
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-20-2010 12:00 AM

Ontological View-driven Semantic Integration in Open Ontological View-driven Semantic Integration in Open

Environments Environments

Yunjiao Xue, The University of Western Ontario

Supervisor: Hamada H. Ghenniwa, The University of Western Ontario

Joint Supervisor: Weiming Shen, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Yunjiao Xue 2010

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Xue, Yunjiao, "Ontological View-driven Semantic Integration in Open Environments" (2010). Electronic
Thesis and Dissertation Repository. 16.
https://ir.lib.uwo.ca/etd/16

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Fetd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/16?utm_source=ir.lib.uwo.ca%2Fetd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Ontological View-driven Semantic Integration

in Open Environments

(Spine title: Ontological View-driven Semantic Integration in Open Environments)

(Thesis format: Monograph)

by

Yunjiao Xue

Graduate Program in Engineering Science

Department of Electrical and Computer Engineering

A thesis submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Yunjiao Xue 2010

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

 Supervisor

 Dr. Hamada H. Ghenniwa

 Co-Supervisor

 Dr. Weiming Shen

 Supervisory Committee

 Examiners

 Dr. Yong Zeng

 Dr. Robert E. Mercer

 Dr. Miriam A. M. Capretz

 Dr. Quazi M. Rahman

The thesis by

Yunjiao Xue

entitled:

Ontological View-driven Semantic Integration in Open Environments

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date__September_20, 1010_________ _______________________________
 Chair of the Thesis Examination Board

ii

Abstract

In an open computing environment, such as the World Wide Web or an enterprise Intranet,

various information systems are expected to work together to support information

exchange, processing, and integration. However, information systems are usually built by

different people, at different times, to fulfil different requirements and goals.

Consequently, in the absence of an architectural framework for information integration

geared toward semantic integration, there are widely varying viewpoints and assumptions

regarding what is essentially the same subject. Therefore, communication among the

components supporting various applications is not possible without at least some

translation. This problem, however, is much more than a simple agreement on tags or

mappings between roughly equivalent sets of tags in related standards. Industry-wide

initiatives and academic studies have shown that complex representation issues can arise.

To deal with these issues, a deep understanding and appropriate treatment of semantic

integration is needed. Ontology is an important and widely accepted approach for

semantic integration. However, usually there are no explicit ontologies with information

systems. Rather, the associated semantics are implied within the supporting information

model. It reflects a specific view of the conceptualization that is implicitly defining an

ontological view.

This research proposes to adopt ontological views to facilitate semantic integration for

information systems in open environments. It proposes a theoretical foundation of

ontological views, practical assumptions, and related solutions for research issues. The

proposed solutions mainly focus on three aspects: the architecture of a semantic

integration enabled environment, ontological view modeling and representation, and

semantic equivalence relationship discovery.

iii

The solutions are applied to the collaborative intelligence project for the collaborative

promotion / advertisement domain. Various quality aspects of the solutions are evaluated

and future directions of the research are discussed.

Keywords

Semantic integration, ontology, ontological view, open environment, frame, modeling,

representation, semantic relationship discovery, tree similarity-based, instance-based

iv

Acknowledgements
First of all, I would like to express my gratitude to my supervisor, Dr. Hamada H.

Ghenniwa for guiding my PhD study at The University of Western Ontario (UWO). In

the past four years I have had an amazing experience working with you. Your deep

insight into the research problems that we are interested in and unique view on the

problems always inspire me and drive me into deeper thinking and analysis. Completely

understanding the problem and finding solutions to solve it. This is the most important

methodology I have learned from you. Also, thank you for providing me so many

opportunities and suggestions in terms of my career after graduation.

Second, I want to thank my co-supervisor, Dr. Weiming Shen, for everything you offered

to help me grow. My life was totally changed when you and Dr. Ghenniwa decided to

accept me as a student in your research group four years ago. That decision created a

bridge for me to come to Canada and start my new research at the UWO. In the following

years, you helped me build my research, gain experience from the projects conducted at

the National Research Council Canada (NRC), and design my career life as a researcher. I will

never forget all the valuable suggestions you gave me. What you and Dr. Ghenniwa have

done for me shows me what the best supervisor would be.

Third, I must thank NRC and EK3 for providing me many working opportunities, and

thank the UWO and Natural Sciences and Engineering Research Council of Canada

(NSERC) for providing financial support for my research. I need to thank all the

colleagues in the Cooperative Distributed Systems Engineering (CDS-EnG) group, NRC,

and EK3 Technologies Inc. (EK3). I had the pleasure of working with these wise people

who inspired my thinking through many discussions and collaborative projects. Here is a

list of names that I would like to mention: Chun, Daisy, Abdul, Raafat, Wafa, Mohamed,

Sherif, Fujun, Adrian, Mohammad, Abdou and Hamil from CDS-EnG; Qi, Shuying,

Brian, Henry, Xiaoping, Jie and Mert from NRC; David, Joe, Kevin, Lingling, Ziyard,

v

Weiping, Shawn, Lihua, Adam, Justin, Steven, Zhan, Joseph, Wajid, Ed, Ken and Nick

from EK3.

Last but not least, I thank my parents, Mr. Huimin Xue and Mrs. Jie Zhong. You gave me

life at the beginning and support in every moment. Without these there would be nothing

that I could achieve. I also want to thank a special girl in my life, Jessie Wang. You

cheered me up when I was fighting to complete the thesis. It is so wonderful to have your

support in this and all the later stages.

vi

Table of Contents

CERTIFICATE OF EXAMINATION .. i
Abstract .. ii
Acknowledgements ... iv
Table of Contents .. vi
List of Tables .. ix
List of Figures .. x
Chapter 1 Introduction .. 1
Chapter 2 Literature Review .. 6

2.1 Semantic Integration from A Cognitive Science Perspective .. 6
2.1.1 Cognitive Science .. 6
2.1.2 Architecture of Cognition .. 7
2.1.3 From Cognitive Science to Semantic Integration .. 9
2.1.4 Process Model of Semantic Integration ... 10

2.2 A General Architecture for Semantic Integration .. 14
2.3 Schema-based Structural Approaches ... 15

2.3.1 Schema Integration Fundamentals ... 16
2.3.2 Schema Matching Fundamentals ... 17
2.3.3 Automatic Schema Matching ... 18

2.4 Ontology-driven Semantic Approaches ... 22
2.4.1 Concept of Ontology: An Informal View ... 24
2.4.2 Ontology-driven Semantic Integration ... 30
2.4.3 Ontology Integration .. 36

2.4.3.1 Basic Concept ... 36
2.4.3.2 Tasks for Ontology Integration ... 41
2.4.3.3 Ontology Integration Process and Methodology ... 43
2.4.3.4 Ontology Integration Systems and Tools .. 46

2.5 Introduction to Several Integration Systems ... 51
Chapter 3 Problem Analysis .. 55

3.1 A Thorough Discussion on Fundamental Terms ... 55
3.1.1 Information-related Terms ... 55
3.1.2 Information Semantics ... 67

3.1.2.1 Semantics Fundamentals ... 67
3.1.2.2 Structural Semantics and Intensional Semantics ... 72
3.1.2.3 Source of Semantics .. 75
3.1.2.4 Semantics Discovery ... 77

3.1.3 Semantic Heterogeneity ... 80
3.1.4 Semantic Integration .. 86

3.1.4.1 Semantic Integration Fundamentals .. 86

vii

3.1.4.2 Different Views on Semantic Integration .. 87
3.1.4.3 Conceptual Difference of Several Terms .. 92
3.1.4.4 Semantic Integration at the Application Level .. 94
3.1.4.5 Information Context and Semantic Integration ... 98
3.1.4.6 Ontology-driven Semantic Integration .. 100

3.2 A Framework for Semantic Relationships ... 102
3.3 Ontology and Ontological View .. 105
3.4 Research Problem, Assumptions, and Hypothesis... 117

3.4.1 A Case Study .. 117
3.4.2 Problem Specification .. 120
3.4.3 Short Summary on Conventional Solutions ... 121
3.4.4 Assumptions .. 123
3.4.5 Ontological Equivalence Mapping .. 124
3.4.6 Hypothesis ... 125
3.4.7 Formulating the Problem ... 127

Chapter 4 Research Issues and Proposed Solutions .. 129
4.1 Architecture of Semantic Integration Enabled Environment 129
4.2 Architecture of Semantic Integration Service ... 131
4.3 Ontological View Modeling and Representation ... 132

4.3.1 Requirements for Modeling ... 132
4.3.2 Frame Paradigm ... 133
4.3.3 Modeling Ontological Views with Frame .. 135
4.3.4 A Frame-based Ontological view Specification Language (FOSL) 138

4.3.4.1 Specification of Ontological Views ... 138
4.3.4.2 Definition of FOSL ... 140
4.3.4.3 Inference Rules ... 142
4.3.4.4 XML-based Encoding ... 143

4.4 Semantic Equivalence Relationship Discovery ... 146
4.4.1 Short Summary on Matching Approaches ... 146
4.4.2 A Tree Similarity-based Approach ... 150

4.4.2.1 Introduction to Tree-based Similarity Discovery .. 150
4.4.2.2 Related Work ... 152
4.4.2.3 Definition for Concept Tree .. 153
4.4.2.4 Tree Transformation Operations and Transformation Cost 155
4.4.2.5 Computing of Transformation Cost .. 158
4.4.2.6 Cost Computing Algorithm ... 162

4.5 Instance-based Approach ... 165
4.5.1 Introduction to the Approach ... 165
4.5.2 Instance-based Semantic Equivalence Relationship Discovery 166

4.5.2.1 Estimation of Probability Density of Data Instances 167
4.5.2.2 Comparison of Probability Densities .. 168

viii

4.5.2.3 Clustering of Data ... 168
Chapter 5 Implementation and Result Validation ... 173

5.1 Implementation .. 173
5.1.1 Mapping of Proposed Solution to Technology ... 173

5.1.1.1 Mapping to Relational Model ... 174
5.1.1.2 Mapping to XML-based Models ... 176
5.1.1.3 Mapping to RDF Model .. 178

5.1.2 Prototype Environment .. 179
5.1.3 Implementation of Services ... 182

5.1.3.1 Registration Service .. 182
5.1.3.2 Semantic Integration Service .. 183

5.2 Validation .. 185
5.2.1 Analytical Validation ... 187

5.2.1.1 Completeness of the Frame-based Ontological View Specification Language
 187
5.2.1.2 Richness of the Frame-based Ontological View Specification Language ... 193

5.2.2 Empirical Validation .. 195
5.2.2.1 Completeness of Ontological View Creation .. 195
5.2.2.2 Completeness of Semantic Equivalence Relationship Discovery 199
5.2.2.3 Soundness of the Solution ... 205

Chapter 6 Conclusion and Future Work .. 208
References .. 212
Appendix A .. 223
Curriculum Vitae ... 236

ix

List of Tables

Table 1. Comparison of various modeling paradigms. .. 191
Table 2. Comparison of FOSL, SQL, and XML ... 192

x

List of Figures

Figure 2-1. Architecture of Act* [Anderson, 1983]. ... 8
Figure 2-2. Process model of semantic integration. .. 12
Figure 2-3. A general integration architecture [Theodoratos, 2002]. .. 15
Figure 2-4. Difference of two types of approaches in terms of semantics. 23
Figure 2-5. Conceptualization, ontology, model and representation of ontology, semantics, and

semantic integration based on Ontology. ... 29
Figure 2-6. Different architectures of employing ontologies [Wache, et al., 2001]. 33
Figure 2-7. Merging of ontologies. ... 39
Figure 2-8. Integration of ontologies. .. 40
Figure 2-9. A general framework for ontology alignment [Lambrix and Tan, 2006]. 47
Figure 3-1. From real world objects to representations. .. 65
Figure 3-2. From representation to real world objects. ... 66
Figure 3-3. A comprehensive fact. ... 68
Figure 3-4. A semantics interpretation chain. .. 71
Figure 3-5. A perspective on resolving heterogeneity to achieve interoperability [Hamill, et al.,

1997]. .. 85
Figure 3-6. Structural mapping between XML document and relational table. 89
Figure 3-7. Pre-designed interface and information flow. ... 95
Figure 3-8. Interact with standard interfaces. .. 96
Figure 3-9. Establish interaction between anonymous components. ... 97
Figure 3-10. Infrastructure for semantic integration. .. 98
Figure 3-11. Difference between I and ℑ. ... 109
Figure 3-12. Difference between interpretation functions from I and ℑ. 111
Figure 3-13. Language, conceptualization, ontological commitment, and ontology [Guarino,

1998]. .. 115
Figure 3-14. Different ontological views with different languages which sets of intended models

overlap. .. 117
Figure 3-15. An integration scenario. .. 118
Figure 3-16. Ontological equivalence mapping between different languages for the same

conceptualization. .. 125
Figure 3-17. Semantic integration based on ontological views. .. 128
Figure 4-1. Architecture of the semantic integration enabled environment. 130
Figure 4-2. Architecture of semantic integration service. ... 131
Figure 4-3. An example of multiple concept trees for the same domain. 151
Figure 4-4. Deleting a node. .. 156
Figure 4-5. Inserting a node. ... 156
Figure 4-6. Re-labelling a node. .. 157

xi

Figure 4-7. An example of a moving operation. .. 157
Figure 5-1. Architecture of a collaborative promotion environment. .. 181
Figure 5-2. Screenshot of the management console. ... 182
Figure 5-3. A segment of an ontological view. .. 198
Figure 5-4. The frame-based representation of a concept. .. 202
Figure 5-5. Architecture of a collaborative intelligence system. ... 206

1

Chapter 1 Introduction

An information system is the entire combination of infrastructures, organizations,

personnel, and software components within a specific boundary for collecting,

processing, persisting, transferring, presenting, delivering, and exchanging information.

In the past several decades, a great number of information systems have been developed

and deployed. More systems are under design or development.

The information systems are usually deployed in an open environment. An open

environment is a computing environment where various platforms, technologies,

protocols, and standards coexist, and decentralized applications collaborate through

interoperability.

Information systems need to connect to and interact with each other to perform advanced

tasks. With interactions and interoperations among them, the systems are able to achieve

common goals collaboratively, avoiding the necessity of building a super-large system

with all the required functions (which will be expensive and infeasible for any

organization), and serve humanity better. Therefore, people can view them as one whole

system (logically) instead of many separate ones, and can access the complete set of

services and multiple underlying information sources through a unified portal, with no

need to worry about the effort of finding various service entries and handling various

conflicts between them. Such a system is an integration of multiple ones, and such

integration requires the systems to understand, communicate, and cooperate with each

other. Among these three goals, the most fundamental one is to make the systems

understand each other and achieve common agreements on domain concepts and

relationships managed by different systems.

2

However, as many information systems are growing larger, more complex, and more

distributed, it becomes increasingly difficult for anyone to effectively organize and work

with the information and systems. As a case, semantics-based information integration in

various organizations has been hindered by differences in the software applications and

by the structural and semantic heterogeneity of the different information sources [De

Bruijn, et al., 2003]. In an open environment, the information systems, even within the

same domain, are often heterogeneous in terms of their (1) supporting infrastructures

(hardware platforms, operating systems, communication facilities, etc); (2) syntactic

representations of information; (3) schematic designs of information models, and (4)

semantics of information. This is a common problem in many areas such as enterprise

application integration where numerous ad-hoc programs have typically been created to

perform the integration process. These heterogeneities present major practical and

research challenges. This problem has made information retrieval and collaboration

among information systems extraordinarily difficult. For example, searching and finding

resources and information are becoming particularly challenging tasks. As such, there is

an emerging requirement to integrate these information sources and applications to

provide consistent services to global users.

There has already been a large body of solutions that address the first three challenges

[Sheth, 1998]. The fourth challenge, also known as the semantic integration problem

[Vetere and Lenzerini, 2005 and Noy, 2004], is an important topic of great interest to this

research and one that is increasingly attracting attention within research and industrial

communities.

Semantic integration intends to resolve semantic incompatibility / heterogeneity among

various information systems. The major reason for semantic incompatibility /

heterogeneity is the lack of specifications on the semantics of information. As a possible

scenario: if you want to find out how many types of the fruit apple there are in the world

3

from the Internet, using current search engines (with the search key word “apple”), you

may only be able to get a set of pages containing the word “apple” in their texts. You

must create a type list by yourself after reading the returned pages. Imagine that you get

millions of returned page links, and actually most of them have no relation to the fruit

“apple” but just contain that word. Whereas, the pages containing specific names of

apples like “spitzenburg” (it is also a kind of apple) will be omitted since there is no

semantic relationship between “spitzenburg” and “apple” specified in most of the web

pages. More seriously, pages written in another language like French and Chinese will be

ignored, which is not acceptable. However, things can become even worse. When we

conduct a real search case with Google 1, we cannot easily get those pages about fruit

“apple” — the most highly ranked pages (those we see in the first few screens) are about

the computer company “Apple Inc.”, not the fruit. As a matter of fact, the search engine

does not know what “apple” is. It just guesses that maybe the users are more interested in

these pages (about the company) based on the historical data it collected from previous

search cases.

Another example of the problem concerns the high number of online book-sellers today,

with each of them having their own database containing the information about the books

it sells. You can search through each seller’s website to find the information about the

books that you like. If you want to find the best price for one book from several sellers

you will need to search one by one and compare the results yourself. Currently, an

automatic cross-seller search is not feasible since each seller has a database that is

different from others in terms of both structure and content. For example, if the price in

seller A’s database is called “Price” but “Cost” in B’s database, a regular search engine

will never know that they are referring to the same thing without the support of a

1 http://www.google.com.

4

semantic relationship between the two items. Therefore, the search engine can neither get

results correctly from various databases nor combine them into a unified result set 2.

The two scenarios reveal the importance of information semantics and semantic

integration, which are very crucial issues for large-scale information sharing, information

retrieval, and information integration in the Internet era. In recent years more and more

researchers are focusing on this field. However, there is still a long way to go.

As a category of solutions for the semantic integration problem, schema matching [Rahm

and Bernstein, 2001 and Wick, et al., 2008] aims at finding correspondences between

schema elements such as database tables and columns. Schema matching can be viewed

as the pairing of attributes (or groups of attributes) from the source schema and attributes

of the target schema such that the pairs are likely to be semantically related. Schema

matches can be discovered by analyzing the similarity of schema information,

preservation of constraints, domain knowledge, and instance data. The limitation of this

solution is in the lack of a concept model.

Ontology-driven semantic integration is another category of solutions for the semantic

integration problem [Hakimpour and Timpf, 2001]. Traditionally, it is based on available

ontologies. The ontology integration can be applied by discovering semantic

correspondences among a set of formal ontologies and (sometimes) creating a more

complete ontology [Wache, et al., 2001], given that multiple source ontologies are

available. However, in many scenarios, this is not the case. Instead, the “ontologies” are

implied in a different format, such as the underlying information representations.

2 Currently some solutions on cross-seller search have been delivered. The premise is that they already knew the database schemas

of different sellers and have finished schema integration (based on semantics) to some extent.

5

The limitations of the two categories of solutions reveal a gap between the traditional

solutions and the actual open environments. New research is required to be conducted to

bridge such a gap.

This research is dedicated to understanding the nature of ontologies, semantics, and

semantic heterogeneities, to analyzing the research issues, and to building solid

theoretical foundations and engineering solutions to address the semantic integration

problem in open environments.

The rest of the thesis is organized as follows. Chapter 2 analyzes related work on

semantic integration, including some view points from cognitive science, schema-based

structural approaches, and ontology-based semantic approaches. Several integration

systems are introduced briefly in this chapter. Chapter 3 explores fundamental concepts

in terms of information semantics and semantic integration, where various views of

semantics and semantic integration are discussed. It also presents the research problems,

and practical assumptions as well as the fundamental hypothesis for this research.

Chapter 4 discusses the research issues and proposed solutions. Chapter 5 provides the

implementation and validation of the results. Chapter 6 concludes the work.

6

Chapter 2 Literature Review

2.1 Semantic Integration from A Cognitive Science

Perspective

2.1.1 Cognitive Science

As a kind of intelligent creature, humans are able to acquire knowledge, perceive and

memorize information, reason facts and rules based on obtained knowledge and

information, collaborate or compete with each other, analyze situations, make decisions

and create solutions for problems, and finally react to the world. Humans are said to be

behaving intelligently when they choose courses of action that are relevant to achieving

their goals, when they reply coherently and appropriately to questions that are put to

them, when they solve complex problems, or when they design or create something

useful and novel.

Cognitive science is the study of intelligence and intelligent systems, with particular

reference to intelligent behavior as computation [Posner, 1989]. Cognitive science is

dedicated to discovering how humans build mental models for the external world,

conduct intelligent thinking, and interact with the world. From cognitive science’s point

of view, the activities of the human mind are highly similar to computations used by

modern computers. Many similar mechanisms and patterns in terms of acquiring

information and processing information can be identified in both human thinking and the

workings of computers. Therefore, it can also provide some support in the research of

semantic integration.

7

One of cognitive science’s focuses is how the intelligent behavior of a human being,

thinking, is conducted. In cognitive science, two approaches, reasoning and searching,

are most often considered as the pattern of thinking.

On the one hand there is an approach that starts with language and logic and that views

thinking as a process of inference or reasoning, usually using a language-like

representation. On the other hand, another approach views thinking (especially problem

solving and concept attainment) as a process of a heuristic search for problem solutions,

generally using representations of the world model [Posner, 1989]. The research on

semantics and logic, language acquisition, parsing, reading, and discourse mainly use the

language-and-reasoning approach, whereas the research on categories, induction and

problem solving largely employ the heuristic-search approach.

2.1.2 Architecture of Cognition

In cognitive science the notion of architecture is derived from computer science, where

the term stands for the hardware structure that produces a system that can be

programmed. The concept of architecture for cognitive science is the appropriate

generalization and abstraction of the concept of computer architecture applied to human

cognition: the fixed system of mechanisms that underlies and produces cognitive

behaviour.

The classical view about cognition assumes that both computers and human minds have

at least the following three distinct levels of organization [Posner, 1989]:

(1) The semantic level (or knowledge level). This level explains why people, or

appropriately programmed computers, do certain things by saying that they know

and what their goals are, and by showing that these are connected in certain

8

meaningful or rational ways.

(2) The symbol level. The semantic content of knowledge and goals is assumed to be

encoded by symbolic expressions. Such structured expressions have parts, each

of which also encodes some semantic content. The codes and their structures, as

well as the regularities by which they are manipulated, are another level of

organization of the system.

(3) The physical (or biological) level. For the entire system to run, it has to be

realized in some physical form. The structure and the principles by which the

physical object functions correspond to the physical or the biological level.

The three-level organization defines the classical computational or cognitive architecture.

Act* [Anderson, 1983] is the first theory of cognitive architecture with sufficient detail

and completeness. The following Figure 2-1 gives the basic architecture of Act*.

Declarative
Memory

Production
Memory

Working
Memory

Storage

Retrieval

Match

Execution

Application

Encoding Performances

Figure 2-1. Architecture of Act* [Anderson, 1983].

9

In this architecture there is a long-term declarative memory in the form of a semantic net

and a long-term procedural memory in the form of productions. Each production has a set

of conditions that test elements of a working memory and a set of actions that create new

structures in the working memory. The working memory is activation-based; it contains

the activated portion of the declarative memory plus declarative structures generated by

production firings and perception. Activation spreads automatically through working

memory and from there to other connected nodes in the declarative memory. New

productions are created by compiling the effects of a sequence of production firings and

retrievals from declarative memory.

2.1.3 From Cognitive Science to Semantic Integration

Generally, semantic integration is intended to discover semantic relationships, such as

equivalent to, is-a, or part-of, between some subjects (mainly concepts) based on

obtained knowledge about the world. A semantic integration system must understand

integration requirements and be able to analyze the requirements, develop solutions, and

provide reasonable results to the requestor. This is a process very similar to human

thinking, which is a significant intelligent behaviour. The cognitive science perspective

provides some foundations and inspiration for analyzing, designing, and building a

semantic integration system.

According to the classical view of computing and cognition, certain kinds of systems,

including both minds and computers, operate on representations that take the form of

symbolic codes [Posner, 1989].

Similar to the three-level architecture of cognitive, in the semantic integration problem, a

three-tier hierarchy in terms of information and knowledge needs to be considered:

10

 Ontology level. For a domain of discourse, an ontology should be committed to by

all information systems to provide a conceptually consistent understanding for any

subject in the domain. It is conceptualization-dependent (i.e., different ontologies

for different domains’ conceptualizations) but technology-independent (not directly

manipulated by specific technical method).

 Meta-data level. Meta-data is an explicit specification for information in a specific

information system, following definitions about concepts and relationships

contained in an ontology to which the system is committed. The semantic

integration can be done at this level. That means that the duty of semantic

integration is to find semantic relationships between meta-data elements from

various information sources. This level is technology-dependent, i.e., specific

methods are required to handle different formalisms used to build the meta-data,

such as a database, data warehouse, structured documents, or arbitrary files.

 Instance-data level. In some cases specific instance data is required to be

compared and analyzed to discover semantic relationships. This level is

technology-dependent. For example, the instance data can be represented in a

literal, graphical, or analogical format. The semantic integration service must be

sensitive to any kind of these representations.

2.1.4 Process Model of Semantic Integration

When two intelligent entities (such as two persons) are having a conversation, semantic

integration takes place at every moment during the conversation. The conversation is a

process of exchanging conceptualizations of the two intelligent entities and achieving

11

common agreement on the intended meaning of the content exchanged in the

conversation.

The conversation must rely on some specific formalisms, such as speeches, written

documents, or graphs, which are in fact various representations of (the same)

conceptualizations and act as the medium of the conversation. On the other hand, during

a conversation, the same representation may be exchanged but the intelligent entities

need to identify that they are homonyms and are referring to different concepts.

An elaborated analysis on the process of semantic integration between two intelligent

entities E1 and E2 is as follows:

(1) Subject selection: E1 determines the subject to express, for example, a concept C
in the conceptualization as a part of E1’s mental model).

(2) Representation schema selection: E1 determines the schema of the representation
it prefers to use in this conversation, such as verbal speech.

(3) Representation instance generation: E1 generates a representation instance for the
subject that is being exchanged following the construction rules of the chosen
representation schema, such as a specific word to say.

(4) Representation instance delivering: E1 delivers the representation instance to E2,
e.g., by speaking that word.

(5) Representation instance perceiving: E2 perceives the representation instance
delivered by E1, e.g., by hearing a voice or reading a document, to create some
kind of mental reaction in its memory.

(6) Subject reconstruction: E2 converts the perceived representation instance into a
subject in its mental model. This is an initial understanding of the representation.
For example, if E2 sees “Car” (which is actually some line shapes) on a piece of
paper, first it needs to convert this vision into the word “Car” which then can be
identified to be denoting a concept.

(7) Subject matching: E2 tries to match its initial understanding to some existing
subject in its mental model to know the actual meaning of the representation
instance it perceives.

12

(8) Match verifying (optional): the process from (1) to (7) is repeated (this time E2 is
the initiator) to verify that E2’s subject is equivalent to the one that E1 wants to
deliver.

This process can be illustrated by the following Figure 2-2:

In this process, there is an important premise that the two intelligent entities share a

common concept in a specific domain that makes it possible for them to achieve a

successful semantic integration. Without the common concept, there is no possibility of

understanding each other unless they have another capability of learning (which will not

be touched on in this research), to create new concepts in their mental model.

Mental Model of E2

Domain Conceptualization

Concept C

Mental Model of E1
Subject

Selection Concept (C)

Representation Schema
Selection

Representation Schema

Representation Instance
Generation

Representation Instance

Representation Instance Delivering

Representation Instance
Perceiving

Mental Reaction

Subject
Reconstruction

Subject

Subject
Matching

Concept (C)

Figure 2-2. Process model of semantic integration.

13

In step (7), the mechanism that a semantic integration system adopts must combine two

ways in which human thinking is executed: searching and then inferring. As an example,

when a human perceives some representation, such as a picture, he may search in his

mental model to find something that can be exactly mapped to the content of the picture

(or highly similar to it). If the searching fails to find any candidate, he will start inferring

based on his knowledge. Say, since the content of the picture shows a mechanical object

with four wheels, it might be an automobile. The inference is guided by a series of IF …

THEN … rules that can lead to possible answers (usually reliable and reasonable,

depending on the richness of his knowledge). Neither searching nor inferring can do the

integration just by itself.

In step (8), if two sides of the conversation own similar knowledge backgrounds, the

semantic integration can be achieved very easily. If their backgrounds are not very

similar, or the representation generation and perceiving are not well done, e.g., not clearly

hearing the other one’s talk, then usually a process similar to the Three-Way Handshake

in TCP/IP protocol needs to be applied. For example, after one person finishes talking

(the first way), another one needs to make sure his understanding is correct by asking “do

you mean A?” (the second way), and finally the first one answers “Yes, I do mean A” to

confirm that they have a common understanding (the third way), given that both of them

correctly delivered and perceived the representation A in the three rounds. If this is not

the case, the first one may have to answer that “No, actually I mean B” and restart the

process of verification.

To support the verification, a set of communication primitives in which both sides have a

consistent understanding, e.g., some simple words with precise meanings and which

people can clearly say and hear, must be pre-defined. In a semantic integration service

that accepts integration requests and responds, even the verification might be missing

(since the semantic integration service is the only intelligent entity). As such, a set of

14

primitives that is used to describe the requests and organize responses is also necessary to

support establishing a consistent understanding of each other.

In the above process, if E2 cannot successfully finish the subject matching, e.g., E2

encounters a word that it never knows, E2 can interrupt the process. For example, E2 can

answer that “I don’t know what you are talking about”. Another alternative is a passive

learning process: if E2 does not understand the previous representation (r1), it can ask E1

to provide another representation, r2, and repeat the process. Assuming that E2 can

understand r2, it can create a semantic relationship in its mental model, e.g., “r1 equals to

r2” or “r1 is highly similar to r2”. The third alternative is positive learning: E2 tries to find

a conceptualization that it guesses can match r1, and starts from (8) to verify its

correctness, e.g., by asking E1 “do you mean r2?” where r2 is the representation of the

matching subject.

2.2 A General Architecture for Semantic Integration

A general integration architecture for dealing with the heterogeneity of different

information sources is described in [Theodoratos, 2002]. This architecture chooses one

model as a common data model [Sheth and Larson, 1990] which models global concepts,

and converts the modeling languages of the data sources into this model. Underlying

information sources are wrapped by software wrappers [Hammer, et al., 1997; Roth and

Schwartz, 1997] that translate between the source’s local language, model, concepts and

the global concepts. A mediator [Wiederhold, 1992] resolves the query over the global

concepts into sub-queries over information sources, sends the sub-queries to wrappers,

then integrates the query results returned from the wrappers by resolving conflicts,

redundancies, etc. according to application requirements. The architecture is shown in the

following Figure 2-3.

15

There are two basic approaches, one is the schema-based structural approach or mediated

schema approach, and the other one is the semantic approach or ontology-driven

approach. We will discuss them in the following two sections.

2.3 Schema-based Structural Approaches

In structural approaches, the integration is done by providing or generating a globally

unified schema that characterizes the underlying information sources. The global schema

can be a physically independent one, or a logically produced one (by establishing

matching correspondence among source schemas).

Wrapper

Mediator

Information
Source1

Wrapper

Information
Source2

Wrapper

Information
Sourcen …

Query Result

Figure 2-3. A general integration architecture [Theodoratos, 2002].

16

2.3.1 Schema Integration Fundamentals

Schema integration is one effective way to achieve data integration. Its target is to

develop a unified representation of information structured and stored differently in

separate databases. It mainly addresses the problem of syntactic and schematic

inconsistencies, e.g., differing structures.

As pointed out in [Mendling, et al., 2005], basically three approaches can be

distinguished in this context: manual, semi-automatic, and automatic schema integration.

A survey reported in [Batini, et al., 1986] uses the four steps of pre-integration,

comparison, conformation, and merging and restructuring to compare different

integration methodologies. Manual integration leverages the knowledge of a domain

expert. Semi-automatic schema integration relies on assertions to state semantic

relationships between the concepts of different schemas. These assertions represent

integration rules that are used by a so-called integrator to generate the global schema

[Spaccapietra, et al., 1992]. Although this approach is less time-consuming, it also

depends on a domain expert to state the assertions.

Automatic schema integration uses techniques from information retrieval and artificial

intelligence to detect semantic relationships. An overview available in [Rahm and

Bernstein, 2001] describes different research prototypes that mainly discover equivalence

relationships automatically. Recently, an approach has been presented to automatically

discover equivalence, subsumption, intersection, disjointedness, and incompatibility

[Rizopoulos, 2004]. In general, a certain trade-off between human effort and the quality

of the integrated schema can be expected. In practice, a so-called automated approach

still requires validation by the domain expert.

17

2.3.2 Schema Matching Fundamentals

Schema matching is a basic problem in traditional database-based application domains

such as data integration, E-business, data warehousing, and semantic query processing

[Rahm and Bernstein, 2001]. Match is a fundamental operation in the manipulation of

data schemas, which takes two schemas S1 and S2 as input and produces a mapping

between elements of the two schemas that correspond semantically to each other [Li and

Clifton, 1994; Doan, et al., 2000; Mitra, et al., 1999].

[Rahm and Bernstein, 2001] proposes a comprehensive analysis on schema matching. In

its analysis, a schema is defined as a set of elements connected by some structure.

Representations are required for the schemas. Available and widely accepted

representations include the entity-relationship (ER) model, object-oriented (OO) model,

XML, or directed graphs. A mapping contains a set of mapping elements, each of which

indicates that certain elements of schema S1 are mapped to certain elements in S2.

Furthermore, each mapping element can have a mapping expression which specifies how

the S1 and S2 elements are related. The mapping expression may be directional; for

example, a certain function from the S1 elements is referenced by the mapping element to

the S2 elements referenced by the mapping element, or it may be non-directional, that is, a

relation between a combination of elements of S1 and S2. It may use simple relations over

scalars (e.g., =, <), functions (e.g., addition or concatenation), ER-style relationships

(e.g., is-a, part-of), set-oriented relationships (e.g., overlaps, contains), or any other terms

that are defined in the expression language being used. The match operation is defined to

be a function that takes two schemas S1 and S2 as input and returns a mapping between

those two schemas as output, called match result. Each mapping element of the match

result specifies that certain elements of schema S1 logically correspond to certain

elements of S2, where the semantics of the correspondence is expressed by the mapping

element’s mapping expression.

18

2.3.3 Automatic Schema Matching

Schema matching can be performed manually. However, manually specifying schema

matches is tedious, time-consuming, error-prone, and therefore an expensive process

[Rahm and Bernstein, 2001], especially when the number of information sources is

growing rapidly and the systems are becoming larger and more complex. Therefore,

automated support for schema matching is required to provide faster and less

labor-intensive integration approaches.

There have been implementations of multiple match algorithms or matchers based on

different methods. The matchers may consider only schema information, instance data

(i.e., data contents), or use hybrid methods.

A. Schema-level approaches

Schema-level matchers only consider schema information, not instance data. The

available information includes the usual properties of schema elements [Giunchiglia and

Yatskvich, 2004], such as name, description, data type, relationship types (part-of, is-a,

etc), constraints, and schema structure (e.g., [Doan, et al., 2001 and Mitra, et al., 1999]).

A general implementation compares each S1 element with each S2 element and

determines a similarity metric in the range (0, 1) for each pair. Only the combinations

with a similarity value above a certain threshold are considered as match candidates. The

similarity metrics can be used to identify the best match candidates [Castano, et al., 2001

and Doan, et al., 2000]. On the other hand, structural-level matching can discover

matching combinations of elements that appear together in a structure.

Linguistic approaches are useful for schema-level matching. Two categories of important

approaches, name matching and description matching are discussed in [Rahm and

19

Bernstein, 2001]. Name matching takes schema elements with equal or similar names

into consideration. The similarity of names can be defined and measured in various ways,

including:

• Equality of names (the exact same names). An important sub-case is the

equality of names from the same XML namespace which ensures that the same

names indeed bear the same semantics.

• Equality of canonical name representations after stemming and other

preprocessing. This is useful to deal with special prefix/suffix symbols (e.g.,

CName customer name and EmpNO employee number).

• Equality of synonyms. For example, car can be matched to automobile. General

natural language dictionaries and domain-specific dictionaries are useful to deal

with synonyms.

• Equality of hypernyms (name of a class’s super-class). E.g., book is-a

publication and article is-a publication imply that book can be matched to

article.

• Similarity of names based on common substrings; edit distance, pronunciation,

soundex (an encoding of names based on how they sound rather than how they

are spelled), etc. [Bell and Sethi, 2001]. For example, representedBy can be

matched to representative, ShipTo can be matched to Ship2, and

Business-to-Business can be matched to B2B.

• User provided name matches, such as reportsTo = manager and issue = but.

An exception that is usually misleading is in the case of homonyms which are equal or

similar names referring to different concepts. For example, the term “class” can have

different interpretations in different situations, e.g. a group of students or a lesson of a

20

course. By providing context information such as the domain of discourse, the ambiguity

can be distinguished or reduced.

Description matching uses comments and description (usually written in natural language

to express the intended semantics of schema structures and elements) provided along with

the schemas that can also be evaluated linguistically to determine the similarity between

the schema elements. Simple approaches, such as extracting key words from the

description and sophisticated technologies, such as natural language understanding, can

be applied to look for semantically equivalent elements. For example, the iMAP system

pays attention to the description of elements, in addition to other schema information

[Dhamankar, et al., 2004].

Another category of the schema matching method adopts constraint information

contained in schemas to determine the similarity of schema elements [Larson, et al.,

1989]. The constraints include data types, value ranges, uniqueness, optionality,

relationship types, cardinalities, repeatability, reference, etc. For example, similarity can

be based on the equivalence of data types and domains, of key characteristics (e.g.,

unique, primary, foreign), or of relationship cardinality (e.g., 1:1 relationships), or of is-a

relationships.

Rule-based matching techniques constitute another collection of schema matching

solutions [Madhavan, et al., 2001 and Melni, et al., 2002]. Rule-based techniques

discover similar schema elements by exploiting schema-level information using

hand-crafted rules. For example, two elements match if they have the same name and the

same number of sub-elements. The rules can exploit all possible information, including

element name, data types, structures, number of sub-elements, and integrity constraints.

B. Instance-level approaches

21

Instance-level data can give important insight into the contents and meaning of schema

elements [Rahm and Bernstein, 2001]. When the useful schema information is limited or

the schemas are ambiguous, as is often the case for many structured or semi-structured

information sources, the analysis on data instances will become very helpful. Even when

substantial schema information is available, the use of instance-level matching can also

be valuable to uncover incorrect interpretations of schema information. For example, it

can help disambiguate between equally plausible schema-level matches by choosing to

match the elements whose instances are more similar.

Many approaches in schema-level matching can be applied to instance-level matching.

For text elements a linguistic characterization, based on information retrieval techniques,

is the preferred approach. This approach evaluates the similarity of two schema elements

by comparing the relative frequencies of words and combination of words in their data

instances. For numerical data type, statistical characterization, such as numerical value

ranges, averages, or value patterns, can provide insight into the similarity of the

corresponding schema elements.

Various approaches have been proposed to perform instance-level matching, such as

rules, neural networks, and machine learning techniques [Berlin and Motro, 2001; Doan,

et al., 2000; Li and Clifton, 1994; Li, et al., 2000]. Learning-based approaches can exploit

data instance-level information. For example, Doan et al. proposed the LSD system,

which employs the Naive Bayes learning method over data instances [Doan, et al., 2001].

The Naive Bayes method can easily construct some probabilistic rules based on the

analysis of data instances that find similarity between schema elements which names do

not reveal enough similarity clues. Note that the learning-based approaches are classified

as instance-level approaches, but in fact they can also utilize schema-level information.

C. Hybrid Approaches

22

Since each matching approach has a specific applicability for a given match task, a

matcher that uses just one single approach is unlikely to achieve as many good match

candidates as one that combines several approaches [Rahm and Bernstein, 2001].

Therefore, some hybrid approaches are proposed, including two folders: a hybrid matcher

that integrates multiple matching approaches based on multiple criteria or information

sources (e.g., by using name matching with namespaces and thesauri combined with data

type compatibility), and composite matchers that combine the results of independently

executed matchers, including hybrid matchers.

One important issue of note is to the impossibility of determining, fully automatically, all

matches between two schemas, primarily because most schemas have some semantics

that affect the matching criteria but that are not formally expressed or often even not

documented [Rahm and Bernstein, 2001]. Therefore, the result of the match operation is

only a set of match candidates, which can be accepted, rejected, or modified by the user.

Furthermore, the user should be able to specify matches for elements which are

meaningful that the system fails to discover.

2.4 Ontology-driven Semantic Approaches

In structural approaches, we also consider the semantics of information schemas, in

which the underlying conceptualization is not clearly identified. The focus is that “two

(or more) schema elements have the same meaning and they can match”. In semantic

approaches, semantics is explicitly identified by establishing conceptual models such as

ontologies, and the focus is “two (or more) ontology elements refer to the same concept

in a common conceptualization (therefore they are semantically identical)”, as depicted in

the following Figure 2-4.

23

Since it is difficult to integrate the structural aspects of information sources from the

semantic perspective due to inherent embedded semantics within local schemas and

implicit assumptions, recently ontologies have been introduced to the area of semantic

integration as a possible solution to obtain semantic interoperability [Wache, et al., 2001].

In ontology-driven (or ontology-based) approaches, integration is obtained by sharing a

common ontology among various information sources, or generating a global ontology

that covers the underlying local ontologies of each source. Applying the general

integration architecture in this context, the mediator’s job is to integrate ontologies; the

wrappers’ job is to translate from the global ontology to local ontologies (if applicable)

and then from local ontology to local schema in terms of its conceptual model before the

data sources can deal with queries.

A B C

A’
B’
C’

Schema 1

Schema 2

Structural Approach

Ontology 1
Ontology 2

Conceptualization

Semantic Approach

A B C
A’ B’ C’

Concept

Figure 2-4. Difference of two types of approaches in terms of semantics.

24

2.4.1 Concept of Ontology: An Informal View

Ontologies have been recognized as a fundamental infrastructure for advanced

approaches to knowledge management [Arroyo, 2007]. Ontologies are useful for many

different applications that can be classified into several areas [Jasper and Ushold, 1999].

The common idea for all of these applications is to use ontologies in order to reach a

common understanding of a particular domain [Stuckenschmidt and van Harmelen,

2005], which may be reused and shared across applications and groups [Chandrasekaran,

et al., 1999]. The use of ontologies also helps to reach a common understanding of the

meaning of terms. In contrast to syntactic standards, the understanding is not restricted to

a common representation or a common structure. Therefore, ontologies are a promising

candidate that can support semantic interoperability and information retrieval, especially

in the Semantic Web [Berners-Lee, et al., 2001].

Many definitions about “ontology” have been proposed. A basic definition about

ontology is “the specification of conceptualizations, used to help programs and humans

share knowledge” [Gruber, 1993]. An ontology can also be understood as a model that

defines the concepts, properties, and relations of a domain of discourse [Crubzy, et al.,

2003].

Some people view ontology, in the simplest case, as a hierarchy of concepts related by

subsumption relationships, such as things, events, and a set of relations that are specified

in some way in order to create an agreed-upon vocabulary for exchanging information.

An ontology establishes a joint terminology between members of a community of interest

and these members can be human or automated agents. It can be viewed as a semantic

substrate for information integration and aggregation processes, providing explicit

semantics which may be useful for information exchange between heterogeneous

sources.

25

Ontologies facilitate interoperability between heterogeneous systems involved in a

domain of common interest. It is known that any information system uses its own

ontology, either implicitly or explicitly [Li, et al., 2005]. As described in [Tan, et al.,

2006], ontologies are used for communication between people and organizations by

providing a common terminology over a domain. They provide the basis for

interoperability between systems. They can be used for making the content in information

sources explicit and serve as an index to a repository of information.

Tom Gruber, an AI specialist at Stanford University, proposes a richer definition: “An

ontology is a formal, explicit specification of a shared conceptualization” [Gruber, 1995].

Here,

 “explicit” means that “the type of concepts used and the constraints on their use

are explicitly defined”;

 “formal” refers to the fact that “it should be machine readable”;

 “shared” refers to the fact that “the knowledge represented in an ontology is

agreed upon and accepted by a group”;

 “conceptualization” refers to an abstract model that consists of the relevant

concepts and relationships that exist in a certain situation. In another sense, a

conceptualization is an abstract, simplified view of the world that we wish to

model for some purpose.

The basis of ontology is Conceptualization. Conceptualization consists of:

 the identified concepts (objects, events, beliefs, etc). e.g. concepts Professor and

Course in education domain;

 the conceptual relationships that are assumed to exist and to be relevant, e.g.

26

relationship “Professor teach Course”.

In the information management and knowledge sharing areas, ontology can be defined as

follows [Fisseha, 2003]:

(i) An ontology is a vocabulary of concepts and relations rich enough to enable us to

express knowledge and intention without semantic ambiguity.

(ii) An ontology describes domain knowledge and provides an agreed-upon

understanding of a domain.

(iii) Ontologies are collections of statements written in a language such as RDF 3 that

define the relations between concepts and specify logical rules for reasoning about them.

An ontology can contain not only concepts and relations, but also logical elements that

can support reasoning and inferring. A formal ontology consists of logical axioms that

convey the meaning of terms for a particular community [Bishr, et al., 1999]. A set of

logical axioms defining one term is called intensional definition and there is only one

intensional definition per term for each community [Hakimpour and Geppert, 2002].

Intensional definitions are estimating intensional relation (defined in [Guarino, 1998]).

For instance, “Faculty” is an intensional relation and its estimation by an intensional

definition is:

 ι[Faculty(x)] = Employee(x)∧(∃y: Course(y) ∧teaches(x, y)).

Formal ontologies are considered more than schema definitions in databases. Schemas

are mainly concerned with organizing data in databases, but formal ontologies are

concerned with the understanding of the members of a community and help to reduce

ambiguity in communications.

3 http://www.w3.org/RDF/

27

The reason that ontologies are becoming so important is that currently we lack standards

(shared knowledge) which are rich in semantics and represented in a machine

understandable form. Ontologies have been proposed to solve the problems that arise

from using different terminology to refer to the same concept or using the same term to

refer to different concepts. With the aid of ontologies, semantic queries can exploit

conceptual knowledge that is independent of local schemas. By contrast, non-semantic

approaches result in queries defined in terms of local structural organization of data, e.g.

XQuery 4 and SQL 5. In this case, the heterogeneity of information sources means that

different queries must be written to match multiple schemas.

The ability to exchange information at run time, also known as interoperability, is an

important topic. Ontologies are often used as interlinguas for providing interoperability

[Uschold and Gruninger, 1996]: they serve as a common format for data interchange.

Each system that wants to interoperate with other systems has to transfer its information

into this common framework.

Ontologies are expressed in languages that are machine process-able and can be used for

reasoning [Noy, 2003]. The expressed artifact is also called an “ontology model”, given

that the ontology itself is abstract. In ontology-based approaches, the description of

information semantics (local ontologies or conceptual models of information sources)

may be represented in ER 6, UML 7, RDF, or other logic models. Many ontology

languages have been proposed. Some are based on description logics (DL) [Badder and

Sattler, 2001], such as OWL and LOOM [Arens, et al., 1996], and some are frame-based

[Brachman and Levesque, 1984], such as F-logic [Kifer, et al., 1995].

4 http://www.w3.org/TR/xquery/
5 http://en.wikipedia.org/wiki/SQL
6 http://en.wikipedia.org/wiki/Entity-relationship_model
7 http://www.uml.org/

28

In the definitions presented above the term “semantics” is frequently involved. Basically

semantics refers to the intended meaning of something, usually a symbol. In an ontology

related community, the term “semantics” has another explanation but is still similar to

“intended meaning”: semantics refers to the relationship between words (data) and the

world – the things the words (data) describe [Partridge, 2002]. [Partridge, 2002] defines

that ontology is about the existence of a set of objects; it also differentiates the fact that

an ontology model is a model that directly reflects the ontology.

As a summary, the concepts of conceptualization, ontology, model and representation of

ontology, semantics, and semantic integration based on ontology are illustrated in the

following Figure 2-5.

29

Jeep isa Auto
Van isa Auto

When we see this image, we consider it is a
“car” because we have a conceptualization of
“car” in our mind. Note that it is not really a
car—it is just an image. But let’s assume that it
is the real “car”. The actual intended meaning
of a concept is domain-dependent. For
example, sometimes we mention “car” as a
specific individual car, and in other cases we
may mention it as a category of individual
cars. Here, let us assume that it refers to a
category of individual cars. As far as the
exceptional cases such as someone considering
it as a “plane”, they exceed the scope of our
discussion and will not be touched.

Conceptualization in one person’s mind.
Conceptualization is abstract (abstraction of
external world in individual mind). We can
only understand it but we cannot “see” it.
Here, let’s assume this graph and this word
represent a conceptualization of “car”.

Car 1:1

1:1

One real-world object
corresponds to one unique
conceptualization (in
specific domain).

One conceptualization is
specified by one unique
ontology.

The domain from which the
conceptualization derives. That means, the
same real world object will lead to different
conceptualizations in different domains.
Generally speaking, when we are talking
about conceptualization, we imply that we
are in a specific domain, or a context of the
problem we are interested in.

Ontology

To communicate with other people, we
need something to specify that
common “conceptualization”. It is
“ontology”. An ontology is a
specification of a conceptualization. It
is an abstraction among a group of
minds.

Automobile

Car Truck

A representation is required to represent the
specification explicitly. It is an ontology
model. An ontology model is defined by a
kind of formal language to explicitly describe
an ontology. Note that when we are talking
about “ontology” in practice, it usually refers
to an ontology model developed by applying
that language.

An object in an ontology
denotes something really
existing in the world. It may
be a physical object or an
abstract idea.

The semantics relates an object in the
conceptualization (represented as an
element in an ontology model) to a
unique object in the real world. The
cardinality of the relationship between
the real world object and ontology
object is 1:1.

1:M

If we have another ontology model (in
another form of representation), the
semantic integration is to discover that the
object “Jeep” is also related to the same
real world object, thus it is the same as
“Car” in the other ontology model.

One ontology can be
represented by multiple
ontology models.

1:1

1:1

Figure 2-5. Conceptualization, ontology, model and representation of ontology, semantics, and semantic integration based on Ontology.

30

2.4.2 Ontology-driven Semantic Integration

Regular information retrieval techniques have several shortcomings. First, they rely

on the input vocabulary of the user, which might not be completely consistent with

the vocabulary used in the information systems. Second, a specific encoding may

significantly reduce the recall of a query since related information with a different

encoding is not matched. Finally, full-text analysis may reduce precision because the

meanings of the words in the texts might be ambiguous.

Traditional integration solutions may result in some significant drawbacks [Hu, et al.,

2007]: (1) it is challenging to check the consistency and discover conflicts among

domain terminologies; (2) using some traditional ways such as schema matching, the

equivalence mappings can be realized but the inheritance mechanism of concepts

cannot be implemented; (3) implicit knowledge cannot be discovered without

reasoning. Therefore, ontology is often viewed as a key component to realize

semantic integration.

The use of ontologies as semantic translators is a viable approach to overcome the

problem of semantic heterogeneity [Hakimpour and Timpf, 2001]. Ontologies provide

machine-readable semantics of information sources that can be communicated

between applications and humans. Using an ontology to explicate the vocabulary can

help overcome some of these problems. When used for the description of available

information as well as for query formulation, an ontology serves as a common basis

for matching queries against potential results on the semantic level. The use of

informal ontologies like WordNet [Fellbaum, 1998] increases the recall of a query by

including synonyms in the search process. The use of more formal representations

like conceptual graphs [Sowa, 1999] further enhances the retrieval process, because a

formal representation can be used to increase recall by reasoning about inheritance

relationships and precision by matching structures. To summarize, according to

31

Guarino [Guarino, et al., 1999], ontologies help to decouple the description and query

vocabularies and increase precision as well as recall.

In ontology-driven approaches, integration is obtained by sharing common ontologies

among the information sources. Mappings are created between the ontologies and

local information models. According to the mapping direction, approaches are

classified into two categories [Levy, 1999; Levy, 2000; Li and Chang, 2000]:

global-as-view [Chawathe, et al., 1994] and local-as-view [Genesereth, et al., 1997].

In global-as-view approaches, each item in a global ontology is defined as a view

(query) over source schemas/ontologies. It is adopted in most data integration

systems. In local-as-view approaches, each item in each source schema/ontology is

defined as a view (query) over the global ontology. Many recent research works on

data integration follow this approach. The major challenge of this approach is that in

order to answer a query expressed over the global schema, one must be able to

reformulate the query in terms of queries to the sources. While in the global-as-view

approach such a reformulation is guided by the definitions in the mapping; here the

problem requires a reasoning step in order to infer how to use the sources for

answering the query.

The local-as-view approach better supports a dynamic environment where

information sources can be added to the integration system without the need of

restructuring the global ontology (given that the new systems are still committed to

the global ontology). Hence, the major work on information integration is to develop

algorithms for answering queries using these views.

While many systems and approaches use ontologies as an explicit description of the

information semantics (i.e., to describe the meaning of information), the role and use

of ontologies differs between the approaches. According to the role and use of

ontologies, three different categories of approaches can be identified: single-ontology

approaches, multiple-ontology approaches, and hybrid approaches [Klein, 2001;

32

Stuckenschmidt and van Harmelen, 2005; Wache, et al., 2001]. With respect to the

role and use of ontology, more than 20 approaches have been developed to support

intelligent information integration based on information semantics, including SIMS

[Arens, et al., 1993], TSIMMIS [Garcia-Molina, et al., 1995], OBSERVER [Mena, et

al., 2000], CARNOT [Collet, et al., 1991], Infosleuth [Nodine, et al., 1999], KRAFT

[Preece, et al., 1999], PICSEL [Levy, et al., 1996], DWQ [Calvanese, et al., 1998(2)],

Ontobroker [Fensel, et al., 1998], SHOE [Heflin, et al., 1999], MECOTA [Wache, et

al., 1999], BUSTER [Visser, 2004], COIN [Goh, 1997]. Some approaches provide a

general framework where all three categories can be implemented [Calvanese, et al.,

1998(2)].

The following Figure 2-6 gives an overview of the three architectures.

33

A. Single-ontology (Global Ontology) Approaches

Single-ontology approaches use one global ontology that provides a shared

vocabulary for the specification of the semantics. All information resources are

related to the one global ontology. An independent model of each information source

must be described for this system by relating the objects of each source to the global

Information
Source

Information
Source

Information
Source

Global Ontology

(a) Global ontology

Information
Source

Information
Source

Information
Source

Local
Ontology

(b) Local ontologies

Local
Ontology

Local
Ontology

Information
Source

Information
Source

Information
Source

Local
Ontology

(c) Hybrid approach

Local
Ontology

Local
Ontology

Shared Vocabulary

Figure 2-6. Different architectures of employing ontologies [Wache, et al., 2001].

34

domain model, i.e., elements of the structural information sources are projected onto

elements of the ontology. The relationships clarify the semantics of the source objects

and help to find semantically corresponding objects.

Single-ontology approaches can be applied to the integration problems where all

information sources to be integrated provide nearly the same view of a domain. SIMS

and Ontobroker are important representatives of this group. But if one information

source has a different view of a domain, e.g., by providing another level of

granularity, finding the minimal ontology commitment [Gruber, 1995] becomes a

difficult task. Also, single-ontology approaches are susceptible to changes in the

information sources, which can affect the conceptualization of the domain represented

in the ontology. Depending on the nature of the changes in one information source it

can imply changes in the global ontology and in the mappings to the other information

sources. These disadvantages lead to the development of multiple-ontology

approaches.

B. Multiple-ontology (Local Ontology) Approaches

In multiple-ontology approaches, each information source is described by its own

ontology (local ontology). In principle, the local ontology can be a combination of

several other ontologies but it cannot be assumed that the different local ontologies

share the same vocabulary. OBSERVER is a prominent example of this group, where

the semantics of each information source is described by a separate local ontology.

The major advantage of multiple-ontology approaches is that no common and

minimal ontology commitment about one global ontology is needed. Each local

ontology can be developed without reference to the others. No common ontology with

the agreement of all information sources is needed. This ontology architecture can

simplify the change, i.e. modifications in one information source or the adding and

removing of sources. However, in reality the lack of a common vocabulary makes it

extremely difficult to compare different local ontologies. To overcome this problem,

35

an additional representation formalism defining the mapping is provided. The

mapping identifies semantically corresponding terms of different local ontologies, e.g.

which terms are semantically equal or similar. But the mapping also has to consider

different views of a domain, e.g. different aggregation and granularity of the ontology

concepts. In practice the mapping is very difficult to define due to the many semantic

heterogeneity problems that may occur.

C. Hybrid Approaches

To overcome the drawbacks of the single- or multiple-ontology approaches, hybrid

approaches were developed. Similar to multiple-ontology approaches, the semantics

of each source is described by its own ontology. But in order to make the source

ontologies comparable to each other they are built upon one global shared vocabulary

[Goh, 1997 and Wache, et al., 1999]. The shared vocabulary contains the basic terms

(the primitives) of a domain. In order to build complex terms of a local ontology the

primitives are combined by some operators. Because each term of a local ontology is

based on the primitives, the terms become more comparable than in multiple-ontology

approaches. Sometimes the shared vocabulary is also an ontology [Stuckenschmidt

and Wache, 2000].

In hybrid approaches the major point is how the local ontologies are described. In

COIN the local description of information, so called context, is simply an attribute

value vector. The terms for the context stems from a global domain ontology and the

information itself. In MECOTA, each source concept is annotated by a label which

combines the primitive terms from the shared vocabulary. The combination operators

are similar to the operators known from the description logics, but are extended, e.g.,

by an operator which indicates that an information item is an aggregation of several

separated information pieces. The BUSTER system uses the shared vocabulary as a

(general) ontology, which covers all possible refinements, e.g., the general ontology

defines the attribute value ranges of its concepts. A local ontology is one (partial)

refinement of the general ontology, e.g., restricts the value range of some attributes.

36

Because local ontologies only use the vocabulary of the general ontology, they remain

comparable.

The use of a shared vocabulary can be viewed as a translation process from a shared

vocabulary to each local ontology, therefore one advantage of a hybrid approach is

that new sources can easily be added without modification to any other ontology. The

use of a shared vocabulary makes the local ontologies comparable and avoids the

disadvantages of multiple ontology approaches.

2.4.3 Ontology Integration

2.4.3.1 Basic Concept

Ontology integration is an important topic in ontology-based integration approaches.

Ontology plays an important role in concept modeling, knowledge representation, and

semantics-based information integration. As more and more ontologies are

constructed in different domains, the heterogeneity of ontologies becomes another

significant issue for information integration. In the following several scenarios

ontology integration is required:

(1) Multiple ontologies in one domain are constructed separately but none of them is

widely accepted as “standard” ontology for that domain. Each ontology covers

different aspects of the domain, although an overlapping portion may exist among

them. Therefore, ontology integration is necessary to reuse existing ontologies and

build a new ontology which incorporates knowledge (including concepts, properties,

individuals, relationships, axioms, functions, etc) dispersing in these ontologies.

(2) Ontologies for different domains exist, and a new ontology for interdisciplinary

use is required to be built to incorporate knowledge in these domains.

37

(3) For some purposes, more than two ontologies are required to be used together. For

example, an organization like a company needs to reuse both a public ontology and its

own ontology about its business. Moreover, if two companies are merged into one,

then their existing ontologies should be merged accordingly to create a new one to

eliminate possible semantic conflict. In such cases ontology integration is also

necessary.

In these cases, ontology builders may want to use already existing ontologies as the

basis for the creation of new ontologies by extending the existing ontologies or by

combining knowledge from different ontologies. It is a very complex process as a part

of the ontology development lifecycle [Pinto and Martins, 2004]. After ontology

integration is done, semantic integration can be supported by the integrated ontology,

or by semantic mapping among multiple ontologies.

A thorough review of ontology integration can be found in [Kalfoglou and

Schorlemmer, 2003]. Some other research also provides overviews of ontology

integration [Calvanese, et al., 2002; Klein and Noy, 2003; Noy, 2004; Wache, et al.,

2001].

As there are various definitions on “ontology integration”, [Pinto, 1999] proposes

three terms to distinguish different meanings: integration, merge, and use. In [Pinto,

1999] use means using ontologies in applications, which is not closely related to our

topic, therefore we will not discuss it in this research. Another important aspect that is

not included in its analysis is alignment or mapping. The following are descriptions

for each term.

A. Alignment/Mapping

Alignment occurs when two or more ontologies are brought into mutual agreement,

making them consistent and coherent. That is, to determine semantic relationships

between elements from the source ontologies. The semantic relationships may include

equivalence, specialization/generalization, or other types of relationships.

38

Mapping, particularly, is an alignment that relates similar concepts or relations from

different source ontologies with overlapping parts to each other by an equivalence

relation.

Sowa discussed the concept of alignment in [Sowa, 1997]. According to Sowa,

alignment is a mapping of concepts and relations between two ontologies A and B that

preserves the partial ordering by subtypes in both A and B. If an alignment maps a

concept or relation x in ontology A to a concept or relation y in ontology B, then x and

y are said to be equivalent. The mapping may be partial: there could be many concepts

in A or B that have no equivalents in the other ontology.

Kalfoglou et al. proposed a formal definition for ontology mapping in [Kalfoglou and

Schorlemmer, 2003]. In their definition, an ontology is a pair O = (S, A), where S is

the (ontological) signature – describing the vocabulary – and A is a set of

(ontological) axioms – specifying the intended interpretation of the vocabulary in

some domain of discourse. A total ontology mapping from O1 = (S1, A1) to O2 = (S2,

A2) is a morphism f: S1 S2 of ontological signatures, such that, A2╞ f(A1), i.e. all

interpretations that satisfy O2’s axioms also satisfy O1’s translated axioms. A partial

ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) exists if there exists a

sub-ontology O1’ = (S1’, A1’) (S1’ ⊆ S1 and A1’ ⊆ A1) such that there is a total mapping

from O1’ to O2.

B. Merging

The merging of ontologies creates a new ontology containing knowledge included in

the source ontologies based on the alignment relationships between the ontologies.

This operation merges different ontologies about the same subject into a single one

that unifies them.

According to Pinto [Pinto, 1999], on one hand in merging we have a set of ontologies

(at least two) that are going to be merged (O1, O2, …, On in Figure 2-7), and on the

other hand, the resulting ontology (O in Figure 2-7). The goal is to make a more

39

general ontology about a subject by gathering knowledge from several other

ontologies in that same subject into a coherent volume. The subject of both the

merged and the resulting ontologies are the same (S in Figure 2-7) although some

ontologies are more general than others, that is, the level of generality of the merged

ontologies may not be the same.

C. Integrating

Integrating ontologies also creates a new ontology by reusing other available

ontologies through assembling, extending, or specializing. Different than merging, in

integrating the source ontologies and resultant ontology can be in different subjects.

According to Pinto [Pinto, 1999], in integration we have, on one hand, one or more

ontologies that are integrated (O1, O2, …, On in Figure 2-8), and on the other hand, the

ontology resulting from the integration process (O in Figure 2-8). The domains of the

different integrated ontologies are usually different among themselves, that is, each

ontology integrated in the resulting ontology is usually about a different domain either

from the resulting ontology (D in Figure 2-8) or the various ontologies integrated (D1,

D2, …, Dk, where usually k = n, in Figure 2-8). The integrated ontologies are those

that are being reused. They are a part of the resulting ontology. The ontology resulting

from the integration process is what we want to build and although it is referenced as

one ontology it can be composed of several modules. When the integrated ontology is

reused by the resulting ontology, the integrated concepts can be (1) used as they are,

(2) adapted (or modified), (3) specialized (leading to a more specific ontology on the

O
 S

O1
 S

O2
 S

On
 S…

Figure 2-7. Merging of ontologies.

40

same domain), (4) augmented by new concepts (either by more general concepts or by

concepts at the same level).

In [Klein, 2001] Klein discusses a fairly complete set of definitions for terms often

mentioned in this field. Among these definitions,

 Combining: using two or more different ontologies for a task in which their

mutual relation is relevant.

 Merging and integration: creating a new ontology from two or more existing

ontologies with overlapping parts, which can be either virtual or physical.

 Articulation: the points of linkage between two aligned ontologies, i.e., the

specification of the alignment.

 Translating: changing the representation formalism of an ontology while

preserving the semantics.

 Transforming: changing the semantics of an ontology slightly (possibly also

changing the representation) to make it suitable for purposes other than the

original one.

 Version: the result of a change that may exist next to the original.

 Versioning: a method to keep consistent the relation between newly created

ontologies, the existing ones, and the data that conforms to them.

O
 D

O1
 D1

O2
 D2

On
 Dk…

Figure 2-8. Integration of ontologies.

41

2.4.3.2 Tasks for Ontology Integration

In [Noy, 2003] Noy proposed some specific challenges in ontology integration that

must be addressed in the near future:

 Finding similarities and differences between ontologies in an automatic and

semi-automatic way;

 Defining mappings between ontologies;

 Developing an ontology integration architecture;

 Composing mappings across different ontologies;

 Representing uncertainty and imprecision in mappings.

They can be viewed as a general architecture of ontology integration tasks.

Particularly, in ontology integration, some tasks should be performed to resolve

differences and conflicts between ontologies. The tasks lie at two levels.

A. Language Level

1. Syntax

For instance, a concept “Faculty” may be represented as

<rdfs:Class ID=”Faculty”> in RDF schema 8, and

(defconcept Faculty) in LOOM 9.

2. Logical representation

For instance, a rule denoting that two sets have no elements in common can be

represented as

8 http://www.w3.org/TR/rdf-schema/
9 http://www.isi.edu/isd/LOOM/LOOM-HOME.html

42

 disjoint A B,

 or

 A subclass-of (not B), B subclass-of (not A)

3. Language expressivity

For instance, some languages can express negation but some others cannot.

B. Ontology Level

1. Conceptualization mismatch

A conceptualization mismatch can cause a difference in the way a domain is

interpreted. For example, a difference may exist in scope, meaning that two domains

from two ontologies do not contain exactly the same instances.

2. Explication

Explication can cause a difference in the way the conceptualization is specified. For

instance, with different modeling paradigms, abstract concepts like time, action, plan,

location, etc. may be represented differently. Another case is the difference in

modeling intension. For example, in one ontology concept "Circle" is modeled as a

sub-concept of "Ellipse" implying that a "round circle" is a special ellipse in which

the major axis and minor axis are identical. In another ontology concept "Circle" may

be modeled as a super-concept of "Ellipse" implying that an ellipse is a special case of

a round shape.

Another case of explication is in terminological mismatch. Terminological mismatch

contains two categories:

(1) Synonym terms: different terms specifying the same concept. For example, car vs.

automobile, or terms from different languages like English and French with the same

meaning.

43

(2) Homonym terms: the same terms are used for different concepts. The "Circle"

example can be viewed as a case of a homonym mismatch. Another example is the

term "Conductor" which has a different meaning in music than in the electric

engineering domain.

Encoding is another case of explication. For instance, we can have several date

formats for a date concept like dd/mm/yy or yyyy-mm-dd, or use a different unit to

represent a metric, like miles and kilometres.

2.4.3.3 Ontology Integration Process and Methodology

McGuinness introduces a specification of the integration process in [McGuinness, et

al., 2000], where ontology integration consists of (the iteration of) the following steps:

(1) find the places in the ontologies where they overlap;

(2) relate concepts that are semantically close via equivalence and subsumption

relationships (aligning);

(3) check the consistency, coherency and non-redundancy of the result.

As pointed out by Noy in [Noy, 2003], it may never be possible to find all alignments

/ mappings between ontologies completely and automatically since some of the

intended semantics can only be discerned by humans. However, ontology integration

on a large scale will be possible only if we can make significant progress in

identifying mappings automatically or semi-automatically. Methodologies are

necessary to guide and support the automatic or semi-automatic ontology integration.

(1) Basic Strategy for Discovering Concept Similarity

44

The comparison of concept similarity is a fundamental issue for ontology integration.

Alignment, mapping, or merging can be possible only if the concepts from different

ontologies that have semantic similarity are discovered.

The basic alignment algorithm in ArtGen [Mitra and Wiederhold, 2002] calculates the

similarity between concepts based on their names which are seen as lists of words.

One method to compute the similarity between a pair of words is based on the

similarity between the contexts (1000-character neighbourhoods) of all occurrences of

the words in a set of domain-specific Web pages.

In FCA-MERGE [Stumme and Maedche, 2001] the user constructs a merged

ontology based on a concept lattice. The concept lattice is derived using a formal

concept analysis based on how documents from a given domain-specific corpus are

classified to the concepts in the ontologies using natural language processing

techniques. OntoMapper [Prasad, et al., 2002] provides an ontology alignment

algorithm using Bayesian learning. A set of documents (abstracts of technical papers

taken from ACM’s digital library and Citeseer) is assigned to each concept in the

ontologies. Two raw similarity scores matrices for the ontologies are computed. The

similarity between the concepts is calculated based on these two matrices using the

Bayesian method.

Some systems implemented alignment algorithms based on the structure of the

ontologies. Most of them rely on the existence of previously aligned concepts. For

instance, Anchor-PROMPT [Noy and Musen, 2001] determines the similarity of

concepts by the frequency of their appearance along the paths between previously

aligned concepts. The paths may be composed of any kind of relations. SAMBO

[Lambrix and Tan, 2006] provides a component where the similarity between

concepts is augmented based on their location in the is-a hierarchy relative to already

aligned concepts. OntoMapper does not require previously aligned concepts and takes

the documents from the sub-concepts into account when computing the similarity

between two concepts.

45

(2) Research on Methodologies

An early methodology for ontology merging in a medical domain is proposed in

[Gangemi, et al., 1998]. The methodology to build ontologies presented in [Uschold

and King, 1995] includes an integration step. This methodology proposes that

integration should be done either during capturing (knowledge acquisition), or coding

(implementation) or both. However, the problem is recognized as difficult and no

solutions for the problem of how integration is performed are proposed or discussed

herein.

The methodology to build ontologies proposed in [Gruninger, 1996] also refers to

integration. This methodology mentions two kinds of integration: “combining

ontologies that have been designed for the same domain” and “combining ontologies

from different domains”. According to this methodology, ontologies are built based

on ontology building blocks and foundational theories. According to the building

blocks and foundational theories of the ontologies being integrated, integration is

distinguished as: integration (at the level) of the building blocks - the most simple;

integration (at the level) of the foundational theories, which is more difficult and may

result in only partial integration; and ontology translation when the ontologies are so

different that they share neither the building blocks nor the foundational theories,

which makes integration extremely difficult.

METHONTOLOGY [Fernandez, et al., 1997 and Fernandez, et al., 1999] is another

methodology to build ontology that also considers integration. It proposes that the

development of an ontology should follow an evolving prototyping life cycle and not

a waterfall one. This methodology proposes that ontology building, and therefore

ontology integration, should be done preferably at the knowledge level (in

conceptualization) and not at the symbol level (in formalization, when selecting the

representation ontology) or at the implementation level (when the ontology is codified

in a target language).

46

The methodology followed by Skuce to find the ontological distinctions presented in

[Skuce, 1997] was by brainstorming, followed by meetings with other researchers

interested in the problem. The proposed methodology begins with the creation of a

group involving a diverse group of researchers working in different locations. Each

member develops a list of primitives, distinctions and categories carefully chosen,

defined and carefully documented (choices and definitions). The choices are

presented to the group for discussion and approval. Only when they are agreed upon

can they get to the formalization stage. The idea is to try to find a standardized upper

model that would greatly ease some kinds of integration efforts.

Other methods include: Hovy and colleagues describe a set of heuristics that

researchers at ISI/USC used for the semi-automatic alignment of domain ontologies to

a large central ontology [Hovy, 1998]. Their techniques are based mainly on the

linguistic analysis of concept names and natural-language definitions of concepts.

PROMPT uses the structure of ontology definitions and the structure of a graph

representing an ontology to suggest to the ontology designer which concepts may be

related [Noy and Musen, 2003]. GLUE applies machine-learning techniques to

instance data conforming to ontologies to find related concepts [Doan, et al., 2002].

2.4.3.4 Ontology Integration Systems and Tools

Ontology integration is a complicated process. It is difficult to find the terms that need

to be aligned, and the consequences of a specific mapping (unforeseen implications)

are difficult to see. Semi-automatic tools are required to guide the user through the

process and focus this attention on the likely points for action, and enable reusability

of alignments in the context of ontology maintenance.

A number of ontology integration systems exists that support users to find

inter-ontology relationships. Some of these systems can also perform merging and

47

create a new ontology based on the source ontologies and the alignment relationships.

[McGuiness, et al., 2000] provides the first tool to help in the merge process.

(1) A General Framework

Lambrix et al. proposed a general framework for ontology alignment [Lambrix and

Tan, 2006], as depicted in the following Figure 2-9. Many ontology alignment

systems can be described as instantiations of this framework.

Figure 2-9. A general framework for ontology alignment [Lambrix and Tan, 2006].

In this framework, an alignment algorithm receives two source ontologies as input.

The algorithm can include several matchers. These matchers calculate similarities

between the terms from the different source ontologies. The matchers can implement

strategies based on linguistic matching, structure-based strategies, constraint-based

approaches, instance-based strategies, and strategies that use auxiliary information or

a combination of these. Alignment suggestions are then determined by combining and

filtering the results generated by one or more matchers. The pairs of terms with a

similarity value above a certain threshold are retained as alignment suggestions. By

using different matchers and combining them and filtering in different ways, different

48

alignment strategies will be obtained. The suggestions are then presented to the user

who accepts or rejects them. The acceptance or rejection of a suggestion may

influence further suggestions. Further, a conflict checker is used to avoid conflicts

introduced by the alignment relationships. The output of the alignment algorithm is a

set of alignment relationships between terms from the source ontologies.

In this framework the matchers use different strategies to calculate similarities

between the terms from different source ontologies. They use different kinds of

knowledge that is exploited during the alignment process to enhance their

effectiveness and efficiency. Some of the approaches employed are described as

follows:

 Strategies based on linguistic matching. These approaches make use of textual

descriptions of the concepts and relations such as names, synonyms and

definitions. The similarity measure between concepts is based on comparisons

of the textual descriptions.

 Structure-based strategies. These approaches use the structure of the ontologies

to provide suggestions. The similarity of concepts is based on their

environment. For instance, using the is-a relation, an environment can be

defined using the parents (or ancestors) and the children (or descendants) of a

concept.

 Constraint-based approaches. In this case axioms are used to provide

suggestions. For example, knowing that the range and domain of two relations

are the same may be an indication that there is a relationship between the

relations.

 Instance-based strategies. In some cases instances are available directly or can

be obtained. When instances are available, they may be used in defining

similarities between concepts.

49

 Use of auxiliary information. Dictionaries and thesauri representing general or

domain knowledge, or intermediate ontologies may be used to enhance the

alignment process. They provide external resources to interpret the intended

meaning of the concepts and relations in an ontology.

 Combining different approaches. The different approaches use different

strategies to compute similarity between concepts. Therefore, a combined

approach may give better results.

(2) SAMBO

SAMBO [Lambrix and Tan, 2006] is an ontology alignment and merging tool

developed according to the above framework. SAMBO supports ontologies in the

OWL 10 format. The system separates the process into two steps: aligning relations

and aligning concepts. In the suggestion mode several kinds of matchers can be used

and combined. The pairs of terms with a similarity value above a threshold are shown

to the user as alignment suggestions. For each of the alignment suggestions the user

can decide whether the terms are equivalent, whether there is an is-a relation between

the terms, or whether the suggestion should be rejected. If the user decides that the

terms are equivalent, a new name for the term can be given as well. If the user rejects

a suggestion where two different terms have the same name, he is required to rename

at least one of the terms. At each point during the alignment process the user can view

the ontologies represented in trees with the information on which actions have been

performed, and the user can check how many suggestions still need to be processed.

In addition to the suggestion mode, the system also has a manual mode in which the

user can view the ontologies and manually align terms. The source ontologies are

illustrated using is-a and part-of hierarchies. The user can choose terms from the

ontologies and then specify an alignment operation. After the user accomplishes the

alignment process, the system receives the final alignment list and can be asked to

10 http://www.w3.org/TR/owl-features/

50

create the new ontology. The system merges the terms in the alignment list, computes

the consequences, makes the additional changes that follow from the operations, and

finally copies the other terms to the new ontology.

(3) Protege PROMPT

Protege is a tool for creating, editing, browsing, and maintaining ontologies 11.

PROMPT is one of its plug-ins, including several interactive tools for ontology

merging and aligning [Noy and Musen, 2003]. iPROMPT is the ontology merging

tool in the PROMPT suite [Noy and Musen, 2000]. When merging two ontologies,

iPROMPT creates a list of initial suggestions based on the underlying alignment

algorithms. The suggestions can, for instance, be to merge two terms, or to copy a

term to the new ontology. The user can then perform an operation by accepting one of

the suggestions or creating his own suggestions. iPROMPT then performs the

operation and additional changes that follow from that operation. The list of

suggestions is then updated and a list of conflicts and possible solutions to these

conflicts is created. This is repeated until the new ontology is ready.

(4) Ontolingua Server

Ontolingua Server is an ontology development environment for collaborative

ontology construction, addressing the problem of ontology integration [Farquhua, et

al., 1995 and Farquhua, et al., 1997]. This tool allows collaborative ontology building

and also provides an ontology library, where tested ontologies are gathered and made

publicly available. To allow reuse of the ontologies available at the Ontolingua Server

library, a set of integration operations was identified, specified, defined, and made

available to ontology builders. Users are allowed three operations: inclusion,

polymorphic refinement and restriction (specialization). Inclusion is used when the

ontology is included (from the library of ontologies kept by the tool) and used as it is.

Polymorphic refinement extends one operation so that it can be used with several

11 Protege. http://protege.stanford.edu/index.html

51

kinds of arguments. Restriction makes simplifying assumptions that restrict the

included axioms. The Ontolingua Server also provides facilities for local symbol

renaming. This facility enables ontology developers to refer to symbols from other

ontologies using names that are more appropriate to a given ontology and to specify

how naming conflicts among symbols from multiple ontologies are to be resolved.

(5) FOAM

FOAM 12 is a semi-automatic tool for aligning and merging two or more OWL

ontologies. When merging ontologies in semi-automatic mode, FOAM proposes

alignment suggestions and the user can accept or reject these suggestions. The output

of the system after processing all the suggestions is the accepted list of alignments.

2.5 Introduction to Several Integration Systems

During the 1990s, the emergence of distributed computing, middleware technology,

and standards has allowed people to increase focus on the heterogeneity that is

intrinsic to data. This has supported particularly syntactic and structural

interoperability, and allowed people to address issues at the information level. As the

future information system increasingly addresses the information and knowledge level

issues, it will require further semantic interoperability. Semantic interoperability

requires that the information systems understand the semantics of the information

sources as well as the user’s information requests, and use mediation or information

brokering to satisfy the information request.

During the past two decades, there was an increase in the adoption of ad hoc

standards, resulting in significant progress towards achieving system, syntactic, and

structural interoperability. Structural and a limited form of semantic interoperability

are achieved by adoption of general purpose metadata standards, such as Dublin Core

12 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

52

[Mudumbai, 1997], as well as metadata standards in various domains such as

bibliography [Beard and Smith, 1998], space and astronomy, geographical,

environmental [Gunther and Voisard, 1998], and ecological [Reichman, et al., 1999].

Early works focused on data integration based on databases. Data integration is the

process which takes as input a set of databases, and produces as output a single

unified description of the input schemas (the integrated schema) and the associated

mapping information supporting integrated access to existing data through the

integrated schema [Parent and Spaccapietra, 1998].

For example, Clio+Garlic [Farquhua, et al., 1995] was developed by IBM, mainly

targeted at the transformation of legacy data into a new target schema. It introduced

an interactive schema mapping paradigm based on value correspondences: through

providing GUI for the users to specify how a value of a target attribute can be created

from a set of values of source attributes. According to the user-specified value

correspondences, the query/view definition will be automatically discovered using

DBMS query optimization techniques. In addition, it has a mechanism for users to

verify the mappings.

Early work on the SIMS system [Arens, et al., 1996] included a central domain that is

linked to the component databases and an AI-style planner that decompose queries for

efficient access. SIMS requires the system designer to build a model of the application

domain and to define the contents of each source (database, Web server, etc.) in terms

of this model. The SIMS planner provides a single point of access for all the

information: the user expresses queries without needing to know anything about the

individual sources. SIMS translates the user’s high-level request, expressed in a

subset of SQL, into a query plan [Ambite and Knoblock, 2000], a series of operations

including queries to sources of relevant data and manipulation of the data.

Later works employed ontologies to help integration at the concept level. By using

ontology for explication and transformation of context knowledge users can achieve

53

interoperability at the semantic level [Calvanese, et al., 1998(1) and Stuckenschmidt

and Wache, 2000].

For example, Information Manifold [Kirk, et al., 1995] employs a local-as-view

approach. It has the explicit notion of global schema/ontology. Its general mediator,

independent of sources and queries, takes declarative descriptions of the contents and

capabilities of a set of sources over the global concepts as input. A new source can be

added by providing its descriptions and providing a corresponding wrapper. A dialect

of description logics, called CARIN, is used for source description. The Bucket

algorithm was developed in this project for rewriting the query over the global

schema into queries to suitable sources.

In the BUSTER project, semantic integration is viewed as context integration [Visser,

2004] since information can only be well understood in its context. The context

appears in terms of assumptions about the meaning of information but the

assumptions are often not explicated. Semantic integration can be achieved through

context transformation where context information has been explicated, descriptions of

information entities are completed, and entities are interpreted in a new context. In

context theory, a context is a collection of linguistic expressions providing an explicit

description of the domain. Or, it can be viewed as a set of parameters with each

representing one special aspect of the context described and a set of values can be

assigned to the parameters describing the current context (e. g. {parameter1 = value1,

parameter2 = value2, …, parametern = valuen}).

In later work of SIMS, the EDC project [Hovy, 2003] took this a step further,

addressing the problem of the semi-automated construction of the single central

model and linking it to a large general purpose term taxonomy or ontology Omega.

The system provides dynamically planned access to data about petroleum products’

prices and volumes, provided in a variety of forms and on a variety of media, by the

Energy Information Administration, the Bureau of Labor Statistics, the Census

Bureau, and the California Energy Commission, in the form of over 50, 000 data

54

tables. In order to more rapidly construct the domain models, systems are developed

for automatically identifying terminology glossary files from websites, extracting and

formalizing the glossary definitions, clustering them appropriately, and automatically

embedding them into the existing ontology and domain model.

55

Chapter 3 Problem Analysis

3.1 A Thorough Discussion on Fundamental Terms

In the literature review, we have touched on a rich set of terms that are used in the

semantic integration field in various situations. This section presents deeper analysis

of some of the fundamental terms based on our research, and gives further discussion

on their natures.

3.1.1 Information-related Terms

I. Universe, World, Domain, and Real World Object

The Universe is the entire aggregation of everything that exists anywhere. According

to the axiomatic theory [Zeng, 2008], everything in the universe is an object and there

are relations between objects. The World is a subset of the universe that humans can

perceive, memorize, understand, analyze, and reason about. A Domain is a portion of

a world that some people are interested in and concerned about. In information related

research, people often use the term domain to refer to a set of closely related objects.

An object can be physical or abstract, and can be perceived in some way. For

instance, we measured that we walked “2 miles” in “The University of Western

Ontario”; we talked to a professor “Jack Smith” when the watch showed the time

was “10:00AM, March 1st, 2008”.

II. Data, Information and Information System

In the context of computing, data is computational symbols. Information is data that

has been given meaning, or, data with specification. Information is manged by

information systems.

56

Generally speaking, an information system can be seen as the entire infrastructure,

organization, personnel, and software components for collection, manipulation,

storage, transmission, presentation, dissemination, and disposition of information

[INFOSEC, 1999]. In the IT domain, an information system is a computer system

composed of hardware and software applications as well as other necessary

infrastructures to provide information and services. The hardware includes CPU,

memory, disk, etc. that provide capabilities to store and process digital data. The

software applications are mainly the ones that gather, manipulate, manage, persist,

analyze, and present information. The infrastructures include operating systems,

network protocols, software libraries, and network connections, to name a few, that

provide system level support for the information services. Information services are

functionalities handling information gathering, persistence, management, and

retrieval.

From the external perspective, the usages of an information system focus on

information persistence and information retrieval through specific service interfaces

without concerning their internal design and implementation details.

The capabilities of information systems mainly lie in two categories: information

providing and information searching or retrieval [Visser, 2004]. As for the former

category, conventional database or formatted file-based systems are good examples of

providing rich and dynamic information to any user that has authority to access them.

In recent decades the Internet has offered the world a new dimension in terms of

providing information for various needs. The major reason is that the HTML language

allows people to share their information in a simple but effective way. This language

is simple and easy to learn, and almost anybody with a basic knowledge about syntax

or simple programming skills could design a web page and put it on the Web. Another

reason is that standard network protocols such as HTTP and TCP/IP have been well

supported by various computation platforms (including hardware and software

platforms) which make the information accessing a simple, fast, and reliable job.

57

The latter category, searching information which can filter from a large amount of

available information and provide the user intended results with desired formats, is

just as important. Databases and some file-based systems (e.g. XML) support

information searching with a clearly defined query written in a specific syntax. On the

Internet, information searching is a little different. As described in [Visser, 2004],

early browsers or search engines offered the opportunity to search for specific

keywords, mostly searching for strings, and the latest versions of search engines, such

as Google, provide a far more advanced search based on statistical evidences or smart

context comparisons and rank the results accordingly. In most of the search cases, the

users are prompted with results in a rather simple way but they have to manually

analyze and choose their intended results from a very large result set where many of

the results are partially or totally irrelative.

Although most of the information systems provide services with rich capabilities, we

usually view them as information-centred systems instead of functionality-centred

ones and view the services as facilities that support information management, sharing,

processing, and exchanging. Therefore, from outside, the information systems are

usually treated as information containers / repositories or information resource

providers which encapsulate the internal functional components and interact with

external environments via well defined interfaces.

The reason most responsible for affecting the search quality is the lack of semantics,

for both the information itself and the query requirements. In an ideal world where

semantics relating to anything and everything are clearly and precisely specified, one

can expect that computers will help humans handle the semantics and manage the

large amount of information in a perfect manner. This shows that information

semantics plays an important role in information integration.

III. User

58

A user of an information system is either a producer of information or a consumer of

the information and services, or possibly both. It does not matter whether the user is a

human or another software application as long as it can interact with the system

following the pre-defined interfaces and constraints. In our work, we often

specifically refer to “human expert” where we emphasize the role of a human being.

We also use the term “system” to denote a software application (such as a software

agent) that interacts with an information system.

IV. Conceptualization

We differentiate two ways of illustrating the term “Conceptualization”.

A. Conceptualization as a result of perceiving the world

Conceptualization refers to an abstract model that consists of the relevant concepts

and the relationships that exist in a certain domain. In a sense, a conceptualization (of

a certain domain) is an abstract and simplified view in one’s mind of the partial world

that one cares about for some purpose.

This term is also specially referred to as “shared conceptualization” which emphasizes

the common consensus accepted by a community. To make conversations and

exchange of information between humans meaningful and reasonable, people need to

establish a shared conceptualization for a specific domain such that they have a

common understanding of what they talk about. For example, in the education

domain, people know the concepts “Professor”, “Student”, “Class” jointly. Whenever

one mentions “Professor”, the other one will know exactly the correct concept that is

being discussed instead of incorrectly thinking of something else.

Conceptualization is domain-dependent. For example, in the education domain

“Class” means a group of students sharing the same course. However, in the hotel

domain “Class” may be used to identify the rank and category of the hotels.

59

Therefore, usually we need to limit our discussion in a domain of discourse to ensure

that the expressing and exchanging of information make sense.

B. Conceptualization as a process of perceiving the world

In this sense, conceptualization is the process of abstracting the real world objects and

creating abstract notions, i.e., the concepts for them, in human cognition. It refers to a

set of mental activities that recognize the world and build a mental reflection of the

world in human minds.

In our work we adopt the first way of using this term, i.e., the conceptualization of a

world, of a domain, etc. In a conceptualization we can identify concept, which is

discussed in the following section.

V. Concept in Conceptualization

A concept is anything that objectively exists in the real world and is rationally

identified as existing in a conceptualization in terms of a domain of discourse. The

concepts may be referring to physical objects such as persons and animals, or abstract

ideas such as actions, times, distances and numbers. By “rationally” we focus on the

shared conceptualization. For instance, in the education domain, normal people

usually agree that “a University has many Professors and Students”, but do not care

about some others like “Car” or “Tax” (even though they are important in other

domains and they may also be concerned in the education domain in some special

situations).

A concept is defined by a set of properties. Each set of properties characterizes a

specific aspect of a concept. For example, from the academic perspective, a Professor

has properties Name, Degree, Department, Title, and Publication, whereas from the

administrative perspective, another set of properties Name, Year of Start, Salary,

Address, and Contact would apply. Even though there is very little commonality

between these two sets, they are still depicting the same concept.

60

When we are concerned with the categorization of a set of real world objects, we

differentiate instances and concepts. A concept can be instantiated as a set of

instances, i.e., a concept conceptually stands for a set of instances that share some

remarkable characteristics. Similar to classes and objects in the Objected-Oriented

paradigm, a concept is instantiated to an instance by assigning values to its properties

(each property may get one or more values, e.g. a professor’s Publication has multiple

paper tiles).

Note that the division of concepts and instances is depending on people’s interest. As

an example, a concept “Human” in the education domain is identified to have

instances “Professor”, “Staff”, and “Student” if we just want to know what roles we

have in a university. However, if we also care about individual persons under each

role, we need to regard “Professor” as another concept which can be instantiated to

multiple instances. We will specifically use concept or instance where we need to

clarify the level that we are working on.

A concept can also be described by other concepts and relationships. That is, the

semantics of a concept is defined through a set of semantic relationships that

associates the concept to other concepts semantically. In the text we use underlined

words or phrases to stress the semantic relationships. For example, we can define a

Professor as “a Person who works at a University, teaches Courses, and conducts

Research”. In this definition, we characterize the concept Professor with other

concepts - Person, University, Course, and Research, as well as the semantic

relationships work at, teach, and conduct.

A property of a concept is possibly another concept. As an example, Publication of a

Professor is a concept which has properties Title, Abstract, Co-Authors, Publisher,

etc. Obviously Co-Authors and Publisher are sometimes regarded as concepts with

other properties and semantic relationships. Therefore, the statement “a concept has

some properties” is actually a concretization of the semantic relationship, i.e., a

specific type of semantic relationship “has-property”. To give more exact meaning to

61

the semantic relationships, in some cases such relationships are elaborated upon, such

as “(Professor) deliver-publication (Publications)” or “(Publication) published-by

(Publisher)”. We will simply state that a concept has some properties where no

confusion will arise. If other semantic relationships are to be considered, we will

explicitly mention them.

VI. Model and Modeling

Human cognition can be aware of a concept in a domain. In some way, this kind of

awareness is reflected in human minds, and analysis and reasoning of the concepts

can be done in human cognition. To better explicate, present, analyze, process, and

communicate the concepts people need to extract the abstract concepts from their

cognition and specify them. A model of a concept is a theoretical construct that

provides formal or informal specification to the concept. A model theory defines

various constructs, rules of applying the constructs, and meanings of the rules to

specify the concepts. The combination of constructs, rules, and meanings is also

referred to as a model language.

In the context of information systems, an information model is an explicit, formal, and

structured specification of the concepts and relationships managed by the system. An

information system is usually built upon an information model such as a relational

schema.

Modeling refers to the process, activities, and regulations of creating a model of a

concept (or a group of concepts) following the adopted model theories and

methodologies.

There are two levels of concept models: the conceptual level and the representation

level. The conceptual level model can be viewed as a kind of internal representation

in human cognition (even how it is represented in human cognition remains

unknown). For example, when you think about "Car" you build a model in your mind

because it is never the case that you have a real car in your mind.

62

The representation level model is an explicit artifact created to conceptually represent

the concept. For instance, in an E-R (Entity-Relationship) model each concept is

modeled as an entity and represented by a rectangle, and semantic relationships are

modeled as relations between entities and represented by a diamond, where both

entities and relations have properties that are represented by ellipses. Other paradigms

also developed their ways for modeling and representing. The Concept-Graph model

defines that a conceptual graph is a structure representing concepts and conceptual

relations. Concepts are linked to each other through the conceptual relations. It

constrains that there are no links between a concept and another concept, and no links

between a relation and another relation. Semantic Network is another way to model

concepts as well as semantic relationships. A semantic network is a graphical

specification of knowledge that shows objects and their relationships. In a semantic

network, objects (or concepts) are modeled as nodes, and links between the nodes

describe the relationship between the objects.

VII. Context

There are several interpretations for the term “context”. In the most natural sense, in

literature environment, the context of a word or a phrase is a body of words or phrases

surrounding it that helps to determine its interpretation. In a broader sense, the context

of something under consideration is the set of facts or circumstances that surrounds it

and is relevant to it from specific points of view.

We view the context of a concept as a set of concepts other than the concept itself in a

domain that semantically relates to it and helps to interpret its semantics. For instance,

given two concepts “Professor” and “Faculty” in the education domain, their

semantics cannot be ultimately determined due to the lack of context. Suppose that we

describe “Professor” as a Person who works in a University and does Research, and

describe “Faculty” as a type of Employee of Universities whose major responsibility

is Research, with these given contexts it is sound to infer that they are actually the

same concept. Contrarily, if a different context is provided by describing “Faculty” as

63

an Organizational Division set up by a University, the contexts help us distinguish it

from the concept “Professor”.

Similarly, the context of an instance is a set of instances and concepts other than the

instance itself in a domain that semantically relates to it and helps to identify its

semantics and to which concept it belongs. For instance, simply given two instances

Jack Smith and Adam in a university, there are not enough clues to identify what

concepts they instantiate. We can reasonably infer that both are instances of the

concept “Person” but this is not sufficient if we need to know their individual roles.

Secondly, the inference may be wrong as it is possible that Adam is the name of a

robot instead of a real person. Providing that Jack Smith teaches the course

Programming and Adam takes the course Programming, based on these contexts it is

known that Jack Smith is actually a Professor and Adam is a Student.

VIII. Representation

A representation of a concept or an instance following some model theory is an

artifact created to conceptually represent the concept or the instance. The

representation can be visual (i.e., can be perceived by human vision, such as a graph),

hearable (i.e., can be perceived by human hearing, such as spoken words), touchable

(i.e., can be handled manually, such as a model of a building), or formal (i.e., readable

for human and process-able for computers, such as numbers), to name a few.

Strictly speaking, anything we are using to denote a concept, such as a written word, a

spoken word (a voice), a figure, a graph, an expression, a statement, is a specific

representation. To better illustrate the research issues, we will use an English word

with the italic font and a capital first letter to denote a concept at the conceptualization

level, such as Professor. It is not viewed as a representation. Other cases will be

referred to as representations, i.e., “professor”, “prof.”, etc. At the model level, we

may use some words, symbols, and expressions to describe the model. They are also

distinguished from the representations. It is worth mentioning also, strictly speaking,

64

that the model level can be viewed as a representation of the conceptualization. For

instance, if we use an E-R paradigm to model the domain, we “represent” a concept as

an entity, i.e., the entity is a representation of the concept. However, in our work we

focus on the representation of the models and instances given than the modeling

paradigm is provided.

At the representation level, we use the term attribute other than property to describe a

representation of a concept model. In some cases we may use model-specific terms,

such as column in terms of a relational table schema as a representation of a concept

model following the relational model theory.

To sum up, a category of real world objects can be conceptualized as a concept, a

concept can be modeled in different ways, coming up with different models (therefore

a concept is represented as a specific element in a model), and each model can be

illustrated by different representations. As an example, the concept Professor can be

modeled as an entity in an E-R model, and this entity can be represented as a

rectangle attached with a set of ellipses representing its properties; it can be modeled

as a frame with slots for name, degree, title, etc, and the frame can be represented as a

tabular form.

Figure. 3-1 depicts various levels in terms of the concepts discussed above. Note that

we use a specific representation (two cartoons, in this example) to stand for the real

world objects (two persons Jack Smith and Peter Ken).

65

Professor
Conceptualization

Level

Real World Objects

Concept

Conceptualized as

Model Level
(Representation of
Conceptualization)

Frame Model 1
Name, Degree,
Title, Publication

Frame Model 2
Name, Salary,
Address, Contact

E-R Model 1
teach Course,
supervise Student

E-R Model 2
publish Paper,
organize Conference

Representation
 for Concept

Model

Jack Smith

Representation
Level

Professor

Name:
Degree:
Title:
Publication:

Prof.

Name Degree Title Papers

Professor Course
provide

Student

supervise

Professor Course

Student

course
providing

supervising

Modeled as

Represented as

Professor

Name: Jack Smith
Degree: Ph.D.
Title: Full Professor
Publication: 5 Journals

Professor
Jack Smith

Course
Programming

provide

Student
Bob

supervise Course
Network

Student
Adam

Instantiated as

Instantiated as

<professor>
 <name>Jack Smith</name>
 <degree>Ph.D</degree>
 <title>Full
 Professor</title>
 <publication>5
 Journals</publication>
</professor>

Jack Smith: Professor
Programming: Course
Network: Course
Bob: Student
Adam: Student
provide(Jack Smith,
 Programming)
provide(Jack Smith, Network)
supervise(Jack Smith, Bob)
supervise(Jack Smith, Adam)

Representation
 for Instance

A

B

C

D

E F

H

G

Peter Ken

Figure 3-10. From real world objects to representations.

66

In reverse, one single representation may mean different things. For instance, in

Figure 3-2, an English world Apple is used as a representation of an entity in an E-R

model. This model actually comes from two conceptualizations, which are

conceptualizing two totally different real world objects respectively.

According to the analysis above, the ideal semantic integration may include four

aspects:

A. Given different instance representations (e.g., A and B in Figure 3-1), discover

whether they are instantiating the same concept model representation (e.g., C in

Figure 3-1). If so, they refer to the same real world object (e.g., H in Figure 3-1).

B. Given different concept model representations (e.g., C and D in Figure 3-1),

discover whether they are representing the same model (e.g., E in Figure 3-1) of some

concept. If so, they refer to the same concept (e.g., G in Figure 3-1).

C. Given different concept models (e.g., E and F in Figure 3-1), discover whether they

are modeling the same concept (e.g., G in Figure 3-1). If so, the two models are

conceptually equivalent.

Apple

Model Level
Apple

Representation Level

Conceptualization Level Apple
 (as Computer Brand)

Apple
(as Fruit)

Real World Objects

Company
provide-product

A

B

C

D

Figure 3-11. From representation to real world objects.

67

D. Given a specific representation (e.g., A in Figure 3-2), identify which model it is

representing (e.g., B in Figure 3-2), then identify which concept (e.g., C in Figure 3-2)

the model is capturing, and finally identify which real world object (e.g., D in Figure

3-2) the concept is conceptualizing.

IX. Schema

Information in computer systems can be viewed as a digital representation of domain

concepts, instances, and relationships. The usages of information systems require that

they have well-defined schemas for information storage and manipulation. A schema

is a representation of a concept model following specific model theory. Schema refers

to the organization of elements in a model theory. For instances, a relational table

schema named “professor” organizes a set of columns in a tabular form representing a

model of the concept Professor, and a XML schema named “professor” organizes a

set of XML tags as another form of representing the same model.

The meaning of a schema is implied in its design and structure through its name,

element names, element features, etc. The meaning of a schema can be determined if

we establish a semantic mapping from itself to a known concept. The mapping should

be explicitly and formally represented to support the processing of semantics. Since

the schemas are one of the major sources of information semantics, this research will

pay special attention to the schemas.

3.1.2 Information Semantics

3.1.2.1 Semantics Fundamentals

Information semantics and semantic integration have become active topics in several

disciplines, such as databases, information integration, and ontologies. Researchers

68

and practitioners have conducted great number of works on semantic integration to

facilitate interoperability between different information systems [Noy, 2004].

According to [Meersman, 1995], semantics refers to a user’s interpretation of the

computer representation of the world – i.e., the way users relate computer

representation to the real world. The ability to incorporate detailed semantics of data

in computers will provide greater consistency in its use, understanding, and

application [Magnini, et al., 2003]. One of the principal benefits of introducing the

semantics is the reduction of human involvement in the process of information

understanding and information integration.

Vetere [Vetere and Lenzerini, 2005] thinks that semantics is a mapping (also known

as “interpretation function”) which involves:

 Expressions: a system of manifested symbols (e.g. a formal language).

 Contents: a system of something else which is not necessarily apparent (e.g.

sets of objects or events in (some abstraction of) the “real world”).

Roughly speaking, semantics refers to “the intended meaning of something”. This

simple definition involves two aspects: what “something” is and what “meaning” is.

“Something” is the abstraction of the external world in human minds, and is expressed

in specific forms such as symbols, formulas, texts, voices, or graphs. Put simply, it

may be concepts abstracted from some concrete objects like trees, animals, cars, rocks,

and persons, or from some logical ideas like time, space, weights, and volumes, or

from some actions like eating, looking, walking, etc. In more complex cases,

“something” can refer to a comprehensive fact composed by concepts and

relationships, such as a statement “Dr. Jackson introduces us to many interesting

topics in ES 250”, as depicted in Figure 3-3.

Dr. Jackson introduces us to many interesting topics in ES 250.

Concept Relationship

Figure 3-12. A comprehensive fact.

69

It is difficult to define “meaning”. As an alternative, it can be interpreted as the

intension of specific concepts, relationships, or comprehensive facts. Their intension

is expressed by some kinds of formalisms that are used to represent the meaning

visually, and is meaningful only after the expressions are understood correctly by

those who read them. In some cases, the reader will be a non-human object like a

computer or a software agent, which is an important research issue in semantic

integration. For example, given an expression (in a specific formalism) that represents

a fact:

 I DB 100

It is certain that very few people are familiar with this expression. Therefore, most

people cannot understand it without any explanation of its semantics. In the computer

programming domain, we can illustrate it with the following expression in another

form, or, we can say that its meaning is:

 int I = 100;

It is reasonable to claim that more people will be able to understand this form. Its

meaning or semantics is trivial for people who are familiar with C, C++, or Java

programming.

We can extend the “path” to interpret the meaning of “int I = 100”. That is to say, we

can explain that its meaning is identical to:

 Dim I as Integer = 100

It is a variable declaration statement in Visual Basic (VB) language. People who are

familiar with VB other than C or C++ can now understand it. For people who are only

familiar with Perl language, another interpretation can be provided further:

 my $I = 100;

70

The semantics implied by these expressions can be further interpreted in a natural

language sentence: define a variable which name is I, type is integer, and initial value

is 100. Note that here we use natural language (which is also a formalism to express

the semantics of something) to explain the meaning of the previous formalisms.

For people who are not familiar with programming but have fundamental knowledge

in computer science, a variable is a storage unit in memory space which is referenced

by its name. For someone unfamiliar with computer science, more details may be

required to explain the semantics of the expressions.

Note that, from the beginning, we are limiting the domain of discourse to computer

programming. In other domains, “I DB 100” may have completely different meanings.

Another key issue to mention is that we suppose that people who have a similar

background and normal intelligence will achieve a common understanding of the

same expression (at least in one specific domain). However, we must be aware that

exceptions exist. For instance, a programmer may consider the expression “int I =

100” in another way, unconsciously or purposely. That becomes more complicated.

We will not consider this exceptional case because it is really not a problem we can

solve and it is very rare. In fact, some research did touch on the topic of discovering

malicious semantics interpretation [Doan and McCann, 2003 and McCann, et al.,

2003], but more work remains to be done.

From the above interpreting process, we can see that semantics in a specific domain

can be represented in some kind of language (or formalisms), and interpreted by other

kinds of languages (or formalisms). Natural language such as English is the ultimate

formalism we use to interpret the intension of something. The continuous

interpretations at different levels form an interpretation chain, as shown in Figure 3-4,

where the same semantics can be interpreted by multiple formalisms, and at each level

some specific formalism is employed to interpret its upper levels and can be most

readable for a specific group of readers.

71

Since, ultimately, all semantics must be interpreted by a specific natural language and

interpretation expressed by natural language can be interpreted in more detailed ways

with the same language, we can assume that there is a level number N in the above

figure meaning that starting from the Nth level, all the lower levels of interpretation

formalisms are natural languages. Note that the reader groups may overlap, i.e., there

are readers (people or machines) who can read and understand multiple levels of

formalisms.

According to the nature of human thinking, we have several conclusions about

semantics:

Conclusion 1: Any level in the interpretation chain is readable for a human. Any

formalism is a kind of explicit representation of semantics in human thoughts. People

create various forms to express the semantics for different goals; therefore people can

understand any of them, although some of them are understandable only by very few

people.

Level 1 Form 1

Level 2 Form 2

Level 3 Form 3

Level N Form N

……

Level N+1 Form N+1

Level N+2 Form N+2

Reader Group 1

Reader Group 2

Reader Group 3

Reader Group N

Reader Group N+1

Reader Group N+2

Semantics

……

Readable for Represent Interpret

Domain

Figure 3-13. A semantics interpretation chain.

72

Conclusion 2: The interpretation chain is infinite. It can grow in both upper direction

and lower direction along with the creation of new representation forms.

Conclusion 3: Reader groups are not totally disjoint. Some individuals may be

familiar with different formalisms.

Conclusion 4: Machines (computers) can be members of some high level groups, i.e.,

the corresponding forms are readable for machines. The levels readable for machines

are limited, although they may extend to lower levels along with the advancing of

machine design.

Our work will focus on machine readable formalisms and semantics.

3.1.2.2 Structural Semantics and Intensional Semantics

In information systems, the semantics of information is implied by data. A data item

has a specific representation formalism, such as number, text, graph, etc. Two aspects

should be considered for any data: structure and content.

A specific representation formalism has a set of structural rules that define what

elements can be contained in this formalism system, how the elements will be

combined to form valid and complex elements, and how to interpret the meaning of

an element or a combined result with both their structures and contents. From this

view, we divide the semantics of data into two categories: structural semantics and

intensional semantics.

A. Structural Semantics

Let’s take a look at a XML document example:
<AutomobileCompany name = “AutoLondon”>
 <Car ID=“001”>
 <Name>Audi</Name>
 <Price>500.00</Price>

73

 </Car>
 <Car ID=”002”>
 <Name>Benz</Name>
 <Price>800.00</Price>
 </Car>
</AutomobileCompany>

There are several structural rules constraining the format of a valid XML document,

for example,

(1) It contains tags defined by users. A tag is a string composed of letters and

numbers.

(2) Tags are included in “<” and “>” brackets.

(3) Tags should appear in pairs. The latter one of a pair must have one symbol “/”

before it.

(4) Under <AutomobileCompany> tag, it is allowed to have one or more <Car>

tag pairs. Under <Car> tag, only one <Name> and one <Price> tag are allowed

to appear.

(5) <AutomobileCompany> tag has an attribute called “name” which value is a

string.

(6) …

According to the nature of XML documents and the goal of this document, many

other rules can be derived. These rules define what elements are contained in this

document and how they can be validly combined. This is a kind of structural

semantics that is used to describe its structure or its “looking”. In many research

contexts, these rules are called “syntax”. Here we didn’t touch any real-world related

meaning of the elements such as “AutomobileCompnay”, “Car”, or “Price”.

74

Structural semantics can be easily understood by machines. Actually, people can

construct compiles or parsers for the machines to handle structural semantics. The

machines can run compiles or parsers and then are able to analyze and validate the

documents by checking whether there is something in the documents violating the

rules. In the past several decades, mature theories, methods, and tools have been

developed to support the manipulation of syntax.

B. Intensional Semantics

Intensional semantics is implied by both the data structures and contents. It is much

more complex than structural semantics, even for humans. Lots of ideas can be

implicated by a target object, say, a document. For example, in the XML document

mentioned above, someone who is familiar with XML may read it and get some ideas

like:

(1) It describes a company that deals with cars.

(2) The name of the company is “AutoLondon”.

(3) The company has a car with ID 001. Its name is “Ford” and its price is 500.00.

(4) …

There are several interesting things in “the meanings of something”. First of all, these

meanings can be guessed and understood by humans, but they are unreachable for

machines. Today’s computers still cannot really understand anything. They can only

deal with binary data according to the rules designed by developers. They really have

no idea about what they are doing.

Second, “the meaning of something” has two levels: one is the schema level and the

other one is the instance level. We may discover the schema level first (here we go

beyond the “rules” of combining these elements to try to discover the “meaning” of

these elements), such as a company that has a name deals with cars and each car in

75

that company has ID, name, and price. In much of the literature, such information is

also called “meta-data”. Meta-data is a type of data where something being described

is data. Or, as it is often put, meta-data is data about data. A strict definition of

meta-data is: meta-data is data associated with objects which relieves their potential

users of having full advance knowledge of their existence or characteristics [Dempsey

and Heery, 1997]. Meta-data is used to facilitate the understanding, use, and

management of data.

Based on the understanding of the schema or meta-data, we can refer to concrete data

to get more knowledge, for example, about the fact that a company named

“AutoLondon” has one car with ID 001, named “Ford”, and priced at 500.00. Another

direction is possible and that is to observe the concrete instances, then extract the

schema to gain an overall knowledge about a concerned topic.

Finally, human understandings are not always correct, and in many cases rather vague

due to the incomplete information. For instance, some details may be omitted in the

document, leading to difficulty in understanding it. Significant ambiguity will affect

our knowledge resulting from our guessing. For example, does the “001” car

represents one individual car or a type of cars? Is the price for purchasing or renting

the car? Is the price in USD or CAD? There is no way to confirm these questions

unless richer information is provided to reveal the semantics of that data.

3.1.2.3 Source of Semantics

The implicit intensional semantics of information can be elicited from three major

sources: the observations of readers, the designer’s knowledge, and the applications.

(1) Observation of readers

76

Some experienced professionals who are trying to guess the information semantics are

able to analyze the underlying data based on their domain knowledge and

experiences. For example, when someone sees the element “Price” he can infer that,

as a usual case, it is a price before tax applied. Unfortunately, such semantics is just a

kind of “guessing result” and is not definitely correct. However, we often adopt it as a

major source since it is the most available and least costly way.

(2) Designer’s knowledge

The designer who creates the above XML document knows exactly the meaning of

each of the data elements. For example, the tag “Price” is for sale, not for renting; the

tag “Name” is for a type, not for an individual car, etc. Documents describing the

designer’s ideas can act as another form of a “designer’s knowledge” when the

designer is not available. Problems of this type of source are that the designer may be

unavailable, or may forget the knowledge after a long time, and the documents may

be incorrect, incomplete, or outdated. All of these situations have a negative impact

on semantics elicitation.

(3) Applications

Applications, or simply, software programs, are designed to manipulate the data in

meaningful ways. People can get knowledge on semantics by reading the programs

and observing their execution (e.g., what input they accept, how they act after that,

and what output they generate). For instance, the following pseudo code (which can

be translated into a real program) handles the XML document with clear goals:
if there is a tag <Price> then

 output “The selling price is ” + string between tags <Price> and </Price>

 return the string to somebody who is asking for the selling price

end if

if there is somebody inquiring price for renting then

 reply “There is no required information.”

end if

77

It is an example of a common practice: data semantics is revealed by the business

logic. Since the program can handle the tags and strings correctly, we say that the

machine is able to understand the semantics of the data when it is running the

program. However, strictly speaking, the machine is still unaware of what “Price” is

and what “500.00” is. At least it is true for all computers in the contemporary era.

Computers cannot understand anything—they just do binary computations according

to pre-designed principles. They cannot think. Therefore, we need a definition for

“machine understanding semantics”: if a machine can manipulate some data correctly

(according to the human’s criteria) with the support of some software application

systems, we say that the machine can understand the semantics of the data.

Since data semantics is in fact handled by software applications, theoretically we can

construct more new applications to deal with any possible semantics, but it is certainly

a very costly way. If an application is designed and constructed to be flexible, it will

be able to handle various cases if new semantics descriptions are provided (that

implies, it “knows” the meaning of different data) without modifying itself or

requiring new ones and hence save investment.

Since any program is written by humans, and the processing logics in the programs

are derived from human thinking, the most original source of any semantics is still the

designer’s knowledge. However, in most occasions, we just interact with computers

and applications, and we don’t have the opportunity to interact with their original

designers. Therefore, we still hold applications in high regard as a major source of

semantics.

3.1.2.4 Semantics Discovery

As mentioned in section 3.1.2.1, specific formalisms are required to represent

semantics. Obviously, semantics that a kind of formalism can represent is limited, and

78

that expressed by a specific representation (e.g., a concrete XML document) is also

limited. The semantics a reader group can understand from that representation is

limited, too. One way to enrich semantics and make implicit semantics more explicit

is adding new elements to a formalism (or data structure), or adding new elements to a

specific representation (or concrete data). As to the former case, research in this area

has called the combination of elements that are used to specify various aspects of the

information a “context” which can serve to describe the concerned information

[Sciore, et al., 1994 and Stuckenschmidt and Wache, 2000]. At a high level, the term

“context” is defined as any information that is useful for characterizing the state or the

activity of an entity or the world in which this entity operates [Dey, et al., 2001]. Any

information must reside in some context and only after the context is clearly declared

can we understand the information correctly and exactly.

Of course, the reader groups need a learning process to understand the new structures

and new instances. To give an example, if we modify the previous XML document to

a new version:
<AutomobileCompany name = “AutoLondon”>

 <Car ID=”001”>

 <CarName>Audi 001</CarName>

 <CarType>Audi A6</CarType>

 <Price>

<Selling>20000.00</Selling>

 <Renting>500.00<Renting>

</Price>

 </Car>

</AutomobileCompany>

With more elements contained in the schema of this XML document and richer texts

embedded in the document itself, people now can get a more exact understanding of

its semantics. For example, the price includes two categories: selling and renting. The

relevant applications are required to be rewritten to involve more logic to express

their “understanding” and utilize the new semantics. It can be regarded as a learning

79

process by machines. Only after people understand its semantics and enable

applications to handle the semantics correctly can we say that the applications

“understand” the new semantics.

But there is more. What if we want to know more about the company, such as, is the

rental price for one year, or one month? Does the selling price contain tax? The

current version of the document does not provide enough clues for these questions.

More tags and contents need to be added to it to express these new semantics.

Let’s have a look at another example where the original data is kept unchanged (in the

XML example new data is added to the original one to express more semantics), but

only semantics related information is appended. Suppose we have a sentence stating

one fact:
The first topic of Wireless Sensor Networks is a general introduction about this field.

Based merely on this sentence we have no idea about whether the term “Wireless

Sensor Networks” is about a speech or a course. If the course option is what the author

means, adding some description information (in XML-tag style) will be helpful (this

method is also called “annotation” [Ovsiannikov, et al., 1998]):
The first topic of

<course ID=”ES 695” department=”ECE” level=”Graduate”>

Wireless Sensor Networks

</course>

is a general introduction about this field.

An application designed for the purpose of course management knows the semantics

of the tags, the extra information, and the term itself, therefore it can handle the

course “Wireless Sensor Networks” perfectly. What if we want to know more about

“topic”, or “general introduction” in the original sentence? What if we want to know

more about the “ECE Department”, or the “Graduate Level”? There is no doubt that

more information is required to be added to help discover the new semantics. In short,

semantics discovery is an infinite process of digging meanings from the raw data.

80

3.1.3 Semantic Heterogeneity

Semantic heterogeneity occurs when the same real world entity, modeled by two or

more people, does not have the same modeling or representation [Hess and Iochpe,

2004]. Since the models or representations are independently developed, they often

have different structures, terminologies, or even interpretations, presenting an obvious

obstacle for interoperation of the models in a semantically reasonable way.

Some attempts have been made to characterize information heterogeneity in terms of

conflicts that can occur on the structural and the semantic level. Research to date has

identified a number of factors contributing to information heterogeneity, irrespective

of the subject domain. One of the latest and most complete classifications of different

kinds of conflicts can be found in [Wache, 2003].

According to the classification proposed in [Goh, 1997], there are three types, each

with further subdivisions, which are schematic, semantic and intensional

heterogeneities (that can result in data conflicts). A detailed list of the three types is

shown below:

 Schematic

 Data type, the most obvious one being numbers as integers or as strings.

 Labeling, only the strings of the concept names differ but not the

definition. This also includes labeling of attributes and their values.

 Aggregation, e.g. organizing companies by locations or type of

industries.

 Generalization, e.g. an entity type Employee in one model and in another,

there are Faculty and Staff.

81

 Semantic

 Naming, includes problems with synonyms (same concept with different

terms, e.g. maize and corn) and homonyms (same term with different

semantics, e.g. worm as animal, as muscle under tongue and as infection

in computers) of concepts and their properties.

 Scaling and unit. Scaling: one system with possible values white, pink,

red and the other uses the full range of RGB; units: metric and imperial

system.

 Confounding, a concept that is the same, but in reality different;

primarily has an effect on the attribute values, like

latestMeasuredTemperature, which does not refer to one and the same

over time.

 Intensional

 Domain: when two systems represent different knowledge. For example,

one can model a flower being composed of a petal, leaves and so forth

from a biology perspective, but also from a utilitarian perspective

(sellable, the related logistics system).

 Integrity constraint: the identifier in one model may not suffice for

another, for example one animal taxonomic model uses an

(automatically generated and assigned) ID number to identify each

instance, whereas another system assumes each animal has a distinct

name.

Heterogeneity is also referred to as mismatch in some literature. The mismatches can

be distinguished at two levels: the language level and the model level [Klein, 2001].

The language level is related to the representation of the ontologies, i.e., different

constructs, syntax, and semantics of the languages. Mismatches at the language level

82

are those between the mechanisms to define concepts, relations, and so on. The model

level, also called ontology level, is a difference in the way the domain is modeled.

The distinction between these two levels of differences is often made. In [Kitakami, et

al., 1996] and [Visser, et al., 1997] they are called non-semantic and semantic

differences, respectively.

The following is a framework of different types of mismatches that appear at each of

the two levels.

 Language level mismatches. Mismatches at the language level occur when

ontologies written in different ontology languages are being integrated.

Chalupsky defines mismatches in syntax and expressivity [Chalupsky, 2000].

They can be further distinguished into four types:

 Syntax. Different ontology languages often use different syntaxes in terms of

how the language constructs can be validly connected. For example, in RDF

Schema the concept “Human” is defined as <rdfs:Class ID=”Human”> and

in LOOM the expression (defconcept Human) is used to define the same

class.

 Logical representation. Different logics can be used to represent the same

semantics in the ontologies. For example, in some languages it is possible to

state explicitly that two classes are disjointed (e.g., disjoint A B), whereas it

is necessary to use negation in subclass statements (e.g., A subclass-of

(NOT B), B subclass-of (NOT A)) in another language. The point here is

not whether something can be expressed—the statements are logically

equivalent—but which language constructs should be used to express

something.

 Semantics of primitives (language constructs). Sometimes the same name is

used for a language construct in two languages, but the semantics may differ.

For example, the OIL RDF Schema syntax [Broekstra, et al., 2001] interprets

83

multiple <rdfs:domain> statements as the interaction of the arguments,

whereas RDF Schema interprets it as a union.

 Language expressivity. This difference implies that some languages are able

to express things that are not expressible in other languages. For example,

some languages have constructs to express negation, sets, or defaults, but

others do not.

 Ontology level mismatches. Mismatches at the ontology or model level happen

when two or more ontologies that describe (partly) overlapping domains are

combined. These mismatches may occur when the ontologies are written in the

same language, as well as when they use different languages.

 Conceptualization. Visser et al. [Visser, et al., 1997] defines the

conceptualization mismatch as a difference in the way a domain is interpreted

(conceptualized), which results in different ontological concepts or different

relationships between those concepts due to different interests. For instance,

in the education domain one may model from the university’s perspective and

another one concerns the professor’s perspective, thus different concepts sets

will be derived. [Visser, et al., 1997] makes a distinction between mismatches

in the conceptualization and explication of the ontologies. An explication

mismatch is a difference in the way the (same) conceptualization is specified.

The following ontology level mismatches are categorized as explication

mismatches by Visser et al.

 Modeling paradigm. This mismatch refers to the fact that different

paradigms can be used to represent concepts such as time, action, plans,

etc. For example, one model might use temporal representations based on

interval logic while another might use a representation based on a point

[Chalupsky, 2000].

 Concept description. This type of differences is called modeling

84

conventions in [Chalupsky, 2000]. Several choices can be made for the

modeling of concepts in the ontology. For example, the way in which a

hierarchy is built may be different. Considering the modeling of scientific

and non-scientific publications, a dissertation can be modeled as

publication scientific publication book dissertation, or as

publication book scientific book dissertation, or even as a

sub-concept of both book and scientific publication.

 Synonym terms. Concepts may be represented by different names. A

trivial example is the use of the term “car” in one ontology and the term

“automobile” in another. This type of problem is also called a term

mismatch [Visser, et al., 1997].

 Homonym terms. The meaning of a term is different in another context.

For example, the term “conductor” has a different meaning in a music

domain than in an electric engineering domain. Visser et al. also call this

a concept mismatch.

 Encoding. Values in the ontologies may be encoded in different formats.

For example, a date may be represented as “dd/mm/yyyy” or as

“mm-dd-yy”, distance may be described in miles or kilometers, etc. To

solve these mismatches, a transformation step or wrapper is usually

required to eliminate the difference.

 Scope. Wiederhold [Wiederhold, 1994] describes possible differences in the

scope of concepts, which is a type of conceptual mismatch. It refers to the

fact that two concepts seem to be identical but do not have exactly the same

instances, although these intersect. An example is the class “employee”;

several administrations use slightly different concepts of employee.

 Model coverage and granularity. This is a mismatch in the part of the domain

that is covered by the ontology, or the level of detail to which that domain is

85

modeled. An example presented in [Chalupsky, 2000] is about cars: one

ontology might model cars but not trucks, and another one might represent

trucks but only classify them into a few categories, while a third one might

make very fine-grained distinctions between types of trucks based on their

general physical structure, weight, purpose, etc.

The ontology level mismatches cannot be solved easily. For instance, it is difficult to

find the terms that need to be aligned. This task is mostly done by hand [Noy and

Musen, 2000], which requires knowledge and the decisions of a domain expert.

Therefore, it is unrealistic to hope that mapping at the ontology level could be

performed completely automatically.

Information heterogeneity has a direct impact on the interoperability of multiple

information systems. Researchers and developers have been working on

interoperability issues for many years. The following Figure 3-5 shows one

perspective on resolving heterogeneity to achieve interoperability [Sheth, 1998].

Focus on the crucial dimension of heterogeneity and corresponding solutions leads to

different levels of interoperability: system (mainly due to technological differences,

e.g. differences in hardware, operating systems, and communication systems), syntax,

structure, and semantics [Hamill, et al., 1997].

Information Heterogeneity
Semantic Heterogeneity
Structural, Representational/Schematic Heterogeneity
Syntactic, Format Heterogeneity

Semantic Interoperability
Structural Interoperability
Syntactic Interoperability

System Heterogeneity
Information System Heterogeneity

 Digital Media Repository Management Systems
 Database Management Systems (heterogeneity of
DBMS, data models, system capabilities such as
concurrency control and recovery)
 Platform Heterogeneity
 Operating System (heterogeneity of file systems,
naming, file types, operation, transaction support,
IPC)
 Hardware/System (heterogeneity of instruction set,
data representation/coding)

System Interoperability

Figure 3-14. A perspective on resolving heterogeneity to achieve interoperability [Hamill, et al.,
1997].

86

3.1.4 Semantic Integration

3.1.4.1 Semantic Integration Fundamentals

Semantic integration has been a hot research topic for many years. One of its goals is

to support interoperability among information systems. Multiple descriptions about

the term “semantic integration” have been developed.

Taking human conversation as an example, the heart of the semantic integration

problem is how to tell when two statements are about the same subject [Newcomb,

2003]. In some communities, this is known as the co-referencing problem.

[Newcomb, 2003] proposes a methodology for semantic integration. The problem that

the methodology addresses is the combining of multiple independently conceived

representations of networks of subjects and relationships, with their separate, partially

redundant proxies for the same subjects, in such a way that for each subject there is

only one proxy, but no information has been lost. In this statement a proxy can be

understood as a concrete representation of a subject. The methodology’s definition of

semantic integration is subject proxy uniqueness.

According to Vetere et al. [Vetere and Lenzerini, 2005], semantic integration has to

resort to conceptual mappings that make different data/process descriptions

equivalent, either pair-wise or with respect to some (partial) unifying ontology.

The conceptual mappings can be [Vetere and Lenzerini, 2005]:

 Any kind of XML transformation rule (e.g. XSLT 13);

 Specific assertions of ontology languages (e.g. OWL’s sameClassOf);

 Named views in database federations.

13 http://www.w3.org/TR/xslt

87

In general, schemas of various information sources are heterogeneous, i.e.

semantically related concepts are captured by different local schemas in different

ways, e.g. using different names or different structures. Mendling et al. believed that

discovering semantic relationships such as equivalence, subsumption, intersection,

disjointedness, and incompatibility between concepts of local schemas plays a central

role for semantic integration [Mendling, et al., 2005].

Semantic integration is highly domain-dependent. It is widely agreed that domain

knowledge is extremely crucial for solving the heterogeneities. The domain

knowledge is also very application-specific. For a complex integration system, it is

difficult to acquire and use all relevant knowledge. Therefore, usually

application-specific domain knowledge will be captured and modeled to support the

integration task.

3.1.4.2 Different Views on Semantic Integration

In the following we propose a classification for semantic integration.

A. Structural View

In the structural view, we focus on the structural semantics of data. This perspective is

not included in the conventional theory system about semantic integration, but we still

include it to make the discussion complete.

(1) Elemental data level

Semantic integration may take place at various levels. The lower level is the elemental

data level. As a case, taking the number system into account, the binary data

“00001110”, decimal number 14, string “14”, and English word “fourteen” are

different in representation and internal storage, but they refer to the same value

regardless of what this value refers to. Therefore, they have the same semantics in

88

terms of the value of an elemental data item. Semantic integration at this level

requires data handlers to identify and maintain such equivalence. Data heterogeneity

at this level has already been well managed by operation systems, network protocols,

applications, etc. Therefore, these values can be handled consistently and correctly in

most occasions.

(2) Structure level

The higher level is the structure level. A structure has multiple members possessing

rich semantic information. It may be an object, a class, a database table, a document,

etc., in terms of the representation format. Let’s have a look at the previous XML

document (in section 3.1.2.2), and another relational table:
CompanyName CarID CarName Price

AutoLondon 001 Audi 500.00

People who are familiar with both formats will understand their identical meaning,

although necessary transformation for the formats is needed when these two

representations are manipulated by specific applications. In this example, the XML

schema is by nature equivalent to the relation schema (or the table), i.e., one tag of the

XML document is equivalent to one column of the table, and one instance block of

the XML document is structurally equivalent to one row of the table (as shown in

Figure 3-6), no matter what the elements really mean. Semantic integration at this

level requires structure handlers to identify and maintain the relationships among the

representations (both schema and data instance) in an appropriate way.

B. Semantic View

The structural view described above is helpful for understanding semantic integration.

As far as solving this problem in the computation field, another view, the semantic

view, is preferable. The semantic view can be further divided into data level, concept

level, and knowledge level.

(1) Data level

89

At the data level, we are concerned with the equivalence of data from different

concepts. Note that it is totally different from the elemental data level described

earlier because here we take the meaning of the data into consideration.

At the elemental data level, the information systems may maintain the equivalence of

“five hundreds” and “500” from different data sources in terms of their value without

considering their meaning. Things are much more complicated at the data level. As an

example, if we find two prices from both the XML document and the database table

with the same number: 500.00, the data level has to determine whether they refer to

the same money. The answer is not definite. If one is in USD and the other one is in

CAD, apparently they are not referring to the same money. Note that here we are

considering the application domains and semantics in the domains.

Another interesting example is that in some classifying systems, if we have rank 1, 2,

3, 4, and 5, then 1 is the best one and 5 is the least one. However, in some other

systems where rank 1, 2, 3, 4, and 5 are also employed, 5 is the best one and 1 is the

least one. Therefore, when we get the same number from two classifying systems

(from the elementary data view the two numbers are identical), things will go wrong

if we regard them as the same rank. Even if we use the same order for the numbers,

what if one system has 5 ranking numbers but another one has only 3 ranking

500.00 Audi 001 AutoLondon

PriceCarNameCarIDCompanyName

<AutomobileCompany name = “AutoLondon”>

 <Car ID=”001”>

 <Name>Audi</Name>

 <Price>500.00</Price>

 </Car>

Figure 3-15. Structural mapping between XML document and relational table.

90

numbers? The same number from two systems may imply the similar ranking position

but not exactly the same position, therefore inconsistency appears.

The most complicated case may be the following one: two systems use the same way

to describe data in the same domain, but the same data is still referring to different

entities. For example, it is possible that we have a company “AutoLondon” from the

XML document and a company “AutoLondon” from the database table. Even the

mapping is one to one and the company name is totally identical, it is still possible

that they represent different companies, e.g., one company from London in Canada

and one from London in the UK. Therefore, we cannot integrate these two items

simply. In distributed information retrieving, if we retrieve names of companies that

sell cars from multiple information sources and get the two results, we should not

merge them into one item, otherwise inconsistency will occur. This example shows

that there is almost no way to distinguish them by the computers themselves without

any human intervention if there is no sufficient context knowledge.

(2) Concept level

The concept level focuses on the mappings between different information

representation formalisms according to their meaning in terms of concept references.

For instance, we described the case of car-selling companies earlier, where an XML

document and a database table are used to describe the same facts for different

applications. A concept mapping determines that the tag <AutomobileCompany> and

its property “name” in XML are mapped to the column “CompanyName”, i.e., they

refer to the same unique subject. Therefore, if we find one company with a specific

name, say, A, in the XML document and one row in the table which value in the

column “CompanyName” is also A, then we can infer that they are implying the same

company. Note that here we have an assumption about the uniqueness of the company

names. If this assumption does not hold, things will go wrong if we regard two

companies with the same name as the same company.

91

The concept level looks similar to the structure level, but there are differences. As for

the car-selling example, the structure level just defines that one column in the table

can be matched to one tag in the XML. Only the concept level can determine which

column is matching to which tag and why, based on the domain semantics, as

depicted in Figure 3-6.

As regards the XML document mentioned in 3.1.2.4, since there is no way to map the

tags <Price>, <Selling>, and <Renting> to anything in the relational table, the

integration of price related information is impossible unless new columns are added to

this table.

Two facts are important since they can cause confusion: the same name is used for

different concepts and different names are used for the same concept. For instance,

people often use “Address” and “Location” in different applications, but in most

instances they are usually the same thing. Besides, “Category” may be used

differently to describe whether a course is for undergraduate students, graduate

students, or both of them, whereas in other applications, it may be used to describe

whether a course is project-based, thesis-based, or exam-based.

(3) Knowledge level

The highest level is the knowledge level. At this level, people do not care about the

formal representation or data structure of knowledge, but only the knowledge itself.

Since any knowledge outside of human thought needs some kind of representing

formalisms (in the human brain, knowledge may be stored in a specific structure

which is still unknown today. It is not taken into account in the computation field), so

let’s suppose that we use natural language to specify knowledge. For example,

application A generates “today’s weather conditions”, and if application B can

understand A’s knowledge, B will go to fetch “today’s weather conditions” from A

and display it to the public in some visual way. Here “today’s weather conditions” is

high level knowledge with rich semantics. It is easy for people to imagine and reason.

92

However, it is hard for computers to understand unless very definite formal

specifications are provided, e.g., the weather can be specified by wind, temperature,

and rain conditions; the wind condition can be specified by wind speed and wind

direction, and the wind speed can be specified by how many miles per hour, etc. An

ideal semantic integration should provide such a knowledge-level view to humans.

However, this is really very hard to achieve. Note that undoubtedly, computer

readable data representations or data structures are definitely required if we intend to

develop applications to achieve this objective to some degree.

3.1.4.3 Conceptual Difference of Several Terms

Three terms about integration are used in various situations: data integration,

information integration, and semantic integration. In the most general sense, they can

be regarded as referring to the same subject. However, they can be further

distinguished in different communities.

Data integration and information integration are basically the same thing. The term

“Data Integration” is most often used in database and data-warehouse applications,

focusing on merging multiple data sources (databases) into an integrated one,

including database schemas and data contents, e.g., tables and rows in tables in

relational databases [Hai, 2005]. It concerns the data itself, and the integration result

is usually one physically independent object, such as one database. In some research,

no final integrated data is created but only mappings between schemas are created and

maintained [Rahm and Bernstein, 2001].

One of the major data manipulating mechanisms used in data integration is the

calculation-based comparison. For example, in the following tables among which A, B

are inputs of integration and C is the result, if we have mappings A.Name = B.Type,

A.Price = B.Selling-Price, (A. Name, B.Type) = C.Car-Type, and (A.Price,

93

B.Selling-Price) = C.Car-Price, then based on an equivalence comparison (more

complex calculations may be necessary in other cases) we will know that Ford is

redundant in A and B, therefore only one of them is kept in the result C. Moreover,

Audi and BMW should be added to the result C.
Table A

Name Price

Audi 10000.00

Ford 15000.00

Table B

Type Selling-Price

BMW 20000.00

Ford 15000.00

Table C

Car-Type Car-Price

BMW 20000.00

Ford 15000.00

Audi 10000.00

Sometimes the term “Information Integration” is used separately if one tries to

emphasize the intended meaning of the data [Doan, et al., 2003] (a commonly used

definition says information is data with meaning), so we shift to the concept of

semantic integration. Today, semantic integration is mainly focusing on integrating

multiple information sources and presenting users with a logically unique and unified

“information source”, while keeping the source still separate and no physically

integrated schema/ontology is created. One of the often used manipulation

mechanisms in semantic integration is logical-based reasoning. For example, if we

have a knowledge item “Apple is-a-kind-of Fruit” in source A and another item “Fruit

is-a-kind-of Plant” in source B, then the integrated result may contain an item “Apple

is-a-kind-of Plant” that is derived by logical reasoning. This example also shows that

logical reasoning is one of the important mechanisms used in semantic integration.

What we need to clarify is that we cannot entirely separate these various terms.

Actually, they are closely related to each other. Since data (information) integration

94

also needs the support of data semantics, we can regard it as a special case of

semantic integration, especially in the database community. On the other hand, many

methods and systems that have been explored over the past many years on data

integration are also helpful for the research of semantic integration. For instance,

schema matching developed in data integration now plays an important role in

semantic integration.

3.1.4.4 Semantic Integration at the Application Level

When information systems (computer applications) need to collaborate and exchange

information, semantic integration at the application level should be considered to

support the task.

The key concern in semantic integration is how to make different applications

understand, communicate with, and cooperate with each other. From the architectural

perspective, three kinds of methods can be employed to achieve this goal.

(1) Pre-designed interface and information flow

This is fairly common in traditional software development, where a complete concept

system (may be implicit) is established first, which provides different components of

the architecture a common understanding for the domain of discourse. Based on the

shared concepts, the interfaces and information flows for the components are

thoroughly determined, therefore each component knows exactly what information it

will receive, who will send it information, what the received information means, what

information as a result should be sent out by itself after it does some operations on the

received information according to its internal business logic, and whom to send.

95

The following figure shows an architecture example, where each component is an

executable unit (with the necessary supporting environment) such as class,

sub-procedure, program package, Web Service, or even independent application.

In such architecture, remarkable human intervention is required when knowledge and

business are subject to change. Data structures may be re-defined, interfaces and

information flows may be modified, programs may be rewritten or new programs

need to be added.

(2) Interact with standard interfaces

This is a popular method in today’s software development. A typical example is Web

Service. In such architecture, a “central” component provides specific services

through standardized interfaces. The service is designed based on pre-defined rules

and requirements. It does not care who will use the service and how they will use it.

Other components know exactly what the services mean, the semantics of the

exchanged information, and the definitions of the interfaces, so they can access the

services via standard calls, and get information returned that they need. In some cases,

other components may need to access a registration center to discover the

characteristics of the services (like looking up telephone numbers from the yellow

pages). The following is an example of this architecture:

A B

C
D

E

Figure 3-16. Pre-designed interface and information flow.

96

In such architecture, components can join or exit freely, which will never affect the

functionality of the entire system as long as the services keep working. Human

intervention can be reduced significantly. Only configuration specifications for the

service side (server) and parameter settings on the accessing side (client) are required

(here we do not consider the workload of developing the client components

themselves). Any change in one client component will never have any impact on

others. Flexibility and extensibility of the whole system are well supported.

(3) Establish interaction between anonymous components

This is an ideal status. In this architecture, no predefined interfaces and information

flows are required. The system works based on its member components automatically

finding other services, understanding them, and making use of them. In the following

sample architecture, there is no central role and the curved arrows represent automatic

interactions among components without human intervention. For example, an

application needs to find the lowest price for a specific type of car for a customer

through the Internet, and it will try to contact websites that offer the price information

(the websites are changing, e.g. new ones coming and old ones stopping running),

gather information, sort them, then determine the result and return it to the customer.

This scenario depends heavily on semantic descriptions provided for each system’s

information. The interactions occur in an arbitrary manner.

Service

A

D

C

B

Figure 3-17. Interact with standard interfaces.

97

It looks like a kind of peer-to-peer system but it's not the same. In a typical

peer-to-peer system, the interfaces and semantics of information exchanged among

peers are strictly determined before the system starts working. What makes such

systems flexible is that they allow any peer to join freely to provide service or exit

freely at any time without crashing the systems. However, what we emphasize in a

semantic integration problem is that there is no pre-defined interface and information

semantics.

Actually, to make such systems work, initial human interventions are still required,

but it can be minimized. For example, if A needs to interact with B, only very basic

information like the IP address and port number of B should be provided by

developers or users. Then, A will intelligently discover the semantics of the services

provided by B, learn the manner to communicate with B, and cooperate with B to

carry out some tasks. Note that in this case some common agreements are still

necessary for the components to understand each other, such as some basic definitions

for the concepts and business logics in a specific domain.

The mechanism discussed above looks like UDDI 14 . However, there are still

differences. Traditional UDDI technology focuses on a standard interface definition.

From the definition the applications can only get to know how to invoke a service.

The semantics of the service itself, the invoking parameters, and the returned values

14 http://www.uddi.org/pubs/uddi_v3.htm

A

B

E

C

D

Figure 3-18. Establish interaction between anonymous components.

98

remain unaware for the applications. Human interventions are required to interpret the

service and develop applications that really “understand” the semantics.

The interactions between applications require a supporting environment, which tries

to eliminate semantic conflicts, facilitate converting the information with semantics

outside of the applications and minimize the possible modification to them. From the

viewpoint of implementation, we have to develop a semantic integration mechanism

that is accessible for all applications, as shown in the following figure:

The rectangle between A and B acts as a translator to execute the necessary

conversion for the input and output of A and B based on their semantics. The simplest

case is, if A output speed data in Miles/Hour, and B can only receive a speed data in

Kilometers/Hour, then the translator will do the calculation on the exchanged data to

integrate semantics of A and B. Both A and B don’t need any modification to

themselves.

3.1.4.5 Information Context and Semantic Integration

Context plays an important role in information exchange and semantic integration.

According to the American Heritage Dictionary, context is (1) the part of a written or

spoken statement in which a word or passage at issue occurs and that often specifies

its meaning; (2) the circumstances or situations in which a particular event occurs.

Semantic Integration
Infrastructure

D B A C

Figure 3-19. Infrastructure for semantic integration.

99

Context information [Goh, et al., 1994] of a subject contains information concerning

its meaning made by the person or organization owning this subject, and provides the

basis for determining the relationships between the subject and the real world aspects

it describes. In most cases, the context information is given only implicitly, i.e., it is in

the minds of the responsible designer, is specified in textual documentations not

available externally, or is reflected in the local applications operating on the

corresponding information [Bornhövd, 1998]. The context information is usually lost

when information is exchanged across organizational boundaries, and thus, should be

made available explicitly as some kind of meta-data.

Therefore, when processing specific information, the statements we make are usually

imprecise and they can become correct and meaningful only if they are understood

with reference to an underlying context which embodies a number of hidden

assumptions. This anomaly is amplified in databases due to the gross simplifications

that were made in creating a database schema. For example, a database may contain

the schema

 Employee

Name: string

Salary: decimal

and a record (Tom, 2000). Without explaining what “2000” means (the attribute name

“Salary” provides some semantics but not enough), e.g., what currency and

scale-factor is used, what is the periodicity (daily, weekly, or monthly wage?), or

what constitutes the person’s salary (does it include year-end bonuses? What about

the overtime pay?), we cannot get the accurate and correct understanding about this

number.

In information systems, the context of information can be:

 Broad sense: anything other than the concept itself can be its context. For

example, in a semantic network, all elements other than the concept consist of

100

its context. In this sense, if we have two representations r1 and r2 but don't

know their semantic relationship, context may provide some help. For instance,

assuming that we know their context c1 and c2, and we can understand c1 and c2,

it is possible to derive some semantic relationships between r1 and r2. For

example, using a rule “if the contexts of two representations are equivalent,

then the two concepts are possibly equivalent”, we can infer that r1 and r2 are

equivalent.

 Narrow sense: a specific structure that provides an environment to enrich the

semantics of a concept. For example, two money amounts: 500 and 500 cannot

be determined equivalent to each other with merely the number. Given that we

established context for them:

A. 500 (context: currency = USD scale = dollar)

B. 500 (context: currency = CAD scale = cent)

we know that A and B are not equivalent. Differently, given that we have the

following context:

C. 500 (context: currency = USD scale = dollar)

D. 550 (context: currency = CAD scale = dollar)

we know that C and D refer to the same money (assuming that the exchange

rate between USD and CAD is 1:1.1).

3.1.4.6 Ontology-driven Semantic Integration

In chapter 2 we presented some descriptions for ontology-driven semantic integration

appearing in literature. In this section we further clarify this term.

The term “ontology-driven semantic integration” is often mentioned together with

another term “ontology integration”. In the ontology-related research, the term

“ontology integration” means anything ranging from combining, merging, using,

mapping, matching, aligning, extending, approximating, unifying, and more.

101

Sometimes these terms are used in an interchangeable manner as if all are synonyms.

Actually there are minor differences between these terms if we dig deeply into their

meanings. One common point for these terms is that all of them specify some kind of

actions or operations on a set of available ontologies. In other words, they focus on

the ontologies themselves. As a simplified understanding, ontology integration can be

viewed as a process of building a new ontology reusing other available ontologies. To

achieve this goal, the relationships such as equivalence and specialization between

concepts within different ontologies should be identified by mapping, matching, or

aligning.

Ontology-driven semantic integration focuses on semantic integration but uses

ontologies as a vehicle of information semantics. An ontology can work as a vehicle

since it specifies the semantics through certain structures under a given ontological

commitment in a formal and explicit manner. Ontology-driven semantic integration is

a mechanism to integrate information at the semantic level using the semantics carried

by ontologies. Its purpose is to integrate information instead of integrating the

ontologies. It is true that to achieve the integration some concepts and methodologies

applied in ontology integration should be adopted, such as mapping, matching, or

aligning the concepts.

There is one example that can show their difference well. Assuming that there are two

ladders, one can find various ways to connect them into a higher one. This is like

ontology integration. It is assumed that one needs to climb to the roof of a house and

there are two ladders which heights are just half of the height of the house. Now the

purpose is to climb to the roof, not connecting the ladders. But one needs to connect

the ladders before the purpose can be achieved. Here the ladders are the vehicle for

the purpose. The purpose is not connecting ladders but one still needs to use some

methods to connect them. This is like ontology-driven semantic integration.

102

3.2 A Framework for Semantic Relationships

In the research of ontology integration, the term “semantic relationship” has two

meanings, one is the relationships between concepts within an ontology that specify

the semantics of concepts, e.g., Teacher instructs Course, and the other is the

relationship between elements from different ontologies, e.g., Faculty in Ontology 1 is

equivalent to Professor in Ontology 2. In this research we take the second meaning.

A framework about what types of semantic relationships there are between different

ontologies is necessary to design the semantic integration mechanism. In the

following we examine two proposals.

[Li, et al., 2005] establishes a framework for semantic relationships based on concepts

and their properties. In the ontology context, a concept has a set of properties that

describe its characteristics, and usually has an identifier property that distinguishes

each instance from others. It is feasible to compare two concepts by looking at the

identifiers as well as other properties.

[Li, et al., 2005] establishes three types of mutually exclusive semantic relationships

between existing concepts from different ontologies. We assume that ontology Oi and

Oj are in the same domain (i, j ∈ N, where N is the set of natural numbers). Ci(Oi)

denotes the set of all concepts within Oi. ci and cj are two concepts from the two

ontologies, ci ∈Ci(Oi) and cj where cj ∈ Cj(Oj).

Equivalent: two concepts are semantically equivalent, if ∃ ci, cj, s.t. ci ∼ cj. Namely,

these two concepts: (1) have the same denotation names which have the same

meaning; (2) are synonyms (two different words that can be interchanged in a

context); or (3) their properties are the same or largely overlap.

Inclusive: two concepts are semantically inclusive, if ∃ ci, cj, s.t. ci≤cj (e.g., ci is a

kind of cj, or, ci is a specialization of cj) or ci ≥cj (e.g., cj is a kind of ci, or ci is a

generalization of cj). Namely, the properties of one concept are also the properties of

103

the other. The specialization relationship is also referred to as a hyponym, which is a

word that is more specific than a given word. The generalization relationship is

referred to as a hypernym, which is a word that is more generic than a given word.

Disjoint: two concepts are disjoint, if ∃ ci, cj, s.t. ci ∩ cj = ∅. Namely, there is no

common property between them.

Bouquet et al. [Bouquet, et al., 2003] identified five types of semantic relationships:

equivalent to, less general than, more general than, compatible with, and incompatible

with.

We adopt a framework proposed in [Rizopoulos, 2004] which includes five types of

relationships to describe how two concepts from different sources are related to each

other. The framework takes instances of concepts into consideration. We use Dom(C)

to denote the domain of a concept C, i.e., the set of all possible valid instances of C.

The types are:

(1) Equivalence: Two concepts C1 and C2 are equivalent, denoted as C1 ≡ C2, if and

only if

Dom(C1) = Dom(C2).

(2) Subsumption: Concept C1 is a child concept of C2, i.e. C2 subsumes C1, denoted as

C1 ⊂ C2, if and only if Dom(C1) ⊂ Dom(C2).

(3) Intersection: Two concepts C1 and C2 are intersecting, denoted as C1 ∧ C2, if and

only if

 Dom(C1) ∩ Dom(C2) ≠ ∅, Dom(C1)⊄ Dom(C2), Dom(C2)⊄ Dom(C1), and ∃C:

Dom(C1) ∩ Dom(C2) = Dom(C).

(4) Disjointness: Two concepts C1 and C2 are disjointed, denoted as C1 ∨ C2, if and

only if

 Dom(C1) ∩ Dom(C2) = ∅, and ∃C: Dom(C1) ∪ Dom(C2) ⊆ Dom(C).

104

(5) Incompatibility: Two concepts C1 and C2 are incompatible, denoted as C1 ⊥ C2, if

and only if

 Dom(C1) ∩Dom(C2) = ∅, ¬∃C: Dom(C1) ∪ Dom(C2) ⊆ Dom(C).

The framework is defined based on concepts instances. By instance we mean two

aspects: the first one is the actual entities existing in the world, either physically (e.g.,

a person, a car, or a dog) or abstractly (e.g., weight, height, or time), and the second

one is the digital representations of the actual entities in information systems. In the

information system context, what we manipulate is just information represented

digitally but not the actual entities, therefore we merely focus on the digital

representations. Furthermore, it is impossible to enumerate all instances of a concept

(even the digital representations) and compare them with instances of another

concept. Therefore, we mainly work on the analysis of the representations of the

concept models that abstract and specify the concepts themselves and try to discover

relationships among these model representations.

We focus on the equivalence relationship. At the concept model level, one of the

challenges to solve is: given different representations of concept models from

multiple sources (information systems), discover whether they are referring to the

same concept model. For example, a relational table schema in a relational database is

a representation of a model, which is modeling a specific concept following the

relational model theory. In a distributed environment, given some table schemas from

various sources, they may have different table names, different column numbers and

different column names, but it is possible that they are representations of the same

model for a specific concept. This idea is illustrated in Figure 3-1 (section 3.1.1), i.e.,

given C and D, answer the question that whether they both represent the same model

E (Frame Model 1).

In Figure 3-1 we illustrate a concept Professor as well as other concepts Student and

Course associated through some semantic relationships. From a more general point of

view, in this Figure C, D, and E (each one is an object that we deal with) also have

105

semantic relationships, e.g., C represents E and D represents E, therefore C is

equivalent to D, or, if we use a name to identify the model representation, Professor

is equivalent to Prof.. This relationship can be extended to the property level, i.e.,

Professor.Name (denotes the Name property of Professor) is identical to

Prof..Name, and Professor.Publication is identical to Prof..Papers. Such

relationships are useful for exchanging information between systems. For instance,

after identifying that Professor is equivalent to Prof., it is possible to convert an

instance representation of Professor to the one of Prof. while preserving the

information semantics.

Besides the equivalence relationship which is defined at the concept level, another

type of relationship which is defined at the property level, namely functional

relationships, is also important for information exchanging while preserving

semantics. Given two concept model representations R1 and R2 that are representing

the same concept model, P1 and P2 are property sets from R1 and R2, a functional

relationship f between P1 and P2 is a function that matches P1’s instance values to P2’s

instance values through some functional operations, such as mathematical

computations or string processing. A common example is the person name, for

example, in a table T1, a column Name represents the full name of a person, but in

another table T2, two columns First_Name and Last_Name are used to represent the

full name jointly, therefore a functional relationship is defined for T1 and T2 in the

form of f: T1.Name = concatenate(T2.First_Name, B.LastName) , where

concatenate represents a string operation.

3.3 Ontology and Ontological View

As discussed in chapter 2, ontology-driven semantic integration is one of the solutions

for the semantic integration problem. The traditional solutions are based on available

ontologies. Ontology integration can be applied by discovering semantic

106

correspondences among a set of formal ontologies and, sometimes, creating a more

complete ontology, given that multiple original ontologies are available. However, in

many domains, especially where lots of traditional information systems have been

deployed, this prerequisite cannot be met. Instead, the “ontologies” are implied in a

different format, such as the underlying information models. For example, a

database-centralized information system may work based on a relational database

schema. The schema is not a formal ontology but to some extent it specifies the

semantics of information that it manages. The schema contains multiple tables and

each table can represent a concept. Accordingly, data rows in a table represent

instances of the concept. Furthermore, there is no widely-accepted and explicit

“domain ontology”. The information systems were not built based on the domain

ontology, even though they are committed to the same domain.

In these domains, each information model actually reflects a specific conceptual view

of the domain conceptualization and is implicitly defining an ontological view. In the

following sections we will provide the formal definition for ontological view. The

definition is based on the work of [Guarino, 1998] that is necessary for formally

defining ontology.

(1) World, Concept, Domain and Possible World

The World is the entire aggregation of everything that exists anywhere. The existing

things in the world are perceived as Concepts. A Domain is a portion of the world that

is related to a problem to be solved. Formally, a domain D is defined as a set of

concepts that exist in the domain, i.e., D = {C1, C2, …, Cn} where each Ci is a

concept, 1≤ i ≤ n.

A state of affairs describes a possible situation about how concepts are related to each

other. A state of affairs is a certain type of proposition. It is said to obtain or not

where the proposition is said to be true or false [Menzel, 2008]. A state of affairs is

said to include a second state of affairs if it is impossible for the former to obtain and

107

the latter to fail to obtain. A state of affairs is said to preclude a second state of affairs

if it is impossible for them both to obtain. A state of affairs is called maximal if, for

every other state of affairs, it either includes or precludes that other state of affairs

[Plantinga and Davidson, 2003 and Tomberlin and van Inwagen, 1985]. A maximal

state of affairs is also called a possible world. The set of maximal states of affairs of a

domain is denoted as W, W = {w1, w2, …, wm} where each wi ∈W is a maximal state

of affairs (possible world).

For example, we consider two concepts University and Student. One state of affairs is

Student part-time-study-in University, and another one is Student full-time-study-in

University. Since each of them precludes another one, i.e., if a student is part-time

studying in a university, he is not a full-time student; on another hand, if a student is

full-time studying in a university, he is not a part-time student; they compose two

possible worlds.

(2) Domain Space and Conceptual Relation

A domain space is a structure <D, W>, where D is a domain and W is a set of

maximal states of affairs of the domain. Given a domain space <D, W>, a conceptual

relation ρn of arity n is a function from a set W of possible worlds to the set of all

n-ary relations on D, 2
nD , ρn : W→ 2

nD .

(3) Conceptualization

A conceptualization of domain D is defined as an ordered triple C = <D, W, ℜ>,

where ℜ is a set of conceptual relations on the domain space <D, W>.

(4) Intended Structure

For each possible world w∈W, the intended structure of w according to a

conceptualization C = <D, W, ℜ> is the structure SwC = <D, RwC>, where RwC =

{ρ(w) | ρ∈ℜ} is the set of extensions (relative to w) of the elements of ℜ. We use SC

108

= {SwC | w∈W} to denote all the intended structures (or intended world structures) of

C.

(5) Logical Language

A logical language L is a composition of a vocabulary V and a set of models of the

language. V contains constant symbols and predicate symbols. Given a logical

language L with a vocabulary V, a model of L is a structure <S, I>, where S = <D, R>

is a world structure and I: V→D∪R is an interpretation function assigning elements

of D to constant symbols of V, and elements of R to predicate symbols of V. A model

fixes a particular extensional interpretation of the language.

Further discussion about logical languages can be found in [Shapiro, 2006].

(6) Intensional Interpretation

An intensional interpretation of a language L with a vocabulary V is a structure <C,

ℑ>, where C = <D, W, ℜ> is a conceptualization and ℑ: V→D∪ℜ is a function

assigning elements of D to constant symbols of V, and elements of ℜ to predicate

symbols of V. This intensional interpretation is called ontological commitment for L,

denoted as K = <C, ℑ>. If K = <C, ℑ> is an ontological commitment for L, we say

that L commits to C by means of K, where C is the underlying conceptualization of

K. K constrains the intensional interpretation of L, i.e., the language is used in an

intended way for a domain instead of an arbitrary way.

In definitions (5) and (6), both I and ℑ assign elements of D to constant symbols of V.

The difference is that I assigns elements of R to predicate symbols of V while ℑ

assigns elements of ℜ to predicate symbols of V. As an example, we assume that in a

domain we have concepts Student and Professor and professors can teach students.

We use S, P to represent the concepts and t to represent the relationship. Here we need

to view S, P, and t as pure formal symbols to illustrate the conceptualization,

independent of any specific language. Therefore, we have D = {S, P}, a possible

109

world w = (P t S), a conceptual relation t such that t(w) = (P, S). A world structure SwC

= <D, RwC> where RwC = {(P, S)}.

Assuming that we select English as the language L to model the conceptualization,

and select a vocabulary V containing words {Student, Profess, teach}, then an

interpretation function of L maps the predicate symbol “teach” to (P, S) (since (P, S)

is an extension in terms of the specific world w), while the interpretation function of

ℑ will map the predicate symbol “teach” to t instead of (P, S). In this simple sample it

seems that t is equivalent to (P, S), but they actually are not. This can be seen from the

following sample:

Assuming that we have concepts Professor, Graduate Student and Undergraduate

Student in the domain and they are shortly denoted as P, GS, and US. The fact is,

professors can teach both graduate students and undergraduate students, and graduate

students (as teaching assistances) can teach undergraduate students. Therefore, we

have one possible world w and RwC = {(P, GS), (P, US), (GS, US)}. In this example

we see that RwC can be more complex but t remains the same. A similar example from

the mathematical domain is the interpreting of “square computation”. A model

interprets it as an extensional relation {(1, 1), (2, 4), (3, 9), …} while an intensional

interpretation is a formula y = x2. In summary, I maps a predicate symbol to the

extension of the conceptual relation, and ℑ maps it to the intended meaning of the

conceptual relation. The difference between I and ℑ can be illustrated with the

following Figure 3-11:

C1 C2 r

ps

ℑ

(C1, C2)

I

Figure 3-20. Difference between I and ℑ.

110

In this figure C1 and C2 are concepts and r is a conceptual relation. r maps a possible

world to a set of 2-ary relations {(C1, C2)}. ℑ maps a predicate symbol ps to r and I

maps ps to an extensional relation of r, (C1, C2). In the following discussion, we also

simply represent I as an arrow from a predicate symbol to a conceptual relation if no

confusion will arise.

(7) Compatible

Given a language L with a vocabulary V and an ontological commitment K = <C, ℑ>

for L, a model <S, I> is compatible with K if: i) S∈SC; ii) for each constant symbol

c∈V, I(c) = ℑ(c); iii) there exists a world w such that for each predicate symbol p∈V,

I maps such predicate into an admittable extension of ℑ(p), i.e. there exists a

conceptual relation ρ such that ℑ(p) = ρ ∧ ρ (w) = I(p).

(8) Intended Model

Given a language L and an ontological commitment K, the set IK(L) of all models of

L that are compatible with K is called the set of intended models of L according to K.

To illustrate this definition, we assume that multiple concepts are related to each other

in a domain. If some concepts can be used as properties of other concepts, they are

related through the “hasProperty” relationship. Here, just view “hasProperty” as a

representation for the fact that a concept has a property and does not take it as a

phrase from a specific language (English).

To model things, we need to use language. A language is not necessarily a natural

language that humans use daily such as English; instead, it can be any form, such as

text, voice, image, gesture, etc. Given a language L, L should be complete, i.e., it can

model anything for a conceptualization. Since we use language to model things and

the language is complete, it can be concluded that in the intentional interpretation <C,

ℑ>, ℑ is complete. That is, the vocabulary V of L is complete and the interpretation is

complete, i.e., for any concept in C, ℑ assigns a constant symbol in V to it and for any

111

conceptual relation in C, ℑ assigns a predicate symbol to it. On the contrary, for any

constant symbol in V, ℑ assigns it to a concept and for any predicate symbol in V, ℑ

assigns it to a conceptual relation.

Differently, a model of a language does not guarantee the completeness, which means

that it may just interpret a portion of the domain with a portion of the language. In

other words, a model of a language assigns some concepts in the domain to some

constant symbols in V and assigns some conceptual relations to some predicate

symbols in V.

We illustrate the discussion above with the following Figure 3-12:

In the above figure, the blue and purple-dashed arrows represent the interpretation

functions of two models. According to the definition, these two models are

compatible with K. The black-dashed arrows represent an interpretation function

which is not compatible with K since it interprets the symbols to concepts and

Conceptualization C

Language L

Vocabulary V

Interpretation

function ℑ

Concept in domain of
discourse D

Relationship in the
domain of discourse

Interpretation function
in ℑ

Compatible
interpretation functions
of the models

Concept in another
domain
Relationship in another
domain

Incompatible
interpretation functions
to another domain

Constant symbol in V

Predicate symbol in V

Figure 3-21. Difference between interpretation functions from I and ℑ.

112

relationships in another domain. For example, we assume that there is a domain with

only two concepts Professor and Student (P and S) and a complete language with a

vocabulary {Stu., Pro.}. An interpretation function may map Stu. to Studio and Pro.

To Professional, which are two concepts in another domain, therefore this

interpretation function is incompatible with K.

Following we prove that given one conceptualization, one language, and one

ontological commitment, there should be only one set of intended models.

Lemma 1: Given one conceptualization C = <D, W, ℜ>, one language L with

vocabulary V, and one ontological commitment K = <C, ℑ>, there is only one set of

intended models of L according to K.

Proof: Assuming that we have two sets of intended models IK(L)1 and IK(L)2, IK(L)1

and IK(L)2 are different. Then, there should be at least one model M which is

compatible with K, M∈ IK(L)1 but M ∉ IK(L)2. Since M ∈ IK(L)1, according to the

definition, M is compatible with K. According to the definition again, M should be an

element of IK(L)2 because IK(L)2 is composed of all models of L that are compatible

with K. Therefore, such M cannot exist, which means IK(L)1 = IK(L)2. □

Following, we prove that for two conceptualizations, if their intended models overlap,

the overlapped part is the shared concepts and shared properties. To simplify the

problem, here we only consider concepts and one type of relationships associating

them with each other: has-property (a concept can be a property of another concept).

Lemma 2: Given two conceptualizations C1 = <D1, W1, ℜ> and C2 = <D2, W2, ℜ>,

one language L with vocabulary V, and two ontological commitments K1 = <C1, ℑ1>

and K2 = <C2, ℑ2>, ℜ contains only one conceptual relation ρ meaning a concept has

another concept has a property, if the two sets of intended models for C1 and C2

overlap, then the overlapped part consists of the shared concepts and shared

properties.

113

Proof: Let D1 = {d1i}, 1 ≤ i ≤ n; D2 = {d2j}, 1 ≤ j ≤ m; IK1(L) = {M1i}, 1 ≤ i ≤ k;

IK2(L) = {M2j}, 1 ≤ j ≤ l. For each 1 ≤ i ≤ k, M1i = <S1i, I1i>, S1i = <D1, R1i>; for each

1 ≤ j ≤ l, M2j = <S2j, I2j>, S2j = <D2, R2j>.

If IK1(L) ∩ IK2(L) ≠ ∅, then

 IK1(L) ∩ IK2(L) = {M1i} ∩ {M2j} = {<S1i, I1i>}∩{<S2j, I2j>}, 1 ≤ i ≤ k and 1 ≤ j

≤ l.

 <S1i> ∩ <S2j> = <D1, R1i> ∩ <D2, R2j> = <D1 ∩ D2, R1i ∩ R2j>.

Since IK1(L) ∩ IK2(L) ≠ ∅, <S1i> ∩ <S2j> is not empty, i.e., D1 ∩ D2 ≠ ∅ and R1i ∩

R2j ≠ ∅. D1 ∩ D2 ≠ ∅ means that there are common concepts in the two

conceptualizations. Because R1i = {ρ (w) | w∈W1}, R2j = {ρ (w) | w∈W2} and here ρ

is the has-property conceptual relation, R1i ∩ R2j ≠ ∅ means that there exist relations

{(da, db) | da∈D1 ∧ da∈D2 ∧ db∈D1 ∧ db∈D2}. That is, each db is a shared property of

the shared concept da. □

For example, we consider a domain where we have concepts P, N, D, T, A, S and

relationship h, meaning that in this domain Professor can have property Name,

Degree, Title, Address, and Salary. Now we select English as the language to model

the domain and we pick a vocabulary V = {Professor, Name, Degree, Title, Address,

Salary, hasProperty} where hasProperty is a predicate symbol and others are constant

symbols. So, we have D = {P, N, D, T, A, S} and one conceptual relation ρ = h,

therefore ℜ = {ρ}. Here we have only one possible world w saying that a professor

can have these properties.

A model of the language M1 = <S, I1>, where S = <D, R> and R is the resulting

relation of applying ρ to w, so R = {(P, N), (P, D), (P, T), (P, A), (P, S)}. Since I1

assigns elements of R to predicate symbols in V, which is hasProperty, we assume

that I1 is defined as I1(hasProperty) = {(P, N), (P, D), (P, T)} since this model focuses

on academic aspects of a professor. Similarly, another model M2 = <S, I2> and I2 is

114

defined as I2(hasProperty) = {((P, N), (P, A), (P, S)} since this model focuses on the

administrative aspects of a professor. Since both M1 and M2 are compatible with K,

they are intended models of L according to K and IK(L) = {M1, M2}. In this case, if

two information systems commit to the same conceptualization and they use the same

vocabulary, they can agree with each other since the symbols have a consistent

interpretation.

Now we assume that we have two conceptualizations, C1 and C2: C1 = <D1, W1, ℜ1>,

D1 = {P, N, D, T}, w1 corresponds to “Professor has property Degree and Title”, W1 =

{w1}, and ℜ1 = {h}. Similarly, C2 = <D2, W2, ℜ 2>, D2 = {P, N, A, S}, w2 corresponds

to “Professor has property Address and Salary”, W2 = {w2}, and ℜ2 = {h}. Given the

same language L and vocabulary V = { Professor, Degree, Title, Address, Salary,

hasProperty }, let K1 = <C1, ℑ1>, where ℑ1(Professor) = P, ℑ1(Name) = N,

ℑ1(Degree) = D, ℑ1(Title) = T, and ℑ1(hasProperty) = h. Similarly, we have K2 =

<C2, ℑ2> where ℑ2(Professor) = P, ℑ2(Name) = N, ℑ2(Address) = A, ℑ2(Salary) = S,

and ℑ2(hasProperty) = h. A model M1 = <S1, I1> where S1 = <D1, R1>, R1 = {(P, N),

(P, D), (P, T)}, I1(Professor) = P, I1(Name) = N, I1(Degree) = D, I1(Title) = T, and

I1(hasProperty) = {(P, N), (P, D), (P, T)}. Since M1 is the only compatible model

with K1, so IK1(L) = {M1}. Similarly, we have M2 = <S2, I2> where S2 = <D2, R2>, R2

= {(P, N), (P, A), (P, S)}, I2(Professor) = P, I2(Name) = N, I2(Address) = A, I2(Salary)

= S, and I2(hasProperty) = {(P, N), (P, A), (P, S)}. Also, IK2(L) = {M2}.

Now we look at the intersection of the two sets of intended models.

 IK1(L) ∩ IK2(L) = {M1} ∩ {M2} = {<S1, I1>} ∩ {<S2, I2>},

 <S1> ∩ <S2> = <D1, R1> ∩ <D2, R2> = <{P, N}, {(P, N)}>,

 I1 ∩ I2 = {I(Professor) = P, I(Name) = N, I(hasProperty) = h}.

Therefore, IK1(L) ∩ IK2(L) = {<<{P, N}, {(P, N)}>, { I(Professor) = P, I(Name) = N,

I(hasProperty) = h }>}. The interaction, i.e., the overlap of two sets of intended

115

models, is the shared concepts as well as their shared properties. This means, since the

two conceptualizations have overlapping, their intended models also overlap and the

overlapping part consists of the shared concepts and shared properties, i.e., in this part

the language has the same interpretation. Finally, this guarantees that the two

conceptualizations can be integrated and it is possible that the information systems

based on the two conceptualizations can communicate with each other.

(9) Ontology

Given a language L with ontological commitment K, an ontology for L is a set of

axioms designed in a way such that the set of its models approximates as much as

possible the set of intended models of L according to K.

The relationships between language, conceptualization, ontological commitment, and

ontology are illustrated in the following Figure 3-13.

(10) Ontological View

Set of intended models IK(L)

Ontology

Models M(L)

Language L

Conceptualization C

Commitment K = <C, ℑ>

Figure 3-22. Language, conceptualization, ontological commitment, and ontology [Guarino, 1998].

116

The above definition leads to an illusion that for one conceptualization there is one

single ontology. However, this is not true since an "ontology"

is a human-designed artifact, i.e., a type of model of the abstract conceptualization.

When different designers are facing the same conceptualization, it is natural that

multiple models will be created. Each model reflects a specific view of the

conceptualization. Since the conceptualization can be viewed in various ways,

actually there is not merely one unique “ontology” for it. Instead, different views of

the conceptualization may exist. Each view can be formally and explicitly specified

and we define the corresponding specification as an ontological view. Accordingly, its

intensional interpretation is called an ontological commitment of view. There can be

multiple ontological views for a single conceptualization. As for information systems,

each system implies an ontological view of the conceptualization of the domain that it

is built for.

(11) Integrate-able

Different languages can be employed for the specification of ontological views.

Further, if two languages are employed for ontological views with partially

overlapping intended models, it is possible for the corresponding ontological views to

be semantically integrated. Formally, given one ontological view O with intended

models IK(L) and another ontological view O' with intended models IK'(L'), O and O'

are integrate-able (denoted by ◊) if and only if IK(L) overlaps with IK'(L'). That is,

 (IK(L) ≠ IK'(L')) ∧ (IK(L) ∩ IK'(L') ≠∅) ↔ (O ◊ O')

117

This can be illustrated by the following Figure 3-14:

(12) Ontological View-driven Semantic Integration

Ontology view-driven semantic integration is a mechanism to integrate information at

the semantic level using the semantics carried by ontological views in a way that the

overlapping parts, which mean the same concept references of the sets of intended

models of multiple ontological views, are identified, modeled, persisted, and reused

when performing information access and exchange.

3.4 Research Problem, Assumptions, and

Hypothesis

3.4.1 A Case Study

Let’s suppose that we are working in a domain Education and considering a

real-world concept: Faculty. As human experts, we know exactly the meaning of the

concept “Faculty” of a university department (note that here the concept from our

Intended models IK(L)

Ontological

View O

Models M(L)

Language L

Conceptualization C

Commitment K = <C, ℑ>

Language L’

Commitment K’ = <C, ℑ’>

Models M(L’)

Ontological

View O’

Intended models IK’(L’)

Figure 3-23. Different ontological views with different languages which sets of intended
models overlap.

118

conceptualization is identified by a unique name “Faculty”) in the education domain,

and we know that each concept has to be described by a set of properties. Let’s

assume that we determine a set of properties for the concept “Faculty”: {Name, Title,

Department, University} and the set is complete: no more properties are required.

Each property has a clear meaning and is identified by a unique name.

Then, we assume that the information about four professors comes from two

information systems. One information system is managed by a university UT (shortly

named S1), and the other one is maintained by the National Department of Education

which manages many universities (shortly named S2). Information in these systems

denotes the same concept and reveals different instances (which may overlap) of that

concept (Faculty), with different and independently adopted representations. In an

ideal case, the information has been collected, cleaned, validated, normalized, and

stored in a central information repository which owns a complete definition about

“Faculty” and all instances, as depicted in the following Figure 3.15.

From this figure we can see that each instance of the concept has a unique identifier in

the information system in which it resides. The identifiers are not helpful for the

integration as they can just uniquely identify the entities in a technical sense in each

ID Name Title Department University

1 Jack Smith Full Professor CS UT

2 Jack Smith Full Professor CS UWO

3 Peter Ken Full Professor EE UWO

4 Peter Ken Full Professor CS UT

Central Repository

ID Name Title

001 Jack Smith Full Professor

002 Peter Ken Full Professor

Information System of UT

Information System of the

Department of Education

Faculty

<people>
<individual No=”1” name=”Jack Smith” university=”UWO”/>
<individual No=”2” name=”Peter Ken” university=”UT”>

</people>
Professor

Figure 3-24. An integration scenario.

119

information system but contain no business meanings. In the central repository

another set of identifiers is assigned. From the central view, faculty with ID 1 and 3

come from the information system of UT, and faculty with ID 2 and 4 come from the

information system of the Department of Education, as pointed out by the solid

arrows. Even they share some identical values under some properties, such as Name

and Title, we know that they are actually four different faculty instances, as implied

by the unique IDs in the central repository.

However, note that information in both S1 and S2 is incomplete. For example, in S1

information about Department is missing, and information about University is

implicit. Similarly, in S2 information about Title and Department is missing.

Assuming that in some way we collected all the necessary information and put that in

the central repository, we know that the information in this repository is the most

complete and most accurate. Any answer we can get from this repository is perfect. If

there is anything we cannot find from this repository, that “thing” actually does not

exist.

This is the ideal case of semantic integration. It is more than semantic integration; in a

sense it is actually a result of “physical” information integration. It can insure the

most completeness, accuracy, and efficiency for any query issued to it.

Nevertheless, due to many technical, organizational, practical, legal, or business

reasons, this solution is actually not applicable. For example, integrating so much

information from various systems may result in a high cost of labour and performance

pressure on the central server (such as the storage space and the query processing

workload).

Going back, we consider a less ideal case; we don’t maintain all information in a

physically central repository, but keep it distributed. Then, some knowledge denoting

the mapping from various information systems to the central repository can be

discovered and maintained in the central repository. In this case, we define from

120

where and how the required information comes instead of collecting the information

itself. For example, we can have a piece of knowledge saying that “Faculty” can be a

combination of “Professor” from S1 and “people” from S2, as depicted by the dashed

arrows in Figure 3-15. This is a more feasible and applicable solution for the problem

of information integration.

3.4.2 Problem Specification

As mentioned before, ontologies can provide much support for semantic integration

(although this is not fully guaranteed). However, there are many cases where

organizational, cultural, or infrastructural constraints hinder or even disallow the

adoption of such semantic artifacts, i.e., there is a lack of explicit ontologies. In fact,

the applications of ontologies pool mainly in several fields such as chemistry, biology,

toxicology, environmental science, ecology, geography, etc., where much effort has

been devoted to building ontologies to organize the rich knowledge in these fields.

Information systems or integration systems in these fields can be built based on the

available ontologies. Contrarily, lots of other information systems, such as traditional

management information systems and E-commerce systems based on databases or flat

data files, do not have pre-defined explicit ontologies at either domain level or

application level, although to some extent each of them implements the (abstract and

invisible) conceptualizations for the domains to which they belong through their

internal mechanisms in terms of their information model, representation, storage, and

processing.

In such cases, semantic integration at the information level is essential for the

applications. Due to the lack of explicit ontologies (both the local ones and the global

one), the recently developed ontology-based methodologies are not sufficient to

support the integration of such systems. Therefore, new research is necessary to be

conducted to bridge this gap.

121

Our research deals with information systems. An information system is a combination

of an information model and a set of software components that operate the model. In

this research we will ignore the software components and focus on the information

model since we mainly consider information semantics.

Given a set of information models IM1, IM2, …, IMn, their semantic integration

includes two aspects:

(1) For any two elements ei and ej from IMi and IMj, 1 ≤ i, j ≤ n and i ≠ j, if they

refer to the same concept in terms of the domain of discourse, independent of

the way they are represented, this fact can be discovered.

(2) For any element ei from IMi, 1 ≤ i ≤ n, if it is required to be communicated to

IMj (if applicable), 1 ≤ j ≤ n, it can be converted into another element

(referring to the same concept) that is correct in both representation and

semantics in IMj such that IMj can handle it in a semantically reasonable

manner.

3.4.3 Short Summary on Conventional Solutions

In conventional schema matching-based information integration approaches, each

information system has its own schema such as a database schema or a XML schema

to represent its local conceptualization of a domain. The schemas can be understood

and processed by computer-based applications. The matchings between different

schemas are discovered by human experts or by automatic algorithms (note that

usually the automatically discovered matches still require validation and confirmation

from human experts) and are represented by some structure readable and operable by

computers. Then, in an integration environment, if an information item I (following a

modeling paradigm defined in IS1) is required to be passed to system IS2 from system

IS1, some mediator (a kind of software application) in the environment can get I, find

122

the semantic relationship (here a specific schema matching) between IS1 and IS2,

convert it into a new representation I’ following definition in IS2, then pass it to IS2.

Now IS2 is able to correctly process I’ since I’ is following IS2’s representation and is

supposed to be denoting the same concept as I. In this category of solutions, there is a

lack of semantics, i.e., two schema elements can be discovered to be similar and

referring to the same concept, but it is unknown which concept they are referring to

due to the lack of a concept model.

In ontology-driven information integration approaches, each information system has

its own information model and explicitly represented ontology for its

conceptualization of the domain. In some cases a global ontology for the domain can

be used. Each system knows how to map the conceptual operation on its ontology to

the structural operation on its internal model. Similarly, semantic mapping between

ontologies can be discovered by human experts or by automatic algorithms (also

requiring validation and confirmation from human experts) and stored in some way

that computers can understand and process (such as mapping rules). Similarly, some

software applications can handle these ontologies and semantic mappings to help

involved systems achieve semantic integration. Ontology mapping or aligning

techniques can be applied, but many valuable methods developed in schema matching

cannot make a contribution, such as the instance-based methods (usually not many

instances will be provided along with ontologies, even by definition ontologies can

contain concept instances).

In many cases, the application of these approaches is limited due to the lack of

explicit ontologies. Instead, schema-based approaches are more applicable because of

the higher availability of information schemas.

123

3.4.4 Assumptions

Following lists a set of assumptions for this research. These assumptions are practical

and reasonable. They provide a realistic foundation for the research and can help

reduce the complexity of the problem.

 All of the information models are committed to intended models that overlap.

This guarantees the possibility of semantic integration. However, the concepts

and their relationships are not formally and explicitly modeled and

represented.

 For each information system, there is an explicit information model that is

used to organize the system’s data and convert the data into information.

　 The information models are not restricted to a particular modeling language or

paradigm such as relational, XML, or Object-Oriented.

 The vocabularies used by the information models are based on natural

languages.

 Based on each information model, an ontological view can be created.

 An ontological view is an explicitly represented model.

 The ontological view follows a specific modeling paradigm which is

independent of the modeling paradigm adopted by the underlying

information model.

124

3.4.5 Ontological Equivalence Mapping

In this research the semantic integration is conducted at the ontological view level. It

is founded on a hypothesis. Before we present and prove the hypothesis, we formally

define the ontological equivalence mapping between languages:

Given a source language LS (which vocabulary is VS) with an ontological

commitment of view KS = <C, ℑS> and a target language LT (which vocabulary is

VT) with an ontological commitment of view KT = <C, ℑT>, the two languages share

the same conceptualization C = <D, W, ℜ>; an ontological equivalence mapping is a

function from VS to VT, m: VS→VT assigning symbols in VT to the ones in VS which

share the same intensional interpretation, i.e., i) for constant symbols cS∈VS and

cT∈VT, m(cS) = cT if and only if i) there exists a concept d∈D, such that ℑS(cS) =

ℑT(cT) = d; ii) for predicate symbols pS∈VS and pT∈VT, m(pS) = pT if and only if there

exists a conceptual relation ρ∈ℜ such that ℑS(pS) = ℑT(pT) = ρ.

It is obvious that an important task in semantic integration is to discover the

ontological equivalence mapping between two ontological views, especially between

the concepts within the ontological views.

The following Figure 3-16 illustrates such a mapping between languages:

125

The mapping can be bi-directional. If a symbol sS∈VS is mapped to a symbol sT∈VT,

we say that there is a semantically equivalent relationship (or semantic equivalence

relationship) between sS and sT.

3.4.6 Hypothesis

In this context, we base our research on the following hypothesis:

If the semantically equivalent relationships between concepts (specified by symbols in

languages) from multiple ontological views can be discovered, then these ontological

views, as well as the information models from which the ontological views develop,

can be semantically integrated.

To support this hypothesis, we introduce the following two propositions.

(1) A concept in a conceptualization can be externalized by a constant symbol in a

language under an ontological commitment.

Commitment KS = <C, ℑS > Commitment KT = <C, ℑT >

Conceptualization C = <D, W, ℜ>

VT = {cT,

 pT}

m

VS = {cS,

 pS}

d

ℑT ℑS

m

ρ

ℜ

ℑT ℑS

D

LT

Figure 3-25. Ontological equivalence mapping between different languages for the same
conceptualization.

LS

126

Prove:

According to the definition of the intended model, given a language L with an

ontological commitment K, the set IK(L) of all models of L that are compatible

with K is defined as the set of intended models of L according to K. So, for any

two models m1 and m2 in IK(L), m1 and m2 are compatible with K. That is, for

each constant symbol c in the vocabulary of L, there is I1(c) = ℑ(c) for m1 where

I1 is the interpretation function of m1, and I2(c) = ℑ(c) for m2, where I2 is the

interpretation function of m2, and ℑ is the interpretation function in K. That is,

under the given ontological commitment K a constant symbol c is always

interpreted as a concept in the domain of discourse.

On the other hand, it is guaranteed that c is interpreted as a single concept, e.g. C,

under K since in any model I is a function. In other words, it is an explicitness of

the intended model of concept C. Therefore, even C is implicit, c can be taken as

its representative. c can be used for processing the concept that it represents since

it is explicit. □

Based on this proof, it can be stated that the intended model of a concept can be made

explicit by a constant symbol.

(2) The semantically equivalent relationship between symbols under an ontological

commitment implies the same concept reference.

Prove:

Given symbols v1 and v2 from two ontological views such that v1 maps to a

concept c1 in an intended model and v2 also maps to a concept c2 in another

intended model (Proposition 1), if v1 and v2 have a semantically equivalent

relationship, then they have the same semantics, i.e., the same concept reference.

Therefore, it can be concluded that c1 and c2 are actually the same concept in the

conceptualization. Consequently, information models corresponding to v1 and v2

127

are semantically equivalent. □

For example, if v1 and v2 are synonymous, it is already taken as a fact (by the

definition of synonymy) that v1 and v2 mean the same thing, i.e. they refer to the same

concept. Therefore, the information models corresponding to v1 and v2 are

semantically integrated.

The first proposition indicates that each ontological view has a specific representation

based on a language since the ontological view is an explicit model. The second

proposition shows that the semantic similarity between representations of models can

be used to approximate the semantic equivalence relationships between the models

themselves. Semantic similarity is a metric upon explicitly represented models

computed from a syntactical, structural, or instance perspective.

A semantic similarity metric is a combination <A, t> where A is an approach to

compute the similarity between symbols and t is a threshold. The approach A can be

viewed as a function A: S × S→R where S is the set of symbols and R is the set of real

numbers. If A(s1, s2) > t, s1, s2∈S, then it can be confidently believed that two symbols

are semantically equivalent, i.e., s1 and s2 have a semantic equivalence relationship.

Such a metric implies that two models may have the same semantics because their

representations are syntactically or structurally similar to each other, or their instances

are similar.

3.4.7 Formulating the Problem

Generally, the information models adopt vocabulary from natural languages such as

English. The constant symbols such as English words refer to concepts under an

ontological commitment. This work takes such a fact as an assumption, i.e., our work

does not deal with the cases that random symbols are picked for the information

models.

128

We adopt similar ideas in schema matching to formulate the problem. We try to

discover semantic relationships between the elements, mainly the semantic

equivalence relationship between concepts of multiple ontological views. Before

doing this, the information models using different modeling paradigms and

representations need to be converted to ontological views. The following Figure 3-17

illustrates this idea.

Given an ontological view O1 with a set of concepts C1 = {c11, c12, …, c1n} and

another ontological view O2 with a set of concepts C2 = {c21, c22, …, c2m}, the goal of

ontological view matching is to discover the ontological equivalence mappings, i.e.,

pairs of matching concepts c1i and c2j such that c1i and c2j represent the same real

world concept, 1 ≤ ι ≤ n, 1 ≤ j ≤ m. We denote a concept mapping with c1i → c2j and

the ontological equivalence mappings with M = {c1i → c2j | c1i∈C1, c2j∈C2}.

Now we look into the concepts. Each concept c can be modeled (or specified by) as a

set of properties, i.e., c = {p1, p2, …, pn}, where each pi is a property, 1 ≤ i ≤ n. We

rely on the assumption that the similarity of properties indicates the semantic

similarity of real-world objects abstracted by these concepts. That is, for two concepts

c1 = {p11, p12, …, p1n} and c2 = {p21, p22, …, p2m} from two ontological views, if most

of their properties can be discovered as similar, e. g., p11 ≈ p21 (≈ denotes semantically

similar), p12 ≈ p22, …, p1k ≈ p2k, k ≤ min {n, m} and k is a given threshold number,

then it can be claimed that c1 and c2 are semantically equivalent (referring to the same

real-world concept).

Information
Model

(Relational)

Information
Model
 (XML)

Information
Model

(Other types)

…

Ontological
View

Ontological
View

Ontological
View

System 1 System 2 System n

Information
Model

Local
Ontological View

Figure 3-26. Semantic integration based on ontological views.

129

Chapter 4 Research Issues and Proposed Solutions

The objective of this research is to build a solid theoretical foundation and sound

engineering solutions for ontological view-driven semantic integration in open

environments. This chapter presents the major research issues and proposed solutions

within the context of three main aspects: the architecture of the semantic integration

enabled environment, ontological view modeling and representation, and semantic

equivalence relationship discovery.

4.1 Architecture of Semantic Integration Enabled

Environment

A major challenge to address in this research is the inherent distribution nature of

open environments. Traditionally, a common domain ontology is specified as a

solution for integrating schemas or local ontologies within the environment. The

limitation of this approach is that centralized authority over the environment is usually

not architecturally designable or feasible.

We propose a novel architecture that extends the traditional data/information

architecture to a three layered architecture (see Figure 4-1), including:

(1) The data management and integration layer. This layer provides abstraction for

the binary digits and organizes the digits into various types of elemental data

such as numbers, characters, and strings. The management and integration of

this layer are achieved by encoding standards, operation systems, and network

communication protocols, ensuring that the binary digit streams are consistently

interpreted as data of specific types.

(2) The information management and integration layer. This layer associates data to

130

information models, providing specifications to data and converting data into

information. The management and integration of this layer are achieved by

applications, including domain dependent applications such as word processors

and domain independent applications such as database management systems. It

guarantees that data with the same specifications can be manipulated in

consistent ways.

(3) The semantics management and integration layer. This layer deals with the

semantics of information, resolves semantic heterogeneities, and ensures that

information with the same semantics is handled in a semantically consistent

way. The management and integration of this layer are addressed by solutions

proposed in this research.

In this architecture, a Semantic Integration Service is attached to each information

system, which converts a traditional information system into a semantic enhanced

system. With the semantic integration service being attached, the requests regarding

information semantics will be redirected to this service to resolve potential semantic

heterogeneities. The service is responsible for mapping the concepts represented in

the requests to compatible concepts (if possible) modeled in the ontological views.

Repository Management
System

Information Repository

Semantic Integration
Service

System A

Repository Management
System

Information Repository

Semantic Integration
Service

System B

…

Other systems

Semantics Management and
Integration

Information Management
and Integration

Data Management and
Integration

Figure 4-27. Architecture of the semantic integration enabled environment.

131

4.2 Architecture of Semantic Integration Service

A further architecture for the semantic integration service is inspired by Act*. It

provides the capabilities of representation perceiving (encoding), integrated result

delivering (performance), internal knowledge storage (the memories), and semantics

manipulating (retrieving, matching, etc). Based on these capabilities we define the

architecture, as shown in the following Figure 4-2:

A semantic integration service S can be described as a 5-tuple S = (I, A, R, L, K),

where I is the query set that it can accept; A is the answer set that it can generate; R is

the reasoning component which can reason about its knowledge base by searching for

facts and inferring semantics-matching rules; L is the learning component which can

take feedback attached to the query/answer pair and improve the capability of the

reasoning component; and, K is the internal knowledge of the service, including the

ontological view of the local information system as well as affiliation knowledge that

is helpful for reasoning.

Semantic Integration Service

Reasoning

Answers

Learning

Rules

Feedback

Requester

Valuator
Query Answer

Ontological
View

Affiliation
Knowledge

Figure 4-28. Architecture of semantic integration service.

Queries

Answers

New knowledge

Queries

Internal information flow External information flow

132

The semantic integration service can be viewed as a request-response system: external

requesters submit queries to it, and it generates answers as response to the requests.

The working process of the architecture is as follows:

 A requester issues a query.

 The service reasons out the inquiry to discover the semantic relationships.

 The service returns an answer to the requester.

 A valuator validates the answer as well as the query, and provides feedback to

the service to enhance its capability.

In light of the proposed architecture, to enable semantic integration we identify the

following research issues:

a) How to establish an ontological view of the conceptualization of the domain.

The research issues include modeling and representing an ontological view

associated with a given information model.

The proposed solutions are presented in Section 4.3.

b) How to discover the semantic equivalence relationships between the concepts

presented in the inquiries and the concepts modeled in ontological views.

The proposed solutions are presented in Section 4.4 and 4.5.

4.3 Ontological View Modeling and Representation

4.3.1 Requirements for Modeling

The value of the ontological view concept is that it provides a common level of

models beyond the original heterogeneous information models that use different

133

modeling paradigms and representations. Fundamentally, a concept can be modeled as

a structure of C = <P, hasProperty>, where P is a set of intrinsic concepts and

hasProperty is a semantic relationship which associates P to C. An intrinsic concept is

a concept that is semantically dependent on an extrinsic (contrary to intrinsic)

concept. An intrinsic concept is not usually being processed solely by itself. A

property is treated as an intrinsic concept. Therefore, it can also be stated that a

concept is modeled by a set of properties. Many of the paradigms used to build

information models, such as relational and Object-Orientation, follow the

concept-property construct. Therefore, it will be normal to adopt the concept-property

construct for modeling ontological views.

A modeling paradigm is necessary to model the ontological views. The modeling

paradigm should support modeling:

(1) Concepts: extrinsic concept is a structure of intrinsic concepts with a

hasProperty relationship.

(2) Properties: intrinsic concepts.

(3) Relationships between concepts such as isA and partOf.

4.3.2 Frame Paradigm

In our work we adopt the frame paradigm [Karp, 1993 and Minsky, 1975] to model

the ontological views. Minsky's frame theory is a major milestone in the history of

knowledge representation. Proposed in the 1970s, this theory suggests the idea of

using object-oriented groups to define a frame which is the data structure to represent

the stereotypical situations [Brachman and Levesque, 2004]. It can represent the

world meaningfully and naturally, and is cognitively simple, intuitive, and

understandable for domain experts. Frames have been widely used in artificial

intelligence and knowledge-based systems. Frame-like structures, in combination with

134

rules, are used extensively in expert systems [Aikins, 1993]. Some recent examples of

applying frames to knowledge representation can be found in [Kiatisevi, et al., 2006

and Marinov, 2008].

As defined in the Open Knowledge-Base Connectivity (OKBC) specification15, frame

is one of the most widely-used ontology modeling paradigms. It is implemented in the

core Protégé16, a cutting-edge tool for creating, editing, browsing, and maintaining

ontologies.

Some researchers view frame itself as a modeling language, comparing it to other

modeling paradigms such as production rules, description logics, and semantic

networks. We view frame as a modeling paradigm at the conceptual level. From the

system's perspective, there should be a specification language that provides structures

and semantics to encode frames. However, there is not yet a single standard frame

specification language [Wang, et al., 2006].

In the frame theory, a frame models a concept which represents a collection of

instances. Each frame has an associated collection of slots which can be filled by

values or other frames. The slots define the different characteristics of the objects or

relations through other objects. In particular, frames can have an IS-A slot which

allows the assertion of a concept taxonomy.

Structurally, a frame has the following four-level structure:

• The highest level is literally FRAME, which is a primitive object that

represents a concept in the domain of discourse.

• SLOT level captures the properties associated with the concept and

relationships to other concepts (frames).

15 http://www.ai.sri.com/okbc/spec.html
16 http://protege.stanford.edu/index.html

135

• Within a SLOT, there is FACET level which captures the details of each SLOT.

The FACET level contains multiple facets, with each specifying one aspect of

the slot, such as data type, cardinality, and value range.

• Finally, DATA level (or INSTANCE level) provides specific information about

each property for an instance of the concept. This level is provided to build a

complete knowledge base. When modeling concepts, usually the DATA level is

not used if the major focus is on the concept itself without concerning the

instances of the concept.

Brachman and Levesque [Brachman and Levesque, 2004] introduced a simple formal

representation formulism to express the frame's structure as follows:
(Frame-name

 <:IS-A frame-name>

 <slot-name1 filler1>

 <slot-name2 filler2>

 ...

)

According to this structure, a frame owns a list of slots into which values can be

dropped. The items that go into them are called fillers. The fillers of slots that

represent relationships are the names of other frames. The frames can have a slot

“:IS-A” slot whose filler is the name of a more generic frame, meaning that the former

frame is a specialization of the latter one.

The frame and slot names are atomic symbols (like numbers or strings without further

structures). The fillers are either atomic values or the names of other frames.

4.3.3 Modeling Ontological Views with Frame

Support for logical inference is one of the most valued aspects for some knowledge

representation paradigms in knowledge-based systems. For example, the OWL DL

136

provides the description-logic reasoning capabilities that enable a reasoning engine to

infer knowledge that is not explicitly represented in an ontology, including

subsumption testing, equivalence testing, consistency testing, and instantiation testing.

Different from the knowledgebase systems where logical inference is an essential

requirement, the information models within information systems focus mainly on

modeling concepts and the characteristics of the concepts in the domain of discourse.

Each concept is specified by its own (even other concepts can be involved to specify

its characteristics), not defined by other concepts. Furthermore, the models focus on

the stereotype instead of the individual instances. Therefore, the reasoning capability

as provided by DL is not an essential element for modeling the ontological views

based on the information models, and the instances can usually be ignored.

The concepts are the fundamental elements in the information models. A concept is

modeled by a set of properties. Many of the paradigms used to build information

models, such as relational and object-orientation, are following the concept-property

construct.

As a knowledge modeling paradigm, frame provides a clear and explicit structure that

is adequate at modeling the proposed ontological view model, in particular in

describing the properties of concepts, which makes frame an ideal candidate for

modeling the ontological views.

In an open environment the frame-based ontological views create a common level.

This common level eliminates the structural and syntactic heterogeneities among the

information models. For instance, relational database schemas and XML schemas use

different structures and syntaxes. By converting them into frame-based ontological

views they all follow the standard concept-property construct. With this commonness

only semantic heterogeneities should be considered in the semantic integration.

137

There is some other research that also proposes to create a kind of concept model

from the underlying information model [Boran, et al., 2007]. For example, D2RQ 17

supports lifting the basic relational database schema information into RDF to create

RDF-based ontologies. It is a declarative language to describe mappings between a

relational database schema and RDF ontologies. It uses these mappings to enable

applications to access a RDF-view on a non-RDF database. RDF is a standard model

for data interchange on the Web. It extends the linking structure of the Web to use

URIs to name the relationship between things as well as the two ends of the link. Such

a way does not apply to our context for the following reasons:

• RDF focuses on the Semantic Web. Our work focus on integrating traditional

information systems that are very different from the Web. There are no URIs

in the systems.

• RDF is good at modeling things that interconnect to each other, resulting in a

graph. There isn't an explicit structure showing that a set of “things” are the

properties of a specific “thing”. In the information models it is important to

describe that a concept has a set of properties. The properties are not treated

as independent resources.

• RDF mixes the concepts’ properties and the property values together. Our

modeling requires a clear separation between concepts and instances of the

concepts.

17 http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/

138

4.3.4 A Frame-based Ontological view Specification

Language (FOSL)

4.3.4.1 Specification of Ontological Views

The ontological views must be explicitly specified in order to be used with

information systems, i.e., delivered using some concrete representation.

The specification of an ontological view is composed of:

(1) symbols mapped to concepts (as an explicit representation of the intended

model);

(2) symbols mapped to properties and their associated characteristics;

(3) symbols mapped to relationships between concepts; and

(4) symbols that logically connect (1), (2), and (3) with specific semantics.

Note that the language specifying the ontological views and the language specifying

the conceptualizations (as defined in section 3.4) belong to different categories. The

former contains the basic elements, syntactical rules upon the elements and the

semantics to specify meaningful models. It is guaranteed that these elements and rules

are commonly agreed upon by any semantic integration service within an

environment. The latter refers to the vocabulary that is used to denote the concepts as

well as the interpretation of the vocabulary. This language contains symbols that map

to concepts, properties, and relationships. This section is focused on the former

language.

An information model does not always explicitly describe concepts, properties, or

relationships. However, some of its constructs usually imply these elements. For

example, in a relational database schema (which is a type of information model), a

table can be used to represent a concept; in an XML document, a node can represent a

139

concept. Given that an information model M is specified by language LM = <SM, IM>

with vocabulary VM and the ontological view model is specified by language LO =

<SO, IO> with vocabulary VO, the creation of an ontological view is to find a mapping

m between LO and LM such that m(IO)⊆IM. The mapping requires a set of rules for

each modeling paradigm to identify:

• What constructs in the information model can be mapped to concepts;

• What constructs in the information model can be mapped to properties;

• What constructs in the information model can be mapped to facets of the

properties;

• What constructs in the information model can be mapped to values of facets;

• What constructs in the information model can be mapped to relationships

between concepts.

For example, as to a relational database schema,

• A table which has a primary key is a candidate of a concept;

• Each column in the table is a candidate of a property;

• The attributes of the column, such as data type, size, default value, null-able,

are candidates of facets;

• The value of the attributes, such as Integer and NULL, are candidates of values

of facets.

• A foreign key column implies a relationship to a concept indicated by the

referred table;

140

• A table that has a combined primary key and each of which column is a foreign

key implies a relationship between two concepts indicated by the referred

tables.

By applying these rules, an ontological view can be constructed from a corresponding

information model. These rules reveal the key requirements for the specification

language, including the symbols and syntax indicating concepts, properties, facets,

facet values, and relationships.

The explicit specification of ontological views following a specific modeling

paradigm provides a common foundation that eliminates the heterogeneities residing

in the underlying information models in terms of technical platform, modeling

paradigm, specification syntax, etc. Later work, such as semantic integration, can just

focus on the semantic aspect, i.e., the difference regarding various views of the

domain conceptualization, based on a single modeling paradigm without concern for

dealing with different ways of modeling and specifying the models.

4.3.4.2 Definition of FOSL

We propose the Frame-based Ontological view Specification Language (FOSL) to

support specification of the above aspects. It is a logical language created from the

following vocabulary:

(1) Constant symbols: the set of FR∪S∪F∪V, where FR is a set of symbols

referring to frames (concepts), S is a set of symbols referring to slots (properties), F is

a set of symbols referring to facets, and V is a set of values that the facets can take.

(2) Variable symbols: there are four sets VFR, VS, VF, VV of variable symbols which

ranges are FR, S, F, and V, respectively.

(3) Predicate symbols: the following predicate symbols are defined:

141

 (a) A binary predicate hasProperty applied on FR × S. hasProperty(fr, s) refers

to a frame fr∈FR with a slot s∈S.

 (b) A triple predicate hasFacet applied on FR × S × F. hasFacet(fr, s, f)

indicates that slot s∈S has a facet f∈F in a frame fr∈FR.

 (c) A quad predicate hasValue applied on FR × S × F × V. hasValue(fr, s, f, v)

indicates that the slot s∈S’s facet f∈F has a value v∈V in a frame fr∈FR.

 (d) A binary predicate isA applied on FR × FR. isA(fr1, fr2) indicates that frame

fr1∈FR is a type of frame fr2∈FR, i.e., the concept modeled by fr1 is a specialization

of the concept modeled by fr2.

 (e) A binary predicate partOf applied on FR × FR. partOf(fr1, fr2) indicates that

frame fr1∈FR is a part of frame fr2∈FR, i.e., the concept modeled by fr1 is a part of

the concept modeled by fr2.

The predicates isA and partOf specify two types of relationships between concepts

selected to be defined in FOSL. The reasoning behind the choice is that these two

types provide strict semantics that can be commonly agreed upon among multiple

parties. Such relationships can be generally reasoned.

Other relationships are rather arbitrary, resulting in unpredictable semantics. For

instance, a frequently used example is “Student takes Course” where Student and

Course are two concepts and takes is a relationship. Here takes does not provide

inferable semantics but only a human reader can understand its meaning. The

reasoning for such relationships depends on domain-specific engines that are aware of

the meaning of the relationships.

Even the predicate hasFacet implies hasProperty because when hasFacet(fr, s, f)

holds we also have hasProperty(fr, s) (similar case applies to predicate hasValue and

hasFacet), the individual hasProperty predicate is still necessary since it is not

142

guaranteed that every information model is complete. That is, in some models it may

be that only properties of a concept are listed but details of the properties are missing.

This redundancy also increases the readability of a specification written in FOSL in a

way that a layered structure of the concept specification is presented and different

reader interests can be well satisfied. For example, given a set of statements with

hasProperty predicate, it is easy to grasp a general view of a concept, i.e., “this

concept is described by this set of properties”, without any unnecessary information

involved. If a reader is interested in what a property is like, a set of statements with

the hasFacet predicate will help. Furthermore, the statements with the hasValue

predicate provide the lowest level of details for the facets.

4.3.4.3 Inference Rules

Now we define the inference rules that can be expressed by the language.

Inheritance Rule:

• isA(subfr, superfr) ← isA(subfr, fr) & isA(fr, superfr), i.e., a frame subfr

specialized from another frame fr is also a specialization of that frame’s

generalized frame superfr.

• hasProperty(subfr, s) ← isA(subfr, fr) & hasProperty(fr, s), i.e., a generic

frame’s slots are inherited by its specialized frames.

• hasFacet(subfr, s, f) ← isA(subfr, fr) & hasProperty(fr, s) & hasFacet(fr, s, f),

i.e., the facets of a slot of a generic frame are inherited by the same slot of its

specialized frames.

143

• hasValue(subfr, s, f, v) ← isA(subfr, fr) & hasProperty(fr, s) & hasFacet(fr, s, f)

& hasValue(fr, s, f, v), i.e., the value of a facet of a slot of a generic frame is

inherited by the same facet of the same slot of its specialized frames.

Composition Rule:

• ∃ fr∈FR ← ∃ partialfr∈FR & partOf(partialfr, fr), i.e., there must exist a frame

where another frame is a part of it.

• partOf(partialfr, wholefr) ← partOf(partialfr, fr) & partOf(fr, wholefr), i.e., if a

frame partialfr is a part of another frame fr, it is also a part of a larger frame

wholefr which has that other frame as a part of it.

4.3.4.4 XML-based Encoding

To explicitly encode ontological views we propose a human readable and machine

process-able representation which enables:

(1) The ontological view created from an information model to be verified and refined

by human experts;

(2) The semantic integration to be executed in an automated manner based on the

analysis applied on the representations.

To this end we adopt an XML-based representation for FOSL. An ontological view

can be modeled as a set of frames and represented in an XML document. The

document is supported with multiple <concept> tags for concepts (frames),

respectively. Under a <concept> tag the slots are divided into two categories and

specified by <relationships> and <properties>. Under each category there are a

collection of individuals, namely <relationship> and <property>. The isA and partOf

144

predicates are represented as specific <relationship> nodes with pre-defined

semantics.

The facets of each slot are tagged as <facet> which is described by two attributes:

name and value. To uniquely identify each concept, there is also a sub-tag <name>

under each <concept> tag denoting the identifier of each concept.

The following is the schema of the XML document derived from FOSL.

145

<?xml version="1.0" encoding="utf-16"?>
<xsd:schema attributeFormDefault="unqualified" elementFormDefault="qualified" version="1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="ontological_view" type="ontological_viewType" />
 <xsd:complexType name="ontological_viewType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="concept" type="conceptType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="conceptType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="properties" type="propertiesType" />
 <xsd:element name="relationships" type="relationshipsType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="relationshipsType">
 <xsd:sequence>
 <xsd:element name="relationship" type="relationshipType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="relationshipType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="target_concept" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertiesType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="property" type="propertyType">
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertyType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="facets" type="facetsType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="facetsType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="facet" type="facetType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="facetType">
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="value" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

146

4.4 Semantic Equivalence Relationship Discovery

4.4.1 Short Summary on Matching Approaches

Generally, the information models adopt vocabulary from natural languages such as

English. The constant symbols such as English words refer to concepts under an

ontological commitment. This research takes this fact as an assumption, i.e., this

research does not deal with the cases that random symbols are picked for the

information models.

According to propositions (2) in Section 3.4.6, if the semantic equivalence

relationships between symbols can be discovered, then it can be inferred that the

symbols are referring to the same concept, therefore the semantic integration can be

achieved. The semantic equivalence relationship is deduced from the semantic

similarity metric between symbols. A semantic similarity metric is a combination <A,

t> where A is an approach to compute the similarity between symbols and t is a

threshold. The approach A can be viewed as a function A: S × S→R where S is the set

of symbols and R is the set of real numbers. If A(s1, s2) > t, s1, s2∈S, then it can be

confidently believed that two symbols are semantically equivalent, i.e., s1 and s2 have

a semantic equivalence relationship.

In the research of schema matching and ontology mapping, multiple approaches have

been developed to discover the semantic relationships between elements of the

schemas or ontologies. These approaches can be applied to ontological views.

Next, we briefly introduce three major categories of approaches.

(1) Linguistic (Syntactical) Matching

Linguistic matching utilizes vocabularies of languages to discover semantic

equivalence relationships. Linguistic matching works on symbols that can be mapped

to concepts under an ontological commitment. The languages adopt symbols based on

147

a natural language foundation such as English. For example, assuming there is an

intended model of some concept c, one may use an English word “Professor” as a

symbol to model it in an information model. By modeling the symbol, “Professor” is

mapped to that concept and by representing the string “Professor” is used as the name

of a table in a relational model.

In linguistic matching, the principle is that the more syntactically similar two symbols

are, the more likely they map to the same concept, the same property, or the same

facet. To increase the precision of the comparison, the symbols will often be

normalized and compared, sometimes with the help of natural language dictionaries to

determine the synonym when the symbols are syntactically different.

Linguistic matching consists of two major steps: normalization and comparison.

(a) Normalization. Information models usually utilize similar symbols for the

same concept, but with syntactical differences due to abbreviations, acronyms, or

punctuations. To tolerate these differences, a normalization process is used to

reduce the syntactical diversity. The process includes:

• Tokenization – The symbols are parsed into tokens by a customizable

tokenizer using punctuation, upper case, special symbols, or digits.

• Expansion – Abbreviations and acronyms are expanded to the full form.

• Elimination – Tokens that are articles, prepositions, or conjunctions are

marked to be ignored during comparison.

(b) Comparison. To determine the semantic equivalence relationship, the

linguistic similarity between the symbols representing the concepts is computed.

For example, the edit distance can be used to compute the similarity between two

symbols. To enhance semantic matching, some natural language dictionaries such

as WordNet can be employed. A dictionary is designed in a way that it relates

words with different syntactical forms together if they refer to the same or similar

148

concepts in a specific domain. It can be used, for instance, to determine the

synonym when two symbols are syntactically different.

As an example, if the symbols “Engineering” and “Eng.” are used in different

ontological views to model concepts in the education domain, a shared domain

dictionary may tell that “Eng.” is usually an abbreviation of “Engineering”, therefore

these two symbols should be referring to the same concept (the same faculty). As

another example, both s1 = “Research Center” and s2 = “Research Centre” can be

adopted as symbols to model concepts. A simple edit distance metric between s1 and

s2 is 2, considering that one letter is removed from s1 and another letter is inserted s1

to make s1 identical to s2. By comparing the edit distance between s1 and s2, as well as

edit distances between s1 and other symbols, it is reasonable to conclude that s1 is

semantically equivalent to s2.

(2) Structural (Semantic) Matching

The structural matching utilizes the semantic structures captured by the proposed

frame model to discover the semantic equivalence relationships if syntactical

matching cannot provide sufficient clues. The frame model’s tree-like structure will

be utilized to consider the following cases:

(a) Atomic symbols (leaves) in two trees are similar if they are linguistically

similar and the associated symbols in their respective vicinities (ancestors and

siblings) are similar.

(b) Two non-leaf symbols are similar if they are linguistically similar, and the

sub-trees rooted at the two symbols are similar.

(c) Two non-leaf symbols are similar if their leaf sets are similar, even if their

immediate children are not. This is because the leaves represent the atomic

information that the models ultimately contain.

149

These rules can support the inference that two symbols are semantically equivalent if

their properties are very similar, even though they are syntactically different.

For example, consider the following two concepts based on frame:

The non-leaf symbols Title and AssignedTitle are syntactically similar, and since their

sub-trees are similar, case (b) can be applied to conclude that they refer to the same

property. The non-leaf symbols Professor and Faculty are syntactically different.

However, since their sub-trees are structurally similar, from (c) it can be concluded

that they refer to the same concept.

(3) Instance-based Matching

Instance-based matching approaches belong to another important category since the

instances can provide much useful information.

Let O be an ontology model that has a concept hierarchy C. C can be expressed by the

set {c1, ..., cn} where c1, ..., cn are concepts in O. Every concept in O may be

instantiated by one or more instances, denoted by an expression of the form [rk1, ...,

rkm] where rk1, ..., rkm are instances of concept ck that belongs to the concept hierarchy

C. We say that instances ra in OA and rb in OB, respectively, are equivalent, denoted as

ra ≡ rb, when they represent the same (real-world) object; in this case, we also say that

ca and cb map to each other, where ca and cb are the concepts under which instances ra

and rb are classified, respectively.

Concept: Professor isA Person
 --- hasProperty: Title
 -- hasFacet: Range
 - hasValue: Full, Associate, Assistant
 --- hasProperty: Name
 -- hasFacet: Type

 - hasValue: Text String

Concept: Faculty isA Person
 --- hasProperty: AssignedTitle
 -- hasFacet: Range
 - hasValue: Full, Associate, Assistant
 --- hasProperty: Name
 -- hasFacet: Type

 - hasValue: Text String

150

In instance-based mapping semantic relations between concepts of two ontologies are

determined based on the overlap of their instance sets. The basic idea is that the more

significant the overlap of the common instances of the two concepts is, the more

related these concepts are [Isaac, et al., 2007]. This is a very natural approach, as in

most ontology formalisms the semantics of the relations between concepts is defined

via the set of their instances. The idea for mapping is then simply that the higher the

ratio of co-occurring instances for two concepts, the more they are related.

4.4.2 A Tree Similarity-based Approach

4.4.2.1 Introduction to Tree-based Similarity Discovery

An ontology model can be viewed as a concept structure representing some domain

knowledge [Sanin, et al., 2007], and one commonly used form is a tree structure. The

frame-based ontological view and each concept in an ontological view also have a

tree structure. Approaches developed for comparing tree structures can be applied to

discover possible semantic relationships.

Much of the research on comparing trees uses the editing cost from one tree to

another to measure the similarity of two trees [Guegan and Hernandez, 2006]. The

classical methods focus on the structural and geometrical characteristics of the trees,

mainly considering the number of nodes affected by the tree editing operations [Allali

and Sagot, 2005 and Guda, et al., 2002]. However, in a knowledge context where the

trees are used to represent the concept structures, in addition to the structural

characteristics of the trees, more attention must be paid to the concepts represented by

the internal tree nodes. Therefore, besides the number of edited nodes, the positions

and conceptual similarities of the affected nodes also have to be considered.

The similarity of two individual concepts can be relatively easily estimated by domain

experts. As an example, based on common sense, concepts “People” and “Human”

151

are often regarded as referring to the same meaning, i.e. their similarity degree is 1.

On the other hand, concept “Faculty” does not always refer exactly to the same thing

as “Professor” in the university domain. Roughly speaking, a similarity degree can be

assigned to these two concepts, say, 0.9, meaning that under approximately 90% of

the occasions they are describing the same group but not in other cases. Some

research has also proposed various methods of determining conceptual similarity

between individual concepts in a knowledge context [Han and Kamber, 2000 and

Warin, et al., 2005].

Determining the similarity of various structures containing many concepts is another

complicated research topic. For instance, given the following three trees in Figure 4-3

(which are modelling the concept structures about the university domain and are

developed by different people) where relationships between concepts are identical

(“part-of” in this example) and a list describing the similarities of individual concept

pairs (e.g. sim(People, Human) = 1 and sim(Faculty, Professor) = 0.9) which can be

provided by domain experts, how can we determine the extent that they are similar to

each other and which two are more similar.

T1

T2

T3

University

Department

Student Residence People Research Center

Registered Student Faculty

University

Organization

Library Department

Research Center

Human

Professor Student

University

Library School

Department Professor

Registered Student

Undergraduate Graduate

Figure 4-29. An example of multiple concept trees for the same domain.

Our work extends the classical tree editing operations and introduces the tree

transformation operations. We propose four types of transformation operations which

can transform one concept tree into another, and provide definitions for the cost of

each operation considering the number of affected nodes, the scale of the node set, the

conceptual significance of affected nodes, and the conceptual similarity of the node

152

pairs (each node representing one concept) in a knowledge context. The degree of tree

similarity is measured according to the tree transformation cost. This method can be

applied to ontological view comparison to support semantic integration in cases where

different ontological views for the same domain can be represented as trees.

4.4.2.2 Related Work

The tree is one of the most commonly used combinatorial structures in computer

science. Research on comparing tree structures has a long history in many fields. It

has been well studied in several diverse areas such as computational biology,

structured text databases, image analysis, and compiler optimization [Bille, 2003]. In

the research the edit cost (or edit distance) from one tree to another is employed to

measure the similarity degree of two trees [Allali and Sagot, 2005; Guda, et al., 2002;

Guegan and Hernandez, 2006; Jin, et al., 2005]. However, such research is mainly

focused on finding matches based on the pure structure or geometry perspective

without considering the conceptual semantics of the tree nodes in a knowledge

context.

Tree pattern matching is another one frequently used methods. For example, some

research has explored the algorithm of matching pattern discovery in an XML query

[Bruno, et al., 2002 and Yao and Zhang, 2004] where they did not focus on the cost of

matching. Another domain of using tree pattern matching is compiling where

matching cost is defined through tree-rewriting rules and instruction types [Aho, et

al., 1989].

Maedche et al. conducted in-depth research into the similarity between ontologies

[Maedche and Staab, 2002]. In their research context, an ontology has a tree structure

that is modelling a concept taxonomy. A method was developed to measure the

similarity between ontologies based on the notions of lexicon, reference functions,

153

and semantic cotopy. This method is based on an assumption that the same terms are

used in different ontologies for concepts but their relative positions may vary.

However, in many real ontologies different terms will be adopted to construct the

concept taxonomies, although some of them have similar semantics. In these cases

computing taxonomic overlap is not fully applicable and lexical level comparison

becomes almost inapplicable. Furthermore, this research did not take the structural

characteristics of trees into consideration.

Li et al. conducted similar research on measuring the similarity of ontologies

(represented as trees) based on tree structure mapping [Li, et al., 2006]. They

proposed a mapping method that combines the similarity of the inner structure of

concepts in different ontologies and the language similarity of concepts. The

similarity of concepts is computed from some lexical databases like WordNet.

However, such a generic semantic similarity calculating algorithm is not perfectly

applicable in domain-based concept systems. Furthermore, Li’s work did not handle

cases of crossing-layer mappings, which is common in tree mapping where similar

terms may be placed in various layers within the trees.

Summarizing, to the best of our knowledge, no research has been fully done to

measure the similarity of trees based on both structure comparing and concept

comparing and then applied to ontological view comparison.

4.4.2.3 Definition for Concept Tree

A lot of research has been done on tree comparing, which has focused mainly on

finding matches based on the pure structure or geometry perspective (e.g. [Guda, et al.,

2002 and Jin, et al., 2005]) without considering the conceptual semantics of the tree

nodes in a knowledge context.

154

We extend the traditional definition of trees for the sake of describing concept

structures. The formal definition is given below:

Definition 1: Concept Tree. An (unordered and labelled) Concept Tree is a six-tuple

T = (V, E, LV, root(T), D, M) where V is a finite set of nodes, E is a set of edges

satisfying that E⊂V×V which implies an irreflexive and antisymmetric relationship

between nodes, LV is a set of lexicons (terms) for concepts used as node labels,

root(T)∈V is the root of the tree, D is the domain of discourse, and M is an injective

mapping from V to LV, M: V→LV ensuring that each node has a unique label. For

convenience, we simply call each term in LV a concept with an agreement on their

semantics. A mapping from a node v to a label l is simply written as a tuple (v, l) ∈ M.

A concept tree is acyclic and directed. If (u, v)∈E, we call u a parent of v and v a child

of u, denoted as u = parent(v) or v = child(u). The set of all children of node u is

denoted as C(u). For two nodes u1, u2∈V, if (u1, u2) ∈ E* holds, then we call u1 an

ancestor of u2 and u2 a descendant of u1. The set of all descendants of node u is named

D(u).

The following conditions are satisfied by any concept tree:

(1) The root node does not have a parent node.

(2) Any node in V other than the root has one and only one parent node.

(3) For each non-root node u in V, there exists (root(T), u)∈E*, where E* is the

transitive closure of E, meaning that no node is isolated from others.

(4) There is a unique directed path composed of a sequence of elements in E from

the root to each of the other elements in V.

Definition 2: Conceptual Similarity Measure. A conceptual similarity measure

21 , VV LL
S is a set of mappings from two lexicon sets LV1, LV2 used in different concept

trees to the set of real numbers R,
21 , VV LL

S : LV1×LV2→R, in which each mapping

155

denotes the conceptual similarity between two concepts represented by these two

lexicons. R has a range of (0, 1].
21 , VV LL

S is semantically reflexive and symmetric, i.e.

for l1∈LV1 and l2∈ LV2 we have
21 , VV LL

S (l1, l1) = 1 and
21 , VV LL

S (l1, l2) =
21 , VV LL

S (l2, l1). For

convenience, we simply use w = s(l1, l2) to refer to the number value of conceptual

similarity between two concepts from two trees T1 and T2. Intuitively, the larger w is,

the closer the two concepts are and w = 1 means two concepts are actually identical

(the terms used to denote the concepts are synonymous).

Conceptual similarity between two concepts can be given by domain experts or

calculated based on some linguistic analysis methods. For instance, Mitra et al. use a

linguistic matcher to assign a similarity score to a pair of similar concepts [Mitra and

Wiederhold, 2002]. As an example, given the strings “Department of Defense” and

“Defense Ministry”, the match function returns match(Defense, Defense) = 1.0 and

match(Department, Ministry) = 0.4, then it calculates the similarity between the two

strings as: s(“Department of Defense”, “Defense Ministry”) = (1 + 0.4)/2 = 0.7.

For l1∈LV1 and l2∈ LV2, if there is no definition for l1 and l2 in the measure, we view l1

and l2 as totally different (disjoint) concepts. Such a concept pair will not be

considered when two concept trees are being compared.

4.4.2.4 Tree Transformation Operations and Transformation Cost

Tree transformation operations can map one tree T into another one, T’, as defined

below.

(1) Deleting node v (denoted as delete(v))

If v≠root(T), then V’ = V – {v}, E’ = E – {(u, v) | u = parent(v)} – {(v, vc) | vc ∈ C(v)}

+ {(u, vc) | u = parent(v) ∧ vc ∈ C(v)}, LV’ = LV – {M(v)}, and M’ = M – {(v, M(v))}.

156

It must be noted that when deleting one node, besides eliminating that node from the

tree we still need to make its children nodes new direct children nodes of its parent

node, which is different from deleting a sub-tree.

If v = root(T), the result of deleting is a forest {T[vc] | vc∈C(v)}. In a concept tree the

root is usually a very general concept like “object”, therefore we assume that all trees

have a common root concept and restrict that the root is never allowed to be deleted.

The deleting operation is depicted in the following Figure 4-4:

Figure 4-30. Deleting a node.

(2) Inserting node v under node u (denoted as insertu(v))

We have V’ = V + {v}, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} – {(u, uc) | uc∈C’(u)},

LV’ = LV + {lv}, and M’ = M + {(v, lv)}, where lv is the lexicon assigned to the new

node v, and C′(u) ⊆ C(u) meaning that some children nodes of u are changed to be

children of the new node v. The elements contained in C’(u) is determined by the

context when performing the editing operation.

The inserting operation is depicted in Figure 4-5:

Figure 4-31. Inserting a node.

(3) Re-labelling node v (denoted as relabellv→lv’(v))

157

This is a particular operation in a labelled tree. Re-labelling of v with label lv is to

assign v a new label lv
’, keeping the positions of all the nodes unchanged. We have LV’

= LV – {lv} + {lv
’} and M’ = M – {(v, lv)} + {(v, lv

’)}, where lv
’ is the new label

assigned to v, as is depicted in the following Figure 4-6.

Figure 4-32. Re-labelling a node.

(4) Moving node v to be under node u (denoted as moveu(v))

This is an extended operation in a knowledge context that is not defined in classical

tree editing operation sets. From Figure 4-7 we see that in the case of pure structured

trees (a) and (b) two operations delete(E) and insertB(E) can be performed to convert

(a) to (b). However, when mapping a concept tree to another we cannot simply delete

a node and then insert it since the concept represented by the node’s label already

exists in the tree.

Figure 4-33. An example of a moving operation.

More specifically, in Figure 4-7 two trees (c) and (d) put the concept “Professor” in

different positions and by moving node “Professor” to be under “Employee” we

transform (c) to (d), instead of deleting “Professor” and then inserting it back (from (c)

to (e) and then (e) to (d)).

158

The moving operation regulates that V’ = V, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} +

{(parent(v), vc) | vc∈C(v)} – {(parent(v), v)} – {(v, vc) | vc∈C(v)} – {(u, uc) |

uc∈C’(u)}, where C′(u) ⊆ C(u) meaning that some children of node u are changed to

be children of the node v based on the operation context.

Definition 3: Transformation Cost. Each transformation operation Op on tree T is

mapped to a real number which is defined as the transformation cost of the operation

and denoted as γ(Op). The transformation cost reflects the extent of change it makes

to the tree.

If OP = {Op1, Op2, …, Opk} is a transformation sequence, then the transformation

cost of the sequence is defined as ∑ =

=
=

||

1
)()(OPi

i iOpOP γγ .

Definition 4: Tree Transformation Cost and Similarity Index. If OP is a

transformation sequence mapping a tree T1 to another tree T2, then the tree

transformation cost from T1 to T2 is defined as

 γ(T1→T2) = min{γ(OP) | OP is a transformation sequence mapping T1 to T2 }.

Also, we define the similarity index of two trees T1 and T2 as

 γ (T1, T2) = min{γ (T1→T2), γ (T2→T1)}.

It is a measure representing the extent to which two trees are similar to each other.

The higher the tree transformation cost and similarity index is, the less similar the two

trees are and vice versa.

4.4.2.5 Computing of Transformation Cost

In a tree transforming process we need to count the total cost of all transformation

operations. A tree transforming process that maps tree T1 = (V1, E1, LV1, root(T1), D,

159

M1) into T2 = (V2, E2, LV2, root(T2), D, M2) based on
21 , VV LL

S contains the following

tasks:

(1) Compute the set of nodes to be deleted, D, in T1.

D = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ¬∃s(M1(u), l2)∈ 21 , VV LL
S (l2∈LV2)}. That is, the nodes

which labels are appearing in T1 but T2 and have no conceptual similarity with any

labels in T2 defined (the concepts represented by the nodes in T1 are totally not

contained by T2).

(2) Compute the set of nodes to be inserted into T1, I.

I = {v | v∈V2 ∧ M2(v)∉LV1 ∧ ¬∃s(l1, M2(v))∈
21 , VV LL

S (l1∈LV1)}. That is, the nodes which

labels are appearing in T2 but T1 and do not have conceptual similarity definition with

any labels in T1 (the concepts represented by the nodes in T2 are totally not contained

by T1).

(3) Try every possible combination of the deletion and insertion operations and find

the minimal cost.

(4) Compute the set of nodes to be moved within T1 itself, M, and move them.

M = {u | u∈V1 ∧ (M1(u)∈LV2 ∧ M1(parent(u)) ≠ M2(parent(M2
-1(M1(u)))) ∧

¬∃s(M1(parent(u)), M2(parent(M2
-1(M1(u)))))∈

21 , VV LL
S) ∨ (∃s(M1(u), l2)∈

21 , VV LL
S

(l2∈LV2)) ∧ M1(parent(u)) ≠ M2(parent(M2
-1(l2))) ∧ ¬∃s(M1(parent(u)),

M2(parent(M2
-1(l2)))) ∈ 21 , VV LL

S)}. That is, the nodes that are appearing in both T1 and

T2, or which labels have conceptual similarity with labels defined in T2, but which

parents are neither the same nor similar.

(5) After the deleting, inserting, and moving operations are performed on T1, T1 now

has the same structure with T2, but still has some nodes with different labels (implying

160

different conceptual semantics). The final task is to compute the set of nodes to be

re-labelled, R, and re-label them. R = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ∃s(M1(u), l2)∈
21 , VV LL

S

(l2∈LV2)}. That is, the nodes that are appearing in both T1 and T2 with different labels,

but the labels have conceptual similarity between them.

Let OP be the editing sequence containing operations in the above tasks, the

transforming cost is computed as follows (using pure operation names):

The cost of each transformation operation (deleting, inserting, moving, and

re-labelling) is a key issue for the measuring. The cost is affected by which level that

the node resides in the tree structure, the scale of the node set, the number of

descendants of the node, and the similarity of the two concepts (labels) attached to the

two nodes. For example, first, a node at a higher layer contains richer semantics than

does a lower node does, or, the concept it represents is more significant for the

domain than a lower one. Therefore, when a node u is at a higher layer, the effect to

the concept tree of deleting u or inserting a new node under u is bigger than that of

deleting or inserting a node at a lower layer. Second, the more nodes a tree has, the

less the effect will be when one node is deleted or inserted. That is, the larger the

concept tree is, the less different it will be if it gets one new concept or loses one old

concept. Third, a node with more descendants will cause greater change to the tree

structure if it is deleted, or greater change is made if a node gets more descendants

after it is inserted. Finally, the more similar the two concepts are, the less the cost will

be to change one into the other.

Based on the research of [Bille, 2003 and Kruskal, 1999] and above observations, we

define the cost for each transformation operation as follows:

 Deleting cost.

}))(())(())(())((min{)(21 ∑∑∑∑
∈∈∈∈

→ +++=
RiMiIiDi

TT irelabelimoveiinsertideleteOP γγγγγ

161

||
|)(|1)()())((

V
vDvdepthTheightvdelete ++−

=γ , where v is a non-root node, height(T) is a

function calculating the height of tree T, depth(v) calculates the depth of node v, and

|D(v)| is the number of descendants of node v (including its direct children and

indirect offspring). Intuitively, depth(root(T)) = 1, and depth(v) > 1 iff v is not the root.

If v is a leaf node, D(v) = ∅ and |D(v)| = 0. When v is a leaf node at the lowest level

(height(T) = depth(v)), deleting v will cause the minimal effect to the tree and

γ(delete(v)) = 1/|V|. Note that here V refers to the original node set before the deletion.

 Inserting cost.

||
|)(|1)()())((

V
vDudepthTheightvinsertu

++−
=γ , where |D(v)| is the number of

descendants that v gets after it is inserted. Note that here V refers to the original node

set before the insertion. When u is at the lowest layer, inserting a new node v under u

will result in the minimal cost γ(insertu(v)) = 1/|V|.

 Moving cost.

||
2||))](())(([

2
1))((

V
Vvinsertvdeletevmove uu

−
×+= γγγ , where |V|>2 (the tree has a root and

at least two non-root nodes) and u ≠ parent(v). Note that here insertu(v) is performed

on a tree without node v. In this definition we consider both deleting and inserting

operations because the moving operation does generate effects similar to deleting and

inserting, although not exactly the same. The factor 1/2 adjusts the cost of operations

since the node is not truly deleted and inserted into the tree. Another factor (|V| - 2)/|V|

adjusts the cost again to ensure that in an extreme case where v is the only node other

than the root, its moving cost should be 0 (actually it cannot be moved) and when the

number of nodes in the tree grows, the effect of the moving operation to the tree

structure is less.

 Re-labelling cost.

162

This cost is heavily dependent on the similarity of two labels (concepts). The

re-labelling cost is different from the deleting cost, inserting cost, or moving cost

since the re-labelling operation does not result in the change of a tree structure.

Kouylekov et al. [Kouylekov and Magnini, 2005] proposed a definition for

substitution of two similar words w1, w2 as γ(insert(w2))×(1 – sim(w1, w2)) where

insert(w2) is the cost of inserting w2 and sim(w1, w2) is the similarity between w1 and

w2. This definition does not take the deletion of the original word into consideration,

therefore when two words have no conceptual similarity the cost of substitution

becomes the cost of insertion, neglecting the implicit deleting operation. In our work

we give a more comprehensive definition.

Let the conceptual similarity measure between two labels lv1, lv2 which are

attached to node v be s, 0≤s≤1, we define:

)1())](())(([))(()(21
svinsertvdeletevrelabel vparentll vv

−×+=→ γγγ

We analyze two extreme cases: if s = 1, then re-labelling will only result in literal

replacing without any loss of information, therefore the re-labelling cost is 0; if s = 0

(i.e., the two concepts are totally different), the re-labelling operation is equivalent to

deleting v and inserting v again, the transformation cost is γ(delete(v)) +

γ(insertparent(v)(v)). In other cases, the cost will be between these two boundaries.

4.4.2.6 Cost Computing Algorithm

The cost computing algorithm is composed of a pre-processing phase and a

transforming phase, as depicted below. The pre-processing phase finds the nodes that

are to be deleted and inserted. In the transforming phase, an exhaustive method is

used to try every possible transformation sequence to find the minimal cost.
A. The pre-processing phase.

163

Input: Tree T1 and T2; Concept similarity measure set
21 , VV LL

S

Output: Sets of nodes to be deleted, D, and inserted, I

Algorithm:
1) D = ∅;
2) for every node u in V1
3) {
4) if(not exists any l in LV2 such that M1(u) = l)

5) if(not exists any s(M1(u), l) in
21 , VV LL

S)

6) add u into D;
7) }
8) I = ∅;
9) for every node v in V2
10) {
11) if(not exists any l in LV1 such that M2(v) = l)

12) if(not exists any s(l, M2(v)) in
21 , VV LL

S)

13) add v into I;
14) }
15) return D and I;

B. The transforming cost computing phase.

Input: Tree T1 and T2; D, I; Concept similarity measure set
21 , VV LL

S

Output: γ (T1→T2)

Algorithm:
1) find all permutations composed by elements in D∪I and store in P;
2) transformCost = +∞;
3) for each permutation p in P
4) {
5) backup T1 and T2;
6) editCost = 0;
7) for each element u in p
8) {
9) perform deletion (if u∈D) or insertion (if u∈I) on u if applicable;
10) editCost = editCost + (γ(delete(u)) or γ(insert(v)));
11) }
12) for each u in V1 but not in p
13) { /* handle the nodes to be moved. */

14) if(exists l in LV2 such that M1(u) = l or exists any s(M1(u), l) in
21 , VV LL

S)

15) if(M1 (parent(u)) ≠ M2 (parent(M2
-1(l))) and

164

16) not exists any s(M1 (parent(u)), M2 (parent(M2
-1(l))) in

21 , VV LL
S)

17) perform moving on u;
18) editCost = editCost + γ(move(u));
19) }
20) for each u in V1 but not in p
21) { /* handle the nodes to be re-labelled. */

22) if(exists l in LV2 such that exists any s(M1(u), l) in
21 , VV LL

S)

23) perform re-labelling on u;
24) editCost = editCost + γ(relabel(u));
25) }
26) transformCost = min(transformCost, editCost);
27) restore T1 and T2;
28) }
29) return transformCost;

In this algorithm, a backup operation and a restore operation are included, which are

used to setup a common starting point each time a new operation sequence is tried.

The same algorithm can be used to compute the cost of converting T2 into T1,

therefore the similarity index of T1 and T2 can be determined.

Following, we give the time complexity analysis of the algorithm: Given two trees T1

= (V1, E1, L1
V1, root(T1), D, M1), T2 = (V2, E2, L2

V2, root(T2), D, M2), and a conceptual

similarity measure
21 , VV LL

S , let |V1| and |E1| be the number of nodes and edges in T1,

|V2| and |E2| be the number of nodes and edges in T2, so the upper bound of |
21 , VV LL

S | is

|V1|×|V2|. In the pre-processing phase, the times to search T1, T2 as well as
21 , VV LL

S are:

 |V1|×|V2|×|V2| + |V2|×|V1|×|V1|

Without loss of generality, we assume that two trees have similar sizes. That is, |V1| ≈

|V2| ≈ n. Therefore, we have |E1| ≈ |E2| ≈ n-1. The time complexity of the

pre-processing phase is O(n3).

165

In the cost computing phase, on average half of the nodes in T1 may be deleted and

half of the nodes in T2 need to be inserted, so the complexity of getting the

permutations of D∪I is O(n(n + 1)/2) = O(n2). The average times of deleting and

inserting nodes are n. When moving the nodes, on average n/4 nodes can be moved

(half of the untouched nodes), and the time complexity of finding the position to

move for each node is O(n/4 + n/4) = O(n/2) (considering both the node itself and its

parent node). The time complexity of the relabeling operations is O(n/4). Therefore,

the time complexity of the cost computing phase is O(n2)×O(n + n/2×n/2 + n/2) =

O(n4).

To sum up, the time complexity of the algorithm is O(n3) + O(n4) = O(n4). Usually in

an ontological view the number of concepts is limited and the comparison is often a

one-time action, therefore the cost is acceptable although better tree comparison

algorithms can be explored to reduce the cost.

4.5 Instance-based Approach

4.5.1 Introduction to the Approach

In the family of schema matching approaches, instance-based approaches [Doan, et

al., 2001] can utilize the data instances which imply plenty of valuable clues for the

potential attribute matches. When comparing concepts in different ontological views,

the fact that data instances are maintained in the information repositories can be

applied to increase the precision of discovering semantic equivalence relationship

between the concepts.

One of the major issues of these approaches is the cost of manipulating a large

quantity of raw data. One solution to increase the efficiency is to use instance

representatives (with each representing a set of data instances) for the analysis instead

of using all raw data. The clustering methods can be applied as a solution.

166

Some research also uses clustering methods to find closely related schema elements.

For example, Pei et al. [Pei, et al., 2006] proposed a new approach for schema

matching by clustering schemas on the basis of their contextual similarity and

clustering attributes of the schemas that are in the same schema cluster to find

attribute correspondences between these schemas. The approach also clusters

attributes across different schema clusters using statistical information gleaned from

the existing attribute clusters to find attribute correspondences between more

schemas. Smiljanic et al. [Smiljanic, et al., 2006] presented a clustering-based

technique for improving the efficiency of XML schema matching by partitioning

schemas with clusters and reducing the overall matching load. In this work clustering

is used to quickly identify regions, i.e., clusters, in the large schema repository which

are likely to produce good mapping. This research has a different context than our

work, i.e., they cluster the schema elements instead of clustering the data instances.

Also, no work was done based on the concept of ontological views.

4.5.2 Instance-based Semantic Equivalence Relationship

Discovery

The semantic similarities of the concepts in ontological views can be computed based

purely on the representations of their properties. However, the data instances, when

available, can provide many more useful clues to help discover the similarity of the

properties regardless of how they are represented. The probability distribution (or

probability density) is one of the often-used approaches to analyze the instance

values. Basically, if two properties of two concepts have compatible data types (the

data type can be known from the schema) and the probability distributions of their

data instances are identical or very close, then it is reasonable to infer that these two

properties are very likely to be semantically similar. In the following sections we

discuss the problems to solve and the corresponding solutions.

167

4.5.2.1 Estimation of Probability Density of Data Instances

The first problem is how to estimate a probability density function f(x) given a

sequence of independent and identically distributed random variables x1, x2, …, xn

(data instances of a property) from this density f.

There is a rich collection of non-parametric density estimators, including kernel,

spline, orthogonal, series, and histogram [Bean and Tsokos, 1980].

We adopt the Kernel density estimation method [Turlach, 1993 and Wasserman,

2005] to compute the probability distribution of the data instances. In statistics,

Kernel density estimation is a non-parametric way of estimating the probability

density function of a random variable. Different than many distributions, the Kernel

density estimation is smooth and independent of end points. It just depends on the

bandwidth. The definition of kernel density estimation is presented as follows.

If x1, x2, …, xN ~ f is an independent and identically-distributed random variables

sample of a random variable, then the kernel density approximation of its probability

density function is

 ∑
=

−
=

N

i

i
h h

xxK
Nh

xf
1

)(1)(, where K is some kernel and h is the bandwidth

(smoothing parameter). Quite often K is taken to be a standard Gaussian function with

mean zero and variance 1, and h is computed according to the standard deviation (S)

of the N values [Scott and Sain, 2004]:

21

21()
2

x
K x e

π
−

= ,
5

1.06Sh
N

= .

168

4.5.2.2 Comparison of Probability Densities

After the probability densities of the properties are computed, it is necessary to

compare them and check their similarity. The question here is how to compare

different probability densities.

We employ the Kullback-Leibler (K-L) divergence approach [Kullback, 1987] to

compare the probability densities. In the probability theory and information theory,

the K-L divergence is a non-commutative measure of the difference between two

probability densities.

For probability densities f1 and f2 of a continuous random variable, their K-L

divergence is defined as

1
1 2 1

2

()(,) () log
()

f xf f f x dx
f x

δ
∞

−∞
= ∫ .

Although a property is a continuous variable, in practice it should be manipulated as a

discrete random variable in order to compute the K-L divergence. The solution is to

sample a set of values (with each denoted as si) from the domain of two properties

under comparison, then compute the probability of each value according to the

probability density functions (denoted as f1(si) and f2(si)), and finally compute the K-L

divergence by

1
1

2

()() log
()

i
K L i

i i

f sD f s
f s− = ∑

4.5.2.3 Clustering of Data

In the instance-based analysis, another problem emerges when using original data

instances to compute the probability densities and compare them. The computation

169

cost is very high due to the large amounts of raw data. The solution is to cluster the

data first, and then compute the probability densities based on the clustered data.

Cluster analysis [Kotsiantis and Pintelas, 2004], also called data segmentation, relates

to grouping or segmenting a collection of objects (also called observations,

individuals, cases, or data rows) into subsets or “clusters” such that those within each

cluster are more closely related to one another than objects assigned to different

clusters. Since the objects in each cluster are closer or similar to each other, it is

reasonable to use one typical object within one cluster to represent the entire cluster.

The typical object is a weighted cluster centre which can represent a set of values

similar to the centre itself. The use of a typical object will significantly reduce the size

of the problem.

Hierarchical clustering is one of the major methods of cluster analysis. Hierarchical

clustering is subdivided into agglomerative methods, which proceed by a series of

fusions of the n objects into clusters, and divisive methods, which separate n objects

successively into finer clusters. A key component of the analysis is repeated

calculation of distance measures between objects, and between clusters once objects

begin to be grouped into clusters.

The initial data for the hierarchical clustering of N objects is a set of (1)
2

N N× −

object-to-object distances and a linkage function for computation of the

cluster-to-cluster distances. The linkage function is an essential prerequisite for

hierarchical clustering. Its value is a measure of the distance between two groups of

objects, i.e. two clusters.

A commonly used linkage function is complete linkage clustering, in which distance

between groups is defined as that of the furthest pair of individuals, where a pair

consists of one member from each cluster. Mathematically, the complete linkage

function—the distance D(X, Y) between clusters X and Y is defined as D(X, Y) =

170

max(d(x, y)), x∈X and y∈Y, where d(x, y) is the distance between elements x∈X and

y∈Y, and X and Y are two sets of elements (two clusters).

Complete linkage clustering is an agglomerative method. It starts from the clusters

initially containing one element each and successively fuses them to generate larger

clusters. Therefore, the two clusters with the lowest distance are joined together to

form the new cluster. At each step, the clusters to be used are those that are, according

to some pre-defined metric, most similar to each other.

The above discussion shows that the distance between elements is the foundation of

cluster analysis. An important task in any clustering is to select an appropriate

distance measure, which will determine how the similarity of the two elements is

calculated. This will influence the shape of the clusters, as some elements may be

close to one another, according to one distance and further away according to another.

At the information level, we consider generic metric space, not definitely pure

Euclidean Space (i.e., it is only required that the distance between any pair of

elements is known. It is not limited to the coordinates of points). A metric of a set X is

a function (called the distance function or simply distance) d: X×X→R, where R is the

set of real numbers. For all x, y, z in X, this function is required to satisfy the

following conditions:

(1) d(x, y) ≥ 0 (non-negativity)

(2) d(x, y) = 0 if and only if x = y (identity of indiscernibles). Condition (1) and (2)

together produce positive definiteness.

(3) d(x, y) = d(y, x) (symmetry)

(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

In an information system we usually face three types of data: numeric data, date-time,

and text string. Therefore, we define the distance metric for the three types:

171

If x, y are values of concept instances on property X, the distance between x and y,

d(x, y), is defined as:

 Euclidean distance in Euclidean one dimensional space, |x - y|, if the type of X

is numeric;

 Euclidean distance in Euclidean one dimensional space, |absolute_time(x) –

absolute_time(y) |, if the type of X is date-time, where absolute_time is a

function to map each date time to a long integer;

 Edit distance of string, if the type of X is text string. The edit distance d(x, y) is

the minimal cost for a sequence of edit operations to transform x to y.

The edit operations include:

(1) Replace one character in x by a character from y;

(2) Delete one character from x;

(3) Insert one character from y.

The cost model is defined as:

1, if
(,)

0, if
a b

c a b
a b

≠⎧
= ⎨ =⎩

a and b can be ε (null character) meaning inserting a new character b or

deleting an existing character a.

After the clusters are created, we expect to use the representative data instance in each

cluster, i.e. the cluster centre, to represent the entire set of data instances in the

following analysis. This is known as a 1-median problem [Drezner, et al., 1986]

which is defined as follows:

172

Given a universe U, a finite multi-set of points P, and a metric d, a 1-median is a point

m∈U that minimizes the objective function

(,)
p P

d p m
∈
∑

In this definition, m is a valid member in U but not definitely a point in P. It is an

optimal one to represent others since the median point is relatively closer to other

points (in terms of the selected distance metric).

The basic idea of the algorithm of finding the 1-median point is: for a point p∈P, let

() (,)
x P

S p d p x
∈

= ∑ , then conduct a series of comparisons between S(p), p∈P to find a

point q that minimizes the value of S. The point q is the cluster center under the

1-median’s definition.

173

Chapter 5 Implementation and Result Validation

5.1 Implementation

The implementation of this research includes two stages: 1) mapping the proposed

solution to technologies; and 2) creating engineering solutions using the adopted

technologies. Section 5.1.1 focuses on the first stage. The second stage is described in

section 5.1.2 and 5.1.3.

5.1.1 Mapping of Proposed Solution to Technology

In section 4.3, we propose to use frame as the paradigm to model the ontological

views. The fundamental elements within frame include:

• Frames representing concepts.

• Slots representing properties of concepts or relationships with other concepts.

• Facets representing characteristics of properties.

• Data representing instances of a concept.

These elements should be mapped to constructs provided by an implementation

technology (except the Data element that may be unnecessary in some modeling

situations) to guarantee that the solution can be supported by the technology. We

consider two types of technologies:

• Relational model.

• RDF-based model.

The following sections show how the mapping is achieved.

174

5.1.1.1 Mapping to Relational Model

Objects in the real world can be abstracted as data with specifications in the

computational world. A data model provides a uniform way to specify and represent

data. The relational model [Codd, 1990] was the first data model theoretically

founded and well thought out. It has become the foundation of the relational database

technology.

The fundamental assumption of the relational model is that all data is represented as

mathematical n-ary relations. Briefly, the relational model structures the logical view

of data around two mathematical constructs: domains (i.e., data types) and relations.

The name relational comes from "relation" as known and widely used in

mathematics, although in database theory the definition of relation is slightly

extended.

A domain is simply a set of values, together with its associated operators. It is

equivalent to the notion of a type in programming languages.

A relation over the domains D1, D2, ..., Dn is simply a subset of the Cartesian product;

the usual notation is R "included in" D1 × D2 × ... × Dn. An element of the Cartesian

set is called a tuple. A database is a collection of "relation valued" variables, together

with the set of integrity constraints that the data must satisfy. A relation can also be

viewed as a structure describing the relationships between things in the real world.

Each domain that defines a relation is associated with a string label (that is called

attribute name). An attribute is then the association between an attribute name and a

domain. In other words, an attribute has a name and a domain. A relation header is

then a set of attribute names. A tuple becomes the mapping between each attribute

name in the relation header and a value. And a relation is a set of tuples, all

corresponding to the relation header.

175

A key of a relation is composed of one or more attributes. The value of a key uniquely

identifies each tuple. A relation may have many keys, each of which is called a

candidate key. Every relation has at least one candidate key. One candidate key is

selected as the primary key.

A foreign key is composed of one or more attributes whose values are used elsewhere

as primary key values. The primary key and foreign key are defined on the same

domain but do not necessarily have the same attribute names.

Besides the structure of data, the relational model also defines the means for data

manipulation (relational algebra or relational calculus) and the means for specifying

and enforcing data integrity (integrity constraints).

Mapping between the frame to the relational model enables the adoption of a

relational model as an implementing technology. According to the definition of frame

and relational model, the following mapping rules are defined:

• A frame is mapped to a relation.

• A slot of a frame representing a property is mapped to an attribute of a

relation.

• A facet of a slot is mapped to a domain.

• A set of values on all slots representing an instance is mapped to a tuple.

• The set of one or more slots that uniquely identify an instance is mapped to a

primary key.

• A slot representing a relationship to another frame is mapped to a foreign key

or a relation, all of which attributes are foreign keys.

The relational model is the foundation of relational database systems. To apply the

relational model,

176

• Type is used to implement a domain. A type may be the set of integers, the set

of character strings, the set of dates, or the two boolean values true and false,

and so on. The corresponding type names for these types might be the strings

"int", "char", "date", "boolean", etc.

• Attribute is the term used in the theory for what is commonly referred to as a

column in a relational database.

• The database systems provide rich characteristics, besides name and type, for

attributes, e.g., value range, null-able, default value, etc.

• Table is commonly used in place of the theoretical term relation. A table

structure is specified as a list of column definitions, each of which specifies a

unique column name and the type of the values that are permitted for that

column.

• A tuple is basically the same thing as a row.

Based on these rules, the frame model is mapped to the relational model, which is

further implemented by the relational database technology.

5.1.1.2 Mapping to XML-based Models

XML is a standard for specifying data on the Web in a structured manner. Strictly

speaking, XML is a formalism of encoding information. An XML document is a flat

file with a rigid structure to specify concepts. It may follow the concept-property

paradigm and be compatible with a relational model.

An XML schema is helpful for defining the valid structure of an XML document.

A concept can be mapped to an element within an XML document. The element may

have multiple attributes, each of which is corresponding to a property of the concept.

177

Another way is to map a property to a sub-element of an element within an XML

document. The different situations show that the structure of XML can be quite

arbitrary in terms of how the concepts are modeled. For example, each of the

following two XML fragments shows a valid modeling of the concept product:

The frame model is compatible with either case. However, creating a frame-based

ontological view from such arbitrary models may pose a significant challenge. In our

solution, we assume that the XML documents follow a given format:

The following is an example about products:

<product>
<name>Donut</name>
<price>1.99</price>

</product>

<product name=”donut” price=”1.99” />

<concept-group>
<concept-name attribute-list />

 <concept-name attribute-list />
<…>

</concept-group>
<relationship-group>
 <relationship-name>
 <subject-concept-name identifier-attribute-list />
 <object-concept-name identifier-attribute-list />
 </relationship-name>
</relationship-group>

<products>
<product name=”donut” price=”1.99”/>

 <product name=”cookie” price=”1.49” />
</products>
<times>
 <time name="weekend" start="Saturday" end="Sunday">
</times>
<product_time_rules>
 <product_time_rule>
 <product name="donut" />
 <time name="weekend" />
 </product_time_rule>
</product_time_rules>

178

It still follows the concept-property structure. A concept in a frame is mapped to an

element in an XML document. The properties of a concept is mapped to attributes of

an element. A relationship is denoted by a specific element that has multiple

sub-elements indicating the subject concept and object concept in the relationship.

Note that in an XML document the instance data is embedded. A schema can be

extracted from a valid XML document. The facets of a property are not directly

specified in an XML document but can be specified in the schema as further attributes

of an attribute within the document.

In the current stage we only consider binary relationships but the solution can be

extended to support multi-arity relationships.

A wrapper is created to convert the XML-based model into an ontological model. The

wrapper can be enhanced to support more formats.

5.1.1.3 Mapping to RDF Model

RDF is a general model for conceptual description of the modeling of information that

is implemented in Web resources, using a variety of syntax formats.

The RDF data model is similar to classic conceptual modeling approaches such as the

Entity-Relationship model, as it is based upon the idea of making statements about

resources (in particular Web resources) in the form of subject-predicate-object

expressions. These expressions are known as triples in RDF terminology. The subject

denotes the resource, and the predicate denotes traits or aspects of the resource and

expresses a relationship between the subject and the object.

A frame model can be mapped to a RDF model guided by the following rules:

• A frame is mapped to a subject, representing a concept.

179

• A property is mapped to an object, and the predicate that associates the subject

and the object is defined as a "has-property" relationship.

• An object can be a resource on the Web. Therefore, the object can be a subject

in another statement. In this sense, a property is mapped to a subject, and its

facet is mapped to an object. The predicate that associates the subject and the

object is defined as a "has-facet" relationship.

• An instance is mapped to an object with a predicate "has-instance" between a

concept and itself. The instance further acts as a subject, and the property

values act as objects. The predicate between the instance and value is defined

as a relationship "has-property" where property refers to a specific property on

which the instance gets a value.

XML can be used as a serialization format of RDF. With such mappings an

ontological view model can be implemented as an RDF model, and further

represented with XML. In our engineering solution, RDF is not actually used since we

focus on typical information systems and these systems are usually not Web-based.

They concern information but such information is not treated as Web resources.

5.1.2 Prototype Environment

The proposed solutions are applied to a collaborative intelligence prototype

environment. Collaborative intelligence refers to a mechanism for semantically

integrating decentralized business intelligence and providing a comprehensive

knowledge foundation which can be utilized to achieve various goals. In another

sense, collaborative intelligence can be viewed as a kind of artifact that is produced

by a specific mechanism by collecting distributed intelligence, resolving semantic

heterogeneities, and converting to an expected form.

180

The collaborative intelligence mechanism is used to improve the product

promotion/advertisement domain and facilitate collaborative promotion. QSR (Quick

Service Restaurant) is a typical business that requires collaborative promotion. In such

a business, the promotion is achieved by displaying multimedia contents on digital

displays installed in many stores. The multimedia contents contain information about

various products, such as images, product names, prices, effective dates of

promotions, etc. The decision about what product to promote, when and where to

promote, and what multimedia content to play should be made based on the overall

knowledge of the entire business. Information systems managing the media assets,

product inventory, sales transactions, device schedules, etc. were originally developed

in a separate manner without considering collaboration in the future. The systems

share some common concepts within the business; however, they adopt different ways

of modeling the domain, resulting in heterogeneous information models.

A basic promotion criterion requires promoting a particular product more than

another, i.e., playing a media asset representing that product more frequently, if that

product reaches higher inventory level. To achieve such objectives the information

systems should be semantically integrated, so the scattered information can be

exchanged and understood by each system and therefore final decisions can be made.

Collaborative promotion, as a business strategy, is expected to be applied to achieve

more efficient and flexible promotion decisions.

Figure 5-1 illustrates the physical architecture of a collaborative promotion

environment:

181

Figure 5-34. Architecture of a collaborative promotion environment.

In the environment some systems (e.g. store inventory management system, store

transaction management systems, etc.) provide essential information and some other

systems (e.g. promotion planner, promotion scheduler) utilize the information to make

decisions. Information maintained by these systems, such as the promotion schedule,

can also be used by other systems for further analysis and decision making.

The access to the information models of these systems is guaranteed. A Web-based

management console is deployed to the environment. The console is able to list the

systems within the system. Each system is identified by a unique system ID and a

system name. From the console, users can browse each system’s information model

and the created ontological view.

The following screenshot shows the interface of the management console that

presents an ontological view created from the business model management system.

182

Figure 5-35. Screenshot of the management console.

5.1.3 Implementation of Services

5.1.3.1 Registration Service

Collaborative intelligence is produced in an open environment. In this environment

multiple information systems maintain business intelligence. A semantic integration

service is expected to be attached to each information system and be in charge of

resolving semantic heterogeneities.

To facilitate the systems' awareness of the existence of semantic integration services,

a registration service is deployed to the environment. The registration acts as a

yellow-page. A look-up against the registration service results in the address

information of one or more semantic integration services.

The mechanism to access the registration service is built-in knowledge for all the

semantic integration services. Technically, the registration service is provided as a

183

Web Service, therefore, its end point URL, methods provided within the service, and

usage of the methods are commonly known by each semantic service. The end point

URL is a publicly available configuration entry. The usage of each method include the

meaning and functionality of the method, the meaning of input parameters, and the

meaning of the returned result.

The registration service can provide the following functions:

• Support registration of a semantic integration service.

• Support de-registration of a semantic integration service.

• Maintain a unique ID / name pair for each registered semantic integration

service.

• Maintain an end point URL for each registered semantic integration service.

• Return a list of ID / end point URL pairs upon a request.

5.1.3.2 Semantic Integration Service

A semantic integration service, technically a Web Service, is attached to an

information system as a plug-in. The semantic integration service is responsible for

discovering semantic equivalence relationships between concepts from various

information models. The discovered semantic equivalence relationships will serve to

resolve semantic heterogeneities.

The functionality for the semantic integration service includes:

(1) Accessing the information system to get its information model as well as the

instance data.

(2) Creating an ontological view based on an information model.

184

(3) Performing analysis on the concepts and instance data to discover semantic

relationships among the concepts from various ontological views.

(4) Managing the concept model implied by the information system to which it is

attached. It can answer two questions:

• Given a concept specification (as an income request), it can tell which

concept within its ontological view that is possibly the same as the income

concept and how possible it is;

• If an income concept is possibly the same as one internal concept, how their

properties are the same as each other, respectively.

(5) Contacting the registration service to know what other services also reside in

the environment.

(6) Fetching an ontological view from another service (using the address got from

the registration service), performing analysis on its own ontological view as well as

the other and discovering potential equivalence relationships.

The discovered relationships are treated as alignments. We adopt a tailored version of

the INRIA [INRIA, 2010] format to represent the alignments. The format is specified

as follows.

• Alignment class

 The Alignment class describes a particular alignment between two ontological

views. Its properties are the following:

 ov1: (value: OntologicalView) the first ontological view to be aligned;

 ov2: (value: OntologiclaView) the second ontological view to be aligned;

 map: (value: Cell*) the set of equivalence relationships between concepts of

the ontological views.

185

• Cell class

 concept1: (value: Concept) the reference of a concept of the first ontological

view;

 concept2: (value: Concept) the reference of a concept of the second

ontological view;

 measure: (value: float number between 0 and 1) the confidence in the

assertion that the relationship holds between the first and the second concept.

5.2 Validation

The proposed solutions are validated based on the application prototype for the

collaborative promotion / advertisement domain. The validation focuses on the

following aspects of the solutions:

(1) Completeness of the frame-based ontological view specification language.

This is to validate whether the language can express all mandatory elements from

regular information models that will be used in semantic integration, i.e., it contains

all constructs that are needed.

Traditionally, the validation of modeling is a process of determining the degree to

which a model is an accurate representation of the real world from the perspective of

the intended uses of the model [AIAA, 1998]. This is also related to another

characteristic of modeling: expressiveness, which refers to the power of modeling

scenarios.

In our work, we assume that the accuracy of the original modeling is guaranteed. That

is, validating the model itself is not necessary. Also, we don't worry about the

186

expressiveness of the original modeling paradigm since we assume that it is

expressive enough to model the scenarios which the application cares about.

Therefore, we only focus on the generated ontological view model and validate the

degree to which it reflects the original model.

(2) Richness of the frame-based ontological view specification language.

Richness refers to the power of built-in abstraction directly, i.e., the direct constructs

provided for modeling things at a different abstraction level.

(3) Completeness of the approaches. There are two aspects to validate:

 (i) The approach for creating ontological views from information models. This is

to validate that the approach can capture all mandatory elements from the identified

information models.

 (ii) The approach for discovering semantic equivalence relationships between

concepts from different ontological views. This is to validate that all relationships can

be discovered.

(4) Soundness of the solution. It contains the following aspects:

 (i) Whether the adoption of ontological views can address the schematic and

syntactic heterogeneities of the information models and create a common platform for

semantically integrating the information models.

 (ii) Whether the discovered semantic equivalence relationships can address the

semantic heterogeneities of the information models.

 (iii) Whether the overall architecture can achieve its purpose, i.e., if the same

concept is modeled and represented in different ways among the information systems,

this fact can be identified, and therefore, a search request regarding a specific concept

187

can be collaboratively satisfied by multiple information systems within the

environment that have models of that concept.

5.2.1 Analytical Validation

5.2.1.1 Completeness of the Frame-based Ontological View

Specification Language

The FOSL language is based on the frame modeling paradigm. The completeness of

the language lies in three aspects:

• The completeness of the modeling paradigm, i.e., if the modeling paradigm is

able to model all mandatory elements, i.e., extrinsic concepts, intrinsic

concepts (properties), characteristics of properties, and relationships.

• The vocabulary and syntax of the language, i.e., if the above elements can be

specified by the constructs of the language.

• The transferability with other modeling languages, i.e., if all necessary

constructs of another modeling language can be mapped to the constructs of

the language.

Generally speaking, an information model is an abstraction and formal representation

of a domain of discourse. An information model is developed following a specific

modeling paradigm (also referred to as a knowledge representation paradigm). The

information implied by a model is relying highly on how the symbolic system is

interpreted. Considering the availability of an interpretation, any formal or informal

representation can express some information. In other words, any data structure in

computer systems can be a specific representation of a model. For example, we can

use a one-dimensional array [0, 1, 2, …] to represent different characters in the game

188

of chess, e.g., use 0 to represent the king and 1 for the queen. We can also employ a

three-dimensional array [[5, 4, 0], [5, 5, 1], …] to represent a chess game, each

element of which represents the character at a specific position (e.g., the king is at the

cell of 5th row and 4th column). Such a representation can express specific worlds,

but too much information is implied by the simple array formalism and a complicated

interpretation is required. A good specification language should make the implied

information as explicit as possible.

In terms of the elements to model, many of the modeling paradigms, including first

order logic [Sumllyan, 1995], description logic [Badder and Sattler, 2001], production

rules [Klahr, et al., 1987], conceptual graph [Sowa, 2005], semantic network [Kendal

and Creen, 2007], F-logic [Kifer, et al., 1995], entity-relationship model,

object-oriented model, RDF, etc., model the world around the notion of concept. That

is, these paradigms are able to specify individual elements that can be mapped to

concepts. Some other paradigms do not have the explicit notion of concept.

State-space is the earliest representation formalism used extensively in Artificial

Intelligence [Barr and Feigenbaum, 1981]. It represents the structure of a problem in

terms of the alternatives available at each possible state of the problem. It uses

specific forms to represent the states that involve objects. Explicit interpretation is

necessary to explain how the objects and relationships are arranged in the states.

Specific applications are required to decide how the transitions can occur between the

states.

In a procedural representation [Barr and Feigenbaum, 1981], knowledge about the

world is contained in procedures—small programs that know how to do specific

things, how to proceed in well-specified situations. For instance, in a parser for a

natural language understanding system, the knowledge that a noun phrase may

contain articles, adjectives, and nouns is represented in the program by calls to

routines that know how to process articles, nouns, and adjectives. In this paradigm

concepts are not stated explicitly and thus is neither typically extractable in a form

that humans can easily understand, nor reusable by other programs.

189

Many expert systems use decision-making rules [Kendal and Creen, 2007] that can be

represented using the IF…THEN format, that is

 IF <situation> THEN <action>

Other clauses such as OR and ELSE can also be used with this construct to show

alternative situations or different courses of action. Rules in a knowledgebase system

(KBS) stand along as statements of truth or fact and can be used by an inference

engine to reach other true conclusions. This representation does not provide a

standard way to specify concepts in the situation and action part.

Propositional logic is one approach for representing knowledge in many expert

systems. In this approach, the elementary building blocks, propositions, are atomic

statements that cannot be decomposed any further, e.g., “It is raining”, “Tom is a

student”. Logical connectives like “and”, “or”, “not” can be used to build

propositional formulas. Similarly, there is no standard way to specify concepts in the

propositions.

Among the paradigms that have the notion of concept, first order logic and production

rules do not differentiate concepts and instances of concepts. Others can specify

concepts and instances separately. For example, in conceptual graphs, each concept

has a concept type and referent such as [Person: Tom].

All the paradigms that have the notion of concept also support the notion of

relationship that associates concepts. For example, in first order logic a relationship

can be represented as sell(Store, Product).

Most of the paradigms do not provide facilities to model further details such as

properties of concepts as well as characteristics of properties. Properties and the

further characteristics actually refer to relationships with specific meanings. The

entity-relationship model, object-oriented model, and frame provide means to model

all these aspects. Production rule has the entity-attribute-value triple structure, which

190

can be viewed as a form to represent properties of concepts. The entity-relationship

and object-oriented paradigm can model characteristics of properties but the

capability is not complete. It is completed at the supporting technology level such as

the relational database and application written with specific OO languages, but not at

the modeling level.

Many of the modeling paradigms also model the behavioral/logical aspects besides

the informational aspects. The exceptions are state space, conceptual graph, and

semantic network. In the implementations, usually the informational aspects are

supported by persistence technologies and the behavior aspects are supported by

applications. In the modeling of ontological views the behaviors of concepts are not

required.

The degree of structured of a modeling paradigm means how different elements are

represented separately so each one of them can be differentiated from others and

treated individually. The procedural representations embed model of the world within

programs so it is hard to extract the individual elements. Similarly, the rule-based

methods and propositional logic do not define internal structures for the sentences.

First order logic is more structured in a sense that atomic formulas are interpreted as

statements about relationships between objects. Other modeling paradigms are quite

structured since they provide separate structures for different types of elements.

Model Implication means the degree that the model requires interpretation for

humans’ understanding. A well structured paradigm is usually explicit in terms of the

meaning of the internal constructs, which makes the models easier to understand. An

exception is the state space which can be highly structured but how each state

represents the world requires lots of interpretation.

Some paradigms do not have general-purposed supporting technologies for model

persistence and reuse by applications, therefore they are not considered in the

validation.

191

The following table presents a summary of the features of various modeling

paradigms. It shows that frame provides the most complete features for our modeling

purpose.
Table 1. Comparison of various modeling paradigms.

Features Has

Notion of

Concept

Differentiate

Concepts

and

Instances

Has Notion

of

Relationship

Has

Notion of

Property

Has

Notion of

Property

Characte

ristics

Has

Notion of

Behavior

/

Logic

Structured Model Implication General-purpose

Supporting

Technology Modeling

paradigms

State space No No No No No No High High No (interpreted by

applications)

Procedural

Representat

ion

No No No No No Yes Low High No (interpreted by

applications)

Rule-based

methods

No No No No No Yes Low High No (implemented by

specialized systems)

Proposition

al logic

No No No No No Yes Low Medium No (implemented by

specialized systems)

First order

logic

Yes No Yes No No Yes Medium Medium Prolog

Description

Logic

Yes Yes Yes No No Yes High Low OWL

Production

rules

Yes No Yes Yes No Yes High Low Prolog

Conceptual

Graph

Yes Yes Yes No No No High Low No (implemented by

specialized systems)

Semantic

Network

Yes Yes Yes No No No High Low No (implemented by

specialized systems)

F-Logic Yes Yes Yes No No Yes High Low No (implemented by

specialized systems)

Entity-Rela

tionship

Model

Yes Yes Yes Yes Yes (not

complete)

No High Low Relational database

192

Object-Orie

nted

Yes Yes Yes Yes Yes (not

complete)

Yes High Low Object-Oriented

languages

Frame Yes Yes Yes Yes Yes No High Low Not required

According to the definition of ontological views, a complete specification language

should provide constructs to denote concepts, properties of concepts, characteristics of

properties, and relationships to specify the objects to be modeled. We examined two

languages that are practically used in specifying information models since our work is

based on the existing information systems: relational (implemented by SQL) and

XML schema. They are well supported by mature persistence technologies.

The following table presents the comparison between FOSL, SQL, and XML schema

elements. It shows that FOSL has the complete set of constructs for modeling the

expected elements and all the constructs can be mapped to the counterparts within

SQL and XML schema.

Table 2. Comparison of FOSL, SQL, and XML

 Representation

 Language

 Language

 Construct

Modeling Object

FOSL SQL XML Schema

World Ontological_View database schema

Concept Concept table element

Property Property column attribute

Relationship Relationship foreign key embedded element

(complexType)

193

Property/Relati

onship

Characteristics

 Facet column attribute element attribute

Characteristics

Name Name column name name attribute

Identity (Not necessary) primary key, unique key key element, unique element

Auto-Increment Auto_Increment auto_increment/identity

Data type Data_Type type type attribute

Default value Default_Value default default attribute

Fixed value Fixed_Value fixed attribute

Optional Nullable null/not null use attribute

Restriction on values check restriction element, minInclusive

elemnt, maxInclusive element

Restriction on a set

of values

 check restriction element, enumeration

element

Restriction on a

series of values

 check restriction element, pattern

element

Restriction on string

length

Size column length restriction elemment, length

element, minLength element,

manLength elemnt

Restriction on data

types

Decimal_Size column length restriction element,

fractionDigits elemnt,

totalDigits element

Relationship

cardinality

Cardinality (Implicit by model) maxOccur attribute, minOccur

attribute

5.2.1.2 Richness of the Frame-based Ontological View

Specification Language

The frame paradigm focuses on modeling concepts, properties, relationships, and

characteristics of properties. The FOSL language provides corresponding vocabulary

and constructs to explicitly and directly represent each of them, providing sufficient

abstraction:

• The symbol "Concept" identifies a concept with a unique identity.

194

• The symbol "Property" identifies a property with a unique identity for a

concept.

• The construct of a concept associating a set of properties represents the

relationship "has-property".

• The symbol "Facet" identifies a unique facet of a property.

• The construct of a property associating a set of facets represents the

relationship "has-facet".

• The symbol "Value" identifies a value of a facet.

• The construct of a facet associating a value represents the relationship

"has-value".

• The symbol "Relationship" identifies a n-ary relationship between concepts.

• The symbol "IS-A" indicates a generalization/specialization relationship

between two concepts.

• The symbol "PART-OF" indicates a whole-part relationship between two

concepts.

The following segment shows a partial specification of a concept:

Concept: product
 Property: id
 Facet: DATA-TYPE Value: INT UNSIGNED
 Facet: SIZE Value: 10
 Property: name
 Facet: DATA-TYPE Value: VARCHAR
 Facet: SIZE Value: 100
 Relationship:
 IS-A: sellable-item

195

Note that the language itself only provides sufficient way to specify the abstraction of

a world. The world can be abstracted with different granularity and this depends on

the purpose and capability of the modeler. The responsibility of the language is to

specify any abstraction but not to guarantee a proper modeling granularity.

5.2.2 Empirical Validation

5.2.2.1 Completeness of Ontological View Creation

A component within a semantic integration service is responsible for creating an

ontological view from an information model. The approach adopted by the component

uses the following heuristic rules to analyze the information model:

• A relational table that has a primary key and extra columns is identified as a

concept. Each column is identified as a property of the concept.

• Using MySQL, 5 types of facets can be identified: data type, size, decimal

digits, nullable, auto-increment.

• A foreign key within a table (the subject concept) referring to another table

(the object concept) is identified as a relationship between the two concepts.

The relationship is simply named as "has" since there is a lack of explicit

semantics of the foreign keys in a relational database.

• A table which columns are all members of a foreign key is identified as a

relationship between the two concepts represented by the two referred tables.

The relationship is named following the table name due to the lack of explicit

semantics.

• An element in an XML document is identified as a concept. Attributes of an

XML element are identified as properties of the concept. This limitation is

196

based on an assumption of the acceptable structure of the XML document.

• The facets of the properties depend on the availability of the schema of the

XML document. Without the schema, it is infeasible to extract the facets

from an XML document due to the lack of information.

• The embedding of one XML element within another element is identified as

a relationship between the concepts represented by the two elements.

This approach is applied upon several information models deployed in the

collaborative promotion prototype environment. Among them, some systems adopt

the relational model (using MySQL DBMS) and one system adopts XML-based

model. These systems are described as follows:

(1) Business Model Management System. This system manages business model of the

QSR domain. The business model contains essential business concepts and business

rules for this domain, such as products, languages, prices, times, resources, time rules,

resource rules, etc. This system adopts the relational database as the persistence

technology.

(2) Media Management System. This system manages the information about media

assets that can be displayed to achieve the promotion purposes. The media assets have

a set of properties and are described by some keywords. The media assets are digital

files; therefore the properties about the physical files are also managed. This system

adopts the relational database as the persistence technology.

(3) Promotion Management System. This system manages the promotions. It works as

a consumer of the business model management system. A promotion specifies what

product to promote, when to promote, and where to promote. This system adopts the

relational database as the persistence technology.

(4) Information Model of Intelligent Media. This system manages informational level

model of the multimedia assets that can be displayed to achieve promotion purposes.

197

The information level model encapsulates the low level visual features of the

multimedia content. This system adopts the relational database as the persistence

technology. Note that this system does not involve in the semantic integration.

Instead, it uses other systems' semantic integration services to achieve integration.

(5) Inventory Management System. Product is a major concept that this domain

concerns. The inventory of products is one of the most essential aspects to be

managed for the business. This system manages the inventory of products, inventory

locations and the stocking history. This system adopts the relational database as the

persistence technology.

(6) Transaction Management System. Sales transactions of products can serve to show

how the products are sold during specific time, which can further serve as indications

of what products to promote more or less. This system manages sales-related

information including products, POS machines, operators, detailed transactions and

receipts. This system adopts the relational database as the persistence technology.

(7) Scheduling Management System. This system manages the promotion schedules

in terms of what product to promote, which media to be used for the promotion, what

time to display the media, and on which resources to display the media. This system

adopts XML as the persistence technology.

Details of these systems' information models are provided in Appendix A.

198

The following figure shows a segment of the created ontological view of the business

model management system. It extracts the elements that represent concepts as well as

the relationships from the underlying information model.

The created ontological view is persisted in an XML document for further usage. The

following is a segment of the document for the business model management system:
<concepts>

 <concept name="language">

 <properties>

 <property name="language_id">

 <facet name="DATA_TYPE" value="INT"/>

 <facet name="SIZE" value="10"/>

 <facet name="DECIMAL_DIGITS" value="0"/>

 <facet name="NULLABLE" value="false"/>

 <facet name="AUTOINCREMENT" value="true"/>

 </property>

 <property name="resource_id">

Figure 5-36. A segment of an ontological view.

199

 <facet name="DATA_TYPE" value="INT UNSIGNED"/>

 <facet name="SIZE" value="10"/>

 <facet name="DECIMAL_DIGITS" value="0"/>

 <facet name="NULLABLE" value="false"/>

 <facet name="AUTOINCREMENT" value="false"/>

 </property>

 <property name="value">

 <facet name="DATA_TYPE" value="VARCHAR"/>

 <facet name="SIZE" value="255"/>

 <facet name="DECIMAL_DIGITS" value="0"/>

 <facet name="NULLABLE" value="false"/>

 <facet name="AUTOINCREMENT" value="false"/>

 </property>

 </properties>

 <relationships>

 <relationship name="has">

 <object_concept name="resource"/>

 </relationship>

 </relationships>

 </concept>

The results show that the created ontological views correctly reflect the model based

on the design of the original relational database or the XML document. This provides

well-founded support for the semantic equivalence relationship discovery in a later

stage.

5.2.2.2 Completeness of Semantic Equivalence Relationship

Discovery

Adopting a benchmark is helpful for validation from an empirical perspective.

Information integration, as an application of semantic integration, has been an active

area of research since the early 80's and has produced a rich collection of techniques

and approaches to integrate heterogeneous information. As a result, determining the

quality and applicability of a solution is a difficult task. It has been the focus of

200

several studies (e.g. [Do, et al., 2002]). The lack of available test data and benchmark

makes such validation more challenging.

THALIA18 is the first publicly available testbed and benchmark of integration

technologies allowing the objective comparison of integration solutions [Hammer, et

al., 2005]. It provides a collection of over 25 data sources representing university

course catalogs from computer science departments around the world. THALIA

provides a set of benchmark queries as well as a scoring function for ranking the

performance of an integration system. It focuses on syntactic and semantic

heterogeneities.

The following table shows a sample course catalog from the CS department at Brown

University providing information such as course number, instructor, title, time and

location in a tabular format.
Course Instructor Title/Time Room

CS002 Stanford
Concepts & Challenges of CS

C hr. MWF 10-11
Salomon 001

CS004 Usas
Intro to Scientific Computing

K hr. T,Th 2:30-4
MacMillan 117

CS016 Tamassia
Intro to Algorithms & Data Structures

D hr. MWF 11-12
CIT Lubrano

CS018 Klein
CS: An Integrated Approach

J hr. T,Th 1-2:30
CIT 227

CS022 Lysyanskaya
Intro. to Discrete Mathematics

B hr. MWF 9-10
CIT 165

CS032 Reiss
Intro. to Software Engineering

K hr. T,Th 2:30-4
CIT 165, Labs in Sunlab

One benchmark query is to find synonyms: attributes with different names that

convey the same meaning, for example, “instructor” vs. “lecturer”.

THALIA provides a useful guide for empirically validating our solution. However, it

cannot be directly adopted for the following reasons:

• It collects data from the web pages of the universities. The course catalog

18 http://www.cise.ufl.edu/research/dbintegrate/thalia/

201

information in the pages is quite un-structured (some is even in plain text) or

not well-structured (like Brown’s case where two information items are

combined into one column). This leads to a different context with our

research, where we deal with well-structured information models.

• The benchmark queries are heavily relying on the application background. For

example, one query asks to list all database courses that carry more than 10

credit hours. Our work is not limited to any specific application or specific

domain.

• The source data is collected and output as XML. The XQuery technique is

used to conduct XML-based queries. Our work does not rely on any specific

technique.

• It requires the integration solution to have the capability of processing queries.

In our solution the semantic integration only deals with semantic

heterogeneities. Query processing is the capability of the original information

systems.

In the work we adopt some ideas of THALIA to design the criteria to validate the

solutions. We focus on the query that checks if the key heterogeneities that exist in the

underlying information models are well addressed:

• Synonyms: different names that convey the same meaning. It includes two

aspects:

o Concept: different symbols, used as concept identifiers, refer to the

same concept.

o Property: different symbols, used as property identifiers, refer to the

same property.

202

In the environment, the concept of "product" is a core concept for the QSR domain

and it is modeled commonly in the business model management system, media

management system, promotion management system, inventory management system,

transaction management system and the scheduling management system in different

ways. The concept of "resource" (digital device to play multimedia contents) and

"time" (indicating when to play the contents) are modeled in the business model

management system, promotion management system and scheduling management

system in different ways. Our intention is to find out all such relationships.

The approaches developed for discovering semantic equivalence relationships are

applied in two manners:

(1) A Web-based management console for the integration system provides one page to

allow a human user to define a concept to be processed. In the page the user enters the

name of the concept, properties of the concept, and a set of facets for each property in

the form of name/value pair. These create a frame structure which is actually a

representation for the concept from a conceptualization. The following figure shows

the information that a user enters:

Figure 5-37. The frame-based representation of a concept.

203

It is assumed that the intended concept is known by the information systems in the

environment, but is modeled and represented in different ways. The heterogeneities

need to be addressed at the ontological view level. Merely using the name of the

concept it is not sufficient to identify which elements within the information models

of the systems mean the same thing with the one defined from the management

console. We apply the tree similarity-based approach to conduct the semantics-based

search, considering the properties as well as their facets. The following table shows

the transformation costs of the concept from the management console and the

business model management system:
Concept Transformation Cost

price 1.1420396187560367

product 0.28946908531683

product_feature 1.549417980921546

product_rule 0.3890182097794555

resource 1.998957541249725

resource_rule 0.47903603509139847

time 1.5462285233203237

time_rule 0.3710146447170669

The lowest transformation cost indicates that the concept from the management

console matches best with the "product" concept in the business model management

system.

The results on other systems show that synonyms in terms of concept identifiers and

property identifiers can be successfully discovered. The scheduling management

system is an exception since its ontological view does not contain sufficient

information (no facets for the properties are available).

(2) While the instance data, e.g., the data in the relational tables, is available, we

compare the representation of two concepts from two ontological views by applying

the instance-based approach on their instance data. This approach does not assume

any domain knowledge about the concept modeling. It examines different

permutations of the properties of two concepts to make sure that every possible

matching candidate is checked. The similarity degree varies for each permutation pair.

204

However, there must be one permutation pair reaching the lowest distance if the data

sets of the properties appearing in the permutations have a very similar probability

density. This identifies the similarity of the two concepts while other permutation

pairs can be ignored.

The following example shows one concept named “product” from the business model

management system and another concept named “products” from the promotion

management system. It is possible that a linguistic-based approach discovers that

“product” and “products” may be the same according to their spelling forms. The

instance-based approach does not require any linguistic or domain-based knowledge.
product

Property Name

property_id LONG

property_name STRING

flavor STRING

sweetness STRING

brand_name

 products

Property Name

pr_id LONG

pr_name STRING

pr_description STRING

The following tables show some property matching candidates:
Source Property

Name

Source Property

Data Type

Target Property

Name

Target Property

Data Type
KL Divergence

product_id LONG pr_id LONG 0.0

product_name STRING pr_name STRING 0.0

flavor STRING pr_description STRING 0.0032758407745463163

Similarity Index 0.0032758407745463163

Source Property

Name

Source Property

Data Type

Target Property

Name

Target Property

Data Type
KL Divergence

product_id LONG pr_id LONG 0.0

flavor STRING pr_name STRING 0.00319282355720962

product_name STRING pr_description STRING 4.145749971432248E-5

205

Similarity Index 0.004851421585385914

Source Property

Name

Source Property

Data Type

Target Property

Name

Target Property

Data Type
KL Divergence

product_id LONG pr_id LONG 0.0

flavor STRING pr_name STRING 0.00319282355720962

sweetness STRING pr_description STRING 0.028018566333710967

Similarity Index 0.04681708483638088

These tables show that two pairs of properties, (product_id, pr_id) and

(product_name, pr_name) can be well matched and the similarity index indicates that

these two concepts are identical even though the property flavor and pr_description

are, in fact, not the same.

The results on the systems show that synonyms can be successfully identified, i.e., the

concepts of "product", "resource" and "time" modeled in the business model

management system, promotion management system and scheduling management

system can be discovered using the instance data.

5.2.2.3 Soundness of the Solution

The solution is applied to produce collaborative intelligence in an open environment.

It is able to address the schematic and syntactic heterogeneities of the information

models, and identify the same concept that is modeled and represented in different

ways in different information systems.

This environment contains an extra intelligent multimedia system, besides the

traditional information systems maintaining the operational data of the QSR business.

The intelligent multimedia system is able to identify what an image represents, such

as "Apple Fritter" using image processing technology and low-level feature matching.

The intelligent multimedia system is closely integrated with a business model

management system that maintains fundamental business concepts. The business

model management system tells what this thing is, for example, a "product". Then,

206

this concept is sent to various information systems to examine how it is modeled and

represented using the semantic integration services deployed into each system.

The results are collected by the management console, which in turn contacts each

system using the specific concepts that are managed by the business model system.

Each system returns some information related to those concepts. On the management

console side the media object is able to collect complete information which is

converted into a kind of intelligence about the specific product. Such intelligence is

utilized in the later stage to decide what product to promote and where to display a

multimedia asset to realize the promotion.

The following figure 5-5 shows the overall architecture of the collaborative

intelligence system:

Figure 5-38. Architecture of a collaborative intelligence system.

In the figure MOV means “Multimedia Ontological View”. It is an ontological view

containing the objects and relationships discovered from an image.

Semantic Level

Matching

Management Console

Intelligent Media

System

Business Model

Management

System

Inventory Management

System

Transaction

Management System

Scheduling

Management System

Media
Concept

Semantic Integration

Information

Intelligence

Presentation

Image Loading

Multimedia Objects

Matching

Information Flow Internal Processing Matching & Integration

MOV
MOV

207

Semantic level matching is utilized to match concepts from the ontological view

created from the intelligent media system and concepts from the ontological view

created from the business model management system. Note that semantic level

matching is logically conducted between the intelligent multimedia system and the

business model management system, but there is no direct communication between

these two systems. Instead, the matching is supervised by the management console,

i.e., the management console gets the created multimedia ontological view, and sends

it to the business model management system’s semantic integration service.

The management console uses the concepts to perform semantic integration and gets

to know how these concepts are modeled in other systems. Similarly, the semantic

integration is logically between the business model management system and other

information systems (inventory management system, transaction management system,

scheduling management system, etc) but there is no direct communication between

these systems. The management console supervises the integration, i.e., it sends the

concepts returned from the business model management system to another system’s

semantic integration service. The service will discover if the same concepts are

modeled within it and how the concepts are modeled.

208

Chapter 6 Conclusion and Future Work

Semantic integration, as an important factor for successful information integration,

has grown into one of the most active research areas. Our work on semantic

integration fits into its evolution by extending the traditional ontology-driven

approaches to an ontological view-driven approach to overcome the grand challenges

that were not thoroughly addressed by the traditional approaches. The most significant

advancement is the removal of the assumption about the availability of explicit

ontologies. With the concept of ontological view we provide a formal way to

explicitly specify the concepts within a conceptualization with rich details based on

various information models. This work establishes a solid foundation for semantic

integration in an open environment.

The main contributions of this work are listed as follows.

(1) It conducts a thorough review on semantic integration-related topics and

presents a full picture of the state-of-the-art of the research in this domain. It

clarifies the meanings of some important terms including conceptualization,

concept, model, representation, schema, semantics, ontology, ontological

view, ontological integration, semantic heterogeneity, information

integration, semantic integration, ontology-driven semantic integration and

ontological view-driven integration. It examines the semantics of

information from the structural and intensional perspective and discusses

how to discover the semantics. This work also proposes a classification of

the views on semantic integration, including the structural view at elemental

data level and structure level and semantic view at data level, concept level

and knowledge level. Several architectures of semantic integration at the

application level are discussed.

(2) The schema-based structural approaches and ontology-driven semantic

209

approaches regarding information integration are analyzed in the review.

Discussions on their advantages and limitations are presented. With

structural approaches, the information schemas are available and it can be

discovered that two or more schema elements have the same meaning and

they can match. However, there is no clue about what concept they refer to

due to the lack of a concept model. In semantic approaches, the semantics is

explicitly specified by establishing concept models such as ontologies, and

the focus is that two or more ontology elements refer to the same concept if

they can be discovered to be semantically identical. However, the application

of these approaches is limited since in many domains there are no explicit

ontologies available.

(3) It provides the formal definition for domain, possible world, domain space,

conceptual relation, conceptualization, intended structure, ontological

commitment of logical language, compatible model of language, intended

model and ontology based on Guarino’s work [Guarino, 1998]. Then, it

analyzes that there is no a unique explicit "ontology" for a conceptualization.

Instead, different views of the conceptualization may exist. Thus, the notion

of ontology is extended to the notion of ontological view. This notion is used

to facilitate the semantic integration where no "ontology" is available. It also

defines the ontological equivalence mapping and the semantically equivalent

relationship. It proves that a concept in a conceptualization can be

externalized by a constant symbol in a language under an ontological

commitment, and the semantically equivalent relationship between symbols

under an ontological commitment implies the same concept reference. This

becomes the foundation of the following semantic relationship discovery

algorithms.

(4) It proposes a novel architecture of semantic integration enabled environment

that extends the traditional data/information architecture to a three layered

architecture including the data management and integration layer, the

210

information management and integration layer, and the semantics

management and integration layer. In the architecture, a semantic integration

service is attached to each information system, which converts a traditional

information system into a semantics enhanced system. The architecture for

the semantic integration service inspired by Act* is proposed.

(5) It adopts frame as the modeling paradigm of the ontological view. An

ontological view can be created from the information model of an

information system. In an open environment the frame-based ontological

views create a common level that eliminates the structural and syntactic

heterogeneities among the information models. With this commonness only

semantic heterogeneities should be considered in the semantic integration. It

proposes a frame-based ontological view specification language (FOSL) and

uses XML to explicitly encode the ontological views.

(6) It proposes a tree similarity-based approach and an instance-based approach

to compute the semantic similarities between concepts represented in

different ontological views adopting the frame's tree-like structure or

available data instances. Such similarities can be used to discover the

semantic equivalence relationships between concepts.

(7) It implements the proposed solutions in a collaborative intelligence

prototype environment. Several aspects of the solutions, including the

completeness and richness of FOSL, completeness of the ontological view

creation approach, completeness of the semantic equivalence relationship

discovery approach, and soundness of the solution are validated from the

analytical and empirical perspectives.

Our future work will focus on several aspects:

(1) Improving the automatic ontological view creation based on regular information

models, providing visual editing of ontological views, and providing efficient model

211

validation to ensure the consistency of ontological views. Based on these efforts the

semantic integration service layer can keep being improved.

(2) Extending the ontological view’s tree structure to a graph, with further attention

to the relationships between concepts. New definitions for graph transformation

operation and transformation cost are to be explored. Meanwhile, more types of

relationships among concepts have to be considered, which require further

consideration on the semantics of the relationships.

(3) Applying and evaluating other approaches for density estimation, probability

density comparison, and clustering as well as richer collection of linkage functions

and distance metrics. A more sophisticated evaluation engine combining multiple

approaches will also be investigated to improve the discovered results in terms of the

semantic equivalence relationships between concepts within different ontological

views. Furthermore, semantic relationship types other than the equivalence

relationships, such as generalization or specialization, will also be taken into

consideration to enhance the capability of the semantic integration service.

212

References
[Aho, et al., 1989] Aho, A. V., Ganapathi, M., and Tjiang, S. W. K.. Code Generation Using Tree
Matching and Dynamic Programming. ACM Transactions on Programming Languages and Systems,
Vol. 11, Issue 4, pp. 491-516, October 1989.
[AIAA, 1998] American Institute of Aeronautics and Astronautics (AIAA). Guide for the Verification
and Validation of Computational Fluid Dynamics Simulations. AIAA-G-077-1998, Reston, VA, 1998.
[Aikins, 1993] Aikins, J. S.. Prototypical Knowledge for Expert Systems: a Retrospective Analysis.
Artificial Intelligence, Vol. 59, pp.207-211, Elsevier, 1993.
[Allali and Sagot, 2005] Allali, J. and Sagot, M.. Novel Tree Edit Operations for RNA Secondary
Structure Comparison. In Proceedings of IWABI 2004, pp. 412-425, Bergen, Norway, September 17-21,
2004.
[Ambite and Knoblock, 2000] Ambite, J. L. and Knoblock, C. A.. Flexible and Scalable Cost-Based
Query Planning in Mediators: A Transformational Approach. Artificial Intelligence Journal, Vol. 118,
pp. 1-2, 2000.
[Anderson, 1983] Anderson, J. R.. The Architecture of Cognition. Cambridge, MA: Harvard University
Press, 1983.
[Arens, et al., 1993] Arens, Y., Chee, C. Y., Hsu, C. –N., and Knoblock, C. A.. Retrieving and
Integrating Data from Multiple Information Sources. International Journal of Intelligent and
Cooperative Information Systems, 2(2): 127-158, 1993.
[Arens, et al., 1996] Arens, Y., Knoblock, C. A., and Hsu, C. –N.. Query Processing in the SIMS
Information Mediator. In A. Tate (ed), Advanced Planning Technology. Menlo Park: AAAI Press, 1996.
[Arroyo, 2007] Arroyo, S.. Ontology and Grammar of the SOPHIE Choreography Conceptual
Framework – An Ontological Model for Knowledge Management. Journal of Universal Computer
Science, Vol. 13, No. 9, pp.1157-1183, 2007.
[Baader, et al., 2002] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,
editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2002.
[Badder and Sattler, 2001] Badder, F. and Sattler, U.. An Overview of Tableau Algorithms for
Description Logics. Studia Logica, Vol. 69, No. 1, pp. 5-40, 2001.
[Barr and Feigenbaum, 1981] Barr, A. and Feigenbaum, E. A.. The Handbook of Artificial Intelligence,
Volume I. Heuristech Press, Stanford, California, USA and William Kaufmann, Inc., Los Altos,
California, 1981.
[Batini, et al., 1986] Batini, C., Lenzerini, M., and Navathe, S. B.. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Computing Surveys, 18: 323-364, 1986.
[Bean and Tsokos, 1980] Bean, S. J. and Tsokos, C. P.. Developments in Nonparametric Density
Estimation. International Statistical Review, 48, pp. 267-287, 1980.
[Beard and Smith, 1998] Beard, K. and Smith, T.. A Framework for Meta-Information in Digital
Libraries. In A. Sheth, W. Klas (eds), Multimedia Data Management: Using Metadata to Integrate and
Apply Digital Media, McGraw Hill, pp. 341-365, 1998.
[Bell and Sethi, 2001] Bell, G. S. and Sethi, A.. Matching Records in a National Medical Patient Index.
CACM 44(9): 83-88, 2001.
[Berlin and Motro, 2001] Berlin, J. and Motro, M.. Autoplex: Automated Discovery of Content of
Virtual Databases. In Proceedings of 9th International Conference on Cooperative Information Systems
(CoopIS), Lecture Notes in Computer Science, vol. 2172. Springer, Berlin Heidelberg New York, pp.
108-122, 2001.
[Berners-Lee, et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O.. The Semantic Web. Scientific

213

American, 2001(5), 2001.
[Bille, 2003] Bille, P.. Tree Edit Distance, Alignment Distance and Inclusion. Technical Report Series
TR-2003-23, ISSN 1660-6100, IT University of Copenhagen, March 2003.
[Bishr, et al., 1999] Bishr, Y. A., Pundt, H., Kuhn, W., and Radwan, M.. Probing the Concept of
Information Communities - A First Step toward Semantic Interoperability. In M. Goodchild, Max
Egenhofer, R. Fegeas, and C. Kottman, editors, Interoperating Geographic Information Systems, pp.
55-69. Kluwer Academic, 1999.
[Boran, et al., 2007] Boran, A., O'Sullivan, D., and Wade, V. P.. A Case Study of an Ontology-Driven
Dynamic Data Integration in a Telecommunications Supply Chain. In Proceedings of the Workshop on
First Industrial Results of Semantic Technologies, co-located with ISWC 2007 + ASWC 2007, pp. 1-13,
Busan, Korea, November 11th, 2007.
[Bornhövd, 1998] Bornhövd, C.. MIX - A Representation Model for the Integration of Web-based Data.
Technical Report, No. DVS98-1, Computer Science Dept., Darmstadt University of Technology,
November 1998.
[Bouquet, et al., 2003] Bouquet, P., Serafini, L., and Zanobini, S.. Semantic Coordination: A New
Approach and an Application. In Proceedings of ISWC 2003, LNCS 2870, pp.130-145, 2003.
[Brachman and Levesque, 1984] Brachman, R. J. and Levesque, H. J.. The Tractability of Subsumption
in Frame-based Description Languages. In Proceedings of the 4th National Conference on Artificial
Intelligence (AAAI-84), pp. 34-37, 1984.
[Brachman and Levesque, 2004] Brachman, R. J. and Levesque, H. J., Knowledge Representation and
Reasoning, Morgan Kaufmann publishers, 2004.
[Broekstra, et al., 2001] Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., and
Horrocks, I.. Enabling Knowledge Representation on the Web by Extending RDF Schema. In
Proceedings of the 10th World Wide Web Conference, pp. 467-478, Hong Kong, China, May 1-5, 2001.
[Bruno, et al., 2002] Bruno, N., Srivastava, D., and Koudas, N.. Holistic Twig Joins: Optimal XML
Pattern Matching. In Proceedings of the 2002 ACM SIGMOD, pp. 310-321, Madison, Wisconsin, USA,
June 4-6, 2002.
[Calvanese, et al., 1998(1)] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R..
Knowledge Representation Approach to Information Integration. In Proceedings of AAAI Workshop on
AI and Information Integration, pp. 58-65. AAAI Press / The MIT Press, 1998.
[Calvanese, et al., 1998(2)] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R..
Description Logic Framework for Information Integration. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning, pp. 2-13, 1998.
[Calvanese, et al., 2002] Calvanese, D., Giacomo, D. G., and Lenzerini, M.. A Framework for Ontology
Integration, In Proceedings Of the 1st Semantic Web Working Symposium at the Emerging Semantic
Web, pp. 201-214, 2002.
[Castano, et al., 2001] Castano, S., De Antonellis, V., and De Capitani di Vemercati, S.. Global Viewing
of Heterogeneous Data Sources. IEEE Transactions on Data Knowledge Engineering, 13(2): 277-297,
2001.
[Chalupsky, 2000] Chalupsky, H.. OntoMorph: A Translation System for Symbolic Logic. In A. G.
Cohn, F. Giunchiglia, and B. Selman (eds), KR2000: Principles of Knowledge Representation and
Reasoning, pp. 471-482, San Francisco, CA, 2000.
[Chandrasekaran, et al., 1999] Chandrasekaran, B., Josephson, J. R., and Richard Benjamins, V..
Ontologies: What are they? Why do we need them? IEEE Expert (Intelligent Systems and Their
Applications), 14(1): 20-26, 1999.
[Chawathe, et al., 1994] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou,
Y., Ullman, J., and Widom, J.. The TSIMMIS Project: Integration of Heterogeneous Information
Sources. In Proceedings of the 10th Meeting of the Information Processing Society of Japan, pp. 7-18,
Tokyo, Japan, October 1994.

214

[Codd, 1990] Codd, E. F.. The Relational Model for Database Management: Version 2.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1990.
[Collet, et al., 1991] Collet, C., Huhns, M. N., and Shen, W.. Resource Integration Using A Large
Knowledge Base in Carnot. IEEE Computer, 24(12): 55-62, 1991.
[Crubzy, et al., 2003] Crubzy, M., Pincus, Z., and Musen, M. A.. Mediating Knowledge between
Application Components. In Proceedings of the Semantic Integration Workshop of the Second
International Semantic Web Conference (ISWC-03), Sanibel Island, Florida, 2003.
[De Bruijn, et al., 2003] De Bruijn, J., Ding, Y., Arroyo, S., and Fensel, D.. Semantic Information
Integration in the COG Project. Technical Report, Digital Enterprise Research Institute (DERI),
University of Innsbruck, Austria, 2003.
[Dempsey and Heery, 1997] Dempsey, L. and Heery, R.. Specification for Resource Description
Methods Part 1: A Review of Metadata: A Survey of Current Resource Description Formats. Work
Package 3 of Telematics for Research Project DESIRE (RE 1004), March, 1997.
[Dey, et al., 2001] Dey, A., Abowd, G., and Salber, D.. A Conceptual Framework and A Toolkit for
Supporting the Rapid Prototyping of Context-aware Applications. Human-Computer Interaction, 16:
97-166, 2001.
[Dhamankar, et al., 2004] Dhamankar, R., Lee, Y., Doan, A. H., Halevy, A., and Domingos, P.. iMAP:
Discovering Complex Semantic Matches between Database Schemas. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD’04), pp. 383-394, New York,
USA, ACM Press, 2004.
[Do, et al., 2002] Do, H. -H., Melnik, S., and Rahm, E.. Comparison of Schema Matching Evaluations.
In Proceedings of the 2nd International GI-Workshop on Web and Databases, pp. 221-237, Erfurt,
Germany, 2002.
[Doan and McCann, 2003] Doan, A. and McCann, R.. Building Data Integration Systems: A Mass
Collaboration Approach. In Proceedings of the IJCAI-03 Workshop on Information Integration on the
Web, 2003.
[Doan, et al., 2000] Doan, A. H., Domingos, P., and Levy, A.. Learning Source Descriptions for Data
Integration. In Proceedings of WebDB Workshop. pp. 81-92, 2000.
[Doan, et al., 2001] Doan, A. H., Domingos, P., and Halevy, A.. Reconciling Schemas of Disparate
Data Sources: A Machine-Learning Approach. In Proceedings of ACM SIGMOD Conference, pp.
509-520, 2001.
[Doan, et al., 2002] Doan, A., Madhavan, J., Domingos, P., and Halevy, A.. Learning to Map between
Ontologies on the Semantic Web. In Proceedings of the 11th International Conference on World Wide
Web, pp. 662-673, 2002.
[Doan, et al., 2003] Doan, A., Lu, Y., Lee, Y., and Han, J.. Object Matching for Data Integration: A
Profile-Based Approach. In Proceedings of the IJCAI-03 Workshop on Information Integration on the
Web, 2003.
[Drezner, et al., 1986] Drezner, Z., Thisse, J., and Wesolowsky, G. O.. The Minimaxmin Location
Problem. Journal of Regional Science, 26, pp. 87-101, 1986.
[Farquhua, et al., 1995] Farquhua, A., Fikes, R., Pratt, W., and Rice, J.. Collaborative Ontology
Construction for Information Integration. Technical Report KSL-95-63, Knowledge Systems
Laboratory, Stanford University, 1995.
[Farquhua, et al., 1997] Farquhua, A., Fikes, R., and Rice, J.. The Ontolingua Server: A Tool for
Collaborative Ontology Construction. International Journal of Human-Computer Studies, 46(6):
707-727, 1997.
[Fellbaum, 1998] Fellbaum, C., editor. WordNet: an Electronic Lexical Database. Language, Speech,
and Communication Series. MIT Press, Cambridge, MA, 1998.
[Fensel and Brodie, 2004] Fensel, D. and Brodie, M.. Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag, Berlin, 2nd edition, 2004.

215

[Fensel, et al., 1998] Fensel, D., Decker, S., Erdmann, M., and Studer, R.. Ontobroker: The Very High
Idea. In 11th International Flairs Conference (FLAIRS-98), pp. 131-135, Sanibal Island, USA, 1998.
[Fernandez, et al., 1997] Fernandez, M., Gomez-Perez, A., and Juristo, N.. METHONTOLOGY: From
Ontological Art Towards Ontological Engineering. In Proceedings of AAAI97 Spring Symposium,
Workshop on Ontological Engineering, pp. 33-40, 1997.
[Fernandez, et al., 1999] Fernandez, M., Gomez-Perez, A., Sierra, A. P., and Sierra, J. P.. Building a
Chemical Ontology Using METHONTOLOG and the Ontology Design Environment. IEEE Intelligent
Systems, 14(1), 37-46, 1999.
[Fisseha, 2003] Fisseha, F.. The Basics of Ontologies. Nordic Agricultural Ontology Service (AOS)
Workshop, February 28, 2003.
[Gangemi, et al., 1998] Gangemi, A., Pisanelli, D., and Steve, G.. Ontology Integration: Experiences
with Medical Terminologies. In N. Guraino (ed), Formal Ontology in Information Systems, pp.
163-178. IOS Press, 1998.
[Ganter and Wille, 1999] Ganter, B. and Wille, R.. Formal Concept Analysis – Mathematical
Foundations. Springer, 1999.
[Garcia-Molina, et al., 1995] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv,
Y., Ullman, J., and Widon, J.. The TSIMMIS approach to Mediation: Data Models and Languages. In
Next Generation Information Technologies and Systems (NGITS-95), Naharia, Israel, 1995.
[Genesereth, et al., 1997] Genesereth, M. R., Keller, A. M., and Duschka, O. M.. Infomaster: An
Information Integration System. In Proceedings of 1997 ACM SIGMOD International Conference on
Management of Data, pp. 539-542, Tucson, Arizona, May 1997.
[Giunchiglia and Yatskvich, 2004]Giunchiglia, F. and Yatskevich, M.. Semantic Matching. Knowledge
Engineering Review, 18(3): 265-280, 2004.
[Goh, 1997] Goh, C. H.. Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Sources. PhD Thesis, MIT, 1997.
[Goh, et al., 1994] Goh, C., Madnick, S., and Siegel, M.. Context Interchange: Overcoming the
Challenges of Large-Scale Interoperable Database Systems in a Dynamic Environment. In Proceedings
of the 3rd International Conference on Information and Knowledge Management (CIKM’94), pp.
337-346, Gaithersbury, 1994.
[Gruber, 1993] Gruber, T. R.. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2): 199-220, 1993.
[Gruber, 1995] Gruber, T. R.. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies, 43(5/6): 907-928, 1995.
[Gruninger, 1996] Gruninger, M.. Designing and Evaluating Generic Ontologies. In ECAI96’s
Workshop on Ontological Engineering, 1996.
[Guarino, 1998] Guarino, N.. Formal Ontology and Information Systems. In N. Guarino, editor, Formal
Ontology in Information Systems, In Proceedings of FOIS’98, pp. 3-17, Trento, Italy, June 1998. IOS
Press, Amsterdam.
[Guarino, et al., 1999] Guarino, N., Masolo, C., and Vetere, G.. Ontoseek: Content-based Access to the
Web. IEEE Intelligent Systems, 14(3): 70-80, 1999.
[Guda, et al., 2002] Guda, S., Jagadish, H. V., Koudas, N., Srivastava, D., and Yu, T.. Approximate
XML Joins. In Proceedings of the 2002 ACM SIGMID, pp. 287-298, Madison, Wisconsin, USA, June
4-6, 2002.
[Guegan and Hernandez, 2006] Guegan, M. and Hernandez, N.. Recognizing Textual Parallelisms with
Edit Distance and Similarity Degree. In Proceedings of EACL 2006, The Association for Computer
Linguistics, Trento, Italy, April 3-7, 2006.
[Gunther and Voisard, 1998] Gunther, O. and Voisard, A.. Metadata in Geographic and Environmental
Data Management. In A. Sheth, W. Klas (eds), Multimedia Data Management: Using Metadata to
Integrate and Apply Digital Media, McGraw Hill, pp. 57-87, 1998.

216

[Haas, et al., 1999] Haas, L. M., Miller, R. J., Niswonger, B., Tork Roth, M., Schwarz, P. M., and
Wimmers, E. L.. Transformation Heterogeneous Data with Database Middleware: Beyond Integration.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 22(1): 31-36, 1999.
[Hai, 2005] Hai, D. H.. Schema Matching and Mapping-based Data Integration. Ph.D. Thesis.
University of Leipzig, German, 2005.
[Hakimpour and Geppert, 2002] Hakimpour, F. and Geppert, A.. Global Schema Generation Using
Formal Ontologies. S. Spaccapietra, S. T. March, and Y. Kambayashi (eds): ER 2002, LBCS 2503, pp.
307-321, Springer-Verlag Berlin Heidelberg, 2002.
[Hakimpour and Timpf, 2001] Hakimpour, F. and Timpf, S.. Using Ontologies for Resolution of
Semantic Heterogeneity in GIS. Proceedings 4th AGILE Conference on Geographic Information
Science, pp.385-395, Brno, Czech Republic, 2001.
[Hamill, et al., 1997] Hamill, S., Dixon, M., and Read, B. J.. Classifying Schematic and Semantic
Heterogeneities in Interoperating Database Systems. RAL Report RAL-97-xxx, 1997.
[Hammer, et al., 1997] Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R., Breunig, M., and
Vassalos, V.. Template-based Wrappers in the TSIMMIS System. SIGMOD Record, 26(2): 532-535,
1997.
[Hammer, et al., 2005] Hammer, J., Stonebraker, M., and Topsakal, O.. THALIA: Test Harness for the
Assessment of Legacy Information Integration Approaches. In Proceedings of the 21st International
Conference on Data Engineering (ICDE2005), pp. 485-486, Tokyo, Japan, April 2005.
[Han and Kamber, 2000] Han, J. and Kamber, M.. Data Mining: Concepts and Techniques. The Morgan
Kaufmann Series in Data Management Systems, Jim Gray, Series Editor. Morgan Kaufmann Publishers,
August 2000.
[Heflin, et al., 1999] Heflin, J., Hendler, J., and Luke, S.. SHOE: A Knowledge Representation
Language for Internet Applications. Technical Report CS-TR-4078, Institute for Advanced Computer
Studies, University of Maryland, 1999.
[Hess and Iochpe, 2004] Hess, G. N. and Iochpe, C.. Ontology-driven Resolution of Semantic
Heterogeneities in GDB Conceptual Schemas. In Proceedings of the Brazilian Symposium on
GeoInformatics, pp. 247-263, 2004.
[Hovy and Nirenbury, 1992] Hovy, E. H. and Nirenbury, S.. Approximating an Interlingua in a
Principled Way. In Proceedings of the DARPA Speech and Natural Language Workshop, Arden House,
NY, 1992.
[Hovy, 1998] Hovy, E.. Combining and Standardizing Large Scale, Practical Ontologies for Machine
Translation and Other Uses. In First International Conference on Language Resources and Evaluation
(LREC), pp. 535-542, 1998.
[Hovy, 2003] Hovy, E. H.. Using an Ontology to Simplify Data Access. Communications of the ACM,
Special Issue on Digital Government. Vol. 46, pp. 47-49, 2003.
[Hu, et al., 2007] Hu, C., Zhang, X., Zhao, Q., and Zhao, C.. Ontology-Based Semantic Integration
Method for Domain-Specific Scientific Data. In Proceedings of the Eighth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, Vol. 03, pp. 772-777, July 30-Aug. 1, 2007.
[INFOSEC, 1999] National Information Systems Security (INFOSEC) Glossary, NSTISSI No. 4009,
January 1999 (Revision 1).
[INRIA, 2010] INRIA, A Format for Ontology Alignment. http://alignapi.gforge.inria.fr/format.html,
2010.
[Isaac, et al., 2007] Isaac, A, van der Meij, L., Schlobach, S., and Wang, S.. An Empirical Study of
Instance-based Ontology Matching. In Proceedings of the 6th International Semantic Web Conference
(ISWC 2007), pp. 253-266, Busan, Korea, November 11-15, 2007.
[Jasper and Ushold, 1999] Jasper, R. and Ushold, M.. A Framework for Understanding and Classifying
Ontology Applications. In Proceedings of the 12th Banff Knowledge Acquisition for Knowledge-based

217

Systems Wrokshop, pp. 16-21, 1999.
[Jin, et al., 2005] Jin, J., Sarker, B. K., Bhavsar, V. C., Boley, H., and Yang, L.. Towards a
Weighted-Tree Similarity Algorithm for RNA Secondary Structure Comparison. In Proceedings of HPC
Asia 2005, pp. 639-644, IEEE Computer Society, Beijing, China, November 30-Decemeber 3, 2005.
[Kalfoglou and Schorlemmer, 2003] Kalfoglou, Y. and Schorlemmer, M.. Ontology Mapping: the State
of the Art. The Knowledge Engineering Review, Vol. 18:1, pp. 1-31, Cambridge University Press,
2003.
[Karp, 1993] Karp, P. D.. The Design Space of Frame Knowledge Representation Systems. Technical
Note 520, AI Center SRI International, Menlo Park, CA, 1993.
[Kendal and Creen, 2007] Kendal, S. and Creen, M.. An Introduction to Knowledge Engineering.
Springer-Verlag London Limited, 2007.
[Kiatisevi, et al., 2006] Kiatisevi, P., Ampornaramveth, V., and Ueno, H.. A Frame-based Knowledge
Software Tool for Developing Interactive Robots. Artificial Life and Robotics, Vol. 10, No. 1, pp.
18-28, July 2006.
[Kifer, et al., 1995] Kifer, M., Lausen, G., and Wu, J.. Logical Foundation of Object-Oriented and
Frame-based Languages. Journal of ACM, Vol. 42, pp. 741-843, 1995.
[Kirk, et al., 1995] Kirk, T., Levy, A. Y., Sagiv, Y., and Srivastava, D.. The Information Manifold. In
Proceedings of the AAAI Spring Symposium on Information Gathering in Distributed Heterogeneous
Environments, Stanford University, pp. 85-91, 1995.
[Kitakami, et al., 1996] Kitakami, H., Mori, Y., and Arikawa, M.. An Intelligent System for Integrating
Autonomous Nomenclature Databases in Semantic Heterogeneity. In Database and Expert System
Applications, CEXA’96, No. 1134 in Lecture Notes in Computer Science, pp. 187-196, Zurich,
Switzerland, 1996.
[Klahr, et al., 1987] Klahr, D., Langley, P., and Neches, R.. Production System Models of Learning and
Development. Cambridge, Mass.: The MIT Press, 1987.
[Klein and Noy, 2003] Klein, M. and Noy, F. N.. A Component-based Framework for Ontology
Evolution, In Proceedings of the IJCAI’03 Workshop: Ontologies and Distributed Systems, Acapulco,
Mexico, 2003.
[Klein, 2001] Klein, M.. Combining and Relating Ontologies: An Analysis of Problems and Solutions.
In A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and M. Uschold (eds), Workshop on Ontologies
and Information Sharing, IJCAI'01, Seattle, USA, Aug. 4-5, 2001.
[Kotsiantis and Pintelas, 2004] Kotsiantis, S. and Pintelas, P.. Recent Advances in Clustering: A Brief
Survey. WSEAS Transactions on Information Science and Applications, 1(1), pp. 73-81, 2004.
[Kouylekov and Magnini, 2005] Kouylekov, M. and Magnini, B.. Recognizing Textual Entailment with
Tree Edit Distance Algorithms. In Proceedings of the PASCAL Challenges Workshop on Recognizing
Textual Entailment, pp. 17-20, Southampton, UK, 2005.
[Kruskal, 1999] Kruskal, J. B.. An Overview of Sequence Comparison. In D. Sankoff and J. Kruskal
(eds): Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, Chapter One, CSLI Publications, 1999.
[Kullback, 1987] Kullback, S.. The Kullback-Leibler Distance. The American Statistician, 41, pp.
340-341, 1987.
[Lambrix and Tan, 2006] Lambrix, P. and Tan, H.. SAMBO -- A System for Aligning and Merging
Biomedical Ontologies. Web Semantics: Science, Services and Agents on the World Wide Web, Vol.4,
No.3, pp.196-206, September 2006.
[Larson, et al., 1989] Larson, J. A., Navathe, S. B., and Elmasri, R.. A Theory of Attribute Equivalence
in Databases with Application to Schema Integration. IEEE Transactions on Software Engineering,
16(4): 449-463, 1989.
[Lenzerini, 2002] Lenzerini, M.. Data Integration: a Theoretical Perspective. In Proceedings of
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.

218

233-246, Madison, Wisconsin, USA, 2002.
[Levy, 1999] Levy, A. Y.. Answering Queries Using Views: A Survey. Technical Report, University of
Washington, 1999.
[Levy, 2000] Levy, A. Y.. Logic-based Techniques in Data Integration. In Jack Minker (editor) Logic
Based Artificial Intelligence, Kluwer Academic Publisher, 2000.
[Levy, et al., 1996] Levy, A., Rajaraman, A., and Ordille, J. J.. Querying Heterogeneous Information
Sources using Source Descriptions. In Proceedings of the 22nd International Conference on Very Large
Databases, VLDB-96, pp. 251-262, Bombay, India, 1996.
[Li and Chang, 2000] Li, C. and Chang, E.. Query Planning with Limited Source Capabilities. In Proc.
of the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000), pp. 401-412, 2000.
[Li and Clifton, 1994] Li, W. and Clifton, C.. Semantic Integration in Heterogeneous Databases Using
Neural Networks. In Proceedings of 20th International Conference on Very Large Databases, pp. 1-12,
1994.
[Li, et al., 2000] Li, W., Clifton, C., and Liu, S.. Database Integration Using Neural Network:
Implementation and Experiences. Knowledge Information System, 2(1): 73-96, 2000.
[Li, et al., 2005] Li, L., Wu, B., and Yang, Y.. Agent-based Ontology Integration for Ontology-based
Applications. In Proceedings of Australasian Ontology Workshop (AOW 2005), the 18th Australian
Joint Conference on Artificial Intelligence, Conferences in Research and Practice in Information
Technology (CRPIT) series by Australian Computer Society, Vol. 58, pp. 53-59, 2005.
[Li, et al., 2006] Li, S., Hu, H., and Hu, X.. An Ontology Mapping Method Based on Tree Structure. In
Proceedings of the Second International Conference on Semantics, Knowledge, and Grid (SKD 2006),
pp. 87-88, Guilin, Guangxi, China, 1-3 November, 2006.
[Madhavan, et al., 2001] Madhavan, J., Bernstein, P. A., and Rahm, E.. Generic Schema Matching with
Cupid. In Proceedings of the 27th International Conference on Very Large Databases, pp. 49-58, San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc, 2001.
[Maedche and Staab, 2002] Maedche, A. and Staab, S.. Measuring Similarity between Ontologies. In
Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge
Management, Ontologies and the Semantic Web, Lecture Notes in Computer Science, Vol. 2473, pp.
251-263, 2002.
[Magnini, et al., 2003] Magnini, B., Serafini, L., and Speranza, M.. Making Explicit the Semantics
Hidden in Schema Models. 2nd International Semantic Web Conference, Workshop on Human
Language Technology for the Semantic Web and Web Services, Sanibel Island, Flordia, USA, 20th
October, 2003.
[Marinov, 2008] Marinov, M.. Using Frames for Knowledge Representation in a CORBA-based
Distributed Environment. Knowledge-Based Systems, Vol. 21, Issue 5, pp. 391-397, July 2008.
[McCann, et al., 2003] McCann, R., Doan, A., Kramnik, A., and Varadarajan, V.. Building Data
Integration Systems via Mass Collaboration. In Proceedings of the International Workshop on Web and
Databases (WebDB-03), 2003.
[McGuiness, et al., 2000] McGuiness, D., Fikes, R., Rice, J., and Wilder, S.. An Environment for
Merging and Testing Large Ontologies. In A. Cohm, F. Giunchiglia, B. Selman (eds), In Proceedings of
KR 2000, pp. 483-493. Morgan Kaufmann, 2000.
[McGuinness, et al., 2000] McGuinness, D. L., Fikes, R., Rice, J., and Wilder, S.. An Environment for
Merging and Testing Large Ontologies. In A. G. Cohn, F. Giunchiglia, and B. Selman (eds), KR2000:
Principles of Knowledge Representation and Reasoning, pp. 483-493, San Francisco. Morgan
Kaufmann, 2000.
[Meersman, 1995] Meersman, R.. An Essay on the Role and Evolution of Data (base) Semantics. In
Meersman R, Mark L. (eds), Database Application Semantics, Proceedings of IFIP WG 2.6 Working
Conference on Database Application Semantics, 1995.
[Melni, et al., 2002] Melnik, S., Garcia-Molina, H., and Rahm, E.. Similarity Flooding: A Versatile

219

Graph Matching Algorithm and Its Application to Schema Matching. In Proceedings of the 18th
International Conference on Data Engineering (ICDE’02), pp. 117-128, Washington, DC, USA, IEEE
Computer Society, 2002.
[Mena, et al., 2000] Mena, E., Illarramendi, A., Kashyap, V., and Sheth, A.. OBSERVER: An Approach
for Query Processing in Global Information systems based on Interoperation across Pre-existing
Ontologies. International Journal of Distributed and Parallel Databases (DAPD), 8(2): 223-272, 2000.
[Mendling, et al., 2005] Mendling, J., de Laborda, C. P., and Zdun, U.. Towards Semantic Integration
of XML-based Business Process Models. In Proceedings of the Semantic Model Integration Workshop
(SMI 2005) in conjunction with the 3rd International Conference on Professional Knowledge
Management (WM 2005), pp. 513-517, Kaiserslautern, Germany, April 13, 2005.
[Menzel, 2008] Menzel, C.: An Account of Abstract Possible Worlds, Stanford Encyclopedia of
Philosophy, http://plato.stanford.edu/entries/actualism/possible-worlds.html, 2008.
[Minsky, 1975] Minsky, M.. A Framework for Representing Knowledge. In P. Winston (ed.), The
Psychology of Computer Vision. New York: McGraw-Hill, pp. 211-277, 1975.
[Mitra and Wiederhold, 2002] Mitra, P. and Wiederhold, G.. Resolving Terminological Heterogeneity in
Ontologies. In Proceedings of the ECAI Workshop on Ontologies and Semantic Interoperability, 2002.
[Mitra, et al., 1999] Mitra, P., Wiederhold, G., and Jannink, J.. Semi-automatic Integration of
Knowledge Sources. In Proceedings of Fusion’99, Sunnyvale, USA, 1999.
[Mudumbai, 1997] Mudumbai, S.. ZEBRA: Customizable, Extensible Metadata-based Access to
Federated Image Repositories. M. S. Thesis, Department of Computer Science, University of Georgia
Online Computer Library Center, 1997.
[Newcomb, 2003] Newcomb, S. R.. A Semantic Integration Methodology. Extreme Markup Languages
2003, Montreal, Quebec, August 4-8, 2003.
[Nodine, et al., 1999] Nodine, M., Bohrer, W., and Ngu, A. H. H.. Semantic Brokering over Dynamic
Heterogeneous Data Sources in Infosleuth. In Proceedings of the 15th International Conference on
Data Engineering (ICDE 1999), pp. 358-365, 1999.
[Noy and Musen, 2000] Noy, N. F. and Musen, M., PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX, 2000. AAAI/MIT Press, pp. 450-455, 2000.
[Noy and Musen, 2001] Noy, N. F. and Musen, M., Anchor-PROMPT: Using Non-Local Context for
Semantic Matching. In Proceedings of the IJCAI Workshop on Ontologies and Information Sharing, pp.
63-70, 2001.
[Noy and Musen, 2003] Noy, N. F. and Musen, M. A., The PROMPT Suite: Interactive Tools For
Ontology Merging And Mapping. International Journal of Human-Computer Studies, 59(6): 983-1024,
2003.
[Noy, 2003] Noy, F. N.. What Do We Need for Ontology Integration on the Semantic Web, Position
Statement. In Proceedings of the Workshop on Semantic Integration, jointed held with the 2nd
International Semantic Web Conference, pp. 175-176, Sanibal Island, Florida, USA, 2003.
[Noy, 2004] Noy, N. F.. Semantic Integration: A Survey of Ontology Based Approaches. SIGMOD
Record, 33(4): 65~70, 2004.
[Ovsiannikov, et al., 1998] Ovsiannikov, I., Arbib, M., and McNeill, T.. Annotation Software System
Design. 1998. URL: http://rana.usc.edu:8376/~ilya/at.ps.gz
[Parent and Spaccapietra, 1998] Parent, C. and Spaccapietra, S.. Issues and Approaches of Database
Integration. Communication of the ACM, 41(5): 166-178, 1998.
[Partridge, 2002] Partridge, C.. The Role of Ontology in Semantic Integration. OOPSLA 2002, Seattle,
USA.
[Pei, et al., 2006] Pei, J., Hong, J., and Bell, D.. A Novel Clustering-Based Approach to Schema
Matching. Advances in Information Systems (Lecture Notes in Computer Science, Volume 4243),
Springer Berlin/Heidelberg, pp. 60-69, 2006.

220

[Pinto and Martins, 2004] Pinto, H. S. and Martins, P. J.. Ontologies: How Can They Be Built?
Knowledge and Information Systems, 6 (4), pp. 441-464, 2004.
[Pinto, 1999] Pinto, H. S.. Some Issues on Ontology Integration. In Proceedings of the IJCAI-99
Workshop on Ontologies and Problem-Solving Methods (KRR5), pp. 7-1-7.12, Stockholm, Sweden,
August 2, 1999.
[Plantinga and Davidson, 2003] Plantinga, A. and Davidson, M.. Essays in the Metaphysics of
Modality. Oxford University Press US, 2003.
[Posner, 1989] Posner, M. I. (ed). Foundations of Cognitive Science. MIT Press, Cambridge,
Massachusetts, London, England, 1989.
[Prasad, et al., 2002] Prasad, S., Peng, Y., and Finin, T.. Using Explicit Information to Map Between
Two Ontologies. In Proceedings of the AAMAS Workshop on Ontologies in Agent Systems, pp. 52-57,
2002.
[Preece, et al., 1999] Preece, A., Hui, K ., Gray, W., Marti, P., Bench-Capon, T., Jones, D., and Cui, Z..
KRAFT Architecture for Knowledge Fusion and Transformation. In Proceedings of the 19th SGES
International Conference on Knowledge-based Systems and Applied Artificial Intelligence (ES’99),
Berlin, Springer, 1999.
[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A.. A Survey of Approaches to Automatic
Schema Matching. The International Journal on Very Large Databases (VLDB), 10(4): 334-350, 2001.
[Reichman, et al., 1999] Reichman, O. J., et al. A Knowledge Network for Biocomplexity: Building
and Evaluating A Metadata-based Framework for Integrating Heterogeneous Scientific Data. National
Science Foundation Award # DEB99-80154. (Available at: http://knb.ecoinformatics.org).
[Rizopoulos, 2004] Rizopoulos, N.. Automatic Discovery of Semantic Relationships between Schema
Elements. In Proceedings of the 6th International Conference on Enterprise Information Systems
(ICEIS 2004). Volume I - Databases and Information Systems Integration. pp. 3-8, 2004.
[Rodriguez and Egenhofer, 2003] Rodriguez, A. and Egenhofer, M.. Determining Semantic Similarity
among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data
Engineering, 15(2): 442-456, 2003.
[Roth and Schwartz, 1997] Roth, M. T. and Schwartz, P.. Don’t Scrap It, Wrap It! In Proceedings of the
23rd International Conference on Very Large Databases, pp. 266-275, 1997.
[Sanin, et al., 2007] Sanin, C., Szczerbicki, E., and Toro, C.. An OWL Ontology of Set of Experience
Knowledge Structure. Journal of Universal Computer Science, Vol. 13, No. 2, pp. 209-223, 2007.
[Sciore, et al., 1994] Sciore, E., Siegel, M., and Rosenthal, A.. Using Semantic Values to Facilitate
Interoperability among Heterogeneous Information Systems. ACM Transactions on Database Systems,
19(2): 254-290, 1994.
[Scott and Sain, 2004] Scott, D. and Sain, S.. Multi-dimensional Density Estimation. Handbook of
Statistics, Volume 24: Data Mining and Computational Statistics, 2004.
[Shapiro, 2006] Shapiro, S.. Classical Logic. The Stanford Encyclopedia of Philosophy (Winter 2006
Edition). Edward N. Zalta (ed.), http://plato.stanford.edu/archives/win2006/entries/logic-classical/.
[Sheth and Larson, 1990] Sheth, A. and Larson, J.. Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3): 183-236,
1990.
[Sheth, 1998] Sheth, A. P.. Changing Focus on Interoperability in Information Systems: from System,
Syntax, Structure to Semantics. In M. F. Goodchild, M. J. Egenhofer, R. Fegeas and C. A. Kottman
(eds), Interoperating Geographic Information System, Kluwer, 1998.
[Shvaiko and Euzenat, 2004] Shvaiko, P. and Euzenat, J.. A Survey of Schema-based Matching
Approaches. Technical Report DIT—04-087, Information e Telecomunicazioni, University of Trento,
2004.
[Skuce, 1997] Skuce, D.. How We Might Reach Agreement on Shared Ontologies: A Fundamental
Approach. In Proceedings of AAAI97 Spring Symposium, Workshop on Ontological Engineering, pp.

221

114-119, 1997.
[Smiljanic, et al., 2006] Smiljanic, M., van Keulen, M., and Jonker, W.. Using Element Clustering to
Increase the Efficiency of XML Schema Matching. In Proceedings of the 22nd International
Conference on Data Engineering Workshops (ICDEW'06), pp. 45, 2006.
[Sowa, 1997] Sowa, J. F.. Electronic Communication in the Onto-std Mailing List, December 4, 1997.
[Sowa, 1999] Sowa, J. F.. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Thomson Learning, 1999.
[Sowa, 2005] J. F, Sowa. Conceptual Graphs website, http://www.jfsowa.com/cg/index.htm, 2005.
[Spaccapietra, et al., 1992] Spaccapietra, S., Parent, C., and Dupont, Y.. Model Independent Assertions
for Integration of Heterogeneous Schemas. VLDB Journal 1: 81-126, 1992.
[Stuckenschmidt and van Harmelen, 2005] Stuckenschmidt, H. and van Harmelen, F.. Information
Sharing on the Semantic Web. Springer-Verlag Berlin Heidelberg, 2005.
[Stuckenschmidt and Wache, 2000] Stuckenschmidt, H. and Wache, H.. Context Modeling and
Transformation for Semantic Interoperability. In Proceedings of the International Workshop on
Knowledge Representation Meets Databases (KRDB 2000), pp. 115-126, 2000.
[Stumme and Maedche, 2001] Stumme, G. and Maedche, A.. FCA-MERGE: Bottom-up Merging of
Ontologies. In Proceedings of the 17th International Conference on Artificial Intelligence IJCAI 2001,
pp. 225-234, Seattle, WA, 2001.
[Sumllyan, 1995] Sumllyan, R.. First-Order Logic. Courier Dover Publications, 1995.
[Tan, et al., 2006] Tan, H., Jakoniene, V., Lambrix, P., Aberg, J., and Shahmehri, N.. Alignment of
Biological Ontologies Using Life Science Literature. In Proceedings of the International Workshop on
Knowledge Discovery in Life Science, Singapore, pp. 1-17, 2006.
[Theodoratos, 2002] Theodoratos, D.. Semantic Integration and Querying of Heterogeneous Data
Sources Using a Hypergraph Data Model. In: B. Eaglestone, S. North, and A. Poulovassilis (eds):
BNCOD 2002, LNCS 2405, Springer-Verlag Berlin Heidelberg, pp. 166-182, 2002.
[Tomberlin and van Inwagen, 1985] Tomberlin, J. E. and van Inwagen, P. (ed). Alvin Plantinga,
Springer, 1985.
[Turlach, 1993] Turlach, A. B.. Bandwidth Selection in Kernel Density Estimation: A Review. CORE
and Institut de Statistique, pp. 23-493, 1993.
[Uschold and Gruninger, 1996] Uschold, M. and Gruninger, M.. Ontologies: Principles, Methods and
Applications. Knowledge Engineering Review, 11(2): 93-155, 1996.
[Uschold and King, 1995] Uschold, M. and King, M.. Towards a Methodology for Building Ontologies.
In IJCAI95’s Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.
[Vetere and Lenzerini, 2005] Vetere, G. and Lenzerini, M.. Models for Semantic Interoperability in
Service-Oriented Architectures. IBM Systems Journal, Vol. 44, No. 4, pp. 887-903, 2005.
[Visser, 2004] Visser, U.. General Approach of Buster. In Intelligent Information Integration for the
Semantic Web, Springer Berlin / Heidelberg, pp. 37-51, 2004.
[Visser, et al., 1997] Visser, P. R. S., Jones, D. M., Bench-Capon, T. J. M., and Shave, M. J. R.. An
Analysis of Ontological Mismatches: Heterogeneity versus Interoperability. In AAAI 1997 Spring
Symposium on Ontological Engineering, Stanford, USA, 1997.
[Wache, 2003] Wache, H.. Semantic Mediation for Heterogeneous Information Sources. PhD Thesis,
University of Bremen, German, 2003.
[Wache, et al., 1999] Wache, H., Scholz, T., Stieghahn, H., and Konig-Ries, B.. An Integration Method
for the Specification of Rule-Oriented Mediators. In Y. Kambayashi and H. Takakkura, editors,
Proceedings of the International Symposium on Database Applications in Non-Traditional
Environments (DANTE’99), pp. 109-112, Kyoto, Japan, 1999.
[Wache, et al., 2001] Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
and Hubner, S.. Ontology-Based Integration of Information – A Survey of Existing Approaches. In
Proceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing, pp. 108-117, Seattle,

222

USA, 4-5 August, 2001.
[Wang, 2008] Wang, Y.. Ontology-Driven Semantic Transformation for Cooperative Information
Systems, PhD thesis, University of Western Ontario, 2008.
[Wang, et al., 2006] Wang, H., Noy, N., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S.,
Tudorache, T., Drummond, N., Horridge, M., and Seidenberg, J.. Frames and OWL Side by Side. In
Proceedings of the 9th International Protégé Conference, July 24-26, 2006, Stanford University, USA.
[Warin, et al., 2005] Warin, M., Oxhammark, H., and Volk, M.. Enriching An Ontology with WordNet
based on Similarity Measures. In Proceedings of the MEANING-2005 Workshop, Trento, Italy,
February, 2005.
[Wasserman, 2005] Wasserman, L.. All of Statistics: A Concise Course in Statistical Inference. Springer
Texts in Statistics, 2005.
[Wick, et al., 2008] Wick, M. L., Rohanimanesh, K., Schultz, K., and McCallum, A.. A Unified
Approach for Schema Matching, Coreference and Canonicalization. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 722-730, Las Vegas,
Nevada, USA, Aug. 24-27, 2008.
[Wiederhold, 1992] Wiederhold, G.. Mediators in the Architecture of Future Information Systems.
Computer, 25(3): 38-49, 1992.
[Wiederhold, 1994] Wiederhold, G.. An Algebra for Ontology Composition. In Proceedings of 1994
Monterey Workshop on Formal Methods, pp. 56-61. U.S. Naval Postgraduate School, Monterey CA,
September 1994.
[Yao and Zhang, 2004] Yao, J. T. and Zhang, M.. A Fast Tree Pattern Matching Algorithm for XML
Query. In Proceedings of International Conference on Web Intelligence (WI 2004), pp. 235-241, 2004.
[Zeng, 2008] Zeng, Y.. Recursive Object Model (ROM): Modeling of Linguistic Information in
Engineering Design. Computers in Industry. 59(6), pp. 612-625, 2008.

223

Appendix A
Information Models of the Systems in the Prototype Environment

(1) Business Model Management System
Element Name: language

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

language_id INT 10 0 false true

resource_id INT UNSIGNED 10 0 false false

value VARCHAR 20 0 false false

Element Name: price

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

price_id INT 10 0 false true

product_id INT UNSIGNED 10 0 false false

resource_id BIGINT 19 0 false false

start_date DATE 10 0 false false

end_date DATE 10 0 false false

forever CHAR 1 0 false false

value VARCHAR 255 0 false false

Element Name: product

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

product_id INT UNSIGNED 10 0 false true

product_name VARCHAR 100 0 true false

flavor VARCHAR 20 0 true false

sweetness VARCHAR 45 0 true false

brand_name VARCHAR 45 0 true false

Element Name: product_rule

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

product_rule_id INT UNSIGNED 10 0 false true

product_rule_name VARCHAR 100 0 true false

product_rule_type VARCHAR 255 0 true false

Element Name: product_rule_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

224

product_rule_parent_id INT UNSIGNED 10 0 false false

product_rule_child_id INT UNSIGNED 10 0 false false

Element Name: product_rule_product_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

product_rule_id INT UNSIGNED 10 0 false false

product_id INT UNSIGNED 10 0 false false

Element Name: resource

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

resource_id INT UNSIGNED 10 0 false true

resource_name VARCHAR 100 0 true false

aspect_ratio VARCHAR 20 0 true false

orientation VARCHAR 20 0 true false

resolution VARCHAR 20 0 true false

marketing_zone_id INT 10 0 true false

Element Name: resource_rule

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

resource_rule_id INT UNSIGNED 10 0 false false

resource_rule_type VARCHAR 255 0 false false

resource_rule_name VARCHAR 100 0 true false

Element Name: resource_rule_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

resource_rule_parent_id INT UNSIGNED 10 0 false false

resource_rule_child_id INT UNSIGNED 10 0 false false

Element Name: resource_rule_resource_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

resource_rule_id INT UNSIGNED 10 0 false false

resource_id INT UNSIGNED 10 0 false false

Element Name: time

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

time_id INT UNSIGNED 10 0 false true

225

time_name VARCHAR 100 0 true false

time_type VARCHAR 20 0 true false

start VARCHAR 60 0 true false

end VARCHAR 60 0 true false

Element Name: time_rule

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

time_rule_id INT UNSIGNED 10 0 false true

time_rule_name VARCHAR 100 0 true false

time_rule_type VARCHAR 255 0 true false

Element Name: time_rule_time_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

time_rule_id INT UNSIGNED 10 0 false false

time_id INT UNSIGNED 10 0 false false

(2) Media Management System
Element Name: asset

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

asset_id BIGINT 19 0 false true

user_given_name VARCHAR 255 0 true false

client_id BIGINT 19 0 true false

create_date DATETIME 19 0 true false

owner_library_id BIGINT 19 0 true false

current_config_id BIGINT 19 0 true false

product_id INT UNSIGNED 10 0 true false

media_file_id BIGINT 19 0 true false

Element Name: asset_meta_value_map

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

asset_id BIGINT 19 0 false false

meta_value_id BIGINT 19 0 false false

Element Name: media_file

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

media_file_id BIGINT 19 0 false true

226

server_given_name VARCHAR 255 0 true false

create_date DATETIME 19 0 true false

media_content LONGTEXT 2147483647 0 true false

mime_type VARCHAR 255 0 true false

file_size BIGINT 19 0 true false

file_type VARCHAR 255 0 true false

Element Name: media_library

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

media_library_id BIGINT 19 0 false true

name VARCHAR 255 0 true false

client_id BIGINT 19 0 true false

association_service VARCHAR 255 0 true false

is_third_party BIT 1 0 true false

service_url VARCHAR 255 0 true false

is_deleted BIT 1 0 true false

create_date DATETIME 19 0 true false

Element Name: meta_value

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

meta_value_id BIGINT 19 0 false true

meta_tag_name VARCHAR 255 0 true false

meta_tag_value VARCHAR 255 0 true false

Element Name: prod

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

id INT UNSIGNED 10 0 false true

name VARCHAR 100 0 true false

description VARCHAR 255 0 true false

Element Name: system_keywords

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

asset_id BIGINT 19 0 false false

keyword VARCHAR 255 0 false false

Element Name: thumbnail

227

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

thumbnail_id BIGINT 19 0 false true

asset_id BIGINT 19 0 true false

file_type VARCHAR 255 0 true false

width INT 10 0 false false

height INT 10 0 false false

media_file_id BIGINT 19 0 true false

media_library_id BIGINT 19 0 true false

asset_config_id BIGINT 19 0 true false

Element Name: user_keywords

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

asset_id BIGINT 19 0 false false

keyword VARCHAR 255 0 false false

(3) Promotion Management System
Element Name: daypart

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

dp_daypart_id INT UNSIGNED 10 0 false true

dp_name VARCHAR 128 0 false false

dp_state INT UNSIGNED 10 0 false false

dp_client_id INT UNSIGNED 10 0 false false

Element Name: daypart_time_to_play

Attribute Name Data Type Size
Decimal
Digits

Nullable
Auto
Increment

dpttp_daypart_time_to_play_id
INT
UNSIGNED

10 0 false true

dp_daypart_id
INT
UNSIGNED

10 0 false false

ttp_time_to_play_id
INT
UNSIGNED

10 0 false false

Element Name: history

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

hi_history_id INT UNSIGNED 10 0 false true

hi_user_id INT UNSIGNED 10 0 false false

228

hi_date INT UNSIGNED 10 0 false false

hi_action VARCHAR 255 0 false false

hi_comment VARCHAR 255 0 false false

hi_status VARCHAR 32 0 false false

Element Name: prev_media_asset

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pma_prev_media_asset_id INT UNSIGNED 10 0 false true

pr_promotion_id INT UNSIGNED 10 0 false false

pma_asset_id INT UNSIGNED 10 0 false false

pma_library_id INT UNSIGNED 10 0 false false

Element Name: products

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pr_id INT UNSIGNED 10 0 false true

pr_name VARCHAR 100 0 true false

pr_description VARCHAR 255 0 true false

Element Name: promotion

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pr_promotion_id INT UNSIGNED 10 0 false true

pr_name VARCHAR 128 0 false false

pr_client_id INT UNSIGNED 10 0 false false

pr_product_id INT UNSIGNED 10 0 false false

pr_layout_id INT UNSIGNED 10 0 false false

pr_region_id INT UNSIGNED 10 0 false false

pr_media_request_id INT UNSIGNED 10 0 false false

pr_source VARCHAR 128 0 false false

pr_bm_irt_id INT UNSIGNED 10 0 false false

pr_status VARCHAR 32 0 false false

pc_promotion_config_id INT UNSIGNED 10 0 false false

pr_note TEXT 65535 0 false false

Element Name: promotion_conf_daypart

Attribute Name Data Type Size
Decimal
Digits

Nullable
Auto
Increment

229

pcd_promotion_conf_daypart_id
INT
UNSIGNED

10 0 false true

pc_promotion_config_id
INT
UNSIGNED

10 0 false false

dp_daypart_id
INT
UNSIGNED

10 0 false false

Element Name: promotion_conf_time_to_play

Attribute Name Data Type Size
Decimal
Digits

Nullable
Auto
Increment

pcttp_promotion_config_time_to_play_id
INT
UNSIGNED

10 0 false true

ttp_time_to_play_id
INT
UNSIGNED

10 0 false false

pc_promotion_config_id
INT
UNSIGNED

10 0 false false

Element Name: promotion_config

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pc_promotion_config_id INT UNSIGNED 10 0 false true

pc_start_date INT UNSIGNED 10 0 false false

pc_end_date INT UNSIGNED 10 0 false false

pr_promotion_id INT UNSIGNED 10 0 false false

Element Name: promotion_history

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pr_promotion_history_id INT UNSIGNED 10 0 false true

pr_promotion_id INT UNSIGNED 10 0 false false

pc_promotion_config_id INT UNSIGNED 10 0 false false

hi_history_id INT UNSIGNED 10 0 false false

Element Name: promotion_resource_allocation

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

promotion_id INT UNSIGNED 10 0 false false

resource_id INT UNSIGNED 10 0 false false

Element Name: resource_groups

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

230

rg_resource_group_id INT UNSIGNED 10 0 false false

pc_promotion_config_id INT UNSIGNED 10 0 false false

rg_is_exclusive BIT 1 0 false false

Element Name: resources

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

re_id INT UNSIGNED 10 0 false true

re_name VARCHAR 60 0 false false

re_model VARCHAR 60 0 true false

Element Name: time_to_play

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

ttp_time_to_play_id INT UNSIGNED 10 0 false true

ttp_start_time VARCHAR 32 0 false false

ttp_end_time VARCHAR 32 0 false false

ttp_days_of_week SMALLINT UNSIGNED 5 0 false false

(5) Inventory Management System
Element Name: inventory

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

product_id INT UNSIGNED 10 0 false false

location_id INT UNSIGNED 10 0 false false

quantity INT UNSIGNED 10 0 false false

load_date DATE 10 0 false false

Element Name: load_records

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

record_id INT UNSIGNED 10 0 false true

load_date DATE 10 0 false false

operator VARCHAR 60 0 false false

product_id INT UNSIGNED 10 0 false false

location_id INT UNSIGNED 10 0 false false

load_quantity INT UNSIGNED 10 0 false false

comments VARCHAR 255 0 true false

Element Name: location

231

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

location_id INT UNSIGNED 10 0 false false

location_type VARCHAR 45 0 false false

location_number VARCHAR 45 0 false false

location_name VARCHAR 100 0 false false

Element Name: products

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

product_id INT UNSIGNED 10 0 false true

product_name VARCHAR 100 0 true false

product_type VARCHAR 45 0 true false

comments VARCHAR 255 0 true false

(6) Transaction Management System
Element Name: operation_assignments

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

o_id VARCHAR 10 0 false false

pos_number VARCHAR 20 0 false false

Element Name: operators

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

o_id VARCHAR 10 0 false false

o_first_name VARCHAR 45 0 false false

o_hourly_rate DECIMAL 10 2 false false

o_last_name VARCHAR 45 0 false false

Element Name: pos_machines

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pos_number VARCHAR 20 0 false false

pos_model VARCHAR 45 0 true false

install_date DATE 10 0 true false

counter_no INT UNSIGNED 10 0 true false

Element Name: products

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

p_id INT UNSIGNED 10 0 false true

232

p_name VARCHAR 100 0 true false

p_price DECIMAL 10 2 true false

p_note VARCHAR 255 0 true false

Element Name: receipts

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

r_id INT UNSIGNED 10 0 false true

r_number VARCHAR 45 0 false false

start_time DATETIME 19 0 true false

o_id VARCHAR 10 0 true false

pos_number VARCHAR 20 0 true false

total_price DECIMAL 10 2 true false

payment_way VARCHAR 45 0 true false

payment DECIMAL 10 2 true false

change DECIMAL 10 2 true false

Element Name: transactions

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

t_id INT UNSIGNED 10 0 false true

sales_time DATETIME 19 0 false false

p_id INT UNSIGNED 10 0 false false

quantity INT UNSIGNED 10 0 false false

r_id INT UNSIGNED 10 0 false false

(7) Scheduling Management System (XML)
Element Name: res

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

aspection_ration N/A N/A N/A N/A N/A

id N/A N/A N/A N/A N/A

location N/A N/A N/A N/A N/A

name N/A N/A N/A N/A N/A

orientation N/A N/A N/A N/A N/A

resolution N/A N/A N/A N/A N/A
Subelements:
None

233

Element Name: prod

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

description N/A N/A N/A N/A N/A

id N/A N/A N/A N/A N/A

name N/A N/A N/A N/A N/A

price N/A N/A N/A N/A N/A
Subelements:
None

Element Name: media

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

id N/A N/A N/A N/A N/A

location N/A N/A N/A N/A N/A

name N/A N/A N/A N/A N/A

prod N/A N/A N/A N/A N/A

resolution N/A N/A N/A N/A N/A
Subelements:
None

Element Name: time

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

id N/A N/A N/A N/A N/A

name N/A N/A N/A N/A N/A

type N/A N/A N/A N/A N/A

value N/A N/A N/A N/A N/A
Subelements:
None

Element Name: schedule

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

id N/A N/A N/A N/A N/A
Subelements:

Element Name Type

prod Simple

Element Name Type

234

time Simple

Element Name Type

media Simple

Element Name Type

resources Complex
res

Original XML Document:
<data>

 <resources>

 <res id="1" name="res1" resolution="800x600" aspection_ration="4:3"

orientation="LANDSCAPE" location="store1"/>

 <res id="2" name="res2" resolution="1024x768" aspection_ration="16:9"

orientation="LANDSCAPE" location="store2"/>

 <res id="3" name="res3" resolution="600x800" aspection_ration="3:4"

orientation="PORTRAIT" location="store3"/>

 </resources>

 <products>

 <prod id="1" name="Donuts" description="" price="1.99"/>

 <prod id="2" name="Apple Fritter" description="" price="2.99"/>

 <prod id="3" name="Honey Dip" description="" price="2.49"/>

 </products>

 <media_assets>

 <media id="0001" name="donuts.mgp" location="/repository/media/"

resolution="800x600" prod="1" />

 <media id="0002" name="applefritter.mgp" location="/repository/media/"

resolution="800x600" prod="2" />

 <media id="0003" name="honeydip.mgp" location="/repository/media/"

resolution="800x600" prod="3" />

 </media_assets>

 <times>

 <time id="1" type="DAY" name="Monday" value="1" />

 <time id="2" type="DAY" name="Tuesday" value="2" />

 <time id="3" type="DAYTIME" name="lunch" value="11:00-13:00" />

 <time id="4" type="FLIGHTDATE" name="Christmas"

value="12/23/2009-12/26/2009" />

 </times>

 <schedules>

 <schedule id="1">

235

 <prod id="1" />

 <time id="2" />

 <media id="0003" />

 <resources>

 <res id="1" />

 <res id="2" />

 </resources>

 </schedule>

 </schedules>

</data>

236

Curriculum Vitae

Name Yunjiao Xue

Post-secondary Education and Degrees

 Sept. 2006 - present Ph.D. candidate in Engineering Science
 The University of Western Ontario, London, Ontario

 Sept. 2003 - June 2006 Ph.D. in Computer Science
 Fudan University, Shanghai, P.R.China

 Sept. 1999 - July 2002 Master of Science in Computer Science
Fudan University, Shanghai, P.R.China

 Sept. 1995 - July 1999 Bachelor of Science in Computer Science
Fudan University, Shanghai, P.R.China

Honours and Awards

 Scholarships
2008 - 2010 Natural Sciences and Engineering Research Council of Canada

Industrial Postgraduate Scholarships (NSERC IPS)
2006 - 2010 Western Graduate Research Scholarship - Engineering
2001 - 2002 Graduate Fellowship of Fudan University (first class)
2001 - 2002 Intel Scholarship
2000 - 2001 Liu Yongling Scholarship
2000 - 2001 Graduate Fellowship of Fudan University (second class)
2000 - 2001 Inchcape Hong Kong University China Scholarship Programme
2000 IBM Scholarship for Outstanding Students of China
2000 Johnson & Johnson Scholarship
1996 - 1997 Motorola Scholarship

 Awards
2010 CDS-EnG A/IR&D Collaboration Award
2008 CDS-EnG AR&D Collaboration Award
2007 CDS-EnG Best Research Achievements Award
2007 CDS-EnG Best Active Research Award

Related Work Experience

 October 2006 - present, Guest Worker, National Research Council Canada (NRC),
London, Ontario, Canada

 October 2006 - present, Research Assistant at EK3 Technologies Inc., London,
Ontario, Canada

 September 2006 - April 2010, Teaching Assistant at The University of Western

237

Ontario, London, Ontario, Canada
 July 2002 - July 2006, Lecturer, School of Information Science and Engineering,

Fudan University, Shanghai, P.R.China

Related Publications

1. Yunjiao Xue, Hamada H. Ghenniwa, Weiming Shen. "Frame-based Ontological View for
Semantic Integration". Recommended as a candidate paper for possible publication in the
Elsevier Journal of Network and Computer Applications, 2010.

2. Yunjiao Xue, Hamada H. Ghenniwa, Weiming Shen. "A Frame-based Ontological View
Specification Language". Proceedings of the 14th International Conference on Computer
Supported Cooperative Work in Design (CSCWD 2010), pp. 228-233, Shanghai, China,
April 14-16, 2010.

3. Yunjiao Xue, Hamada H. Ghenniwa, Weiming Shen. "Instance-based Domain
Ontological View Creation towards Semantic Integration". International Journal of Expert
Systems with Applications, 38 (2011): pp. 1193-1202. DOI: 10.1016/j.eswa.2010.05.012.

4. Yunjiao Xue, H. H. Ghenniwa, W. Shen. "A Tree Similarity Measuring Method and its
Application to Ontology Comparison". Journal of Universal Computer Science, Vol. 15,
No. 9, pp. 1766-1781, 2009.

5. Yunjiao Xue, H. H. Ghenniwa, W. Shen. "Ontological View-driven Semantic Integration
in Collaborative Networks". 10th IFIP Working Conference on VIRTUAL
ENTERPRISES (PRO-VE’09), Thessaloniki, Greece, October 7-9, 2009.

6. Yunjiao Xue, H. H. Ghenniwa, W. Shen. "Instance-based Domain Ontological View
Creation". Proceedings of the 13th International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2009), pp. 344-349, Santiago, Chile, April 22-24,
2009.

7. Y. D. Wang, H. H. Ghenniwa, W. Shen, Yunjiao Xue. "Service-Oriented Coordinated
Intelligent Rational Agent Model for Distributed Information Systems". Proceedings of
the 13th International Conference on Computer Supported Cooperative Work in Design
(CSCWD 2009), pp. 350-355, Santiago, Chile, April 22-24, 2009.

8. Yunjiao Xue, C. Wang, H. H. Ghenniwa, W. Shen. "A New Tree Similarity Measuring
Methodology and its Application to Ontology Comparison". Proceedings of the 12th
International Conference on Computer Supported Cooperative Work in Design (CSCWD
2008), pp. 258-263, Xi’an, China, April 16-18, 2008.

9. Yunjiao Xue, H. H. Ghenniwa, W. Shen. "Measuring Business Process Similarity based
on Graph Transformation Cost". 2nd International SeMSoc Workshop – Business Oriented
Aspects concerning Semantics and Methodologies in Service-Oriented Computing, 5th
International Conference on Service Oriented Computing/ICSOC 2007, Vienna, Austria,
September 17-20, 2007 (Accepted).

10. Yunjiao Xue, H. H. Ghenniwa, W. Shen. "An Extended Methodology for Tree Similarity
Measuring and Its Application on Ontology Integration". Workshop on Collective
Intelligence on Semantic Web (CISW 2007), IEEE/WIC/ACM Joint International
Conference on Web Intelligence and Intelligent Agent Technology 2007, Silicon Vally,
USA, November 2-5, 2007 (Accepted).

	Ontological View-driven Semantic Integration in Open Environments
	Recommended Citation

	Ontological View-driven Semantic Integration in Open Environments

