
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

12-2012

Estimating Software Effort Using an ANN Model
Based on Use Case Points
Ali Bou Nassif
University of Western Ontario, abounas@uwo.ca

Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Danny Ho
NFA-Estimation Inc, danny@nfa-estimation.com

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@inproceedings{DBLP:conf/icmla/NassifCH12, author = {Ali Bou Nassif and Luiz Fernando Capretz and Danny Ho}, title =
{Estimating Software Effort Using an ANN Model Based on Use Case Points}, booktitle = {ICMLA (2)}, year = {2012}, pages =
{42-47}, ee = {http://dx.doi.org/10.1109/ICMLA.2012.138}, crossref = {DBLP:conf/icmla/2012-2}, bibsource = {DBLP,
http://dblp.uni-trier.de} } @proceedings{DBLP:conf/icmla/2012-2, title = {11th International Conference on Machine Learning
and Applications, ICMLA, Boca Raton, FL, USA, December 12-15, 2012. Volume 2}, booktitle = {ICMLA (2)}, publisher = {IEEE},
year = {2012}, isbn = {978-1-4673-4651-1}, ee = {http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6403616},
bibsource = {DBLP, http://dblp.uni-trier.de} }

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages

Estimating Software Effort Using an ANN Model Based on Use Case Points

Ali Bou Nassif and Luiz Fernando Capretz

Department of ECE, Western University

London, Ontario, Canada

{abounas, lcapretz}@uwo.ca

Danny Ho

NFA Estimation Inc.

Richmond Hill, Ontario, Canada

danny@nfa-estimation.com

Abstract-- In this paper, we propose a novel Artificial Neural

Network (ANN) to predict software effort from use case

diagrams based on the Use Case Point (UCP) model. The inputs

of this model are software size, productivity and complexity,

while the output is the predicted software effort. A multiple

linear regression model with three independent variables (same

inputs of the ANN) and one dependent variable (effort) is also

introduced. Our data repository contains 240 data points in

which, 214 are industrial and 26 are educational projects. Both

the regression and ANN models were trained using 168 data

points and tested using 72 data points. The ANN model was

evaluated using the MMER and PRED criteria against the

regression model, as well as the UCP model that estimates effort

from use cases. Results show that the ANN model is a

competitive model with respect to other regression models and

can be used as an alternative to predict software effort based on

the UCP method.

Keywords-- Software Effort Estimation, Use Case Points,

Artificial Neural Network.

I. INTRODUCTION

Software estimation is a crucial element in software

engineering and project management. Incorrect software

estimation leads to late delivery, surpassing the budget and

project failures. According to the International Society of

Parametric Analysis (ISPA) [1] and the Standish Group

International [2], the main reasons behind project failures

include optimism in conducting software estimation as well

as misunderstanding and uncertainty in software

requirements. At the inception of each software project,

project managers use several techniques to predict software

size and effort that will help them learn the cost, required

time and the number of staff required to develop a project.

Examples of these techniques include Algorithmic Models

such as COCOMO [3], SLIM [4] and SEER-SEM [5]

where linear or non-linear regression models are used to

predict software effort from software size which is usually

expressed in Source Lines Of Code (SLOC), Expert

Judgment and Estimation by Analogy [6] [7] where project

managers use their expertise and historical projects to

conduct software estimation of new projects and Machine

Learning techniques such as neural networks, fuzzy logic

and genetic algorithm.

In this paper, we present a novel Artificial Neural Network

(ANN) model to estimate software effort from use case

diagrams based on the UCP method. The importance of our

model is that it can be used in the early stages of the

software life cycle (requirements stage) where software

estimation is required and difficult to conduct at this phase

[8]. The proposed ANN model takes three inputs which

include software size, productivity and project complexity.

Software size and productivity are estimated using the UCP

model [9]. A new approach to calculate the project

complexity of a project is also introduced. To better

evaluate the proposed ANN model, we introduce a multiple

linear regression model to predict software effort based on

three independent variables. We then tested the ANN

model against the regression model as well as the UCP

model based on the Mean of Magnitude of error Relative to

the Estimate (MMER) and prediction level PRED. Results

show that the ANN model outperforms the multiple linear

regression model and UCP models based on the MMER

criterion by 8% and 50% respectively, and thus, can be a

competitive model for software effort prediction.

The remainder of this paper is organized as follows:

Section II presents a background of terms used in this

paper. Section III introduces related work whereas Section

IV introduces the model’s inputs. Section V illustrates the

proposed ANN and multiple linear regression models. In

Section VI, the proposed ANN will be evaluated and in

Section VII, threats to validity are listed. Finally, Section

VIII concludes the paper and suggests future work.

II. BACKGROUND

This section defines the main terms used in this paper

which includes the UCP model, evaluation criteria,

regression analysis and neural network.

A. Use Case Point Model

The use case point (UCP) model was first described by

Gustav Karner in 1993 [9]. This model is used for software

cost estimation based on the use case diagrams. First, the

software size is calculated according to the number of

actors and use cases in a use case diagram multiplied by

their complexity weights. The complexity weights of use

cases and actors are presented in tables I and II,

respectively. The software size is calculated through two

stages. These include the Unadjusted Use Case Points

(UUCP) and the Adjusted Use Case Points (UCP). UUCP

is achieved through the summation of the Unadjusted Use

Case Weight (UUCW) and Unadjusted Actor Weight

(UAW). Table II presents the complexity weights of actors.

After calculating the UUCP, the Adjusted Use Case Points

(UCP) is calculated. UCP is achieved by multiplying

UUCP by the Technical Factors (TF) and the

Environmental Factors (EF). TF and EF factors are

depicted in tables III and IV, respectively.

TABLE I. COMPLEXITY WEIGHTS OF USE CASES [9]

Use Case

Complexity

Number of Transactions Weight

Simple Less than 4 (should be realized by less than 5

classes)

5

Average Between 4 and 7 should be realized between 5

and 10 classes)

10

Complex More than 7 (should be realized by more than

10 classes)

15

TABLE II. COMPLEXITY WEIGHTS OF ACTORS [9]

Actor

Complexity

Description Weight

Simple Through an API 1

Average Through a text-based user interface 2

Complex Through a Graphical User Interface 3

TABLE III. TECHNICAL FACTORS [9]

Ti Complexity Factors Wi

T1 Easy installation 0.5

T2 Portability 2

T3 End user efficiency 1

T4 Reusability 1

T5 Complex internal processing 1

T6 Special security features 1

T7 Usability 0.5

T8 Application performance objectives 1

T9 Special user training facilities 1

T10 Concurrency 1

T11 Distributed systems 2

T12 Provide direct access for third parties 1

T13 Changeability 1

TABLE IV. ENVIRONMENTAL FACTORS [9]

Ei Efficiency and Productivity Factors Wi

E1 Familiar with Objectory 1.5

E2 Object oriented experience 1

E3 Analyst capability 0.5

E4 Stable requirements 2

E5 Application experience 0.5

E6 Motivation 1

E7 Part-time workers -1

E8 Difficult programming language -1

For effort estimation, Karner proposed 20 person-hours to

develop each UCP.

B. Evaluation Criteria

In our work, two different evaluation methods have been

used which are the Mean of Magnitude of Error Relative to

the Estimate (MMER) and the Prediction Level (PRED).

MER: The Magnitude of Error Relative to the estimate for

each observation i can be obtained as:

| |
 .

i i
i

i

Actual Effort Predicted Effort
MER

Predicted Effort

 (1)

MMER can be achieved through the summation of MER

over N observations:

1

1
 .

N

iMMER MER
N

 (2)

PRED (x) can be described as:

 .
k

PRED x
n

 (3)

where k is the number of projects in which MER ≤ x and n

is the total number of projects. The estimation accuracy is

directly proportional to PRED (x) and inversely

proportional to MMER.

C. Neural Network

Artificial Neural Network (ANN) is a network composed of

artificial neurons or nodes which emulate the biological

neurons [10]. ANN can be trained to be used to

approximate a non-linear function, to map an input to an

output or to classify outputs. The most prominent topology

of ANN is the feed-forward networks. Feed-forward ANN

layers are usually represented as input, hidden and output

layers. If the hidden layer does not exist, then this type of

the ANN is called perceptron. The perceptron is a linear

classifier that maps an input to an output provided that the

output falls under two categories. The perceptron can map

an input to an output if the relationship between the input

and output is linear. If the relationship between the input

and output is not linear, one or more hidden layers will

exist between the input and output layers to accommodate

the non-linear properties. Several types of feed-forward

neural networks with hidden layers exist. These include

Multilayer Perceptron (MLP), Radial Basis Function

Neural Network (RBFNN) and General Regression Neural

Network (GRNN). A MLP contains at least one hidden

layer and each input vector is represented by a neuron. The

number of hidden neurons varies and can be determined by

trial and error so that the error is minimal. In this paper,

MLP type is used to predict software effort based on

software size calculated based on the UCP method, team

productivity and project complexity. Figure 1 shows the

ANN architecture used in this paper with three inputs and

four hidden neurons. The selection process of the number

of the hidden neurons is illustrated in Section V, B.

Figure 1. Architecture of ANN

III. RELATED WORK

Some issues related to the UCP model have been addressed

in previous work. Authors in [11] and [12] worked on

adjustment factors, while others in [12] and [13]

highlighted the discrepancies in designing use case models.

Researchers in [14], [15] and [16] proposed different size

metrics such as Transactions, TTPoints and Paths, while

others [17], [18], [19], [20], [21], [22], [23], [24] and [25]

went further to extend the UCP model by providing new

complexity weights or by modifying the method used to

predict effort.

Neural network models such as [26], [27], [28], [29], [30]

and [31] were used to predict software effort.

Estimation using analogy such as [32], [7], [33], [32] and

[34] was also used for software effort prediction.

None of the above work deals with creating neural network

models to predict software effort based on the use case

points model. Moreover, our model was evaluated on

industrial projects that are considered large. Another

contribution of this work is to simplify the project

complexity factor proposed by the UCP model by

introducing five levels of complexity levels as shown in

Section IV.

IV. MODEL’S INPUTS

The inputs of the model are software size, productivity and

complexity. Software size was estimated based on the UCP

model as described in Section II, A.

The productivity factor was calculated based on Table IV

according to this equation:

8

1

.i i

i

Productivity E W

 (4)

Where Ei and Wi are the Environmental factors and their

corresponding weights as depicted in Table IV.

The complexity of the project is an important factor in

software effort prediction. Complexity can be interpreted as

an item having two or more elements [35] [36]. There are

two dimensions of complexity. These include business

scope such as schedule, cost, risk and technical aspect

which is the degree of difficulty in building the product

[36]. Technical complexity deals with the number of

components of the product, number of technologies

involved, number of interfaces and types of interfaces [36].

The project complexity can be classified as low complexity,

medium complexity or high complexity [36]. Project

complexity should be distinguished from other project

characteristics such as size and uncertainty [35]. Complex

projects require more effort to develop than simple projects

that have the same size. In our research, we identify the

project complexity based on five levels (from Level1 to

Level5). The reason behind defining five levels is to be

compatible with other cost estimation models such as

COCOMO where cost drivers are classified into five or six

levels (such as Very Low, Low, Nominal, High, Extra

High). Additionally, this classification is compatible to the

project complexity classification in [36]. Each level has its

corresponding weight. The five complexity levels are

defined as follows:

 Level1: The complexity of a project is classified as

Level1 if the project team is familiar with this type of

project and the team has developed similar projects in the

past. The number and type of interfaces are simple. The

project will be installed in normal conditions where high

security or safety factors are not required. Also, Level1

projects are those of which around 20% of their design or

implementation parts are reused (came from old similar

projects). The weight of the Level1 complexity is 1.

 Level2: This is similar to level1 category with a

difference that only about 10% of these projects are

reused. The weight of the Level2 complexity is 2.

 Level3: This is the normal complexity level where

projects are not said to be simple, nor complex. In this

level, the technology, interface, installation conditions are

normal. Furthermore, no parts of the projects had been

previously designed or implemented. The weight of the

Level3 complexity is 3.

 Level4: In this level, the project is required to be installed

on a complicated topology/architecture such as

distributed systems. Moreover, in this level, the number

of variables and interface is large. The weight of the

Level4 complexity is 4.

 Level5: This is similar to Level4 but with additional

constraints such as a special type of security or high

safety factors. The weight of the Level5 complexity is 5.

V. REGRESSION AND ANN MODELS

This section introduces the multiple regression and ANN

models. Our dataset contains 240 projects. Among these

projects, 70% (168 projects) were randomly chosen to train

the models and 30% (72 projects) were used to test the

model. Each of the proposed models takes 3 inputs which

include software size, productivity and project complexity.

A. Multiple Linear Regression Model

The main goal of creating a multiple linear regression

model from the training dataset is to compare the ANN

model with the regression model. The ANN model is

deemed to be valid if it outperforms the regression model.

The multiple linear regression model was constructed using

168 data points. The equation of the regression model is:

3661 (32.7) (183)

(1080).

Effort Size Productivity

Complexity

 (5)

Where Effort is measured in person-hours and Size in UCP.

Productivity is measured based on Equation (4) and

Complexity is measured as proposed in Section IV.

To measure the accuracy of the regression model, we

measured the value of the coefficient of determination R2

which is 0.882. This indicates that approximately 88 % of

the variation in Effort can be explained by the independent

variables Size, Complexity and Productivity. The “p” value

of the model as well as all independent variables is 0.000

which indicates that there is a significant relationship

among the variables at the 95% confidence level. We also

measured the Variance Inflation Factor (VIF) of each

independent variable to see if the multicollinearity issue

(when one independent variable has a relationship with

other independent variables) exists. We found that the

highest VIF factor is for the variable “Productivity” which

is 1.676. This indicates that the multicollinearity issue does

not exit (VIF is less than 4).

B. Artificial Neural Network

Figure 1 shows the architecture of the ANN used in this

paper. Like the regression model, the ANN model was

trained using 168 data points. One of the most important

parameters of a ANN model is to determine the number of

the hidden neurons. If the number is very small, the model

will not fit the data points properly. However, if the number

of the hidden neurons is too high, overfitting might occur.

Overfitting occurs when the training error is very small but

the validation/ testing error is large.

In our model, the conjugate gradient algorithm [37] is used

for training. The initial number of the hidden neurons is set

to one, and then it is incremented by one until optimal

results are achieved. The parameters of the model are:

Maximum Iterations = 10,000, Convergence Tolerance =

1.0e-5, Minimum Gradient = 1.0e-6 and Minimum

Improvement Delta = 1.0e-6. To avoid overfitting, 20% of

the training data will be held out and used for validation. If

the training error is decreasing and the validation error

starts to increase, the training should be stopped to avoid

overfitting. The 10-fold cross validation technique was

used. At each number of hidden neurons, the residual

variance is calculated. The residual variance determines

how well the model fits the dataset. The smaller the

variance, the more accurate the model is. Figure 2 shows

that the smallest residual variance (12.13%) is achieved

when the number of the hidden neurons is four.

Figure 2. Number of Hidden Neurons

The type of activation function used in the hidden layer is

the Sigmoid (Logistic); however, the linear function was

used in the output layer. Figure 3 shows the actual versus

the predicted effort values and Figure 4 shows the

relationship between the actual size and effort (dots) as well

as the predicted values (line).

VI. MODEL EVALUATION AND DISCUSSION

This section presents the evaluation of the proposed ANN

model against the regression as well as the UCP model.

A. Project Dataset

This research is based on software effort prediction from

use case diagrams. We have encountered many difficulties

in acquiring industrial projects because revealing UML

diagrams of projects is considered confidential to many

companies. For this reason, we have prepared a

questionnaire that could help us obtain industrial data

without actually having UML diagrams. In this

questionnaire, we asked for example, the quantity of use

cases in each project, the number of transactions of each

use case, actual software size and effort as well as the

project complexity, and factors contributing to productivity.

Two hundred and forty projects were collected from four

main sources such that 214 are industrial projects and 26

are educational ones. The statistical profile of the project

effort of the four datasets is depicted in Table V. S1, S2, S3

and S4 correspond to Source1, Source2, Source3 and

Source4, respectively, whereas Ind and Edu correspond to

Industrial and Educational, respectively.

TABLE V. STATISTICAL PROFILE OF DATASETS

Source #prj Mean StDev Min Max Skew

S1(Ind) 13 36849.0 39350 4648 129353 1.37

S2(Ind) 156 6225.0 9258 120 60826 3.52

S3(Ind) 45 20573.0 47327 570 224890 3.26

S4(Edu) 26 1689.2 496.6 850 2380 -0.24

Figure 3. Actual Versus Predicted Effort

Figure 4. Size versus Effort

B. Model Evaluation

The ANN model was evaluated using 72 data points that

were not included in the training stage. The criteria used are

MMER, PRED(0.25), PRED(0.50), PRED(0.75) and

PRED(1). Table VI shows the values of the ANN,

regression and UCP models. Figure 5 shows the interval

plot at 95% confidence level of the MMER for the three

models.

TABLE VI. MODEL EVALUATION

Criteria ANN Regression UCP

MMER 0.49 0.57 0.99

PRED(0.25) 29.16 26.38 33.33

PRED(0.50) 54.16 55.55 48.61

PRED(0.75) 86.11 77.77 51.38

PRED(1) 90.27 86.11 61.11

Figure 5. Intervel Plot for MMER

C. Discussion

Table VI shows that the proposed ANN model outperforms

the Regression and UCP models by 8% and 50%

respectively based on the MMER criterion. The UCP model

slightly surpasses the ANN model based on PRED(0.25).

However, the ANN model gave better results in

PRED(0.50), PRED(0.75) and PRED(1). Moreover, based

on Figure 5, the width of the interval of the ANN model is

the shortest based on MMER. This means there is no huge

difference between the highest and lowest MMER values

which is good as opposed to the interval plots of other

models.

To thoroughly evaluate the ANN model against the UCP

model, a statistical test has been conducted. We applied

Anderson-Darling normality test and we found that the

MER of all models are not normally distributed. For this

reason, we used the non-parametric Mann-Whitney test to

compare the ANN with the UCP model. We found that the

p-value is 0.0246. This indicates that the results are

statistically significant at 95% confidence level.

VII. THREATS TO VALIDITY

Threats to validity can be summarized as:

 We have encountered difficulties in collecting data

especially industrial projects because companies do not

reveal the UML models of their projects. For this

reason, questionnaires were filled by people who work

in the companies where data were collected. So we had

to trust the information given to us about the datasets.

For instance, an error in counting the number of the use

cases or transactions will lead to an imperfection in the

model’s design and validation.

 It was difficult to elicit all the environmental factors

(Table IV) from the project team. For instance,

employees might incorrectly answer questions that are

related to their motivation of experience.

 Because of the lack of industrial projects, some

educational projects (projects developed by students)

were used. Students usually focus on the programming

part when developing projects and ignore other stages in

the software development life cycle, and this will

underestimate the actual effort.

VIII. CONCLUSIONS

This paper proposed a new feed-forward Artificial Neural

Network (ANN) model to predict software effort based on

the use case points model. The inputs of the proposed

model are software size, productivity and project

complexity. To evaluate the ANN model, a multiple linear

regression model was developed that has the same inputs as

the ANN model. The regression and the ANN models were

trained using 168 projects and evaluated using 72 projects.

The ANN model was then evaluated against the regression

model as well as the Use Case Point model. Results show

that the proposed ANN model outperforms the regression

and UCP models based on the MMER and PRED criteria

and can be used an as alternative method to predict

software effort from use case diagrams.

Future work will focus on trying other models such as

Radial Basis Function Neural Network and General

Regression Neural Network.

REFERENCES

[1] D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J. Ugljesa,

"Parametric estimating handbook," The International Society of

Parametric Analysis (ISPA), Fourth Edition. 2009.

[2] J. Lynch. Chaos manifesto. The Standish Group. Boston.

2009[Online]. Available:

http://www.standishgroup.com/newsroom/chaos_2009.php.

[3] B. W. Boehm, Software Engineering Economics. Prentice-Hall,

1981.

[4] L. H. Putnam, "A General Empirical Solution to the Macro

Software Sizing and Estimating Problem," IEEE Transactions on

Software Engineering, vol. 4, pp. 345-361, 1978.

[5] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and

Risk Management. Boston, MA, USA: Auerbach Publications, 2006.

[6] M. Jørgensen, "Forecasting of software development work effort:

Evidence on expert judgement and formal models," International

Journal of Forecasting, vol. 23, pp. 449-462, 2007.

[7] M. Shepperd and C. Schofield, "Estimating software project effort

using analogies," Software Engineering, IEEE Transactions on, vol.

23, pp. 736-743, 1997.

[8] R. Ferguson, D. Goldenson, J. McCurley, R. Stoddard, D. Zubrow

and D. Anderson, "Quantifying uncertainty in early lifecycle cost

estimation (QUELCE)," Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania, Tech. Rep. CMU/SEI-

2011-TR-026, 2011.

[9] G. Karner, "Resource Estimation for Objectory Projects,"

Objective Systems, 1993.

[10] R. P. Lippman, "An Introduction to Computing with Neural

Nets," IEEE ASSP Magazine, vol. 3, no.2, pp. 4-22, 1987.

[11] S. Diev, "Use cases modeling and software estimation: applying

use case points," SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1-4, 2006.

[12] B. Anda, H. Dreiem, D. I. K. Sjoberg and M. Jorgensen,

"Estimating software development effort based on use cases-

experiences from industry," in Proceedings of the 4th International

Conference on the Unified Modeling Language, Modeling Languages,

Concepts, and Tools, 2001, pp. 487-502.

[13] M. Arnold and P. Pedross, "Software size measurement and

productivity rating in a large-scale software development

department," in Proceedings of the 20th International Conference on

Software Engineering, 1998, pp. 490-493.

[14] G. Robiolo and R. Orosco, "Employing use cases to early

estimate effort with simpler metrics," Innovations in Systems and

Software Engineering, vol. 4, pp. 31-43, 2008.

[15] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths:

Two use case based metrics which improve the early effort

estimation," in International Symposium on Empirical Software

Engineering and Measurement, 2009, pp. 422-425.

[16] M. Ochodek and J. Nawrocki, "Automatic transactions

identification in use cases," in Balancing Agility and Formalism in

Software Engineering, B. Meyer, J. R. Nawrocki and B. Walter, Eds.

Berlin, Heidelberg: Springer-Verlag, 2008, pp. 55-68.

[17] K. Periyasamy and A. Ghode, "Cost estimation using extended

use case point (e-UCP) model," in International Conference on

Computational Intelligence and Software Engineering, 2009.

[18] F. Wang, X. Yang, X. Zhu and L. Chen, "Extended use case

points method for software cost estimation," in International

Conference on Computational Intelligence and Software Engineering,

2009.

[19] G. Schneider and J. P. Winters, Applied use Cases, Second

Edition, A Practical Guide. Addison-Wesley, 2001.

[20] M. R. Braz and S. R. Vergilio, "Software effort estimation based

on use cases," in COMPSAC '06, 2006, pp. 221-228.

[21] A. B. Nassif, D. Ho and L. F. Capretz, "Regression model for

software effort estimation based on the use case point method," in

2011 International Conference on Computer and Software Modeling,

Singapore, 2011, pp. 117-121.

[22] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software

effort based on use case point model using sugeno fuzzy inference

system," in 23rd IEEE International Conference on Tools with

Artificial Intelligence, Florida, USA, 2011, pp. 393-398.

[23] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of

use cases for incremental large-scale software development," in

Proceedings of the 27th International Conference on Software

Engineering, St. Louis, MO, USA, 2005, pp. 303-311.

[24] S. Frohnhoff and G. Engels, "Revised use case point method -

effort estimation in development projects for business applications,"

in 11th International Conference on Quality Engineering in Software

Technology (CONQUEST 2008), 2008, pp. 15-32.

[25] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort

estimation based on Use Case Points," Information and Software

Technology, vol. 53, pp. 200-213, 2011.

[26] P. C. Pendharkar, G. H. Subramanian and J. A. Rodger, "A

probabilistic model for predicting software development effort,"

Software Engineering, IEEE Transactions on, vol. 31, pp. 615-624,

2005.

[27] A. Idri, A. Zakrani and A. Zahi, "Design of Radial Basis

Function Neural Networks for Software Effort Estimation,"

International Journal of Computer Science Issues, vol. 7, pp. 11-17,

2010.

[28] C. S. Reddy, P. S. Rao, K. Raju and V. V. Kumari, "A New

Approach For Estimating Software Effort Using RBFN Network,"

International Journal of Computer Science and Network Security, vol.

8, pp. 237-241, 2008.

[29] A. Heiat, "Comparison of artificial neural network and regression

models for estimating software development effort," Information and

Software Technology, vol. 44, pp. 911-922, 2002.

[30] Y. Kultur, B. Turhan and A. Bener, "Ensemble of neural

networks with associative memory (ENNA) for estimating software

development costs," Knowledge-Based Systems, vol. 22, pp. 395-402,

8, 2009.

[31] C. Lopez-Martin, C. Isaza and A. Chavoya, "Software

development effort prediction of industrial projects applying a general

regression neural network," Empirical Software Engineering, vol. 17,

pp. 1-19, 2011.

[32] M. Azzeh, D. Neagu and P. I. Cowling, "Analogy-based software

effort estimation using Fuzzy numbers," Journal of Systems and

Software, vol. 84, pp. 270-284, 2011.

[33] E. Kocaguneli, T. Menzies, A. B. Bener and J. W. Keung,

"Exploiting the Essential Assumptions of Analogy-Based Effort

Estimation," IEEE Transactions on Software Engineering, vol. 38, pp.

425-438, 2012.

[34] A. Tosun, B. Turhan and A. B. Bener, "Feature weighting

heuristics for analogy-based effort estimation models," Expert

Systems with Applications, vol. 36, pp. 10325-10333, 2009.

[35] D. Baccarini, "The concept of project complexity—a review,"

Int. J. Project Manage., vol. 14, pp. 201-204, 8, 1996.

[36] L. Ireland, "Project complexity: A brief exposure to difficult

situations," Asapm, Tech. Rep. PrezSez 10-2007, 2007.

[37] M. F. Møller, "A scaled conjugate gradient algorithm for fast

supervised learning," Neural Networks, vol. 6, pp. 525-533, 1993.

http://www.standishgroup.com/newsroom/chaos_2009.php

	Western University
	Scholarship@Western
	12-2012

	Estimating Software Effort Using an ANN Model Based on Use Case Points
	Ali Bou Nassif
	Luiz Fernando Capretz
	Danny Ho
	Citation of this paper:

	-

