
anatomical location 

Outcomes other than injury 

definition, injury rate, and 

athlete exposure, mechanisms 
and anatomical location 

The primary outcomes of interest are injury 
definition, injury rates, mechanisms and anatomical 

location. 

  
 

2.3 Results 

The PubMed and SPORTDiscus searches identified 2463 references. An additional 3 

pertinent articles were identified from the references from these articles. A total of 2212 

articles were vetted after 254 duplicate articles were removed. Two-thousand, one-hundred 

and eighty-four of these articles were excluded as they were not relevant to any of our four 

research questions. No relevant articles were published prior to 1975. Accordingly, a total of 
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28 articles were included. The flowchart describing the process for selecting relevant studies 

is presented in Figure 1.  

 

Figure 2.1 Flowchart describing the process for selecting relevant studies. The top row 

represents the identification process. The second and third rows represent the screening 

process. The fourth row represents the eligibility of the articles assessed and the last row 

identifies the articles included. 

2.3.1 Rate of Musculoskeletal Injuries in Men’s Elite Ice Hockey 
(Question #1) 

Injury rate data, and study design characteristics are presented for each of the 24 studies in 

Table 2. Injury rates in competitive ice hockey range from 13.8 to 121/1000 player-game 

hours, depending on factors such as the league of play and exposure estimate. Professional 

players in Europe and North America experience musculoskeletal injury rates between 49 to 
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80/1000 AE as measured in player-game hours [4,18] while the collegiate hockey players in 

Canada and the United States experience lower rates (13.8 to 19.95/1000 AE) as measured in 

player games [19,20]. The highest injury rates are experienced at the junior level (39.8 to 

121/1000 player-game hours) [21,22]. The majority of these musculoskeletal injuries are 

attributed to collision with other players, the boards or the hockey puck [18,20,23,24]. 
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Table 2.2 Summary of papers evaluating injury definition, injury rate, athlete exposure and injury mechanism 
in men’s elite ice hockey. 

Authors Year Demographic Injury Definition Type Injury Rate  
Mechanism of 

Injury  
Injury Type 

Injury Rate 

Computation 

Hayes [25] 1975 
Intercollegiate Ice 
hockey 

“An event requiring some attention by 
the team trainer or physician or both.”  

Medical 
Attention  

1.14 injuries per game 

(Canada) 

1.28 injuries per game 

(USA)  

Collision  
Head and face, knee, 
shoulders 

Total injuries/Total 
number of games 

Sutherland 

[26] 
1976 Youth-Pro 

The injuries were classified according 
to the standard nomenclature of 

athletic injuries as recommended by 

the American Medical Association 

N/A 

Pro Group: 143/1000 

AE (practice and 

games) 

N/A 

Scalp and face 60.8%, 

Groin 9.1%, 

knee 7.8%, 

shoulder 5.9% 

N/A 

Hayes 

[27] 

1978 Youth-Pro 

“Any change in the normal, healthy 

state of the individual that requires 

medical attention and disables a 
player either temporarily or 

permanently.”  

Medical 

Attention  

University: 1.17/Game  

Professional: 
1.15/Game  

Stick and puck 

contact 

Contusions and 

lacerations 

Total injuries/Total 

number of games 

Rielly 

[28] 

1982 College Hockey 

“A reportable injury was defined as 

being one that required definitive 
physical evaluation and medical 

treatment.”  

Medical 

Attention 

Definition 

1/12.7 h of play ** 

Player contact 

(43.3%), puck 

contact 27% 

Face, hips, shoulders N/A 

Meeuwisse et 

al. 
1988 

Canadian 

University 

Injury was defined as any disability 
arising either in practice or 

competition that required physical 

attention. 

Medical 

Attention 
Definition 

As calculated by 

percentage. Hockey 
had the greatest 

N/A Knee, ribs, low back N/A 
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[29] 

percentage of players 

injured. 

Lorenzton, 

Wedren, 

Pietila [30] 
1988 

Swedish Elite 

Team  

“Injury was defined as any injury 

occurring during on-ice practice or 

games and causing the player to miss 
the next practice session or game. 

Facial lacerations, which are common 

in ice hockey but do not cause 
absence from practice or game are 

reported separately.”  

Time Loss 

Definition 

78.4/1000 player game 
hours, 

1.4/1000 player 

practice hours 

Checking 
32.9%, 

Player contact 

25%, 

Puck contact 

14.5%, 

stick contact 
11.8%, 

collision with 

boards 6.6%, 

cutting, 6.6%, 

skate contact 

2.6% 

Contusions, strains 

and sprains were the 

most common types of 

injury. Knees were the 
most commonly 

injured joint (5 injuries 

were complete tears of 
the MCL). 53.7% of 

injuries were localized 

in the lower limb. 

Practice Injury Rate 
= number of 

injuries/Practice 

Hours × Roster 
(23.4).  

Games Injury Rate = 

number of 
injuries/Game hours 

× Total Players on 

ice (6).  

Lorenzton, 
Wedren, 

Pietila, 

Gustavsson 

[18] 

1988 

Swedish National 
Team (40 

International 

games) 

“Injury was defined as any injury 
occurring during games and causing 

the player to miss the next practice 

session or game. Facial lacerations, 
which are common in ice hockey but 

do not cause absence from practice or 

game are reported separately.” 

Time Loss 

Definition 

79.2/1000 player game 

hours 

Player contact 

42.1%,  

checking 
31.6%, 

collision with 

boards 10.5%, 

puck/skate 

contact 5.3% 

Contusions, strains 
and sprains were the 

most common types of 

injury. Knees were the 
most commonly 

injured joint, followed 

by the thigh and wrist. 

Total Injuries/Total 

AE × 1000; 

Total AE = games × 
Total players on ice 

(6)  

Tegner, 
Lorentzon 

[24] 
1991 

Swedish Elite 

League (12 teams) 

“Injury was defined as any injury 

occurring during ice practices or 
games and causing the player to stop 

playing or to miss the next practice 

session or game. Facial lacerations, 

Time Loss 

Definition 

53/1000 player game 
hours (76% of injuries 

occurred during games) 

Stick contact 

25.5%, player 
contact 24%, 

puck contact 

11.2%, collision 

Strain, laceration and 

contusions were the 
most common types of 

injury. Knees were the 

most common joint 

Total Injuries/Total 

AE × 1000 
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which are common in ice hockey, but 

do not cause absence from practice or 

games, are also reported.” 

with boards or 

goal posts 9.7% 

injured (13.2%), 

followed by the hip 

(12.1%) 
Total AE = games × 

Total players on ice 

(6)  

McKnight, 
Ferrara, 

Czerwinska 

[23] 

1992 Collegiate (Div. I)  

(1). Loss of practice or game time 
because of injury/illness, (2). Injury 

that required sutures even if no time 

loss was involved, (3). Injury in which 
a fracture or dislocation/subluxation 

occurred even if the athlete was able 

to continue participation 

Time 
Loss/Medical 

Attention 

Definition 

Total: 10.22/1000 AE 

Games: 14.73/1000 

game hours. Practice: 
2.52/1000 practice 

hours 

Person/Ice 
Impact 42%, 

impact with the 

boards 32%. 
The shoulder 

and knee had 

the highest rate 
of injury when 

compared to 

other body parts 

Contusions and strains 
were the most 

common types of 

injury 

number of 
Injuries/Total AE × 

1000 (games and 

practice) 

Pelletier, 

Montelpare, 

Stark [20] 
1993 

Canadian Inter-

collegiate  

“Any brain concussion causing 
cessation of the athlete’s participation 

for physical observation before return 

to play, any dental injury requiring 
professional attention, any 

injury/illness causing cessation of an 

athlete’s customary participation 
throughout the participation day 

following day of onset, or any 

injury/illness requiring substantive 
professional attention before the 

athlete’s return to competition.” 

Time 

Loss/Medical 

Attention 
Definition 

19.95/1000 AE (player 

games) 

Body checking 
44.6%, collision 

(accidental) 

28.8%, stick 
12.2%, fighting 

6.5%, illegal 

body check 
5.8%, non-

contact 2.2% 

Sprains (31%) and 

contusions (21%) were 

the most common type 
of injury. 

Knees were most 

frequently injured 

(18.6%),  

followed by teeth and 

eyes (17.6%), 

and shoulders (14.9%),  

Total Injuries/Total 

AE × 1000 

Total AE = games × 

Total players on 

team (19)  

Pettersson, 

Lorentzon 

[31] 
1993 

Swedish Elite 

League  

“Injury was defined as any injury 
occurring during on-ice practice or 

games and requiring medical attention 

and treatment. Injuries causing the 

player to miss the next practice or 

game have been analyzed separately.”  

Medical 
Attention 

Definition 

74.1/1000 game hours 

Stick contact 

26.1%, 

player contact 

23.9%, 

puck contact 
16%, collision 

with boards 

7.2%, 

Contusions, 
lacerations, sprains 

and strains are the 

most common 
mechanisms of injury. 

Knees were the most 

common joint injured 
followed by the thigh, 

groin and shoulder  

Total Injuries/Total 

AE × 1000 

Total AE = games × 

Total players on ice 

(6)  
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fall (no contact) 

4% 

Stuart, Smith 

[21] 
1995 

United States 
Hockey League 

“Injury was defined as an event that 

kept a player out of practice or 

competition for 24 h, required the 

attention of a team physician (e.g., 

suturing lacerations) and included all 
dental, eye and nerve injuries and 

concussions.” 

Time 

Loss/Medical 
Attention 

Definition 

Overall injury rate was 

9.4/1000 player hours, 

game injury rate was 
96.1/1000 player hours, 

practice injury rate was 

3.9/1000 player hours 

Collision 51%, 

stick contact 
14%, 

skate/puck 

contact 11%, 

off-ice injuries 

8% 

Strains, lacerations 

and contusions were 
most common 

mechanism. Aside 

from the face, the 
shoulder, hip, lumbar 

spine and knee were 

the most common 
anatomical sites of 

injury 

Total Injury/AE × 
1000 = Practice 

Injury Rate; 

Practice AE = 

Practice Hours × 

Roster (25) 

Total injuries/Total 
AE × 1000; Total 

AE = number of 

games × Total 
players on ice (6)  

Cunningham  

[32] 

1996 University Games 

“A recordable injury was defined as 

any incident occurring during warm-
up or competition and which required 

medical attention, on-field 

management to enable continued 

participation, or removal from the 

playing field.”  

Medical 
Attention 

33.5% of injuries in 

relation to total number 

playing the sport  

Player collision  
Muscle strains and 
hematoma (21.7%) 

Number of 

injuries/number of 

players participating  

Molsa, 

Airaksinen, 

Nasman, 

Torstila [33] 

1997 
Finnish National 
League, Finnish 

First Division 

“An injury was defined as any trauma 

occurring during practices or games 

and causing absence from the next 
practice or game or needing treatment 

(ex. stitches), examination by a 

physician (ex. radiographs), or 
rehabilitation prescribed by a 

physician (ex. physical therapy). 

Injuries due to overuse were 
excluded.” 

Time 

Loss/Medical 

Attention 
Definition 

66/1000 player-game 
hours, 36/1000 player 

game hours (Div. I) 

Checking 

29.7%, 

stick 14.6%, 

contact with 

opponent 

14.6%, 

puck 7.9% 

Contusions, strains 

and sprains were the 

most common type of 
injury, the knee joint 

and groin were the 

most common 
locations 

Total Injury/AE × 

1000 = Practice 
Injury Rate 

Practice AE = 

Practice Hours × 
Roster (21) 

Total Injuries/Total 

AE × 1000;  

Total AE = number 

of games × Total 

players on ice (6)  
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Pinto, Kuhn, 

Greenfield, 

Hawkins [34] 
1999 

Junior A Hokey 

Players (22 
players)  

“An injury was defined as any event 

that required the attention of a 
physician or trainer.”  

Medical 

Attention 
Definition 

121/1000 player game 

hours 

Contact with 

stick 16.2%, 

overuse 13.5% 

Sprains/subluxations/d
islocations were the 

most common, aside 

from the face, the 
shoulder and knee 

were the most 

common 

Total Injury/AE × 

1000 = Practice 

Injury Rate; 

Practice AE = 

Practice Hours x 

Roster (22) 

Total Injuries/Total 

AE x1000  

Total AE = #games 
× Total players on 

ice (6)  

Molsa, 
Kujala, 

Nasman, 

Lehtipuu, 

Airaksinen 

[35] 

2000 

Finnish Elite 

League (7 teams, 
3 different 

decades) 

“An injury was defined as any sudden 
trauma occurring during practice or 

game that led to examination and 

treatment by a physician.” Minor 
injuries requiring no absence were 

also included, but minor injuries 

needing no medical care and injuries 
due to overuse were excluded  

Medical 

Attention 

Definition 

Game injury rate 

increased from 54/1000 
player hours in the 70’s 

to 83/1000 player hours 

in the 90’s, most 

common mechanism 

was collision 

Checking, stick, 
falling, collision 

with opponent, 

puck, collision 

with boards 

Contusions, 
sprains/strains and 

lacerations were the 

most common 
mechanisms of injury. 

The knee was the most 

common major injury 
of the lower quadrant 

Player years of 
exposure, (Seasons 

× Teams × Players) 

× Practice Hours x 
Roster = Practice 

Injury Rate: Player 

years of exposure, 

(Seasons × Teams × 

Players) × Game 

Hours × Roster (6) = 
Game Injury Rate. 

Flik, Lyman, 

Marx, [19]  
2005 

American Men’s 

Collegiate Ice 
Hockey (8 

teams/1 season) 

“An injury was defined specifically as 
any injurious episode that led to loss 

of participation in the immediate 

subsequent AE, whether it was a 

practice or game.” 

Time Loss 
Definition 

Overall injury rate was 

4.9/1000 AE, 
13.8/1000 AE games, 

2.2/1000 AE practice 

Collision with 

opponent 
32.8%, 

collision with 

boards 18.6%, 

overuse 8%, 

puck 6.2% 

Concussions were the 
most common, 

followed by knee 

(MCL) and shoulder 

injuries 

Total Injury/AE × 

1000 = Practice 
Injury Rate 

Practice AE = 

Practice Hours × 
Roster Est 

Total Injuries/Total 

AE × 1000; 

Total AE = number 

of games × Total 
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player avg 

attendance  

Agel, 
Dompier, 

Dick, 

Marshall [36] 

2007 

NCAA Men’s Ice 

Hockey (16 years 

of data: Div. I-III) 

“A reportable injury in the ISS was 
defined as one that (1) occurred as a 

result of participation in an organized 

intercollegiate practice or competition 
and (2) required medical attention by 

a team certified athletic trainer or 

physician and (3) resulted in 

restriction of the student-athlete’s 

participation or performance for 1 or 

more calendar days beyond the day of 
injury. The injury definition was 

expanded in the ‘94–95’ academic 

year to include any dental injury 
occurring in an organized practice or 

game, regardless of time lost.” 

Time Loss 

Definition 

16.27/1000 AE games, 

1.96/1000 AE practice  

Player contact 

50%, 

other contact 
39.6%, 

no contact 9.7% 

(game 
numbers). 

Injury was 8x 

higher in 
games. 

Knee internal 
derangement (13.5%) 

was the most common 

lower extremity injury 
reported during games, 

followed by 

concussions and AC 
injuries. Whereas 

pelvis and hip strains 

(13.1%) were the most 
common injury 

reported at practice. 

Total Injury/AE × 

1000 = Practice 
Injury Rate; 

Practice AE = 

Practice Hours × 
Roster (26) 

Total Injuries/Total 

AE × 1000  

Total AE = number 

of games × Total 

players (19)  

Rishiraj, 

Lloyd-Smith, 
Lorenz, 

Michel [37] 

2009 
Men’s Varsity Ice 

Hockey (Canada) 

“Any event, during team or team 

related game, practice, and/or activity 
(on or off the ice), requiring any 

attention by the team’s therapist 

and/or physician and subsequent game 
and/or practice time loss.” 

Time Loss 

Definition 

3.7/1000 player game 

and practice exposure 

Non-contact, 
ice/board 

contact, body 

contact 

Sprains 20%, strains 

20%, concussions 13% 
and contusions 12% 

Total Injury/AE × 
1000; 

Practice AE = 

Practice Hours × 
Roster  

Total Injuries/Total 

AE x1000  

Total AE = number 

of games × Roster 

Selected  

Kuzuhara, 

Shimamoto, 

Mase [38] 
2009 

Japanese Elite 

Team 

“An injury was defined as any event 

that occurred during on-ice practices 

or games that required medical 
attention and treatment.” 

Medical 

Attention 

Definition 

74.3/1000 player game 

hours, 11.7/1000 
player-game hours for 

injuries resulting in any 

time loss, 11.2/1000 
player-practice hours, 

1.1/1000 player-

practice hours for 

Overuse 52%, 

puck contact 

21%, 

stick contact 

15%, 

Contusions 35.4%, 

strains 15.6%, 

lacerations 9.3% 

Overall injury rate 
(regardless of time 

loss): #of 

injuries/number of 

hours per 1000 

player-hours number 

of injuries causing 
time loss (>1 

day)/number of 
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injuries resulting in any 

time loss falling 12% 

hours per 1000 

player-hours 

Number of player: 
2003 (20 

players/game, 25 

players/practice), 
2004 (20 

players/game, 

37players/practice), 
2005 (22 

players/game, 32 

players/practice) 

Agel, Harvey 

[39] 
2010 

NCAA Men’s and 

Women’s Ice 
Hockey (Div. I 

and III) 

Same as Dick et al. above 
Time Loss 
Definition 

18.69/1000 AE games, 
2.23/1000 AE practice 

for men, 

12.10/1000 AE games, 

2.90/1000 AE practice 

for women 

Player contact 
48%  

The most common 
injury among men was 

concussion followed 

by shoulder and knee 
ligamentous in juries 

Number of 
Injuries/Number of 

AE (games or 

practice × roster) × 
1000 

Engebretsen, 
Steffen, 

Alonso, 

Dvorak, 
Junge, 

Meeuwisse, 

Mountjoy, 
Renstrom, 

Wlikinson 

[40] 

2010 Olympic Sport 

“An athlete was defined as injured or 

ill if he/she received medical attention 
regardless of the consequences with 

respect to absence from competition 

or training.”  

Medical 
Attention 

Definition  

A total injury rate of 

111.8/1000 AE was 
reported for both males 

and females. A total of 

276 males were 
registered with 44 total 

injuries (16%) in men’s 

elite ice hockey.  

N/A N/A 
Number of 
Injuries/Athlete 

Exposure 

Kerr, 

Dompier, 
Snook, 

Marshall, 
Klossner, 

Hainline, 

Corlette [41] 

2014 NCAA Sports 

“Any injury occurring during an 

organized intercollegiate practice or 
game.” (1982) “A reportable injury 

was defined as an injury that (1) 

occurred as a result of participation in 
an organized intercollegiate practice 

or competition, (2) required attention 

from an AT or physician, and (3) 
resulted in restriction of the student-

Time 

Loss/Medical 

Attention 

Definition 

N/A N/A N/A 

Number of 

Injuries/AE (average 
team roster) × 1000 
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athlete’s participation for 1 or more 

days beyond the day of injury.” 

Multiple injuries from one event could 
be included. In addition, AT’s were 

asked to include any dental injuries 

that occurred in an organized practice 
or game, regardless of time lost. 2003-

onward). Beginning in 2009–2010 

academic year, non-time loss injuries 
were also monitored. 

McKay, 

Tufts, 
Shaffer, 

Meeuwisse 

[4] 

2014 
NHL Players 
(2006–2012) 

“Any event captured by the IIE form, 
and restricted to those designated as 

practice-related or game related, 

resulting in one or more-man games 
lost. 

Time Loss 
Definition 

15.6/1000 AE based on 

estimated AE’s. Based 
on recorded TOI *, the 

injury rates were 

roughly threefold 
higher at 49.4/1000 

player-game hours 

Body checking 

was the most 
common 

mechanism 

Most commonly 
injured body regions 

were the head 

(16.8%), thigh (14%), 
and knee (13%) 

Estimated AEs = 82 

games × 19 players 
(including goalie) 

TOI (NHL.com) = 

number of injury 
events/sum of 

individual AE time 

Tuominen, 

Stuart, Aubry, 
Kannus 

Parkkari [42] 

2015 

Men’s 
International Ice 

Hockey (2006–

2013) 

“The definition of an injury was made 
in accordance with the accepted 

international ice hockey norms: (1) 

Any injury sustained in a practice or a 
game that prevented the player from 

returning to the same practice or 

game, (2) any injury sustained in a 
practice or a game that caused the 

player to miss a subsequent practice 

or game, (3) a laceration that required 
medical attention, (4) all dental 

injuries, (5) all concussions, (6) all 

fractures 

Time 
Loss/Medical 

Attention 

Definition 

14.2/1000 AE player 
games, 52.1/1000 AE 

player game hours 

For WC A-pool 
tournaments and 

Olympic games the 

injury rate was 
16.3/1000 player-

games, 69.6/1000 

player-game hours  

Body contact 
and puck 

contact were the 

mechanisms 

Most common types of 
injuries were 

lacerations, sprains, 

strains, and 
contusions. The knee 

was the most 

commonly injured 
lower body segment, 

MCL was the most 

common, and the 
shoulder was the most 

common site of an 

upper body injury. 

Player game injury 
rate (based on 22 

players on each 

team): 

Number of 

injuries/number of 

players (two 
teams)/number of 

games × 1000, 

Player game-hour 
injury rate (based on 

6 players on ice at 

once): 

number of 

injuries/number of 

players on ice at the 
same time (two 

teams)/number of 

games × 1000 
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Kerr et al. 

[43] 

2015 
NCAA Ice 

Hockey 

Injuries were defined as those that 

occurred in an organized NCAA-

approved practice or competition and 
required medical attention by a 

physician or athletic trainer. An 

athlete-exposure was defined as one 
student-athlete’s participation in one 

practice or one competition. 

Medical 

Attention 
Definition 

9.5/1000 AE N/A 
Concussions, 

contusions, fractures 

Number of 

Injuries/Number of 
Athlete Exposures 

Tuominen, 

Stuart, Aubry, 

Kannus, 

Parkkari [22] 

2016 

World Junior 

Hockey Players 

(ages 18–20) 

“The definition of an injury was made 

in accordance with the accepted 

international ice hockey norms: (1) 
Any injury sustained in a practice or a 

game that prevented the player from 
returning to the same practice or 

game, (2) any injury sustained in a 

practice or a game that caused the 
player to miss a subsequent practice 

or game, (3) a laceration that required 

medical attention, (4) all dental 
injuries, (5) all concussions, (6) all 

fractures 

Time 

Loss/Medical 
Attention 

Definition 

11/1000 AE player-

games, 

39.8/1000 player-game 

hours 

Body checking 
32%, 

stick 13%, 

and puck 
contact 13% 

The knee was the most 
frequent site of lower 

body injury in WJ and 
U20 tournaments 

(33%), MCL sprain 

was most common, the 
shoulder was the most 

common upper body 

injury. 

Player game injury 

rate (based on 20–22 
players on each 

team): number of 

injuries/number of 
players (two 

teams)/number of 
games × 1000, 

Player game-hour 

injury rate (based on 
6 players on ice at 

once): number of 

injuries/number of 
players on ice at the 

same time (two 

teams)/number of 
games × 1000 

Lynall, 
Mihalik, 

Pierpoint, 

Currie, 
Knowles, 

Wasserman, 

Dompier, 

Comstock, 

Marshall, 

Kerr [44] 

2018 

Collegiate Men’s 
and Women’s 

Hockey (2004–

2005, 2013–2014) 

“An injury that (1) occurred as a result 

of participation in an organized 

practice or competition; (2) required 
medical attention by a certified AT or 

physician; and (3) resulted in 

restriction of the student-athlete’s 
participation for 1 or more days 

beyond the day of injury. Since the 

2007–2008 academic year, HS RIO 

has also captured all concussions, 

fractures, and dental injuries, 

regardless of time loss.”  

“Beginning in the 2009–2010 

academic year, the NCAA-ISP also 

Medical 

Attention/Time 
Loss Definition 

Collegiate Men: 

13.45/1000 AE 
Collision Strains/Sprains 

Total Injuries/Total 

Athlete Exposure 
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began to monitor all non–time-loss 

injuries. A non–time-loss injury was 

defined as any injury that was 
evaluated or treated (or both) by an 

AT or physician but did not result in 

restriction from participation beyond 
the day of injury.” 

TOI * = Time on Ice. ** = Author did not specify how injury rate was calculated. 
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The injury rates in practice are much lower than games. Practice rates range between 

1.4/1000 player-practice hours for Swedish Elite hockey [30] to 3.9/1000 player-practice 

hours for junior hockey [21], versus game injury rates of 74.3/1000 player-game hours [38] 

and 121/1000 player-game hours [34], respectively. Although the injury rates are lower for 

practices, the number of hours spent in practices is several-fold greater than games, so the 

actual number of injuries is higher than indicated by the injury rate.  

Several long-term studies have assessed patterns in injury rates over time. For example, 

injury rates in the Finnish Elite League have increased from the 1970s (54/1000 AE) to the 

1990s (83/1000 AE) using the player-game hours exposure estimate [20 years: 35]. Overall 

game injury rates increased 1.8% annually over a seven-year period (2000–2007) in men’s 

NCAA ice hockey using the player game estimate. Practice rates also increased 7.8% 

annually during this time [39]. In contrast, on average, injury rates have decreased between 

2007 and 2013 in men’s International Ice Hockey Federation World Championship 

tournaments [42] (6-years). One Canadian Intercollegiate team also experienced decreases in 

injury rate over a six-year period from 11.3 to 8.30/1000 player games (1991–1996) [6-years:  

37].  

There was a large variance in injury rates between studies. This large variance is a function 

of variability in the definitions for both injury and athlete exposure. As noted in previous 

papers, establishing consistent definitions of injury and athlete exposure are important first 

steps for objectifying injury risks in high caliber ice hockey [10,45].  

2.3.2 Injury Definition in Men’s Elite Ice Hockey (Question #2) 

Probably the most important methodological factor affecting injury rate calculations is the 

definition of what constitutes an injury [45]. A review investigating the methods of data 

collection on injury surveillance identified three categories of injury definitions [45]. 

Category 1 defines injuries as all complaints regardless of time loss. All injuries are recorded, 

regardless of the severity or amount of time lost from competition. Category 2 defines 

injuries as events that require medical attention by a member of the medical staff. Therefore, 

according to this definition, a member of the medical staff, typically a team therapist or team 
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doctor, must diagnose the injury. Finally, category 3 defines injuries as events that have a 

time loss element. Accordingly, an injury is only recorded if the athlete misses a team-related 

practice or competition. Individual studies typically fit into one, or more of these categories. 

Our review identified 28 studies evaluating injuries in elite ice hockey. Early research 

investigating injury rates in the Swedish Elite League, and the Swedish National team used 

the time loss definition of injury (Category 3). As shown in Table 2, the majority of ice 

hockey injuries studies use either a time loss (Category 3) or medical attention definition 

(Category 2). None of the articles evaluating injuries in elite ice hockey used the all 

complaints definition (Category 1). 

Our review found inconsistent definitions of a reportable injury in ice hockey research based 

on the time loss definition. In addition, the list of injuries has expanded over time. Facial 

lacerations were considered reportable injuries in 1991 [24], while sutures, fractures, 

dislocations and subluxations were added in 1992 [23]. Concussions, dental and eye injuries 

were added in subsequent years [20,21], potentially increasing injury rates by expanding the 

list of injuries. In addition, illness may be counted as an injury, inflating the injury rates [23].  

The definition of injury based on medical attention (Category 2) has also been used to 

quantify competitive ice hockey injury rates [31,34,38]. However, this metric is often 

combined with the time loss component to result in a broader interpretation of injuries [20-

23,35,46]. For example, injuries such as concussions, dental injuries, lacerations and eye 

injuries are captured with medical attention by a team physician or athletic trainer, resulting 

in a more extensive list of ice hockey related injuries compared to definitions that did not 

include these injuries [45]. Of note, some studies have expanded their list to include illnesses 

and psychological complaints that are unrelated to injury [47].  

The time loss definition (Category 3) is the easiest to use as it is easy to track time loss. 

However, it leads to the fewest reported incidents [45] as it fails to capture the athletes that 

continue to train and play while injured [48]. Depending on the time of year, some injuries 

may be under reported as injured players continue to play throughout key time periods, such 

as playoffs. The medical attention definition (Category 2), though broader and encompassing 

a greater number of conditions, also has limitations. The subjective interpretation of what 
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constitutes medical attention may lead to systemic bias [49], and the types of injuries 

managed by the various practitioners may differ based on their qualifications and status [45]. 

2.3.3 Athlete Exposure Metric in Men’s Elite Ice Hockey (Question 
#3) 

Athlete exposure is the second component of injury rate. An athlete exposure is defined as 

one athlete participating in a practice or game in which there is a potential for athletic injury 

[50]. Injury rates are typically based on 1000 athlete exposures. These exposure rates can be 

quantified as injuries per 1000 game-hours (or injuries per 1000 games), injuries per 1000 

practice-hours, or overall injuries per 1000 AEs (games and practices combined). Injury per 

1000 player-game hours is based on a 60-min active game and is calculated as the number of 

injuries/number of players on the ice at the same time (6)/number of games × 1000. Many 

researchers use this method [18,21,24,30,31,33,34]. However, this exposure estimate is not 

used consistently among researchers. For example, several studies accounted for both teams 

when calculating athlete exposure (number of injuries/number of players on ice at the same 

time (two teams)/number of games × 1000 [22,42]. In contrast, another study used a 20 

person roster, including the back-up goaltender, to calculate athlete exposure per 1000 

player-game hours [38]. This larger number of players will lead to a smaller injury rate.  

Our review identified different nomenclatures pertaining to the athlete exposure metric, such 

as player-games and player-game hours [42]. The number of athletes used to quantify these 

exposure rates vary between studies, and are not consistently defined. For example, one 

researcher [42] calculated player-game injury rates based on 22 players competing for each 

team in a game (i.e., 44 players) while another [30] calculated player-game hours injury rates 

based on 6 players. This was based on the number of players on the ice at a time, and 

whether goaltenders were included. Other researchers have used roster averages over a set 

period of time [36,37], or a tournament [22,42] to calculate player-game injury rates.  

Injury per 1000 games is the average number of injuries that one player experiences per 1000 

games (number of injuries/total number of players (roster)/number of games × 1000 [20,37]. 

Our review found different implementations of this approach as there was some research that 

counted both rosters when computing athlete exposure [42]. This has an effect on total 
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estimated exposures and can lead to reduced injury rates. Finally, several articles did not 

fully describe whether they included both rosters or a single team roster when calculating 

athlete exposures [19,23], making it difficult to determine accurate injury rates.  

In addition, we investigated the impact of calculating injury rate based on the actual time on 

ice (TOI) [4,51]. Using the actual time on ice, injury rate was calculated as the number of 

injury events/sum of individual AE time as found on the player statistics page 

(www.nhl.com/stats/player). The time on ice was calculated based on the number of minutes 

and seconds that each individual played per game over the season. The difference between 

estimated athlete exposure (number of injuries/number of teams (30)/number of players on 

roster each game (19)/number of games (82)) and the TOI metric was large. As much as 

three times the amount of exposure was identified by estimating exposure rates. However, 

when comparing the time on ice metric to the estimated player game-hour metric, the 

differences were minimal. The player game-hour exposure (based on one hour per game 

rather than the actual amount of time that players spent on ice, which changes due to 

overtime periods and penalties) is similar to the time on ice calculations (14,676.2 h 

calculated as the sum of players’ time on ice versus 14,760 h calculated as 30 teams × 82 

games × 6 players) [4]. 

Our review found that practice athlete exposure was calculated consistently in most studies. 

Injury per 1000 practice hours (number of injuries/number of practice hours/number of 

players on team × 1000) was the standard [21,30,33,34].  

2.3.4 Lower-extremity injury type in men’s elite ice hockey? (Question 
#4) 

Our review identified five studies focusing on specific anatomical areas prone to injury in 

high caliber ice hockey (Table 3).  The knee was the most common lower body injury site 

[18,20,22,24,26,30,31], and the medial collateral ligament (MCL) was the most frequently 

injured ligament [19,20,24,36,37].  One study examined the incidence and injury 

characteristics in Collegiate hockey players playing on one team over an eight year period 

and found 13 MCL injuries [52]. Seventy-seven percent of these MCL injuries were 

attributed to player collision [52].  MCL game injury rates in collegiate hockey were 
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1.47/1000 AE, and practice rates were 0.13/1000 AE [52].  Although less common, anterior 

cruciate ligament (ACL) injuries also occur during ice hockey [53].  Over a ten year period 

researchers observed an ACL injury rate of 0.42/1000 AE in National Hockey League 

players [51].  Intentional body contact attributed to 40.3% of all ACL injuries during play, 

and 25.4% occurred as a consequence of incidental contact [51].  Finally, hip and groin 

injuries are also prevalent during games [54-56].  Groin and abdominal strain rates in the 

NHL increased from 0.81 to 1.13/1000 AE from 1995-1997 with 69.12 % of these injuries 

occurring due to contact [55].  Using publicly available data from the NHL website, 

researchers observed that the intra-articular hip injury rate was 1.81/1000 AE, with labral 

tears accounting for 69.1% of these injuries. The next most prevalent injuries were 

osteoarthritis, hip loose body and femoacetabular impingement (FAI) [56].  The injury rates 

for hip and groin injuries were similar when compared to the NCAA (1.03/1000 AE), with 

strains of the hip and groin accounting for 67.2% of these injuries, followed by contusions 

(16.9%) [54].  However, these numbers are confounded as they may reflect differences in the 

definition of injury and athlete exposure. 
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Table 2.3 Lower-Extremity Injury types. 

Authors Year Demographic Injury Definition Type Injury Rate Mechanism of Injury Injury Type 
Injury Rate 

Computation 

Emery, 
Meeuwisse, 

Powell 

[55] 

1999 
National 
Hockey 
League 

"Any injury recorded as a muscle strain injury 
in any of the hip flexor, adductor and 

abdominal muscle group.  Femoral, inguinal 
and abdominal hernias were also included in 

this group." 

Time Loss 
Definition 

95-'96:  0.81/1000 
AE    '96-'97:  
1.13/1000 AE 

34.56% with contact, 
30.88% with no 

contact, 34.56% with 
unknown contact 

groin/abdomina
l 

Total # of 
injuries per 

1000 AE 
(practice or 

games) 

Epstein, 
Mchugh, Yorio, 

Neri 

[56] 

2013 
National 
Hockey 
League 

"Players who sustained an intra-articular hip 
injury were further classified based on the 

diagnosis of a hip labral tear, FAI, 
osteoarthritis, chondromalacia, loose body, or 

other hip injury." 

N/A 
1.81/1000 player 

game hours (for all 
positions) 

Labral tear 69.1%, 
osteoarthritis 13.8%, 
hip loose body 6.3%, 

FAI 5.3% 

Intra-articular 
hip injury 

Using publicly 
available data 
from the NHL 
website, total 

time on ice and 
total game 

hours played by 
each position 

player per 
season were 

calculated 

Grant, Bedi, 
Kurz, 

Banccroft, 
Miller 

[52] 

2013 
College 
Hockey 

"An injury was defined as any event that 
directly resulted in an athlete being unable to 
participate in 1 or more games following the 

event." 

Time Loss 
Definition 

1.47/1000 AE 
(games     .13/1000 

AE (practice) 

Contact with another 
player 77% 

MCL 
Total number of 

Injuries/Total 
AE x1000 

Dalton, Zupon, 
Gardner, 

Djoka, 
Dompier, Kerr 

2016 
NCAA Ice 
Hockey 

"A reportable injury occurred as a result of 
participation in an organized intercollegiate 

practice or competition and required the 
attention from an AT or a physician." 

Medical 
Attention 
Definition 

1.03/1000 AE 
Non-contact 49.4%, 

overuse 17.6% 

Strains 67.2%, 
Contusions 

16.9% 

Total Number 
of 

Injuries/numbe
r of games x 
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[54] 

average roster 
x1000 

Longstaffe, 
Leiter, 

MacDonald 

[51] 

2018 
National 
Hockey 
League 

Page 36 of 101N/A N/A 

Overall incidence 
rate:  0.42/1000 AE 
(TOI)      0.20/1000 

AE (total games 
played) 

Body contact 40.3%, 
incidental contact 

25.4% 
ACL 

ACL injury per 
game hours:  

ACL injury/TOI 
(position 

specific) ACL 
per game 

exposure:  ACL 
injury/total # of 
games played 

for every player 



Page 37 of 101 

 

2.4 Discussion  

Injury rates in men’s elite ice hockey are higher in professional leagues such as the Swedish 

Elite League [31] and Finnish National League [33] than college hockey [19,20,23]. This 

may be due to the differing demands as professional players play more games in a season, 

and therefore may experience more overuse injuries. It may also be due to the athlete 

exposure estimation (player-game hours vs. player-games) used to calculate injury rate. Style 

of play and hockey rink dimensions are additional variables that may influence injury rate. 

Overall, we observed the trend that injury rates have increased over time in professional 

European leagues [35] and college hockey [39], while decreasing in men’s international ice 

hockey[42]. 

We observed a wide range of injury definitions. This affects both the reliability and 

comparability of injury surveillance research. There is currently a consensus-based injury 

definition in sports such as soccer and rugby [10,11]; however, there is no consensus injury 

definition in ice hockey. We recommend that hockey forms a consensus injury definition as 

this will resolve an important issue that currently impedes hockey injury research. A 

consistent injury definition would create clarity as to which injury is considered a recordable 

event. We identified the International Ice Hockey Federation’s (IIHF) definition of injury as 

the most appropriate as it only captures events that are sufficiently severe that they influence 

participation in practices or games. The IIHF’s definition describes a reportable event as “any 

injury sustained in a practice or game that prevented the player from returning to the same 

practice or game; any injury sustained in a practice or game that caused the player to miss a 

subsequent practice or game; a laceration which required medical attention; all dental 

injuries; all concussions; all fractures” [42]. Although no single definition suits all needs, the 

time loss definition is the most common and easy to identify. It is considered reliable and 

allows for the comparison of data between teams, seasons and various leagues [45]. It is also 

used in other professional sports such as cricket and Australian football [57,58]. The choice 

of definition should reflect the aims and goals of surveillance. With its consistency, ease of 

use, and comparability of published data [8] among the most important variables, we feel the 

time-loss definition best meets the needs of injury surveillance in men’s elite ice hockey. 

However, like all definitions there are limitations in choosing this metric. First, athletes often 
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continue to compete in the presence of injury. Delaying treatment may lead to missed 

injuries. Finally, the threshold for time loss may depend on the time of season and how 

important the player is to team success [45]. Despite these drawbacks, we feel the strengths 

of the time-loss definition outweigh its limitations and that the IIHF’s time-loss definition is 

warranted in elite men’s ice hockey.  

We also noted that athlete exposure estimations were inconsistent in the literature. The major 

confusion lies in how many participants are included in the injury rate calculation. Several 

researchers used player-game exposure based on the entire team, or average team roster (19 

players) [20,36,37], while others used player-game hour exposures based on 6 players 

[18,21,24,30,34]. This leads to difficulty in interpreting injury rates and comparing research. 

It was proposed that the gold standard in athlete exposure during games is time on ice. As 

much as three times the amount of exposure was accounted for by estimating exposure rates 

using the player-game approximation compared to time on ice. However, when comparing 

the time on ice metric to the estimated player game-hour metric (based on one hour per 

game, rather than the actual amount of time that players spent on ice) it appears that this 

difference is small [4]. Therefore, the simplest and easiest way to calculate athlete exposure 

is to use six players on the ice (player-game hours) unless position specific injury rate 

information is warranted. Using a consistent athlete exposure metric will increase intra- and 

inter-league injury rate reliability.  

Our review identified that the knee is the most common site of lower body injury 

[20,22,33,39].  In particular, the MCL is the most commonly injured knee ligament in ice 

hockey [59].  In addition, hip related, soft tissue injuries of the groin may occur as a 

byproduct of body contact or overuse  [24,54-56,60].  Soft tissue injuries to the groin may be 

due to the biomechanics of the hockey stride which involves eccentric contractions of the hip 

adductors [61].    

The majority of studies reviewed found that collision with other players is the leading 

mechanism of injury as well as contact with the boards, opponent’s hockey sticks and hockey 

pucks [22,35,36]. This leads to an injury paradox: the goal of the sports performance 

specialist is to build bigger, faster, stronger, leaner, more powerful, robust players. However, 

these types of players also travel faster, and hit harder, elevating the risk of injury. This 
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situation emphasizes the need for accurate injury surveillance methods as these may help 

reinforce rules and/or govern the addition of new rules enforcing safety for active players, 

and specific testing that can be used to monitor fatigue, measure performance and guide 

rehabilitation should a lower-extremity injury occur.  

2.4.1 Limitations 

There are limitations to this study. There is a relative paucity of studies evaluating injury 

rates in men’s elite ice hockey, and the definitions of injury and athlete exposures vary 

between studies. Accordingly, the reported injury rates differ between studies and are 

difficult to interpret. Two databases (PubMed and SPORTDiscus) were used to identify 

research papers that were relevant to injury definition, injury rates and athlete exposure in 

elite ice hockey. While these databases are an excellent source for research articles in sports, 

life sciences and biomedicine, supplemental databases may have identified additional 

research studies. Finally, we focused our review exclusively on males. Future research 

should focus on females as they have different types and rates of injury than males [62]. 

2.5 Conclusions 

In summary, this project represents the first integrative literature review investigating injury 

rates, injury definition and AE in men’s elite ice hockey. The greatest opportunities for 

continued improvement lie in both consistency and comparability to refine, improve and 

streamline calculations of injury rate.  

At the current moment, a uniform definition of injury is the most important step to better 

objectify injury data in ice hockey. A universal definition is required by sport governing 

bodies and researchers. Though each approach has its limitations, in order to compare 

exposure rates in both the intra- and inter-league, a workable, consistent definition is 

required. Specific responsibility should be given in terms of who will diagnose the injury if 

the definition is a time loss definition, a medical attention definition, or a combination. In 

addition, a detailed injury list is needed to clarify the definition of injury and whether specific 

injuries such as dental, concussions, and facial lacerations, are included.  
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Finally, disparate AE estimations diminish injury rates, which compromises research 

findings. Attendance rate in both practice and games (player-game hours based on 6 players 

per game and the full roster during practices) is the preferred method for calculating athlete 

exposure.  

2.5.1 Future Research 

Investigating anatomical areas prone to injury is crucial for team performance staff such as 

athletic therapists, physical therapists and strength and conditioning specialists as it may 

guide rehabilitation initiatives, performance program design and athlete monitoring [63]. 

Player profiling in professional sports, such as soccer, is used to inform practice regarding 

readiness, return to play, and performance across sport coaches, exercise scientists and 

rehabilitation specialists [64]. We observed that lower extremity injuries are costly and 

common in the sport of ice hockey.  Future research should be directed at specific testing 

tools that may be used to monitor fatigue [65], assess previous injury [66] and measure 

performance [67].   

Future research should clearly define injury rate measurements to provide doctors, therapists, 

and coaches with accurate information to streamline return to play initiatives. In this regard, 

our review has exposed gaps including the disparate definition of injury and the lack of a 

consistent athlete exposure metric. 
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Chapter 3 

 

 Reliability of the Single-Leg, Medial Countermovement 
Jump in Youth Ice Hockey Players 

A version of this manuscript has been published in the journal Sports. 

3.1 Introduction  

Approximately one half of National Hockey League (NHL) players will experience an injury 

during the course of the season resulting in a loss of playing time. During the 2009–2010 and 

2011–2012 seasons, researchers observed that injuries represented a total salary cost of $218 

million per year for the NHL teams and their insurance companies [1]. The lower extremity 

was the most commonly injured area of the body, accounting for 30% of total annual lost 

salary [1]. The risk of injury is also a concern at the youth level, where lower extremity 

injuries account for approximately 20–40% of all injuries [2–4]. More than 50% of injuries in 

boys’ ice hockey result in a minimum of one week of lost play [4]. Injury prevention 

programs must account for numerous physical qualities such as flexibility, power, strength 

and endurance in order to return players back to sport safely [5,6]. Functional performance 

tests have been used to assess physical qualities and determine rehabilitation timelines [7,8]. 

However, biomechanical and reliability considerations need to be examined prior to choosing 

each test. 

Skating is an essential skill for ice hockey players. The authors will be referring to ice 

hockey when stating hockey for the remainder of the manuscript. The ice surface has a low 

coefficient of friction [9], precluding force along the skate blade [10]. Accordingly, 

propulsive force is created on the ice by pushing laterally with the foot [11]. On-ice 

propulsion involves frontal plane forces, which differs from sprinting on land. Sprinting on 

land involves force generation predominantly in the sagittal plane [12]. Propulsion occurs by 

pushing down and into the ground. Accordingly, the differences between the biomechanics of 

skating and sprinting indicate that these activities should have different performance tests. 
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Performance professionals use functional performance tests, such as the vertical jump, to 

assess performance and to guide the rehabilitation process [13,14]. However, the best tests 

for assessing readiness to return to sport are those that closely mimic the biomechanics of the 

sporting activity [5]. Vertical jumps and skating involve different push-off mechanics [15]. In 

both activities, the center of gravity is accelerated by the push-off force. However, push-off 

force in skating occurs by pushing laterally on the ice. Skaters rely on the reactive force that 

is perpendicular to the skate blade [16]. Skaters propel forward by external hip rotation, ankle 

and blade pronation and applying lateral force. These skating mechanics are not incorporated 

in the standard vertical jump. However, the single-leg, medial countermovement jump 

provides similar push-off mechanics as experienced in skating. 

The reliability of kinetic and temporal variables in the single-leg, medial countermovement 

jump has been investigated and deemed reliable for field and court sport athletes [17], but not 

for hockey players. Establishing reliability of force and power variables in the single-leg, 

medial countermovement jump will support its use as a testing, training and rehabilitation 

tool used for youth hockey players. Accordingly, the primary purpose of this study was to 

determine the short-term reliability of the parameters involved in the single-leg, medial 

countermovement jump. We hypothesized that the single-leg, medial countermovement jump 

would be a reliable test in male youth hockey players. 

3.2 Methods 

3.2.1 Subjects and study design 

A power analysis identified that ten participants provide 80% power to detect an intraclass 

correlation coefficient (ICC) of 0.7 at p = 0.05 [18]. Ten youth male ice hockey players from 

a 16U hockey team (16.10 ± 0.32 years old, 181.40 ± 5.38 cm, 78.76 ± 12.81 kg) playing in 

the Tier 1 AAA Elite Hockey League participated in this study. Participants represented all 

playing positions (forward, defense, goaltender). All participants had medical clearance from 

a healthcare professional to participate in this study and self-declared that they were free of 

any lower body musculoskeletal injuries. Inclusion criteria included no pre-existing medical 

conditions and currently participating in organized hockey. All participants received written 
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explanation of the study and oral explanation of each test. The Western University Health 

Science Research Ethics Board approved the experimental protocol (protocol 113858).  

3.2.2 Procedures 

The participants were tested on two separate occasions, ten days apart. Testing took place 

indoors at the Donskov Strength and Conditioning training facility (Columbus, OH, USA), 

and at a hockey rink (Ice Haus, Columbus, OH, USA). Testing times, warm-ups and jump 

randomization were identical for both testing sessions. No familiarization trials were 

performed prior to collecting the single-leg, medial countermovement jumping trials; 

however, all participants were familiar with these jumps as they were part of their weekly in-

season strength and conditioning sessions.  

Participants completed a general warm-up consisting of 15 minutes of static stretching, 

mobility and dynamic movement (foam rolling, knee hugs, heel to butt, reverse lunge, single-

leg deadlift with reach, “A” skips, back pedaling, short accelerations). All participants 

adhered to the standardized testing instructions. Participants performed three repetitions each, 

of both left and right single-leg, medial countermovement jumps. Jumps were performed in 

blocks for each direction, and the order of each block was randomized. Ground reaction 

forces during the jumps were measured using bilateral force plates (OR6-7, AMTI, 

Watertown, MA, USA). The force plate signals were sampled at 200 Hz with a 16-bit analog-

to-digital converter (USB 6211, National Instruments, Austin, TX, USA) using a custom 

LabVIEW program (LabVIEW 2012, National Instruments, Austin, TX, USA). One minute 

of rest was provided between jumps to prevent fatigue [19].  

3.2.3 Jump Protocol 

All jump trials were administered by the same researcher using standardized verbal 

commands and demonstrations. Players were instructed to achieve the greatest vertical and 

horizontal displacement during each jump. Verbal encouragement was offered by the 

coaching staff to ensure maximal effort on each attempt. Compromised trials (improper 

technique, equipment malfunction) were discarded and repeated [20]. During the single-leg, 

medial countermovement jump, participants started standing with one foot on either force 

plate and then stood on the designated leg, squatted to a self-selected depth, and then jumped 
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medially as far as possible to land on both legs on the ground. Arm swing was permitted. 

Two strength and conditioning professionals monitored all jumps to ensure proper jumping 

technique and safe landing mechanics.  

3.2.4 Data Processing 

All data analysis was performed using custom software in LabVIEW. We did not filter the 

force signals. The forces in the X, Y and Z directions were summed from each force plate to 

capture the forces applied through each limb, and to represent the total ground reaction force 

acting on the participant. The average of the three jump trials was used for analysis. 

Bodyweight was collected from standing trials. Jump phases were determined using an 

automated procedure, similar to previous research [21,22], and were verified using visual 

inspection. The initiation of the jump was defined as the point where lateral force increased 

10 N above baseline. The end of the propulsive phase was defined as the point where the 

force dropped to less than 10 N. The start of the concentric phase for both vertical and lateral 

forces and accelerations was determined when the velocity of the center of mass became 

positive for more than 0.1 consecutive seconds (Figure 1). The net vertical impulse was 

calculated by subtracting the gravitational impulse from the total impulse. Vertical and lateral 

take off velocities were calculated using the impulse momentum relationship. Vertical and 

lateral power were calculated as the product of velocity and force. Maximum force was 

extracted from the force-time curves. Peak concentric power, average concentric power and 

average concentric power in the last 100 ms were extracted from the power curves.  
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Figure 3.1 Vertical (left panel) and lateral (right panel) forces during a single-leg, medial 

countermovement jump from a representative trial. The three traces represent force plate #1 

(dotted line), force plate #2 (dashed line) and resultant force (solid line). From left to right on 

each panel, the four vertical dashed lines reflect the beginning and end of standing prior to 

the jump, the initiation of jump (lateral forces >10 N) and end of jump. 

Force was expressed in N (i.e., not normalized to body weight) and power was expressed in 

W (i.e., not normalized). Force was also expressed relative to body weight, for both lateral 

and vertical maximal forces. 

3.2.5 Statistical Analysis  

A Pearson correlation matrix was created in order to identify the relationships among 

variables in the single-leg, medial countermovement jump. This was based on the average of 

the three jump performances from both test sessions. The size of the correlation was 

evaluated as follows: r < 0.7 low; 0.7 ≤ r < 0.9 moderate, and r ≥ 0.9 high [23]. Coefficients 

of determination (r2) were calculated to indicate the percent of common variance explained 

by the correlation [24]. Shapiro–Wilk tests were used to assess data normality [25]. Normal 

data are presented as mean ± one standard deviation (SD).  

Reliability analyses were performed using the Hopkins spreadsheet [26]. A variety of 

reliability calculations were used as there is no gold standard for this test [27,28]. A two-way 

random-effects model ICC (3,1) was used to evaluate relative reliability [27]. Values less 

than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.9 were interpreted 

as poor, moderate, good, and excellent reliability, respectively [29]. The standard error of 

measurement (SEM) was used to assess absolute reliability [30]. Relative SEM (SEM%) was 
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quantified by dividing the SEM by the mean of all the data from the two test occasions. The 

smallest real difference (SRD) was calculated by multiplying the SEM by 1.96 and by the 

square root of 2.0 to include 95% of the observations of the difference between the two 

measurements [30]. The normalized SRD, expressed as a percentage (SRD%), was calculated 

by dividing the raw SRD by the mean of all the data from the two test occasions. 

3.3 Results 

Normality was confirmed (p > 0.05) for all variables. The strength of the relationships 

between variables are presented in the correlation matrix (Table 1). There was a high 

correlation between vertical concentric average power in the last 100 ms and vertical peak 

concentric power (r = 0.99). In addition, a near-perfect relationship was observed for lateral 

concentric average power in the last 100 ms and lateral peak concentric power (r = 0.99). 

Several notable relationships were observed among the variables including a moderate 

relationship between maximum vertical force and peak lateral concentric power (r = 0.72), an 

inverse relationship between vertical takeoff velocity and lateral takeoff velocity (r = −0.36), 

and a large degree of independence between average and peak concentric power for both the 

lateral and vertical directions (r = 0.58; r2 = 0.33 and r = 0.63; r2 = 0.40, respectively). 

The reliability of the variables of interest are presented in Table 2. We observed moderate-to-

excellent reliability for all twelve variables of interest (ICCs between 0.50 and 0.98) for both 

right and left jumps. Excellent reliability for both right and left leg jumps was observed for 

maximum lateral force, maximum vertical force, and vertical average concentric power in the 

last 100 ms (ICCs > 0.91). The SRD%s ranged from 5.2 to 6.5% for maximum vertical force 

for both left and right legs, to 14.8 to 16.5% for vertical average concentric power during the 

last 100 ms for both the left and right legs. The SEM%s also ranged for each variable with 

maximum vertical force at 1.9% and 2.3% for the left and right legs to 5.35% and 5.9% for 

vertical average concentric power during the last 100 ms for both the left and right legs.
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Table 3.1 Pearson Correlation Matrix for the parameters derived from the single-
leg, medial countermovement jump. 

Parameter 

VERT 

VTO 

(m/s) 

VERT 

Jump 

Height 

(cm) 

VERT 

Peak 

Concentric 

Power (W) 

VERT 

Average 

Concentric 

Power (W) 

VERT 

Average 

Concentric 

Power 100 

ms (W) 

LAT 

VTO 

(m/s) 

LAT Peak 

Concentric 

Power (W) 

LAT 

Average 

Concentric 

Power (W) 

LAT 

Average 

Concentric 

Power 100 

ms (W) 

Maximum 

VERT 

Force (N)  

Max 

VERT 

Force 

above 

Body 

Weight 

(%BW) 

Maximum 

LAT 

Force (N) 

VERT jump height 

(cm) 
1.00            

VERT peak con 

power (W) 
0.77 0.77           

VERT Avg con 

power (W) 
0.55 0.55 0.58          

VERT Avg con 

Power 100 ms (W) 
0.76 0.76 1.00 0.58         

LAT VTO (m/s) −0.36 −0.36 −0.08 −0.09 −0.05        

LAT peak con power 

(W) 
−0.18 −0.18 0.32 0.13 0.34 0.84       

LAT Avg con power 

(W) 
−0.30 −0.30 0.02 0.48 0.03 0.61 0.63      

LAT Avg con power 

100 ms (W) 
−0.20 −0.20 0.32 0.10 0.34 0.85 1.00 0.63     

Max VERT force (N) 0.22 0.220 0.77 0.42 0.77 0.30 0.72 0.45 0.72    

Max VERT force 

above body weight 

(%BW) 

0.40 0.40 0.52 0.27 0.50 −0.09 0.13 0.17 0.15 0.55   

Max lateral force (N) −0.07 −0.07 0.50 0.19 0.51 0.63 0.95 0.54 0.94 0.86 0.26  

Max LAT force 

above body weight 

(%BW) 

−0.22 −0.22 0.07 −0.14 0.08 0.70 0.78 0.43 0.77 0.41 0.29 0.73 

VERT: vertical; VTO: vertical takeoff velocity; LAT: lateral; LVTO: lateral takeoff 
velocity; Max: maximum; Con: concentric; %BW: percent bodyweight. Correlation 
coefficient magnitudes larger than 0.3125 are statistically significant at p < 0.05. 
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Table 3.2 Test–retest reliability for the parameters involved in the single-leg, medial 
countermovement jump. 

Single-Leg, Medial Countermovement Jump Force and Velocity Variables 

Lateral Force/Velocity Mean (SD) Trial 1 Mean (SD) Trial 2 SEM Typical Error (90% CI) SRD ICC (90% CI) 

(R) Max LAT Force (N) 487.0 (87.0) 510.2 (85.4) 11.0 12.8 (9.4–21.2) 30.6 0.98 (0.95–0.99) 

(L) Max LAT Force (N) 504.1 (79.0) 502.2 (83.5) 23.6 27.8 (20.8–45.8) 65.4 0.91 (0.74–0.97) 

(R) Max LAT force above body weight (%BW) 65.1 (4.9) 68.0 (4.8) 1.9 2.1 (1.5–3.5) 5.2 0.85 (0.59–0.950 

(L) Max LAT force above body weight (%BW) 67.6 (5.4) 67.0 (5.8) 3.5 3.8 (2.8–6.3) 9.6 0.59 (0.10–0.85) 

(R) LAT VTO (m/s) 2.24 (0.18) 2.18 (0.15) 0.05 0.05 (0.04–0.09) 0.15 0.91 (0.76–0.97) 

(L) LAT VTO (m/s) 2.22 (0.22) 2.20 (0.18) 0.11 0.11 (0.08–0.18) 0.31 0.75 (0.38–0.91) 

Vertical Force/Velocity             

(R) Max VERT Force (N) 1272 (181.2) 1273 (190.8) 29.6 35.6 (26.0–58.6) 82.1 0.97 (0.92–0.99) 

(L) Max VERT Force (N) 1304 (200.7) 1261 (188.6) 24.4 27.9 (20.4–46.0) 67.9 0.98 (0.95–1.00) 

(R) Max VERT force above body weight (%BW) 70.8 (11.4) 70.1 (10.9) 4.6 4.9 (3.6–8.2) 12.6 0.84 (0.57–0.95) 

(L) Max VERT force above body weight (%BW) 74.8 (11.7) 68.3 (9.4) 3.5 3.6 (2.6–6.0) 9.7 0.91 (0.74–0.97) 

(R) VERT VTO (m/s) 1.38 (0.16) 1.35 (0.08) 0.12 0.09 (0.07–0.16) 0.32 0.50 (−0.03–0.81) 

(L) VERT VTO (m/s) 1.37 (0.27) 1.30 (0.27) 0.10 0.11 (0.08–0.19) 0.29 0.85 (0.59–0.95) 

Single-Leg, Medial Countermovement Jump Power Variables 

Lateral Power Mean (SD) Trial1 Mean (SD) Trial2 SEM  Typical Error (90% CI) SRD ICC (90% CI) 

(R) LAT peak con power (W) 925.1 (225.2) 945.3 (209.2) 38.6 43.6 (31.8–71.7) 107.1 0.97 (0.91–0.99) 

(L) LAT peak con power (W) 934.9 (204.1) 930.8 (206.7) 84.8 95.9 (67.0–157.8) 235.1 0.82 (0.54–0.94) 

(R) LAT Avg con power (W) 406.6 (135.8) 370.4 (117.5) 53.9 56.6 (41.3–93.2) 149.4 0.84 (0.57–0.95) 

(L) LAT Avg con power (W) 377.3 (164.7) 378.6 (150.9) 90.5 94.2 (68.7–155.0) 250.8 0.70 (0.28–0.89) 

(R) LAT Avg con power (100 ms; W) 873.1 (221.8) 887.7 (207.0) 28.0 31.9 (23.2–52.4) 77.7 0.98 (0.95–0.99) 

(L) LAT Avg con power (100 ms; W) 886.9 (199.2) 879.9 (193.1) 73.8 82.0 (59.8–134.9) 204.6 0.86 (0.62–0.95) 

Vertical Power             

(R) VERT peak con power (W) 1663.5 (306.7) 1668 (254.8) 104.6 109.2 (79.7–179.8) 290.2 0.88 (0.67–0.96) 

(L) VERT peak con power (W) 1690.4 (458.5) 1591 (382.9) 127.2 134.7 (98.3–221.7) 352.7 0.92 (0.77–0.98) 

(R) VERT Avg con power (W) 710.6 (225.3) 686.1 (199.2) 84.6 90.1 (65.7–148.3) 234.7 0.85 (0.61–0.95) 

(L) VERT Avg con power (W) 607.0 (131.8) 638.3 (189.2) 70.0 94.4 (68.9–155.4) 194.2 0.72 (0.31–0.90) 

(R) VERT Avg con power 100 ms (W) 1582.1 (310.1) 1616 (256.2) 95.2 99.8 (72.8–164.3) 263.9 0.91 (0.73–0.97) 

(L) VERT Avg con power 100 ms (W) 1621.0 (445.0) 1556 (368.1) 128.4 135.2 (98.6–222.4) 356.0 0.92 (0.76–0.97) 

R: right leg; L: left leg; VERT: vertical; LAT: lateral; Avg: average; con: 
concentric; SD: standard deviation; SEM: standard error of measure; SRD: smallest 
real difference; CI: confidence interval; LAT VTO: lateral takeoff velocity; VERT 
VTO: vertical takeoff velocity; %BW: percent bodyweight; ICC: intraclass 
coefficient. 

We observed good reliability for lateral takeoff velocity, maximal vertical force above body 

weight (%BW), lateral peak concentric power, lateral average concentric power during the 

last 100 ms, and vertical peak concentric power for both right and left jumps (ICCs between 

0.75 and 0.98). The SRD%s ranged from 6.7% to 14% for lateral takeoff velocity for both the 

right and left legs, to 17.4% and 21% for vertical peak concentric power for both the right 

and left legs. The SEM%s ranged from 2.2 to 4.9% for lateral takeoff velocity on the right 

and left legs to 6.2 to 7.7% for peak concentric power on the right and left legs, respectively. 
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Moderate reliability was observed for maximum lateral force above body weight (%BW), 

vertical takeoff velocity, lateral average concentric power and vertical average concentric 

power in both legs. Minimal differences were found between trial one and two for vertical 

average concentric power (710.66 ± 225.30 W vs. 686.18 ± 199.27 W right leg, 607.04 ± 

131.84 vs. 638.30 ± 189.26 W left leg). Inter-limb reliability differences were observed for 

each parameter; however, all parameters met the moderate-to-excellent rating. The right limb 

sustained higher reliability in all lateral force, velocity and power parameters, while the left 

limb sustained higher reliability during all vertical force, velocity and power parameters with 

the exception of vertical average concentric power. 

3.4 Discussion  

The primary purpose of this study was to determine the short-term reliability of the 

parameters involved in the single-leg, medial countermovement jump. We hypothesized that 

the single-leg, medial countermovement jump would be a reliable test in male youth hockey 

players. Our hypothesis was supported for all twelve discrete variables. 

Research in field-based sports has concluded that the medial countermovement jump can be 

used to reliably measure force and power in the frontal plane [17,31]. The current research 

extends this finding by demonstrating that it is reliable in measuring force and power in 

youth hockey players. Given biomechanical similarities between this jump and the 

propulsion phase in skating, it is likely that this jump is an important off-ice test to evaluate 

skating performance. To our knowledge, this paper is the first to present SEMs and relative 

SEMs for the various jump variables associated with the single-leg, medial countermovement 

jump. These numbers serve as baseline measures for future research. 

Other metrics have been used to assess skating performance including the vertical jump, 

squat jump, forty-yard dash, thirty-meter test, broad jump, and the triple hop jump test [32–

34]. Studies vary in concluding which test most accurately assesses on-ice skating 

performance. One study observed that vertical jump impulse, as measured on force plates, 

was one of several variables that best assessed on-ice skating performance [32], while others 

have stated that the thirty-meter sprint and triple hop were superior [33]. Finally, in 

determining the measurement device and jumping protocol most appropriate for testing elite 
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hockey players, one study concluded that the Vertec squat jump was superior to the Just 

Jump mat for measuring lower body power [35]. True countermovement is uncommon in ice 

hockey as players rarely use the stretch-shortening cycle to enhance muscle contraction [31]. 

In addition, push-off on the ice is different than on land. Hockey players must push off 

laterally in order to create propulsive force. This push-off is similar to the single-leg, medial 

countermovement jump. Since the best tests for assessing readiness to return to sport are 

those that closely mimic the biomechanics of the sporting activity [5], the single-leg, medial 

countermovement jump appears to be an excellent functional performance test for skating. 

Other studies have measured the reliability of the single-leg, medial countermovement jump. 

Measuring distance jumped showed a pooled ICC of 0.97 for both men and women with 

intrasubject variability, expressed as a coefficient of variation, of 4.6% [36]. However, the 

use of measures such as distance jumped does not measure ground reaction forces. 

Individuals recovering from lower-extremity injuries employ unique jumping strategies that 

may not present when measuring distance jumped. While injured, an athlete may select a 

movement strategy that avoids force application to the injured limb [37]. Therefore, the use 

of force plates to measure ground reaction forces and leg asymmetries is critical for both 

healthy and injured athletes [37]. Vertical and lateral ground reaction forces during the 

single-leg, medial countermovement jump were investigated for field and court sport athletes 

[17]. For the concentric variables, peak vertical force (ICC = 0.96), peak lateral ground 

reaction (ICC = 0.89) and peak vertical power (ICC= 0.86) were reliable measures. Similarly, 

our investigation observed ICCs ranging from 0.88 to 0.98 for these variables. The single-

leg, medial countermovement jump has also differentiated between elite and non-elite soccer 

players [31]. Researchers observed that single-leg jumps such as the unilateral vertical jump, 

unilateral horizontal jump and unilateral medial countermovement jump could differentiate 

elite from non-elite soccer players and therefore should be included in power profiling 

assessments. 

Lateral push-off, during which forces are produced perpendicular to the skate blade, occurs 

in a short window of time [15]. Our results suggest that this can be measured using the 

medial countermovement jump. Mean average lateral concentric power during the last 100 

ms prior to push-off showed good-to-excellent reliability (ICC = 0.86–0.98). In addition, the 
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single-leg, medial countermovement jump displayed larger horizontal takeoff velocities than 

vertical takeoff velocities. Vertical takeoff velocity was 61% of total lateral takeoff velocity 

during right and left leg propulsion. This suggests that larger horizontal forces were needed 

to move the center of mass effectively during this jump, solidifying its use for measuring 

hockey player performance. 

From an injury-risk perspective, the single-leg, medial countermovement jump may be useful 

for measuring force, velocity and power of the lower limbs prior to potential injury 

occurrence. This provides objective information to the performance staff and may serve to 

guide rehabilitation during return to play. In addition, the single-leg, medial 

countermovement jump may be used to assess and track asymmetries between right and left 

limbs in both healthy and injured athletes. It has been noted that interlimb differences of 

greater than ten percent lead to a fourfold increase in re-rupture of the ACL in athletes [38]. 

Having a reliable, frontal plane test that can provide information pertaining to jump 

performance may be used to improve return-to-play procedures in hockey. 

A number of features of the single-leg, medial countermovement jump are similar to skating. 

For example, it has a high concentric effort, minimal stretch-shortening cycle, arm swing to 

assist propulsion, and frontal plane force production. These features of the single-leg, medial 

countermovement jump substantiate its face validity as an assessment of skating propulsion. 

Accordingly, it may be an important test for ice hockey players. 

3.4.1 Limitations 

There are limitations to this study. This study tested a narrow age range of male youth 

athletes playing in a single youth hockey league. Future research should evaluate this jump 

with a broader age range of hockey players. In addition, female players have different skating 

biomechanics [10]. Accordingly, future research should be performed on female players. We 

included players of different playing positions, which may have affected results. Further 

research should evaluate whether there are systemic differences in single-leg, medial 

countermovement jump performance between player positions. We did not ask our 

participants about limb dominance, and therefore are unable to evaluate whether the bilateral 

differences in reliability may be due to limb dominance. Lastly, the location of testing may 
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have affected performance. Testing took place both at the gym and at the rink. Different 

locations and temperatures may have altered physiologic behavior, causing a potential 

change in performance. 

3.5 Conclusions 

All twelve discrete variables examined showed moderate-to-excellent between-session 

reliability. Specifically, both lateral and vertical ground reaction forces showed the highest 

reliability. Lateral takeoff velocity and lateral average concentric power during the last 100 

ms showed good reliability. As a result, performance professionals can feel confident using 

these variables extracted from single-leg, medial countermovement jumps to gauge hockey 

player performance. 

In conclusion, the results from this study suggest that the single-leg, medial 

countermovement jump is a reliable test of frontal plane force production for youth hockey 

players. The fact that the single-leg, medial countermovement jump allows the tester to 

measure single-leg ground reaction forces and power in the frontal plane makes this test a 

relevant option in all phases of sport performance and rehabilitation. A larger sample size 

including athletes of different ages is needed to evaluate changes with training and recovery 

from injury for ice hockey players.  
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Chapter 4 

 Normative Reference of the Single Leg, Medial 
Countermovement Jump in Adolescent Youth Ice Hockey 
Players 

A version of this manuscript is currently under revision in the journal Sports. 

4.1 Introduction 

Ice hockey has become one of the most popular sports played in North America with 561,700 

players under 18 years of age registered with USA Hockey in 2019-2020 [1]. As players 

mature, a greater emphasis is placed on their skill and physical development, resulting in 

improved upper body strength and lower body power [2]. Consequently, physical preparation 

training and testing is paramount for tracking progress and improvement over time [3]. Tests, 

such as the countermovement jump, squat jump, and three hop jump have been employed to 

measure physical performance [4,5]. However, the best tests for assessing physical capacities 

and return to sport are those that closely mimic the biomechanics of the sporting activity [6]. 

The single leg, medial countermovement jump is a reliable measure of assessing youth 

hockey player performance [7]. Nevertheless, normative values across multiple youth ice 

hockey age groups have yet to be reported.  

The single leg, medial countermovement jump is a lower body power test that incorporates a 

high degree of force, velocity and coordination in the frontal plane. It has been used to assess 

the unilateral power output of field and court sport athletes [8,9]. One study has examined the 

reliability of various temporal and kinetic variables involved in jumping vertically, 

horizontally and medially [8]. This study determined that eccentric and concentric peak force 

and concentric peak power were the only reliable measures between single leg vertical, 

horizontal and medial jumps [8]. Another group of researchers determined that single leg, 

countermovement jumping could differentiate between elite and non-elite soccer players 

[10]. Researchers reported that elite soccer players produced more peak vertical power than 

non-elite players during single leg jumps in the vertical, horizontal and medial directions, but 

these differences were not significant for bilateral jumps. They concluded that single leg 

jumping was more useful than the traditional bilateral countermovement jumping [10]. Single 
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leg jumping is also appropriate for evaluating skating as it involves lateral propulsion on one 

leg. Velocity, force and power parameters describing performance of the single leg, medial 

countermovement jump demonstrate moderate to strong test re-test reliability in a group of 

U16 youth ice hockey players [7]. Accordingly, it is important to further explore the 

measurement properties and baseline normative values for the single leg, medial 

countermovement jump.    

Interlimb asymmetry has also been explored for a variety of styles of single leg jumps in the 

vertical and horizontal directions [11,12]. Researchers determined that the single leg, vertical 

countermovement jump showed greater side-to-side differences compared with single, triple 

and crossover hops for distance, illustrating that single leg jumps may be particularly suited 

for assessing asymmetry. Asymmetry has important implications for performance as the 

degree of asymmetry in the single leg, countermovement jump was correlated with sprint 

times across distances of 5, 10 and 20 m in youth female soccer players [11]. Interlimb 

asymmetries are also inversely correlated with jumping ability [13]. Inter-limb differences 

have not been reported in elite youth ice hockey players. Assessing differences in strength, 

power and performance between legs is important for skill and physical development as well 

as injury prevention and rehabilitation [14]. 

To the best of our knowledge, normative force and power values, as well as interlimb 

asymmetries of the single leg, medial countermovement jump have not been reported for ice 

hockey players of multiple age groups. These normative measures would be valuable for 

performance professionals to compare their athletes to normative baselines. Furthermore, 

normative data about interlimb asymmetries may be useful for performance staff to monitor 

rehabilitation progress and return to play timelines. Therefore, the purposes of this study 

were to measure normative single leg, medial countermovement jump parameters (i.e., 

maximum force, average concentric power and average concentric power during the last 100 

ms) amongst youth ice hockey players, and to assess the interlimb asymmetry between legs 

in these healthy athletes. 
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4.2 Materials and Methods 

4.2.1 Subjects and Study Design 

In this study, 91 elite performing youth ice hockey players from 10U, 11U, 12U, 13U, 14U, 

15U, 16U and 18U teams participated. Group characteristics are provided in Table 1. All 

participants had medical clearance from a healthcare professional. Inclusion criteria for all 

subjects included no pre-existing medical conditions, no current lower body musculoskeletal 

injuries, and currently participating in organized hockey. Testing for the 14U-18U age groups 

took place during the last month of the 2019-2020 hockey season, when training volume was 

low in preparation for league playoffs. Testing for the 10U-13U age groups took place at 

training camp in August prior to the start of the 2020-2021 hockey season. Prior to 

participation, all subjects gave written informed consent to participate in the study. The 

University of Western Ontario Health Science Research Ethics Board approved the 

experimental protocol (protocol 113858).  

Table 4.1 Demographics (mean ± SD) for the youth ice hockey age groups. 

Group Number* Age (years) Height (cm) Mass (kg) 

10U 15 9.8  0.4 141.8  6.2 34.9  6.2 

11U 6 11.0  0.0 148.6  5.7 40.6  5.7 

12U 11 11.8  0.4 152.4  3.9 43.2  6.6 

13U 14 12.9  0.3 164.0  9.8 51.7  10.0 

14U 8 14.0  0.5 173.0  3.9 68.6  9.1 

15U 18 15.2  0.4 176.3  6.7 72.3  8.6 

16U 10 15.9  0.4 179.9  6.5 77.1  12.0 

18U 9 17.6 ± 0.7 180.9  7.1 75.2  7.1 

*Number of participants in each ice hockey age group. 

 

4.2.2 Procedures 

Testing for the 14U-18U players took place indoors at Donskov Strength and Conditioning 

(Columbus, Ohio, USA) training facility. Testing for the 10U-13U players took place at the 

Ice Haus hockey rink (Columbus, Ohio, USA). A familiarization period was not provided 

prior to testing for the 14U-18U players; however, all participants were familiar with these 

jumps as they were part of their weekly in-season strength and conditioning plan. The 10U-
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13U players were familiarized with these jumps by their skill coaches as part of their weekly 

dynamic warm-ups. Each participant completed their testing in one session.   

Participants performed a standardized 15-minute warmup consisting of static stretching, 

mobility and dynamic movement (foam rolling, knee hugs, heel to butt, reverse lunge, single 

leg deadlift with reach, A skips, back pedaling, short accelerations). Participants performed 

single leg, medial countermovement jumps on both left and right legs for three repetitions 

each. Jumps were performed in randomized ordered blocks for each leg. Jump ground 

reaction forces were measured using bilateral force plates (OR6-7, AMTI, Watertown, MA, 

USA). A custom LabVIEW program (LabVIEW 2012, National Instruments, Austin TX) 

sampled the force plate signals at 200 Hz with a 16-bit analog-to-digital converter (USB 

6211, National Instruments, Austin TX). One-minute of rest was provided between each 

jump to prevent fatigue [15].  

4.2.3 Jump Protocol 

Standardized verbal commands and demonstrations were administered to all participants by 

the same staff member. Maximal effort on each jump attempt was encouraged by verbal 

support from the coaching staff. During the single leg, medial countermovement jump, 

participants squatted to a self-selected depth on the designated leg, while standing on a force 

plate, and then jumped medially as high and as far as possible landing on both legs. Arm 

swing was permitted. All jumps were monitored by two strength and conditioning 

professionals to ensure proper jumping technique. Compromised trials (improper technique, 

equipment malfunction) were discarded and repeated.   

4.2.4 Data processing  

Force plate data was analyzed using custom software in LabVIEW. The forces in the X, Y 

and Z directions were summed from each force plate. Participants’ bodyweight was collected 

from standing trials. Jump phases were automatically determined and verified via visual 

inspection. Jump initiation was defined as the point of time where lateral force started to 

increase. The point where the vertical force dropped to less than 10 N was defined as the end 

of the jump/task. The initiation of the concentric phase for both vertical and lateral forces and 

accelerations was determined when velocity of the center of mass became positive for longer 
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than 0.1 consecutive seconds. The product of velocity and force was used to calculate vertical 

and lateral power. Maximum force was extracted from the force-time curve. Average 

concentric power and average concentric power in the last 100 ms were extracted from the 

power curve. Force and power were expressed in raw units (N and W). In summary, the 

variables included vertical and lateral maximal force, average concentric power, and average 

concentric power during the last 100 ms. These variables are a subset of the parameters that 

were determined to be reliable in a recent study [7]. This subset was selected as these 

parameters assess independent constructs (based on low correlations). Jump performances 

were represented as the average of the parameters from the three jump trials. 

4.2.5 Statistical Analysis  

To account for outliers and uneven distributions within groups, non-parametric analyses were 

used [16]. Mann-Whitney U tests compared left and right leg jump performance for all six 

variables within each of the eight age groups. The false discovery rate method was used to 

control familywise error rate for all Mann-Whitney U tests, with a 0.05% threshold [17]. 

Data for the right and left sides will be amalgamated if the differences between sides are not 

statistically significant. Kruskal-Wallis tests will be used for between-group comparisons 

between age groups. Finally, Mann-Whitney U post hoc tests will identify significantly 

different age pairs for each of the six jump parameters; only adjacent age groups (e.g., U10 

vs U11, U11 vs U12) will be compared and the false discovery rate method will be used to 

control familywise error rate. Effect sizes and 95% confidence intervals will be calculated 

for all adjacent age groups using the probability of superiority approach [18], and interpreted 

as values of 0.56, 0.64 and 0.71 corresponding to small, medium and large effect sizes [19]. 

Jump parameter characteristics will be presented as box and whisker plots including the 

median, with boxes illustrating the first (Q1) and third quartiles (Q3), and whiskers are 

extended 1.5 times the length of the interquartile range beyond the box boundaries, defining 

the inner fence for identifying outliers [20].  

Interlimb asymmetry index calculations were recorded for each participant and averaged for 

each team using the percentage difference between limbs calculation [21,22]. Statistical 

analysis will be performed using Prism (V9.1.0, GraphPad Software LLC., San Diego, CA).   
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4.3 Results 

There were no statistically significant differences between the force and power parameters 

for the right and left leg jump performances for any of the age groups after false discovery 

rate adjustment. Consequently, all normative values are based on the combined right and left 

scores for each participant.   

In general, all of the power and force parameters for the single leg, medial countermovement 

jumps increased with age (Figures 1). The details of the statistical analysis and the effect 

sizes are reported in Table 2. Most parameters were significantly different between the ages 

of 13 and 14; the 14U group outperformed the 13U group by 23-30% in five of the six jumps. 

As a general trend, both younger (10U-12U) and older (15U-18U) age groups experienced 

fewer differences between age groups. The 11U group had significantly larger scores than the 

10U group in three of the six performance parameters, while there were no significant 

differences observed between the 11U and 12U age groups. In addition, two significant 

differences were observed between the 14U and 15U age groups for vertical parameters, and 

between the 15U and 16U age groups for lateral parameters. Finally, the lateral jump 

parameters for the 16U age group were larger by 8-34% compared to the 18U group; 

however, only two were statistically significant (p-values ranging from 0.002 - 0.010). The 

vertical parameters for the 18U age group were 3-20% larger than the 16U age group; 

however, only vertical average concentric power during the last 100 ms was statistically 

significant (p = 0.006).   
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Figure 4.1 Box and whisker plots comparing youth ice hockey single leg, countermovement 

jump variables across each age group. Panels A and B illustrate the maximum lateral and 

vertical force, respectively. Panels C and D illustrate the lateral and vertical average 

concentric power, respectively. Panels E and F illustrate the average lateral and vertical 

power in the last 100 ms, respectively. Whiskers are extended 1.5 times the length of the 

interquartile range beyond the box boundaries, defining the inner fence for identifying 

outliers. Data points that are outside of these fences are identified with individual points. 

Significant differences (p < 0.05) between adjacent age groups are indicated with brackets. 

Note that the scales are different for the lateral and vertical panels. 

Table 4.2 Median difference, statistical significance and effect sizes of adjacent age 
group comparisons. 

Parameter 

Hodges-

Lehmann 

Median 

Difference 

m n U 

False  

Discovery Rate 

Threshold 

P-Value* Effect Size (95% CI) 

VERT Avg Con Power (W) 

10U vs 11U -3.95 19 12 111 0.050 0.921 0.513 (0.318 - 0.703) 

11U vs 12U 36.73 12 21 99 0.036 0.326 0.607►(0.403 - 0.775) 

12U vs 13U 68.59 21 28 193 0.027 0.042 0.672►►(0.507 - 0.799) 

13U vs 14U 109.80 28 16 123 0.014 0.013❖ 0.725►►►(0.547 - 0.847) 

14 U vs 15U 174.50 16 36 144 0.007 0.003❖ 0.750►►►(0.581 - 0.861) 

15U vs 16U -27.00 36 20 338 0.043 0.716 0.530 (0.377 - 0.677) 

16U vs 18U 132.50 20 18 109 0.021 0.038 0.697►►(0.511- 0.830) 

VERT Avg Con Power 100 ms (W) 

11U vs 12U 16.58 19 12 101 0.043 0.617 0.557 (0.356 - 0.738) 

11U vs 12U 64.43 12 21 99 0.036 0.326 0.607►(0.403 - 0.775) 

12U vs 13U 129.10 21 28 196 0.027 0.048 0.667►►(0.501 - 0.794) 

13U vs 14U 343.70 28 16 110 0.007 0.004❖ 0.754►►►(0.578 - 0.868) 

14U vs 15U 321.20 16 36 153 0.021 0.007❖ 0.734►►►(0.564 - 0.850) 

15U vs 16U -13.90 36 20 354 0.050 0.925 0.508 (0.357- 0.657) 

16U vs 18U 385.90 20 18 87 0.014 0.005❖ 0.758►►►(0.574 - 0.874) 

LAT Avg Con Power (W) 

10U vs 11U 65.38 19 12 49 0.007 0.007 0.785 (0.576 - 0.902) 

11U vs 12U -12.05 12 21 118 0.043 0.782 0.532 (0.337 - 0.716) 

12U vs 13U 77.96 21 28 184 0.021 0.024❖ 0.687►►(0.522 - 0.811) 

13U vs 14U 67.93 28 16 164 0.036 0.148 0.634►(0.455 - 0.778) 

14U vs 15U 1.19 16 36 286 0.050 0.977 0.503 (0.342 - 0.664) 

15U vs 16U 63.26 36 20 260 0.029 0.089 0.638►(0.479 - 0.768) 

16U vs 18U -138.90 20 18 93 0.014 0.010❖ 0.741►►►(0.557 - 0.862) 

LAT Avg Con Power 100 ms (W) 

10U vs 11U 121.90 19 12 24 0.007 0.001 0.894 (0.705 - 0.965) 

11U vs 12U -4.11 12 21 121 0.050 0.868 0.519 (0.327 - 0.706) 

12U vs 13U 123.70 21 28 154 0.029 0.004❖ 0.738►►►(0.575 - 0.849) 

13U vs 14U 171.00 28 16 80 0.014 <0.001❖ 0.821►►►(0.652 - 0.914) 

14U vs 15U 40.51 16 36 248 0.043 0.437 0.569►(0.402 - 0.720) 

15U vs 16U 97.24 36 20 208 0.036 0.008❖ 0.711►►►(0.553 - 0.826) 

16 U vs 18U -203.40 20 18 79 0.021 0.002❖ 0.780►►►(0.599 - 0.889) 

MAX VERT Force (N) 

10U vs 11U 105.70 19 12 56 0.021 0.018❖ 0.754►►►(0.543 - 0.882) 

11U vs 12U 18.63 12 21 113 0.050 0.645 0.552 (0.354 - 0.732) 
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12U vs 13U 148.80 21 28 160 0.014 0.006❖ 0.728►►►(0.565 - 0.842) 

13U vs 14U 289.50 28 16 62 0.007 <0.001❖ 0.862►►►(0.700 - 0.939) 

14U vs 15U 46.74 16 36 249 0.043 0.449 0.568►(0.400 - 0.719) 

15U vs 16U 42.09 36 20 314 0.036 0.439 0.564►(0.408 - 0.706) 

16U vs 18U 63.59 20 18 150 0.029 0.393 0.583►(0.401 - 0.742) 

MAX LAT Force (N) 

10U vs 11U 49.61 19 12 24 0.007 <0.001❖ 0.895►►►(0.705 - 0.965) 

11U vs 12U 1.14 12 21 123 0.050 0.926 0.512 (0.321 - 0.699) 

12 U vs 13U 51.77 21 28 159 0.021 0.005❖ 0.729►►►(0.566 - 0.843) 

13U vs 14U 136.00 28 16 34 0.014 <0.001❖ 0.924►►►(0.781 - 0.974) 

14U vs 15U -7.38 16 36 271 0.043 0.746 0.529 (0.365- 0.686) 

15U vs 16U 56.71 36 20 205 0.029 0.007❖ 0.715►►►(0.557 - 0.829) 

16U vs 18U -46.47 20 18 113 0.036 0.051 0.686►►(0.499 - 0.822) 

m, n and U refer to the number of participants in the two groups and the value of the 
Mann-Whitney U statistic. 
VERT refers to vertical, LAT refers to lateral, Con refers to concentric. 
*p value for the Mann-Whitney U test, before considering the false discovery rate 
adjustment 

❖ denotes statistically significant differences at p < 0.05 after the false discovery 

rate adjustment. 
► denotes a small effect size, ►► denotes a medium effect size, ►►► denotes a 
large effect size. 

The average asymmetry index for each age group was less than 15% for both vertical and 

lateral force parameters (Table 3). The power parameters (vertical and lateral concentric 

power and the vertical and lateral average concentric power during the last 100 ms) had 

larger asymmetry indices than force parameters (maximum vertical and lateral force) for all 

age groups. These asymmetry indices varied between 5 and 32%. The maximum vertical and 

lateral force parameters had the lowest asymmetry magnitudes across all age groups. 

Asymmetry ranged from 2.5 – 5.8% for max vertical force. The 16U group represented the 

lowest asymmetry index for both vertical and lateral force. Asymmetry values for max lateral 

force ranged from 4.3% for the U16 group, to 13.8% for the U13 group. 

Table 4.3 Mean (SD) Asymmetry Index (%) for each jump parameter, per each 
individual age group. 

Age Group  
VERT Avg Con 

Power 

VERT Avg Con 

Power (100 ms) 

LAT Avg Con 

Power 

LAT Avg Con 

Power (100 ms)  

Max VERT 

Force 
Max LAT Force 

10U 13.56 (8.37) 13.88 (7.30) 12.03 (5.92) 15.44 (3.28) 5.85 (1.48) 7.10 (1.83) 

11U 14.22 (6.72) 19.46 (9.10) 13.47 (8.57) 13.44 (7.63) 2.80 (2.46) 7.14 (4.83) 

12U 11.21 (8.47) 14.89 (10.23) 19.62 (11.02) 14.53 (12.45) 4.42 (3.62) 7.15 (4.53) 

13U 14.58 (9.24) 15.19 (10.30) 17.92 (14.46) 13.60 (10.56) 4.71 (3.38) 13.84 (14.66) 

14U 26.54 (14.59) 27.82 (15.50) 32.11 (19.75) 12.18 (9.72) 4.24 (4.11) 5.59 (4.89) 

15U 16.53 (9.30) 10.63 (8.27) 13.24 (11.30) 8.45 (6.36) 4.68 (2.49) 6.05 (3.73) 

16U 11.42 (11.25) 12.32 (7.25) 14.84 (14.30) 5.01 (4.08) 2.47 (2.55) 4.26 (2.27) 
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18U 17.55 (10.45) 12.33 (4.40) 29.51 (18.00) 13.21 (10.57) 5.01 (3.01) 7.85 (7.37) 

VERT refers to vertical, LAT refers to lateral, Con refers to concentric. 
 

4.4 Discussion  

The purposes of this study were to measure normative single leg, medial countermovement 

jump parameters (i.e. maximum force, average concentric power and average concentric 

power during the last 100 ms) amongst youth ice hockey players, and to assess the interlimb 

asymmetry in these healthy athletes. These parameters were not significantly different 

between legs in our participants and therefore we defined our normative values based on the 

combined data set. We observed a general trend that these parameters increased with player 

age, and note significant changes between the 12U, 13U and 14U age groups, presumably 

related to physical maturation. Most asymmetries for these parameters were less than 15%.  

In general, it appears as though body mass plays a critical role in jump performance [23]. 

Body mass is associated with improved peak power in adolescent boys and girls [23]. The 

18U and 16U age groups had similar body masses, and they were much heavier compared to 

the 10U and 11U groups. The 18U age group outweighed the 10U group by an average of 

40.3 kg.   

Access to a structured strength and conditioning plan also affects jump performance. This 

differentially affected the athletes in this study. Athletes in the 13U-18U age groups 

participated in a structured strength and conditioning plan during the hockey season. 

Structured weight training has been shown to increase countermovement performance due to 

an increase in cross sectional area and muscle mass which leads to larger force output 

[24,25]. Accordingly, the fact that the younger age groups (10U-12U) did not partake in 

regular strength and conditioning sessions may have affected jump performance. 

A large study reported increases in countermovement jump height between 10-11 year old, 

12-14 year old and 15-17 year old males [26]. However, our data have greater granularity as 

we evaluated differences between yearly age groups (except for the 18U age group that 

included 17- and 18-year-olds). We observed the greatest number of differences between the 

13U and 14U age groups. These age groups are at the peak height growth velocity for boys 

(13.85  0.65 years old) [27]. During this age range tasks such as speed, static strength and 
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power are related to the ages that an athlete matures [28]. The window of time between the 

ages of 13-14 showed the largest change in jump performance in our group of youth ice 

hockey players as five of six performance parameters had significant differences.    

Finally, the asymmetry indices were the lower for the vertical and lateral force parameters 

compared to the power parameters. The average vertical asymmetry magnitudes for vertical 

force were 4.27% for all age groups, while the overall lateral force asymmetry was 7.37%. 

These asymmetries are consistent with previous research on elite youth soccer players [11]; 

however, that study calculated asymmetry of the jump height parameter measured with the 

“My Jump” iPhone application, and therefore may not be directly comparable. The soccer 

paper reports that asymmetry has important implications for performance as the degree of 

asymmetry in the single leg, countermovement jump was correlated with sprint times across 

various distances [11]. Vertical and lateral power asymmetries in the current paper were 

larger during the single leg, medial countermovement jump as magnitudes varied between 

5.01% to 32.11%. These values are difficult to compare as normative power parameters for 

youth ice hockey players do not currently exist to the authors’ knowledge. Previous research 

on competitive male soccer players has evaluated asymmetry during countermovement jumps 

[29]. They suggest that asymmetries larger than 15% may be considered abnormal. However, 

it is important to note that they measured peak vertical force during countermovement jumps, 

and accordingly this threshold may not be relevant for the lateral force, vertical power and 

lateral power parameters that we report in this study. However, recent research has observed 

that asymmetry indices based on individual parameters do not accurately capture elements of 

jump strategy [30].    

4.4.1 Limitations 

There are limitations to this study. This study tested male youth athletes playing in a single 

youth hockey organization. Different organizations may have different resources such as 

strength and conditioning which may affect jump performance. In addition, female players 

should be tested to quantify normative differences between sexes. We included players of 

different playing positions which may have affected our results. Further research should 

evaluate whether there are differences in single leg, medial countermovement jump 

performance between player positions.  



Page 73 of 101 

 

4.5 Conclusions 

We determined normative values for parameters from the single leg, medial 

countermovement jump for male youth hockey players 10U-18U. This is an important 

performance test for monitoring strength and conditioning in hockey players. The normative 

data presented in this paper serves as a baseline for evaluating jump performance in youth 

hockey players. The single leg, medial countermovement jump allows the tester to measure 

ground reaction forces and power in the frontal plane which makes this test a relevant tool in 

all phases of sport performance and rehabilitation. To our knowledge, this is the first study to 

generate normative values of these jump parameters, and the first to investigate interlimb 

asymmetries in youth ice hockey players.  
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Chapter 5 

 Discussion  

This thesis identified current gaps in the injury literature for ice hockey, investigated a 

specific test that can be used to monitor and manage performance, and characterized key 

parameters for 10U to 18U players that may serve as a baseline measures for performance 

specialists to evaluate their athletes.  This thesis reveled three main findings.  There is a need 

for injury and athlete exposure to be defined consistently in ice hockey.  However, all 

definitions of injury indicate that lower extremity injuries are prevalent in all levels of ice 

hockey, and knee injuries are particularly common.  The single leg, medial countermovement 

jump may be used as a reliable tool for testing and monitoring ice hockey players as 12 

parameters had moderate to excellent reliability.  Finally, normative data suggests a general 

trend that force and power parameters from the single leg, medial countermovement jump 

increase with age.  

Chapter 2 illustrated the need for a consistent definition of injury and athlete exposure.  

Establishing consistent categorical definitions is the first step in objectifying injury risks 

[1,2].  Several studies used injury definitions that specifically included concussions [3,4], one 

injury definition did not include overuse injures [5] , while others included dental injuries 

and fractures [4,6] and others did not [7,8].  We identified that the International Ice Hockey 

Federation (IIHF) definition of injury [9] based on time loss was the most appropriate. Their 

definition of injury is “An injury is considered reportable if a player misses a practice or a 

game because of an injury sustained during a practice or a game. The player does not return 

to the play for the remainder of the game following an injury; all concussions; all dental 

injuries; any laceration which requires medical attention; all fractures.” Although no 

definition can suit all needs, the time loss categorical definition provided by the IIHF is the 

most common and easiest to track across multiple leagues of play.  As further support for the 

appropriateness of the time loss definition, it is the most common categorical injury 

definition used in team sports [1].   
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Chapter 2 also highlighted the need for a consistent athlete exposure definition.  Athlete 

exposure has been calculated  three different ways: games, player-game hours (based on a 

60-minute hockey game), and total time on ice. The player game calculation (number of 

injuries/total number of players on the roster/number of games x1000) defines injury per 

1000 player games and is based on the entire team roster.  The player game-hours 

calculation, based on a 60-minute hockey game (number of injuries/number players on the 

ice at the same time/number of games x1000), defines the injury per 1000 player-game hours 

for players actively on the ice.  However, researchers have used different roster numbers 

when calculating player hours, and total number of players actively on the ice when 

calculating player game-hours.  Several studies have used both rosters [4,10], while others 

have used just one [3,11,12].  This has a direct effect as a larger number of players will lead 

to smaller injury rates.  Finally, total time on ice (number of injuries/sum of individual AE 

time) has been used to quantify the athlete exposure definition in ice hockey [13].  This 

method is not simple to calculate as all leagues do not track player time on ice.  Interestingly, 

the exposure differences were minimal between the time on ice metric and the estimated 

player game-hour metric, (14,676.2 hours calculated as the sum of players’ time on ice 

versus 14,760 hours calculated as 30 teams x 82 games x 6 players on the ice). Therefore, the 

simplest way to calculate athlete exposure is to use six players on the ice and one hour per 

game (player-game hours). Using a consistent athlete exposure metric will improve the 

consistency and reliability of injury reporting, enabling comparisons between leagues. 

Finally, Chapter 2 identified that lower-extremity injuries are prevalent in the sport of ice 

hockey, specifically MCL and ACL sprains [4,14-16].  In addition, hip related issues such as 

femoacetabular impingement (FAI), groin, soft tissue injuries [17] and intra-articulate hip 

injuries [18] are also prevalent.  Based on the findings presented in Chapter 2, governing 

bodies such as Hockey Canada, USA Hockey and the IIHF should consider adopting 

consistent injury and athlete exposure definitions.  In addition, with the large incidence of 

lower-extremity injuries sustained on the ice in youth [6,19,20], junior [21], collegiate [22], 

and professional [23] hockey, both performance coaches and physical therapists should focus 

on specific tests that serve to measure both performance and injury risk such as interlimb 

asymmetries.   
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Chapter 3 introduced a performance test called the single leg, medial countermovement 

jump.  This test has been used in field based sports to assess performance [24], but is 

uniquely relevant to skating as the foot pushes laterally on the ice during propulsion [25]. 

The high face validity of this jump to the sport of ice hockey was identified in Chapter 3. 

Several temporal and kinetic variables have been measured in previous research [24].  Of 

these variables, eccentric and concentric peak forces and concentric peak power were the 

most reliable (ICC’s: 0.86-0.96) among several other force and power metrics.  In this thesis, 

a total of 12 vertical and lateral parameters were assessed for reliability.  All force and power 

variables (lateral and vertical takeoff velocity, lateral and vertical maximal force, maximal 

force above bodyweight, lateral and vertical peak concentric power, average concentric 

power, and average concentric power during the last 100 ms of push-off) showed moderate to 

excellent reliability.  This thesis extends previous research findings [24] and identifies that 

the single, leg medial countermovement jump is a reliable measure to assess force and power 

parameters in ice hockey players. A correlation matrix was used to identify relationships 

among variables in the single leg, medial countermovement jump. Near perfect correlations 

were observed between vertical concentric average power during the last 100 ms, and vertical 

peak concentric power (r = 0.99).  A near perfect relationship was also observed for lateral 

concentric average power and lateral peak concentric power (r = 0.99).  These near perfect 

correlations identified clusters of variables that were dependent. An inverse relationship 

between vertical takeoff velocity and lateral takeoff velocity (r = −0.36) was observed. This 

suggests a compromise between vertical and lateral components of the jump. Finally, low 

correlations were used to identify the subset of independent variables. A fair degree of 

independence between average and peak concentric power for both the lateral and vertical 

directions (r = 0.58; r2 = 0.33 and r = 0.63; r2 = 0.40, respectively) was observed. 

In addition to having high face validity and moderate to excellent reliability, the single leg, 

medial countermovement jump provides objective measures of force and power as outlined 

in Chapter 4. This is important for rehabilitation and return to play timelines as injured 

athletes may demonstrate altered movement strategies.  For example, ACLR patients 

demonstrated a significantly greater proportion of power on their operated hip [26], and an 

unloading strategy of the involved leg [27].  These individuals had an 18% lower sagittal 
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plane energy absorption, compared to controls, on their involved leg nine months post-

surgery during a bi-lateral drop jump task [27]. 

Given that the single leg, medial countermovement jump is a unilateral test, it is 

straightforward to calculate asymmetry indices since force is produced solely by the test leg.  

A recent review paper identified that unilateral tests potentially provide a more accurate 

representation of asymmetry for this reason [28].   Single leg force plate testing is a superior 

means of assessing jump performance than bi-lateral testing. However, force plates alone do 

not enable investigations into the movement strategy involved in single leg jumping and 

hopping tests [49].  Research using three-dimensional motion analysis has observed 

significant asymmetries in movement strategy in individuals that have had anterior cruciate 

ligament reconstruction [29].  Specifically, the involved lower limb exhibited lower peak 

ankle dorsiflexion, and knee abduction angles during the single leg vertical hop test [29]. 

Other researchers have described the interaction of joints using the percentage of power 

generation at each joint during jumping [26]. Force plate testing does not enable this type of 

analysis; however, feasibly, practicality, total expense, and convenience also need to be 

considered.    

Chapter 4 reported normative values of the single leg, medial countermovement jump in a 

group of 91 elite youth ice hockey players playing 10U, 11U, 12U, 13U, 14U, 15U, 16U and 

18U level hockey.  Other studies have examined normative values for the countermovement 

jump [30] and broad jump [31] in adolescents, but this thesis provides novel information 

regarding the performance parameters involved in the single leg, medial countermovement 

jump – a performance test that is particularly relevant for hockey. Six performance 

parameters were measured, including vertical and lateral maximal force, average concentric 

power and average concentric power in the last 100 ms.   The results show a trend for the 

jump performance parameters to increase with age among the 10U-18U age groups.  In 

addition, the 14U group was 23-30% greater than the 13U group for all parameters, and the 

differences for five of the six parameters were statistically significant - the largest number of 

significant differences between age groups. This age represents a heightened growth period 

in youth development where peak height velocity and puberty occur for boys [32]. Tasks 

such as speed, power and strength are related to physical maturity [33]. These normative 
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values are an important as they may be used to compare other youth ice hockey players from 

various leagues and levels of play.   

Interlimb asymmetries were also presented in Chapter 4. Interlimb asymmetries are expected 

in sports with preferred limb dominance [34]. Sports such as hockey do not have a dominant 

leg as propulsion requires equal contribution from both limbs.  Findings from previous 

research has determined that an asymmetry measure between legs greater than 15% may 

increase the chance of injury [35-37]. Interlimb asymmetries may also affect sport 

performance as researchers showed that jump-height asymmetry of 12.5% from the unilateral 

CMJ was associated with slower linear speed and jump performance in academy youth 

female soccer players [38]. The average asymmetry index for each age group was less than 

15% for both vertical and lateral force parameters. These numbers are consistent with 

previous research [38]; however, that study measured asymmetry in jump height 

measurements during single leg, vertical countermovement jump rather than the force and 

power parameters that we assessed.  We observed that the maximum vertical and lateral force 

parameters had the lowest asymmetry magnitudes across all age groups; asymmetry indices 

ranged from 2.4 to 5.8% for maximal vertical force, and 4.2 to 13.8% for maximal lateral 

force. In contrast, the power parameters (vertical and lateral concentric power and the 

vertical and lateral average concentric power during the last 100 ms) had larger asymmetry 

indices than force parameters for all age groups. These asymmetry indices varied between 5 

and 32%.  To the author’s knowledge, this thesis was the first to present both force and 

power asymmetries in the single leg, medial countermovement jump.  The normative values 

for asymmetry may be used by performance and rehabilitation specialists to guide training 

with the goal of decreasing the risk of injury. Currently professional soccer teams employ an 

approach called player profiling [39]. This normative information is collected within the 

team and disseminated to coaches, sports science and sports medicine professionals on issues 

regarding injury status, availability and return to play.  Normative values may also be used 

outside of the organization to compare reference values in other sports settings such as 

National Collegiate Athletic Association Division 1 sports [40]. 

The results of this thesis, in conjunction with other studies, can be used by rehabilitation and 

performance specialists to monitor, guide and assess performance and return to play 
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initiatives.  There is a need to continue to investigate alternative lower body testing measures 

in the sport of ice hockey as sport-specific functional performance tests requires careful 

consideration of safety, sport biomechanics, practicality and the athletes’ current physical 

condition [41].  Finally, the test must be reliable and valid.  The high degree of face validity 

and moderate to excellent reliability of the single leg, medial countermovement jump make it 

an excellent test for ice hockey players. Parameters of specific interest include lateral and 

vertical force, and concentric average power during the last 100 ms (each with ICCs between 

0.86 and 0.98). Chapter 3 highlighted the single leg, medial countermovement jump 

parameters as being reliable for all 12 parameters measured. This may give rehabilitation and 

performance coaches confidence in the test itself.  

In addition, the single leg, medial countermovement jump provides high face validity as both 

skating and the jump incorporate frontal plane force production - pushing laterally off one 

foot.  Athlete’s performances can also be compared to baseline measures of 10U-18U elite 

youth ice hockey players as presented in Chapter 4, enabling practitioners to establish 

rankings and monitor performance.  This approach has been taken in field-based sports 

assessing jump strategy performance among soccer, rugby union and Australian rules 

football players [42]. In addition, the single leg, medial countermovement jump assesses 

interlimb asymmetry and enables the practitioner to evaluate readiness to return to play 

following a lower-extremity injury. This can be an important but difficult pursuit as 

significant inter-limb asymmetries can persist even after a player is cleared for sport [43].  

Finally, monitoring the single leg, medial countermovement jump over the course of the 

season has been used to document player fatigue [44], and could also be used to document 

performance improvements or decrements such as jump height and asymmetry.   

One limitation of this research was that it was not possible to perform on-ice performance 

tests. Therefore, we cannot conclude with certainty that the single leg, medial 

countermovement jump is related to on-ice skating performance. Research findings from AA 

and AAA ice hockey players observed that anterior to posterior horizontal leg power (off-ice 

sprint and 3 hop jump) was the best predictor of on-ice skating performance [45]. Future 

research should evaluate the relationship between the single leg, medial countermovement 

jump and on-ice skating performance tests.  Three-dimensional motion analysis was not used 
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in this thesis, and therefore some jump strategy variables and kinematics could not be 

measured. This is important as injured athletes may display movement compensations during 

testing [27,29]. In addition, all participants played in a single youth hockey league.  Different 

organizations may have different resources such as planned, coached and organized strength 

and conditioning sessions that may affect performance [46].  The normative values were 

based on players of all playing positions (goalies, forwards and defensemen). The skating 

demands differ between player positions [47,48], and accordingly these normative values 

may not be adequate to describe different positions.  Future research may be needed to 

determine if there are significant differences in jump performance metrics between player 

positions. Lastly, testing location may have affected performance. Testing took place at 

either a gym or an ice hockey rink. Different locations and temperatures may have altered 

physiologic behavior, causing a potential change in performance. 

There were three main objectives for this thesis: 1) to systematically review the literature to 

determine which injuries are most common in ice hockey, and describe the inconsistencies in 

injury definition and injury rate, 2) to identify which performance test is most appropriate for 

elite youth ice hockey players, define meaningful parameters to describe the performance, 

and evaluate the reliability of these parameters in order to develop a subset of independent 

parameters, and 3) to describe the normative values for these parameters for a range of youth 

player ages. This thesis identified that lower-extremity injuries are common and costly in all 

levels of ice hockey, that the single leg, medial countermovement jump may be an 

appropriate performance test for hockey based on face validity and quantified the reliability 

of 12 performance parameters of and developed normative measures, including interlimb 

asymmetries, in 91 elite youth ice hockey players.  These results provide evidence that the 

single leg, medial countermovement jump can reliably be used to test, monitor and manage 

performance in elite youth ice hockey players.  Performance coaches, skill coaches and 

rehabilitation specialists can use this evidence-based test to monitor fatigue, assess 

performance and improve the return to play process from lower-extremity injury in ice 

hockey.    
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