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Abstract 
 

In an open computing environment, such as the World Wide Web or an enterprise Intranet, 

various information systems are expected to work together to support information 

exchange, processing, and integration. However, information systems are usually built by 

different people, at different times, to fulfil different requirements and goals. 

Consequently, in the absence of an architectural framework for information integration 

geared toward semantic integration, there are widely varying viewpoints and assumptions 

regarding what is essentially the same subject. Therefore, communication among the 

components supporting various applications is not possible without at least some 

translation. This problem, however, is much more than a simple agreement on tags or 

mappings between roughly equivalent sets of tags in related standards. Industry-wide 

initiatives and academic studies have shown that complex representation issues can arise.  

To deal with these issues, a deep understanding and appropriate treatment of semantic 

integration is needed. Ontology is an important and widely accepted approach for 

semantic integration. However, usually there are no explicit ontologies with information 

systems. Rather, the associated semantics are implied within the supporting information 

model. It reflects a specific view of the conceptualization that is implicitly defining an 

ontological view.  

This research proposes to adopt ontological views to facilitate semantic integration for 

information systems in open environments. It proposes a theoretical foundation of 

ontological views, practical assumptions, and related solutions for research issues. The 

proposed solutions mainly focus on three aspects: the architecture of a semantic 

integration enabled environment, ontological view modeling and representation, and 

semantic equivalence relationship discovery. 
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The solutions are applied to the collaborative intelligence project for the collaborative 

promotion / advertisement domain. Various quality aspects of the solutions are evaluated 

and future directions of the research are discussed. 

 

Keywords 

Semantic integration, ontology, ontological view, open environment, frame, modeling, 

representation, semantic relationship discovery, tree similarity-based, instance-based 
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Chapter 1 Introduction 

An information system is the entire combination of infrastructures, organizations, 

personnel, and software components within a specific boundary for collecting, 

processing, persisting, transferring, presenting, delivering, and exchanging information. 

In the past several decades, a great number of information systems have been developed 

and deployed. More systems are under design or development. 

The information systems are usually deployed in an open environment. An open 

environment is a computing environment where various platforms, technologies, 

protocols, and standards coexist, and decentralized applications collaborate through 

interoperability. 

Information systems need to connect to and interact with each other to perform advanced 

tasks. With interactions and interoperations among them, the systems are able to achieve 

common goals collaboratively, avoiding the necessity of building a super-large system 

with all the required functions (which will be expensive and infeasible for any 

organization), and serve humanity better. Therefore, people can view them as one whole 

system (logically) instead of many separate ones, and can access the complete set of 

services and multiple underlying information sources through a unified portal, with no 

need to worry about the effort of finding various service entries and handling various 

conflicts between them. Such a system is an integration of multiple ones, and such 

integration requires the systems to understand, communicate, and cooperate with each 

other. Among these three goals, the most fundamental one is to make the systems 

understand each other and achieve common agreements on domain concepts and 

relationships managed by different systems. 
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However, as many information systems are growing larger, more complex, and more 

distributed, it becomes increasingly difficult for anyone to effectively organize and work 

with the information and systems. As a case, semantics-based information integration in 

various organizations has been hindered by differences in the software applications and 

by the structural and semantic heterogeneity of the different information sources [De 

Bruijn, et al., 2003]. In an open environment, the information systems, even within the 

same domain, are often heterogeneous in terms of their (1) supporting infrastructures 

(hardware platforms, operating systems, communication facilities, etc); (2) syntactic 

representations of information; (3) schematic designs of information models, and (4) 

semantics of information. This is a common problem in many areas such as enterprise 

application integration where numerous ad-hoc programs have typically been created to 

perform the integration process. These heterogeneities present major practical and 

research challenges. This problem has made information retrieval and collaboration 

among information systems extraordinarily difficult. For example, searching and finding 

resources and information are becoming particularly challenging tasks. As such, there is 

an emerging requirement to integrate these information sources and applications to 

provide consistent services to global users. 

There has already been a large body of solutions that address the first three challenges 

[Sheth, 1998]. The fourth challenge, also known as the semantic integration problem 

[Vetere and Lenzerini, 2005 and Noy, 2004], is an important topic of great interest to this 

research and one that is increasingly attracting attention within research and industrial 

communities. 

Semantic integration intends to resolve semantic incompatibility / heterogeneity among 

various information systems. The major reason for semantic incompatibility / 

heterogeneity is the lack of specifications on the semantics of information. As a possible 

scenario: if you want to find out how many types of the fruit apple there are in the world 
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from the Internet, using current search engines (with the search key word “apple”), you 

may only be able to get a set of pages containing the word “apple” in their texts. You 

must create a type list by yourself after reading the returned pages. Imagine that you get 

millions of returned page links, and actually most of them have no relation to the fruit 

“apple” but just contain that word. Whereas, the pages containing specific names of 

apples like “spitzenburg” (it is also a kind of apple) will be omitted since there is no 

semantic relationship between “spitzenburg” and “apple” specified in most of the web 

pages. More seriously, pages written in another language like French and Chinese will be 

ignored, which is not acceptable. However, things can become even worse. When we 

conduct a real search case with Google 1, we cannot easily get those pages about fruit 

“apple” — the most highly ranked pages (those we see in the first few screens) are about 

the computer company “Apple Inc.”, not the fruit. As a matter of fact, the search engine 

does not know what “apple” is. It just guesses that maybe the users are more interested in 

these pages (about the company) based on the historical data it collected from previous 

search cases. 

Another example of the problem concerns the high number of online book-sellers today, 

with each of them having their own database containing the information about the books 

it sells. You can search through each seller’s website to find the information about the 

books that you like. If you want to find the best price for one book from several sellers 

you will need to search one by one and compare the results yourself. Currently, an 

automatic cross-seller search is not feasible since each seller has a database that is 

different from others in terms of both structure and content. For example, if the price in 

seller A’s database is called “Price” but “Cost” in B’s database, a regular search engine 

will never know that they are referring to the same thing without the support of a 

                                                        
1 http://www.google.com. 
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semantic relationship between the two items. Therefore, the search engine can neither get 

results correctly from various databases nor combine them into a unified result set 2. 

The two scenarios reveal the importance of information semantics and semantic 

integration, which are very crucial issues for large-scale information sharing, information 

retrieval, and information integration in the Internet era. In recent years more and more 

researchers are focusing on this field. However, there is still a long way to go. 

As a category of solutions for the semantic integration problem, schema matching [Rahm 

and Bernstein, 2001 and Wick, et al., 2008] aims at finding correspondences between 

schema elements such as database tables and columns. Schema matching can be viewed 

as the pairing of attributes (or groups of attributes) from the source schema and attributes 

of the target schema such that the pairs are likely to be semantically related. Schema 

matches can be discovered by analyzing the similarity of schema information, 

preservation of constraints, domain knowledge, and instance data. The limitation of this 

solution is in the lack of a concept model. 

Ontology-driven semantic integration is another category of solutions for the semantic 

integration problem [Hakimpour and Timpf, 2001]. Traditionally, it is based on available 

ontologies. The ontology integration can be applied by discovering semantic 

correspondences among a set of formal ontologies and (sometimes) creating a more 

complete ontology [Wache, et al., 2001], given that multiple source ontologies are 

available. However, in many scenarios, this is not the case. Instead, the “ontologies” are 

implied in a different format, such as the underlying information representations. 

                                                        
2 Currently some solutions on cross-seller search have been delivered. The premise is that they already knew the database schemas 

of different sellers and have finished schema integration (based on semantics) to some extent. 
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The limitations of the two categories of solutions reveal a gap between the traditional 

solutions and the actual open environments. New research is required to be conducted to 

bridge such a gap. 

This research is dedicated to understanding the nature of ontologies, semantics, and 

semantic heterogeneities, to analyzing the research issues, and to building solid 

theoretical foundations and engineering solutions to address the semantic integration 

problem in open environments. 

The rest of the thesis is organized as follows. Chapter 2 analyzes related work on 

semantic integration, including some view points from cognitive science, schema-based 

structural approaches, and ontology-based semantic approaches. Several integration 

systems are introduced briefly in this chapter. Chapter 3 explores fundamental concepts 

in terms of information semantics and semantic integration, where various views of 

semantics and semantic integration are discussed. It also presents the research problems, 

and practical assumptions as well as the fundamental hypothesis for this research. 

Chapter 4 discusses the research issues and proposed solutions. Chapter 5 provides the 

implementation and validation of the results. Chapter 6 concludes the work. 
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Chapter 2 Literature Review 

2.1 Semantic Integration from A Cognitive Science 

Perspective 

2.1.1  Cognitive Science 

As a kind of intelligent creature, humans are able to acquire knowledge, perceive and 

memorize information, reason facts and rules based on obtained knowledge and 

information, collaborate or compete with each other, analyze situations, make decisions 

and create solutions for problems, and finally react to the world. Humans are said to be 

behaving intelligently when they choose courses of action that are relevant to achieving 

their goals, when they reply coherently and appropriately to questions that are put to 

them, when they solve complex problems, or when they design or create something 

useful and novel. 

Cognitive science is the study of intelligence and intelligent systems, with particular 

reference to intelligent behavior as computation [Posner, 1989]. Cognitive science is 

dedicated to discovering how humans build mental models for the external world, 

conduct intelligent thinking, and interact with the world. From cognitive science’s point 

of view, the activities of the human mind are highly similar to computations used by 

modern computers. Many similar mechanisms and patterns in terms of acquiring 

information and processing information can be identified in both human thinking and the 

workings of computers. Therefore, it can also provide some support in the research of 

semantic integration. 
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One of cognitive science’s focuses is how the intelligent behavior of a human being, 

thinking, is conducted. In cognitive science, two approaches, reasoning and searching, 

are most often considered as the pattern of thinking. 

On the one hand there is an approach that starts with language and logic and that views 

thinking as a process of inference or reasoning, usually using a language-like 

representation. On the other hand, another approach views thinking (especially problem 

solving and concept attainment) as a process of a heuristic search for problem solutions, 

generally using representations of the world model [Posner, 1989]. The research on 

semantics and logic, language acquisition, parsing, reading, and discourse mainly use the 

language-and-reasoning approach, whereas the research on categories, induction and 

problem solving largely employ the heuristic-search approach. 

 

2.1.2  Architecture of Cognition 

In cognitive science the notion of architecture is derived from computer science, where 

the term stands for the hardware structure that produces a system that can be 

programmed. The concept of architecture for cognitive science is the appropriate 

generalization and abstraction of the concept of computer architecture applied to human 

cognition: the fixed system of mechanisms that underlies and produces cognitive 

behaviour. 

The classical view about cognition assumes that both computers and human minds have 

at least the following three distinct levels of organization [Posner, 1989]: 

(1) The semantic level (or knowledge level). This level explains why people, or 

appropriately programmed computers, do certain things by saying that they know 

and what their goals are, and by showing that these are connected in certain 
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meaningful or rational ways. 

(2) The symbol level. The semantic content of knowledge and goals is assumed to be 

encoded by symbolic expressions. Such structured expressions have parts, each 

of which also encodes some semantic content. The codes and their structures, as 

well as the regularities by which they are manipulated, are another level of 

organization of the system. 

(3) The physical (or biological) level. For the entire system to run, it has to be 

realized in some physical form. The structure and the principles by which the 

physical object functions correspond to the physical or the biological level. 

The three-level organization defines the classical computational or cognitive architecture. 

Act* [Anderson, 1983] is the first theory of cognitive architecture with sufficient detail 

and completeness. The following Figure 2-1 gives the basic architecture of Act*. 

 

Declarative 
Memory 

Production 
Memory 

Working 
Memory 

Storage 

Retrieval 

Match 

Execution 

Application 

Encoding Performances

Figure 2-1. Architecture of Act* [Anderson, 1983]. 
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In this architecture there is a long-term declarative memory in the form of a semantic net 

and a long-term procedural memory in the form of productions. Each production has a set 

of conditions that test elements of a working memory and a set of actions that create new 

structures in the working memory. The working memory is activation-based; it contains 

the activated portion of the declarative memory plus declarative structures generated by 

production firings and perception. Activation spreads automatically through working 

memory and from there to other connected nodes in the declarative memory. New 

productions are created by compiling the effects of a sequence of production firings and 

retrievals from declarative memory. 

 

2.1.3  From Cognitive Science to Semantic Integration 

Generally, semantic integration is intended to discover semantic relationships, such as 

equivalent to, is-a, or part-of, between some subjects (mainly concepts) based on 

obtained knowledge about the world. A semantic integration system must understand 

integration requirements and be able to analyze the requirements, develop solutions, and 

provide reasonable results to the requestor. This is a process very similar to human 

thinking, which is a significant intelligent behaviour. The cognitive science perspective 

provides some foundations and inspiration for analyzing, designing, and building a 

semantic integration system. 

According to the classical view of computing and cognition, certain kinds of systems, 

including both minds and computers, operate on representations that take the form of 

symbolic codes [Posner, 1989]. 

Similar to the three-level architecture of cognitive, in the semantic integration problem, a 

three-tier hierarchy in terms of information and knowledge needs to be considered: 
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 Ontology level. For a domain of discourse, an ontology should be committed to by 

all information systems to provide a conceptually consistent understanding for any 

subject in the domain. It is conceptualization-dependent (i.e., different ontologies 

for different domains’ conceptualizations) but technology-independent (not directly 

manipulated by specific technical method). 

 Meta-data level. Meta-data is an explicit specification for information in a specific 

information system, following definitions about concepts and relationships 

contained in an ontology to which the system is committed. The semantic 

integration can be done at this level. That means that the duty of semantic 

integration is to find semantic relationships between meta-data elements from 

various information sources. This level is technology-dependent, i.e.,  specific 

methods are required to handle different formalisms used to build the meta-data, 

such as a database, data warehouse, structured documents, or arbitrary files. 

 Instance-data level. In some cases specific instance data is required to be 

compared and analyzed to discover semantic relationships. This level is 

technology-dependent. For example, the instance data can be represented in a 

literal, graphical, or analogical format. The semantic integration service must be 

sensitive to any kind of these representations. 

 

2.1.4  Process Model of Semantic Integration 

When two intelligent entities (such as two persons) are having a conversation, semantic 

integration takes place at every moment during the conversation. The conversation is a 

process of exchanging conceptualizations of the two intelligent entities and achieving 
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common agreement on the intended meaning of the content exchanged in the 

conversation. 

The conversation must rely on some specific formalisms, such as speeches, written 

documents, or graphs, which are in fact various representations of (the same) 

conceptualizations and act as the medium of the conversation. On the other hand, during 

a conversation, the same representation may be exchanged but the intelligent entities 

need to identify that they are homonyms and are referring to different concepts. 

An elaborated analysis on the process of semantic integration between two intelligent 

entities E1 and E2 is as follows: 

(1) Subject selection: E1 determines the subject to express, for example, a concept C 
in the conceptualization as a part of E1’s mental model). 

(2) Representation schema selection: E1 determines the schema of the representation 
it prefers to use in this conversation, such as verbal speech. 

(3) Representation instance generation: E1 generates a representation instance for the 
subject that is being exchanged following the construction rules of the chosen 
representation schema, such as a specific word to say. 

(4) Representation instance delivering: E1 delivers the representation instance to E2, 
e.g., by speaking that word. 

(5) Representation instance perceiving: E2 perceives the representation instance 
delivered by E1, e.g., by hearing a voice or reading a document, to create some 
kind of mental reaction in its memory. 

(6) Subject reconstruction: E2 converts the perceived representation instance into a 
subject in its mental model. This is an initial understanding of the representation. 
For example, if E2 sees “Car” (which is actually some line shapes) on a piece of 
paper, first it needs to convert this vision into the word “Car” which then can be 
identified to be denoting a concept. 

(7) Subject matching: E2 tries to match its initial understanding to some existing 
subject in its mental model to know the actual meaning of the representation 
instance it perceives. 
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(8) Match verifying (optional): the process from (1) to (7) is repeated (this time E2 is 
the initiator) to verify that E2’s subject is equivalent to the one that E1 wants to 
deliver. 

This process can be illustrated by the following Figure 2-2: 

 

In this process, there is an important premise that the two intelligent entities share a 

common concept in a specific domain that makes it possible for them to achieve a 

successful semantic integration. Without the common concept, there is no possibility of 

understanding each other unless they have another capability of learning (which will not 

be touched on in this research), to create new concepts in their mental model. 

Mental Model of E2 

Domain Conceptualization 

Concept C

Mental Model of E1 
Subject 

Selection Concept (C) 

Representation Schema 
Selection 

Representation Schema 

Representation Instance 
Generation 

Representation Instance 

Representation Instance Delivering  

Representation Instance 
Perceiving 

Mental Reaction 

Subject 
Reconstruction 

Subject 

Subject 
Matching 

Concept (C) 

Figure 2-2. Process model of semantic integration. 
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In step (7), the mechanism that a semantic integration system adopts must combine two 

ways in which human thinking is executed: searching and then inferring. As an example, 

when a human perceives some representation, such as a picture, he may search in his 

mental model to find something that can be exactly mapped to the content of the picture 

(or highly similar to it). If the searching fails to find any candidate, he will start inferring 

based on his knowledge. Say, since the content of the picture shows a mechanical object 

with four wheels, it might be an automobile. The inference is guided by a series of IF … 

THEN … rules that can lead to possible answers (usually reliable and reasonable, 

depending on the richness of his knowledge). Neither searching nor inferring can do the 

integration just by itself. 

In step (8), if two sides of the conversation own similar knowledge backgrounds, the 

semantic integration can be achieved very easily. If their backgrounds are not very 

similar, or the representation generation and perceiving are not well done, e.g., not clearly 

hearing the other one’s talk, then usually a process similar to the Three-Way Handshake 

in TCP/IP protocol needs to be applied. For example, after one person finishes talking 

(the first way), another one needs to make sure his understanding is correct by asking “do 

you mean A?” (the second way), and finally the first one answers “Yes, I do mean A” to 

confirm that they have a common understanding (the third way), given that both of them 

correctly delivered and perceived the representation A in the three rounds. If this is not 

the case, the first one may have to answer that “No, actually I mean B” and restart the 

process of verification. 

To support the verification, a set of communication primitives in which both sides have a 

consistent understanding, e.g., some simple words with precise meanings and which 

people can clearly say and hear, must be pre-defined. In a semantic integration service 

that accepts integration requests and responds, even the verification might be missing 

(since the semantic integration service is the only intelligent entity). As such, a set of 
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primitives that is used to describe the requests and organize responses is also necessary to 

support establishing a consistent understanding of each other. 

In the above process, if E2 cannot successfully finish the subject matching, e.g., E2 

encounters a word that it never knows, E2 can interrupt the process. For example, E2 can 

answer that “I don’t know what you are talking about”. Another alternative is a passive 

learning process: if E2 does not understand the previous representation (r1), it can ask E1 

to provide another representation, r2, and repeat the process. Assuming that E2 can 

understand r2, it can create a semantic relationship in its mental model, e.g., “r1 equals to 

r2” or “r1 is highly similar to r2”. The third alternative is positive learning: E2 tries to find 

a conceptualization that it guesses can match r1, and starts from (8) to verify its 

correctness, e.g., by asking E1 “do you mean r2?” where r2 is the representation of the 

matching subject. 

 

2.2 A General Architecture for Semantic Integration 

A general integration architecture for dealing with the heterogeneity of different 

information sources is described in [Theodoratos, 2002]. This architecture chooses one 

model as a common data model [Sheth and Larson, 1990] which models global concepts, 

and converts the modeling languages of the data sources into this model. Underlying 

information sources are wrapped by software wrappers [Hammer, et al., 1997; Roth and 

Schwartz, 1997] that translate between the source’s local language, model, concepts and 

the global concepts. A mediator [Wiederhold, 1992] resolves the query over the global 

concepts into sub-queries over information sources, sends the sub-queries to wrappers, 

then integrates the query results returned from the wrappers by resolving conflicts, 

redundancies, etc. according to application requirements. The architecture is shown in the 

following Figure 2-3. 
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There are two basic approaches, one is the schema-based structural approach or mediated 

schema approach, and the other one is the semantic approach or ontology-driven 

approach. We will discuss them in the following two sections. 

 

2.3 Schema-based Structural Approaches 

In structural approaches, the integration is done by providing or generating a globally 

unified schema that characterizes the underlying information sources. The global schema 

can be a physically independent one, or a logically produced one (by establishing 

matching correspondence among source schemas). 

 

Wrapper 

Mediator 

Information 
Source1 

Wrapper 

Information 
Source2

Wrapper 

Information 
Sourcen … 

Query Result 

Figure 2-3. A general integration architecture [Theodoratos, 2002]. 
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2.3.1  Schema Integration Fundamentals 

Schema integration is one effective way to achieve data integration. Its target is to 

develop a unified representation of information structured and stored differently in 

separate databases. It mainly addresses the problem of syntactic and schematic 

inconsistencies, e.g., differing structures. 

As pointed out in [Mendling, et al., 2005], basically three approaches can be 

distinguished in this context: manual, semi-automatic, and automatic schema integration. 

A survey reported in [Batini, et al., 1986] uses the four steps of pre-integration, 

comparison, conformation, and merging and restructuring to compare different 

integration methodologies. Manual integration leverages the knowledge of a domain 

expert. Semi-automatic schema integration relies on assertions to state semantic 

relationships between the concepts of different schemas. These assertions represent 

integration rules that are used by a so-called integrator to generate the global schema 

[Spaccapietra, et al., 1992]. Although this approach is less time-consuming, it also 

depends on a domain expert to state the assertions. 

Automatic schema integration uses techniques from information retrieval and artificial 

intelligence to detect semantic relationships. An overview available in [Rahm and 

Bernstein, 2001] describes different research prototypes that mainly discover equivalence 

relationships automatically. Recently, an approach has been presented to automatically 

discover equivalence, subsumption, intersection, disjointedness, and incompatibility 

[Rizopoulos, 2004]. In general, a certain trade-off between human effort and the quality 

of the integrated schema can be expected. In practice, a so-called automated approach 

still requires validation by the domain expert. 
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2.3.2  Schema Matching Fundamentals 

Schema matching is a basic problem in traditional database-based application domains 

such as data integration, E-business, data warehousing, and semantic query processing 

[Rahm and Bernstein, 2001]. Match is a fundamental operation in the manipulation of 

data schemas, which takes two schemas S1 and S2 as input and produces a mapping 

between elements of the two schemas that correspond semantically to each other [Li and 

Clifton, 1994; Doan, et al., 2000; Mitra, et al., 1999]. 

[Rahm and Bernstein, 2001] proposes a comprehensive analysis on schema matching. In 

its analysis, a schema is defined as a set of elements connected by some structure. 

Representations are required for the schemas. Available and widely accepted 

representations include the entity-relationship (ER) model, object-oriented (OO) model, 

XML, or directed graphs. A mapping contains a set of mapping elements, each of which 

indicates that certain elements of schema S1 are mapped to certain elements in S2. 

Furthermore, each mapping element can have a mapping expression which specifies how 

the S1 and S2 elements are related. The mapping expression may be directional; for 

example, a certain function from the S1 elements is referenced by the mapping element to 

the S2 elements referenced by the mapping element, or it may be non-directional, that is, a 

relation between a combination of elements of S1 and S2. It may use simple relations over 

scalars (e.g., =, <), functions (e.g., addition or concatenation), ER-style relationships 

(e.g., is-a, part-of), set-oriented relationships (e.g., overlaps, contains), or any other terms 

that are defined in the expression language being used. The match operation is defined to 

be a function that takes two schemas S1 and S2 as input and returns a mapping between 

those two schemas as output, called match result. Each mapping element of the match 

result specifies that certain elements of schema S1 logically correspond to certain 

elements of S2, where the semantics of the correspondence is expressed by the mapping 

element’s mapping expression. 



18 
 

 

 

2.3.3  Automatic Schema Matching 

Schema matching can be performed manually. However, manually specifying schema 

matches is tedious, time-consuming, error-prone, and therefore an expensive process 

[Rahm and Bernstein, 2001], especially when the number of information sources is 

growing rapidly and the systems are becoming larger and more complex. Therefore, 

automated support for schema matching is required to provide faster and less 

labor-intensive integration approaches. 

There have been implementations of multiple match algorithms or matchers based on 

different methods. The matchers may consider only schema information, instance data 

(i.e., data contents), or use hybrid methods. 

A. Schema-level approaches 

Schema-level matchers only consider schema information, not instance data. The 

available information includes the usual properties of schema elements [Giunchiglia and 

Yatskvich, 2004], such as name, description, data type, relationship types (part-of, is-a, 

etc), constraints, and schema structure (e.g., [Doan, et al., 2001 and Mitra, et al., 1999]). 

A general implementation compares each S1 element with each S2 element and 

determines a similarity metric in the range (0, 1) for each pair. Only the combinations 

with a similarity value above a certain threshold are considered as match candidates. The 

similarity metrics can be used to identify the best match candidates [Castano, et al., 2001 

and  Doan, et al., 2000]. On the other hand, structural-level matching can discover 

matching combinations of elements that appear together in a structure. 

Linguistic approaches are useful for schema-level matching. Two categories of important 

approaches, name matching and description matching are discussed in [Rahm and 
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Bernstein, 2001]. Name matching takes schema elements with equal or similar names 

into consideration. The similarity of names can be defined and measured in various ways, 

including: 

• Equality of names (the exact same names). An important sub-case is the 

equality of names from the same XML namespace which ensures that the same 

names indeed bear the same semantics. 

• Equality of canonical name representations after stemming and other 

preprocessing. This is useful to deal with special prefix/suffix symbols (e.g., 

CName customer name and EmpNO employee number). 

• Equality of synonyms. For example, car can be matched to automobile. General 

natural language dictionaries and domain-specific dictionaries are useful to deal 

with synonyms. 

• Equality of hypernyms (name of a class’s super-class). E.g., book is-a 

publication and article is-a publication imply that book can be matched to 

article.  

• Similarity of names based on common substrings; edit distance, pronunciation, 

soundex (an encoding of names based on how they sound rather than how they 

are spelled), etc. [Bell and Sethi, 2001]. For example, representedBy can be 

matched to representative, ShipTo can be matched to Ship2, and 

Business-to-Business can be matched to B2B. 

• User provided name matches, such as reportsTo = manager and issue = but. 

An exception that is usually misleading is in the case of homonyms which are equal or 

similar names referring to different concepts. For example, the term “class” can have 

different interpretations in different situations, e.g. a group of students or a lesson of a 
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course. By providing context information such as the domain of discourse, the ambiguity 

can be distinguished or reduced. 

Description matching uses comments and description (usually written in natural language 

to express the intended semantics of schema structures and elements) provided along with 

the schemas that can also be evaluated linguistically to determine the similarity between 

the schema elements. Simple approaches, such as extracting key words from the 

description and sophisticated technologies, such as natural language understanding, can 

be applied to look for semantically equivalent elements. For example, the iMAP system 

pays attention to the description of elements, in addition to other schema information 

[Dhamankar, et al., 2004]. 

Another category of the schema matching method adopts constraint information 

contained in schemas to determine the similarity of schema elements [Larson, et al., 

1989]. The constraints include data types, value ranges, uniqueness, optionality, 

relationship types, cardinalities, repeatability, reference, etc. For example, similarity can 

be based on the equivalence of data types and domains, of key characteristics (e.g., 

unique, primary, foreign), or of relationship cardinality (e.g., 1:1 relationships), or of is-a 

relationships. 

Rule-based matching techniques constitute another collection of schema matching 

solutions [Madhavan, et al., 2001 and Melni, et al., 2002]. Rule-based techniques 

discover similar schema elements by exploiting schema-level information using 

hand-crafted rules. For example, two elements match if they have the same name and the 

same number of sub-elements. The rules can exploit all possible information, including 

element name, data types, structures, number of sub-elements, and integrity constraints. 

B. Instance-level approaches 
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Instance-level data can give important insight into the contents and meaning of schema 

elements [Rahm and Bernstein, 2001]. When the useful schema information is limited or 

the schemas are ambiguous, as is often the case for many structured or semi-structured 

information sources, the analysis on data instances will become very helpful. Even when 

substantial schema information is available, the use of instance-level matching can also 

be valuable to uncover incorrect interpretations of schema information. For example, it 

can help disambiguate between equally plausible schema-level matches by choosing to 

match the elements whose instances are more similar. 

Many approaches in schema-level matching can be applied to instance-level matching. 

For text elements a linguistic characterization, based on information retrieval techniques, 

is the preferred approach. This approach evaluates the similarity of two schema elements 

by comparing the relative frequencies of words and combination of words in their data 

instances. For numerical data type, statistical characterization, such as numerical value 

ranges, averages, or value patterns, can provide insight into the similarity of the 

corresponding schema elements. 

Various approaches have been proposed to perform instance-level matching, such as 

rules, neural networks, and machine learning techniques [Berlin and Motro, 2001; Doan, 

et al., 2000; Li and Clifton, 1994; Li, et al., 2000]. Learning-based approaches can exploit 

data instance-level information. For example, Doan et al. proposed the LSD system, 

which employs the Naive Bayes learning method over data instances [Doan, et al., 2001]. 

The Naive Bayes method can easily construct some probabilistic rules based on the 

analysis of data instances that find similarity between schema elements which names do 

not reveal enough similarity clues. Note that the learning-based approaches are classified 

as instance-level approaches, but in fact they can also utilize schema-level information.  

C. Hybrid Approaches 
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Since each matching approach has a specific applicability for a given match task, a 

matcher that uses just one single approach is unlikely to achieve as many good match 

candidates as one that combines several approaches [Rahm and Bernstein, 2001]. 

Therefore, some hybrid approaches are proposed, including two folders: a hybrid matcher 

that integrates multiple matching approaches based on multiple criteria or information 

sources (e.g., by using name matching with namespaces and thesauri combined with data 

type compatibility), and composite matchers that combine the results of independently 

executed matchers, including hybrid matchers. 

One important issue of note is to the impossibility of determining, fully automatically, all 

matches between two schemas, primarily because most schemas have some semantics 

that affect the matching criteria but that are not formally expressed or often even not 

documented [Rahm and Bernstein, 2001]. Therefore, the result of the match operation is 

only a set of match candidates, which can be accepted, rejected, or modified by the user. 

Furthermore, the user should be able to specify matches for elements which are 

meaningful that the system fails to discover. 

 

2.4 Ontology-driven Semantic Approaches 

In structural approaches, we also consider the semantics of information schemas, in 

which the underlying conceptualization is not clearly identified. The focus is that “two 

(or more) schema elements have the same meaning and they can match”. In semantic 

approaches, semantics is explicitly identified by establishing conceptual models such as 

ontologies, and the focus is “two (or more) ontology elements refer to the same concept 

in a common conceptualization (therefore they are semantically identical)”, as depicted in 

the following Figure 2-4. 
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Since it is difficult to integrate the structural aspects of information sources from the 

semantic perspective due to inherent embedded semantics within local schemas and 

implicit assumptions, recently ontologies have been introduced to the area of semantic 

integration as a possible solution to obtain semantic interoperability [Wache, et al., 2001]. 

In ontology-driven (or ontology-based) approaches, integration is obtained by sharing a 

common ontology among various information sources, or generating a global ontology 

that covers the underlying local ontologies of each source. Applying the general 

integration architecture in this context, the mediator’s job is to integrate ontologies; the 

wrappers’ job is to translate from the global ontology to local ontologies (if applicable) 

and then from local ontology to local schema in terms of its conceptual model before the 

data sources can deal with queries. 

 

A B C 

A’ 
B’ 
C’ 

Schema 1 

Schema 2 

Structural Approach 

Ontology 1 
Ontology 2 

Conceptualization 

Semantic Approach 

A   B  C 
A’  B’  C’ 

Concept 

Figure 2-4. Difference of two types of approaches in terms of semantics. 
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2.4.1  Concept of Ontology: An Informal View 

Ontologies have been recognized as a fundamental infrastructure for advanced 

approaches to knowledge management [Arroyo, 2007]. Ontologies are useful for many 

different applications that can be classified into several areas [Jasper and Ushold, 1999]. 

The common idea for all of these applications is to use ontologies in order to reach a 

common understanding of a particular domain [Stuckenschmidt and van Harmelen, 

2005], which may be reused and shared across applications and groups [Chandrasekaran, 

et al., 1999]. The use of ontologies also helps to reach a common understanding of the 

meaning of terms. In contrast to syntactic standards, the understanding is not restricted to 

a common representation or a common structure. Therefore, ontologies are a promising 

candidate that can support semantic interoperability and information retrieval, especially 

in the Semantic Web [Berners-Lee, et al., 2001]. 

Many definitions about “ontology” have been proposed. A basic definition about 

ontology is “the specification of conceptualizations, used to help programs and humans 

share knowledge” [Gruber, 1993]. An ontology can also be understood as a model that 

defines the concepts, properties, and relations of a domain of discourse [Crubzy, et al., 

2003]. 

Some people view ontology, in the simplest case, as a hierarchy of concepts related by 

subsumption relationships, such as things, events, and a set of relations that are specified 

in some way in order to create an agreed-upon vocabulary for exchanging information. 

An ontology establishes a joint terminology between members of a community of interest 

and these members can be human or automated agents. It can be viewed as a semantic 

substrate for information integration and aggregation processes, providing explicit 

semantics which may be useful for information exchange between heterogeneous 

sources. 
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Ontologies facilitate interoperability between heterogeneous systems involved in a 

domain of common interest. It is known that any information system uses its own 

ontology, either implicitly or explicitly [Li, et al., 2005]. As described in [Tan, et al., 

2006], ontologies are used for communication between people and organizations by 

providing a common terminology over a domain. They provide the basis for 

interoperability between systems. They can be used for making the content in information 

sources explicit and serve as an index to a repository of information. 

Tom Gruber, an AI specialist at Stanford University, proposes a richer definition: “An 

ontology is a formal, explicit specification of a shared conceptualization” [Gruber, 1995]. 

Here,  

 “explicit” means that “the type of concepts used and the constraints on their use 

are explicitly defined”; 

 “formal” refers to the fact that “it should be machine readable”; 

 “shared” refers to the fact that “the knowledge represented in an ontology is 

agreed upon and accepted by a group”; 

 “conceptualization” refers to an abstract model that consists of the relevant 

concepts and relationships that exist in a certain situation. In another sense, a 

conceptualization is an abstract, simplified view of the world that we wish to 

model for some purpose. 

The basis of ontology is Conceptualization. Conceptualization consists of: 

 the identified concepts (objects, events, beliefs, etc). e.g. concepts Professor and 

Course in education domain; 

 the conceptual relationships that are assumed to exist and to be relevant, e.g. 
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relationship “Professor teach Course”. 

In the information management and knowledge sharing areas, ontology can be defined as 

follows [Fisseha, 2003]: 

(i) An ontology is a vocabulary of concepts and relations rich enough to enable us to 

express knowledge and intention without semantic ambiguity. 

(ii) An ontology describes domain knowledge and provides an agreed-upon 

understanding of a domain. 

(iii) Ontologies are collections of statements written in a language such as RDF 3 that 

define the relations between concepts and specify logical rules for reasoning about them. 

An ontology can contain not only concepts and relations, but also logical elements that 

can support reasoning and inferring. A formal ontology consists of logical axioms that 

convey the meaning of terms for a particular community [Bishr, et al., 1999]. A set of 

logical axioms defining one term is called intensional definition and there is only one 

intensional definition per term for each community [Hakimpour and Geppert, 2002]. 

Intensional definitions are estimating intensional relation (defined in [Guarino, 1998]). 

For instance, “Faculty” is an intensional relation and its estimation by an intensional 

definition is: 

            ι[Faculty(x)] = Employee(x)∧(∃y: Course(y) ∧teaches(x, y)). 

Formal ontologies are considered more than schema definitions in databases. Schemas 

are mainly concerned with organizing data in databases, but formal ontologies are 

concerned with the understanding of the members of a community and help to reduce 

ambiguity in communications. 

                                                        
3 http://www.w3.org/RDF/ 
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The reason that ontologies are becoming so important is that currently we lack standards 

(shared knowledge) which are rich in semantics and represented in a machine 

understandable form. Ontologies have been proposed to solve the problems that arise 

from using different terminology to refer to the same concept or using the same term to 

refer to different concepts. With the aid of ontologies, semantic queries can exploit 

conceptual knowledge that is independent of local schemas. By contrast, non-semantic 

approaches result in queries defined in terms of local structural organization of data, e.g. 

XQuery 4 and SQL 5. In this case, the heterogeneity of information sources means that 

different queries must be written to match multiple schemas. 

The ability to exchange information at run time, also known as interoperability, is an 

important topic. Ontologies are often used as interlinguas for providing interoperability 

[Uschold and Gruninger, 1996]: they serve as a common format for data interchange. 

Each system that wants to interoperate with other systems has to transfer its information 

into this common framework. 

Ontologies are expressed in languages that are machine process-able and can be used for 

reasoning [Noy, 2003]. The expressed artifact is also called an “ontology model”, given 

that the ontology itself is abstract. In ontology-based approaches, the description of 

information semantics (local ontologies or conceptual models of information sources) 

may be represented in ER 6, UML 7, RDF, or other logic models. Many ontology 

languages have been proposed. Some are based on description logics (DL) [Badder and 

Sattler, 2001], such as OWL and LOOM [Arens, et al., 1996], and some are frame-based 

[Brachman and Levesque, 1984], such as F-logic [Kifer, et al., 1995]. 

                                                        
4 http://www.w3.org/TR/xquery/ 
5 http://en.wikipedia.org/wiki/SQL 
6 http://en.wikipedia.org/wiki/Entity-relationship_model 
7 http://www.uml.org/ 
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In the definitions presented above the term “semantics” is frequently involved. Basically 

semantics refers to the intended meaning of something, usually a symbol. In an ontology 

related community, the term “semantics” has another explanation but is still similar to 

“intended meaning”: semantics refers to the relationship between words (data) and the 

world – the things the words (data) describe [Partridge, 2002]. [Partridge, 2002] defines 

that ontology is about the existence of a set of objects; it also differentiates the fact that 

an ontology model is a model that directly reflects the ontology. 

As a summary, the concepts of conceptualization, ontology, model and representation of 

ontology, semantics, and semantic integration based on ontology are illustrated in the 

following Figure 2-5. 
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Jeep isa Auto 
Van isa Auto 

When we see this image, we consider it is a 
“car” because we have a conceptualization of 
“car” in our mind. Note that it is not really a 
car—it is just an image. But let’s assume that it 
is the real “car”. The actual intended meaning 
of a concept is domain-dependent. For 
example, sometimes we mention “car” as a 
specific individual car, and in other cases we 
may mention it as a category of individual 
cars. Here, let us assume that it refers to a 
category of individual cars. As far as the 
exceptional cases such as someone considering 
it as a “plane”, they exceed the scope of our 
discussion and will not be touched. 

Conceptualization in one person’s mind. 
Conceptualization is abstract (abstraction of 
external world in individual mind). We can 
only understand it but we cannot “see” it. 
Here, let’s assume this graph and this word 
represent a conceptualization of “car”. 

Car 1:1 

1:1 

One real-world object 
corresponds to one unique 
conceptualization (in 
specific domain). 

One conceptualization is 
specified by one unique 
ontology. 

The domain from which the 
conceptualization derives. That means, the 
same real world object will lead to different 
conceptualizations in different domains. 
Generally speaking, when we are talking 
about conceptualization, we imply that we 
are in a specific domain, or a context of the 
problem we are interested in. 

Ontology

To communicate with other people, we 
need something to specify that 
common “conceptualization”. It is 
“ontology”. An ontology is a 
specification of a conceptualization. It 
is an abstraction among a group of 
minds. 

Automobile 

Car Truck 

A representation is required to represent the 
specification explicitly. It is an ontology 
model. An ontology model is defined by a 
kind of formal language to explicitly describe 
an ontology. Note that when we are talking 
about “ontology” in practice, it usually refers 
to an ontology model developed by applying 
that language. 

An object in an ontology 
denotes something really 
existing in the world. It may 
be a physical object or an 
abstract idea. 

The semantics relates an object in the 
conceptualization (represented as an 
element in an ontology model) to a 
unique object in the real world. The 
cardinality of the relationship between 
the real world object and ontology 
object is 1:1. 

1:M 

If we have another ontology model (in 
another form of representation), the 
semantic integration is to discover that the 
object “Jeep” is also related to the same 
real world object, thus it is the same as 
“Car” in the other ontology model. 

One ontology can be 
represented by multiple 
ontology models. 

1:1 

1:1 

Figure 2-5. Conceptualization, ontology, model and representation of ontology, semantics, and semantic integration based on Ontology. 
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2.4.2  Ontology-driven Semantic Integration 

Regular information retrieval techniques have several shortcomings. First, they rely 

on the input vocabulary of the user, which might not be completely consistent with 

the vocabulary used in the information systems. Second, a specific encoding may 

significantly reduce the recall of a query since related information with a different 

encoding is not matched. Finally, full-text analysis may reduce precision because the 

meanings of the words in the texts might be ambiguous. 

Traditional integration solutions may result in some significant drawbacks [Hu, et al., 

2007]: (1) it is challenging to check the consistency and discover conflicts among 

domain terminologies; (2) using some traditional ways such as schema matching, the 

equivalence mappings can be realized but the inheritance mechanism of concepts 

cannot be implemented; (3) implicit knowledge cannot be discovered without 

reasoning. Therefore, ontology is often viewed as a key component to realize 

semantic integration. 

The use of ontologies as semantic translators is a viable approach to overcome the 

problem of semantic heterogeneity [Hakimpour and Timpf, 2001]. Ontologies provide 

machine-readable semantics of information sources that can be communicated 

between applications and humans. Using an ontology to explicate the vocabulary can 

help overcome some of these problems. When used for the description of available 

information as well as for query formulation, an ontology serves as a common basis 

for matching queries against potential results on the semantic level. The use of 

informal ontologies like WordNet [Fellbaum, 1998] increases the recall of a query by 

including synonyms in the search process. The use of more formal representations 

like conceptual graphs [Sowa, 1999] further enhances the retrieval process, because a 

formal representation can be used to increase recall by reasoning about inheritance 

relationships and precision by matching structures. To summarize, according to 



31 
 

 

Guarino [Guarino, et al., 1999], ontologies help to decouple the description and query 

vocabularies and increase precision as well as recall. 

In ontology-driven approaches, integration is obtained by sharing common ontologies 

among the information sources. Mappings are created between the ontologies and 

local information models. According to the mapping direction, approaches are 

classified into two categories [Levy, 1999; Levy, 2000; Li and Chang, 2000]: 

global-as-view [Chawathe, et al., 1994] and local-as-view [Genesereth, et al., 1997]. 

In global-as-view approaches, each item in a global ontology is defined as a view 

(query) over source schemas/ontologies. It is adopted in most data integration 

systems. In local-as-view approaches, each item in each source schema/ontology is 

defined as a view (query) over the global ontology. Many recent research works on 

data integration follow this approach. The major challenge of this approach is that in 

order to answer a query expressed over the global schema, one must be able to 

reformulate the query in terms of queries to the sources. While in the global-as-view 

approach such a reformulation is guided by the definitions in the mapping; here the 

problem requires a reasoning step in order to infer how to use the sources for 

answering the query. 

The local-as-view approach better supports a dynamic environment where 

information sources can be added to the integration system without the need of 

restructuring the global ontology (given that the new systems are still committed to 

the global ontology). Hence, the major work on information integration is to develop 

algorithms for answering queries using these views. 

While many systems and approaches use ontologies as an explicit description of the 

information semantics (i.e., to describe the meaning of information), the role and use 

of ontologies differs between the approaches. According to the role and use of 

ontologies, three different categories of approaches can be identified: single-ontology 

approaches, multiple-ontology approaches, and hybrid approaches [Klein, 2001; 
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Stuckenschmidt and van Harmelen, 2005; Wache, et al., 2001]. With respect to the 

role and use of ontology, more than 20 approaches have been developed to support 

intelligent information integration based on information semantics, including SIMS 

[Arens, et al., 1993], TSIMMIS [Garcia-Molina, et al., 1995], OBSERVER [Mena, et 

al., 2000], CARNOT [Collet, et al., 1991], Infosleuth [Nodine, et al., 1999], KRAFT 

[Preece, et al., 1999], PICSEL [Levy, et al., 1996], DWQ [Calvanese, et al., 1998(2)], 

Ontobroker [Fensel, et al., 1998], SHOE [Heflin, et al., 1999], MECOTA [Wache, et 

al., 1999], BUSTER [Visser, 2004], COIN [Goh, 1997]. Some approaches provide a 

general framework where all three categories can be implemented [Calvanese, et al., 

1998(2)]. 

The following Figure 2-6 gives an overview of the three architectures. 
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A. Single-ontology (Global Ontology) Approaches 

Single-ontology approaches use one global ontology that provides a shared 

vocabulary for the specification of the semantics. All information resources are 

related to the one global ontology. An independent model of each information source 

must be described for this system by relating the objects of each source to the global 

Information 
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Source 

Information 
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Source 
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Source 
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Local 
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Figure 2-6. Different architectures of employing ontologies [Wache, et al., 2001]. 
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domain model, i.e., elements of the structural information sources are projected onto 

elements of the ontology. The relationships clarify the semantics of the source objects 

and help to find semantically corresponding objects. 

Single-ontology approaches can be applied to the integration problems where all 

information sources to be integrated provide nearly the same view of a domain. SIMS 

and Ontobroker are important representatives of this group. But if one information 

source has a different view of a domain, e.g., by providing another level of 

granularity, finding the minimal ontology commitment [Gruber, 1995] becomes a 

difficult task. Also, single-ontology approaches are susceptible to changes in the 

information sources, which can affect the conceptualization of the domain represented 

in the ontology. Depending on the nature of the changes in one information source it 

can imply changes in the global ontology and in the mappings to the other information 

sources. These disadvantages lead to the development of multiple-ontology 

approaches. 

B. Multiple-ontology (Local Ontology) Approaches 

In multiple-ontology approaches, each information source is described by its own 

ontology (local ontology). In principle, the local ontology can be a combination of 

several other ontologies but it cannot be assumed that the different local ontologies 

share the same vocabulary. OBSERVER is a prominent example of this group, where 

the semantics of each information source is described by a separate local ontology. 

The major advantage of multiple-ontology approaches is that no common and 

minimal ontology commitment about one global ontology is needed. Each local 

ontology can be developed without reference to the others. No common ontology with 

the agreement of all information sources is needed. This ontology architecture can 

simplify the change, i.e. modifications in one information source or the adding and 

removing of sources. However, in reality the lack of a common vocabulary makes it 

extremely difficult to compare different local ontologies. To overcome this problem, 
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an additional representation formalism defining the mapping is provided. The 

mapping identifies semantically corresponding terms of different local ontologies, e.g. 

which terms are semantically equal or similar. But the mapping also has to consider 

different views of a domain, e.g. different aggregation and granularity of the ontology 

concepts. In practice the mapping is very difficult to define due to the many semantic 

heterogeneity problems that may occur. 

C. Hybrid Approaches 

To overcome the drawbacks of the single- or multiple-ontology approaches, hybrid 

approaches were developed. Similar to multiple-ontology approaches, the semantics 

of each source is described by its own ontology. But in order to make the source 

ontologies comparable to each other they are built upon one global shared vocabulary 

[Goh, 1997 and Wache, et al., 1999]. The shared vocabulary contains the basic terms 

(the primitives) of a domain. In order to build complex terms of a local ontology the 

primitives are combined by some operators. Because each term of a local ontology is 

based on the primitives, the terms become more comparable than in multiple-ontology 

approaches. Sometimes the shared vocabulary is also an ontology [Stuckenschmidt 

and Wache, 2000]. 

In hybrid approaches the major point is how the local ontologies are described. In 

COIN the local description of information, so called context, is simply an attribute 

value vector. The terms for the context stems from a global domain ontology and the 

information itself. In MECOTA, each source concept is annotated by a label which 

combines the primitive terms from the shared vocabulary. The combination operators 

are similar to the operators known from the description logics, but are extended, e.g., 

by an operator which indicates that an information item is an aggregation of several 

separated information pieces. The BUSTER system uses the shared vocabulary as a 

(general) ontology, which covers all possible refinements, e.g., the general ontology 

defines the attribute value ranges of its concepts. A local ontology is one (partial) 

refinement of the general ontology, e.g., restricts the value range of some attributes. 
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Because local ontologies only use the vocabulary of the general ontology, they remain 

comparable. 

The use of a shared vocabulary can be viewed as a translation process from a shared 

vocabulary to each local ontology, therefore one advantage of a hybrid approach is 

that new sources can easily be added without modification to any other ontology. The 

use of a shared vocabulary makes the local ontologies comparable and avoids the 

disadvantages of multiple ontology approaches. 

 

2.4.3  Ontology Integration 

2.4.3.1 Basic Concept 

Ontology integration is an important topic in ontology-based integration approaches. 

Ontology plays an important role in concept modeling, knowledge representation, and 

semantics-based information integration. As more and more ontologies are 

constructed in different domains, the heterogeneity of ontologies becomes another 

significant issue for information integration. In the following several scenarios 

ontology integration is required: 

(1) Multiple ontologies in one domain are constructed separately but none of them is 

widely accepted as “standard” ontology for that domain. Each ontology covers 

different aspects of the domain, although an overlapping portion may exist among 

them. Therefore, ontology integration is necessary to reuse existing ontologies and 

build a new ontology which incorporates knowledge (including concepts, properties, 

individuals, relationships, axioms, functions, etc) dispersing in these ontologies. 

(2) Ontologies for different domains exist, and a new ontology for interdisciplinary 

use is required to be built to incorporate knowledge in these domains.  
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(3) For some purposes, more than two ontologies are required to be used together. For 

example, an organization like a company needs to reuse both a public ontology and its 

own ontology about its business. Moreover, if two companies are merged into one, 

then their existing ontologies should be merged accordingly to create a new one to 

eliminate possible semantic conflict. In such cases ontology integration is also 

necessary. 

In these cases, ontology builders may want to use already existing ontologies as the 

basis for the creation of new ontologies by extending the existing ontologies or by 

combining knowledge from different ontologies. It is a very complex process as a part 

of the ontology development lifecycle [Pinto and Martins, 2004]. After ontology 

integration is done, semantic integration can be supported by the integrated ontology, 

or by semantic mapping among multiple ontologies.  

A thorough review of ontology integration can be found in [Kalfoglou and 

Schorlemmer, 2003]. Some other research also provides overviews of ontology 

integration [Calvanese, et al., 2002; Klein and Noy, 2003; Noy, 2004; Wache, et al., 

2001]. 

As there are various definitions on “ontology integration”, [Pinto, 1999] proposes 

three terms to distinguish different meanings: integration, merge, and use. In [Pinto, 

1999] use means using ontologies in applications, which is not closely related to our 

topic, therefore we will not discuss it in this research. Another important aspect that is 

not included in its analysis is alignment or mapping. The following are descriptions 

for each term. 

A. Alignment/Mapping 

Alignment occurs when two or more ontologies are brought into mutual agreement, 

making them consistent and coherent. That is, to determine semantic relationships 

between elements from the source ontologies. The semantic relationships may include 

equivalence, specialization/generalization, or other types of relationships. 



38 
 

 

Mapping, particularly, is an alignment that relates similar concepts or relations from 

different source ontologies with overlapping parts to each other by an equivalence 

relation. 

Sowa discussed the concept of alignment in [Sowa, 1997]. According to Sowa, 

alignment is a mapping of concepts and relations between two ontologies A and B that 

preserves the partial ordering by subtypes in both A and B. If an alignment maps a 

concept or relation x in ontology A to a concept or relation y in ontology B, then x and 

y are said to be equivalent. The mapping may be partial: there could be many concepts 

in A or B that have no equivalents in the other ontology. 

Kalfoglou et al. proposed a formal definition for ontology mapping in [Kalfoglou and 

Schorlemmer, 2003]. In their definition, an ontology is a pair O = (S, A), where S is 

the (ontological) signature – describing the vocabulary – and A is a set of 

(ontological) axioms – specifying the intended interpretation of the vocabulary in 

some domain of discourse. A total ontology mapping from O1 = (S1, A1) to O2 = (S2, 

A2) is a morphism f: S1 S2 of ontological signatures, such that, A2╞ f(A1), i.e. all 

interpretations that satisfy O2’s axioms also satisfy O1’s translated axioms. A partial 

ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) exists if there exists a 

sub-ontology O1’ = (S1’, A1’) (S1’ ⊆ S1 and A1’ ⊆ A1) such that there is a total mapping 

from O1’ to O2. 

B. Merging 

The merging of ontologies creates a new ontology containing knowledge included in 

the source ontologies based on the alignment relationships between the ontologies. 

This operation merges different ontologies about the same subject into a single one 

that unifies them. 

According to Pinto [Pinto, 1999], on one hand in merging we have a set of ontologies 

(at least two) that are going to be merged (O1, O2, …, On in Figure 2-7), and on the 

other hand, the resulting ontology (O in Figure 2-7). The goal is to make a more 
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general ontology about a subject by gathering knowledge from several other 

ontologies in that same subject into a coherent volume. The subject of both the 

merged and the resulting ontologies are the same (S in Figure 2-7) although some 

ontologies are more general than others, that is, the level of generality of the merged 

ontologies may not be the same. 

 

C. Integrating 

Integrating ontologies also creates a new ontology by reusing other available 

ontologies through assembling, extending, or specializing. Different than merging, in 

integrating the source ontologies and resultant ontology can be in different subjects. 

According to Pinto [Pinto, 1999], in integration we have, on one hand, one or more 

ontologies that are integrated (O1, O2, …, On in Figure 2-8), and on the other hand, the 

ontology resulting from the integration process (O in Figure 2-8). The domains of the 

different integrated ontologies are usually different among themselves, that is, each 

ontology integrated in the resulting ontology is usually about a different domain either 

from the resulting ontology (D in Figure 2-8) or the various ontologies integrated (D1, 

D2, …, Dk, where usually k = n, in Figure 2-8). The integrated ontologies are those 

that are being reused. They are a part of the resulting ontology. The ontology resulting 

from the integration process is what we want to build and although it is referenced as 

one ontology it can be composed of several modules. When the integrated ontology is 

reused by the resulting ontology, the integrated concepts can be (1) used as they are, 

(2) adapted (or modified), (3) specialized (leading to a more specific ontology on the 

O 
 S

O1 
  S 

O2 
 S

On 
 S… 

Figure 2-7. Merging of ontologies. 
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same domain), (4) augmented by new concepts (either by more general concepts or by 

concepts at the same level). 

In [Klein, 2001] Klein discusses a fairly complete set of definitions for terms often 

mentioned in this field. Among these definitions, 

 Combining: using two or more different ontologies for a task in which their 

mutual relation is relevant. 

 Merging and integration: creating a new ontology from two or more existing 

ontologies with overlapping parts, which can be either virtual or physical. 

 Articulation: the points of linkage between two aligned ontologies, i.e., the 

specification of the alignment. 

 Translating: changing the representation formalism of an ontology while 

preserving the semantics. 

 Transforming: changing the semantics of an ontology slightly (possibly also 

changing the representation) to make it suitable for purposes other than the 

original one. 

 Version: the result of a change that may exist next to the original. 

 Versioning: a method to keep consistent the relation between newly created 

ontologies, the existing ones, and the data that conforms to them. 

 

O 
 D

O1 
  D1 

O2 
 D2

On 
 Dk… 

Figure 2-8. Integration of ontologies. 
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2.4.3.2 Tasks for Ontology Integration 

In [Noy, 2003] Noy proposed some specific challenges in ontology integration that 

must be addressed in the near future: 

 Finding similarities and differences between ontologies in an automatic and 

semi-automatic way; 

 Defining mappings between ontologies; 

 Developing an ontology integration architecture; 

 Composing mappings across different ontologies; 

 Representing uncertainty and imprecision in mappings. 

They can be viewed as a general architecture of ontology integration tasks. 

Particularly, in ontology integration, some tasks should be performed to resolve 

differences and conflicts between ontologies. The tasks lie at two levels. 

A. Language Level 

1. Syntax 

For instance, a concept “Faculty” may be represented as 

<rdfs:Class ID=”Faculty”> in RDF schema 8, and  

(defconcept Faculty) in LOOM 9. 

2. Logical representation 

For instance, a rule denoting that two sets have no elements in common can be 

represented as  

                                                        
8 http://www.w3.org/TR/rdf-schema/ 
9 http://www.isi.edu/isd/LOOM/LOOM-HOME.html 
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   disjoint A B, 

   or 

   A subclass-of (not B), B subclass-of (not A) 

3. Language expressivity 

For instance, some languages can express negation but some others cannot. 

B. Ontology Level 

1. Conceptualization mismatch 

A conceptualization mismatch can cause a difference in the way a domain is 

interpreted. For example, a difference may exist in scope, meaning that two domains 

from two ontologies do not contain exactly the same instances. 

2. Explication 

Explication can cause a difference in the way the conceptualization is specified. For 

instance, with different modeling paradigms, abstract concepts like time, action, plan, 

location, etc. may be represented differently. Another case is the difference in 

modeling intension. For example, in one ontology concept "Circle" is modeled as a 

sub-concept of "Ellipse" implying that a "round circle" is a special ellipse in which 

the major axis and minor axis are identical. In another ontology concept "Circle" may 

be modeled as a super-concept of "Ellipse" implying that an ellipse is a special case of 

a round shape. 

Another case of explication is in terminological mismatch. Terminological mismatch 

contains two categories: 

(1) Synonym terms: different terms specifying the same concept. For example, car vs. 

automobile, or terms from different languages like English and French with the same 

meaning. 
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(2) Homonym terms: the same terms are used for different concepts. The "Circle" 

example can be viewed as a case of a homonym mismatch. Another example is the 

term "Conductor" which has a different meaning in music than in the electric 

engineering domain. 

Encoding is another case of explication. For instance, we can have several date 

formats for a date concept like dd/mm/yy or yyyy-mm-dd, or use a different unit to 

represent a metric, like miles and kilometres. 

 

2.4.3.3 Ontology Integration Process and Methodology 

McGuinness introduces a specification of the integration process in [McGuinness, et 

al., 2000], where ontology integration consists of (the iteration of) the following steps: 

(1) find the places in the ontologies where they overlap; 

(2) relate concepts that are semantically close via equivalence and subsumption 

relationships (aligning); 

(3) check the consistency, coherency and non-redundancy of the result. 

As pointed out by Noy in [Noy, 2003], it may never be possible to find all alignments 

/ mappings between ontologies completely and automatically since some of the 

intended semantics can only be discerned by humans. However, ontology integration 

on a large scale will be possible only if we can make significant progress in 

identifying mappings automatically or semi-automatically. Methodologies are 

necessary to guide and support the automatic or semi-automatic ontology integration. 

(1) Basic Strategy for Discovering Concept Similarity 
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The comparison of concept similarity is a fundamental issue for ontology integration. 

Alignment, mapping, or merging can be possible only if the concepts from different 

ontologies that have semantic similarity are discovered. 

The basic alignment algorithm in ArtGen [Mitra and Wiederhold, 2002] calculates the 

similarity between concepts based on their names which are seen as lists of words. 

One method to compute the similarity between a pair of words is based on the 

similarity between the contexts (1000-character neighbourhoods) of all occurrences of 

the words in a set of domain-specific Web pages. 

In FCA-MERGE [Stumme and Maedche, 2001] the user constructs a merged 

ontology based on a concept lattice. The concept lattice is derived using a formal 

concept analysis based on how documents from a given domain-specific corpus are 

classified to the concepts in the ontologies using natural language processing 

techniques. OntoMapper [Prasad, et al., 2002] provides an ontology alignment 

algorithm using Bayesian learning. A set of documents (abstracts of technical papers 

taken from ACM’s digital library and Citeseer) is assigned to each concept in the 

ontologies. Two raw similarity scores matrices for the ontologies are computed. The 

similarity between the concepts is calculated based on these two matrices using the 

Bayesian method. 

Some systems implemented alignment algorithms based on the structure of the 

ontologies. Most of them rely on the existence of previously aligned concepts. For 

instance, Anchor-PROMPT [Noy and Musen, 2001] determines the similarity of 

concepts by the frequency of their appearance along the paths between previously 

aligned concepts. The paths may be composed of any kind of relations. SAMBO 

[Lambrix and Tan, 2006] provides a component where the similarity between 

concepts is augmented based on their location in the is-a hierarchy relative to already 

aligned concepts. OntoMapper does not require previously aligned concepts and takes 

the documents from the sub-concepts into account when computing the similarity 

between two concepts.  
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(2) Research on Methodologies 

An early methodology for ontology merging in a medical domain is proposed in 

[Gangemi, et al., 1998]. The methodology to build ontologies presented in [Uschold 

and King, 1995] includes an integration step. This methodology proposes that 

integration should be done either during capturing (knowledge acquisition), or coding 

(implementation) or both. However, the problem is recognized as difficult and no 

solutions for the problem of how integration is performed are proposed or discussed 

herein. 

The methodology to build ontologies proposed in [Gruninger, 1996] also refers to 

integration. This methodology mentions two kinds of integration: “combining 

ontologies that have been designed for the same domain” and “combining ontologies 

from different domains”. According to this methodology, ontologies are built based 

on ontology building blocks and foundational theories. According to the building 

blocks and foundational theories of the ontologies being integrated, integration is 

distinguished as: integration (at the level) of the building blocks - the most simple; 

integration (at the level) of the foundational theories, which is more difficult and may 

result in only partial integration; and ontology translation when the ontologies are so 

different that they share neither the building blocks nor the foundational theories, 

which makes integration extremely difficult. 

METHONTOLOGY [Fernandez, et al., 1997 and  Fernandez, et al., 1999] is another 

methodology to build ontology that also considers integration. It proposes that the 

development of an ontology should follow an evolving prototyping life cycle and not 

a waterfall one. This methodology proposes that ontology building, and therefore 

ontology integration, should be done preferably at the knowledge level (in 

conceptualization) and not at the symbol level (in formalization, when selecting the 

representation ontology) or at the implementation level (when the ontology is codified 

in a target language). 
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The methodology followed by Skuce to find the ontological distinctions presented in 

[Skuce, 1997] was by brainstorming, followed by meetings with other researchers 

interested in the problem. The proposed methodology begins with the creation of a 

group involving a diverse group of researchers working in different locations. Each 

member develops a list of primitives, distinctions and categories carefully chosen, 

defined and carefully documented (choices and definitions). The choices are 

presented to the group for discussion and approval. Only when they are agreed upon 

can they get to the formalization stage. The idea is to try to find a standardized upper 

model that would greatly ease some kinds of integration efforts. 

Other methods include: Hovy and colleagues describe a set of heuristics that 

researchers at ISI/USC used for the semi-automatic alignment of domain ontologies to 

a large central ontology [Hovy, 1998]. Their techniques are based mainly on the 

linguistic analysis of concept names and natural-language definitions of concepts. 

PROMPT uses the structure of ontology definitions and the structure of a graph 

representing an ontology to suggest to the ontology designer which concepts may be 

related [Noy and Musen, 2003]. GLUE applies machine-learning techniques to 

instance data conforming to ontologies to find related concepts [Doan, et al., 2002]. 

 

2.4.3.4 Ontology Integration Systems and Tools 

Ontology integration is a complicated process. It is difficult to find the terms that need 

to be aligned, and the consequences of a specific mapping (unforeseen implications) 

are difficult to see. Semi-automatic tools are required to guide the user through the 

process and focus this attention on the likely points for action, and enable reusability 

of alignments in the context of ontology maintenance. 

A number of ontology integration systems exists that support users to find 

inter-ontology relationships. Some of these systems can also perform merging and 
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create a new ontology based on the source ontologies and the alignment relationships. 

[McGuiness, et al., 2000] provides the first tool to help in the merge process. 

(1) A General Framework 

Lambrix et al. proposed a general framework for ontology alignment [Lambrix and 

Tan, 2006], as depicted in the following Figure 2-9. Many ontology alignment 

systems can be described as instantiations of this framework. 

 

Figure 2-9. A general framework for ontology alignment [Lambrix and Tan, 2006]. 

In this framework, an alignment algorithm receives two source ontologies as input. 

The algorithm can include several matchers. These matchers calculate similarities 

between the terms from the different source ontologies. The matchers can implement 

strategies based on linguistic matching, structure-based strategies, constraint-based 

approaches, instance-based strategies, and strategies that use auxiliary information or 

a combination of these. Alignment suggestions are then determined by combining and 

filtering the results generated by one or more matchers. The pairs of terms with a 

similarity value above a certain threshold are retained as alignment suggestions. By 

using different matchers and combining them and filtering in different ways, different 
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alignment strategies will be obtained. The suggestions are then presented to the user 

who accepts or rejects them. The acceptance or rejection of a suggestion may 

influence further suggestions. Further, a conflict checker is used to avoid conflicts 

introduced by the alignment relationships. The output of the alignment algorithm is a 

set of alignment relationships between terms from the source ontologies. 

In this framework the matchers use different strategies to calculate similarities 

between the terms from different source ontologies. They use different kinds of 

knowledge that is exploited during the alignment process to enhance their 

effectiveness and efficiency. Some of the approaches employed are described as 

follows: 

 Strategies based on linguistic matching. These approaches make use of textual 

descriptions of the concepts and relations such as names, synonyms and 

definitions. The similarity measure between concepts is based on comparisons 

of the textual descriptions. 

 Structure-based strategies. These approaches use the structure of the ontologies 

to provide suggestions. The similarity of concepts is based on their 

environment. For instance, using the is-a relation, an environment can be 

defined using the parents (or ancestors) and the children (or descendants) of a 

concept. 

 Constraint-based approaches. In this case axioms are used to provide 

suggestions. For example, knowing that the range and domain of two relations 

are the same may be an indication that there is a relationship between the 

relations. 

 Instance-based strategies. In some cases instances are available directly or can 

be obtained. When instances are available, they may be used in defining 

similarities between concepts. 
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 Use of auxiliary information. Dictionaries and thesauri representing general or 

domain knowledge, or intermediate ontologies may be used to enhance the 

alignment process. They provide external resources to interpret the intended 

meaning of the concepts and relations in an ontology. 

 Combining different approaches. The different approaches use different 

strategies to compute similarity between concepts. Therefore, a combined 

approach may give better results. 

(2) SAMBO 

SAMBO [Lambrix and Tan, 2006] is an ontology alignment and merging tool 

developed according to the above framework. SAMBO supports ontologies in the 

OWL 10 format. The system separates the process into two steps: aligning relations 

and aligning concepts. In the suggestion mode several kinds of matchers can be used 

and combined. The pairs of terms with a similarity value above a threshold are shown 

to the user as alignment suggestions. For each of the alignment suggestions the user 

can decide whether the terms are equivalent, whether there is an is-a relation between 

the terms, or whether the suggestion should be rejected. If the user decides that the 

terms are equivalent, a new name for the term can be given as well. If the user rejects 

a suggestion where two different terms have the same name, he is required to rename 

at least one of the terms. At each point during the alignment process the user can view 

the ontologies represented in trees with the information on which actions have been 

performed, and the user can check how many suggestions still need to be processed. 

In addition to the suggestion mode, the system also has a manual mode in which the 

user can view the ontologies and manually align terms. The source ontologies are 

illustrated using is-a and part-of hierarchies. The user can choose terms from the 

ontologies and then specify an alignment operation. After the user accomplishes the 

alignment process, the system receives the final alignment list and can be asked to 

                                                        
10 http://www.w3.org/TR/owl-features/ 
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create the new ontology. The system merges the terms in the alignment list, computes 

the consequences, makes the additional changes that follow from the operations, and 

finally copies the other terms to the new ontology. 

(3) Protege PROMPT 

Protege is a tool for creating, editing, browsing, and maintaining ontologies 11. 

PROMPT is one of its plug-ins, including several interactive tools for ontology 

merging and aligning [Noy and Musen, 2003]. iPROMPT is the ontology merging 

tool in the PROMPT suite [Noy and Musen, 2000]. When merging two ontologies, 

iPROMPT creates a list of initial suggestions based on the underlying alignment 

algorithms. The suggestions can, for instance, be to merge two terms, or to copy a 

term to the new ontology. The user can then perform an operation by accepting one of 

the suggestions or creating his own suggestions. iPROMPT then performs the 

operation and additional changes that follow from that operation. The list of 

suggestions is then updated and a list of conflicts and possible solutions to these 

conflicts is created. This is repeated until the new ontology is ready. 

(4) Ontolingua Server 

Ontolingua Server is an ontology development environment for collaborative 

ontology construction, addressing the problem of ontology integration [Farquhua, et 

al., 1995 and Farquhua, et al., 1997]. This tool allows collaborative ontology building 

and also provides an ontology library, where tested ontologies are gathered and made 

publicly available. To allow reuse of the ontologies available at the Ontolingua Server 

library, a set of integration operations was identified, specified, defined, and made 

available to ontology builders. Users are allowed three operations: inclusion, 

polymorphic refinement and restriction (specialization). Inclusion is used when the 

ontology is included (from the library of ontologies kept by the tool) and used as it is. 

Polymorphic refinement extends one operation so that it can be used with several 

                                                        
11 Protege. http://protege.stanford.edu/index.html 
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kinds of arguments. Restriction makes simplifying assumptions that restrict the 

included axioms. The Ontolingua Server also provides facilities for local symbol 

renaming. This facility enables ontology developers to refer to symbols from other 

ontologies using names that are more appropriate to a given ontology and to specify 

how naming conflicts among symbols from multiple ontologies are to be resolved. 

(5) FOAM 

FOAM 12 is a semi-automatic tool for aligning and merging two or more OWL 

ontologies. When merging ontologies in semi-automatic mode, FOAM proposes 

alignment suggestions and the user can accept or reject these suggestions. The output 

of the system after processing all the suggestions is the accepted list of alignments. 

 

2.5 Introduction to Several Integration Systems 

During the 1990s, the emergence of distributed computing, middleware technology, 

and standards has allowed people to increase focus on the heterogeneity that is 

intrinsic to data. This has supported particularly syntactic and structural 

interoperability, and allowed people to address issues at the information level. As the 

future information system increasingly addresses the information and knowledge level 

issues, it will require further semantic interoperability. Semantic interoperability 

requires that the information systems understand the semantics of the information 

sources as well as the user’s information requests, and use mediation or information 

brokering to satisfy the information request. 

During the past two decades, there was an increase in the adoption of ad hoc 

standards, resulting in significant progress towards achieving system, syntactic, and 

structural interoperability. Structural and a limited form of semantic interoperability 

are achieved by adoption of general purpose metadata standards, such as Dublin Core 

                                                        
12 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ 
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[Mudumbai, 1997], as well as metadata standards in various domains such as 

bibliography [Beard and Smith, 1998], space and astronomy, geographical, 

environmental [Gunther and Voisard, 1998], and ecological [Reichman, et al., 1999]. 

Early works focused on data integration based on databases. Data integration is the 

process which takes as input a set of databases, and produces as output a single 

unified description of the input schemas (the integrated schema) and the associated 

mapping information supporting integrated access to existing data through the 

integrated schema [Parent and Spaccapietra, 1998]. 

For example, Clio+Garlic [Farquhua, et al., 1995] was developed by IBM, mainly 

targeted at the transformation of legacy data into a new target schema. It introduced 

an interactive schema mapping paradigm based on value correspondences: through 

providing GUI for the users to specify how a value of a target attribute can be created 

from a set of values of source attributes. According to the user-specified value 

correspondences, the query/view definition will be automatically discovered using 

DBMS query optimization techniques. In addition, it has a mechanism for users to 

verify the mappings. 

Early work on the SIMS system [Arens, et al., 1996] included a central domain that is 

linked to the component databases and an AI-style planner that decompose queries for 

efficient access. SIMS requires the system designer to build a model of the application 

domain and to define the contents of each source (database, Web server, etc.) in terms 

of this model. The SIMS planner provides a single point of access for all the 

information: the user expresses queries without needing to know anything about the 

individual sources. SIMS translates the user’s high-level request, expressed in a 

subset of SQL, into a query plan [Ambite and Knoblock, 2000], a series of operations 

including queries to sources of relevant data and manipulation of the data. 

Later works employed ontologies to help integration at the concept level. By using 

ontology for explication and transformation of context knowledge users can achieve 
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interoperability at the semantic level [Calvanese, et al., 1998(1) and Stuckenschmidt 

and Wache, 2000]. 

For example, Information Manifold [Kirk, et al., 1995] employs a local-as-view 

approach. It has the explicit notion of global schema/ontology. Its general mediator, 

independent of sources and queries, takes declarative descriptions of the contents and 

capabilities of a set of sources over the global concepts as input. A new source can be 

added by providing its descriptions and providing a corresponding wrapper. A dialect 

of description logics, called CARIN, is used for source description. The Bucket 

algorithm was developed in this project for rewriting the query over the global 

schema into queries to suitable sources. 

In the BUSTER project, semantic integration is viewed as context integration [Visser, 

2004] since information can only be well understood in its context. The context 

appears in terms of assumptions about the meaning of information but the 

assumptions are often not explicated. Semantic integration can be achieved through 

context transformation where context information has been explicated, descriptions of 

information entities are completed, and entities are interpreted in a new context. In 

context theory, a context is a collection of linguistic expressions providing an explicit 

description of the domain. Or, it can be viewed as a set of parameters with each 

representing one special aspect of the context described and a set of values can be 

assigned to the parameters describing the current context (e. g. {parameter1 = value1, 

parameter2 = value2, …, parametern = valuen}). 

In later work of SIMS, the EDC project [Hovy, 2003] took this a step further, 

addressing the problem of the semi-automated construction of the single central 

model and linking it to a large general purpose term taxonomy or ontology Omega. 

The system provides dynamically planned access to data about petroleum products’ 

prices and volumes, provided in a variety of forms and on a variety of media, by the 

Energy Information Administration, the Bureau of Labor Statistics, the Census 

Bureau, and the California Energy Commission, in the form of over 50, 000 data 
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tables. In order to more rapidly construct the domain models, systems are developed 

for automatically identifying terminology glossary files from websites, extracting and 

formalizing the glossary definitions, clustering them appropriately, and automatically 

embedding them into the existing ontology and domain model. 
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Chapter 3 Problem Analysis 

3.1 A Thorough Discussion on Fundamental Terms 

In the literature review, we have touched on a rich set of terms that are used in the 

semantic integration field in various situations. This section presents deeper analysis 

of some of the fundamental terms based on our research, and gives further discussion 

on their natures. 

 

3.1.1  Information-related Terms 

I. Universe, World, Domain, and Real World Object 

The Universe is the entire aggregation of everything that exists anywhere. According 

to the axiomatic theory [Zeng, 2008], everything in the universe is an object and there 

are relations between objects. The World is a subset of the universe that humans can 

perceive, memorize, understand, analyze, and reason about. A Domain is a portion of 

a world that some people are interested in and concerned about. In information related 

research, people often use the term domain to refer to a set of closely related objects. 

An object can be physical or abstract, and can be perceived in some way. For 

instance, we measured that we walked “2 miles” in “The University of Western 

Ontario”; we talked to a professor “Jack Smith” when the watch showed the time 

was “10:00AM, March 1st, 2008”. 

II. Data, Information and Information System 

In the context of computing, data is computational symbols. Information is data that 

has been given meaning, or, data with specification. Information is manged by 

information systems. 
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Generally speaking, an information system can be seen as the entire infrastructure, 

organization, personnel, and software components for collection, manipulation, 

storage, transmission, presentation, dissemination, and disposition of information 

[INFOSEC, 1999]. In the IT domain, an information system is a computer system 

composed of hardware and software applications as well as other necessary 

infrastructures to provide information and services. The hardware includes CPU, 

memory, disk, etc. that provide capabilities to store and process digital data. The 

software applications are mainly the ones that gather, manipulate, manage, persist, 

analyze, and present information. The infrastructures include operating systems, 

network protocols, software libraries, and network connections, to name a few, that 

provide system level support for the information services. Information services are 

functionalities handling information gathering, persistence, management, and 

retrieval. 

From the external perspective, the usages of an information system focus on 

information persistence and information retrieval through specific service interfaces 

without concerning their internal design and implementation details. 

The capabilities of information systems mainly lie in two categories: information 

providing and information searching or retrieval [Visser, 2004]. As for the former 

category, conventional database or formatted file-based systems are good examples of 

providing rich and dynamic information to any user that has authority to access them. 

In recent decades the Internet has offered the world a new dimension in terms of 

providing information for various needs. The major reason is that the HTML language 

allows people to share their information in a simple but effective way. This language 

is simple and easy to learn, and almost anybody with a basic knowledge about syntax 

or simple programming skills could design a web page and put it on the Web. Another 

reason is that standard network protocols such as HTTP and TCP/IP have been well 

supported by various computation platforms (including hardware and software 

platforms) which make the information accessing a simple, fast, and reliable job. 
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The latter category, searching information which can filter from a large amount of 

available information and provide the user intended results with desired formats, is 

just as important. Databases and some file-based systems (e.g. XML) support 

information searching with a clearly defined query written in a specific syntax. On the 

Internet, information searching is a little different. As described in [Visser, 2004], 

early browsers or search engines offered the opportunity to search for specific 

keywords, mostly searching for strings, and the latest versions of search engines, such 

as Google, provide a far more advanced search based on statistical evidences or smart 

context comparisons and rank the results accordingly. In most of the search cases, the 

users are prompted with results in a rather simple way but they have to manually 

analyze and choose their intended results from a very large result set where many of 

the results are partially or totally irrelative. 

Although most of the information systems provide services with rich capabilities, we 

usually view them as information-centred systems instead of functionality-centred 

ones and view the services as facilities that support information management, sharing, 

processing, and exchanging. Therefore, from outside, the information systems are 

usually treated as information containers / repositories or information resource 

providers which encapsulate the internal functional components and interact with 

external environments via well defined interfaces. 

The reason most responsible for affecting the search quality is the lack of semantics, 

for both the information itself and the query requirements. In an ideal world where 

semantics relating to anything and everything are clearly and precisely specified, one 

can expect that computers will help humans handle the semantics and manage the 

large amount of information in a perfect manner. This shows that information 

semantics plays an important role in information integration. 

III. User 



58 
 

 

A user of an information system is either a producer of information or a consumer of 

the information and services, or possibly both. It does not matter whether the user is a 

human or another software application as long as it can interact with the system 

following the pre-defined interfaces and constraints. In our work, we often 

specifically refer to “human expert” where we emphasize the role of a human being. 

We also use the term “system” to denote a software application (such as a software 

agent) that interacts with an information system. 

IV. Conceptualization 

We differentiate two ways of illustrating the term “Conceptualization”. 

A. Conceptualization as a result of perceiving the world 

Conceptualization refers to an abstract model that consists of the relevant concepts 

and the relationships that exist in a certain domain. In a sense, a conceptualization (of 

a certain domain) is an abstract and simplified view in one’s mind of the partial world 

that one cares about for some purpose. 

This term is also specially referred to as “shared conceptualization” which emphasizes 

the common consensus accepted by a community. To make conversations and 

exchange of information between humans meaningful and reasonable, people need to 

establish a shared conceptualization for a specific domain such that they have a 

common understanding of what they talk about. For example, in the education 

domain, people know the concepts “Professor”, “Student”, “Class” jointly. Whenever 

one mentions “Professor”, the other one will know exactly the correct concept that is 

being discussed instead of incorrectly thinking of something else. 

Conceptualization is domain-dependent. For example, in the education domain 

“Class” means a group of students sharing the same course. However, in the hotel 

domain “Class” may be used to identify the rank and category of the hotels. 
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Therefore, usually we need to limit our discussion in a domain of discourse to ensure 

that the expressing and exchanging of information make sense. 

B. Conceptualization as a process of perceiving the world 

In this sense, conceptualization is the process of abstracting the real world objects and 

creating abstract notions, i.e., the concepts for them, in human cognition. It refers to a 

set of mental activities that recognize the world and build a mental reflection of the 

world in human minds. 

In our work we adopt the first way of using this term, i.e., the conceptualization of a 

world, of a domain, etc. In a conceptualization we can identify concept, which is 

discussed in the following section. 

V. Concept in Conceptualization 

A concept is anything that objectively exists in the real world and is rationally 

identified as existing in a conceptualization in terms of a domain of discourse. The 

concepts may be referring to physical objects such as persons and animals, or abstract 

ideas such as actions, times, distances and numbers. By “rationally” we focus on the 

shared conceptualization. For instance, in the education domain, normal people 

usually agree that “a University has many Professors and Students”, but do not care 

about some others like “Car” or “Tax” (even though they are important in other 

domains and they may also be concerned in the education domain in some special 

situations). 

A concept is defined by a set of properties. Each set of properties characterizes a 

specific aspect of a concept. For example, from the academic perspective, a Professor 

has properties Name, Degree, Department, Title, and Publication, whereas from the 

administrative perspective, another set of properties Name, Year of Start, Salary, 

Address, and Contact would apply. Even though there is very little commonality 

between these two sets, they are still depicting the same concept.  
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When we are concerned with the categorization of a set of real world objects, we 

differentiate instances and concepts. A concept can be instantiated as a set of 

instances, i.e., a concept conceptually stands for a set of instances that share some 

remarkable characteristics. Similar to classes and objects in the Objected-Oriented 

paradigm, a concept is instantiated to an instance by assigning values to its properties 

(each property may get one or more values, e.g. a professor’s Publication has multiple 

paper tiles). 

Note that the division of concepts and instances is depending on people’s interest. As 

an example, a concept “Human” in the education domain is identified to have 

instances “Professor”, “Staff”, and “Student” if we just want to know what roles we 

have in a university. However, if we also care about individual persons under each 

role, we need to regard “Professor” as another concept which can be instantiated to 

multiple instances. We will specifically use concept or instance where we need to 

clarify the level that we are working on. 

A concept can also be described by other concepts and relationships. That is, the 

semantics of a concept is defined through a set of semantic relationships that 

associates the concept to other concepts semantically. In the text we use underlined 

words or phrases to stress the semantic relationships. For example, we can define a 

Professor as “a Person who works at a University, teaches Courses, and conducts 

Research”. In this definition, we characterize the concept Professor with other 

concepts - Person, University, Course, and Research, as well as the semantic 

relationships work at, teach, and conduct.  

A property of a concept is possibly another concept. As an example, Publication of a 

Professor is a concept which has properties Title, Abstract, Co-Authors, Publisher, 

etc. Obviously Co-Authors and Publisher are sometimes regarded as concepts with 

other properties and semantic relationships. Therefore, the statement “a concept has 

some properties” is actually a concretization of the semantic relationship, i.e., a 

specific type of semantic relationship “has-property”. To give more exact meaning to 
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the semantic relationships, in some cases such relationships are elaborated upon, such 

as “(Professor) deliver-publication (Publications)” or “(Publication) published-by 

(Publisher)”. We will simply state that a concept has some properties where no 

confusion will arise. If other semantic relationships are to be considered, we will 

explicitly mention them. 

VI. Model and Modeling 

Human cognition can be aware of a concept in a domain. In some way, this kind of 

awareness is reflected in human minds, and analysis and reasoning of the concepts 

can be done in human cognition. To better explicate, present, analyze, process, and 

communicate the concepts people need to extract the abstract concepts from their 

cognition and specify them. A model of a concept is a theoretical construct that 

provides formal or informal specification to the concept. A model theory defines 

various constructs, rules of applying the constructs, and meanings of the rules to 

specify the concepts. The combination of constructs, rules, and meanings is also 

referred to as a model language.  

In the context of information systems, an information model is an explicit, formal, and 

structured specification of the concepts and relationships managed by the system. An 

information system is usually built upon an information model such as a relational 

schema. 

Modeling refers to the process, activities, and regulations of creating a model of a 

concept (or a group of concepts) following the adopted model theories and 

methodologies.  

There are two levels of concept models: the conceptual level and the representation 

level. The conceptual level model can be viewed as a kind of internal representation 

in human cognition (even how it is represented in human cognition remains 

unknown). For example, when you think about "Car" you build a model in your mind 

because it is never the case that you have a real car in your mind. 
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The representation level model is an explicit artifact created to conceptually represent 

the concept. For instance, in an E-R (Entity-Relationship) model each concept is 

modeled as an entity and represented by a rectangle, and semantic relationships are 

modeled as relations between entities and represented by a diamond, where both 

entities and relations have properties that are represented by ellipses. Other paradigms 

also developed their ways for modeling and representing. The Concept-Graph model 

defines that a conceptual graph is a structure representing concepts and conceptual 

relations. Concepts are linked to each other through the conceptual relations. It 

constrains that there are no links between a concept and another concept, and no links 

between a relation and another relation. Semantic Network is another way to model 

concepts as well as semantic relationships. A semantic network is a graphical 

specification of knowledge that shows objects and their relationships. In a semantic 

network, objects (or concepts) are modeled as nodes, and links between the nodes 

describe the relationship between the objects. 

VII. Context 

There are several interpretations for the term “context”. In the most natural sense, in 

literature environment, the context of a word or a phrase is a body of words or phrases 

surrounding it that helps to determine its interpretation. In a broader sense, the context 

of something under consideration is the set of facts or circumstances that surrounds it 

and is relevant to it from specific points of view.  

We view the context of a concept as a set of concepts other than the concept itself in a 

domain that semantically relates to it and helps to interpret its semantics. For instance, 

given two concepts “Professor” and “Faculty” in the education domain, their 

semantics cannot be ultimately determined due to the lack of context. Suppose that we 

describe “Professor” as a Person who works in a University and does Research, and 

describe “Faculty” as a type of Employee of Universities whose major responsibility 

is Research, with these given contexts it is sound to infer that they are actually the 

same concept. Contrarily, if a different context is provided by describing “Faculty” as 
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an Organizational Division set up by a University, the contexts help us distinguish it 

from the concept “Professor”. 

Similarly, the context of an instance is a set of instances and concepts other than the 

instance itself in a domain that semantically relates to it and helps to identify its 

semantics and to which concept it belongs. For instance, simply given two instances 

Jack Smith and Adam in a university, there are not enough clues to identify what 

concepts they instantiate. We can reasonably infer that both are instances of the 

concept “Person” but this is not sufficient if we need to know their individual roles. 

Secondly, the inference may be wrong as it is possible that Adam is the name of a 

robot instead of a real person. Providing that Jack Smith teaches the course 

Programming and Adam takes the course Programming, based on these contexts it is 

known that Jack Smith is actually a Professor and Adam is a Student. 

VIII. Representation 

A representation of a concept or an instance following some model theory is an 

artifact created to conceptually represent the concept or the instance. The 

representation can be visual (i.e., can be perceived by human vision, such as a graph), 

hearable (i.e., can be perceived by human hearing, such as spoken words), touchable 

(i.e., can be handled manually, such as a model of a building), or formal (i.e., readable 

for human and process-able for computers, such as numbers), to name a few. 

Strictly speaking, anything we are using to denote a concept, such as a written word, a 

spoken word (a voice), a figure, a graph, an expression, a statement, is a specific 

representation. To better illustrate the research issues, we will use an English word 

with the italic font and a capital first letter to denote a concept at the conceptualization 

level, such as Professor. It is not viewed as a representation. Other cases will be 

referred to as representations, i.e., “professor”, “prof.”, etc. At the model level, we 

may use some words, symbols, and expressions to describe the model. They are also 

distinguished from the representations. It is worth mentioning also, strictly speaking, 
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that the model level can be viewed as a representation of the conceptualization. For 

instance, if we use an E-R paradigm to model the domain, we “represent” a concept as 

an entity, i.e., the entity is a representation of the concept. However, in our work we 

focus on the representation of the models and instances given than the modeling 

paradigm is provided. 

At the representation level, we use the term attribute other than property to describe a 

representation of a concept model. In some cases we may use model-specific terms, 

such as column in terms of a relational table schema as a representation of a concept 

model following the relational model theory. 

To sum up, a category of real world objects can be conceptualized as a concept, a 

concept can be modeled in different ways, coming up with different models (therefore 

a concept is represented as a specific element in a model), and each model can be 

illustrated by different representations. As an example, the concept Professor can be 

modeled as an entity in an E-R model, and this entity can be represented as a 

rectangle attached with a set of ellipses representing its properties; it can be modeled 

as a frame with slots for name, degree, title, etc, and the frame can be represented as a 

tabular form. 

Figure. 3-1 depicts various levels in terms of the concepts discussed above. Note that 

we use a specific representation (two cartoons, in this example) to stand for the real 

world objects (two persons Jack Smith and Peter Ken). 
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Professor 
Conceptualization 

Level 

Real World Objects 

Concept 

Conceptualized as 

Model Level 
(Representation of 
Conceptualization) 

Frame Model 1 
Name, Degree, 
Title, Publication 

Frame Model 2 
Name, Salary,  
Address, Contact 

E-R Model 1 
teach Course, 
supervise Student 

E-R Model 2 
publish Paper, 
organize Conference 

Representation 
 for Concept 

Model 

Jack Smith 

 

Representation 
Level 

Professor 

Name: 
Degree: 
Title: 
Publication: 

Prof. 

Name Degree Title Papers 

Professor Course 
provide 

Student 

supervise 

Professor Course 

Student 

course 
providing 

supervising 

Modeled as 

Represented as 

Professor 

Name: Jack Smith 
Degree: Ph.D. 
Title: Full Professor 
Publication: 5 Journals 

Professor 
Jack Smith 

Course 
Programming 

provide 

Student 
Bob 

supervise Course 
Network 

Student 
Adam 

Instantiated as 

Instantiated as 

<professor> 
  <name>Jack Smith</name>
  <degree>Ph.D</degree> 
  <title>Full  
     Professor</title> 
  <publication>5  
    Journals</publication> 
</professor> 

Jack Smith: Professor 
Programming: Course 
Network: Course 
Bob: Student 
Adam: Student 
provide(Jack Smith,  
       Programming) 
provide(Jack Smith, Network) 
supervise(Jack Smith, Bob) 
supervise(Jack Smith, Adam) 

Representation 
 for Instance 

A 

B 

C 

D 

E F 

H 

G 

Peter Ken 

Figure 3-10. From real world objects to representations. 
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In reverse, one single representation may mean different things. For instance, in 

Figure 3-2, an English world Apple is used as a representation of an entity in an E-R 

model. This model actually comes from two conceptualizations, which are 

conceptualizing two totally different real world objects respectively. 

 

According to the analysis above, the ideal semantic integration may include four 

aspects: 

A. Given different instance representations (e.g., A and B in Figure 3-1), discover 

whether they are instantiating the same concept model representation (e.g., C in 

Figure 3-1). If so, they refer to the same real world object (e.g., H in Figure 3-1). 

B. Given different concept model representations (e.g., C and D in Figure 3-1), 

discover whether they are representing the same model (e.g., E in Figure 3-1) of some 

concept. If so, they refer to the same concept (e.g., G in Figure 3-1). 

C. Given different concept models (e.g., E and F in Figure 3-1), discover whether they 

are modeling the same concept (e.g., G in Figure 3-1). If so, the two models are 

conceptually equivalent. 

Apple 

Model Level 
Apple 

Representation Level 

Conceptualization Level Apple 
 (as Computer Brand) 

Apple  
(as Fruit) 

Real World Objects 

Company 
provide-product

A 

B 

C 

D 

Figure 3-11. From representation to real world objects. 
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D. Given a specific representation (e.g., A in Figure 3-2), identify which model it is 

representing (e.g., B in Figure 3-2), then identify which concept (e.g., C in Figure 3-2) 

the model is capturing, and finally identify which real world object (e.g., D in Figure 

3-2) the concept is conceptualizing. 

IX. Schema 

Information in computer systems can be viewed as a digital representation of domain 

concepts, instances, and relationships. The usages of information systems require that 

they have well-defined schemas for information storage and manipulation. A schema 

is a representation of a concept model following specific model theory. Schema refers 

to the organization of elements in a model theory. For instances, a relational table 

schema named “professor” organizes a set of columns in a tabular form representing a 

model of the concept Professor, and a XML schema named “professor” organizes a 

set of XML tags as another form of representing the same model. 

The meaning of a schema is implied in its design and structure through its name, 

element names, element features, etc. The meaning of a schema can be determined if 

we establish a semantic mapping from itself to a known concept. The mapping should 

be explicitly and formally represented to support the processing of semantics. Since 

the schemas are one of the major sources of information semantics, this research will 

pay special attention to the schemas. 

 

3.1.2  Information Semantics 

3.1.2.1 Semantics Fundamentals 

Information semantics and semantic integration have become active topics in several 

disciplines, such as databases, information integration, and ontologies. Researchers 
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and practitioners have conducted great number of works on semantic integration to 

facilitate interoperability between different information systems [Noy, 2004]. 

According to [Meersman, 1995], semantics refers to a user’s interpretation of the 

computer representation of the world – i.e., the way users relate computer 

representation to the real world. The ability to incorporate detailed semantics of data 

in computers will provide greater consistency in its use, understanding, and 

application [Magnini, et al., 2003]. One of the principal benefits of introducing the 

semantics is the reduction of human involvement in the process of information 

understanding and information integration. 

Vetere [Vetere and Lenzerini, 2005] thinks that semantics is a mapping (also known 

as “interpretation function”) which involves: 

 Expressions: a system of manifested symbols (e.g. a formal language). 

 Contents: a system of something else which is not necessarily apparent (e.g. 

sets of objects or events in (some abstraction of) the “real world”). 

Roughly speaking, semantics refers to “the intended meaning of something”. This 

simple definition involves two aspects: what “something” is and what “meaning” is. 

“Something” is the abstraction of the external world in human minds, and is expressed 

in specific forms such as symbols, formulas, texts, voices, or graphs. Put simply, it 

may be concepts abstracted from some concrete objects like trees, animals, cars, rocks, 

and persons, or from some logical ideas like time, space, weights, and volumes, or 

from some actions like eating, looking, walking, etc. In more complex cases, 

“something” can refer to a comprehensive fact composed by concepts and 

relationships, such as a statement “Dr. Jackson introduces us to many interesting 

topics in ES 250”, as depicted in Figure 3-3. 

Dr. Jackson introduces us to many interesting topics in ES 250. 

Concept Relationship 

Figure 3-12. A comprehensive fact. 
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It is difficult to define “meaning”. As an alternative, it can be interpreted as the 

intension of specific concepts, relationships, or comprehensive facts. Their intension 

is expressed by some kinds of formalisms that are used to represent the meaning 

visually, and is meaningful only after the expressions are understood correctly by 

those who read them. In some cases, the reader will be a non-human object like a 

computer or a software agent, which is an important research issue in semantic 

integration. For example, given an expression (in a specific formalism) that represents 

a fact: 

  I DB 100 

It is certain that very few people are familiar with this expression. Therefore, most 

people cannot understand it without any explanation of its semantics. In the computer 

programming domain, we can illustrate it with the following expression in another 

form, or, we can say that its meaning is: 

  int I = 100; 

It is reasonable to claim that more people will be able to understand this form. Its 

meaning or semantics is trivial for people who are familiar with C, C++, or Java 

programming. 

We can extend the “path” to interpret the meaning of “int I = 100”. That is to say, we 

can explain that its meaning is identical to: 

  Dim I as Integer = 100 

It is a variable declaration statement in Visual Basic (VB) language. People who are 

familiar with VB other than C or C++ can now understand it. For people who are only 

familiar with Perl language, another interpretation can be provided further: 

  my $I = 100; 
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The semantics implied by these expressions can be further interpreted in a natural 

language sentence: define a variable which name is I, type is integer, and initial value 

is 100. Note that here we use natural language (which is also a formalism to express 

the semantics of something) to explain the meaning of the previous formalisms. 

For people who are not familiar with programming but have fundamental knowledge 

in computer science, a variable is a storage unit in memory space which is referenced 

by its name. For someone unfamiliar with computer science, more details may be 

required to explain the semantics of the expressions. 

Note that, from the beginning, we are limiting the domain of discourse to computer 

programming. In other domains, “I DB 100” may have completely different meanings. 

Another key issue to mention is that we suppose that people who have a similar 

background and normal intelligence will achieve a common understanding of the 

same expression (at least in one specific domain). However, we must be aware that 

exceptions exist. For instance, a programmer may consider the expression “int I = 

100” in another way, unconsciously or purposely. That becomes more complicated. 

We will not consider this exceptional case because it is really not a problem we can 

solve and it is very rare. In fact, some research did touch on the topic of discovering 

malicious semantics interpretation [Doan and McCann, 2003 and McCann, et al., 

2003], but more work remains to be done. 

From the above interpreting process, we can see that semantics in a specific domain 

can be represented in some kind of language (or formalisms), and interpreted by other 

kinds of languages (or formalisms). Natural language such as English is the ultimate 

formalism we use to interpret the intension of something. The continuous 

interpretations at different levels form an interpretation chain, as shown in Figure 3-4, 

where the same semantics can be interpreted by multiple formalisms, and at each level 

some specific formalism is employed to interpret its upper levels and can be most 

readable for a specific group of readers. 
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Since, ultimately, all semantics must be interpreted by a specific natural language and 

interpretation expressed by natural language can be interpreted in more detailed ways 

with the same language, we can assume that there is a level number N in the above 

figure meaning that starting from the Nth level, all the lower levels of interpretation 

formalisms are natural languages. Note that the reader groups may overlap, i.e., there 

are readers (people or machines) who can read and understand multiple levels of 

formalisms. 

According to the nature of human thinking, we have several conclusions about 

semantics: 

Conclusion 1: Any level in the interpretation chain is readable for a human. Any 

formalism is a kind of explicit representation of semantics in human thoughts. People 

create various forms to express the semantics for different goals; therefore people can 

understand any of them, although some of them are understandable only by very few 

people. 

Level 1 Form 1 

Level 2 Form 2 

Level 3 Form 3 

Level N Form N 

…… 

Level N+1 Form N+1 

Level N+2 Form N+2 

Reader Group 1 

Reader Group 2 

Reader Group 3 

Reader Group N 

Reader Group N+1

Reader Group N+2

Semantics 

…… 

Readable for Represent Interpret 

Domain 
 
 

Figure 3-13. A semantics interpretation chain. 
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Conclusion 2: The interpretation chain is infinite. It can grow in both upper direction 

and lower direction along with the creation of new representation forms. 

Conclusion 3: Reader groups are not totally disjoint. Some individuals may be 

familiar with different formalisms.  

Conclusion 4: Machines (computers) can be members of some high level groups, i.e., 

the corresponding forms are readable for machines. The levels readable for machines 

are limited, although they may extend to lower levels along with the advancing of 

machine design. 

Our work will focus on machine readable formalisms and semantics. 

 

3.1.2.2 Structural Semantics and Intensional Semantics 

In information systems, the semantics of information is implied by data. A data item 

has a specific representation formalism, such as number, text, graph, etc. Two aspects 

should be considered for any data: structure and content. 

A specific representation formalism has a set of structural rules that define what 

elements can be contained in this formalism system, how the elements will be 

combined to form valid and complex elements, and how to interpret the meaning of 

an element or a combined result with both their structures and contents. From this 

view, we divide the semantics of data into two categories: structural semantics and 

intensional semantics. 

A. Structural Semantics 

Let’s take a look at a XML document example: 
<AutomobileCompany name = “AutoLondon”> 
    <Car ID=“001”> 
        <Name>Audi</Name> 
        <Price>500.00</Price> 
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    </Car> 
    <Car ID=”002”> 
        <Name>Benz</Name> 
        <Price>800.00</Price> 
    </Car> 
</AutomobileCompany> 

 

There are several structural rules constraining the format of a valid XML document, 

for example, 

(1) It contains tags defined by users. A tag is a string composed of letters and 

numbers. 

(2) Tags are included in “<” and “>” brackets.  

(3) Tags should appear in pairs. The latter one of a pair must have one symbol “/” 

before it. 

(4) Under <AutomobileCompany> tag, it is allowed to have one or more <Car> 

tag pairs. Under <Car> tag, only one <Name> and one <Price> tag are allowed 

to appear. 

(5) <AutomobileCompany> tag has an attribute called “name” which value is a 

string. 

(6) … 

According to the nature of XML documents and the goal of this document, many 

other rules can be derived. These rules define what elements are contained in this 

document and how they can be validly combined. This is a kind of structural 

semantics that is used to describe its structure or its “looking”. In many research 

contexts, these rules are called “syntax”. Here we didn’t touch any real-world related 

meaning of the elements such as “AutomobileCompnay”, “Car”, or “Price”. 
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Structural semantics can be easily understood by machines. Actually, people can 

construct compiles or parsers for the machines to handle structural semantics. The 

machines can run compiles or parsers and then are able to analyze and validate the 

documents by checking whether there is something in the documents violating the 

rules. In the past several decades, mature theories, methods, and tools have been 

developed to support the manipulation of syntax. 

B. Intensional Semantics 

Intensional semantics is implied by both the data structures and contents. It is much 

more complex than structural semantics, even for humans. Lots of ideas can be 

implicated by a target object, say, a document. For example, in the XML document 

mentioned above, someone who is familiar with XML may read it and get some ideas 

like: 

(1) It describes a company that deals with cars. 

(2) The name of the company is “AutoLondon”. 

(3) The company has a car with ID 001. Its name is “Ford” and its price is 500.00. 

(4) … 

There are several interesting things in “the meanings of something”. First of all, these 

meanings can be guessed and understood by humans, but they are unreachable for 

machines. Today’s computers still cannot really understand anything. They can only 

deal with binary data according to the rules designed by developers. They really have 

no idea about what they are doing. 

Second, “the meaning of something” has two levels: one is the schema level and the 

other one is the instance level. We may discover the schema level first (here we go 

beyond the “rules” of combining these elements to try to discover the “meaning” of 

these elements), such as a company that has a name deals with cars and each car in 
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that company has ID, name, and price. In much of the literature, such information is 

also called “meta-data”. Meta-data is a type of data where something being described 

is data. Or, as it is often put, meta-data is data about data. A strict definition of 

meta-data is: meta-data is data associated with objects which relieves their potential 

users of having full advance knowledge of their existence or characteristics [Dempsey 

and Heery, 1997]. Meta-data is used to facilitate the understanding, use, and 

management of data. 

Based on the understanding of the schema or meta-data, we can refer to concrete data 

to get more knowledge, for example, about the fact that a company named 

“AutoLondon” has one car with ID 001, named “Ford”, and priced at 500.00. Another 

direction is possible and that is to observe the concrete instances, then extract the 

schema to gain an overall knowledge about a concerned topic. 

Finally, human understandings are not always correct, and in many cases rather vague 

due to the incomplete information. For instance, some details may be omitted in the 

document, leading to difficulty in understanding it. Significant ambiguity will affect 

our knowledge resulting from our guessing. For example, does the “001” car 

represents one individual car or a type of cars? Is the price for purchasing or renting 

the car? Is the price in USD or CAD? There is no way to confirm these questions 

unless richer information is provided to reveal the semantics of that data. 

 

3.1.2.3 Source of Semantics 

The implicit intensional semantics of information can be elicited from three major 

sources: the observations of readers, the designer’s knowledge, and the applications. 

(1) Observation of readers 
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Some experienced professionals who are trying to guess the information semantics are 

able to analyze the underlying data based on their domain knowledge and 

experiences. For example, when someone sees the element “Price” he can infer that, 

as a usual case, it is a price before tax applied. Unfortunately, such semantics is just a 

kind of “guessing result” and is not definitely correct. However, we often adopt it as a 

major source since it is the most available and least costly way. 

(2) Designer’s knowledge 

The designer who creates the above XML document knows exactly the meaning of 

each of the data elements. For example, the tag “Price” is for sale, not for renting; the 

tag “Name” is for a type, not for an individual car, etc. Documents describing the 

designer’s ideas can act as another form of a “designer’s knowledge” when the 

designer is not available. Problems of this type of source are that the designer may be 

unavailable, or may forget the knowledge after a long time, and the documents may 

be incorrect, incomplete, or outdated. All of these situations have a negative impact 

on semantics elicitation. 

(3) Applications 

Applications, or simply, software programs, are designed to manipulate the data in 

meaningful ways. People can get knowledge on semantics by reading the programs 

and observing their execution (e.g., what input they accept, how they act after that, 

and what output they generate). For instance, the following pseudo code (which can 

be translated into a real program) handles the XML document with clear goals: 
if there is a tag <Price> then 

  output “The selling price is ” + string between tags <Price> and </Price> 

  return the string to somebody who is asking for the selling price 

end if 

if there is somebody inquiring price for renting then 

  reply “There is no required information.” 

end if 
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It is an example of a common practice: data semantics is revealed by the business 

logic. Since the program can handle the tags and strings correctly, we say that the 

machine is able to understand the semantics of the data when it is running the 

program. However, strictly speaking, the machine is still unaware of what “Price” is 

and what “500.00” is. At least it is true for all computers in the contemporary era. 

Computers cannot understand anything—they just do binary computations according 

to pre-designed principles. They cannot think. Therefore, we need a definition for 

“machine understanding semantics”: if a machine can manipulate some data correctly 

(according to the human’s criteria) with the support of some software application 

systems, we say that the machine can understand the semantics of the data. 

Since data semantics is in fact handled by software applications, theoretically we can 

construct more new applications to deal with any possible semantics, but it is certainly 

a very costly way. If an application is designed and constructed to be flexible, it will 

be able to handle various cases if new semantics descriptions are provided (that 

implies, it “knows” the meaning of different data) without modifying itself or 

requiring new ones and hence save investment. 

Since any program is written by humans, and the processing logics in the programs 

are derived from human thinking, the most original source of any semantics is still the 

designer’s knowledge. However, in most occasions, we just interact with computers 

and applications, and we don’t have the opportunity to interact with their original 

designers. Therefore, we still hold applications in high regard as a major source of 

semantics. 

 

3.1.2.4 Semantics Discovery 

As mentioned in section 3.1.2.1, specific formalisms are required to represent 

semantics. Obviously, semantics that a kind of formalism can represent is limited, and 
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that expressed by a specific representation (e.g., a concrete XML document) is also 

limited. The semantics a reader group can understand from that representation is 

limited, too. One way to enrich semantics and make implicit semantics more explicit 

is adding new elements to a formalism (or data structure), or adding new elements to a 

specific representation (or concrete data). As to the former case, research in this area 

has called the combination of elements that are used to specify various aspects of the 

information a “context” which can serve to describe the concerned information 

[Sciore, et al., 1994 and Stuckenschmidt and Wache, 2000]. At a high level, the term 

“context” is defined as any information that is useful for characterizing the state or the 

activity of an entity or the world in which this entity operates [Dey, et al., 2001]. Any 

information must reside in some context and only after the context is clearly declared 

can we understand the information correctly and exactly. 

Of course, the reader groups need a learning process to understand the new structures 

and new instances. To give an example, if we modify the previous XML document to 

a new version: 
<AutomobileCompany name = “AutoLondon”> 

    <Car ID=”001”> 

        <CarName>Audi 001</CarName> 

        <CarType>Audi A6</CarType> 

        <Price> 

<Selling>20000.00</Selling> 

       <Renting>500.00<Renting> 

</Price> 

    </Car> 

</AutomobileCompany> 

With more elements contained in the schema of this XML document and richer texts 

embedded in the document itself, people now can get a more exact understanding of 

its semantics. For example, the price includes two categories: selling and renting. The 

relevant applications are required to be rewritten to involve more logic to express 

their “understanding” and utilize the new semantics. It can be regarded as a learning 
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process by machines. Only after people understand its semantics and enable 

applications to handle the semantics correctly can we say that the applications 

“understand” the new semantics. 

But there is more. What if we want to know more about the company, such as, is the 

rental price for one year, or one month? Does the selling price contain tax? The 

current version of the document does not provide enough clues for these questions. 

More tags and contents need to be added to it to express these new semantics. 

Let’s have a look at another example where the original data is kept unchanged (in the 

XML example new data is added to the original one to express more semantics), but 

only semantics related information is appended. Suppose we have a sentence stating 

one fact: 
The first topic of Wireless Sensor Networks is a general introduction about this field. 

Based merely on this sentence we have no idea about whether the term “Wireless 

Sensor Networks” is about a speech or a course. If the course option is what the author 

means, adding some description information (in XML-tag style) will be helpful (this 

method is also called “annotation” [Ovsiannikov, et al., 1998]): 
The first topic of   

<course ID=”ES 695” department=”ECE” level=”Graduate”> 

Wireless Sensor Networks 

</course>  

is a general introduction about this field. 

An application designed for the purpose of course management knows the semantics 

of the tags, the extra information, and the term itself, therefore it can handle the 

course “Wireless Sensor Networks” perfectly. What if we want to know more about 

“topic”, or “general introduction” in the original sentence? What if we want to know 

more about the “ECE Department”, or the “Graduate Level”? There is no doubt that 

more information is required to be added to help discover the new semantics. In short, 

semantics discovery is an infinite process of digging meanings from the raw data. 
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3.1.3  Semantic Heterogeneity 

Semantic heterogeneity occurs when the same real world entity, modeled by two or 

more people, does not have the same modeling or representation [Hess and Iochpe, 

2004]. Since the models or representations are independently developed, they often 

have different structures, terminologies, or even interpretations, presenting an obvious 

obstacle for interoperation of the models in a semantically reasonable way. 

Some attempts have been made to characterize information heterogeneity in terms of 

conflicts that can occur on the structural and the semantic level. Research to date has 

identified a number of factors contributing to information heterogeneity, irrespective 

of the subject domain. One of the latest and most complete classifications of different 

kinds of conflicts can be found in [Wache, 2003].  

According to the classification proposed in [Goh, 1997], there are three types, each 

with further subdivisions, which are schematic, semantic and intensional 

heterogeneities (that can result in data conflicts). A detailed list of the three types is 

shown below: 

 Schematic 

 Data type, the most obvious one being numbers as integers or as strings. 

 Labeling, only the strings of the concept names differ but not the 

definition. This also includes labeling of attributes and their values. 

 Aggregation, e.g. organizing companies by locations or type of 

industries. 

 Generalization, e.g. an entity type Employee in one model and in another, 

there are Faculty and Staff. 
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 Semantic 

 Naming, includes problems with synonyms (same concept with different 

terms, e.g. maize and corn) and homonyms (same term with different 

semantics, e.g. worm as animal, as muscle under tongue and as infection 

in computers) of concepts and their properties. 

 Scaling and unit. Scaling: one system with possible values white, pink, 

red and the other uses the full range of RGB; units: metric and imperial 

system. 

 Confounding, a concept that is the same, but in reality different; 

primarily has an effect on the attribute values, like 

latestMeasuredTemperature, which does not refer to one and the same 

over time. 

 Intensional 

 Domain: when two systems represent different knowledge. For example, 

one can model a flower being composed of a petal, leaves and so forth 

from a biology perspective, but also from a utilitarian perspective 

(sellable, the related logistics system). 

 Integrity constraint: the identifier in one model may not suffice for 

another, for example one animal taxonomic model uses an 

(automatically generated and assigned) ID number to identify each 

instance, whereas another system assumes each animal has a distinct 

name. 

Heterogeneity is also referred to as mismatch in some literature. The mismatches can 

be distinguished at two levels: the language level and the model level [Klein, 2001]. 

The language level is related to the representation of the ontologies, i.e., different 

constructs, syntax, and semantics of the languages. Mismatches at the language level 



82 
 

 

are those between the mechanisms to define concepts, relations, and so on. The model 

level, also called ontology level, is a difference in the way the domain is modeled. 

The distinction between these two levels of differences is often made. In [Kitakami, et 

al., 1996] and [Visser, et al., 1997] they are called non-semantic and semantic 

differences, respectively. 

The following is a framework of different types of mismatches that appear at each of 

the two levels. 

 Language level mismatches. Mismatches at the language level occur when 

ontologies written in different ontology languages are being integrated. 

Chalupsky defines mismatches in syntax and expressivity [Chalupsky, 2000]. 

They can be further distinguished into four types: 

 Syntax. Different ontology languages often use different syntaxes in terms of 

how the language constructs can be validly connected. For example, in RDF 

Schema the concept “Human” is defined as <rdfs:Class ID=”Human”> and 

in LOOM the expression (defconcept Human) is used to define the same 

class. 

 Logical representation. Different logics can be used to represent the same 

semantics in the ontologies. For example, in some languages it is possible to 

state explicitly that two classes are disjointed (e.g., disjoint A B), whereas it 

is necessary to use negation in subclass statements (e.g., A subclass-of 

(NOT B), B subclass-of (NOT A)) in another language. The point here is 

not whether something can be expressed—the statements are logically 

equivalent—but which language constructs should be used to express 

something. 

 Semantics of primitives (language constructs). Sometimes the same name is 

used for a language construct in two languages, but the semantics may differ. 

For example, the OIL RDF Schema syntax [Broekstra, et al., 2001] interprets 
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multiple <rdfs:domain> statements as the interaction of the arguments, 

whereas RDF Schema interprets it as a union. 

 Language expressivity. This difference implies that some languages are able 

to express things that are not expressible in other languages. For example, 

some languages have constructs to express negation, sets, or defaults, but 

others do not. 

 Ontology level mismatches. Mismatches at the ontology or model level happen 

when two or more ontologies that describe (partly) overlapping domains are 

combined. These mismatches may occur when the ontologies are written in the 

same language, as well as when they use different languages. 

 Conceptualization. Visser et al. [Visser, et al., 1997] defines the 

conceptualization mismatch as a difference in the way a domain is interpreted 

(conceptualized), which results in different ontological concepts or different 

relationships between those concepts due to different interests. For instance, 

in the education domain one may model from the university’s perspective and 

another one concerns the professor’s perspective, thus different concepts sets 

will be derived. [Visser, et al., 1997] makes a distinction between mismatches 

in the conceptualization and explication of the ontologies. An explication 

mismatch is a difference in the way the (same) conceptualization is specified. 

The following ontology level mismatches are categorized as explication 

mismatches by Visser et al. 

 Modeling paradigm. This mismatch refers to the fact that different 

paradigms can be used to represent concepts such as time, action, plans, 

etc. For example, one model might use temporal representations based on 

interval logic while another might use a representation based on a point 

[Chalupsky, 2000]. 

 Concept description. This type of differences is called modeling 
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conventions in [Chalupsky, 2000]. Several choices can be made for the 

modeling of concepts in the ontology. For example, the way in which a 

hierarchy is built may be different. Considering the modeling of scientific 

and non-scientific publications, a dissertation can be modeled as 

publication scientific publication book dissertation, or as 

publication book scientific book dissertation, or even as a 

sub-concept of both book and scientific publication. 

 Synonym terms. Concepts may be represented by different names. A 

trivial example is the use of the term “car” in one ontology and the term 

“automobile” in another. This type of problem is also called a term 

mismatch [Visser, et al., 1997]. 

 Homonym terms. The meaning of a term is different in another context. 

For example, the term “conductor” has a different meaning in a music 

domain than in an electric engineering domain. Visser et al. also call this 

a concept mismatch. 

 Encoding. Values in the ontologies may be encoded in different formats. 

For example, a date may be represented as “dd/mm/yyyy” or as 

“mm-dd-yy”, distance may be described in miles or kilometers, etc. To 

solve these mismatches, a transformation step or wrapper is usually 

required to eliminate the difference. 

 Scope. Wiederhold [Wiederhold, 1994] describes possible differences in the 

scope of concepts, which is a type of conceptual mismatch. It refers to the 

fact that two concepts seem to be identical but do not have exactly the same 

instances, although these intersect. An example is the class “employee”; 

several administrations use slightly different concepts of employee. 

 Model coverage and granularity. This is a mismatch in the part of the domain 

that is covered by the ontology, or the level of detail to which that domain is 
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modeled. An example presented in [Chalupsky, 2000] is about cars: one 

ontology might model cars but not trucks, and another one might represent 

trucks but only classify them into a few categories, while a third one might 

make very fine-grained distinctions between types of trucks based on their 

general physical structure, weight, purpose, etc. 

The ontology level mismatches cannot be solved easily. For instance, it is difficult to 

find the terms that need to be aligned. This task is mostly done by hand [Noy and 

Musen, 2000], which requires knowledge and the decisions of a domain expert. 

Therefore, it is unrealistic to hope that mapping at the ontology level could be 

performed completely automatically. 

Information heterogeneity has a direct impact on the interoperability of multiple 

information systems. Researchers and developers have been working on 

interoperability issues for many years. The following Figure 3-5 shows one 

perspective on resolving heterogeneity to achieve interoperability [Sheth, 1998]. 

Focus on the crucial dimension of heterogeneity and corresponding solutions leads to 

different levels of interoperability: system (mainly due to technological differences, 

e.g. differences in hardware, operating systems, and communication systems), syntax, 

structure, and semantics [Hamill, et al., 1997]. 

 

 

 

 

 

 

 

 

Information Heterogeneity 
Semantic Heterogeneity 
Structural, Representational/Schematic Heterogeneity 
Syntactic, Format Heterogeneity 

Semantic Interoperability 
Structural Interoperability 
Syntactic Interoperability 

System Heterogeneity 
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  Digital Media Repository Management Systems 
  Database Management Systems (heterogeneity of 
DBMS, data models, system capabilities such as 
concurrency control and recovery) 
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  Operating System (heterogeneity of file systems, 
naming, file types, operation, transaction support, 
IPC) 
  Hardware/System (heterogeneity of instruction set, 
data representation/coding) 

System Interoperability 

Figure 3-14. A perspective on resolving heterogeneity to achieve interoperability [Hamill, et al., 
1997]. 
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3.1.4  Semantic Integration 

3.1.4.1 Semantic Integration Fundamentals 

Semantic integration has been a hot research topic for many years. One of its goals is 

to support interoperability among information systems. Multiple descriptions about 

the term “semantic integration” have been developed. 

Taking human conversation as an example, the heart of the semantic integration 

problem is how to tell when two statements are about the same subject [Newcomb, 

2003]. In some communities, this is known as the co-referencing problem. 

[Newcomb, 2003] proposes a methodology for semantic integration. The problem that 

the methodology addresses is the combining of multiple independently conceived 

representations of networks of subjects and relationships, with their separate, partially 

redundant proxies for the same subjects, in such a way that for each subject there is 

only one proxy, but no information has been lost. In this statement a proxy can be 

understood as a concrete representation of a subject. The methodology’s definition of 

semantic integration is subject proxy uniqueness. 

According to Vetere et al. [Vetere and Lenzerini, 2005], semantic integration has to 

resort to conceptual mappings that make different data/process descriptions 

equivalent, either pair-wise or with respect to some (partial) unifying ontology. 

The conceptual mappings can be [Vetere and Lenzerini, 2005]: 

 Any kind of XML transformation rule (e.g. XSLT 13); 

 Specific assertions of ontology languages (e.g. OWL’s sameClassOf); 

 Named views in database federations. 

                                                        
13 http://www.w3.org/TR/xslt 
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In general, schemas of various information sources are heterogeneous, i.e. 

semantically related concepts are captured by different local schemas in different 

ways, e.g. using different names or different structures. Mendling et al. believed that 

discovering semantic relationships such as equivalence, subsumption, intersection, 

disjointedness, and incompatibility between concepts of local schemas plays a central 

role for semantic integration [Mendling, et al., 2005]. 

Semantic integration is highly domain-dependent. It is widely agreed that domain 

knowledge is extremely crucial for solving the heterogeneities. The domain 

knowledge is also very application-specific. For a complex integration system, it is 

difficult to acquire and use all relevant knowledge. Therefore, usually 

application-specific domain knowledge will be captured and modeled to support the 

integration task. 

 

3.1.4.2 Different Views on Semantic Integration 

In the following we propose a classification for semantic integration. 

A. Structural View 

In the structural view, we focus on the structural semantics of data. This perspective is 

not included in the conventional theory system about semantic integration, but we still 

include it to make the discussion complete. 

(1) Elemental data level 

Semantic integration may take place at various levels. The lower level is the elemental 

data level. As a case, taking the number system into account, the binary data 

“00001110”, decimal number 14, string “14”, and English word “fourteen” are 

different in representation and internal storage, but they refer to the same value 

regardless of what this value refers to. Therefore, they have the same semantics in 
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terms of the value of an elemental data item. Semantic integration at this level 

requires data handlers to identify and maintain such equivalence. Data heterogeneity 

at this level has already been well managed by operation systems, network protocols, 

applications, etc. Therefore, these values can be handled consistently and correctly in 

most occasions. 

(2) Structure level 

The higher level is the structure level. A structure has multiple members possessing 

rich semantic information. It may be an object, a class, a database table, a document, 

etc., in terms of the representation format. Let’s have a look at the previous XML 

document (in section 3.1.2.2), and another relational table: 
CompanyName CarID CarName Price 

AutoLondon 001 Audi 500.00 

People who are familiar with both formats will understand their identical meaning, 

although necessary transformation for the formats is needed when these two 

representations are manipulated by specific applications. In this example, the XML 

schema is by nature equivalent to the relation schema (or the table), i.e., one tag of the 

XML document is equivalent to one column of the table, and one instance block of 

the XML document is structurally equivalent to one row of the table (as shown in 

Figure 3-6), no matter what the elements really mean. Semantic integration at this 

level requires structure handlers to identify and maintain the relationships among the 

representations (both schema and data instance) in an appropriate way. 

B. Semantic View 

The structural view described above is helpful for understanding semantic integration. 

As far as solving this problem in the computation field, another view, the semantic 

view, is preferable. The semantic view can be further divided into data level, concept 

level, and knowledge level. 

(1) Data level 
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At the data level, we are concerned with the equivalence of data from different 

concepts. Note that it is totally different from the elemental data level described 

earlier because here we take the meaning of the data into consideration. 

At the elemental data level, the information systems may maintain the equivalence of 

“five hundreds” and “500” from different data sources in terms of their value without 

considering their meaning. Things are much more complicated at the data level. As an 

example, if we find two prices from both the XML document and the database table 

with the same number: 500.00, the data level has to determine whether they refer to 

the same money. The answer is not definite. If one is in USD and the other one is in 

CAD, apparently they are not referring to the same money. Note that here we are 

considering the application domains and semantics in the domains. 

Another interesting example is that in some classifying systems, if we have rank 1, 2, 

3, 4, and 5, then 1 is the best one and 5 is the least one. However, in some other 

systems where rank 1, 2, 3, 4, and 5 are also employed, 5 is the best one and 1 is the 

least one. Therefore, when we get the same number from two classifying systems 

(from the elementary data view the two numbers are identical), things will go wrong 

if we regard them as the same rank. Even if we use the same order for the numbers, 

what if one system has 5 ranking numbers but another one has only 3 ranking 

500.00 Audi 001 AutoLondon 

PriceCarNameCarIDCompanyName

<AutomobileCompany name = “AutoLondon”> 

  <Car ID=”001”> 

    <Name>Audi</Name> 

    <Price>500.00</Price> 

  </Car> 

Figure 3-15. Structural mapping between XML document and relational table. 
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numbers? The same number from two systems may imply the similar ranking position 

but not exactly the same position, therefore inconsistency appears. 

The most complicated case may be the following one: two systems use the same way 

to describe data in the same domain, but the same data is still referring to different 

entities. For example, it is possible that we have a company “AutoLondon” from the 

XML document and a company “AutoLondon” from the database table. Even the 

mapping is one to one and the company name is totally identical, it is still possible 

that they represent different companies, e.g., one company from London in Canada 

and one from London in the UK. Therefore, we cannot integrate these two items 

simply. In distributed information retrieving, if we retrieve names of companies that 

sell cars from multiple information sources and get the two results, we should not 

merge them into one item, otherwise inconsistency will occur. This example shows 

that there is almost no way to distinguish them by the computers themselves without 

any human intervention if there is no sufficient context knowledge.  

(2) Concept level 

The concept level focuses on the mappings between different information 

representation formalisms according to their meaning in terms of concept references. 

For instance, we described the case of car-selling companies earlier, where an XML 

document and a database table are used to describe the same facts for different 

applications. A concept mapping determines that the tag <AutomobileCompany> and 

its property “name” in XML are mapped to the column “CompanyName”, i.e., they 

refer to the same unique subject. Therefore, if we find one company with a specific 

name, say, A, in the XML document and one row in the table which value in the 

column “CompanyName” is also A, then we can infer that they are implying the same 

company. Note that here we have an assumption about the uniqueness of the company 

names. If this assumption does not hold, things will go wrong if we regard two 

companies with the same name as the same company. 
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The concept level looks similar to the structure level, but there are differences. As for 

the car-selling example, the structure level just defines that one column in the table 

can be matched to one tag in the XML. Only the concept level can determine which 

column is matching to which tag and why, based on the domain semantics, as 

depicted in Figure 3-6. 

As regards the XML document mentioned in 3.1.2.4, since there is no way to map the 

tags <Price>, <Selling>, and <Renting> to anything in the relational table, the 

integration of price related information is impossible unless new columns are added to 

this table. 

Two facts are important since they can cause confusion: the same name is used for 

different concepts and different names are used for the same concept. For instance, 

people often use “Address” and “Location” in different applications, but in most 

instances they are usually the same thing. Besides, “Category” may be used 

differently to describe whether a course is for undergraduate students, graduate 

students, or both of them, whereas in other applications, it may be used to describe 

whether a course is project-based, thesis-based, or exam-based. 

(3) Knowledge level 

The highest level is the knowledge level. At this level, people do not care about the 

formal representation or data structure of knowledge, but only the knowledge itself. 

Since any knowledge outside of human thought needs some kind of representing 

formalisms (in the human brain, knowledge may be stored in a specific structure 

which is still unknown today. It is not taken into account in the computation field), so 

let’s suppose that we use natural language to specify knowledge. For example, 

application A generates “today’s weather conditions”, and if application B can 

understand A’s knowledge, B will go to fetch “today’s weather conditions” from A 

and display it to the public in some visual way. Here “today’s weather conditions” is 

high level knowledge with rich semantics. It is easy for people to imagine and reason. 
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However, it is hard for computers to understand unless very definite formal 

specifications are provided, e.g., the weather can be specified by wind, temperature, 

and rain conditions; the wind condition can be specified by wind speed and wind 

direction, and the wind speed can be specified by how many miles per hour, etc. An 

ideal semantic integration should provide such a knowledge-level view to humans. 

However, this is really very hard to achieve. Note that undoubtedly, computer 

readable data representations or data structures are definitely required if we intend to 

develop applications to achieve this objective to some degree. 

 

3.1.4.3 Conceptual Difference of Several Terms 

Three terms about integration are used in various situations: data integration, 

information integration, and semantic integration. In the most general sense, they can 

be regarded as referring to the same subject. However, they can be further 

distinguished in different communities. 

Data integration and information integration are basically the same thing. The term 

“Data Integration” is most often used in database and data-warehouse applications, 

focusing on merging multiple data sources (databases) into an integrated one, 

including database schemas and data contents, e.g., tables and rows in tables in 

relational databases [Hai, 2005]. It concerns the data itself, and the integration result 

is usually one physically independent object, such as one database. In some research, 

no final integrated data is created but only mappings between schemas are created and 

maintained [Rahm and Bernstein, 2001]. 

One of the major data manipulating mechanisms used in data integration is the 

calculation-based comparison. For example, in the following tables among which A, B 

are inputs of integration and C is the result, if we have mappings A.Name = B.Type, 

A.Price = B.Selling-Price, (A. Name, B.Type) = C.Car-Type, and (A.Price, 
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B.Selling-Price) = C.Car-Price, then based on an equivalence comparison (more 

complex calculations may be necessary in other cases) we will know that Ford is 

redundant in A and B, therefore only one of them is kept in the result C. Moreover, 

Audi and BMW should be added to the result C.  
Table A 

Name Price 

Audi 10000.00 

Ford 15000.00 

 

Table B 

Type Selling-Price 

BMW 20000.00 

Ford 15000.00 

 

Table C 

Car-Type Car-Price 

BMW 20000.00 

Ford 15000.00 

Audi 10000.00 

 

Sometimes the term “Information Integration” is used separately if one tries to 

emphasize the intended meaning of the data [Doan, et al., 2003] (a commonly used 

definition says information is data with meaning), so we shift to the concept of 

semantic integration. Today, semantic integration is mainly focusing on integrating 

multiple information sources and presenting users with a logically unique and unified 

“information source”, while keeping the source still separate and no physically 

integrated schema/ontology is created. One of the often used manipulation 

mechanisms in semantic integration is logical-based reasoning. For example, if we 

have a knowledge item “Apple is-a-kind-of Fruit” in source A and another item “Fruit 

is-a-kind-of Plant” in source B, then the integrated result may contain an item “Apple 

is-a-kind-of Plant” that is derived by logical reasoning. This example also shows that 

logical reasoning is one of the important mechanisms used in semantic integration. 

What we need to clarify is that we cannot entirely separate these various terms. 

Actually, they are closely related to each other. Since data (information) integration 
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also needs the support of data semantics, we can regard it as a special case of 

semantic integration, especially in the database community. On the other hand, many 

methods and systems that have been explored over the past many years on data 

integration are also helpful for the research of semantic integration. For instance, 

schema matching developed in data integration now plays an important role in 

semantic integration. 

 

3.1.4.4 Semantic Integration at the Application Level 

When information systems (computer applications) need to collaborate and exchange 

information, semantic integration at the application level should be considered to 

support the task. 

The key concern in semantic integration is how to make different applications 

understand, communicate with, and cooperate with each other. From the architectural 

perspective, three kinds of methods can be employed to achieve this goal. 

(1) Pre-designed interface and information flow 

This is fairly common in traditional software development, where a complete concept 

system (may be implicit) is established first, which provides different components of 

the architecture a common understanding for the domain of discourse. Based on the 

shared concepts, the interfaces and information flows for the components are 

thoroughly determined, therefore each component knows exactly what information it 

will receive, who will send it information, what the received information means, what 

information as a result should be sent out by itself after it does some operations on the 

received information according to its internal business logic, and whom to send. 
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The following figure shows an architecture example, where each component is an 

executable unit (with the necessary supporting environment) such as class, 

sub-procedure, program package, Web Service, or even independent application. 

In such architecture, remarkable human intervention is required when knowledge and 

business are subject to change. Data structures may be re-defined, interfaces and 

information flows may be modified, programs may be rewritten or new programs 

need to be added. 

(2) Interact with standard interfaces 

This is a popular method in today’s software development. A typical example is Web 

Service. In such architecture, a “central” component provides specific services 

through standardized interfaces. The service is designed based on pre-defined rules 

and requirements. It does not care who will use the service and how they will use it. 

Other components know exactly what the services mean, the semantics of the 

exchanged information, and the definitions of the interfaces, so they can access the 

services via standard calls, and get information returned that they need. In some cases, 

other components may need to access a registration center to discover the 

characteristics of the services (like looking up telephone numbers from the yellow 

pages). The following is an example of this architecture: 

A B 

C 
D 

E 

Figure 3-16. Pre-designed interface and information flow. 
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In such architecture, components can join or exit freely, which will never affect the 

functionality of the entire system as long as the services keep working. Human 

intervention can be reduced significantly. Only configuration specifications for the 

service side (server) and parameter settings on the accessing side (client) are required 

(here we do not consider the workload of developing the client components 

themselves). Any change in one client component will never have any impact on 

others. Flexibility and extensibility of the whole system are well supported. 

(3) Establish interaction between anonymous components 

This is an ideal status. In this architecture, no predefined interfaces and information 

flows are required. The system works based on its member components automatically 

finding other services, understanding them, and making use of them. In the following 

sample architecture, there is no central role and the curved arrows represent automatic 

interactions among components without human intervention. For example, an 

application needs to find the lowest price for a specific type of car for a customer 

through the Internet, and it will try to contact websites that offer the price information 

(the websites are changing, e.g. new ones coming and old ones stopping running), 

gather information, sort them, then determine the result and return it to the customer. 

This scenario depends heavily on semantic descriptions provided for each system’s 

information. The interactions occur in an arbitrary manner. 

Service 

A 

D 

C 

B 

Figure 3-17. Interact with standard interfaces. 
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It looks like a kind of peer-to-peer system but it's not the same. In a typical 

peer-to-peer system, the interfaces and semantics of information exchanged among 

peers are strictly determined before the system starts working. What makes such 

systems flexible is that they allow any peer to join freely to provide service or exit 

freely at any time without crashing the systems. However, what we emphasize in a 

semantic integration problem is that there is no pre-defined interface and information 

semantics. 

Actually, to make such systems work, initial human interventions are still required, 

but it can be minimized. For example, if A needs to interact with B, only very basic 

information like the IP address and port number of B should be provided by 

developers or users. Then, A will intelligently discover the semantics of the services 

provided by B, learn the manner to communicate with B, and cooperate with B to 

carry out some tasks. Note that in this case some common agreements are still 

necessary for the components to understand each other, such as some basic definitions 

for the concepts and business logics in a specific domain. 

The mechanism discussed above looks like UDDI 14 . However, there are still 

differences. Traditional UDDI technology focuses on a standard interface definition. 

From the definition the applications can only get to know how to invoke a service. 

The semantics of the service itself, the invoking parameters, and the returned values 

                                                        
14 http://www.uddi.org/pubs/uddi_v3.htm 

A 

B 

E 

C 

D 

Figure 3-18. Establish interaction between anonymous components. 
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remain unaware for the applications. Human interventions are required to interpret the 

service and develop applications that really “understand” the semantics. 

The interactions between applications require a supporting environment, which tries 

to eliminate semantic conflicts, facilitate converting the information with semantics 

outside of the applications and minimize the possible modification to them. From the 

viewpoint of implementation, we have to develop a semantic integration mechanism 

that is accessible for all applications, as shown in the following figure: 

The rectangle between A and B acts as a translator to execute the necessary 

conversion for the input and output of A and B based on their semantics. The simplest 

case is, if A output speed data in Miles/Hour, and B can only receive a speed data in 

Kilometers/Hour, then the translator will do the calculation on the exchanged data to 

integrate semantics of A and B. Both A and B don’t need any modification to 

themselves. 

 

3.1.4.5 Information Context and Semantic Integration 

Context plays an important role in information exchange and semantic integration. 

According to the American Heritage Dictionary, context is (1) the part of a written or 

spoken statement in which a word or passage at issue occurs and that often specifies 

its meaning; (2) the circumstances or situations in which a particular event occurs. 

Semantic Integration 
Infrastructure 

D B A C 

Figure 3-19. Infrastructure for semantic integration. 
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Context information [Goh, et al., 1994] of a subject contains information concerning 

its meaning made by the person or organization owning this subject, and provides the 

basis for determining the relationships between the subject and the real world aspects 

it describes. In most cases, the context information is given only implicitly, i.e., it is in 

the minds of the responsible designer, is specified in textual documentations not 

available externally, or is reflected in the local applications operating on the 

corresponding information [Bornhövd, 1998]. The context information is usually lost 

when information is exchanged across organizational boundaries, and thus, should be 

made available explicitly as some kind of meta-data. 

Therefore, when processing specific information, the statements we make are usually 

imprecise and they can become correct and meaningful only if they are understood 

with reference to an underlying context which embodies a number of hidden 

assumptions. This anomaly is amplified in databases due to the gross simplifications 

that were made in creating a database schema. For example, a database may contain 

the schema  

  Employee 

Name: string 

Salary: decimal 

and a record (Tom, 2000). Without explaining what “2000” means (the attribute name 

“Salary” provides some semantics but not enough), e.g., what currency and 

scale-factor is used, what is the periodicity (daily, weekly, or monthly wage?), or 

what constitutes the person’s salary (does it include year-end bonuses? What about 

the overtime pay?), we cannot get the accurate and correct understanding about this 

number. 

In information systems, the context of information can be: 

 Broad sense: anything other than the concept itself can be its context. For 

example, in a semantic network, all elements other than the concept consist of 
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its context. In this sense, if we have two representations r1 and r2 but don't 

know their semantic relationship, context may provide some help. For instance, 

assuming that we know their context c1 and c2, and we can understand c1 and c2, 

it is possible to derive some semantic relationships between r1 and r2. For 

example, using a rule “if the contexts of two representations are equivalent, 

then the two concepts are possibly equivalent”, we can infer that r1 and r2 are 

equivalent. 

 Narrow sense: a specific structure that provides an environment to enrich the 

semantics of a concept. For example, two money amounts: 500 and 500 cannot 

be determined equivalent to each other with merely the number. Given that we 

established context for them: 

A. 500 (context: currency = USD scale = dollar) 

B. 500 (context: currency = CAD scale = cent) 

we know that A and B are not equivalent. Differently, given that we have the 

following context: 

C. 500 (context: currency = USD scale = dollar) 

D. 550 (context: currency = CAD scale = dollar) 

we know that C and D refer to the same money (assuming that the exchange 

rate between USD and CAD is 1:1.1).  

 

3.1.4.6 Ontology-driven Semantic Integration 

In chapter 2 we presented some descriptions for ontology-driven semantic integration 

appearing in literature. In this section we further clarify this term. 

The term “ontology-driven semantic integration” is often mentioned together with 

another term “ontology integration”. In the ontology-related research, the term 

“ontology integration” means anything ranging from combining, merging, using, 

mapping, matching, aligning, extending, approximating, unifying, and more. 
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Sometimes these terms are used in an interchangeable manner as if all are synonyms. 

Actually there are minor differences between these terms if we dig deeply into their 

meanings. One common point for these terms is that all of them specify some kind of 

actions or operations on a set of available ontologies. In other words, they focus on 

the ontologies themselves. As a simplified understanding, ontology integration can be 

viewed as a process of building a new ontology reusing other available ontologies. To 

achieve this goal, the relationships such as equivalence and specialization between 

concepts within different ontologies should be identified by mapping, matching, or 

aligning. 

Ontology-driven semantic integration focuses on semantic integration but uses 

ontologies as a vehicle of information semantics. An ontology can work as a vehicle 

since it specifies the semantics through certain structures under a given ontological 

commitment in a formal and explicit manner. Ontology-driven semantic integration is 

a mechanism to integrate information at the semantic level using the semantics carried 

by ontologies. Its purpose is to integrate information instead of integrating the 

ontologies. It is true that to achieve the integration some concepts and methodologies 

applied in ontology integration should be adopted, such as mapping, matching, or 

aligning the concepts. 

There is one example that can show their difference well. Assuming that there are two 

ladders, one can find various ways to connect them into a higher one. This is like 

ontology integration. It is assumed that one needs to climb to the roof of a house and 

there are two ladders which heights are just half of the height of the house. Now the 

purpose is to climb to the roof, not connecting the ladders. But one needs to connect 

the ladders before the purpose can be achieved. Here the ladders are the vehicle for 

the purpose. The purpose is not connecting ladders but one still needs to use some 

methods to connect them. This is like ontology-driven semantic integration. 
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3.2 A Framework for Semantic Relationships 

In the research of ontology integration, the term “semantic relationship” has two 

meanings, one is the relationships between concepts within an ontology that specify 

the semantics of concepts, e.g., Teacher instructs Course, and the other is the 

relationship between elements from different ontologies, e.g., Faculty in Ontology 1 is 

equivalent to Professor in Ontology 2. In this research we take the second meaning. 

A framework about what types of semantic relationships there are between different 

ontologies is necessary to design the semantic integration mechanism. In the 

following we examine two proposals. 

[Li, et al., 2005] establishes a framework for semantic relationships based on concepts 

and their properties. In the ontology context, a concept has a set of properties that 

describe its characteristics, and usually has an identifier property that distinguishes 

each instance from others. It is feasible to compare two concepts by looking at the 

identifiers as well as other properties. 

[Li, et al., 2005] establishes three types of mutually exclusive semantic relationships 

between existing concepts from different ontologies. We assume that ontology Oi and 

Oj are in the same domain (i, j ∈ N, where N is the set of natural numbers). Ci(Oi) 

denotes the set of all concepts within Oi. ci and cj are two concepts from the two 

ontologies, ci ∈Ci(Oi) and cj where cj ∈ Cj(Oj). 

Equivalent: two concepts are semantically equivalent, if ∃ ci, cj, s.t. ci ∼ cj. Namely, 

these two concepts: (1) have the same denotation names which have the same 

meaning; (2) are synonyms (two different words that can be interchanged in a 

context); or (3) their properties are the same or largely overlap. 

Inclusive: two concepts are semantically inclusive, if ∃ ci, cj, s.t. ci≤cj (e.g., ci is a 

kind of cj, or, ci is a specialization of cj) or ci ≥cj (e.g., cj is a kind of ci, or ci is a 

generalization of cj). Namely, the properties of one concept are also the properties of 
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the other. The specialization relationship is also referred to as a hyponym, which is a 

word that is more specific than a given word. The generalization relationship is 

referred to as a hypernym, which is a word that is more generic than a given word. 

Disjoint: two concepts are disjoint, if ∃ ci, cj, s.t. ci ∩ cj = ∅. Namely, there is no 

common property between them. 

Bouquet et al. [Bouquet, et al., 2003] identified five types of semantic relationships: 

equivalent to, less general than, more general than, compatible with, and incompatible 

with. 

We adopt a framework proposed in [Rizopoulos, 2004] which includes five types of 

relationships to describe how two concepts from different sources are related to each 

other. The framework takes instances of concepts into consideration. We use Dom(C) 

to denote the domain of a concept C, i.e., the set of all possible valid instances of C. 

The types are: 

(1) Equivalence: Two concepts C1 and C2 are equivalent, denoted as C1 ≡ C2, if and 

only if  

Dom(C1) = Dom(C2). 

(2) Subsumption: Concept C1 is a child concept of C2, i.e. C2 subsumes C1, denoted as 

C1 ⊂ C2, if and only if Dom(C1) ⊂ Dom(C2). 

(3) Intersection: Two concepts C1 and C2 are intersecting, denoted as C1 ∧ C2, if and 

only if 

   Dom(C1) ∩ Dom(C2) ≠ ∅, Dom(C1)⊄ Dom(C2), Dom(C2)⊄ Dom(C1), and ∃C: 

Dom(C1) ∩ Dom(C2) = Dom(C). 

(4) Disjointness: Two concepts C1 and C2 are disjointed, denoted as C1 ∨ C2, if and 

only if 

   Dom(C1) ∩ Dom(C2) = ∅, and ∃C: Dom(C1) ∪ Dom(C2) ⊆ Dom(C). 
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(5) Incompatibility: Two concepts C1 and C2 are incompatible, denoted as C1 ⊥ C2, if 

and only if 

   Dom(C1) ∩Dom(C2) = ∅, ¬∃C: Dom(C1) ∪ Dom(C2) ⊆ Dom(C). 

The framework is defined based on concepts instances. By instance we mean two 

aspects: the first one is the actual entities existing in the world, either physically (e.g., 

a person, a car, or a dog) or abstractly (e.g., weight, height, or time), and the second 

one is the digital representations of the actual entities in information systems. In the 

information system context, what we manipulate is just information represented 

digitally but not the actual entities, therefore we merely focus on the digital 

representations. Furthermore, it is impossible to enumerate all instances of a concept 

(even the digital representations) and compare them with instances of another 

concept. Therefore, we mainly work on the analysis of the representations of the 

concept models that abstract and specify the concepts themselves and try to discover 

relationships among these model representations. 

We focus on the equivalence relationship. At the concept model level, one of the 

challenges to solve is: given different representations of concept models from 

multiple sources (information systems), discover whether they are referring to the 

same concept model. For example, a relational table schema in a relational database is 

a representation of a model, which is modeling a specific concept following the 

relational model theory. In a distributed environment, given some table schemas from 

various sources, they may have different table names, different column numbers and 

different column names, but it is possible that they are representations of the same 

model for a specific concept. This idea is illustrated in Figure 3-1 (section 3.1.1), i.e., 

given C and D, answer the question that whether they both represent the same model 

E (Frame Model 1). 

In Figure 3-1 we illustrate a concept Professor as well as other concepts Student and 

Course associated through some semantic relationships. From a more general point of 

view, in this Figure C, D, and E (each one is an object that we deal with) also have 
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semantic relationships, e.g., C represents E and D represents E, therefore C is 

equivalent to D, or, if we use a name to identify the model representation, Professor 

is equivalent to Prof.. This relationship can be extended to the property level, i.e., 

Professor.Name (denotes the Name property of Professor) is identical to 

Prof..Name, and Professor.Publication is identical to Prof..Papers. Such 

relationships are useful for exchanging information between systems. For instance, 

after identifying that Professor is equivalent to Prof., it is possible to convert an 

instance representation of Professor to the one of Prof. while preserving the 

information semantics. 

Besides the equivalence relationship which is defined at the concept level, another 

type of relationship which is defined at the property level, namely functional 

relationships, is also important for information exchanging while preserving 

semantics. Given two concept model representations R1 and R2 that are representing 

the same concept model, P1 and P2 are property sets from R1 and R2, a functional 

relationship f between P1 and P2 is a function that matches P1’s instance values to P2’s 

instance values through some functional operations, such as mathematical 

computations or string processing. A common example is the person name, for 

example, in a table T1, a column Name represents the full name of a person, but in 

another table T2, two columns First_Name and Last_Name are used to represent the 

full name jointly, therefore a functional relationship is defined for T1 and T2 in the 

form of f: T1.Name = concatenate(T2.First_Name, B.LastName) , where 

concatenate represents a string operation. 

 

3.3 Ontology and Ontological View 

As discussed in chapter 2, ontology-driven semantic integration is one of the solutions 

for the semantic integration problem. The traditional solutions are based on available 

ontologies. Ontology integration can be applied by discovering semantic 
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correspondences among a set of formal ontologies and, sometimes, creating a more 

complete ontology, given that multiple original ontologies are available. However, in 

many domains, especially where lots of traditional information systems have been 

deployed, this prerequisite cannot be met. Instead, the “ontologies” are implied in a 

different format, such as the underlying information models. For example, a 

database-centralized information system may work based on a relational database 

schema. The schema is not a formal ontology but to some extent it specifies the 

semantics of information that it manages. The schema contains multiple tables and 

each table can represent a concept. Accordingly, data rows in a table represent 

instances of the concept. Furthermore, there is no widely-accepted and explicit 

“domain ontology”. The information systems were not built based on the domain 

ontology, even though they are committed to the same domain. 

In these domains, each information model actually reflects a specific conceptual view 

of the domain conceptualization and is implicitly defining an ontological view. In the 

following sections we will provide the formal definition for ontological view. The 

definition is based on the work of [Guarino, 1998] that is necessary for formally 

defining ontology. 

(1) World, Concept, Domain and Possible World 

The World is the entire aggregation of everything that exists anywhere. The existing 

things in the world are perceived as Concepts. A Domain is a portion of the world that 

is related to a problem to be solved. Formally, a domain D is defined as a set of 

concepts that exist in the domain, i.e., D = {C1, C2, …, Cn} where each Ci is a 

concept, 1≤ i ≤ n. 

A state of affairs describes a possible situation about how concepts are related to each 

other. A state of affairs is a certain type of proposition. It is said to obtain or not 

where the proposition is said to be true or false [Menzel, 2008]. A state of affairs is 

said to include a second state of affairs if it is impossible for the former to obtain and 
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the latter to fail to obtain. A state of affairs is said to preclude a second state of affairs 

if it is impossible for them both to obtain. A state of affairs is called maximal if, for 

every other state of affairs, it either includes or precludes that other state of affairs 

[Plantinga and Davidson, 2003 and Tomberlin and van Inwagen, 1985]. A maximal 

state of affairs is also called a possible world. The set of maximal states of affairs of a 

domain is denoted as W, W = {w1, w2, …, wm} where each wi ∈W is a maximal state 

of affairs (possible world). 

For example, we consider two concepts University and Student. One state of affairs is 

Student part-time-study-in University, and another one is Student full-time-study-in 

University. Since each of them precludes another one, i.e., if a student is part-time 

studying in a university, he is not a full-time student; on another hand, if a student is 

full-time studying in a university, he is not a part-time student; they compose two 

possible worlds. 

(2) Domain Space and Conceptual Relation 

A domain space is a structure <D, W>, where D is a domain and W is a set of 

maximal states of affairs of the domain. Given a domain space <D, W>, a conceptual 

relation ρn of arity n is a function from a set W of possible worlds to the set of all 

n-ary relations on D, 2
nD , ρn : W→ 2

nD . 

(3) Conceptualization 

A conceptualization of domain D is defined as an ordered triple C = <D, W, ℜ>, 

where ℜ is a set of conceptual relations on the domain space <D, W>. 

(4) Intended Structure 

For each possible world w∈W, the intended structure of w according to a 

conceptualization C = <D, W, ℜ> is the structure SwC = <D, RwC>, where RwC = 

{ρ(w) | ρ∈ℜ} is the set of extensions (relative to w) of the elements of ℜ. We use SC 
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= {SwC | w∈W} to denote all the intended structures (or intended world structures) of 

C. 

(5) Logical Language 

A logical language L is a composition of a vocabulary V and a set of models of the 

language. V contains constant symbols and predicate symbols. Given a logical 

language L with a vocabulary V, a model of L is a structure <S, I>, where S = <D, R> 

is a world structure and I: V→D∪R is an interpretation function assigning elements 

of D to constant symbols of V, and elements of R to predicate symbols of V. A model 

fixes a particular extensional interpretation of the language. 

Further discussion about logical languages can be found in [Shapiro, 2006]. 

(6) Intensional Interpretation 

An intensional interpretation of a language L with a vocabulary V is a structure <C, 

ℑ>, where C = <D, W, ℜ> is a conceptualization and ℑ: V→D∪ℜ is a function 

assigning elements of D to constant symbols of V, and elements of ℜ to predicate 

symbols of V. This intensional interpretation is called ontological commitment for L, 

denoted as K = <C, ℑ>. If K = <C, ℑ> is an ontological commitment for L, we say 

that L commits to C by means of K, where C is the underlying conceptualization of 

K. K constrains the intensional interpretation of L, i.e., the language is used in an 

intended way for a domain instead of an arbitrary way. 

In definitions (5) and (6), both I and ℑ assign elements of D to constant symbols of V. 

The difference is that I assigns elements of R to predicate symbols of V while ℑ 

assigns elements of ℜ to predicate symbols of V. As an example, we assume that in a 

domain we have concepts Student and Professor and professors can teach students. 

We use S, P to represent the concepts and t to represent the relationship. Here we need 

to view S, P, and t as pure formal symbols to illustrate the conceptualization, 

independent of any specific language. Therefore, we have D = {S, P}, a possible 
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world w = (P t S), a conceptual relation t such that t(w) = (P, S). A world structure SwC 

= <D, RwC> where RwC = {(P, S)}. 

Assuming that we select English as the language L to model the conceptualization, 

and select a vocabulary V containing words {Student, Profess, teach}, then an 

interpretation function of L maps the predicate symbol “teach” to (P, S) (since (P, S) 

is an extension in terms of the specific world w), while the interpretation function of 

ℑ will map the predicate symbol “teach” to t instead of (P, S). In this simple sample it 

seems that t is equivalent to (P, S), but they actually are not. This can be seen from the 

following sample: 

Assuming that we have concepts Professor, Graduate Student and Undergraduate 

Student in the domain and they are shortly denoted as P, GS, and US. The fact is, 

professors can teach both graduate students and undergraduate students, and graduate 

students (as teaching assistances) can teach undergraduate students. Therefore, we 

have one possible world w and RwC = {(P, GS), (P, US), (GS, US)}. In this example 

we see that RwC can be more complex but t remains the same. A similar example from 

the mathematical domain is the interpreting of “square computation”. A model 

interprets it as an extensional relation {(1, 1), (2, 4), (3, 9), …} while an intensional 

interpretation is a formula y = x2. In summary, I maps a predicate symbol to the 

extension of the conceptual relation, and ℑ maps it to the intended meaning of the 

conceptual relation. The difference between I and ℑ can be illustrated with the 

following Figure 3-11: 

 

C1 C2 r 

ps 

ℑ 

(C1, C2) 

I 

Figure 3-20. Difference between I and ℑ. 
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In this figure C1 and C2 are concepts and r is a conceptual relation. r maps a possible 

world to a set of 2-ary relations {(C1, C2)}. ℑ maps a predicate symbol ps to r and I 

maps ps to an extensional relation of r, (C1, C2). In the following discussion, we also 

simply represent I as an arrow from a predicate symbol to a conceptual relation if no 

confusion will arise. 

(7) Compatible 

Given a language L with a vocabulary V and an ontological commitment K = <C, ℑ> 

for L, a model <S, I> is compatible with K if: i) S∈SC; ii) for each constant symbol 

c∈V, I(c) = ℑ(c); iii) there exists a world w such that for each predicate symbol p∈V, 

I maps such predicate into an admittable extension of ℑ(p), i.e. there exists a 

conceptual relation ρ such that ℑ(p) = ρ ∧ ρ (w) = I(p). 

(8) Intended Model 

Given a language L and an ontological commitment K, the set IK(L) of all models of 

L that are compatible with K is called the set of intended models of L according to K. 

To illustrate this definition, we assume that multiple concepts are related to each other 

in a domain. If some concepts can be used as properties of other concepts, they are 

related through the “hasProperty” relationship. Here, just view “hasProperty” as a 

representation for the fact that a concept has a property and does not take it as a 

phrase from a specific language (English). 

To model things, we need to use language. A language is not necessarily a natural 

language that humans use daily such as English; instead, it can be any form, such as 

text, voice, image, gesture, etc. Given a language L, L should be complete, i.e., it can 

model anything for a conceptualization. Since we use language to model things and 

the language is complete, it can be concluded that in the intentional interpretation <C, 

ℑ>, ℑ is complete. That is, the vocabulary V of L is complete and the interpretation is 

complete, i.e., for any concept in C, ℑ assigns a constant symbol in V to it and for any 



111 
 

 

conceptual relation in C, ℑ assigns a predicate symbol to it. On the contrary, for any 

constant symbol in V, ℑ assigns it to a concept and for any predicate symbol in V, ℑ 

assigns it to a conceptual relation. 

Differently, a model of a language does not guarantee the completeness, which means 

that it may just interpret a portion of the domain with a portion of the language. In 

other words, a model of a language assigns some concepts in the domain to some 

constant symbols in V and assigns some conceptual relations to some predicate 

symbols in V. 

We illustrate the discussion above with the following Figure 3-12: 

 

In the above figure, the blue and purple-dashed arrows represent the interpretation 

functions of two models. According to the definition, these two models are 

compatible with K. The black-dashed arrows represent an interpretation function 

which is not compatible with K since it interprets the symbols to concepts and 

Conceptualization C 

Language L 

Vocabulary V 

Interpretation 

function ℑ 

Concept in domain of
discourse D 

Relationship in the
domain of discourse

Interpretation function
in ℑ 

Compatible 
interpretation functions
of the models 

Concept in another
domain 
Relationship in another
domain 

Incompatible 
interpretation functions
to another domain 

Constant symbol in V 

Predicate symbol in V 

Figure 3-21. Difference between interpretation functions from I and ℑ. 
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relationships in another domain. For example, we assume that there is a domain with 

only two concepts Professor and Student (P and S) and a complete language with a 

vocabulary {Stu., Pro.}. An interpretation function may map Stu. to Studio and Pro. 

To Professional, which are two concepts in another domain, therefore this 

interpretation function is incompatible with K. 

Following we prove that given one conceptualization, one language, and one 

ontological commitment, there should be only one set of intended models. 

Lemma 1: Given one conceptualization C = <D, W, ℜ>, one language L with 

vocabulary V, and one ontological commitment K = <C, ℑ>, there is only one set of 

intended models of L according to K. 

Proof: Assuming that we have two sets of intended models IK(L)1 and IK(L)2, IK(L)1 

and IK(L)2 are different. Then, there should be at least one model M which is 

compatible with K, M∈ IK(L)1 but M ∉ IK(L)2. Since M ∈ IK(L)1, according to the 

definition, M is compatible with K. According to the definition again, M should be an 

element of IK(L)2 because IK(L)2 is composed of all models of L that are compatible 

with K. Therefore, such M cannot exist, which means IK(L)1 = IK(L)2. □ 

Following, we prove that for two conceptualizations, if their intended models overlap, 

the overlapped part is the shared concepts and shared properties. To simplify the 

problem, here we only consider concepts and one type of relationships associating 

them with each other: has-property (a concept can be a property of another concept). 

Lemma 2: Given two conceptualizations C1 = <D1, W1, ℜ> and C2 = <D2, W2, ℜ>, 

one language L with vocabulary V, and two ontological commitments K1 = <C1, ℑ1> 

and K2 = <C2, ℑ2>, ℜ contains only one conceptual relation ρ meaning a concept has 

another concept has a property, if the two sets of intended models for C1 and C2 

overlap, then the overlapped part consists of the shared concepts and shared 

properties. 
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Proof: Let D1 = {d1i}, 1 ≤ i ≤ n; D2 = {d2j}, 1 ≤ j ≤ m; IK1(L) = {M1i}, 1 ≤ i ≤ k; 

IK2(L) = {M2j}, 1 ≤ j ≤ l. For each 1 ≤ i ≤ k, M1i = <S1i, I1i>, S1i = <D1, R1i>; for each 

1 ≤ j ≤ l, M2j = <S2j, I2j>, S2j = <D2, R2j>. 

If IK1(L) ∩ IK2(L) ≠ ∅, then 

    IK1(L) ∩ IK2(L) = {M1i} ∩ {M2j} = {<S1i, I1i>}∩{<S2j, I2j>}, 1 ≤ i ≤ k and 1 ≤ j 

≤ l. 

    <S1i> ∩ <S2j> = <D1, R1i> ∩ <D2, R2j> = <D1 ∩ D2, R1i ∩ R2j>.  

Since IK1(L) ∩ IK2(L) ≠ ∅, <S1i> ∩ <S2j> is not empty, i.e., D1 ∩ D2 ≠ ∅ and R1i ∩ 

R2j ≠ ∅. D1 ∩ D2 ≠ ∅ means that there are common concepts in the two 

conceptualizations. Because R1i = {ρ (w) | w∈W1}, R2j = {ρ (w) | w∈W2} and here ρ 

is the has-property conceptual relation, R1i ∩ R2j ≠ ∅ means that there exist relations 

{(da, db) | da∈D1 ∧ da∈D2 ∧ db∈D1 ∧ db∈D2}. That is, each db is a shared property of 

the shared concept da. □ 

For example, we consider a domain where we have concepts P, N, D, T, A, S and 

relationship h, meaning that in this domain Professor can have property Name, 

Degree, Title, Address, and Salary. Now we select English as the language to model 

the domain and we pick a vocabulary V = {Professor, Name, Degree, Title, Address, 

Salary, hasProperty} where hasProperty is a predicate symbol and others are constant 

symbols. So, we have D = {P, N, D, T, A, S} and one conceptual relation ρ = h, 

therefore ℜ = {ρ}. Here we have only one possible world w saying that a professor 

can have these properties. 

A model of the language M1 = <S, I1>, where S = <D, R> and R is the resulting 

relation of applying ρ to w, so R = {(P, N), (P, D), (P, T), (P, A), (P, S)}. Since I1 

assigns elements of R to predicate symbols in V, which is hasProperty, we assume 

that I1 is defined as I1(hasProperty) = {(P, N), (P, D), (P, T)} since this model focuses 

on academic aspects of a professor. Similarly, another model M2 = <S, I2> and I2 is 
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defined as I2(hasProperty) = {((P, N), (P, A), (P, S)} since this model focuses on the 

administrative aspects of a professor. Since both M1 and M2 are compatible with K, 

they are intended models of L according to K and IK(L) = {M1, M2}. In this case, if 

two information systems commit to the same conceptualization and they use the same 

vocabulary, they can agree with each other since the symbols have a consistent 

interpretation. 

Now we assume that we have two conceptualizations, C1 and C2: C1 = <D1, W1, ℜ1>, 

D1 = {P, N, D, T}, w1 corresponds to “Professor has property Degree and Title”, W1 = 

{w1}, and ℜ1 = {h}. Similarly, C2 = <D2, W2, ℜ 2>, D2 = {P, N, A, S}, w2 corresponds 

to “Professor has property Address and Salary”, W2 = {w2}, and ℜ2 = {h}. Given the 

same language L and vocabulary V = { Professor, Degree, Title, Address, Salary, 

hasProperty }, let K1 = <C1, ℑ1>, where ℑ1(Professor) = P, ℑ1(Name) = N, 

ℑ1(Degree) = D, ℑ1(Title) = T, and ℑ1(hasProperty) = h. Similarly, we have K2 = 

<C2, ℑ2> where ℑ2(Professor) = P, ℑ2(Name) = N, ℑ2(Address) = A, ℑ2(Salary) = S, 

and ℑ2(hasProperty) = h. A model M1 = <S1, I1> where S1 = <D1, R1>, R1 = {(P, N), 

(P, D), (P, T)}, I1(Professor) = P, I1(Name) = N, I1(Degree) = D, I1(Title) = T, and 

I1(hasProperty) = {(P, N), (P, D), (P, T)}. Since M1 is the only compatible model 

with K1, so IK1(L) = {M1}. Similarly, we have M2 = <S2, I2> where S2 = <D2, R2>, R2 

= {(P, N), (P, A), (P, S)}, I2(Professor) = P, I2(Name) = N, I2(Address) = A, I2(Salary) 

= S, and I2(hasProperty) = {(P, N), (P, A), (P, S)}. Also, IK2(L) = {M2}. 

Now we look at the intersection of the two sets of intended models.  

  IK1(L) ∩ IK2(L) = {M1} ∩ {M2} = {<S1, I1>} ∩ {<S2, I2>}, 

  <S1> ∩ <S2> = <D1, R1> ∩ <D2, R2> = <{P, N}, {(P, N)}>, 

  I1 ∩ I2 = {I(Professor) = P, I(Name) = N, I(hasProperty) = h}. 

Therefore, IK1(L) ∩ IK2(L) = {<<{P, N}, {(P, N)}>, { I(Professor) = P, I(Name) = N, 

I(hasProperty) = h }>}. The interaction, i.e., the overlap of two sets of intended 



115 
 

 

models, is the shared concepts as well as their shared properties. This means, since the 

two conceptualizations have overlapping, their intended models also overlap and the 

overlapping part consists of the shared concepts and shared properties, i.e., in this part 

the language has the same interpretation. Finally, this guarantees that the two 

conceptualizations can be integrated and it is possible that the information systems 

based on the two conceptualizations can communicate with each other. 

(9) Ontology 

Given a language L with ontological commitment K, an ontology for L is a set of 

axioms designed in a way such that the set of its models approximates as much as 

possible the set of intended models of L according to K. 

The relationships between language, conceptualization, ontological commitment, and 

ontology are illustrated in the following Figure 3-13. 

 

(10) Ontological View 

Set of intended models IK(L) 

 
 

Ontology 

Models M(L) 

Language L 

Conceptualization C 

Commitment  K = <C, ℑ> 

Figure 3-22. Language, conceptualization, ontological commitment, and ontology [Guarino, 1998].
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The above definition leads to an illusion that for one conceptualization there is one 

single ontology. However, this is not true since an "ontology"            

is a human-designed artifact, i.e., a type of model of the abstract conceptualization. 

When different designers are facing the same conceptualization, it is natural that 

multiple models will be created. Each model reflects a specific view of the 

conceptualization. Since the conceptualization can be viewed in various ways, 

actually there is not merely one unique “ontology” for it. Instead, different views of 

the conceptualization may exist. Each view can be formally and explicitly specified 

and we define the corresponding specification as an ontological view. Accordingly, its 

intensional interpretation is called an ontological commitment of view. There can be 

multiple ontological views for a single conceptualization. As for information systems, 

each system implies an ontological view of the conceptualization of the domain that it 

is built for. 

(11) Integrate-able 

Different languages can be employed for the specification of ontological views. 

Further, if two languages are employed for ontological views with partially 

overlapping intended models, it is possible for the corresponding ontological views to 

be semantically integrated. Formally, given one ontological view O with intended 

models IK(L) and another ontological view O' with intended models IK'(L'), O and O' 

are integrate-able (denoted by ◊) if and only if IK(L) overlaps with IK'(L'). That is, 

  (IK(L) ≠ IK'(L')) ∧ (IK(L) ∩ IK'(L') ≠∅) ↔ (O ◊ O') 
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This can be illustrated by the following Figure 3-14: 

(12) Ontological View-driven Semantic Integration 

Ontology view-driven semantic integration is a mechanism to integrate information at 

the semantic level using the semantics carried by ontological views in a way that the 

overlapping parts, which mean the same concept references of the sets of intended 

models of multiple ontological views, are identified, modeled, persisted, and reused 

when performing information access and exchange. 

 

3.4 Research Problem, Assumptions, and 

Hypothesis 

3.4.1  A Case Study 

Let’s suppose that we are working in a domain Education and considering a 

real-world concept: Faculty. As human experts, we know exactly the meaning of the 

concept “Faculty” of a university department (note that here the concept from our 

Intended models IK(L) 

 

Ontological 

View O 

Models M(L) 

Language L 

Conceptualization C 

Commitment K = <C, ℑ> 

Language L’ 

Commitment  K’ = <C, ℑ’> 

Models M(L’) 

 

Ontological 

View O’ 

Intended models IK’(L’) 

Figure 3-23. Different ontological views with different languages which sets of intended 
models overlap. 
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conceptualization is identified by a unique name “Faculty”) in the education domain, 

and we know that each concept has to be described by a set of properties. Let’s 

assume that we determine a set of properties for the concept “Faculty”: {Name, Title, 

Department, University} and the set is complete: no more properties are required. 

Each property has a clear meaning and is identified by a unique name. 

Then, we assume that the information about four professors comes from two 

information systems. One information system is managed by a university UT (shortly 

named S1), and the other one is maintained by the National Department of Education 

which manages many universities (shortly named S2). Information in these systems 

denotes the same concept and reveals different instances (which may overlap) of that 

concept (Faculty), with different and independently adopted representations. In an 

ideal case, the information has been collected, cleaned, validated, normalized, and 

stored in a central information repository which owns a complete definition about 

“Faculty” and all instances, as depicted in the following Figure 3.15. 

 

From this figure we can see that each instance of the concept has a unique identifier in 

the information system in which it resides. The identifiers are not helpful for the 

integration as they can just uniquely identify the entities in a technical sense in each 

ID Name Title Department University 

1 Jack Smith Full Professor CS UT 

2 Jack Smith Full Professor CS UWO 

3 Peter Ken Full Professor EE UWO 

4 Peter Ken Full Professor CS UT 

Central Repository 

ID Name Title 

001 Jack Smith Full Professor 

002 Peter Ken Full Professor 

Information System of UT 

 

Information System of the 

Department of Education 

Faculty 

<people> 
<individual No=”1” name=”Jack Smith” university=”UWO”/> 
<individual No=”2” name=”Peter Ken” university=”UT”> 

</people> 
Professor 

Figure 3-24. An integration scenario. 
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information system but contain no business meanings. In the central repository 

another set of identifiers is assigned. From the central view, faculty with ID 1 and 3 

come from the information system of UT, and faculty with ID 2 and 4 come from the 

information system of the Department of Education, as pointed out by the solid 

arrows. Even they share some identical values under some properties, such as Name 

and Title, we know that they are actually four different faculty instances, as implied 

by the unique IDs in the central repository. 

However, note that information in both S1 and S2 is incomplete. For example, in S1 

information about Department is missing, and information about University is 

implicit. Similarly, in S2 information about Title and Department is missing. 

Assuming that in some way we collected all the necessary information and put that in 

the central repository, we know that the information in this repository is the most 

complete and most accurate. Any answer we can get from this repository is perfect. If 

there is anything we cannot find from this repository, that “thing” actually does not 

exist. 

This is the ideal case of semantic integration. It is more than semantic integration; in a 

sense it is actually a result of “physical” information integration. It can insure the 

most completeness, accuracy, and efficiency for any query issued to it. 

Nevertheless, due to many technical, organizational, practical, legal, or business 

reasons, this solution is actually not applicable. For example, integrating so much 

information from various systems may result in a high cost of labour and performance 

pressure on the central server (such as the storage space and the query processing 

workload). 

Going back, we consider a less ideal case; we don’t maintain all information in a 

physically central repository, but keep it distributed. Then, some knowledge denoting 

the mapping from various information systems to the central repository can be 

discovered and maintained in the central repository. In this case, we define from 
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where and how the required information comes instead of collecting the information 

itself. For example, we can have a piece of knowledge saying that “Faculty” can be a 

combination of “Professor” from S1 and “people” from S2, as depicted by the dashed 

arrows in Figure 3-15. This is a more feasible and applicable solution for the problem 

of information integration. 

  

3.4.2  Problem Specification 

As mentioned before, ontologies can provide much support for semantic integration 

(although this is not fully guaranteed). However, there are many cases where 

organizational, cultural, or infrastructural constraints hinder or even disallow the 

adoption of such semantic artifacts, i.e., there is a lack of explicit ontologies. In fact, 

the applications of ontologies pool mainly in several fields such as chemistry, biology, 

toxicology, environmental science, ecology, geography, etc., where much effort has 

been devoted to building ontologies to organize the rich knowledge in these fields. 

Information systems or integration systems in these fields can be built based on the 

available ontologies. Contrarily, lots of other information systems, such as traditional 

management information systems and E-commerce systems based on databases or flat 

data files, do not have pre-defined explicit ontologies at either domain level or 

application level, although to some extent each of them implements the (abstract and 

invisible) conceptualizations for the domains to which they belong through their 

internal mechanisms in terms of their information model, representation, storage, and 

processing. 

In such cases, semantic integration at the information level is essential for the 

applications. Due to the lack of explicit ontologies (both the local ones and the global 

one), the recently developed ontology-based methodologies are not sufficient to 

support the integration of such systems. Therefore, new research is necessary to be 

conducted to bridge this gap. 
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Our research deals with information systems. An information system is a combination 

of an information model and a set of software components that operate the model. In 

this research we will ignore the software components and focus on the information 

model since we mainly consider information semantics. 

Given a set of information models IM1, IM2, …, IMn, their semantic integration 

includes two aspects: 

(1) For any two elements ei and ej from IMi and IMj, 1 ≤ i, j ≤ n and i ≠ j, if they 

refer to the same concept in terms of the domain of discourse, independent of 

the way they are represented, this fact can be discovered. 

(2) For any element ei from IMi, 1 ≤ i ≤ n, if it is required to be communicated to 

IMj (if applicable), 1 ≤ j ≤ n, it can be converted into another element 

(referring to the same concept) that is correct in both representation and 

semantics in IMj such that IMj can handle it in a semantically reasonable 

manner. 

 

3.4.3  Short Summary on Conventional Solutions 

In conventional schema matching-based information integration approaches, each 

information system has its own schema such as a database schema or a XML schema 

to represent its local conceptualization of a domain. The schemas can be understood 

and processed by computer-based applications. The matchings between different 

schemas are discovered by human experts or by automatic algorithms (note that 

usually the automatically discovered matches still require validation and confirmation 

from human experts) and are represented by some structure readable and operable by 

computers. Then, in an integration environment, if an information item I (following a 

modeling paradigm defined in IS1) is required to be passed to system IS2 from system 

IS1, some mediator (a kind of software application) in the environment can get I, find 
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the semantic relationship (here a specific schema matching) between IS1 and IS2, 

convert it into a new representation I’ following definition in IS2, then pass it to IS2. 

Now IS2 is able to correctly process I’ since I’ is following IS2’s representation and is 

supposed to be denoting the same concept as I. In this category of solutions, there is a 

lack of semantics, i.e., two schema elements can be discovered to be similar and 

referring to the same concept, but it is unknown which concept they are referring to 

due to the lack of a concept model. 

In ontology-driven information integration approaches, each information system has 

its own information model and explicitly represented ontology for its 

conceptualization of the domain. In some cases a global ontology for the domain can 

be used. Each system knows how to map the conceptual operation on its ontology to 

the structural operation on its internal model. Similarly, semantic mapping between 

ontologies can be discovered by human experts or by automatic algorithms (also 

requiring validation and confirmation from human experts) and stored in some way 

that computers can understand and process (such as mapping rules). Similarly, some 

software applications can handle these ontologies and semantic mappings to help 

involved systems achieve semantic integration. Ontology mapping or aligning 

techniques can be applied, but many valuable methods developed in schema matching 

cannot make a contribution, such as the instance-based methods (usually not many 

instances will be provided along with ontologies, even by definition ontologies can 

contain concept instances). 

In many cases, the application of these approaches is limited due to the lack of 

explicit ontologies. Instead, schema-based approaches are more applicable because of 

the higher availability of information schemas. 
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3.4.4  Assumptions 

Following lists a set of assumptions for this research. These assumptions are practical 

and reasonable. They provide a realistic foundation for the research and can help 

reduce the complexity of the problem. 

 All of the information models are committed to intended models that overlap. 

This guarantees the possibility of semantic integration. However, the concepts 

and their relationships are not formally and explicitly modeled and 

represented. 

 For each information system, there is an explicit information model that is 

used to organize the system’s data and convert the data into information. 

　 The information models are not restricted to a particular modeling language or 

paradigm such as relational, XML, or Object-Oriented. 

 The vocabularies used by the information models are based on natural 

languages. 

 Based on each information model, an ontological view can be created. 

 An ontological view is an explicitly represented model. 

 The ontological view follows a specific modeling paradigm which is 

independent of the modeling paradigm adopted by the underlying 

information model. 
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3.4.5  Ontological Equivalence Mapping 

In this research the semantic integration is conducted at the ontological view level. It 

is founded on a hypothesis. Before we present and prove the hypothesis, we formally 

define the ontological equivalence mapping between languages: 

Given a source language LS (which vocabulary is VS) with an ontological 

commitment of view KS = <C, ℑS> and a target language LT (which vocabulary is 

VT) with an ontological commitment of view KT = <C, ℑT>, the two languages share 

the same conceptualization C = <D, W, ℜ>; an ontological equivalence mapping is a 

function from VS to VT, m: VS→VT assigning symbols in VT to the ones in VS which 

share the same intensional interpretation, i.e., i) for constant symbols cS∈VS and 

cT∈VT, m(cS) = cT if and only if i) there exists a concept d∈D, such that ℑS(cS) = 

ℑT(cT) = d; ii) for predicate symbols pS∈VS and pT∈VT, m(pS) = pT if and only if there 

exists a conceptual relation ρ∈ℜ such that ℑS(pS) = ℑT(pT) = ρ.  

It is obvious that an important task in semantic integration is to discover the 

ontological equivalence mapping between two ontological views, especially between 

the concepts within the ontological views. 

The following Figure 3-16 illustrates such a mapping between languages: 
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The mapping can be bi-directional. If a symbol sS∈VS is mapped to a symbol sT∈VT, 

we say that there is a semantically equivalent relationship (or semantic equivalence 

relationship) between sS and sT. 

 

3.4.6  Hypothesis 

In this context, we base our research on the following hypothesis: 

If the semantically equivalent relationships between concepts (specified by symbols in 

languages) from multiple ontological views can be discovered, then these ontological 

views, as well as the information models from which the ontological views develop, 

can be semantically integrated. 

To support this hypothesis, we introduce the following two propositions. 

(1) A concept in a conceptualization can be externalized by a constant symbol in a 

language under an ontological commitment. 

 

Commitment KS = <C, ℑS > Commitment KT = <C, ℑT > 

Conceptualization C = <D, W, ℜ> 

VT = {cT,  

    pT} 

m 

 

VS = {cS, 

   pS} 

d 

ℑT ℑS 

m 

ρ 

ℜ 

ℑT ℑS 

D 

LT 

Figure 3-25. Ontological equivalence mapping between different languages for the same 
conceptualization. 

LS 
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Prove: 

According to the definition of the intended model, given a language L with an 

ontological commitment K, the set IK(L) of all models of L that are compatible 

with K is defined as the set of intended models of L according to K. So, for any 

two models m1 and m2 in IK(L), m1 and m2 are compatible with K. That is, for 

each constant symbol c in the vocabulary of L, there is I1(c) = ℑ(c) for m1 where 

I1 is the interpretation function of m1, and I2(c) = ℑ(c) for m2, where I2 is the 

interpretation function of m2, and ℑ is the interpretation function in K. That is, 

under the given ontological commitment K a constant symbol c is always 

interpreted as a concept in the domain of discourse.  

On the other hand, it is guaranteed that c is interpreted as a single concept, e.g. C, 

under K since in any model I is a function. In other words, it is an explicitness of 

the intended model of concept C. Therefore, even C is implicit, c can be taken as 

its representative. c can be used for processing the concept that it represents since 

it is explicit. □ 

Based on this proof, it can be stated that the intended model of a concept can be made 

explicit by a constant symbol. 

(2) The semantically equivalent relationship between symbols under an ontological 

commitment implies the same concept reference. 

Prove: 

Given symbols v1 and v2 from two ontological views such that v1 maps to a 

concept c1 in an intended model and v2 also maps to a concept c2 in another 

intended model (Proposition 1), if v1 and v2 have a semantically equivalent 

relationship, then they have the same semantics, i.e., the same concept reference. 

Therefore, it can be concluded that c1 and c2 are actually the same concept in the 

conceptualization. Consequently, information models corresponding to v1 and v2 
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are semantically equivalent. □ 

For example, if v1 and v2 are synonymous, it is already taken as a fact (by the 

definition of synonymy) that v1 and v2 mean the same thing, i.e. they refer to the same 

concept. Therefore, the information models corresponding to v1 and v2 are 

semantically integrated. 

The first proposition indicates that each ontological view has a specific representation 

based on a language since the ontological view is an explicit model. The second 

proposition shows that the semantic similarity between representations of models can 

be used to approximate the semantic equivalence relationships between the models 

themselves. Semantic similarity is a metric upon explicitly represented models 

computed from a syntactical, structural, or instance perspective.  

A semantic similarity metric is a combination <A, t> where A is an approach to 

compute the similarity between symbols and t is a threshold. The approach A can be 

viewed as a function A: S × S→R where S is the set of symbols and R is the set of real 

numbers. If A(s1, s2) > t, s1, s2∈S, then it can be confidently believed that two symbols 

are semantically equivalent, i.e., s1 and s2 have a semantic equivalence relationship. 

Such a metric implies that two models may have the same semantics because their 

representations are syntactically or structurally similar to each other, or their instances 

are similar.  

 

3.4.7  Formulating the Problem 

Generally, the information models adopt vocabulary from natural languages such as 

English. The constant symbols such as English words refer to concepts under an 

ontological commitment. This work takes such a fact as an assumption, i.e., our work 

does not deal with the cases that random symbols are picked for the information 

models. 
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We adopt similar ideas in schema matching to formulate the problem. We try to 

discover semantic relationships between the elements, mainly the semantic 

equivalence relationship between concepts of multiple ontological views. Before 

doing this, the information models using different modeling paradigms and 

representations need to be converted to ontological views. The following Figure 3-17 

illustrates this idea. 

 

Given an ontological view O1 with a set of concepts C1 = {c11, c12, …, c1n} and 

another ontological view O2 with a set of concepts C2 = {c21, c22, …, c2m}, the goal of 

ontological view matching is to discover the ontological equivalence mappings, i.e., 

pairs of matching concepts c1i and c2j such that c1i and c2j represent the same real 

world concept, 1 ≤ ι ≤ n, 1 ≤ j ≤ m. We denote a concept mapping with c1i → c2j and 

the ontological equivalence mappings with M = {c1i → c2j | c1i∈C1, c2j∈C2}. 

Now we look into the concepts. Each concept c can be modeled (or specified by) as a 

set of properties, i.e., c = {p1, p2, …, pn}, where each pi is a property, 1 ≤ i ≤ n. We 

rely on the assumption that the similarity of properties indicates the semantic 

similarity of real-world objects abstracted by these concepts. That is, for two concepts 

c1 = {p11, p12, …, p1n} and c2 = {p21, p22, …, p2m} from two ontological views, if most 

of their properties can be discovered as similar, e. g., p11 ≈ p21 (≈ denotes semantically 

similar), p12 ≈ p22, …, p1k ≈ p2k, k ≤ min {n, m} and k is a given threshold number, 

then it can be claimed that c1 and c2 are semantically equivalent (referring to the same 

real-world concept). 

Information 
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Ontological 
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Information 
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Local 
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Figure 3-26. Semantic integration based on ontological views. 
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Chapter 4 Research Issues and Proposed Solutions 

The objective of this research is to build a solid theoretical foundation and sound 

engineering solutions for ontological view-driven semantic integration in open 

environments. This chapter presents the major research issues and proposed solutions 

within the context of three main aspects: the architecture of the semantic integration 

enabled environment, ontological view modeling and representation, and semantic 

equivalence relationship discovery. 

 

4.1 Architecture of Semantic Integration Enabled 

Environment 

A major challenge to address in this research is the inherent distribution nature of 

open environments. Traditionally, a common domain ontology is specified as a 

solution for integrating schemas or local ontologies within the environment. The 

limitation of this approach is that centralized authority over the environment is usually 

not architecturally designable or feasible. 

We propose a novel architecture that extends the traditional data/information 

architecture to a three layered architecture (see Figure 4-1), including: 

(1) The data management and integration layer. This layer provides abstraction for 

the binary digits and organizes the digits into various types of elemental data 

such as numbers, characters, and strings. The management and integration of 

this layer are achieved by encoding standards, operation systems, and network 

communication protocols, ensuring that the binary digit streams are consistently 

interpreted as data of specific types. 

(2) The information management and integration layer. This layer associates data to 
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information models, providing specifications to data and converting data into 

information. The management and integration of this layer are achieved by 

applications, including domain dependent applications such as word processors 

and domain independent applications such as database management systems. It 

guarantees that data with the same specifications can be manipulated in 

consistent ways. 

(3) The semantics management and integration layer. This layer deals with the 

semantics of information, resolves semantic heterogeneities, and ensures that 

information with the same semantics is handled in a semantically consistent 

way. The management and integration of this layer are addressed by solutions 

proposed in this research.  

In this architecture, a Semantic Integration Service is attached to each information 

system, which converts a traditional information system into a semantic enhanced 

system. With the semantic integration service being attached, the requests regarding 

information semantics will be redirected to this service to resolve potential semantic 

heterogeneities. The service is responsible for mapping the concepts represented in 

the requests to compatible concepts (if possible) modeled in the ontological views. 
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System 

Information Repository 
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System A 
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Other systems 

Semantics Management and 
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Information Management 
and Integration 

Data Management and 
Integration 

Figure 4-27. Architecture of the semantic integration enabled environment. 
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4.2 Architecture of Semantic Integration Service 

A further architecture for the semantic integration service is inspired by Act*. It 

provides the capabilities of representation perceiving (encoding), integrated result 

delivering (performance), internal knowledge storage (the memories), and semantics 

manipulating (retrieving, matching, etc). Based on these capabilities we define the 

architecture, as shown in the following Figure 4-2: 

A semantic integration service S can be described as a 5-tuple S = (I, A, R, L, K), 

where I is the query set that it can accept; A is the answer set that it can generate; R is 

the reasoning component which can reason about its knowledge base by searching for 

facts and inferring semantics-matching rules; L is the learning component which can 

take feedback attached to the query/answer pair and improve the capability of the 

reasoning component; and, K is the internal knowledge of the service, including the 

ontological view of the local information system as well as affiliation knowledge that 

is helpful for reasoning. 

Semantic Integration Service

Reasoning 

Answers 

Learning 

Rules 

Feedback 

Requester 

Valuator 
Query Answer 

Ontological  
View 

Affiliation 
Knowledge 

Figure 4-28. Architecture of semantic integration service. 
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The semantic integration service can be viewed as a request-response system: external 

requesters submit queries to it, and it generates answers as response to the requests. 

The working process of the architecture is as follows: 

 A requester issues a query. 

 The service reasons out the inquiry to discover the semantic relationships. 

 The service returns an answer to the requester. 

 A valuator validates the answer as well as the query, and provides feedback to 

the service to enhance its capability. 

In light of the proposed architecture, to enable semantic integration we identify the 

following research issues: 

a) How to establish an ontological view of the conceptualization of the domain. 

The research issues include modeling and representing an ontological view 

associated with a given information model.  

The proposed solutions are presented in Section 4.3. 

b) How to discover the semantic equivalence relationships between the concepts 

presented in the inquiries and the concepts modeled in ontological views.  

The proposed solutions are presented in Section 4.4 and 4.5. 

 

4.3 Ontological View Modeling and Representation 

4.3.1  Requirements for Modeling 

The value of the ontological view concept is that it provides a common level of 

models beyond the original heterogeneous information models that use different 
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modeling paradigms and representations. Fundamentally, a concept can be modeled as 

a structure of C = <P, hasProperty>, where P is a set of intrinsic concepts and 

hasProperty is a semantic relationship which associates P to C. An intrinsic concept is 

a concept that is semantically dependent on an extrinsic (contrary to intrinsic) 

concept. An intrinsic concept is not usually being processed solely by itself. A 

property is treated as an intrinsic concept. Therefore, it can also be stated that a 

concept is modeled by a set of properties. Many of the paradigms used to build 

information models, such as relational and Object-Orientation, follow the 

concept-property construct. Therefore, it will be normal to adopt the concept-property 

construct for modeling ontological views. 

A modeling paradigm is necessary to model the ontological views. The modeling 

paradigm should support modeling: 

(1) Concepts: extrinsic concept is a structure of intrinsic concepts with a 

hasProperty relationship. 

(2) Properties: intrinsic concepts. 

(3) Relationships between concepts such as isA and partOf. 

 

4.3.2  Frame Paradigm 

In our work we adopt the frame paradigm [Karp, 1993 and Minsky, 1975] to model 

the ontological views. Minsky's frame theory is a major milestone in the history of 

knowledge representation. Proposed in the 1970s, this theory suggests the idea of 

using object-oriented groups to define a frame which is the data structure to represent 

the stereotypical situations [Brachman and Levesque, 2004]. It can represent the 

world meaningfully and naturally, and is cognitively simple, intuitive, and 

understandable for domain experts. Frames have been widely used in artificial 

intelligence and knowledge-based systems. Frame-like structures, in combination with 



134 
 

 

rules, are used extensively in expert systems [Aikins, 1993]. Some recent examples of 

applying frames to knowledge representation can be found in [Kiatisevi, et al., 2006 

and Marinov, 2008]. 

As defined in the Open Knowledge-Base Connectivity (OKBC) specification15, frame 

is one of the most widely-used ontology modeling paradigms. It is implemented in the 

core Protégé16, a cutting-edge tool for creating, editing, browsing, and maintaining 

ontologies. 

Some researchers view frame itself as a modeling language, comparing it to other 

modeling paradigms such as production rules, description logics, and semantic 

networks. We view frame as a modeling paradigm at the conceptual level. From the 

system's perspective, there should be a specification language that provides structures 

and semantics to encode frames. However, there is not yet a single standard frame 

specification language [Wang, et al., 2006]. 

In the frame theory, a frame models a concept which represents a collection of 

instances. Each frame has an associated collection of slots which can be filled by 

values or other frames. The slots define the different characteristics of the objects or 

relations through other objects. In particular, frames can have an IS-A slot which 

allows the assertion of a concept taxonomy. 

Structurally, a frame has the following four-level structure: 

• The highest level is literally FRAME, which is a primitive object that 

represents a concept in the domain of discourse. 

• SLOT level captures the properties associated with the concept and 

relationships to other concepts (frames).  

                                                        
15 http://www.ai.sri.com/okbc/spec.html 
16 http://protege.stanford.edu/index.html 



135 
 

 

• Within a SLOT, there is FACET level which captures the details of each SLOT. 

The FACET level contains multiple facets, with each specifying one aspect of 

the slot, such as data type, cardinality, and value range.  

• Finally, DATA level (or INSTANCE level) provides specific information about 

each property for an instance of the concept. This level is provided to build a 

complete knowledge base. When modeling concepts, usually the DATA level is 

not used if the major focus is on the concept itself without concerning the 

instances of the concept. 

Brachman and Levesque [Brachman and Levesque, 2004] introduced a simple formal 

representation formulism to express the frame's structure as follows: 
(Frame-name 

        <:IS-A frame-name> 

        <slot-name1 filler1> 

        <slot-name2 filler2> 

        ...    

) 

According to this structure, a frame owns a list of slots into which values can be 

dropped. The items that go into them are called fillers. The fillers of slots that 

represent relationships are the names of other frames. The frames can have a slot 

“:IS-A” slot whose filler is the name of a more generic frame, meaning that the former 

frame is a specialization of the latter one. 

The frame and slot names are atomic symbols (like numbers or strings without further 

structures). The fillers are either atomic values or the names of other frames. 

 

4.3.3  Modeling Ontological Views with Frame 

Support for logical inference is one of the most valued aspects for some knowledge 

representation paradigms in knowledge-based systems. For example, the OWL DL 
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provides the description-logic reasoning capabilities that enable a reasoning engine to 

infer knowledge that is not explicitly represented in an ontology, including 

subsumption testing, equivalence testing, consistency testing, and instantiation testing. 

Different from the knowledgebase systems where logical inference is an essential 

requirement, the information models within information systems focus mainly on 

modeling concepts and the characteristics of the concepts in the domain of discourse. 

Each concept is specified by its own (even other concepts can be involved to specify 

its characteristics), not defined by other concepts. Furthermore, the models focus on 

the stereotype instead of the individual instances. Therefore, the reasoning capability 

as provided by DL is not an essential element for modeling the ontological views 

based on the information models, and the instances can usually be ignored. 

The concepts are the fundamental elements in the information models. A concept is 

modeled by a set of properties. Many of the paradigms used to build information 

models, such as relational and object-orientation, are following the concept-property 

construct. 

As a knowledge modeling paradigm, frame provides a clear and explicit structure that 

is adequate at modeling the proposed ontological view model, in particular in 

describing the properties of concepts, which makes frame an ideal candidate for 

modeling the ontological views. 

In an open environment the frame-based ontological views create a common level. 

This common level eliminates the structural and syntactic heterogeneities among the 

information models. For instance, relational database schemas and XML schemas use 

different structures and syntaxes. By converting them into frame-based ontological 

views they all follow the standard concept-property construct. With this commonness 

only semantic heterogeneities should be considered in the semantic integration. 
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There is some other research that also proposes to create a kind of concept model 

from the underlying information model [Boran, et al., 2007]. For example, D2RQ 17 

supports lifting the basic relational database schema information into RDF to create 

RDF-based ontologies. It is a declarative language to describe mappings between a 

relational database schema and RDF ontologies. It uses these mappings to enable 

applications to access a RDF-view on a non-RDF database. RDF is a standard model 

for data interchange on the Web. It extends the linking structure of the Web to use 

URIs to name the relationship between things as well as the two ends of the link. Such 

a way does not apply to our context for the following reasons: 

• RDF focuses on the Semantic Web. Our work focus on integrating traditional 

information systems that are very different from the Web. There are no URIs 

in the systems. 

• RDF is good at modeling things that interconnect to each other, resulting in a 

graph. There isn't an explicit structure showing that a set of “things” are the 

properties of a specific “thing”. In the information models it is important to 

describe that a concept has a set of properties. The properties are not treated 

as independent resources. 

• RDF mixes the concepts’ properties and the property values together. Our 

modeling requires a clear separation between concepts and instances of the 

concepts. 

                                                        
17 http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/ 
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4.3.4  A Frame-based Ontological view Specification 

Language (FOSL) 

4.3.4.1 Specification of Ontological Views 

The ontological views must be explicitly specified in order to be used with 

information systems, i.e., delivered using some concrete representation. 

The specification of an ontological view is composed of:  

(1) symbols mapped to concepts (as an explicit representation of the intended 

model);  

(2) symbols mapped to properties and their associated characteristics;  

(3) symbols mapped to relationships between concepts; and  

(4) symbols that logically connect (1), (2), and (3) with specific semantics. 

Note that the language specifying the ontological views and the language specifying 

the conceptualizations (as defined in section 3.4) belong to different categories. The 

former contains the basic elements, syntactical rules upon the elements and the 

semantics to specify meaningful models. It is guaranteed that these elements and rules 

are commonly agreed upon by any semantic integration service within an 

environment. The latter refers to the vocabulary that is used to denote the concepts as 

well as the interpretation of the vocabulary. This language contains symbols that map 

to concepts, properties, and relationships. This section is focused on the former 

language. 

An information model does not always explicitly describe concepts, properties, or 

relationships. However, some of its constructs usually imply these elements. For 

example, in a relational database schema (which is a type of information model), a 

table can be used to represent a concept; in an XML document, a node can represent a 
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concept. Given that an information model M is specified by language LM = <SM, IM> 

with vocabulary VM and the ontological view model is specified by language LO = 

<SO, IO> with vocabulary VO, the creation of an ontological view is to find a mapping 

m between LO and LM such that m(IO)⊆IM. The mapping requires a set of rules for 

each modeling paradigm to identify: 

• What constructs in the information model can be mapped to concepts; 

• What constructs in the information model can be mapped to properties; 

• What constructs in the information model can be mapped to facets of the 

properties; 

• What constructs in the information model can be mapped to values of facets; 

• What constructs in the information model can be mapped to relationships 

between concepts. 

For example, as to a relational database schema, 

• A table which has a primary key is a candidate of a concept; 

• Each column in the table is a candidate of a property; 

• The attributes of the column, such as data type, size, default value, null-able, 

are candidates of facets; 

• The value of the attributes, such as Integer and NULL, are candidates of values 

of facets. 

• A foreign key column implies a relationship to a concept indicated by the 

referred table; 
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• A table that has a combined primary key and each of which column is a foreign 

key implies a relationship between two concepts indicated by the referred 

tables. 

By applying these rules, an ontological view can be constructed from a corresponding 

information model. These rules reveal the key requirements for the specification 

language, including the symbols and syntax indicating concepts, properties, facets, 

facet values, and relationships. 

The explicit specification of ontological views following a specific modeling 

paradigm provides a common foundation that eliminates the heterogeneities residing 

in the underlying information models in terms of technical platform, modeling 

paradigm, specification syntax, etc. Later work, such as semantic integration, can just 

focus on the semantic aspect, i.e., the difference regarding various views of the 

domain conceptualization, based on a single modeling paradigm without concern for 

dealing with different ways of modeling and specifying the models. 

 

4.3.4.2 Definition of FOSL 

We propose the Frame-based Ontological view Specification Language (FOSL) to 

support specification of the above aspects. It is a logical language created from the 

following vocabulary: 

(1) Constant symbols: the set of FR∪S∪F∪V, where FR is a set of symbols 

referring to frames (concepts), S is a set of symbols referring to slots (properties), F is 

a set of symbols referring to facets, and V is a set of values that the facets can take. 

(2) Variable symbols: there are four sets VFR, VS, VF, VV of variable symbols which 

ranges are FR, S, F, and V, respectively. 

(3) Predicate symbols: the following predicate symbols are defined: 
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   (a) A binary predicate hasProperty applied on FR × S. hasProperty(fr, s) refers 

to a frame fr∈FR with a slot s∈S. 

   (b) A triple predicate hasFacet applied on FR × S × F. hasFacet(fr, s, f) 

indicates that slot s∈S has a facet f∈F in a frame fr∈FR. 

   (c) A quad predicate hasValue applied on FR × S × F × V. hasValue(fr, s, f, v) 

indicates that the slot s∈S’s facet f∈F has a value v∈V in a frame fr∈FR. 

   (d) A binary predicate isA applied on FR × FR. isA(fr1, fr2) indicates that frame 

fr1∈FR is a type of frame fr2∈FR, i.e., the concept modeled by fr1 is a specialization 

of the concept modeled by fr2. 

   (e) A binary predicate partOf applied on FR × FR. partOf(fr1, fr2) indicates that 

frame fr1∈FR is a part of frame fr2∈FR, i.e., the concept modeled by fr1 is a part of 

the concept modeled by fr2. 

The predicates isA and partOf specify two types of relationships between concepts 

selected to be defined in FOSL. The reasoning behind the choice is that these two 

types provide strict semantics that can be commonly agreed upon among multiple 

parties. Such relationships can be generally reasoned. 

Other relationships are rather arbitrary, resulting in unpredictable semantics. For 

instance, a frequently used example is “Student takes Course” where Student and 

Course are two concepts and takes is a relationship. Here takes does not provide 

inferable semantics but only a human reader can understand its meaning. The 

reasoning for such relationships depends on domain-specific engines that are aware of 

the meaning of the relationships. 

Even the predicate hasFacet implies hasProperty because when hasFacet(fr, s, f) 

holds we also have hasProperty(fr, s) (similar case applies to predicate hasValue and 

hasFacet),  the individual hasProperty predicate is still necessary since it is not 
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guaranteed that every information model is complete. That is, in some models it may 

be that only properties of a concept are listed but details of the properties are missing. 

This redundancy also increases the readability of a specification written in FOSL in a 

way that a layered structure of the concept specification is presented and different 

reader interests can be well satisfied. For example, given a set of statements with 

hasProperty predicate, it is easy to grasp a general view of a concept, i.e., “this 

concept is described by this set of properties”, without any unnecessary information 

involved. If a reader is interested in what a property is like, a set of statements with 

the hasFacet predicate will help. Furthermore, the statements with the hasValue 

predicate provide the lowest level of details for the facets. 

 

4.3.4.3 Inference Rules 

Now we define the inference rules that can be expressed by the language. 

Inheritance Rule:  

• isA(subfr, superfr) ← isA(subfr, fr) & isA(fr, superfr), i.e., a frame subfr 

specialized from another frame fr is also a specialization of that frame’s 

generalized frame superfr. 

• hasProperty(subfr, s) ← isA(subfr, fr) & hasProperty(fr, s), i.e., a generic 

frame’s slots are inherited by its specialized frames. 

• hasFacet(subfr, s, f) ← isA(subfr, fr) & hasProperty(fr, s) & hasFacet(fr, s, f), 

i.e., the facets of a slot of a generic frame are inherited by the same slot of its 

specialized frames. 
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• hasValue(subfr, s, f, v) ← isA(subfr, fr) & hasProperty(fr, s) & hasFacet(fr, s, f) 

& hasValue(fr, s, f, v), i.e., the value of a facet of a slot of a generic frame is 

inherited by the same facet of the same slot of its specialized frames. 

Composition Rule: 

• ∃ fr∈FR ← ∃ partialfr∈FR & partOf(partialfr, fr), i.e., there must exist a frame 

where another frame is a part of it. 

• partOf(partialfr, wholefr) ← partOf(partialfr, fr) & partOf(fr, wholefr), i.e., if a 

frame partialfr is a part of another frame fr, it is also a part of a larger frame 

wholefr which has that other frame as a part of it. 

 

4.3.4.4 XML-based Encoding 

To explicitly encode ontological views we propose a human readable and machine 

process-able representation which enables: 

(1) The ontological view created from an information model to be verified and refined 

by human experts; 

(2) The semantic integration to be executed in an automated manner based on the 

analysis applied on the representations. 

To this end we adopt an XML-based representation for FOSL. An ontological view 

can be modeled as a set of frames and represented in an XML document. The 

document is supported with multiple <concept> tags for concepts (frames), 

respectively. Under a <concept> tag the slots are divided into two categories and 

specified by <relationships> and <properties>. Under each category there are a 

collection of individuals, namely <relationship> and <property>. The isA and partOf 
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predicates are represented as specific <relationship> nodes with pre-defined 

semantics. 

The facets of each slot are tagged as <facet> which is described by two attributes: 

name and value. To uniquely identify each concept, there is also a sub-tag <name> 

under each <concept> tag denoting the identifier of each concept. 

The following is the schema of the XML document derived from FOSL. 
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<?xml version="1.0" encoding="utf-16"?> 
<xsd:schema attributeFormDefault="unqualified" elementFormDefault="qualified" version="1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  <xsd:element name="ontological_view" type="ontological_viewType" /> 
  <xsd:complexType name="ontological_viewType"> 
    <xsd:sequence> 
      <xsd:element maxOccurs="unbounded" name="concept" type="conceptType" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="conceptType"> 
    <xsd:sequence> 
      <xsd:element name="name" type="xsd:string" /> 
      <xsd:element name="properties" type="propertiesType" /> 
      <xsd:element name="relationships" type="relationshipsType" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="relationshipsType"> 
    <xsd:sequence> 
      <xsd:element name="relationship" type="relationshipType" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="relationshipType"> 
    <xsd:sequence> 
      <xsd:element name="name" type="xsd:string" /> 
      <xsd:element name="target_concept" type="xsd:string" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="propertiesType"> 
    <xsd:sequence> 
      <xsd:element maxOccurs="unbounded" name="property" type="propertyType"> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="propertyType"> 
    <xsd:sequence> 
      <xsd:element name="name" type="xsd:string" /> 
      <xsd:element name="facets" type="facetsType" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="facetsType"> 
    <xsd:sequence> 
      <xsd:element maxOccurs="unbounded" name="facet" type="facetType" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="facetType"> 
    <xsd:attribute name="name" type="xsd:string" /> 
    <xsd:attribute name="value" type="xsd:string" /> 
  </xsd:complexType> 
</xsd:schema> 
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4.4 Semantic Equivalence Relationship Discovery 

4.4.1  Short Summary on Matching Approaches 

Generally, the information models adopt vocabulary from natural languages such as 

English. The constant symbols such as English words refer to concepts under an 

ontological commitment. This research takes this fact as an assumption, i.e., this 

research does not deal with the cases that random symbols are picked for the 

information models. 

According to propositions (2) in Section 3.4.6, if the semantic equivalence 

relationships between symbols can be discovered, then it can be inferred that the 

symbols are referring to the same concept, therefore the semantic integration can be 

achieved. The semantic equivalence relationship is deduced from the semantic 

similarity metric between symbols. A semantic similarity metric is a combination <A, 

t> where A is an approach to compute the similarity between symbols and t is a 

threshold. The approach A can be viewed as a function A: S × S→R where S is the set 

of symbols and R is the set of real numbers. If A(s1, s2) > t, s1, s2∈S, then it can be 

confidently believed that two symbols are semantically equivalent, i.e., s1 and s2 have 

a semantic equivalence relationship. 

In the research of schema matching and ontology mapping, multiple approaches have 

been developed to discover the semantic relationships between elements of the 

schemas or ontologies. These approaches can be applied to ontological views. 

Next, we briefly introduce three major categories of approaches. 

(1) Linguistic (Syntactical) Matching 

Linguistic matching utilizes vocabularies of languages to discover semantic 

equivalence relationships. Linguistic matching works on symbols that can be mapped 

to concepts under an ontological commitment. The languages adopt symbols based on 



147 
 

 

a natural language foundation such as English. For example, assuming there is an 

intended model of some concept c, one may use an English word “Professor” as a 

symbol to model it in an information model. By modeling the symbol, “Professor” is 

mapped to that concept and by representing the string “Professor” is used as the name 

of a table in a relational model. 

In linguistic matching, the principle is that the more syntactically similar two symbols 

are, the more likely they map to the same concept, the same property, or the same 

facet. To increase the precision of the comparison, the symbols will often be 

normalized and compared, sometimes with the help of natural language dictionaries to 

determine the synonym when the symbols are syntactically different. 

Linguistic matching consists of two major steps: normalization and comparison. 

(a) Normalization. Information models usually utilize similar symbols for the 

same concept, but with syntactical differences due to abbreviations, acronyms, or 

punctuations. To tolerate these differences, a normalization process is used to 

reduce the syntactical diversity. The process includes: 

• Tokenization – The symbols are parsed into tokens by a customizable 

tokenizer using punctuation, upper case, special symbols, or digits. 

• Expansion – Abbreviations and acronyms are expanded to the full form. 

• Elimination – Tokens that are articles, prepositions, or conjunctions are 

marked to be ignored during comparison. 

(b) Comparison. To determine the semantic equivalence relationship, the 

linguistic similarity between the symbols representing the concepts is computed. 

For example, the edit distance can be used to compute the similarity between two 

symbols. To enhance semantic matching, some natural language dictionaries such 

as WordNet can be employed. A dictionary is designed in a way that it relates 

words with different syntactical forms together if they refer to the same or similar 
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concepts in a specific domain. It can be used, for instance, to determine the 

synonym when two symbols are syntactically different. 

As an example, if the symbols “Engineering” and “Eng.” are used in different 

ontological views to model concepts in the education domain, a shared domain 

dictionary may tell that “Eng.” is usually an abbreviation of “Engineering”, therefore 

these two symbols should be referring to the same concept (the same faculty). As 

another example, both s1 = “Research Center” and s2 = “Research Centre” can be 

adopted as symbols to model concepts. A simple edit distance metric between s1 and 

s2 is 2, considering that one letter is removed from s1 and another letter is inserted s1 

to make s1 identical to s2. By comparing the edit distance between s1 and s2, as well as 

edit distances between s1 and other symbols, it is reasonable to conclude that s1 is 

semantically equivalent to s2. 

(2) Structural (Semantic) Matching 

The structural matching utilizes the semantic structures captured by the proposed 

frame model to discover the semantic equivalence relationships if syntactical 

matching cannot provide sufficient clues. The frame model’s tree-like structure will 

be utilized to consider the following cases: 

(a) Atomic symbols (leaves) in two trees are similar if they are linguistically 

similar and the associated symbols in their respective vicinities (ancestors and 

siblings) are similar. 

(b) Two non-leaf symbols are similar if they are linguistically similar, and the 

sub-trees rooted at the two symbols are similar. 

(c) Two non-leaf symbols are similar if their leaf sets are similar, even if their 

immediate children are not. This is because the leaves represent the atomic 

information that the models ultimately contain. 
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These rules can support the inference that two symbols are semantically equivalent if 

their properties are very similar, even though they are syntactically different. 

For example, consider the following two concepts based on frame: 

 

The non-leaf symbols Title and AssignedTitle are syntactically similar, and since their 

sub-trees are similar, case (b) can be applied to conclude that they refer to the same 

property. The non-leaf symbols Professor and Faculty are syntactically different. 

However, since their sub-trees are structurally similar, from (c) it can be concluded 

that they refer to the same concept. 

(3) Instance-based Matching 

Instance-based matching approaches belong to another important category since the 

instances can provide much useful information. 

Let O be an ontology model that has a concept hierarchy C. C can be expressed by the 

set {c1, ..., cn} where c1, ..., cn are concepts in O. Every concept in O may be 

instantiated by one or more instances, denoted by an expression of the form [rk1, ..., 

rkm] where rk1, ..., rkm are instances of concept ck that belongs to the concept hierarchy 

C. We say that instances ra in OA and rb in OB, respectively, are equivalent, denoted as 

ra ≡ rb, when they represent the same (real-world) object; in this case, we also say that 

ca and cb map to each other, where ca and cb are the concepts under which instances ra 

and rb are classified, respectively. 

Concept: Professor isA Person 
  --- hasProperty: Title 
      -- hasFacet: Range 
         - hasValue: Full, Associate, Assistant
  --- hasProperty: Name 
      -- hasFacet: Type 

           - hasValue: Text String 

Concept: Faculty isA Person 
  --- hasProperty: AssignedTitle 
      -- hasFacet: Range 
         - hasValue: Full, Associate, Assistant
  --- hasProperty: Name 
      -- hasFacet: Type 

           - hasValue: Text String 
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In instance-based mapping semantic relations between concepts of two ontologies are 

determined based on the overlap of their instance sets. The basic idea is that the more 

significant the overlap of the common instances of the two concepts is, the more 

related these concepts are [Isaac, et al., 2007]. This is a very natural approach, as in 

most ontology formalisms the semantics of the relations between concepts is defined 

via the set of their instances. The idea for mapping is then simply that the higher the 

ratio of co-occurring instances for two concepts, the more they are related. 

 

4.4.2  A Tree Similarity-based Approach 

4.4.2.1 Introduction to Tree-based Similarity Discovery 

An ontology model can be viewed as a concept structure representing some domain 

knowledge [Sanin, et al., 2007], and one commonly used form is a tree structure. The 

frame-based ontological view and each concept in an ontological view also have a 

tree structure. Approaches developed for comparing tree structures can be applied to 

discover possible semantic relationships. 

Much of the research on comparing trees uses the editing cost from one tree to 

another to measure the similarity of two trees [Guegan and Hernandez, 2006]. The 

classical methods focus on the structural and geometrical characteristics of the trees, 

mainly considering the number of nodes affected by the tree editing operations [Allali 

and Sagot, 2005 and Guda, et al., 2002]. However, in a knowledge context where the 

trees are used to represent the concept structures, in addition to the structural 

characteristics of the trees, more attention must be paid to the concepts represented by 

the internal tree nodes. Therefore, besides the number of edited nodes, the positions 

and conceptual similarities of the affected nodes also have to be considered. 

The similarity of two individual concepts can be relatively easily estimated by domain 

experts. As an example, based on common sense, concepts “People” and “Human” 
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are often regarded as referring to the same meaning, i.e. their similarity degree is 1. 

On the other hand, concept “Faculty” does not always refer exactly to the same thing 

as “Professor” in the university domain. Roughly speaking, a similarity degree can be 

assigned to these two concepts, say, 0.9, meaning that under approximately 90% of 

the occasions they are describing the same group but not in other cases. Some 

research has also proposed various methods of determining conceptual similarity 

between individual concepts in a knowledge context [Han and Kamber, 2000 and 

Warin, et al., 2005]. 

Determining the similarity of various structures containing many concepts is another 

complicated research topic. For instance, given the following three trees in Figure 4-3 

(which are modelling the concept structures about the university domain and are 

developed by different people) where relationships between concepts are identical 

(“part-of” in this example) and a list describing the similarities of individual concept 

pairs (e.g. sim(People, Human) = 1 and sim(Faculty, Professor) = 0.9) which can be 

provided by domain experts, how can we determine the extent that they are similar to 

each other and which two are more similar. 

T1

T2

T3

University

Department

Student Residence People Research Center

Registered Student Faculty

University

Organization

Library Department

Research Center

Human

Professor Student

University

Library School

Department Professor

Registered Student

Undergraduate Graduate

 

Figure 4-29. An example of multiple concept trees for the same domain. 

Our work extends the classical tree editing operations and introduces the tree 

transformation operations. We propose four types of transformation operations which 

can transform one concept tree into another, and provide definitions for the cost of 

each operation considering the number of affected nodes, the scale of the node set, the 

conceptual significance of affected nodes, and the conceptual similarity of the node 
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pairs (each node representing one concept) in a knowledge context. The degree of tree 

similarity is measured according to the tree transformation cost. This method can be 

applied to ontological view comparison to support semantic integration in cases where 

different ontological views for the same domain can be represented as trees. 

 

4.4.2.2 Related Work 

The tree is one of the most commonly used combinatorial structures in computer 

science. Research on comparing tree structures has a long history in many fields. It 

has been well studied in several diverse areas such as computational biology, 

structured text databases, image analysis, and compiler optimization [Bille, 2003]. In 

the research the edit cost (or edit distance) from one tree to another is employed to 

measure the similarity degree of two trees [Allali and Sagot, 2005; Guda, et al., 2002; 

Guegan and Hernandez, 2006; Jin, et al., 2005]. However, such research is mainly 

focused on finding matches based on the pure structure or geometry perspective 

without considering the conceptual semantics of the tree nodes in a knowledge 

context. 

Tree pattern matching is another one frequently used methods. For example, some 

research has explored the algorithm of matching pattern discovery in an XML query 

[Bruno, et al., 2002 and Yao and Zhang, 2004] where they did not focus on the cost of 

matching. Another domain of using tree pattern matching is compiling where 

matching cost is defined through tree-rewriting rules and instruction types [Aho, et 

al., 1989]. 

Maedche et al. conducted in-depth research into the similarity between ontologies 

[Maedche and Staab, 2002]. In their research context, an ontology has a tree structure 

that is modelling a concept taxonomy. A method was developed to measure the 

similarity between ontologies based on the notions of lexicon, reference functions, 
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and semantic cotopy. This method is based on an assumption that the same terms are 

used in different ontologies for concepts but their relative positions may vary. 

However, in many real ontologies different terms will be adopted to construct the 

concept taxonomies, although some of them have similar semantics. In these cases 

computing taxonomic overlap is not fully applicable and lexical level comparison 

becomes almost inapplicable. Furthermore, this research did not take the structural 

characteristics of trees into consideration. 

Li et al. conducted similar research on measuring the similarity of ontologies 

(represented as trees) based on tree structure mapping [Li, et al., 2006]. They 

proposed a mapping method that combines the similarity of the inner structure of 

concepts in different ontologies and the language similarity of concepts. The 

similarity of concepts is computed from some lexical databases like WordNet. 

However, such a generic semantic similarity calculating algorithm is not perfectly 

applicable in domain-based concept systems. Furthermore, Li’s work did not handle 

cases of crossing-layer mappings, which is common in tree mapping where similar 

terms may be placed in various layers within the trees. 

Summarizing, to the best of our knowledge, no research has been fully done to 

measure the similarity of trees based on both structure comparing and concept 

comparing and then applied to ontological view comparison. 

 

4.4.2.3 Definition for Concept Tree 

A lot of research has been done on tree comparing, which has focused mainly on 

finding matches based on the pure structure or geometry perspective (e.g. [Guda, et al., 

2002 and Jin, et al., 2005 ]) without considering the conceptual semantics of the tree 

nodes in a knowledge context. 
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We extend the traditional definition of trees for the sake of describing concept 

structures. The formal definition is given below: 

Definition 1: Concept Tree. An (unordered and labelled) Concept Tree is a six-tuple 

T = (V, E, LV, root(T), D, M) where V is a finite set of nodes, E is a set of edges 

satisfying that E⊂V×V which implies an irreflexive and antisymmetric relationship 

between nodes, LV is a set of lexicons (terms) for concepts used as node labels, 

root(T)∈V is the root of the tree, D is the domain of discourse, and M is an injective 

mapping from V to LV, M: V→LV ensuring that each node has a unique label. For 

convenience, we simply call each term in LV a concept with an agreement on their 

semantics. A mapping from a node v to a label l is simply written as a tuple (v, l) ∈ M. 

A concept tree is acyclic and directed. If (u, v)∈E, we call u a parent of v and v a child 

of u, denoted as u = parent(v) or v = child(u). The set of all children of node u is 

denoted as C(u). For two nodes u1, u2∈V, if (u1, u2) ∈ E* holds, then we call u1 an 

ancestor of u2 and u2 a descendant of u1. The set of all descendants of node u is named 

D(u). 

The following conditions are satisfied by any concept tree: 

(1) The root node does not have a parent node. 

(2) Any node in V other than the root has one and only one parent node. 

(3) For each non-root node u in V, there exists (root(T), u)∈E*, where E* is the 

transitive closure of E, meaning that no node is isolated from others. 

(4) There is a unique directed path composed of a sequence of elements in E from 

the root to each of the other elements in V. 

Definition 2: Conceptual Similarity Measure. A conceptual similarity measure 

21 , VV LL
S is a set of mappings from two lexicon sets LV1, LV2 used in different concept 

trees to the set of real numbers R, 
21 , VV LL

S : LV1×LV2→R, in which each mapping 
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denotes the conceptual similarity between two concepts represented by these two 

lexicons. R has a range of (0, 1]. 
21 , VV LL

S  is semantically reflexive and symmetric, i.e. 

for l1∈LV1 and l2∈ LV2 we have 
21 , VV LL

S (l1, l1) = 1 and 
21 , VV LL

S (l1, l2) = 
21 , VV LL

S (l2, l1). For 

convenience, we simply use w = s(l1, l2) to refer to the number value of conceptual 

similarity between two concepts from two trees T1 and T2. Intuitively, the larger w is, 

the closer the two concepts are and w = 1 means two concepts are actually identical 

(the terms used to denote the concepts are synonymous). 

Conceptual similarity between two concepts can be given by domain experts or 

calculated based on some linguistic analysis methods. For instance, Mitra et al. use a 

linguistic matcher to assign a similarity score to a pair of similar concepts [Mitra and 

Wiederhold, 2002]. As an example, given the strings “Department of Defense” and 

“Defense Ministry”, the match function returns match(Defense, Defense) = 1.0 and 

match(Department, Ministry) = 0.4, then it calculates the similarity between the two 

strings as: s(“Department of Defense”, “Defense Ministry”) = (1 + 0.4)/2 = 0.7. 

For l1∈LV1 and l2∈ LV2, if there is no definition for l1 and l2 in the measure, we view l1 

and l2 as totally different (disjoint) concepts. Such a concept pair will not be 

considered when two concept trees are being compared. 

 

4.4.2.4 Tree Transformation Operations and Transformation Cost 

Tree transformation operations can map one tree T into another one, T’, as defined 

below. 

(1) Deleting node v (denoted as delete(v)) 

If v≠root(T), then V’ = V – {v}, E’ = E – {(u, v) | u = parent(v)} – {(v, vc) | vc ∈ C(v)} 

+ {(u, vc) | u = parent(v) ∧ vc ∈ C(v)}, LV’ = LV – {M(v)}, and M’ = M – {(v, M(v))}. 
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It must be noted that when deleting one node, besides eliminating that node from the 

tree we still need to make its children nodes new direct children nodes of its parent 

node, which is different from deleting a sub-tree. 

If v = root(T), the result of deleting is a forest {T[vc] | vc∈C(v)}. In a concept tree the 

root is usually a very general concept like “object”, therefore we assume that all trees 

have a common root concept and restrict that the root is never allowed to be deleted. 

The deleting operation is depicted in the following Figure 4-4: 

 

 

Figure 4-30. Deleting a node. 

(2) Inserting node v under node u (denoted as insertu(v)) 

We have V’ = V + {v}, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} – {(u, uc) | uc∈C’(u)}, 

LV’ = LV + {lv}, and M’ = M + {(v, lv)}, where lv is the lexicon assigned to the new 

node v, and C′(u) ⊆ C(u) meaning that some children nodes of u are changed to be 

children of the new node v. The elements contained in C’(u) is determined by the 

context when performing the editing operation. 

The inserting operation is depicted in Figure 4-5: 

 

 

Figure 4-31. Inserting a node. 

(3) Re-labelling node v (denoted as relabellv→lv’(v)) 
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This is a particular operation in a labelled tree. Re-labelling of v with label lv is to 

assign v a new label lv
’, keeping the positions of all the nodes unchanged. We have LV’ 

= LV – {lv} + {lv
’} and M’ = M – {(v, lv)} + {(v, lv

’ )}, where lv
’ is the new label 

assigned to v, as is depicted in the following Figure 4-6. 

 

 

Figure 4-32. Re-labelling a node. 

(4) Moving node v to be under node u (denoted as moveu(v)) 

This is an extended operation in a knowledge context that is not defined in classical 

tree editing operation sets. From Figure 4-7 we see that in the case of pure structured 

trees (a) and (b) two operations delete(E) and insertB(E) can be performed to convert 

(a) to (b). However, when mapping a concept tree to another we cannot simply delete 

a node and then insert it since the concept represented by the node’s label already 

exists in the tree. 

 

Figure 4-33. An example of a moving operation. 

More specifically, in Figure 4-7 two trees (c) and (d) put the concept “Professor” in 

different positions and by moving node “Professor” to be under “Employee” we 

transform (c) to (d), instead of deleting “Professor” and then inserting it back (from (c) 

to (e) and then (e) to (d)). 
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The moving operation regulates that V’ = V, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} + 

{(parent(v), vc) | vc∈C(v)} – {(parent(v), v)} – {(v, vc) | vc∈C(v)} – {(u, uc) | 

uc∈C’(u)}, where C′(u) ⊆ C(u) meaning that some children of node u are changed to 

be children of the node v based on the operation context. 

Definition 3: Transformation Cost. Each transformation operation Op on tree T is 

mapped to a real number which is defined as the transformation cost of the operation 

and denoted as γ(Op). The transformation cost reflects the extent of change it makes 

to the tree. 

If OP = {Op1, Op2, …, Opk} is a transformation sequence, then the transformation 

cost of the sequence is defined as ∑ =

=
=

||

1
)()( OPi

i iOpOP γγ . 

Definition 4: Tree Transformation Cost and Similarity Index. If OP is a 

transformation sequence mapping a tree T1 to another tree T2, then the tree 

transformation cost from T1 to T2 is defined as 

    γ(T1→T2) = min{γ(OP) | OP is a transformation sequence mapping T1 to T2 }. 

Also, we define the similarity index of two trees T1 and T2 as 

    γ (T1, T2) = min{γ (T1→T2), γ (T2→T1)}. 

It is a measure representing the extent to which two trees are similar to each other. 

The higher the tree transformation cost and similarity index is, the less similar the two 

trees are and vice versa. 

 

4.4.2.5 Computing of Transformation Cost 

In a tree transforming process we need to count the total cost of all transformation 

operations. A tree transforming process that maps tree T1 = (V1, E1, LV1, root(T1), D, 
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M1) into T2 = (V2, E2, LV2, root(T2), D, M2) based on 
21 , VV LL

S  contains the following 

tasks: 

(1) Compute the set of nodes to be deleted, D, in T1. 

D = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ¬∃s(M1(u), l2)∈ 21 , VV LL
S (l2∈LV2)}. That is, the nodes 

which labels are appearing in T1 but T2 and have no conceptual similarity with any 

labels in T2 defined (the concepts represented by the nodes in T1 are totally not 

contained by T2). 

(2) Compute the set of nodes to be inserted into T1, I.  

I = {v | v∈V2 ∧ M2(v)∉LV1 ∧ ¬∃s(l1, M2(v))∈
21 , VV LL

S (l1∈LV1)}. That is, the nodes which 

labels are appearing in T2 but T1 and do not have conceptual similarity definition with 

any labels in T1 (the concepts represented by the nodes in T2 are totally not contained 

by T1). 

(3) Try every possible combination of the deletion and insertion operations and find 

the minimal cost. 

(4) Compute the set of nodes to be moved within T1 itself, M, and move them. 

M = {u | u∈V1 ∧ (M1(u)∈LV2 ∧ M1(parent(u)) ≠ M2(parent(M2
-1(M1(u)))) ∧ 

¬∃s(M1(parent(u)), M2(parent(M2
-1(M1(u)))))∈ 

21 , VV LL
S ) ∨ (∃s(M1(u), l2)∈ 

21 , VV LL
S  

(l2∈LV2)) ∧ M1(parent(u)) ≠ M2(parent(M2
-1(l2))) ∧ ¬∃s(M1(parent(u)), 

M2(parent(M2
-1(l2)))) ∈ 21 , VV LL

S )}. That is, the nodes that are appearing in both T1 and 

T2, or which labels have conceptual similarity with labels defined in T2, but which 

parents are neither the same nor similar. 

(5) After the deleting, inserting, and moving operations are performed on T1, T1 now 

has the same structure with T2, but still has some nodes with different labels (implying 
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different conceptual semantics). The final task is to compute the set of nodes to be 

re-labelled, R, and re-label them. R = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ∃s(M1(u), l2)∈ 
21 , VV LL

S  

(l2∈LV2)}. That is, the nodes that are appearing in both T1 and T2 with different labels, 

but the labels have conceptual similarity between them. 

Let OP be the editing sequence containing operations in the above tasks, the 

transforming cost is computed as follows (using pure operation names): 

The cost of each transformation operation (deleting, inserting, moving, and 

re-labelling) is a key issue for the measuring. The cost is affected by which level that 

the node resides in the tree structure, the scale of the node set, the number of 

descendants of the node, and the similarity of the two concepts (labels) attached to the 

two nodes. For example, first, a node at a higher layer contains richer semantics than 

does a lower node does, or, the concept it represents is more significant for the 

domain than a lower one. Therefore, when a node u is at a higher layer, the effect to 

the concept tree of deleting u or inserting a new node under u is bigger than that of 

deleting or inserting a node at a lower layer. Second, the more nodes a tree has, the 

less the effect will be when one node is deleted or inserted. That is, the larger the 

concept tree is, the less different it will be if it gets one new concept or loses one old 

concept. Third, a node with more descendants will cause greater change to the tree 

structure if it is deleted, or greater change is made if a node gets more descendants 

after it is inserted. Finally, the more similar the two concepts are, the less the cost will 

be to change one into the other. 

Based on the research of [Bille, 2003 and Kruskal, 1999] and above observations, we 

define the cost for each transformation operation as follows: 

 Deleting cost. 

}))(())(())(())((min{)(21 ∑∑∑∑
∈∈∈∈

→ +++=
RiMiIiDi

TT irelabelimoveiinsertideleteOP γγγγγ
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||
|)(|1)()())((

V
vDvdepthTheightvdelete ++−

=γ , where v is a non-root node, height(T) is a 

function calculating the height of tree T, depth(v) calculates the depth of node v, and 

|D(v)| is the number of descendants of node v (including its direct children and 

indirect offspring). Intuitively, depth(root(T)) = 1, and depth(v) > 1 iff v is not the root. 

If v is a leaf node, D(v) = ∅ and |D(v)| = 0. When v is a leaf node at the lowest level 

(height(T) = depth(v)), deleting v will cause the minimal effect to the tree and 

γ(delete(v)) = 1/|V|. Note that here V refers to the original node set before the deletion. 

 Inserting cost. 

||
|)(|1)()())((

V
vDudepthTheightvinsertu

++−
=γ , where |D(v)| is the number of 

descendants that v gets after it is inserted. Note that here V refers to the original node 

set before the insertion. When u is at the lowest layer, inserting a new node v under u 

will result in the minimal cost γ(insertu(v)) = 1/|V|. 

 Moving cost. 

||
2||))](())(([

2
1))((

V
Vvinsertvdeletevmove uu

−
×+= γγγ , where |V|>2 (the tree has a root and 

at least two non-root nodes) and u ≠ parent(v). Note that here insertu(v) is performed 

on a tree without node v. In this definition we consider both deleting and inserting 

operations because the moving operation does generate effects similar to deleting and 

inserting, although not exactly the same. The factor 1/2 adjusts the cost of operations 

since the node is not truly deleted and inserted into the tree. Another factor (|V| - 2)/|V| 

adjusts the cost again to ensure that in an extreme case where v is the only node other 

than the root, its moving cost should be 0 (actually it cannot be moved) and when the 

number of nodes in the tree grows, the effect of the moving operation to the tree 

structure is less. 

 Re-labelling cost. 
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This cost is heavily dependent on the similarity of two labels (concepts). The 

re-labelling cost is different from the deleting cost, inserting cost, or moving cost 

since the re-labelling operation does not result in the change of a tree structure. 

Kouylekov et al. [Kouylekov and Magnini, 2005] proposed a definition for 

substitution of two similar words w1, w2 as γ(insert(w2))×(1 – sim(w1, w2)) where 

insert(w2) is the cost of inserting w2 and sim(w1, w2) is the similarity between w1 and 

w2. This definition does not take the deletion of the original word into consideration, 

therefore when two words have no conceptual similarity the cost of substitution 

becomes the cost of insertion, neglecting the implicit deleting operation. In our work 

we give a more comprehensive definition. 

Let the conceptual similarity measure between two labels lv1, lv2 which are 

attached to node v be s, 0≤s≤1, we define: 

)1())](())(([))(( )(21
svinsertvdeletevrelabel vparentll vv

−×+=→ γγγ  

We analyze two extreme cases: if s = 1, then re-labelling will only result in literal 

replacing without any loss of information, therefore the re-labelling cost is 0; if s = 0 

(i.e., the two concepts are totally different), the re-labelling operation is equivalent to 

deleting v and inserting v again, the transformation cost is γ(delete(v)) + 

γ(insertparent(v)(v)). In other cases, the cost will be between these two boundaries. 

 

4.4.2.6 Cost Computing Algorithm 

The cost computing algorithm is composed of a pre-processing phase and a 

transforming phase, as depicted below. The pre-processing phase finds the nodes that 

are to be deleted and inserted. In the transforming phase, an exhaustive method is 

used to try every possible transformation sequence to find the minimal cost. 
A. The pre-processing phase. 
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Input: Tree T1 and T2; Concept similarity measure set 
21 , VV LL

S  

Output: Sets of nodes to be deleted, D, and inserted, I 

Algorithm: 
1) D = ∅; 
2) for every node u in V1  
3) { 
4)   if(not exists any l in LV2 such that M1(u) = l) 

5)     if(not exists any s(M1(u), l) in 
21 , VV LL

S ) 

6)       add u into D; 
7) } 
8) I = ∅; 
9) for every node v in V2 
10) { 
11)   if(not exists any l in LV1 such that M2(v) = l) 

12)     if(not exists any s(l, M2(v)) in 
21 , VV LL

S ) 

13)       add v into I; 
14) } 
15) return D and I; 

 
B. The transforming cost computing phase. 

Input: Tree T1 and T2; D, I; Concept similarity measure set 
21 , VV LL

S  

Output: γ (T1→T2) 

Algorithm: 
1) find all permutations composed by elements in D∪I and store in P; 
2) transformCost = +∞; 
3) for each permutation p in P 
4) { 
5)   backup T1 and T2; 
6)   editCost = 0; 
7)   for each element u in p 
8)   { 
9)     perform deletion (if u∈D) or insertion (if u∈I) on u if applicable; 
10)     editCost = editCost + (γ(delete(u)) or γ(insert(v))); 
11)   } 
12)   for each u in V1 but not in p 
13)   { /* handle the nodes to be moved. */ 

14)     if(exists l in LV2 such that M1(u) = l or exists any s(M1(u), l) in 
21 , VV LL

S ) 

15)       if(M1 (parent(u)) ≠ M2 (parent(M2
-1(l))) and  
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16)         not exists any s(M1 (parent(u)), M2 (parent(M2
-1(l))) in 

21 , VV LL
S ) 

17)         perform moving on u; 
18)         editCost = editCost + γ(move(u)); 
19)   } 
20)   for each u in V1 but not in p 
21)   { /* handle the nodes to be re-labelled. */ 

22)     if(exists l in LV2 such that exists any s(M1(u), l) in 
21 , VV LL

S ) 

23)       perform re-labelling on u; 
24)       editCost = editCost + γ(relabel(u)); 
25)   } 
26)   transformCost = min(transformCost, editCost); 
27)   restore T1 and T2; 
28) } 
29) return transformCost; 

 

In this algorithm, a backup operation and a restore operation are included, which are 

used to setup a common starting point each time a new operation sequence is tried. 

The same algorithm can be used to compute the cost of converting T2 into T1, 

therefore the similarity index of T1 and T2 can be determined. 

Following, we give the time complexity analysis of the algorithm: Given two trees T1 

= (V1, E1, L1
V1, root(T1), D, M1), T2 = (V2, E2, L2

V2, root(T2), D, M2), and a conceptual 

similarity measure 
21 , VV LL

S , let |V1| and |E1| be the number of nodes and edges in T1, 

|V2| and |E2| be the number of nodes and edges in T2, so the upper bound of |
21 , VV LL

S | is 

|V1|×|V2|. In the pre-processing phase, the times to search T1, T2 as well as 
21 , VV LL

S  are: 

    |V1|×|V2|×|V2| + |V2|×|V1|×|V1| 

Without loss of generality, we assume that two trees have similar sizes. That is, |V1| ≈ 

|V2| ≈ n. Therefore, we have |E1| ≈ |E2| ≈ n-1. The time complexity of the 

pre-processing phase is O(n3). 
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In the cost computing phase, on average half of the nodes in T1 may be deleted and 

half of the nodes in T2 need to be inserted, so the complexity of getting the 

permutations of D∪I is O(n(n + 1)/2) = O(n2). The average times of deleting and 

inserting nodes are n. When moving the nodes, on average n/4 nodes can be moved 

(half of the untouched nodes), and the time complexity of finding the position to 

move for each node is O(n/4 + n/4) = O(n/2) (considering both the node itself and its 

parent node). The time complexity of the relabeling operations is O(n/4). Therefore, 

the time complexity of the cost computing phase is O(n2)×O(n + n/2×n/2 + n/2) = 

O(n4). 

To sum up, the time complexity of the algorithm is O(n3) + O(n4) = O(n4). Usually in 

an ontological view the number of concepts is limited and the comparison is often a 

one-time action, therefore the cost is acceptable although better tree comparison 

algorithms can be explored to reduce the cost. 

 

4.5 Instance-based Approach 

4.5.1  Introduction to the Approach 

In the family of schema matching approaches, instance-based approaches [Doan, et 

al., 2001] can utilize the data instances which imply plenty of valuable clues for the 

potential attribute matches. When comparing concepts in different ontological views, 

the fact that data instances are maintained in the information repositories can be 

applied to increase the precision of discovering semantic equivalence relationship 

between the concepts. 

One of the major issues of these approaches is the cost of manipulating a large 

quantity of raw data. One solution to increase the efficiency is to use instance 

representatives (with each representing a set of data instances) for the analysis instead 

of using all raw data. The clustering methods can be applied as a solution. 
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Some research also uses clustering methods to find closely related schema elements. 

For example, Pei et al. [Pei, et al., 2006] proposed a new approach for schema 

matching by clustering schemas on the basis of their contextual similarity and 

clustering attributes of the schemas that are in the same schema cluster to find 

attribute correspondences between these schemas. The approach also clusters 

attributes across different schema clusters using statistical information gleaned from 

the existing attribute clusters to find attribute correspondences between more 

schemas. Smiljanic et al. [Smiljanic, et al., 2006] presented a clustering-based 

technique for improving the efficiency of XML schema matching by partitioning 

schemas with clusters and reducing the overall matching load. In this work clustering 

is used to quickly identify regions, i.e., clusters, in the large schema repository which 

are likely to produce good mapping. This research has a different context than our 

work, i.e., they cluster the schema elements instead of clustering the data instances. 

Also, no work was done based on the concept of ontological views. 

 

4.5.2  Instance-based Semantic Equivalence Relationship 

Discovery 

The semantic similarities of the concepts in ontological views can be computed based 

purely on the representations of their properties. However, the data instances, when 

available, can provide many more useful clues to help discover the similarity of the 

properties regardless of how they are represented. The probability distribution (or 

probability density) is one of the often-used approaches to analyze the instance 

values. Basically, if two properties of two concepts have compatible data types (the 

data type can be known from the schema) and the probability distributions of their 

data instances are identical or very close, then it is reasonable to infer that these two 

properties are very likely to be semantically similar. In the following sections we 

discuss the problems to solve and the corresponding solutions. 
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4.5.2.1 Estimation of Probability Density of Data Instances 

The first problem is how to estimate a probability density function f(x) given a 

sequence of independent and identically distributed random variables x1, x2, …, xn 

(data instances of a property) from this density f. 

There is a rich collection of non-parametric density estimators, including kernel, 

spline, orthogonal, series, and histogram [Bean and Tsokos, 1980]. 

We adopt the Kernel density estimation method [Turlach, 1993 and Wasserman, 

2005] to compute the probability distribution of the data instances. In statistics, 

Kernel density estimation is a non-parametric way of estimating the probability 

density function of a random variable. Different than many distributions, the Kernel 

density estimation is smooth and independent of end points. It just depends on the 

bandwidth. The definition of kernel density estimation is presented as follows. 

If x1, x2, …, xN ~ f is an independent and identically-distributed random variables 

sample of a random variable, then the kernel density approximation of its probability 

density function is 

  ∑
=

−
=

N

i

i
h h

xxK
Nh

xf
1

)(1)( , where K is some kernel and h is the bandwidth 

(smoothing parameter). Quite often K is taken to be a standard Gaussian function with 

mean zero and variance 1, and h is computed according to the standard deviation (S) 

of the N values [Scott and Sain, 2004]: 
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4.5.2.2 Comparison of Probability Densities 

After the probability densities of the properties are computed, it is necessary to 

compare them and check their similarity. The question here is how to compare 

different probability densities. 

We employ the Kullback-Leibler (K-L) divergence approach [Kullback, 1987] to 

compare the probability densities. In the probability theory and information theory, 

the K-L divergence is a non-commutative measure of the difference between two 

probability densities.  

For probability densities f1 and f2 of a continuous random variable, their K-L 

divergence is defined as  

1
1 2 1

2

( )( , ) ( ) log
( )

f xf f f x dx
f x

δ
∞

−∞
= ∫ . 

Although a property is a continuous variable, in practice it should be manipulated as a 

discrete random variable in order to compute the K-L divergence. The solution is to 

sample a set of values (with each denoted as si) from the domain of two properties 

under comparison, then compute the probability of each value according to the 

probability density functions (denoted as f1(si) and f2(si)), and finally compute the K-L 

divergence by 

1
1

2

( )( ) log
( )

i
K L i

i i

f sD f s
f s− = ∑  

 

4.5.2.3 Clustering of Data 

In the instance-based analysis, another problem emerges when using original data 

instances to compute the probability densities and compare them. The computation 
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cost is very high due to the large amounts of raw data. The solution is to cluster the 

data first, and then compute the probability densities based on the clustered data. 

Cluster analysis [Kotsiantis and Pintelas, 2004], also called data segmentation, relates 

to grouping or segmenting a collection of objects (also called observations, 

individuals, cases, or data rows) into subsets or “clusters” such that those within each 

cluster are more closely related to one another than objects assigned to different 

clusters. Since the objects in each cluster are closer or similar to each other, it is 

reasonable to use one typical object within one cluster to represent the entire cluster. 

The typical object is a weighted cluster centre which can represent a set of values 

similar to the centre itself. The use of a typical object will significantly reduce the size 

of the problem. 

Hierarchical clustering is one of the major methods of cluster analysis. Hierarchical 

clustering is subdivided into agglomerative methods, which proceed by a series of 

fusions of the n objects into clusters, and divisive methods, which separate n objects 

successively into finer clusters. A key component of the analysis is repeated 

calculation of distance measures between objects, and between clusters once objects 

begin to be grouped into clusters. 

The initial data for the hierarchical clustering of N objects is a set of ( 1)
2

N N× −  

object-to-object distances and a linkage function for computation of the 

cluster-to-cluster distances. The linkage function is an essential prerequisite for 

hierarchical clustering. Its value is a measure of the distance between two groups of 

objects, i.e. two clusters. 

A commonly used linkage function is complete linkage clustering, in which distance 

between groups is defined as that of the furthest pair of individuals, where a pair 

consists of one member from each cluster. Mathematically, the complete linkage 

function—the distance D(X, Y) between clusters X and Y is defined as D(X, Y) = 
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max(d(x, y)),  x∈X and y∈Y, where d(x, y) is the distance between elements x∈X and 

y∈Y, and X and Y are two sets of elements (two clusters). 

Complete linkage clustering is an agglomerative method. It starts from the clusters 

initially containing one element each and successively fuses them to generate larger 

clusters. Therefore, the two clusters with the lowest distance are joined together to 

form the new cluster. At each step, the clusters to be used are those that are, according 

to some pre-defined metric, most similar to each other. 

The above discussion shows that the distance between elements is the foundation of 

cluster analysis. An important task in any clustering is to select an appropriate 

distance measure, which will determine how the similarity of the two elements is 

calculated. This will influence the shape of the clusters, as some elements may be 

close to one another, according to one distance and further away according to another. 

At the information level, we consider generic metric space, not definitely pure 

Euclidean Space (i.e., it is only required that the distance between any pair of 

elements is known. It is not limited to the coordinates of points). A metric of a set X is 

a function (called the distance function or simply distance) d: X×X→R, where R is the 

set of real numbers. For all x, y, z in X, this function is required to satisfy the 

following conditions: 

(1) d(x, y) ≥ 0 (non-negativity) 

(2) d(x, y) = 0 if and only if x = y (identity of indiscernibles). Condition (1) and (2) 

together produce positive definiteness. 

(3) d(x, y) = d(y, x) (symmetry) 

(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). 

In an information system we usually face three types of data: numeric data, date-time, 

and text string. Therefore, we define the distance metric for the three types: 
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If x, y are values of concept instances on property X, the distance between x and y, 

d(x, y), is defined as: 

 Euclidean distance in Euclidean one dimensional space, |x - y|, if the type of X 

is numeric; 

 Euclidean distance in Euclidean one dimensional space, |absolute_time(x) – 

absolute_time(y) |, if the type of X is date-time, where absolute_time is a 

function to map each date time to a long integer; 

 Edit distance of string, if the type of X is text string. The edit distance d(x, y) is 

the minimal cost for a sequence of edit operations to transform x to y.  

The edit operations include: 

(1) Replace one character in x by a character from y; 

(2) Delete one character from x; 

(3) Insert one character from y. 

The cost model is defined as: 

1,  if 
( , )

0,  if 
a b

c a b
a b

≠⎧
= ⎨ =⎩

 

a and b can be ε  (null character) meaning inserting a new character b or 

deleting an existing character a. 

After the clusters are created, we expect to use the representative data instance in each 

cluster, i.e. the cluster centre, to represent the entire set of data instances in the 

following analysis. This is known as a 1-median problem [Drezner, et al., 1986] 

which is defined as follows: 
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Given a universe U, a finite multi-set of points P, and a metric d, a 1-median is a point 

m∈U that minimizes the objective function 

( , )
p P

d p m
∈
∑  

In this definition, m is a valid member in U but not definitely a point in P. It is an 

optimal one to represent others since the median point is relatively closer to other 

points (in terms of the selected distance metric). 

The basic idea of the algorithm of finding the 1-median point is: for a point p∈P, let 

( ) ( , )
x P

S p d p x
∈

= ∑ , then conduct a series of comparisons between S(p), p∈P to find a 

point q that minimizes the value of S. The point q is the cluster center under the 

1-median’s definition. 
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Chapter 5 Implementation and Result Validation 

5.1 Implementation 

The implementation of this research includes two stages: 1) mapping the proposed 

solution to technologies; and 2) creating engineering solutions using the adopted 

technologies. Section 5.1.1 focuses on the first stage. The second stage is described in 

section 5.1.2 and 5.1.3. 

 

5.1.1  Mapping of Proposed Solution to Technology 

In section 4.3, we propose to use frame as the paradigm to model the ontological 

views. The fundamental elements within frame include: 

• Frames representing concepts. 

• Slots representing properties of concepts or relationships with other concepts. 

• Facets representing characteristics of properties. 

• Data representing instances of a concept. 

These elements should be mapped to constructs provided by an implementation 

technology (except the Data element that may be unnecessary in some modeling 

situations) to guarantee that the solution can be supported by the technology. We 

consider two types of technologies: 

• Relational model. 

• RDF-based model. 

The following sections show how the mapping is achieved. 
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5.1.1.1 Mapping to Relational Model 

Objects in the real world can be abstracted as data with specifications in the 

computational world. A data model provides a uniform way to specify and represent 

data. The relational model [Codd, 1990] was the first data model theoretically 

founded and well thought out. It has become the foundation of the relational database 

technology. 

The fundamental assumption of the relational model is that all data is represented as 

mathematical n-ary relations. Briefly, the relational model structures the logical view 

of data around two mathematical constructs: domains (i.e., data types) and relations. 

The name relational comes from "relation" as known and widely used in 

mathematics, although in database theory the definition of relation is slightly 

extended. 

A domain is simply a set of values, together with its associated operators. It is 

equivalent to the notion of a type in programming languages. 

A relation over the domains D1, D2, ..., Dn is simply a subset of the Cartesian product; 

the usual notation is R "included in" D1 × D2 × ... × Dn. An element of the Cartesian 

set is called a tuple. A database is a collection of "relation valued" variables, together 

with the set of integrity constraints that the data must satisfy. A relation can also be 

viewed as a structure describing the relationships between things in the real world. 

Each domain that defines a relation is associated with a string label (that is called 

attribute name). An attribute is then the association between an attribute name and a 

domain. In other words, an attribute has a name and a domain. A relation header is 

then a set of attribute names. A tuple becomes the mapping between each attribute 

name in the relation header and a value. And a relation is a set of tuples, all 

corresponding to the relation header. 
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A key of a relation is composed of one or more attributes. The value of a key uniquely 

identifies each tuple. A relation may have many keys, each of which is called a 

candidate key. Every relation has at least one candidate key. One candidate key is 

selected as the primary key. 

A foreign key is composed of one or more attributes whose values are used elsewhere 

as primary key values. The primary key and foreign key are defined on the same 

domain but do not necessarily have the same attribute names. 

Besides the structure of data, the relational model also defines the means for data 

manipulation (relational algebra or relational calculus) and the means for specifying 

and enforcing data integrity (integrity constraints). 

Mapping between the frame to the relational model enables the adoption of a 

relational model as an implementing technology. According to the definition of frame 

and relational model, the following mapping rules are defined: 

• A frame is mapped to a relation. 

• A slot of a frame representing a property is mapped to an attribute of a 

relation. 

• A facet of a slot is mapped to a domain. 

• A set of values on all slots representing an instance is mapped to a tuple. 

• The set of one or more slots that uniquely identify an instance is mapped to a 

primary key. 

• A slot representing a relationship to another frame is mapped to a foreign key 

or a relation, all of which attributes are foreign keys. 

The relational model is the foundation of relational database systems. To apply the 

relational model,  
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• Type is used to implement a domain. A type may be the set of integers, the set 

of character strings, the set of dates, or the two boolean values true and false, 

and so on. The corresponding type names for these types might be the strings 

"int", "char", "date", "boolean", etc. 

• Attribute is the term used in the theory for what is commonly referred to as a 

column in a relational database.  

• The database systems provide rich characteristics, besides name and type, for 

attributes, e.g., value range, null-able, default value, etc. 

• Table is commonly used in place of the theoretical term relation. A table 

structure is specified as a list of column definitions, each of which specifies a 

unique column name and the type of the values that are permitted for that 

column. 

• A tuple is basically the same thing as a row. 

Based on these rules, the frame model is mapped to the relational model, which is 

further implemented by the relational database technology. 

 

5.1.1.2 Mapping to XML-based Models 

XML is a standard for specifying data on the Web in a structured manner. Strictly 

speaking, XML is a formalism of encoding information. An XML document is a flat 

file with a rigid structure to specify concepts. It may follow the concept-property 

paradigm and be compatible with a relational model. 

An XML schema is helpful for defining the valid structure of an XML document. 

A concept can be mapped to an element within an XML document. The element may 

have multiple attributes, each of which is corresponding to a property of the concept. 
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Another way is to map a property to a sub-element of an element within an XML 

document. The different situations show that the structure of XML can be quite 

arbitrary in terms of how the concepts are modeled. For example, each of the 

following two XML fragments shows a valid modeling of the concept product: 

 

 

 

The frame model is compatible with either case. However, creating a frame-based 

ontological view from such arbitrary models may pose a significant challenge. In our 

solution, we assume that the XML documents follow a given format: 

 

 

 

 

 

 

 

The following is an example about products: 

 

 

 

 

 

 

 

 

<product> 
<name>Donut</name> 
<price>1.99</price> 

</product> 

<product name=”donut” price=”1.99” /> 

<concept-group> 
<concept-name attribute-list /> 

    <concept-name attribute-list /> 
<…> 

</concept-group> 
<relationship-group> 
    <relationship-name> 
        <subject-concept-name identifier-attribute-list /> 
        <object-concept-name identifier-attribute-list /> 
    </relationship-name> 
</relationship-group> 

<products> 
<product name=”donut” price=”1.99”/> 

    <product name=”cookie” price=”1.49” /> 
</products> 
<times> 
    <time name="weekend" start="Saturday" end="Sunday"> 
</times> 
<product_time_rules> 
    <product_time_rule> 
        <product name="donut" /> 
        <time name="weekend" /> 
    </product_time_rule> 
</product_time_rules> 
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It still follows the concept-property structure. A concept in a frame is mapped to an 

element in an XML document. The properties of a concept is mapped to attributes of 

an element. A relationship is denoted by a specific element that has multiple 

sub-elements indicating the subject concept and object concept in the relationship. 

Note that in an XML document the instance data is embedded. A schema can be 

extracted from a valid XML document. The facets of a property are not directly 

specified in an XML document but can be specified in the schema as further attributes 

of an attribute within the document. 

In the current stage we only consider binary relationships but the solution can be 

extended to support multi-arity relationships. 

A wrapper is created to convert the XML-based model into an ontological model. The 

wrapper can be enhanced to support more formats. 

 

5.1.1.3 Mapping to RDF Model 

RDF is a general model for conceptual description of the modeling of information that 

is implemented in Web resources, using a variety of syntax formats. 

The RDF data model is similar to classic conceptual modeling approaches such as the 

Entity-Relationship model, as it is based upon the idea of making statements about 

resources (in particular Web resources) in the form of subject-predicate-object 

expressions. These expressions are known as triples in RDF terminology. The subject 

denotes the resource, and the predicate denotes traits or aspects of the resource and 

expresses a relationship between the subject and the object. 

A frame model can be mapped to a RDF model guided by the following rules: 

• A frame is mapped to a subject, representing a concept. 
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• A property is mapped to an object, and the predicate that associates the subject 

and the object is defined as a "has-property" relationship. 

• An object can be a resource on the Web. Therefore, the object can be a subject 

in another statement. In this sense, a property is mapped to a subject, and its 

facet is mapped to an object. The predicate that associates the subject and the 

object is defined as a "has-facet" relationship. 

• An instance is mapped to an object with a predicate "has-instance" between a 

concept and itself. The instance further acts as a subject, and the property 

values act as objects. The predicate between the instance and value is defined 

as a relationship "has-property" where property refers to a specific property on 

which the instance gets a value. 

XML can be used as a serialization format of RDF. With such mappings an 

ontological view model can be implemented as an RDF model, and further 

represented with XML. In our engineering solution, RDF is not actually used since we 

focus on typical information systems and these systems are usually not Web-based. 

They concern information but such information is not treated as Web resources. 

 

5.1.2  Prototype Environment 

The proposed solutions are applied to a collaborative intelligence prototype 

environment. Collaborative intelligence refers to a mechanism for semantically 

integrating decentralized business intelligence and providing a comprehensive 

knowledge foundation which can be utilized to achieve various goals. In another 

sense, collaborative intelligence can be viewed as a kind of artifact that is produced 

by a specific mechanism by collecting distributed intelligence, resolving semantic 

heterogeneities, and converting to an expected form. 



180 
 

 

The collaborative intelligence mechanism is used to improve the product 

promotion/advertisement domain and facilitate collaborative promotion. QSR (Quick 

Service Restaurant) is a typical business that requires collaborative promotion. In such 

a business, the promotion is achieved by displaying multimedia contents on digital 

displays installed in many stores. The multimedia contents contain information about 

various products, such as images, product names, prices, effective dates of 

promotions, etc. The decision about what product to promote, when and where to 

promote, and what multimedia content to play should be made based on the overall 

knowledge of the entire business. Information systems managing the media assets, 

product inventory, sales transactions, device schedules, etc. were originally developed 

in a separate manner without considering collaboration in the future. The systems 

share some common concepts within the business; however, they adopt different ways 

of modeling the domain, resulting in heterogeneous information models. 

A basic promotion criterion requires promoting a particular product more than 

another, i.e., playing a media asset representing that product more frequently, if that 

product reaches higher inventory level. To achieve such objectives the information 

systems should be semantically integrated, so the scattered information can be 

exchanged and understood by each system and therefore final decisions can be made. 

Collaborative promotion, as a business strategy, is expected to be applied to achieve 

more efficient and flexible promotion decisions. 

Figure 5-1 illustrates the physical architecture of a collaborative promotion 

environment: 
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Figure 5-34. Architecture of a collaborative promotion environment. 

In the environment some systems (e.g. store inventory management system, store 

transaction management systems, etc.) provide essential information and some other 

systems (e.g. promotion planner, promotion scheduler) utilize the information to make 

decisions. Information maintained by these systems, such as the promotion schedule, 

can also be used by other systems for further analysis and decision making. 

The access to the information models of these systems is guaranteed. A Web-based 

management console is deployed to the environment. The console is able to list the 

systems within the system. Each system is identified by a unique system ID and a 

system name. From the console, users can browse each system’s information model 

and the created ontological view. 

The following screenshot shows the interface of the management console that 

presents an ontological view created from the business model management system. 
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Figure 5-35. Screenshot of the management console. 
 

5.1.3  Implementation of Services 

5.1.3.1 Registration Service 

Collaborative intelligence is produced in an open environment. In this environment 

multiple information systems maintain business intelligence. A semantic integration 

service is expected to be attached to each information system and be in charge of 

resolving semantic heterogeneities. 

To facilitate the systems' awareness of the existence of semantic integration services, 

a registration service is deployed to the environment. The registration acts as a 

yellow-page. A look-up against the registration service results in the address 

information of one or more semantic integration services. 

The mechanism to access the registration service is built-in knowledge for all the 

semantic integration services. Technically, the registration service is provided as a 
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Web Service, therefore, its end point URL, methods provided within the service, and 

usage of the methods are commonly known by each semantic service. The end point 

URL is a publicly available configuration entry. The usage of each method include the 

meaning and functionality of the method, the meaning of input parameters, and the 

meaning of the returned result. 

The registration service can provide the following functions: 

• Support registration of a semantic integration service. 

• Support de-registration of a semantic integration service. 

• Maintain a unique ID / name pair for each registered semantic integration 

service. 

• Maintain an end point URL for each registered semantic integration service. 

• Return a list of ID / end point URL pairs upon a request. 

 

5.1.3.2 Semantic Integration Service 

A semantic integration service, technically a Web Service, is attached to an 

information system as a plug-in. The semantic integration service is responsible for 

discovering semantic equivalence relationships between concepts from various 

information models. The discovered semantic equivalence relationships will serve to 

resolve semantic heterogeneities. 

The functionality for the semantic integration service includes: 

(1) Accessing the information system to get its information model as well as the 

instance data. 

(2) Creating an ontological view based on an information model. 
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(3) Performing analysis on the concepts and instance data to discover semantic 

relationships among the concepts from various ontological views. 

(4) Managing the concept model implied by the information system to which it is 

attached. It can answer two questions: 

• Given a concept specification (as an income request), it can tell which 

concept within its ontological view that is possibly the same as the income 

concept and how possible it is; 

• If an income concept is possibly the same as one internal concept, how their 

properties are the same as each other, respectively. 

(5) Contacting the registration service to know what other services also reside in 

the environment. 

(6) Fetching an ontological view from another service (using the address got from 

the registration service), performing analysis on its own ontological view as well as 

the other and discovering potential equivalence relationships. 

The discovered relationships are treated as alignments. We adopt a tailored version of 

the INRIA [INRIA, 2010] format to represent the alignments. The format is specified 

as follows. 

• Alignment class 

 The Alignment class describes a particular alignment between two ontological 

views. Its properties are the following:  

  ov1: (value: OntologicalView) the first ontological view to be aligned;  

  ov2: (value: OntologiclaView) the second ontological view to be aligned;  

 map: (value: Cell*) the set of equivalence relationships between concepts of 

the ontological views.  
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• Cell class 

 concept1: (value: Concept) the reference of a concept of the first ontological 

view; 

 concept2: (value: Concept) the reference of a concept of the second 

ontological view;  

 measure: (value: float number between 0 and 1) the confidence in the 

assertion that the relationship holds between the first and the second concept.  

 

5.2 Validation 

The proposed solutions are validated based on the application prototype for the 

collaborative promotion / advertisement domain. The validation focuses on the 

following aspects of the solutions: 

(1) Completeness of the frame-based ontological view specification language. 

This is to validate whether the language can express all mandatory elements from 

regular information models that will be used in semantic integration, i.e., it contains 

all constructs that are needed. 

Traditionally, the validation of modeling is a process of determining the degree to 

which a model is an accurate representation of the real world from the perspective of 

the intended uses of the model [AIAA, 1998]. This is also related to another 

characteristic of modeling: expressiveness, which refers to the power of modeling 

scenarios. 

In our work, we assume that the accuracy of the original modeling is guaranteed. That 

is, validating the model itself is not necessary. Also, we don't worry about the 
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expressiveness of the original modeling paradigm since we assume that it is 

expressive enough to model the scenarios which the application cares about. 

Therefore, we only focus on the generated ontological view model and validate the 

degree to which it reflects the original model. 

(2) Richness of the frame-based ontological view specification language. 

Richness refers to the power of built-in abstraction directly, i.e., the direct constructs 

provided for modeling things at a different abstraction level.  

(3) Completeness of the approaches. There are two aspects to validate: 

 (i) The approach for creating ontological views from information models. This is 

to validate that the approach can capture all mandatory elements from the identified 

information models. 

 (ii) The approach for discovering semantic equivalence relationships between 

concepts from different ontological views. This is to validate that all relationships can 

be discovered. 

(4) Soundness of the solution. It contains the following aspects: 

   (i) Whether the adoption of ontological views can address the schematic and 

syntactic heterogeneities of the information models and create a common platform for 

semantically integrating the information models. 

   (ii) Whether the discovered semantic equivalence relationships can address the 

semantic heterogeneities of the information models. 

   (iii) Whether the overall architecture can achieve its purpose, i.e., if the same 

concept is modeled and represented in different ways among the information systems, 

this fact can be identified, and therefore, a search request regarding a specific concept 
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can be collaboratively satisfied by multiple information systems within the 

environment that have models of that concept. 

 

5.2.1 Analytical Validation 

5.2.1.1 Completeness of the Frame-based Ontological View 

Specification Language 

The FOSL language is based on the frame modeling paradigm. The completeness of 

the language lies in three aspects: 

• The completeness of the modeling paradigm, i.e., if the modeling paradigm is 

able to model all mandatory elements, i.e., extrinsic concepts, intrinsic 

concepts (properties), characteristics of properties, and relationships. 

• The vocabulary and syntax of the language, i.e., if the above elements can be 

specified by the constructs of the language. 

• The transferability with other modeling languages, i.e., if all necessary 

constructs of another modeling language can be mapped to the constructs of 

the language. 

Generally speaking, an information model is an abstraction and formal representation 

of a domain of discourse. An information model is developed following a specific 

modeling paradigm (also referred to as a knowledge representation paradigm). The 

information implied by a model is relying highly on how the symbolic system is 

interpreted. Considering the availability of an interpretation, any formal or informal 

representation can express some information. In other words, any data structure in 

computer systems can be a specific representation of a model. For example, we can 

use a one-dimensional array [0, 1, 2, …] to represent different characters in the game 
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of chess, e.g., use 0 to represent the king and 1 for the queen. We can also employ a 

three-dimensional array [[5, 4, 0], [5, 5, 1], …] to represent a chess game, each 

element of which represents the character at a specific position (e.g., the king is at the 

cell of 5th row and 4th column). Such a representation can express specific worlds, 

but too much information is implied by the simple array formalism and a complicated 

interpretation is required. A good specification language should make the implied 

information as explicit as possible. 

In terms of the elements to model, many of the modeling paradigms, including first 

order logic [Sumllyan, 1995], description logic [Badder and Sattler, 2001], production 

rules [Klahr, et al., 1987], conceptual graph [Sowa, 2005], semantic network [Kendal 

and Creen, 2007], F-logic [Kifer, et al., 1995], entity-relationship model, 

object-oriented model, RDF, etc., model the world around the notion of concept. That 

is, these paradigms are able to specify individual elements that can be mapped to 

concepts. Some other paradigms do not have the explicit notion of concept. 

State-space is the earliest representation formalism used extensively in Artificial 

Intelligence [Barr and Feigenbaum, 1981]. It represents the structure of a problem in 

terms of the alternatives available at each possible state of the problem. It uses 

specific forms to represent the states that involve objects. Explicit interpretation is 

necessary to explain how the objects and relationships are arranged in the states. 

Specific applications are required to decide how the transitions can occur between the 

states. 

In a procedural representation [Barr and Feigenbaum, 1981], knowledge about the 

world is contained in procedures—small programs that know how to do specific 

things, how to proceed in well-specified situations. For instance, in a parser for a 

natural language understanding system, the knowledge that a noun phrase may 

contain articles, adjectives, and nouns is represented in the program by calls to 

routines that know how to process articles, nouns, and adjectives. In this paradigm 

concepts are not stated explicitly and thus is neither typically extractable in a form 

that humans can easily understand, nor reusable by other programs. 
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Many expert systems use decision-making rules [Kendal and Creen, 2007] that can be 

represented using the IF…THEN format, that is 

   IF <situation> THEN <action> 

Other clauses such as OR and ELSE can also be used with this construct to show 

alternative situations or different courses of action. Rules in a knowledgebase system 

(KBS) stand along as statements of truth or fact and can be used by an inference 

engine to reach other true conclusions. This representation does not provide a 

standard way to specify concepts in the situation and action part. 

Propositional logic is one approach for representing knowledge in many expert 

systems. In this approach, the elementary building blocks, propositions, are atomic 

statements that cannot be decomposed any further, e.g., “It is raining”, “Tom is a 

student”. Logical connectives like “and”, “or”, “not” can be used to build 

propositional formulas. Similarly, there is no standard way to specify concepts in the 

propositions. 

Among the paradigms that have the notion of concept, first order logic and production 

rules do not differentiate concepts and instances of concepts. Others can specify 

concepts and instances separately. For example, in conceptual graphs, each concept 

has a concept type and referent such as [Person: Tom]. 

All the paradigms that have the notion of concept also support the notion of 

relationship that associates concepts. For example, in first order logic a relationship 

can be represented as sell(Store, Product). 

Most of the paradigms do not provide facilities to model further details such as 

properties of concepts as well as characteristics of properties. Properties and the 

further characteristics actually refer to relationships with specific meanings. The 

entity-relationship model, object-oriented model, and frame provide means to model 

all these aspects. Production rule has the entity-attribute-value triple structure, which 
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can be viewed as a form to represent properties of concepts. The entity-relationship 

and object-oriented paradigm can model characteristics of properties but the 

capability is not complete. It is completed at the supporting technology level such as 

the relational database and application written with specific OO languages, but not at 

the modeling level. 

Many of the modeling paradigms also model the behavioral/logical aspects besides 

the informational aspects. The exceptions are state space, conceptual graph, and 

semantic network. In the implementations, usually the informational aspects are 

supported by persistence technologies and the behavior aspects are supported by 

applications. In the modeling of ontological views the behaviors of concepts are not 

required. 

The degree of structured of a modeling paradigm means how different elements are 

represented separately so each one of them can be differentiated from others and 

treated individually. The procedural representations embed model of the world within 

programs so it is hard to extract the individual elements. Similarly, the rule-based 

methods and propositional logic do not define internal structures for the sentences. 

First order logic is more structured in a sense that atomic formulas are interpreted as 

statements about relationships between objects. Other modeling paradigms are quite 

structured since they provide separate structures for different types of elements. 

Model Implication means the degree that the model requires interpretation for 

humans’ understanding. A well structured paradigm is usually explicit in terms of the 

meaning of the internal constructs, which makes the models easier to understand. An 

exception is the state space which can be highly structured but how each state 

represents the world requires lots of interpretation. 

Some paradigms do not have general-purposed supporting technologies for model 

persistence and reuse by applications, therefore they are not considered in the 

validation. 
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The following table presents a summary of the features of various modeling 

paradigms. It shows that frame provides the most complete features for our modeling 

purpose. 
Table 1. Comparison of various modeling paradigms. 

Features Has 

Notion of 

Concept 

Differentiate 

Concepts 

and 

Instances  

Has Notion 

of 

Relationship 

Has 

Notion of 

Property 

Has 

Notion of 

Property 

Characte

ristics 

Has 

Notion of 

Behavior

/ 

Logic 

Structured Model Implication General-purpose 

Supporting 

Technology Modeling 

paradigms 

State space No No No No No No High High No (interpreted by 

applications) 

Procedural 

Representat

ion 

No No No No No Yes Low High No (interpreted by 

applications) 

Rule-based 

methods 

No No No No No Yes Low High No (implemented by 

specialized systems) 

Proposition

al logic 

No No No No No Yes Low Medium No (implemented by 

specialized systems) 

First order 

logic 

Yes No Yes No No Yes Medium Medium Prolog 

Description 

Logic 

Yes Yes Yes No No Yes High Low OWL 

Production 

rules 

Yes No Yes Yes No Yes High Low Prolog 

Conceptual 

Graph 

Yes Yes Yes No No No High Low No (implemented by 

specialized systems) 

Semantic 

Network 

Yes Yes Yes No No No High Low No (implemented by 

specialized systems) 

F-Logic Yes Yes Yes No No Yes High Low No (implemented by 

specialized systems) 

Entity-Rela

tionship 

Model 

Yes Yes Yes Yes Yes (not 

complete) 

No High Low Relational database 
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Object-Orie

nted 

Yes Yes Yes Yes Yes (not 

complete) 

Yes High Low Object-Oriented 

languages 

Frame Yes Yes Yes Yes Yes No High Low Not required 

 

According to the definition of ontological views, a complete specification language 

should provide constructs to denote concepts, properties of concepts, characteristics of 

properties, and relationships to specify the objects to be modeled. We examined two 

languages that are practically used in specifying information models since our work is 

based on the existing information systems: relational (implemented by SQL) and 

XML schema. They are well supported by mature persistence technologies. 

The following table presents the comparison between FOSL, SQL, and XML schema 

elements. It shows that FOSL has the complete set of constructs for modeling the 

expected elements and all the constructs can be mapped to the counterparts within 

SQL and XML schema. 
 

 

 

 

 

 
Table 2. Comparison of FOSL, SQL, and XML 

           Representation  

                Language 

 

               Language 

               Construct 

Modeling Object 

FOSL SQL XML Schema 

World Ontological_View database schema 

Concept Concept table element 

Property Property column attribute 

Relationship Relationship foreign key embedded element 

(complexType) 
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Property/Relati

onship 

Characteristics 

 Facet column attribute element attribute 

Characteristics 

Name Name column name name attribute 

Identity (Not necessary) primary key, unique key key element, unique element 

Auto-Increment Auto_Increment auto_increment/identity  

Data type Data_Type type type attribute 

Default value Default_Value default  default attribute 

Fixed value Fixed_Value  fixed attribute 

Optional Nullable null/not null use attribute 

Restriction on values  check restriction element, minInclusive 

elemnt, maxInclusive element 

Restriction on  a set 

of values 

 check restriction element, enumeration 

element  

Restriction on a 

series of values 

 check restriction element, pattern 

element 

Restriction on string 

length 

Size column length restriction elemment, length 

element, minLength element, 

manLength elemnt 

Restriction on data 

types 

Decimal_Size column length restriction element, 

fractionDigits elemnt, 

totalDigits element 

Relationship 

cardinality 

Cardinality (Implicit by model) maxOccur attribute, minOccur 

attribute 

 

5.2.1.2 Richness of the Frame-based Ontological View 

Specification Language 

The frame paradigm focuses on modeling concepts, properties, relationships, and 

characteristics of properties. The FOSL language provides corresponding vocabulary 

and constructs to explicitly and directly represent each of them, providing sufficient 

abstraction: 

• The symbol "Concept" identifies a concept with a unique identity. 
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• The symbol "Property" identifies a property with a unique identity for a 

concept. 

• The construct of a concept associating a set of properties represents the 

relationship "has-property". 

• The symbol "Facet" identifies a unique facet of a property. 

• The construct of a property associating a set of facets represents the 

relationship "has-facet". 

• The symbol "Value" identifies a value of a facet. 

• The construct of a facet associating a value represents the relationship 

"has-value". 

• The symbol "Relationship" identifies a n-ary relationship between concepts. 

• The symbol "IS-A" indicates a generalization/specialization relationship 

between two concepts. 

• The symbol "PART-OF" indicates a whole-part relationship between two 

concepts. 

The following segment shows a partial specification of a concept: 

Concept: product 
    Property: id 
        Facet: DATA-TYPE  Value: INT UNSIGNED 
        Facet: SIZE  Value: 10 
    Property: name 
        Facet: DATA-TYPE  Value: VARCHAR 
        Facet: SIZE  Value: 100 
    Relationship: 
        IS-A: sellable-item 
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Note that the language itself only provides sufficient way to specify the abstraction of 

a world. The world can be abstracted with different granularity and this depends on 

the purpose and capability of the modeler. The responsibility of the language is to 

specify any abstraction but not to guarantee a proper modeling granularity. 

 

5.2.2  Empirical Validation 

5.2.2.1 Completeness of Ontological View Creation 

A component within a semantic integration service is responsible for creating an 

ontological view from an information model. The approach adopted by the component 

uses the following heuristic rules to analyze the information model: 

• A relational table that has a primary key and extra columns is identified as a 

concept. Each column is identified as a property of the concept. 

• Using MySQL, 5 types of facets can be identified: data type, size, decimal 

digits, nullable, auto-increment. 

• A foreign key within a table (the subject concept) referring to another table 

(the object concept) is identified as a relationship between the two concepts. 

The relationship is simply named as "has" since there is a lack of explicit 

semantics of the foreign keys in a relational database. 

• A table which columns are all members of a foreign key is identified as a 

relationship between the two concepts represented by the two referred tables. 

The relationship is named following the table name due to the lack of explicit 

semantics. 

• An element in an XML document is identified as a concept. Attributes of an 

XML element are identified as properties of the concept. This limitation is 
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based on an assumption of the acceptable structure of the XML document. 

• The facets of the properties depend on the availability of the schema of the 

XML document. Without the schema, it is infeasible to extract the facets 

from an XML document due to the lack of information. 

• The embedding of one XML element within another element is identified as 

a relationship between the concepts represented by the two elements. 

This approach is applied upon several information models deployed in the 

collaborative promotion prototype environment. Among them, some systems adopt 

the relational model (using MySQL DBMS) and one system adopts XML-based 

model. These systems are described as follows: 

(1) Business Model Management System. This system manages business model of the 

QSR domain. The business model contains essential business concepts and business 

rules for this domain, such as products, languages, prices, times, resources, time rules, 

resource rules, etc. This system adopts the relational database as the persistence 

technology. 

(2) Media Management System. This system manages the information about media 

assets that can be displayed to achieve the promotion purposes. The media assets have 

a set of properties and are described by some keywords. The media assets are digital 

files; therefore the properties about the physical files are also managed. This system 

adopts the relational database as the persistence technology. 

(3) Promotion Management System. This system manages the promotions. It works as 

a consumer of the business model management system. A promotion specifies what 

product to promote, when to promote, and where to promote. This system adopts the 

relational database as the persistence technology. 

(4) Information Model of Intelligent Media. This system manages informational level 

model of the multimedia assets that can be displayed to achieve promotion purposes. 
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The information level model encapsulates the low level visual features of the 

multimedia content. This system adopts the relational database as the persistence 

technology. Note that this system does not involve in the semantic integration. 

Instead, it uses other systems' semantic integration services to achieve integration. 

(5) Inventory Management System. Product is a major concept that this domain 

concerns. The inventory of products is one of the most essential aspects to be 

managed for the business. This system manages the inventory of products, inventory 

locations and the stocking history. This system adopts the relational database as the 

persistence technology. 

(6) Transaction Management System. Sales transactions of products can serve to show 

how the products are sold during specific time, which can further serve as indications 

of what products to promote more or less. This system manages sales-related 

information including products, POS machines, operators, detailed transactions and 

receipts. This system adopts the relational database as the persistence technology. 

(7) Scheduling Management System. This system manages the promotion schedules 

in terms of what product to promote, which media to be used for the promotion, what 

time to display the media, and on which resources to display the media. This system 

adopts XML as the persistence technology. 

Details of these systems' information models are provided in Appendix A. 
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The following figure shows a segment of the created ontological view of the business 

model management system. It extracts the elements that represent concepts as well as 

the relationships from the underlying information model. 

The created ontological view is persisted in an XML document for further usage. The 

following is a segment of the document for the business model management system: 
<concepts> 

  <concept name="language"> 

    <properties> 

      <property name="language_id"> 

        <facet name="DATA_TYPE" value="INT"/> 

        <facet name="SIZE" value="10"/> 

        <facet name="DECIMAL_DIGITS" value="0"/> 

        <facet name="NULLABLE" value="false"/> 

        <facet name="AUTOINCREMENT" value="true"/> 

      </property> 

      <property name="resource_id"> 

Figure 5-36. A segment of an ontological view. 
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        <facet name="DATA_TYPE" value="INT UNSIGNED"/> 

        <facet name="SIZE" value="10"/> 

        <facet name="DECIMAL_DIGITS" value="0"/> 

        <facet name="NULLABLE" value="false"/> 

        <facet name="AUTOINCREMENT" value="false"/> 

      </property> 

      <property name="value"> 

        <facet name="DATA_TYPE" value="VARCHAR"/> 

        <facet name="SIZE" value="255"/> 

        <facet name="DECIMAL_DIGITS" value="0"/> 

        <facet name="NULLABLE" value="false"/> 

        <facet name="AUTOINCREMENT" value="false"/> 

      </property> 

    </properties> 

    <relationships> 

      <relationship name="has"> 

        <object_concept name="resource"/> 

      </relationship> 

    </relationships> 

  </concept> 

The results show that the created ontological views correctly reflect the model based 

on the design of the original relational database or the XML document. This provides 

well-founded support for the semantic equivalence relationship discovery in a later 

stage. 

 

5.2.2.2 Completeness of Semantic Equivalence Relationship 

Discovery 

Adopting a benchmark is helpful for validation from an empirical perspective. 

Information integration, as an application of semantic integration, has been an active 

area of research since the early 80's and has produced a rich collection of techniques 

and approaches to integrate heterogeneous information. As a result, determining the 

quality and applicability of a solution is a difficult task. It has been the focus of 
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several studies (e.g. [Do, et al., 2002]). The lack of available test data and benchmark 

makes such validation more challenging. 

THALIA18 is the first publicly available testbed and benchmark of integration 

technologies allowing the objective comparison of integration solutions [Hammer, et 

al., 2005]. It provides a collection of over 25 data sources representing university 

course catalogs from computer science departments around the world. THALIA 

provides a set of benchmark queries as well as a scoring function for ranking the 

performance of an integration system. It focuses on syntactic and semantic 

heterogeneities. 

The following table shows a sample course catalog from the CS department at Brown 

University providing information such as course number, instructor, title, time and 

location in a tabular format. 
Course Instructor Title/Time Room 

CS002 Stanford 
Concepts & Challenges of CS 

C hr. MWF 10-11 
Salomon 001 

CS004 Usas 
Intro to Scientific Computing 

K hr. T,Th 2:30-4  
MacMillan 117 

CS016 Tamassia 
Intro to Algorithms & Data Structures 

D hr. MWF 11-12 
CIT Lubrano 

CS018 Klein 
CS: An Integrated Approach 

J hr. T,Th 1-2:30 
CIT 227 

CS022 Lysyanskaya 
Intro. to Discrete Mathematics 

B hr. MWF 9-10  
CIT 165 

CS032 Reiss 
Intro. to Software Engineering 

K hr. T,Th 2:30-4  
CIT 165, Labs in Sunlab 

One benchmark query is to find synonyms: attributes with different names that 

convey the same meaning, for example, “instructor” vs. “lecturer”. 

THALIA provides a useful guide for empirically validating our solution. However, it 

cannot be directly adopted for the following reasons: 

• It collects data from the web pages of the universities. The course catalog 

                                                        
18 http://www.cise.ufl.edu/research/dbintegrate/thalia/ 
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information in the pages is quite un-structured (some is even in plain text) or 

not well-structured (like Brown’s case where two information items are 

combined into one column). This leads to a different context with our 

research, where we deal with well-structured information models. 

• The benchmark queries are heavily relying on the application background. For 

example, one query asks to list all database courses that carry more than 10 

credit hours. Our work is not limited to any specific application or specific 

domain. 

• The source data is collected and output as XML. The XQuery technique is 

used to conduct XML-based queries. Our work does not rely on any specific 

technique. 

• It requires the integration solution to have the capability of processing queries. 

In our solution the semantic integration only deals with semantic 

heterogeneities. Query processing is the capability of the original information 

systems. 

In the work we adopt some ideas of THALIA to design the criteria to validate the 

solutions. We focus on the query that checks if the key heterogeneities that exist in the 

underlying information models are well addressed: 

• Synonyms: different names that convey the same meaning. It includes two 

aspects: 

o Concept: different symbols, used as concept identifiers, refer to the 

same concept. 

o Property: different symbols, used as property identifiers, refer to the 

same property. 
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In the environment, the concept of "product" is a core concept for the QSR domain 

and it is modeled commonly in the business model management system, media 

management system, promotion management system, inventory management system, 

transaction management system and the scheduling management system in different 

ways. The concept of "resource" (digital device to play multimedia contents) and 

"time" (indicating when to play the contents) are modeled in the business model 

management system, promotion management system and scheduling management 

system in different ways. Our intention is to find out all such relationships. 

The approaches developed for discovering semantic equivalence relationships are 

applied in two manners: 

(1) A Web-based management console for the integration system provides one page to 

allow a human user to define a concept to be processed. In the page the user enters the 

name of the concept, properties of the concept, and a set of facets for each property in 

the form of name/value pair. These create a frame structure which is actually a 

representation for the concept from a conceptualization. The following figure shows 

the information that a user enters: 

 

Figure 5-37. The frame-based representation of a concept. 
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It is assumed that the intended concept is known by the information systems in the 

environment, but is modeled and represented in different ways. The heterogeneities 

need to be addressed at the ontological view level. Merely using the name of the 

concept it is not sufficient to identify which elements within the information models 

of the systems mean the same thing with the one defined from the management 

console. We apply the tree similarity-based approach to conduct the semantics-based 

search, considering the properties as well as their facets. The following table shows 

the transformation costs of the concept from the management console and the 

business model management system: 
Concept Transformation Cost 

price 1.1420396187560367 

product 0.28946908531683 

product_feature 1.549417980921546 

product_rule 0.3890182097794555 

resource 1.998957541249725 

resource_rule 0.47903603509139847 

time 1.5462285233203237 

time_rule 0.3710146447170669 

The lowest transformation cost indicates that the concept from the management 

console matches best with the "product" concept in the business model management 

system. 

The results on other systems show that synonyms in terms of concept identifiers and 

property identifiers can be successfully discovered. The scheduling management 

system is an exception since its ontological view does not contain sufficient 

information (no facets for the properties are available). 

(2) While the instance data, e.g., the data in the relational tables, is available, we 

compare the representation of two concepts from two ontological views by applying 

the instance-based approach on their instance data. This approach does not assume 

any domain knowledge about the concept modeling. It examines different 

permutations of the properties of two concepts to make sure that every possible 

matching candidate is checked. The similarity degree varies for each permutation pair. 
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However, there must be one permutation pair reaching the lowest distance if the data 

sets of the properties appearing in the permutations have a very similar probability 

density. This identifies the similarity of the two concepts while other permutation 

pairs can be ignored. 

The following example shows one concept named “product” from the business model 

management system and another concept named “products” from the promotion 

management system. It is possible that a linguistic-based approach discovers that 

“product” and “products” may be the same according to their spelling forms. The 

instance-based approach does not require any linguistic or domain-based knowledge. 
product 

Property Name 

property_id LONG 

property_name STRING 

flavor STRING 

sweetness STRING 

brand_name  

 

         products 

Property Name 

pr_id LONG 

pr_name STRING 

pr_description STRING 

 

The following tables show some property matching candidates: 
Source Property 

Name 

Source Property 

Data Type 

Target Property 

Name 

Target Property 

Data Type 
KL Divergence 

product_id LONG pr_id LONG 0.0

product_name STRING pr_name STRING 0.0

flavor STRING pr_description STRING 0.0032758407745463163

Similarity Index 0.0032758407745463163

Source Property 

Name 

Source Property 

Data Type 

Target Property 

Name 

Target Property 

Data Type 
KL Divergence 

product_id LONG pr_id LONG 0.0 

flavor STRING pr_name STRING 0.00319282355720962 

product_name STRING pr_description STRING 4.145749971432248E-5 
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Similarity Index 0.004851421585385914 

Source Property 

Name 

Source Property 

Data Type 

Target Property 

Name 

Target Property 

Data Type 
KL Divergence 

product_id LONG pr_id LONG 0.0 

flavor STRING pr_name STRING 0.00319282355720962 

sweetness STRING pr_description STRING 0.028018566333710967 

Similarity Index 0.04681708483638088 

These tables show that two pairs of properties, (product_id, pr_id) and 

(product_name, pr_name) can be well matched and the similarity index indicates that 

these two concepts are identical even though the property flavor and pr_description 

are, in fact, not the same. 

The results on the systems show that synonyms can be successfully identified, i.e., the 

concepts of "product", "resource" and "time" modeled in the business model 

management system, promotion management system and scheduling management 

system can be discovered using the instance data. 

 

5.2.2.3 Soundness of the Solution 

The solution is applied to produce collaborative intelligence in an open environment. 

It is able to address the schematic and syntactic heterogeneities of the information 

models, and identify the same concept that is modeled and represented in different 

ways in different information systems. 

This environment contains an extra intelligent multimedia system, besides the 

traditional information systems maintaining the operational data of the QSR business. 

The intelligent multimedia system is able to identify what an image represents, such 

as "Apple Fritter" using image processing technology and low-level feature matching. 

The intelligent multimedia system is closely integrated with a business model 

management system that maintains fundamental business concepts. The business 

model management system tells what this thing is, for example, a "product". Then, 
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this concept is sent to various information systems to examine how it is modeled and 

represented using the semantic integration services deployed into each system. 

The results are collected by the management console, which in turn contacts each 

system using the specific concepts that are managed by the business model system. 

Each system returns some information related to those concepts. On the management 

console side the media object is able to collect complete information which is 

converted into a kind of intelligence about the specific product. Such intelligence is 

utilized in the later stage to decide what product to promote and where to display a 

multimedia asset to realize the promotion. 

The following figure 5-5 shows the overall architecture of the collaborative 

intelligence system: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-38. Architecture of a collaborative intelligence system. 

In the figure MOV means “Multimedia Ontological View”. It is an ontological view 

containing the objects and relationships discovered from an image. 
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Semantic level matching is utilized to match concepts from the ontological view 

created from the intelligent media system and concepts from the ontological view 

created from the business model management system. Note that semantic level 

matching is logically conducted between the intelligent multimedia system and the 

business model management system, but there is no direct communication between 

these two systems. Instead, the matching is supervised by the management console, 

i.e., the management console gets the created multimedia ontological view, and sends 

it to the business model management system’s semantic integration service. 

The management console uses the concepts to perform semantic integration and gets 

to know how these concepts are modeled in other systems. Similarly, the semantic 

integration is logically between the business model management system and other 

information systems (inventory management system, transaction management system, 

scheduling management system, etc) but there is no direct communication between 

these systems. The management console supervises the integration, i.e., it sends the 

concepts returned from the business model management system to another system’s 

semantic integration service. The service will discover if the same concepts are 

modeled within it and how the concepts are modeled. 
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Chapter 6 Conclusion and Future Work 

Semantic integration, as an important factor for successful information integration, 

has grown into one of the most active research areas. Our work on semantic 

integration fits into its evolution by extending the traditional ontology-driven 

approaches to an ontological view-driven approach to overcome the grand challenges 

that were not thoroughly addressed by the traditional approaches. The most significant 

advancement is the removal of the assumption about the availability of explicit 

ontologies. With the concept of ontological view we provide a formal way to 

explicitly specify the concepts within a conceptualization with rich details based on 

various information models. This work establishes a solid foundation for semantic 

integration in an open environment. 

The main contributions of this work are listed as follows. 

(1) It conducts a thorough review on semantic integration-related topics and 

presents a full picture of the state-of-the-art of the research in this domain. It 

clarifies the meanings of some important terms including conceptualization, 

concept, model, representation, schema, semantics, ontology, ontological 

view, ontological integration, semantic heterogeneity, information 

integration, semantic integration, ontology-driven semantic integration and 

ontological view-driven integration. It examines the semantics of 

information from the structural and intensional perspective and discusses 

how to discover the semantics. This work also proposes a classification of 

the views on semantic integration, including the structural view at elemental 

data level and structure level and semantic view at data level, concept level 

and knowledge level. Several architectures of semantic integration at the 

application level are discussed. 

(2) The schema-based structural approaches and ontology-driven semantic 
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approaches regarding information integration are analyzed in the review. 

Discussions on their advantages and limitations are presented. With 

structural approaches, the information schemas are available and it can be 

discovered that two or more schema elements have the same meaning and 

they can match. However, there is no clue about what concept they refer to 

due to the lack of a concept model. In semantic approaches, the semantics is 

explicitly specified by establishing concept models such as ontologies, and 

the focus is that two or more ontology elements refer to the same concept if 

they can be discovered to be semantically identical. However, the application 

of these approaches is limited since in many domains there are no explicit 

ontologies available. 

(3) It provides the formal definition for domain, possible world, domain space, 

conceptual relation, conceptualization, intended structure, ontological 

commitment of logical language, compatible model of language, intended 

model and ontology based on Guarino’s work [Guarino, 1998]. Then, it 

analyzes that there is no a unique explicit "ontology" for a conceptualization. 

Instead, different views of the conceptualization may exist. Thus, the notion 

of ontology is extended to the notion of ontological view. This notion is used 

to facilitate the semantic integration where no "ontology" is available. It also 

defines the ontological equivalence mapping and the semantically equivalent 

relationship. It proves that a concept in a conceptualization can be 

externalized by a constant symbol in a language under an ontological 

commitment, and the semantically equivalent relationship between symbols 

under an ontological commitment implies the same concept reference. This 

becomes the foundation of the following semantic relationship discovery 

algorithms. 

(4) It proposes a novel architecture of semantic integration enabled environment 

that extends the traditional data/information architecture to a three layered 

architecture including the data management and integration layer, the 
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information management and integration layer, and the semantics 

management and integration layer. In the architecture, a semantic integration 

service is attached to each information system, which converts a traditional 

information system into a semantics enhanced system. The architecture for 

the semantic integration service inspired by Act* is proposed. 

(5) It adopts frame as the modeling paradigm of the ontological view. An 

ontological view can be created from the information model of an 

information system. In an open environment the frame-based ontological 

views create a common level that eliminates the structural and syntactic 

heterogeneities among the information models. With this commonness only 

semantic heterogeneities should be considered in the semantic integration. It 

proposes a frame-based ontological view specification language (FOSL) and 

uses XML to explicitly encode the ontological views. 

(6) It proposes a tree similarity-based approach and an instance-based approach 

to compute the semantic similarities between concepts represented in 

different ontological views adopting the frame's tree-like structure or 

available data instances. Such similarities can be used to discover the 

semantic equivalence relationships between concepts. 

(7) It implements the proposed solutions in a collaborative intelligence 

prototype environment. Several aspects of the solutions, including the 

completeness and richness of FOSL, completeness of the ontological view 

creation approach, completeness of the semantic equivalence relationship 

discovery approach, and soundness of the solution are validated from the 

analytical and empirical perspectives. 

Our future work will focus on several aspects: 

(1) Improving the automatic ontological view creation based on regular information 

models, providing visual editing of ontological views, and providing efficient model 
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validation to ensure the consistency of ontological views. Based on these efforts the 

semantic integration service layer can keep being improved. 

(2) Extending the ontological view’s tree structure to a graph, with further attention 

to the relationships between concepts. New definitions for graph transformation 

operation and transformation cost are to be explored. Meanwhile, more types of 

relationships among concepts have to be considered, which require further 

consideration on the semantics of the relationships. 

(3) Applying and evaluating other approaches for density estimation, probability 

density comparison, and clustering as well as richer collection of linkage functions 

and distance metrics. A more sophisticated evaluation engine combining multiple 

approaches will also be investigated to improve the discovered results in terms of the 

semantic equivalence relationships between concepts within different ontological 

views. Furthermore, semantic relationship types other than the equivalence 

relationships, such as generalization or specialization, will also be taken into 

consideration to enhance the capability of the semantic integration service. 
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Appendix A 
Information Models of the Systems in the Prototype Environment 

 
(1) Business Model Management System 
Element Name: language 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

language_id INT 10 0 false true 

resource_id INT UNSIGNED 10 0 false false 

value VARCHAR 20 0 false false 

 
Element Name: price 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

price_id INT 10 0 false true 

product_id INT UNSIGNED 10 0 false false 

resource_id BIGINT 19 0 false false 

start_date DATE 10 0 false false 

end_date DATE 10 0 false false 

forever CHAR 1 0 false false 

value VARCHAR 255 0 false false 

 
Element Name: product 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

product_id INT UNSIGNED 10 0 false true 

product_name VARCHAR 100 0 true false 

flavor VARCHAR 20 0 true false 

sweetness VARCHAR 45 0 true false 

brand_name VARCHAR 45 0 true false 

 
Element Name: product_rule 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

product_rule_id INT UNSIGNED 10 0 false true 

product_rule_name VARCHAR 100 0 true false 

product_rule_type VARCHAR 255 0 true false 

 
Element Name: product_rule_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment
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product_rule_parent_id INT UNSIGNED 10 0 false false 

product_rule_child_id INT UNSIGNED 10 0 false false 

 
Element Name: product_rule_product_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

product_rule_id INT UNSIGNED 10 0 false false 

product_id INT UNSIGNED 10 0 false false 

 
Element Name: resource 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

resource_id INT UNSIGNED 10 0 false true 

resource_name VARCHAR 100 0 true false 

aspect_ratio VARCHAR 20 0 true false 

orientation VARCHAR 20 0 true false 

resolution VARCHAR 20 0 true false 

marketing_zone_id INT 10 0 true false 

 
Element Name: resource_rule 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

resource_rule_id INT UNSIGNED 10 0 false false 

resource_rule_type VARCHAR 255 0 false false 

resource_rule_name VARCHAR 100 0 true false 

 
Element Name: resource_rule_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

resource_rule_parent_id INT UNSIGNED 10 0 false false 

resource_rule_child_id INT UNSIGNED 10 0 false false 

 
Element Name: resource_rule_resource_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

resource_rule_id INT UNSIGNED 10 0 false false 

resource_id INT UNSIGNED 10 0 false false 

 
Element Name: time 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

time_id INT UNSIGNED 10 0 false true 



225 
 

 

time_name VARCHAR 100 0 true false 

time_type VARCHAR 20 0 true false 

start VARCHAR 60 0 true false 

end VARCHAR 60 0 true false 

 
Element Name: time_rule 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

time_rule_id INT UNSIGNED 10 0 false true 

time_rule_name VARCHAR 100 0 true false 

time_rule_type VARCHAR 255 0 true false 

 
Element Name: time_rule_time_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

time_rule_id INT UNSIGNED 10 0 false false 

time_id INT UNSIGNED 10 0 false false 

 
(2) Media Management System 
Element Name: asset 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

asset_id BIGINT 19 0 false true 

user_given_name VARCHAR 255 0 true false 

client_id BIGINT 19 0 true false 

create_date DATETIME 19 0 true false 

owner_library_id BIGINT 19 0 true false 

current_config_id BIGINT 19 0 true false 

product_id INT UNSIGNED 10 0 true false 

media_file_id BIGINT 19 0 true false 

 
Element Name: asset_meta_value_map 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

asset_id BIGINT 19 0 false false 

meta_value_id BIGINT 19 0 false false 

 
Element Name: media_file 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

media_file_id BIGINT 19 0 false true 
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server_given_name VARCHAR 255 0 true false 

create_date DATETIME 19 0 true false 

media_content LONGTEXT 2147483647 0 true false 

mime_type VARCHAR 255 0 true false 

file_size BIGINT 19 0 true false 

file_type VARCHAR 255 0 true false 

 
Element Name: media_library 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

media_library_id BIGINT 19 0 false true 

name VARCHAR 255 0 true false 

client_id BIGINT 19 0 true false 

association_service VARCHAR 255 0 true false 

is_third_party BIT 1 0 true false 

service_url VARCHAR 255 0 true false 

is_deleted BIT 1 0 true false 

create_date DATETIME 19 0 true false 

 
Element Name: meta_value 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

meta_value_id BIGINT 19 0 false true 

meta_tag_name VARCHAR 255 0 true false 

meta_tag_value VARCHAR 255 0 true false 

 
Element Name: prod 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

id INT UNSIGNED 10 0 false true 

name VARCHAR 100 0 true false 

description VARCHAR 255 0 true false 

 
Element Name: system_keywords 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

asset_id BIGINT 19 0 false false 

keyword VARCHAR 255 0 false false 

 
Element Name: thumbnail 
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Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

thumbnail_id BIGINT 19 0 false true 

asset_id BIGINT 19 0 true false 

file_type VARCHAR 255 0 true false 

width INT 10 0 false false 

height INT 10 0 false false 

media_file_id BIGINT 19 0 true false 

media_library_id BIGINT 19 0 true false 

asset_config_id BIGINT 19 0 true false 

 
Element Name: user_keywords 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

asset_id BIGINT 19 0 false false 

keyword VARCHAR 255 0 false false 

 
(3) Promotion Management System 
Element Name: daypart 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

dp_daypart_id INT UNSIGNED 10 0 false true 

dp_name VARCHAR 128 0 false false 

dp_state INT UNSIGNED 10 0 false false 

dp_client_id INT UNSIGNED 10 0 false false 

 
Element Name: daypart_time_to_play 

Attribute Name Data Type Size
Decimal 
Digits 

Nullable 
Auto 
Increment 

dpttp_daypart_time_to_play_id
INT 
UNSIGNED 

10 0 false true 

dp_daypart_id 
INT 
UNSIGNED 

10 0 false false 

ttp_time_to_play_id 
INT 
UNSIGNED 

10 0 false false 

 
Element Name: history 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

hi_history_id INT UNSIGNED 10 0 false true 

hi_user_id INT UNSIGNED 10 0 false false 
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hi_date INT UNSIGNED 10 0 false false 

hi_action VARCHAR 255 0 false false 

hi_comment VARCHAR 255 0 false false 

hi_status VARCHAR 32 0 false false 

 
Element Name: prev_media_asset 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pma_prev_media_asset_id INT UNSIGNED 10 0 false true 

pr_promotion_id INT UNSIGNED 10 0 false false 

pma_asset_id INT UNSIGNED 10 0 false false 

pma_library_id INT UNSIGNED 10 0 false false 

 
Element Name: products 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

pr_id INT UNSIGNED 10 0 false true 

pr_name VARCHAR 100 0 true false 

pr_description VARCHAR 255 0 true false 

 
Element Name: promotion 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pr_promotion_id INT UNSIGNED 10 0 false true 

pr_name VARCHAR 128 0 false false 

pr_client_id INT UNSIGNED 10 0 false false 

pr_product_id INT UNSIGNED 10 0 false false 

pr_layout_id INT UNSIGNED 10 0 false false 

pr_region_id INT UNSIGNED 10 0 false false 

pr_media_request_id INT UNSIGNED 10 0 false false 

pr_source VARCHAR 128 0 false false 

pr_bm_irt_id INT UNSIGNED 10 0 false false 

pr_status VARCHAR 32 0 false false 

pc_promotion_config_id INT UNSIGNED 10 0 false false 

pr_note TEXT 65535 0 false false 

 
Element Name: promotion_conf_daypart 

Attribute Name Data Type Size
Decimal 
Digits 

Nullable 
Auto 
Increment 
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pcd_promotion_conf_daypart_id
INT 
UNSIGNED 

10 0 false true 

pc_promotion_config_id 
INT 
UNSIGNED 

10 0 false false 

dp_daypart_id 
INT 
UNSIGNED 

10 0 false false 

 
Element Name: promotion_conf_time_to_play 

Attribute Name Data Type Size
Decimal 
Digits 

Nullable 
Auto 
Increment 

pcttp_promotion_config_time_to_play_id
INT 
UNSIGNED

10 0 false true 

ttp_time_to_play_id 
INT 
UNSIGNED

10 0 false false 

pc_promotion_config_id 
INT 
UNSIGNED

10 0 false false 

 
Element Name: promotion_config 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pc_promotion_config_id INT UNSIGNED 10 0 false true 

pc_start_date INT UNSIGNED 10 0 false false 

pc_end_date INT UNSIGNED 10 0 false false 

pr_promotion_id INT UNSIGNED 10 0 false false 

 
Element Name: promotion_history 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

pr_promotion_history_id INT UNSIGNED 10 0 false true 

pr_promotion_id INT UNSIGNED 10 0 false false 

pc_promotion_config_id INT UNSIGNED 10 0 false false 

hi_history_id INT UNSIGNED 10 0 false false 

 
Element Name: promotion_resource_allocation 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

promotion_id INT UNSIGNED 10 0 false false 

resource_id INT UNSIGNED 10 0 false false 

 
Element Name: resource_groups 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment
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rg_resource_group_id INT UNSIGNED 10 0 false false 

pc_promotion_config_id INT UNSIGNED 10 0 false false 

rg_is_exclusive BIT 1 0 false false 

 
Element Name: resources 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

re_id INT UNSIGNED 10 0 false true 

re_name VARCHAR 60 0 false false 

re_model VARCHAR 60 0 true false 

 
Element Name: time_to_play 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment

ttp_time_to_play_id INT UNSIGNED 10 0 false true 

ttp_start_time VARCHAR 32 0 false false 

ttp_end_time VARCHAR 32 0 false false 

ttp_days_of_week SMALLINT UNSIGNED 5 0 false false 

 
(5) Inventory Management System 
Element Name: inventory 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

product_id INT UNSIGNED 10 0 false false 

location_id INT UNSIGNED 10 0 false false 

quantity INT UNSIGNED 10 0 false false 

load_date DATE 10 0 false false 

 
Element Name: load_records 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

record_id INT UNSIGNED 10 0 false true 

load_date DATE 10 0 false false 

operator VARCHAR 60 0 false false 

product_id INT UNSIGNED 10 0 false false 

location_id INT UNSIGNED 10 0 false false 

load_quantity INT UNSIGNED 10 0 false false 

comments VARCHAR 255 0 true false 

 
Element Name: location 
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Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

location_id INT UNSIGNED 10 0 false false 

location_type VARCHAR 45 0 false false 

location_number VARCHAR 45 0 false false 

location_name VARCHAR 100 0 false false 

 
Element Name: products 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

product_id INT UNSIGNED 10 0 false true 

product_name VARCHAR 100 0 true false 

product_type VARCHAR 45 0 true false 

comments VARCHAR 255 0 true false 

 
(6) Transaction Management System 
Element Name: operation_assignments 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

o_id VARCHAR 10 0 false false 

pos_number VARCHAR 20 0 false false 

 
Element Name: operators 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

o_id VARCHAR 10 0 false false 

o_first_name VARCHAR 45 0 false false 

o_hourly_rate DECIMAL 10 2 false false 

o_last_name VARCHAR 45 0 false false 

 
Element Name: pos_machines 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

pos_number VARCHAR 20 0 false false 

pos_model VARCHAR 45 0 true false 

install_date DATE 10 0 true false 

counter_no INT UNSIGNED 10 0 true false 

 
Element Name: products 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

p_id INT UNSIGNED 10 0 false true 
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p_name VARCHAR 100 0 true false 

p_price DECIMAL 10 2 true false 

p_note VARCHAR 255 0 true false 

 
Element Name: receipts 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

r_id INT UNSIGNED 10 0 false true 

r_number VARCHAR 45 0 false false 

start_time DATETIME 19 0 true false 

o_id VARCHAR 10 0 true false 

pos_number VARCHAR 20 0 true false 

total_price DECIMAL 10 2 true false 

payment_way VARCHAR 45 0 true false 

payment DECIMAL 10 2 true false 

change DECIMAL 10 2 true false 

 
Element Name: transactions 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

t_id INT UNSIGNED 10 0 false true 

sales_time DATETIME 19 0 false false 

p_id INT UNSIGNED 10 0 false false 

quantity INT UNSIGNED 10 0 false false 

r_id INT UNSIGNED 10 0 false false 

 
(7) Scheduling Management System (XML) 
Element Name: res 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

aspection_ration N/A N/A N/A N/A N/A 

id N/A N/A N/A N/A N/A 

location N/A N/A N/A N/A N/A 

name N/A N/A N/A N/A N/A 

orientation N/A N/A N/A N/A N/A 

resolution N/A N/A N/A N/A N/A 
Subelements: 
None  
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Element Name: prod 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

description N/A N/A N/A N/A N/A 

id N/A N/A N/A N/A N/A 

name N/A N/A N/A N/A N/A 

price N/A N/A N/A N/A N/A 
Subelements: 
None  
 

Element Name: media 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

id N/A N/A N/A N/A N/A 

location N/A N/A N/A N/A N/A 

name N/A N/A N/A N/A N/A 

prod N/A N/A N/A N/A N/A 

resolution N/A N/A N/A N/A N/A 
Subelements: 
None  
 

Element Name: time 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

id N/A N/A N/A N/A N/A 

name N/A N/A N/A N/A N/A 

type N/A N/A N/A N/A N/A 

value N/A N/A N/A N/A N/A 
Subelements: 
None  
 

Element Name: schedule 

Attribute Name Data Type Size Decimal Digits Nullable Auto Increment 

id N/A N/A N/A N/A N/A 
Subelements: 

Element Name Type 

prod Simple 

Element Name Type 
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time Simple 

Element Name Type 

media Simple 

Element Name Type 

resources Complex 
res  

 

Original XML Document: 
<data> 

  <resources> 

    <res id="1" name="res1" resolution="800x600" aspection_ration="4:3" 

orientation="LANDSCAPE" location="store1"/> 

    <res id="2" name="res2" resolution="1024x768" aspection_ration="16:9" 

orientation="LANDSCAPE" location="store2"/> 

    <res id="3" name="res3" resolution="600x800" aspection_ration="3:4" 

orientation="PORTRAIT" location="store3"/> 

  </resources> 

   

  <products> 

    <prod id="1" name="Donuts" description="" price="1.99"/> 

    <prod id="2" name="Apple Fritter" description="" price="2.99"/> 

    <prod id="3" name="Honey Dip" description="" price="2.49"/> 

  </products> 

   

  <media_assets> 

    <media id="0001" name="donuts.mgp" location="/repository/media/" 

resolution="800x600" prod="1" /> 

    <media id="0002" name="applefritter.mgp" location="/repository/media/" 

resolution="800x600" prod="2" /> 

    <media id="0003" name="honeydip.mgp" location="/repository/media/" 

resolution="800x600" prod="3" /> 

  </media_assets> 

   

  <times> 

    <time id="1" type="DAY" name="Monday" value="1" /> 

    <time id="2" type="DAY" name="Tuesday" value="2" /> 

    <time id="3" type="DAYTIME" name="lunch" value="11:00-13:00" /> 

    <time id="4" type="FLIGHTDATE" name="Christmas" 

value="12/23/2009-12/26/2009" /> 

  </times> 

   

  <schedules> 

    <schedule id="1"> 
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      <prod id="1" /> 

      <time id="2" /> 

      <media id="0003" /> 

      <resources> 

        <res id="1" /> 

        <res id="2" /> 

      </resources> 

    </schedule>     

  </schedules> 

</data> 
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