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Abstract-- In this paper, we propose a novel Artificial Neural 

Network (ANN) to predict software effort from use case 

diagrams based on the Use Case Point (UCP) model. The inputs 

of this model are software size, productivity and complexity, 

while the output is the predicted software effort. A multiple 

linear regression model with three independent variables (same 

inputs of the ANN) and one dependent variable (effort) is also 

introduced. Our data repository contains 240 data points in 

which, 214 are industrial and 26 are educational projects. Both 

the regression and ANN models were trained using 168 data 

points and tested using 72 data points. The ANN model was 

evaluated using the MMER and PRED criteria against the 

regression model, as well as the UCP model that estimates effort 

from use cases. Results show that the ANN model is a 

competitive model with respect to other regression models and 

can be used as an alternative to predict software effort based on 

the UCP method.  

Keywords-- Software Effort Estimation, Use Case Points, 

Artificial Neural Network. 

I.       INTRODUCTION 

Software estimation is a crucial element in software 

engineering and project management. Incorrect software 

estimation leads to late delivery, surpassing the budget and 

project failures. According to the International Society of 

Parametric Analysis (ISPA) [1] and the Standish Group 

International [2], the main reasons behind project failures 

include optimism in conducting software estimation as well 

as misunderstanding and uncertainty in software 

requirements. At the inception of each software project, 

project managers use several techniques to predict software 

size and effort that will help them learn the cost, required 

time and the number of staff required to develop a project. 

Examples of these techniques include Algorithmic Models 

such as COCOMO [3], SLIM [4] and SEER-SEM [5] 

where linear or non-linear regression models are used to 

predict software effort from software size which is usually 

expressed in Source Lines Of Code (SLOC), Expert 

Judgment and Estimation by Analogy [6] [7] where project 

managers use their expertise and historical projects to 

conduct software estimation of new projects and Machine 

Learning techniques such as neural networks, fuzzy logic 

and genetic algorithm.  

In this paper, we present a novel Artificial Neural Network 

(ANN) model to estimate software effort from use case 

diagrams based on the UCP method. The importance of our 

model is that it can be used in the early stages of the 

software life cycle (requirements stage) where software 

estimation is required and difficult to conduct at this phase 

[8]. The proposed ANN model takes three inputs which 

include software size, productivity and project complexity. 

Software size and productivity are estimated using the UCP 

model [9]. A new approach to calculate the project 

complexity of a project is also introduced. To better 

evaluate the proposed ANN model, we introduce a multiple 

linear regression model to predict software effort based on 

three independent variables. We then tested the ANN 

model against the regression model as well as the UCP 

model based on the Mean of Magnitude of error Relative to 

the Estimate (MMER) and prediction level PRED. Results 

show that the ANN model outperforms the multiple linear 

regression model and UCP models based on the MMER 

criterion by 8% and 50% respectively, and thus, can be a 

competitive model for software effort prediction. 

The remainder of this paper is organized as follows: 

Section II presents a background of terms used in this 

paper. Section III introduces related work whereas Section 

IV introduces the model’s inputs. Section V illustrates the 

proposed ANN and multiple linear regression models. In 

Section VI, the proposed ANN will be evaluated and in 

Section VII, threats to validity are listed. Finally, Section 

VIII concludes the paper and suggests future work. 

II.       BACKGROUND 

This section defines the main terms used in this paper 

which includes the UCP model, evaluation criteria, 

regression analysis and neural network. 

A. Use Case Point Model 

The use case point (UCP) model was first described by 

Gustav Karner in 1993 [9]. This model is used for software 

cost estimation based on the use case diagrams. First, the 

software size is calculated according to the number of 

actors and use cases in a use case diagram multiplied by 

their complexity weights. The complexity weights of use 

cases and actors are presented in tables I and II, 

respectively. The software size is calculated through two 

stages. These include the Unadjusted Use Case Points 

(UUCP) and the Adjusted Use Case Points (UCP). UUCP 

is achieved through the summation of the Unadjusted Use 

Case Weight (UUCW) and Unadjusted Actor Weight 

(UAW). Table II presents the complexity weights of actors.  

After calculating the UUCP, the Adjusted Use Case Points 

(UCP) is calculated. UCP is achieved by multiplying 

UUCP by the Technical Factors (TF) and the 

Environmental Factors (EF). TF and EF factors are 

depicted in tables III and IV, respectively.  

 



TABLE I.  COMPLEXITY WEIGHTS OF USE CASES [9] 

Use Case 

Complexity 

Number of Transactions Weight 

Simple Less than 4 (should be realized by less than 5 

classes) 

5 

Average Between 4 and 7 should be realized between 5 

and 10 classes) 

10 

Complex More than 7 (should be realized by more than 

10 classes) 

15 

 

TABLE II.  COMPLEXITY WEIGHTS OF ACTORS [9] 

Actor 

Complexity 

Description Weight 

Simple Through an API 1 

Average Through a text-based user interface 2 

Complex Through a Graphical User Interface 3 

 

TABLE III.  TECHNICAL FACTORS [9] 

Ti Complexity Factors Wi 

T1 Easy installation 0.5 

T2 Portability 2 

T3 End user efficiency 1 

T4 Reusability 1 

T5 Complex internal processing 1 

T6 Special security features 1 

T7 Usability 0.5 

T8 Application performance objectives 1 

T9 Special user training facilities  1 

T10 Concurrency 1 

T11 Distributed systems 2 

T12 Provide direct access for third parties 1 

T13 Changeability  1 

 

TABLE IV.  ENVIRONMENTAL FACTORS [9] 

Ei Efficiency and Productivity Factors Wi 

E1 Familiar with Objectory 1.5 

E2 Object oriented experience  1 

E3 Analyst capability 0.5 

E4 Stable requirements 2 

E5 Application experience 0.5 

E6 Motivation 1 

E7 Part-time workers -1 

E8 Difficult programming language -1 

 

For effort estimation, Karner proposed 20 person-hours to 

develop each UCP.  

B. Evaluation Criteria 

In our work, two different evaluation methods have been 

used which are the Mean of Magnitude of Error Relative to 

the Estimate (MMER) and the Prediction Level (PRED). 

MER: The Magnitude of Error Relative to the estimate for 

each observation i can be obtained as: 
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MMER can be achieved through the summation of MER 

over N observations: 
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PRED (x) can be described as: 

      . 
k

PRED x
n

  (3) 

where k is the number of projects in which MER ≤ x and n 

is the total number of projects. The estimation accuracy is 

directly proportional to PRED (x) and inversely 

proportional to MMER. 

C. Neural Network 

Artificial Neural Network (ANN) is a network composed of 

artificial neurons or nodes which emulate the biological 

neurons [10]. ANN can be trained to be used to 

approximate a non-linear function, to map an input to an 

output or to classify outputs. The most prominent topology 

of ANN is the feed-forward networks.  Feed-forward ANN 

layers are usually represented as input, hidden and output 

layers. If the hidden layer does not exist, then this type of 

the ANN is called perceptron. The perceptron is a linear 

classifier that maps an input to an output provided that the 

output falls under two categories. The perceptron can map 

an input to an output if the relationship between the input 

and output is linear. If the relationship between the input 

and output is not linear, one or more hidden layers will 

exist between the input and output layers to accommodate 

the non-linear properties. Several types of feed-forward 

neural networks with hidden layers exist. These include 

Multilayer Perceptron (MLP), Radial Basis Function 

Neural Network (RBFNN) and General Regression Neural 

Network (GRNN). A MLP contains at least one hidden 

layer and each input vector is represented by a neuron. The 

number of hidden neurons varies and can be determined by 

trial and error so that the error is minimal. In this paper, 

MLP type is used to predict software effort based on 

software size calculated based on the UCP method, team 

productivity and project complexity. Figure 1 shows the 

ANN architecture used in this paper with three inputs and 

four hidden neurons. The selection process of the number 

of the hidden neurons is illustrated in Section V, B. 

 

Figure 1.  Architecture of ANN 



III. RELATED WORK 

Some issues related to the UCP model have been addressed 

in previous work. Authors in [11] and [12] worked on 

adjustment factors, while others in [12] and [13] 

highlighted the discrepancies in designing use case models. 

Researchers in [14], [15] and [16] proposed different size 

metrics such as Transactions, TTPoints and Paths, while 

others [17], [18], [19], [20], [21], [22], [23], [24] and [25] 

went further to extend the UCP model by providing new 

complexity weights or by modifying the method used to 

predict effort. 

Neural network models such as [26], [27], [28], [29], [30] 

and [31] were used to predict software effort. 

Estimation using analogy such as [32], [7], [33], [32] and 

[34] was also used for software effort prediction. 

None of the above work deals with creating neural network 

models to predict software effort based on the use case 

points model. Moreover, our model was evaluated on 

industrial projects that are considered large. Another 

contribution of this work is to simplify the project 

complexity factor proposed by the UCP model by 

introducing five levels of complexity levels as shown in 

Section IV. 

IV. MODEL’S INPUTS 

The inputs of the model are software size, productivity and 

complexity. Software size was estimated based on the UCP 

model as described in Section II, A. 

The productivity factor was calculated based on Table IV 

according to this equation: 
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Where Ei and Wi are the Environmental factors and their 

corresponding weights as depicted in Table IV.  

The complexity of the project is an important factor in 

software effort prediction. Complexity can be interpreted as 

an item having two or more elements [35] [36]. There are 

two dimensions of complexity. These include business 

scope such as schedule, cost, risk and technical aspect 

which is the degree of difficulty in building the product 

[36]. Technical complexity deals with the number of 

components of the product, number of technologies 

involved, number of interfaces and types of interfaces [36]. 

The project complexity can be classified as low complexity, 

medium complexity or high complexity [36]. Project 

complexity should be distinguished from other project 

characteristics such as size and uncertainty [35]. Complex 

projects require more effort to develop than simple projects 

that have the same size. In our research, we identify the 

project complexity based on five levels (from Level1 to 

Level5). The reason behind defining five levels is to be 

compatible with other cost estimation models such as 

COCOMO where cost drivers are classified into five or six 

levels (such as Very Low, Low, Nominal, High, Extra 

High). Additionally, this classification is compatible to the 

project complexity classification in [36]. Each level has its 

corresponding weight. The five complexity levels are 

defined as follows: 

 Level1: The complexity of a project is classified as 

Level1 if the project team is familiar with this type of 

project and the team has developed similar projects in the 

past. The number and type of interfaces are simple. The 

project will be installed in normal conditions where high 

security or safety factors are not required. Also, Level1 

projects are those of which around 20% of their design or 

implementation parts are reused (came from old similar 

projects). The weight of the Level1 complexity is 1. 

 Level2: This is similar to level1 category with a 

difference that only about 10% of these projects are 

reused. The weight of the Level2 complexity is 2. 

 Level3: This is the normal complexity level where 

projects are not said to be simple, nor complex. In this 

level, the technology, interface, installation conditions are 

normal. Furthermore, no parts of the projects had been 

previously designed or implemented. The weight of the 

Level3 complexity is 3. 

 Level4: In this level, the project is required to be installed 

on a complicated topology/architecture such as 

distributed systems. Moreover, in this level, the number 

of variables and interface is large. The weight of the 

Level4 complexity is 4. 

 Level5: This is similar to Level4 but with additional 

constraints such as a special type of security or high 

safety factors. The weight of the Level5 complexity is 5. 

V.          REGRESSION AND ANN MODELS 

This section introduces the multiple regression and ANN 

models. Our dataset contains 240 projects. Among these 

projects, 70% (168 projects) were randomly chosen to train 

the models and 30% (72 projects) were used to test the 

model. Each of the proposed models takes 3 inputs which 

include software size, productivity and project complexity.  

A. Multiple Linear Regression Model 

The main goal of creating a multiple linear regression 

model from the training dataset is to compare the ANN 

model with the regression model. The ANN model is 

deemed to be valid if it outperforms the regression model. 

The multiple linear regression model was constructed using 

168 data points. The equation of the regression model is: 
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Where Effort is measured in person-hours and Size in UCP. 

Productivity is measured based on Equation (4) and 

Complexity is measured as proposed in Section IV. 

To measure the accuracy of the regression model, we 

measured the value of the coefficient of determination R2 



which is 0.882. This indicates that approximately 88 % of 

the variation in Effort can be explained by the independent 

variables Size, Complexity and Productivity. The “p” value 

of the model as well as all independent variables is 0.000 

which indicates that there is a significant relationship 

among the variables at the 95% confidence level. We also 

measured the Variance Inflation Factor (VIF) of each 

independent variable to see if the multicollinearity issue 

(when one independent variable has a relationship with 

other independent variables) exists. We found that the 

highest VIF factor is for the variable “Productivity” which 

is 1.676. This indicates that the multicollinearity issue does 

not exit (VIF is less than 4). 

B. Artificial Neural Network 

Figure 1 shows the architecture of the ANN used in this 

paper. Like the regression model, the ANN model was 

trained using 168 data points. One of the most important 

parameters of a ANN model is to determine the number of 

the hidden neurons. If the number is very small, the model 

will not fit the data points properly. However, if the number 

of the hidden neurons is too high, overfitting might occur. 

Overfitting occurs when the training error is very small but 

the validation/ testing error is large. 

In our model, the conjugate gradient algorithm [37] is used 

for training. The initial number of the hidden neurons is set 

to one, and then it is incremented by one until optimal 

results are achieved. The parameters of the model are: 

Maximum Iterations = 10,000, Convergence Tolerance = 

1.0e-5, Minimum Gradient = 1.0e-6 and Minimum 

Improvement Delta = 1.0e-6. To avoid overfitting, 20% of 

the training data will be held out and used for validation. If 

the training error is decreasing and the validation error 

starts to increase, the training should be stopped to avoid 

overfitting. The 10-fold cross validation technique was 

used. At each number of hidden neurons, the residual 

variance is calculated. The residual variance determines 

how well the model fits the dataset. The smaller the 

variance, the more accurate the model is. Figure 2 shows 

that the smallest residual variance (12.13%) is achieved 

when the number of the hidden neurons is four.  

 
Figure 2.  Number of Hidden Neurons 

The type of activation function used in the hidden layer is 

the Sigmoid (Logistic); however, the linear function was 

used in the output layer. Figure 3 shows the actual versus 

the predicted effort values and Figure 4 shows the 

relationship between the actual size and effort (dots) as well 

as the predicted values (line). 

VI. MODEL EVALUATION AND DISCUSSION 

This section presents the evaluation of the proposed ANN 

model against the regression as well as the UCP model. 

A. Project Dataset 

This research is based on software effort prediction from 

use case diagrams. We have encountered many difficulties 

in acquiring industrial projects because revealing UML 

diagrams of projects is considered confidential to many 

companies. For this reason, we have prepared a 

questionnaire that could help us obtain industrial data 

without actually having UML diagrams. In this 

questionnaire, we asked for example, the quantity of use 

cases in each project, the number of transactions of each 

use case, actual software size and effort as well as the 

project complexity, and factors contributing to productivity. 

Two hundred and forty projects were collected from four 

main sources such that 214 are industrial projects and 26 

are educational ones. The statistical profile of the project 

effort of the four datasets is depicted in Table V. S1, S2, S3 

and S4 correspond to Source1, Source2, Source3 and 

Source4, respectively, whereas Ind and Edu correspond to 

Industrial and Educational, respectively. 

TABLE V.  STATISTICAL PROFILE OF DATASETS 

Source #prj Mean StDev Min Max Skew 

S1(Ind) 13 36849.0 39350 4648 129353 1.37 

S2(Ind) 156 6225.0 9258 120 60826 3.52 

S3(Ind) 45 20573.0 47327 570 224890 3.26 

S4(Edu) 26 1689.2 496.6 850 2380 -0.24 

 

 

Figure 3.  Actual Versus Predicted Effort 



 

Figure 4.  Size versus Effort 

B. Model Evaluation 

The ANN model was evaluated using 72 data points that 

were not included in the training stage. The criteria used are 

MMER, PRED(0.25), PRED(0.50), PRED(0.75) and 

PRED(1). Table VI shows the values of the ANN, 

regression and UCP models. Figure 5 shows the interval 

plot at 95% confidence level of the MMER for the three 

models. 

TABLE VI.  MODEL EVALUATION 

Criteria ANN Regression  UCP 

MMER 0.49 0.57 0.99 

PRED(0.25) 29.16 26.38 33.33 

PRED(0.50) 54.16 55.55 48.61 

PRED(0.75) 86.11 77.77 51.38 

PRED(1) 90.27 86.11 61.11 

 

 

Figure 5.  Intervel Plot for MMER 

C. Discussion 

Table VI shows that the proposed ANN model outperforms 

the Regression and UCP models by 8% and 50% 

respectively based on the MMER criterion. The UCP model 

slightly surpasses the ANN model based on PRED(0.25). 

However, the ANN model gave better results in 

PRED(0.50), PRED(0.75) and PRED(1). Moreover, based 

on Figure 5, the width of the interval of the ANN model is 

the shortest based on MMER. This means there is no huge 

difference between the highest and lowest MMER values 

which is good as opposed to the interval plots of other 

models. 

To thoroughly evaluate the ANN model against the UCP 

model, a statistical test has been conducted. We applied 

Anderson-Darling normality test and we found that the 

MER of all models are not normally distributed. For this 

reason, we used the non-parametric Mann-Whitney test to 

compare the ANN with the UCP model. We found that the 

p-value is 0.0246. This indicates that the results are 

statistically significant at 95% confidence level. 

VII. THREATS TO VALIDITY 

Threats to validity can be summarized as: 

 We have encountered difficulties in collecting data 

especially industrial projects because companies do not 

reveal the UML models of their projects. For this 

reason, questionnaires were filled by people who work 

in the companies where data were collected. So we had 

to trust the information given to us about the datasets. 

For instance, an error in counting the number of the use 

cases or transactions will lead to an imperfection in the 

model’s design and validation. 

 It was difficult to elicit all the environmental factors 

(Table IV) from the project team. For instance, 

employees might incorrectly answer questions that are 

related to their motivation of experience. 

 Because of the lack of industrial projects, some 

educational projects (projects developed by students) 

were used. Students usually focus on the programming 

part when developing projects and ignore other stages in 

the software development life cycle, and this will 

underestimate the actual effort.  

VIII. CONCLUSIONS 

This paper proposed a new feed-forward Artificial Neural 

Network (ANN) model to predict software effort based on 

the use case points model. The inputs of the proposed 

model are software size, productivity and project 

complexity. To evaluate the ANN model, a multiple linear 

regression model was developed that has the same inputs as 

the ANN model. The regression and the ANN models were 

trained using 168 projects and evaluated using 72 projects. 

The ANN model was then evaluated against the regression 

model as well as the Use Case Point model. Results show 

that the proposed ANN model outperforms the regression 

and UCP models based on the MMER and PRED criteria 

and can be used an as alternative method to predict 

software effort from use case diagrams. 

Future work will focus on trying other models such as 

Radial Basis Function Neural Network and General 

Regression Neural Network. 



REFERENCES 

[1] D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J. Ugljesa, 

"Parametric estimating handbook," The International Society of 

Parametric Analysis (ISPA), Fourth Edition. 2009.  

[2] J. Lynch. Chaos manifesto. The Standish Group. Boston. 

2009[Online]. Available: 

http://www.standishgroup.com/newsroom/chaos_2009.php.  

[3] B. W. Boehm, Software Engineering Economics. Prentice-Hall, 

1981.  

[4] L. H. Putnam, "A General Empirical Solution to the Macro 

Software Sizing and Estimating Problem," IEEE Transactions on 

Software Engineering, vol. 4, pp. 345-361, 1978.  

[5] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and 

Risk Management. Boston, MA, USA: Auerbach Publications, 2006.  

[6] M. Jørgensen, "Forecasting of software development work effort: 

Evidence on expert judgement and formal models," International 

Journal of Forecasting, vol. 23, pp. 449-462, 2007.  

[7] M. Shepperd and C. Schofield, "Estimating software project effort 

using analogies," Software Engineering, IEEE Transactions on, vol. 

23, pp. 736-743, 1997.  

[8] R. Ferguson, D. Goldenson, J. McCurley, R. Stoddard, D. Zubrow 

and D. Anderson, "Quantifying uncertainty in early lifecycle cost 

estimation (QUELCE)," Software Engineering Institute, Carnegie 

Mellon University, Pittsburgh, Pennsylvania, Tech. Rep. CMU/SEI-

2011-TR-026, 2011.  

[9] G. Karner, "Resource Estimation for Objectory Projects," 

Objective Systems, 1993.  

[10] R. P. Lippman, "An Introduction to Computing with Neural 

Nets," IEEE ASSP Magazine, vol. 3, no.2, pp. 4-22, 1987.  

[11] S. Diev, "Use cases modeling and software estimation: applying 

use case points," SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1-4, 2006.  

[12] B. Anda, H. Dreiem, D. I. K. Sjoberg and M. Jorgensen, 

"Estimating software development effort based on use cases-

experiences from industry," in Proceedings of the 4th International 

Conference on the Unified Modeling Language, Modeling Languages, 

Concepts, and Tools, 2001, pp. 487-502.  

[13] M. Arnold and P. Pedross, "Software size measurement and 

productivity rating in a large-scale software development 

department," in Proceedings of the 20th International Conference on 

Software Engineering, 1998, pp. 490-493.  

[14] G. Robiolo and R. Orosco, "Employing use cases to early 

estimate effort with simpler metrics," Innovations in Systems and 

Software Engineering, vol. 4, pp. 31-43, 2008.  

[15] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths: 

Two use case based metrics which improve the early effort 

estimation," in International Symposium on Empirical Software 

Engineering and Measurement, 2009, pp. 422-425.  

[16] M. Ochodek and J. Nawrocki, "Automatic transactions 

identification in use cases," in Balancing Agility and Formalism in 

Software Engineering, B. Meyer, J. R. Nawrocki and B. Walter, Eds. 

Berlin, Heidelberg: Springer-Verlag, 2008, pp. 55-68.  

[17] K. Periyasamy and A. Ghode, "Cost estimation using extended 

use case point (e-UCP) model," in International Conference on 

Computational Intelligence and Software Engineering, 2009.  

[18] F. Wang, X. Yang, X. Zhu and L. Chen, "Extended use case 

points method for software cost estimation," in International 

Conference on Computational Intelligence and Software Engineering, 

2009.  

[19] G. Schneider and J. P. Winters, Applied use Cases, Second 

Edition, A Practical Guide. Addison-Wesley, 2001.  

[20] M. R. Braz and S. R. Vergilio, "Software effort estimation based 

on use cases," in COMPSAC '06, 2006, pp. 221-228.  

[21] A. B. Nassif, D. Ho and L. F. Capretz, "Regression model for 

software effort estimation based on the use case point method," in 

2011 International Conference on Computer and Software Modeling, 

Singapore, 2011, pp. 117-121.  

[22] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software 

effort based on use case point model using sugeno fuzzy inference 

system," in 23rd IEEE International Conference on Tools with 

Artificial Intelligence, Florida, USA, 2011, pp. 393-398.  

[23] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of 

use cases for incremental large-scale software development," in 

Proceedings of the 27th International Conference on Software 

Engineering, St. Louis, MO, USA, 2005, pp. 303-311.  

[24] S. Frohnhoff and G. Engels, "Revised use case point method - 

effort estimation in development projects for business applications," 

in 11th International Conference on Quality Engineering in Software 

Technology (CONQUEST 2008), 2008, pp. 15-32.  

[25] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort 

estimation based on Use Case Points," Information and Software 

Technology, vol. 53, pp. 200-213, 2011.  

[26] P. C. Pendharkar, G. H. Subramanian and J. A. Rodger, "A 

probabilistic model for predicting software development effort," 

Software Engineering, IEEE Transactions on, vol. 31, pp. 615-624, 

2005.  

[27] A. Idri, A. Zakrani and A. Zahi, "Design of Radial Basis 

Function Neural Networks for Software Effort Estimation," 

International Journal of Computer Science Issues, vol. 7, pp. 11-17, 

2010.  

[28] C. S. Reddy, P. S. Rao, K. Raju and V. V. Kumari, "A New 

Approach For Estimating Software Effort Using RBFN Network," 

International Journal of Computer Science and Network Security, vol. 

8, pp. 237-241, 2008.  

[29] A. Heiat, "Comparison of artificial neural network and regression 

models for estimating software development effort," Information and 

Software Technology, vol. 44, pp. 911-922, 2002.  

[30] Y. Kultur, B. Turhan and A. Bener, "Ensemble of neural 

networks with associative memory (ENNA) for estimating software 

development costs," Knowledge-Based Systems, vol. 22, pp. 395-402, 

8, 2009.  

[31] C. Lopez-Martin, C. Isaza and A. Chavoya, "Software 

development effort prediction of industrial projects applying a general 

regression neural network," Empirical Software Engineering, vol. 17, 

pp. 1-19, 2011.  

[32] M. Azzeh, D. Neagu and P. I. Cowling, "Analogy-based software 

effort estimation using Fuzzy numbers," Journal of Systems and 

Software, vol. 84, pp. 270-284, 2011.  

[33] E. Kocaguneli, T. Menzies, A. B. Bener and J. W. Keung, 

"Exploiting the Essential Assumptions of Analogy-Based Effort 

Estimation," IEEE Transactions on Software Engineering, vol. 38, pp. 

425-438, 2012.  

[34] A. Tosun, B. Turhan and A. B. Bener, "Feature weighting 

heuristics for analogy-based effort estimation models," Expert 

Systems with Applications, vol. 36, pp. 10325-10333, 2009.  

[35] D. Baccarini, "The concept of project complexity—a review," 

Int. J. Project Manage., vol. 14, pp. 201-204, 8, 1996.  

[36] L. Ireland, "Project complexity: A brief exposure to difficult 

situations," Asapm, Tech. Rep. PrezSez 10-2007, 2007.  

[37] M. F. Møller, "A scaled conjugate gradient algorithm for fast 

supervised learning," Neural Networks, vol. 6, pp. 525-533, 1993.  

 

http://www.standishgroup.com/newsroom/chaos_2009.php

	Western University
	Scholarship@Western
	12-2012

	Estimating Software Effort Using an ANN Model Based on Use Case Points
	Ali Bou Nassif
	Luiz Fernando Capretz
	Danny Ho
	Citation of this paper:


	-

