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Abstract 

Arthritis is the most common chronic health condition in Canada, with the most common 

form being osteoarthritis (OA). There is a great clinical need for an objective imaging-

based point-of-care tool to assess OA status, progression, and response to treatment. This 

thesis aims to validate a handheld mechanical three-dimensional (3D) ultrasound (US) 

device against the current clinical standard of magnetic resonance imaging (MRI) for 

quantifying femoral articular cartilage (FAC) volume. Knee images of 25 healthy 

volunteers were acquired using 3D US and 3.0 Tesla MRI scans. Two raters manually 

segmented the trochlear FAC during separate sessions to assess intra- and inter-rater 

reliabilities. The results demonstrated that 3D US has excellent reliability and strong 

concurrent validity with MRI for measuring healthy FAC volume. 3D US is a promising, 

inexpensive, and widely accessible imaging modality that will enable clinicians and 

researchers to obtain additional information without added complexity or discomfort to 

patients. 
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Summary for Lay Audience 

Arthritis is the most common disease in Canada, affecting around 21% of the population. 

There are over 100 different types of arthritis, with the most common type being 

osteoarthritis (OA). Medical imaging systems such as x-ray imaging and magnetic 

resonance imaging (MRI) are utilized to diagnose and monitor OA by taking pictures of 

joints such as the knee. Structures within the knee joint are observed to assess disease 

progression and response to treatment. While x-ray imaging is excellent at visualizing 

bone, it cannot visualize soft tissues such as cartilage, ligaments, and fat. It is challenging 

to use x-ray imaging to assess cartilage abnormalities caused by OA. MRI is excellent at 

visualizing soft tissues, but MRI systems are expensive to operate and have long waitlists 

and imaging times. Furthermore, neither x-ray imaging nor MRI can be used to acquire 

images at the patient’s bedside. There is a tremendous clinical need for an imaging 

system that can assess knee cartilage at the patient’s bedside without the limitations of x-

ray and MRI. This work aimed to use 3D ultrasound (US) imaging to meet this clinical 

need and compare it against MRI for measuring knee cartilage volume. 

Knee images of 25 healthy volunteers were acquired using MRI and 3D US. Two raters 

traced the cartilage from MRI and 3D US images to measure the cartilage volume. The 

cartilage was traced multiple times to assess the reliability of each rater. The cartilage 

volumes were compared between MRI and 3D US to evaluate the performance of 3D US 

against the current clinical standard of MRI. The results demonstrated that clinicians and 

researchers could use 3D US to measure knee cartilage volume at the patient’s bedside 

with excellent reliability and strong agreement with MRI. 3D US is a promising, 

inexpensive, and widely accessible imaging modality that will enable clinicians and 

researchers to measure knee cartilage volume without the limitations of x-ray and MRI. 
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Chapter 1  

1 Introduction 

Medical imaging has advanced drastically since the discovery of x-rays in 1895 by 

Wilhelm Rӧntgen. Currently, radiologists are capable of observing the human body with 

magnificent detail through the use of x-ray radiography, computed tomography (CT), 

magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound 

(US), and various other modalities.1 Medical imaging has had significant positive impacts 

on diagnosing, monitoring, and treating various diseases. As technologies continue to 

improve, new imaging modalities are being developed to overcome challenges in 

visualizing the human body and treating various diseases. However, with the growth of 

medical imaging, concerns over radiation risks, high manufacturing and operating costs, 

and accessibility to many patients have intensified.2 It is vital to keep these concerns in 

mind when developing new modalities to increase their accessibility and effectiveness for 

disease diagnosis and monitoring. 

Diagnosing and monitoring musculoskeletal diseases can be accomplished with medical 

imaging using x-ray radiography, MRI, and US. However, these methods are associated 

with limitations in sensitivity and accuracy when assessing musculoskeletal diseases such 

as arthritis.3 Therefore, there is an unmet clinical need for a new imaging tool to directly 

visualize musculoskeletal disease pathology for assisting in diagnosis and monitoring 

response to therapy. Three-dimensional (3D) US imaging is a relatively new modality 

that can meet this clinical need and overcome the limitations of x-ray radiography, MRI, 

and conventional US. This thesis will explore the application of handheld 3D US imaging 

as a lower-cost imaging modality to provide clinicians and researchers with the ability to 

monitor arthritis progression and response to treatment. This thesis will specifically 

investigate the application of 3D US imaging to monitor knee arthritis progression, but 

3D US techniques have been applied to other areas such as neonatal, gynecological, and 

vascular applications, among others.4,5,6 3D US imaging has the potential to alter the 

workflow of orthopedic, sports medicine, primary care, and arthritis clinics by enabling 

bedside disease monitoring. The remainder of this chapter provides a background on knee 
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arthritis and current methods of diagnosis, treatment, and monitoring. It also outlines the 

underlying principles of 3D US imaging and medical image processing techniques and 

describes the unmet needs, hypothesis, and specific objectives of this thesis. 

1.1 Knee osteoarthritis 

Arthritis is the most common chronic health condition in Canada, affecting 

approximately 21% of the population.7 There are over 100 different forms of arthritis, 

including rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and other 

inflammatory forms.8 The most common form of arthritis is osteoarthritis (OA) which 

was previously thought to be caused by the “wear and tear” of joint tissues such as 

cartilage and the underlying bone. However, OA is a whole-joint disease and is described 

as an abnormal remodelling of joint tissues caused by a host of inflammatory agents. OA 

can affect any joint in the body, with the most common sites being the knee and hip.9 

Patients with OA suffer from debilitating pain, disability, and a decreased quality of 

life.10 Furthermore, OA has high comorbidity with other chronic health conditions such 

as cardiovascular diseases, diabetes mellitus, and depression.11,12,13,14 The presence of 

comorbidities causes higher mortality, increased hospitalization, poor physical and 

mental health, and worse disease outcomes.15 

Knee OA (KOA) is of particular importance to study because of its high prevalence rate 

compared to other types of OA and its appearance earlier in life, specifically in young 

obese women.16 The prevalence of KOA is higher for women than men and is higher in 

older age groups.17 Females over 55 years tend to experience more severe OA in the knee 

joint but not in other sites.18 Furthermore, the prevalence of KOA is increasing with 

rising obesity rates and population ageing.19 The impact KOA has on an individual’s 

quality of life, and its high prevalence, stresses the need for further research. 

1.1.1 Risk factors 

A risk factor is a variable associated with an increase in the risk of a particular disease. 

Variables that affect the risk of KOA include age, biological sex, congenital joint 

abnormalities, history of injury, body mass index (BMI), occupational factors, physical 

activity, comorbidities, and more. The prevalence of KOA increases with every decade of 
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life, with the highest incidence between 55 and 64 years of age.20 Many studies have 

demonstrated consistent evidence that females are at higher risk for KOA than males, 

according to biological sex.21 Large areas of cartilage loss can lead to joint malalignment, 

which is the most significant risk factor for knee structural degradation due to unequal 

focal loading.22 Joint malalignment can also be congenital, increasing the risk of KOA 

incidence. Anterior cruciate ligament and meniscal injuries are substantial risk factors for 

KOA at ten or more years following injury.23 Studies assessing BMI demonstrated that 

being overweight (BMI between 25 and 29.9) or obese (BMI of 30 and over) increases 

the risk for KOA.24 OA environmental risk factors such as obesity, joint injury, and joint 

overload are primarily mechanical in nature. Studies have shown that muscle weakness, 

joint instability, and malalignment may be possible causes of KOA rather than results of 

KOA-induced joint damage.25,26 There is some evidence that various occupation-related 

movements such as kneeling, squatting, climbing steps, excessive standing, and lifting 

increase KOA risk.24 Physical activity is a recommended treatment option for KOA, but 

there is mixed evidence, with habitual and high-intensity physical exercise leading to an 

increased KOA risk.21,24 In healthy and KOA joints, metabolism plays an essential role in 

remodelling various joint tissues.27 Cartilage softening and catabolism have been 

observed in patients with diabetes, although there is little evidence to conclude that 

impaired glucose metabolism increases KOA risk independent of obesity and age.28,29 

Risk factors play an essential role in detecting and preventing KOA. 

1.1.2 Knee anatomy 

The knee is the largest synovial joint in humans and contains the distal femur, proximal 

tibia, patella, meniscus, hyaline cartilage, ligaments, and a synovial membrane.30 KOA 

leads to articular cartilage loss of the femur, tibia, and patella. KOA also results in 

subchondral bone remodelling, synovial inflammation (synovitis), and periarticular 

muscle weakening (Fig. 1).31 Localized cartilage loss increases the stress across the knee 

joint, which leads to further cartilage degradation and loss. The limited intrinsic healing 

capabilities of the articular cartilage highlight the importance of maintaining joint 

health.32 

 



4 

 

 

 

Figure 1.1 Anatomical diagrams depicting the difference between a normal knee and an 

osteoarthritic knee involving articular and periarticular tissues. Reproduced with 

permission from Sharma L. Osteoarthritis of the Knee. N Engl J Med. 2021;384:51-59. 

Doi:10.1056/NEJMcp1903768, Copyright Massachusetts Medical Society. 

Articular cartilage is classified as hyaline cartilage and has an average thickness ranging 

between 2 to 4 mm. It does not contain blood vessels, lymphatics, or nerves and is 

composed of a dense extracellular matrix (ECM) and a sparse distribution of specialized 

cells called chondrocytes.33 Chondrocytes are responsible for synthesizing articular 

cartilage during development, maintaining normal adult cartilage, and the degeneration of 

cartilage during KOA.34 Proteoglycans, a type of protein, are embedded within the 

collagen matrix of the cartilage and draw water into the cartilage.10 The high water 

content of the cartilage provides resistance to compressive forces within the joint. In 

addition to collagen fibre structure and ECM, chondrocytes contribute to the organization 

of four zones within articular cartilage: the superficial zone, the middle zone, the deep 

zone, and a calcified cartilage zone. The calcified cartilage is vital in securing the 
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articular cartilage to the bone by anchoring the deep zone’s collagen fibrils to the 

subchondral bone.33 A sharp boundary referred to as the tidemark separates the non-

calcified and calcified cartilage zones.35 In OA, the tidemark commonly becomes 

replicated, which is taken as an indicator of the underlying osteoarthritic process with the 

calcification front advancing into the non-calcified cartilage of the deep zone.36,37 

1.1.3 Clinical presentation and symptoms 

OA can only be clinically diagnosed if patients present with symptoms, and preventing or 

alleviating these symptoms is the goal of the intervention.10 The most common OA 

symptom is joint pain, which tends to worsen with activity, especially following a rest 

period.38 KOA patients frequently complain of joint instability leading to buckling, 

especially when descending stairs or steps.39 Physician examinations of KOA patients are 

coupled with medical imaging to determine disease presence and severity.10 

Traditionally, weight-bearing radiography has been used to diagnose KOA through 

measuring tibiofemoral (TF) joint space narrowing (JSN), which serves as an indirect 

measure of femoral articular cartilage (FAC) loss. Medical imaging is rarely required to 

confirm the diagnosis of KOA; however, imaging is helpful to evaluate the severity of 

joint damage and to monitor disease progression longitudinally.40 Semi-quantitative 

scoring systems, such as the Kellgren-Lawrence (KL) grading scale and the Osteoarthritis 

Research Society International (OARSI) atlas grading system, define the presence of 

KOA using TF JSN, where decreases in FAC quality and quantity are interpreted as 

increased KOA severity.41,42 The KL grading scale defines OA severity in five grades (0-

4, normal to severe) using a combination of osteophyte and JSN severity. The OARSI 

atlas uses separate scoring for osteophytes and JSN (grading 0-3). Using the KL system, a 

grade ≥ 2 is the typical threshold for OA, while the OARSI atlas threshold consists of 

three separate criteria: either JSN grade ≥ 2, osteophyte grade ≥ 2, or grade 1 JSN in 

combination with grade 1 osteophyte.43,44 

1.1.4 Progression and treatment 

In OA, the articular cartilage matrix undergoes proteolytic degradation, which is 

associated with increased synthesis of the same or slightly altered matrix components by 
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the chondrocytes.45 This results in early morphological changes in the cartilage and later 

losses in cartilage volume. Osteophyte development and significant vascularity changes 

within bone might play an essential role in the pathogenesis of OA, but these events are 

less understood. Furthermore, signalling molecules released from the cartilage, 

synovium, and bone all have an impact on chondrocyte function. Although OA was 

previously thought of as non-inflammatory arthritis, improved detection methods 

demonstrate that inflammatory pathways are upregulated in OA.46  

While there is no cure for OA, several treatment avenues and methods focus on 

alleviating symptoms with varying efficacies. The European League Against Rheumatism 

and OARSI have previously published evidence-based OA treatment 

guidelines.47,48,49,50,51 The American College of Rheumatology has published the most 

recent guidelines for managing hand, hip, and knee OA.52 One treatment option for KOA 

is regular physical exercise. Regular physical activity in KOA patients effectively reduces 

pain and improves function.53 Improving knee joint stability is vital to prevent worsening 

KOA, particularly by increasing strength in the quadriceps and peripheral muscles around 

the joint.54 Strength, flexibility, aquatic and aerobic exercises effectively relieve pain and 

improve function in patients with lower limb OA.55 For obese patients, weight loss can 

reduce the risk of developing symptomatic lower limb OA and improves symptoms once 

disease evidence is found.56,57 Studies have also demonstrated that weight loss leads to 

structural improvements of cartilage and positive changes in bone and cartilage 

biomarkers, especially in KOA.58,59 However, weight reduction is not easy, and patients 

with lower limb OA have pain and physical limitations that limit their ability to 

participate in physical activity compared to the general population.60,61 

Another KOA treatment option is the use of pharmaceutical therapies. Commonly 

prescribed medications include paracetamol (also referred to as acetaminophen), 

corticosteroids, and nonsteroidal anti-inflammatory drugs (NSAIDs).62 Due to its cost and 

safety, paracetamol used to be regarded as the first-line treatment for mild to moderate 

OA pain.63 However, systematic reviews and meta-analyses of paracetamol use in KOA 

patients suggest low efficacy for pain management.64,65 NSAIDs are an alternative to 

paracetamol and are superior for treating widespread pain but can be associated with 
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upper gastrointestinal risks and are not recommended for patients with coexisting 

cardiovascular conditions.52,63,66,67 Intra-articular treatment options such as glucocorticoid 

and hyaluronic acid injections may be recommended when other more conservative 

approaches to pain relief have failed. However, intra-articular injections elicit a strong 

placebo effect, and new intra-articular treatments may not be appropriate for every 

patient.68,69 Ultimately, there is no pharmacological agent that regulatory agencies have 

approved as a disease-modifying OA drug.70 

In addition to physical activity and pharmacological treatment options, surgical 

intervention may alleviate KOA symptoms. Arthroscopy is a minimally invasive surgical 

technique where two small incisions are made at the front of the knee to insert surgical 

instruments.71 Arthroscopic lavage (irrigation of the joint using a sterile solution) and 

debridement (resecting damaged tissue within the knee joint) is focused on removing 

loose bodies or other defects in the knee.72 However, the use of arthroscopic lavage and 

debridement to treat KOA is controversial as studies have shown no benefit compared to 

placebo groups that received only skin incisions.73,74 Other KOA surgical interventions 

include high tibial osteotomy, unicompartmental knee replacement, and total knee 

arthroplasty (TKA), also referred to as total knee replacement, for end-stage KOA.75 

Approximately 80% of patients that undergo TKA procedures are satisfied with their 

procedure and experienced improvements in function and pain management, making 

TKA an effective treatment option for end-stage KOA.76 

Another treatment option for KOA is the use of self-efficacy and self-management 

programs, which can be delivered remotely and include education, setting goals, 

behavioural interventions, and self-monitoring.77 These programs have shown improved 

self-efficacy in patients with KOA in small to moderate effect sizes.78 Furthermore, 

mental and social well-being improvements are also effective treatments for some 

patients due to the many components of pain, including sleeping problems, loneliness, 

and mood disorders.79,80 
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1.2 Knee osteoarthritis imaging 

1.2.1 X-ray radiography 

X-ray radiography is the current gold standard for assessing KOA in clinical and 

epidemiological settings. In 1957, Kellgren and Lawrence first described a grading 

system known as the KL grading scale, which was adopted as the standard method for 

assessing radiographic OA by the World Health Organization in 1961.81 In 1995, an atlas 

from OARSI was published and updated in 2007 with better quality images and access to 

electronic images.42,82 Radiography is widely available and is associated with lower costs 

than MRI. Radiography acquisition times are short, and there is little discomfort to 

patients undergoing imaging. The progression and severity of KOA can be monitored 

using radiography by assessing cartilage degradation through measurements of JSN and 

through observing the presence of osteophytes (Fig. 2). 

There are several limitations associated with radiography and radiographic grading scales 

for monitoring the progression of KOA. Primarily, radiography lacks soft tissue contrast, 

and therefore it cannot be used to visualize the articular cartilage and various other tissues 

within the knee. Radiographic measures of JSN operate under the assumption that 

decreases in joint space over time represent decreased articular cartilage volume. This 

assumption is not entirely valid since the radiographic joint space comprises structures 

other than the articular cartilage, such as the meniscus.83,84 Radiographic grading also has 

poor sensitivity to detect articular cartilage changes in the early stages of KOA.85 With 

radiographic JSN, variations in knee positioning, alignment to the radiographic source, 

and joint angulation can decrease reliability and reproducibility.86 Furthermore, 

sensitivity to change is limited when using ordinal scales with a small dynamic range 

such as 0-4 in the KL grading scale. 
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A B 

Figure 1.2 Radiographs of a normal (A) and an osteoarthritic (B) knee. The distance 

between the femur and tibia in the medial portion of the osteoarthritic knee is smaller 

than the healthy knee due to articular cartilage degradation. 

1.2.2 Magnetic resonance imaging 

The limitations of radiographic measures of articular cartilage degradation motivated 

MRI studies focused on imaging and monitoring KOA. While the risks associated with 

radiation exposure in radiography are low, MRI does not expose patients to radiation as 

images are created using magnetic fields. MRI has excellent soft-tissue contrast enabling 

direct assessments of the articular cartilage. The posterior condylar cartilage, trochlear 

cartilage, patellar cartilage, synovium, menisci, and other soft tissues affected by KOA 

are more straightforward to visualize using MRI than radiography (Fig. 3). MRI’s high 

spatial resolution, excellent soft-tissue contrast, and ability to directly visualize vital 

musculoskeletal tissues make it the current clinical standard for KOA imaging. The use 

of MRI in clinical KOA studies involves using semi-quantitative scoring methods to 

evaluate morphological characteristics of the articular cartilage in combination with those 
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of the surrounding tissues to establish symptom risk factors and disease progression.86 

The 3D nature of MRI enables assessments of multiple quantitative articular cartilage 

measures, including cartilage volume, thickness, surface area, and percentage of bone not 

covered by cartilage. MRI-based quantitative measurements can also be used to assess 

the efficacy of pharmacologic therapies in KOA and cartilage biochemistry to monitor 

early-stage KOA. The MRI Osteoarthritis Knee Score (MOAKS), Boston-Leeds 

Osteoarthritis Knee Score (BLOKS), Knee Osteoarthritis Scoring System (KOSS), and 

Whole-Organ MRI score (WORMS) are all semi-quantitative scales that utilize 

MRI.87,88,89,90 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 MRI scan of a healthy knee with arrows highlighting the articular cartilage. 
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Measurements of articular cartilage thickness using MRI have been investigated as a 

quantitative alternative to radiographic JSN measures to determine KOA severity and 

progression.91 However, articular cartilage thickness measurements are associated with 

limitations for KOA assessments. The thickness of articular cartilage in the knee joint 

varies diurnally, while the cartilage volume does not, leading to variability in thickness 

measurements.92 Additionally, longitudinal assessments of cartilage thickness changes 

are limited by reselecting the identical section of cartilage for measurements in future 

sessions.93 An alternative to cartilage thickness measurements for assessing degradation 

is cartilage volume. Measurements of articular cartilage volume enable the entire 

cartilage structure to be assessed instead of a single anatomical slice with thickness 

measurements. 

Although MRI has excellent soft-tissue contrast for monitoring the progression and 

severity of KOA, it is associated with several limitations. MRI is not feasible for point-

of-care (POC) disease monitoring due to the limited mobility and physical size of MRI 

systems. Patients diagnosed with KOA may have substantial mobility limitations and 

severe pain when moving from one location to another. Another limitation of MRI is its 

high manufacturing and operating costs. Installing an MRI scanner requires constructing 

a specialized MRI scanning facility which increases costs and may not be possible in all 

locations where MRI would be needed. The limited number of MRI scanners available 

for clinical use in Canada results in patients being placed on long waitlists before 

receiving the imaging necessary for their care. Additionally, the time it takes to acquire 

an MRI scan can be long, requiring patients to remain motionless throughout the entire 

acquisition process. The long scan time is not ideal for patients that experience pain when 

remaining motionless in the positions required for MRI acquisitions. An ideal imaging 

modality for monitoring the progression and response to treatment of KOA would be 

capable of bedside image acquisition, be widely available, have low operating and 

manufacturing costs, and have relatively short acquisition times. 

1.2.3 Conventional ultrasound 

Conventional two-dimensional (2D) US imaging is a high-resolution, widely accessible, 

and relatively low-cost modality that creates images using acoustic waves transmitted and 
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received by a transducer. Conventional 2D US is capable of real-time imaging, meaning 

that 2D US images are continually acquired as the transducer is manipulated on the 

patient’s skin. The real-time imaging capability enables the operator to rapidly interrogate 

an entire region-of-interest (ROI). Additionally, real-time imaging enables images of the 

patient to be acquired during flexion or extension of their joints to assess how joint 

tissues respond to the motion. The handheld nature of 2D US enables the operator to 

manipulate the transducer in any orientation to acquire images that would be difficult or 

impossible to acquire with radiography. The portability of US machines also enables 

images to be acquired directly at the patient’s bedside, increasing accessibility to patients 

without increasing patient discomfort. 2D US imaging has been increasingly used to 

assess rheumatological and musculoskeletal diseases. Previous studies have demonstrated 

that US can be used to detect early inflammatory soft tissue and erosive bone lesions with 

correlations to MRI, one of the current clinical standards for monitoring arthritis.94,95,96,97 

The Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) US group 

has developed a semi-quantitative grading scale to implement 2D US into KOA research; 

however, this scale has not been formally validated.98 Due to its high water content, FAC 

appears hypoechoic or darker and is easy to visualize using 2D US to monitor the 

progression of KOA (Fig. 4a). The suprapatellar synovial membrane is also visible using 

2D US, enabling assessments of synovitis in KOA patients (Fig. 4b). 

There are several limitations associated with conventional 2D US imaging. Since 2D US 

is a 2D imaging modality, it is difficult to interpret the 3D anatomy. Operators must 

cognitively integrate multiple 2D images to reconstruct the necessary 3D anatomy, which 

is inefficient and can lead to variability. 2D US techniques can estimate tissue volumes 

from measurements of height, width, and length in two orthogonal views by assuming 

idealized geometries. However, 2D US tissue volume measurements are associated with 

low accuracy, high variability, and high operator dependency during image acquisition. 

Additionally, human tissues are not always easily represented by idealized geometries, 

which is especially the case for the FAC and suprapatellar synovium in the knee, leading 

to incorrect volume estimations. With 2D US, it is impossible to acquire viewing planes 

perpendicular to the length of the transducer without rotating the transducer and changing 

the conventional viewing plane. This limitation is apparent during OA diagnosis and 
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monitoring, which may require an arbitrary selection of viewing planes for assessments 

and measurements.99  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 2D US images of the trochlear FAC (A) and suprapatellar synovial bursa (B) 

of a healthy knee. Images were acquired with an Aplio i800 US machine (Canon Medical 

Systems Corporation, Ōtawara, Tochigi, Japan) equipped with a 14L5 linear transducer 

(frequency range 3.8 MHz - 10.0 MHz). 

Another limitation of conventional 2D US imaging is that the field-of-view (FOV) is 

small compared to radiography and MRI. The lateral dimension of a conventional 2D US 
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image acquired using a linear transducer is determined by the length of the transducer 

itself. The axial dimension of a conventional 2D US image is the depth at which the 

image is acquired. Higher frequency 2D US transducers result in increased spatial 

resolution but decreased penetration depth. In general, conventional 2D US cannot image 

deep tissues at high spatial resolutions. It is difficult to interrogate entire tissues of 

interest with a single 2D US image due to the limited FOV. Multiple images are often 

required, leading to difficulties with interpretation without the surrounding contextual 

anatomy. Furthermore, conventional US imaging is not well-suited to image bony or air-

filled anatomy, making it challenging to acquire 2D US images of the knee joint due to 

the presence of the patella, femur, and tibia. 

1.3 3D ultrasound imaging 

The limitations of conventional 2D US imaging can be overcome using 3D US imaging. 

3D US operates on the same physical principles as conventional 2D US imaging, where 

images are created by transmitting and receiving acoustic waves. 3D US imaging 

provides the operator with an interactive 3D representation of the anatomy eliminating 

the need for mentally reconstructing several 2D US images simultaneously. Three main 

factors must be optimized during the acquisition of 3D US images: 

1. The scanning must be sufficiently rapid to avoid image artifacts due to 

involuntary operator and patient motion. 

2. The location and orientation of the 2D images must be accurately known to avoid 

geometric distortions in the reconstruction of the 3D image. 

3. The scanning device must be simple and easy to operate to avoid complicated 

scanning procedures.99 

Several methods for acquiring 3D US images have been developed that satisfy these 

optimization factors. One approach uses a 2D array of transducer elements, also referred 

to as a matrix array, which enables acquisition in two simultaneous imaging planes. 

However, many elements and wiring requirements lead to high manufacturing costs.100 

Another method of acquiring 3D US images is for the operator to manipulate a 2D 

transducer manually. The trajectory of the transducer is then measured by tracking its 
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position and orientation during acquisition.101,102 The position and orientation of the 

transducer can be tracked in real-time using an external optical tracking system that uses 

infrared cameras to track passive marker spheres that can be mounted to the transducer. A 

minimum of three spheres in a non-linear orientation is needed to track all degrees of 

freedom during transducer manipulation. An additional approach is to translate a 

conventional 2D US transducer along a path using a motorized drive mechanism with a 

known trajectory.103 With this approach, 3D US images are formed by continually 

acquiring consecutive 2D US images as the transducer is translated along the subject to 

sweep out a 3D geometry. Consecutive 2D US images are then reconstructed to form a 

3D volume using automated software.99 This thesis focuses on applying mechanical 3D 

US imaging to monitoring KOA. 

With mechanical 3D US image acquisition, there are different trajectories that the 

transducer can follow to produce unique 3D image geometries. Tilt scanning enables the 

transducer to be tilted around a contact point with the patient to sweep out a fan 

geometry. With tilt scanning, 2D US images are acquired at regular angular intervals with 

images radial to the rotation axis. However, the fan geometry of tilt scanning is 

associated with limitations. The varying distances between consecutive 2D US images as 

depth increases result in an anisotropic spatial resolution for the resulting 3D image. 

Additionally, US beam spreading in the elevational direction and within the 2D US 

acquisition plane leads to degradation of the spatial resolution with increasing depth.104 

Alternatively, a linear scanning device translates the transducer linearly along the 

patient’s skin. With linear scanning, 2D US images are acquired at regular spatial 

intervals to sweep out a rectangular geometry. The rectangular geometry of linear 

scanning provides a broader FOV at shallow depths but a smaller FOV at increased 

depths than tilt scanning. Therefore, linear scanning would be better suited for monitoring 

KOA progression due to the superficial knee anatomy. 

3D US images are comprised of multiple imaging planes. The imaging plane that is 

parallel to the direction of conventional 2D US is referred to as the acquisition plane, 

while the perpendicular plane is referred to as the reconstruction plane (Fig. 5). The 

acquisition plane possesses the exact spatial resolution as the 2D US transducer used to 
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acquire the images. In contrast, the reconstruction plane has a spatial resolution equal to 

the elevational resolution of the transducer. The different spatial resolutions of these two 

imaging planes result in an anisotropic spatial resolution for the overall 3D US image. 

The translation speed of the 2D US transducer on the 3D US scanner can be varied to 

match the sampling rate to the frame rate of the US machine. The translation distance and 

speed of the US transducer also affect the 3D US acquisition time. Typically, 3D US 

images can be acquired in approximately 10 seconds or less.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 3D US image of the trochlear FAC from a healthy knee with labelled 

acquisition and reconstruction planes. 

With mechanical 3D US acquisition, the drive mechanism’s housing can be designed to 

allow for easy, ergonomic handheld positioning and manipulation. Because of the 
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flexibility in design, the transducer mounting attachment can be designed to conform to 

any transducer, making 3D US compatible with any US machine. Additionally, since 3D 

US acquisition forms images using consecutive 2D US images, it can be implemented in 

any application where 2D US is used. 3D US imaging also reduces variability and user 

dependency when measuring tissue volumes and provides the ability to select any 

arbitrary imaging plane for disease diagnosis and monitoring. 

1.4 Medical image processing and analysis 

1.4.1 Segmentation 

Image segmentation, also referred to as labelling or contouring, is the process of 

identifying image pixels or defining boundaries for all pixels within a given group or 

region that share a common property or belong to the same tissue type or organ.105 

Segmenting anatomical structures from medical images provides a unique visualization 

of the tissues of interest without the surrounding anatomical information. The gold-

standard method for image segmentation is manual segmentation, which is completed 

manually by tracing regions within an image that belong to the tissue of interest. 

Becoming proficient in manual image segmentation requires training and practice and the 

necessary anatomical and medical imaging background knowledge for a given 

application.106 Segmentations of FAC are necessary to acquire thickness, surface area, 

and volume measurements. The quality of the segmentation also directly impacts the 

accuracy of the measurements.107,108 However, manually segmenting images is subjective 

as the individuals performing the task make their own decisions based on prior 

knowledge and experience, leading to inconsistencies.109,110 

1.4.2 Registration 

In medical imaging, registration is a processing technique that is used to align two or 

more images or segmentations of the same scene taken at different times, viewpoints, or 

with different modalities.111 Image or segmentation registration is used to compare or 

combine valuable information in multiple images or segmentations. Applications of 

registration in the medical imaging field include the fusion of anatomical and functional 

images acquired from different modalities to obtain more information about the tissue of 
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interest.112 Registration involves designating one image or segmentation as the reference 

and applying a geometric transformation to the other image or segmentation to align it 

with the reference.113 Comparing segmentation-based measurements of KOA 

progression, such as FAC volume, provides the ability to assess the performance of new 

methods for acquiring these measurements. 

1.5 Challenges in imaging-based knee arthritis monitoring 

1.5.1 Previous work and unmet need 

Developing new imaging modalities, or repurposing existing technologies for novel 

applications, requires rigorous testing and validation before implementation into standard 

clinical care. When working with new applications, it is crucial to evaluate the workflow 

for feasibility in a clinical setting and validate the system’s measurement capabilities and 

accuracy. We have previously validated the measurement errors of our tilt and linear 3D 

US scanning devices with tungsten filament phantoms and volumetric agar phantoms. 

The linear scanner demonstrated the ability to acquire Euclidean distance and volumetric 

measurements with errors < 2% compared to the known phantom dimensions.114 

However, measurements made from US images can be subject to intra- and inter-rater 

variabilities, and idealized phantom images may not represent complex human anatomy. 

Therefore, a study with human volunteers that possess healthy knees is needed to test the 

intra- and inter-rater reliabilities of using our 3D US device to measure the volume of 

FAC and develop an efficient clinical workflow. 

1.5.2 Hypothesis 

The central hypothesis of this thesis is that 3D US imaging can be used to quantify the 

volume of FAC with similar reliability and accuracy to the current clinical standard of 

MRI. 

1.5.3 Objectives 

The objectives of this thesis are to: 
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1. Assess the intra- and inter-rater reliabilities of manual FAC segmentations of 

healthy knees from MRI and 3D US. 

2. Assess the validity of segmentation-based FAC volume measurements using 3D 

US compared to the current clinical standard of MRI in healthy knees. 

In this context, validity refers to the degree of similarity between manual segmentation-

based FAC volume measurements acquired using 3D US imaging in comparison to FAC 

volume measurements acquired using MRI in healthy volunteers. 

1.6 Thesis outline 

This thesis will address the specific objectives in one manuscript (Chapter 2). 

Chapter 2: Reliability and concurrent validity of three-dimensional ultrasound for 

quantifying knee cartilage volume 

Chapter 2 describes our work on developing and validating a handheld mechanical 3D 

US acquisition device that will be used to monitor the progression of KOA. The ability to 

monitor the progression of KOA at the patient’s bedside will improve clinical workflow 

by enabling clinicians and researchers to obtain more information without added 

complexity or additional stress and discomfort to patients. This device will be beneficial 

in longitudinal and interventional studies to detect FAC volume changes over time. 

Our handheld mechanical 3D US device demonstrated excellent intra- and inter-rater 

reliabilities and strong concurrent validity with MRI when acquiring FAC volume 

measurements from healthy knees. 3D US imaging can decrease the overall costs of KOA 

monitoring and significantly improve the feasibility of FAC volume measurements 

during KOA clinical trials and patient care. 

Chapter 3: Conclusions and future work 

This chapter provides an overall conclusion of the previous chapter and will discuss 

future work to address the unmet needs from this thesis. 
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Chapter 2  

2 Reliability and concurrent validity of three-dimensional 

ultrasound for quantifying knee cartilage volume 

Handheld 3D US imaging has the potential to improve clinical workflow and decrease 

the overall costs of KOA imaging and monitoring at the patient’s bedside. The purpose of 

Chapter 2 is to present the validation of a handheld mechanical 3D US acquisition device 

for measuring the volume of FAC compared to MRI. 

The contents of this chapter have previously been published in Osteoarthritis and 

Cartilage Open: Papernick S, Dima R, Gillies DJ, Appleton CT, Fenster A. 

Osteoarthritis and Cartilage Open. 2020;2(4). The author retains the right to reuse this 

article in this thesis – Appendix B. 

2.1 Introduction 

KOA is a whole-joint disease with a prevalence of 7-17% among adults 45+ years old 

and is increasing with rising obesity rates and population ageing.1,2 KOA affects all knee 

joint tissues, leading to cartilage degradation, subchondral bone remodelling, and muscle 

atrophy.3 Cartilage degradation, a hallmark of KOA, has motivated efforts to characterize 

disease severity through measures of FAC loss, where decreases in FAC quality and 

quantity are interpreted as increased KOA severity. Semi-quantitative scoring systems, 

such as the KL grading scale, define the presence of KOA using TF JSN as a surrogate 

for FAC loss. Most imaging-based KOA scales target TF cartilage because of easy 

visualization with weight-bearing radiography. Although radiographic JSN may represent 

FAC loss, radiographic grading has poor sensitivity to detect FAC changes in early-stage 

KOA.4 Furthermore, radiographic JSN suffers from limited reproducibility for visualizing 

3D features due to variations in knee joint angulation.5 Additionally, JSN is a composite 

of meniscal positioning and degeneration, which are not necessarily associated with KOA 

severity.6,7 

Limitations of radiographic JSN have motivated MRI investigations of FAC as a 

discriminative and evaluative KOA tool. The MOAKS, BLOKS, KOSS, and WORMS 
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are all MRI-based semi-quantitative scales that have shown excellent reliabilities in OA 

populations.8,9,10,11 Furthermore, compositional MRI techniques produce quantitative 

measurements of cartilage biochemistry and have primarily been developed to investigate 

early-stage KOA. Due to the ability of MRI to assess the status of whole joint cartilage 

with reasonable spatial resolution, it has been largely accepted as the gold standard for 

KOA FAC assessments. While MRI has accelerated the scientific and medical 

communities’ understanding of KOA, it has limitations. MRI is not feasible for POC 

disease classification due to high manufacturing and operating costs, long acquisition 

times, and inaccessibility to all patients at all times.12 However, while other modalities 

may be less expensive and more accessible than MRI, finding individuals that possess the 

expertise needed to interpret images in under-served areas of the world is challenging. 

Conventional 2D US is widely accessible, relatively inexpensive, and overcomes the 

limitations associated with MRI. 2D US is a high-resolution imaging modality that has 

been increasingly used for POC assessments of rheumatological diseases.13,14,15,16 2D US 

has been implemented in KOA research via OMERACT US working group’s semi-

quantitative grading scale.17 However, this scale has not been formally validated, and 

conventional 2D US is associated with limitations. Clinicians must cognitively integrate 

multiple 2D images to mentally reconstruct 3D anatomy, which is inefficient and leads to 

operator variability.18 Additionally, 2D US tissue volume calculations require 

measurements of height, width, and length in two orthogonal views and are associated 

with low accuracy, high variability, and large operator dependency. Furthermore, 

sensitivity to change is limited when using ordinal scales with a small dynamic range 

such as 0-3 in the OMERACT scale. Alternatively, 3D US techniques involve translating 

a 2D US transducer while continually acquiring images that are reconstructed into a 3D 

image. 3D US imaging overcomes the limitations of 2D US and may fill the clinical need 

for an objective imaging-based POC tool for assessing KOA status, progression, and 

response to treatment. 

3D US techniques have been applied to neonatal, gynecological, and vascular 

applications, among others.19,20,21 We have developed a handheld mechanical 3D US 

device to provide POC assessments of trochlear FAC (tFAC). The objectives of this 
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cross-sectional study were to investigate the intra- and inter-rater reliabilities of our 3D 

US scanner for measuring tFAC volumes in healthy volunteers and assess its concurrent 

validity compared to the current clinical standard of MRI. We hypothesized that tFAC 

volumes measured from 3D US would demonstrate excellent reliability (ICC > 0.90) and 

be strongly correlated (ρ > 0.80) to MRI measurements in the same ROI. 

2.2 Methods 

Twenty-five volunteers over the age of 18 without a recent history of chronic knee joint 

pathology (healthy knees) in the year prior to the study were recruited for MR and 3D US 

knee imaging. The imaging protocol was approved by the Research Ethics Board at 

Western University Canada, and all volunteers provided written informed consent prior to 

imaging (Appendix A). Knees were deemed healthy if volunteers denied experiencing 

knee pain on most days of the weeks prior to this study and had not been diagnosed with 

any type of knee arthritis. Volunteers with prior knee injuries and/or surgeries that 

occurred before the year leading up to the study were not excluded from the cohort if they 

denied experiencing frequent knee symptoms including pain, aching, or stiffness on most 

days of the weeks prior to this study. 

2.2.1 Image acquisition 

MRI scans were acquired on a 3.0 Tesla MR system (General Electric Healthcare, 

Milwaukee, WI, USA) using a 3D Multiple Echo Recombined Gradient Echo (MERGE) 

sequence in accordance with the OARSI recommendations for KOA imaging clinical 

trials.22 The MERGE sequence is a T2*-weighted pulse sequence for musculoskeletal 

imaging that enables direct visualization of FAC. An HD T/R Knee Array Coil (8 

Channels) was used while volunteers were positioned supine with minimal knee flexion. 

Images were acquired in the sagittal plane with voxel sizes of 0.63 x 0.63 x 0.40 mm3, an 

average of 250 slices, a reconstructed matrix size of 256 by 256 voxels, and an FOV of 

16 cm. The excitation flip angle was 5° with a repetition time (TR) of 30 ms and an echo 

time (TE) of 11.71 ms. The MERGE sequence scan time for one knee was 4 minutes and 

27 seconds. Total scan time was 45 minutes including both knees. 
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3D US images were acquired using an Aplio i800 US machine (Canon Medical Systems 

Corporation, Ōtawara, Tochigi, Japan) equipped with a 14L5 linear transducer with a 58 

mm footprint length and an operating frequency of 10 MHz (3.8 MHz – 10.0 MHz). The 

2D US transducer was mounted to our 3D US scanner using a custom 3D-printed mould 

(Fig. 1). Our 3D US device consisted of a motorized drive mechanism that linearly 

translated the transducer over 4.0 cm along the patient’s skin. 2D US images were 

continually acquired at regular spatial intervals which were reconstructed into a 3D image 

immediately after scanning via computer software.18 Our 3D US scanner has previously 

been validated on tungsten filament phantoms and volumetric agar phantoms, 

demonstrating the ability to acquire Euclidean distance and volumetric measurements 

with errors < 2%.23 For 3D US acquisition, volunteers were positioned supine and 

instructed to flex their knee to the maximum range of motion without eliciting pain. 3D 

US images of the tFAC were acquired at the distal end of the femur, proximal to the 

patella during maximum knee flexion (Fig. 2). 120 2D US images were acquired in the 

transverse plane with transducer translation along the perpendicular axis. Reconstructed 

3D US image voxel sizes were 0.058 x 0.058 x 0.33 mm3 with 2D US in-plane image 

dimensions of 968 x 694 voxels. 3D US acquisition time was 15 seconds for one knee. 

The time period between MRI and 3D US imaging sessions was as short as possible 

while still accommodating to the individual schedules of the participating volunteers. 
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Figure 2.1 (A) Schematic diagram of our handheld mechanical 3D US acquisition 

device. The conventional US transducer (gray) is mounted to a motorized drive 

mechanism (green) via a custom 3D-printed transducer mould (purple). Pressing the 

button located on the top of the device initiates a 3D US acquisition. (B) Image of the 3D 

US acquisition device in the hand of a user. 

 

 

 

 

 

 

 

 

Figure 2.2 Image depicting the knee in full flexion during 3D US image acquisition. 
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2.2.2 Manual segmentation 

MRI voxel resampling was performed to ensure that the segmentation pixel spacings 

were substantially smaller than the smallest FAC image feature. Voxel resampling was 

conducted in MATLAB R2019b (MathWorks, Natick, Massachusetts, USA) using the 

interp2 function with the spline interpolation method. The resampled voxel size was 0.15 

x 0.15 x 0.40 mm3 to provide a balance between segmentation sensitivity and 

computation time. 

Manual tFAC segmentations were completed by two raters (SP, RD) on MRI and 3D US 

after receiving training during three formal calibration sessions with a rheumatologist 

possessing advanced diagnostic and interventional musculoskeletal ultrasonography 

training (CTA). One rater had no prior experience with medical image segmentation but 

possesses a medical physics academic background with courses in medical imaging 

modalities including US and MRI. The other rater is a registered diagnostic medical 

sonographer with formal training and clinical experience in medical imaging. 

Segmentations were performed in the open-source software 3D Slicer (3D Slicer 4.11.0 

Preview Release) using the segment editor module and were conducted in the sagittal 

MRI and transverse 3D US planes.24 Segmentations of both MRI and 3D US were 

completed using every second 2D image to decrease segmentation time for both 

modalities without a reduction in sensitivity to tFAC volume changes.25 Segmented 2D 

images were interpolated using a morphological contour interpolation algorithm in 3D 

Slicer, resulting in an average of 146 and 92 segmented 2D images per MRI and 3D US 

image, respectively.26 Both raters were blinded to the other imaging modality during 

segmentations such that MRI segmentations were completed without the help of 3D US 

image and vice versa. Each rater completed segmentations in a random order on each 

modality. 

During MRI segmentations, the posterior condylar cartilage was excluded by defining the 

anterior border of the posterior aspect of the lateral and medial menisci as a segmentation 

border to further reduce segmentation times (Fig. 3a, b). The hyperintense synovial 

membrane lining Hoffa’s fat pad was excluded from MRI segmentations. For 3D US 

segmentations, the anterior hyperechoic tFAC surface and the hyperechoic border of the 
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cortex were defined as boundaries for the anechoic cartilage (Fig. 3c, d). With these 

boundaries and definitions, total segmentation times were approximately 45 to 60 

minutes per knee for MRI and 20 to 30 minutes per knee for 3D US. Five knees from 

separate volunteers were randomly selected by each rater and re-segmented on MRI and 

3D US. Repeated segmentations were conducted during sessions separated by a two-

week “washout” period to reduce the probability of each rater relying on memory when 

conducting a repeated segmentation. 

Figure 2.3 MERGE MRI (A) and 3D US (C) images of the trochlear articular knee 

cartilage outlined by the white arrows in the sagittal MRI and transverse US planes of a 

healthy volunteer, accompanied by the same images with an overlaid MRI (B) and 3D 

US (D) slice that has been manually segmented. 
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2.2.3 Reliability and validation analysis 

MRI and 3D US segmentations were registered via manual initialization followed by 

automated surface-based registration in 3D Slicer (Fig. 4). Initialization involved 

manipulating 3D US tFAC models using linear transformations and rotations along the 

three Cartesian axes to align the segmentations with MRI using the intercondylar notch as 

an anatomical landmark. An automatic surface-based registration method (Jean-Baptiste 

& Vinicius Boen, University of Michigan) was applied to the segmentations to complete 

the registration. Intra- and inter-rater reliabilities were assessed using the same 

registration procedures. Reliability analysis was conducted using the entire segmented 

area of MRI and 3D US tFAC models, while validation between modalities involved 

additional trimming of MRI segmentations. MR images captured a larger FAC FOV than 

3D US, resulting in segmentations that did not represent identical anatomical ROI when 

comparing modalities. Therefore, MRI segmentations were manually trimmed using the 

overlaid 3D US segmentations as guides, ensuring that tFAC models represented the 

same ROI on both modalities. Registration and trimming were repeated on five knees 

selected at random during sessions separated by a two-week “washout” period.  

Segmentation volumes were computed by 3D Slicer, and the percent differences between 

MRI and 3D US volumes were calculated. The mean surface distance (MSD), Hausdorff 

distance (HD), and Dice similarity coefficient (DSC) were computed as these metrics are 

widely used to compare and evaluate segmentations.27 MSD represents the mean distance 

from a point on one surface to the nearest corresponding point on the other surface, while 

HD is the largest distance from a point on one surface to the closest point on the other 

surface (Fig 4e). DSC provides a measure of similarity in terms of overlap between 

segmentations and ranges from 0% (no overlap) to 100% (identical objects). MSD and 

HD values were computed using the open-source software CloudCompare 

(CloudCompare v2.11 beta), and DSC values were computed using the segment 

comparison module in 3D Slicer (Csaba Pinter, PerkLab, Queen’s University, Canada). 
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Figure 2.4 Manual segmentations of the FAC from MRI (A) and 3D US (B) images. 3D 

US segmentations were registered to MRI using a semi-automated surface-based 

registration algorithm (C). MRI segmentations were then trimmed (D) to ensure both 

MRI and 3D US segmentations covered the same cartilage region for comparison 

purposes. (E) Colour map representing the absolute distance (mm) between a given MRI 

and 3D US segmentation pair from the same knee of a volunteer. The distance map has 

been overlaid on the 3D US segmentation and represents the distance from each point to 

the nearest points on the MRI segmentation. 
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2.2.4 Statistical analysis 

Statistical analyses were performed using SPSS (SPSS Statistics v26; IBM, Armonk, NJ). 

All data were initially tested for normality using the Shapiro-Wilk test. Intra- and inter-

rater segmentation reliabilities from MRI and 3D US for both raters were assessed using 

intraclass correlation coefficients (ICCs). Intra-rater ICCs were based on a single-rating, 

absolute-agreement, 2-way mixed-effects model, while inter-rater ICCs were based on a 

single-rating, absolute-agreement, 2-way random-effects model. ICCs were interpreted as 

less than 0.50 indicating poor reliability, between 0.50 and 0.75 indicating moderate 

reliability, between 0.75 and 0.90 indicating good reliability, and greater than 0.90 

indicating excellent reliability.28 Bland-Altman plots were used to assess differences 

between intra- and inter-rater tFAC volumes along with differences between MRI and 3D 

US segmentations. A cumulative percentile plot was used to observe the relationship of 

the differences between MRI and 3D US tFAC volumes. Correlations between tFAC 

volumes calculated as the mean of the two raters from MRI and 3D US segmentations 

were determined using Spearman Rank-Order Correlation due to the non-normal 

distribution of data. Linear regression analysis was conducted using MRI segmentation 

volumes as predictors for 3D US tFAC volumes and the enter method for equation 

construction. 

2.3 Results 

The demographic data of the volunteers are shown in Table 1 and was available from 24 

of the 25 participants. 

Table 2.1 Demographic data of twenty-four out of the twenty-five volunteers. 

 Volunteers with healthy knees 

% Women 58.3 

Age [year] (mean ± SD) 29.9 ± 14.5 

Height [m] (mean ± SD) 1.68 ± 0.11 

Weight [kg] (mean ± SD) 67.0 ± 14.8 

BMI [kg/m2] (mean ± SD) 23.4 ± 3.3 
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2.3.1 Reliability 

Similar mean segmentation volumes and mean absolute volume differences between 

intra- and inter-rater comparisons were observed using the same modality for each rater 

(Table 2, Fig. 5). The smallest ICC was 0.83 (0.48, 0.94) and was observed for the inter-

rater comparison of MRI, while the largest ICC was 1.00 (0.98, 1.00) and was observed 

for the intra-rater 3D US comparison for rater 1 (Table 3). Global mean MSD and HD 

were smaller for 3D US than MRI for intra- and inter-rater comparisons, while DSC was 

larger for 3D US than MRI during all comparisons (Table 3). 

Table 2.2 Mean volumes ± standard deviations (SDs) for all intra-rater and inter-rater 

comparisons, along with the absolute volume difference ± SD between MRI and 3D US. 

The mean volumes and absolute differences for repeated registrations and trimmings of 

MRI segmentations are also provided. 

 
Mean Volume 

[cm3] 

Mean Volume 

(repeated) [cm3] 

Absolute Difference 

[cm3] 

Intra-rater (n = 5)    

MRI (rater 1) 4.71 ± 1.18 4.76 ± 1.20 0.232 ± 0.152 

MRI (rater 2) 4.56 ± 1.10 4.20 ± 1.04 0.366 ± 0.351 

3D US (rater 1) 2.52 ± 1.01 2.53 ± 0.96 0.0516 ± 0.0531 

3D US (rater 2) 2.15 ± 0.92 2.17 ± 1.08 0.167 ± 0.111 

    

Inter-rater (n = 25)    

MRI 4.79 ± 1.23 4.38 ± 1.03 0.494 ± 0.465 

3D US 2.29 ± 0.72 2.30 ± 0.64 0.155 ± 0.134 

    

Registration & trimming (n = 5)   

Single rater 2.14 ± 0.56 2.13 ± 0.54 0.0173 ± 0.0166 
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Figure 2.5 Bland-Altman plots assessing intra-rater test/re-test reliability of rater 1 with 

MRI (A) and 3D US (B), and rater 2 with MRI (C) and 3D US (D). Bland-Altman plots 

assessing inter-rater reliability between the two raters using MRI (E) and 3D US (F) to 

complete segmentations. Mean differences in segmentation volumes are indicated by a 

solid line and mean ±1.96 SD are indicated by dashed lines. 
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Table 2.3 Intra- and inter-rater reliability ICCs with 95% confidence intervals (CIs) for 

manual MRI and 3D US segmentations, along with repeated MRI and 3D US 

registrations and trimmings. The MSD, HD, and DSC values ± SD for all comparisons 

are also presented. 

 
ICC (95% CI) P value MSD [mm] HD [mm] DSC [%] 

Intra-rater (n = 5)    

MRI (rater 1) 
0.97 (0.79, 

1.00) 
0.001 

0.218 ± 

0.109 

2.88 ± 

1.37 
87.3 ± 2.8 

MRI (rater 2) 
0.90 (0.25, 

0.99) 
0.002 

0.499 ± 

0.275 

6.66 ± 

2.76 
83.5 ± 4.6 

3D US (rater 1) 
1.00 (0.98, 

1.00) 
< 0.0001 

0.126 ± 

0.024 

1.76 ± 

0.35 
92.9 ± 0.2 

3D US (rater 2) 
0.98 (0.84, 

1.00) 
0.0003 

0.256 ± 

0.143 

3.70 ± 

2.23 
88.1 ± 2.6 

      

Inter-rater (n = 25)    

MRI 
0.83 (0.48, 

0.94) 
< 0.0001 

0.274 ± 

0.122 

3.51 ± 

1.77 
83.1 ± 3.6 

3D US 
0.96 (0.90, 

0.98) 
< 0.0001 

0.243 ± 

0.133 

2.89 ± 

1.72 
86.4 ± 3.1 

      

Registration & trimming (n = 5)   

Single rater 
1.00 (0.99, 

1.00) 
< 0.0001 

0.101 ± 

0.090 

1.72 ± 

0.94 
94.3 ± 4.4 

2.3.2 3D US to MRI registration and trimming 

The mean percent difference between MRI and 3D US volumes averaged across all 

comparisons including both raters individually, following registration and trimming, was 

16.7 ± 12.9 % (n = 50). 3D US tFAC volume measurements were larger than MRI 

volume measurements in 88% of the comparisons between the two modalities (Fig. 6a, 

b). Spearman Rank-Order Correlation revealed a strong correlation between MRI and 3D 

US volumes (ρ = 0.884 (0.746, 0.949), p < 0.0001), and linear regression resulted in R2 = 

0.848 (0.750, 0.950), p < 0.0001, and Y = 1.29 * X – 230 (Fig. 6c). Global mean MSD, 

HD, and DSC between registered segmentations averaged between both raters were 0.375 

± 0.071 mm, 2.85 ± 1.18 mm, and 71.2 ± 6.5 %, respectively (n = 25). 
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Figure 2.6 (A) Bland-Altman plot assessing the relationship between MRI and 3D US 

segmentation volumes as the mean for both raters. Mean differences in segmentation 

volumes are indicated by a solid line and the mean ±1.96 SD are indicated by dashed 

lines. (B) Cumulative percentile plot depicting the volume difference between MRI and 

3D US segmentations averaged between both raters. (C) Linear regression plot of MRI 

segmentation volumes used as a predictor for 3D US. A line of equality is represented by 

the dashed line. 

2.4 Discussion 

This is the first study investigating the reliability and validation of FAC volume 

measurements using 3D US in healthy volunteers. This study focused on validation of 
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tFAC volumes, which is important when studying the status and progression of KOA 

affecting patellofemoral (PF) articulation. Since KOA affects the entire joint, these 

results are pertinent to the study of nearly all KOA phenotypes. Healthy FAC possesses a 

relatively smooth and continuous surface without distinct anatomical landmarks that can 

be used for registering segmentations, besides the intercondylar notch. Therefore, tFAC 

images that included the intercondylar notch enabled registration of MRI and 3D US 

segmentations. Additionally, the intercondylar notch can be used as an anatomical 

landmark during longitudinal studies to ensure repeated measures are taken from the 

same ROI. 

3D US imaging is possible in any application involving 2D US since the only 

modification required is mounting the 2D US transducer to a 3D US scanning device. 

Several studies have previously investigated the application of 2D US for evaluating 

femoral condylar cartilage for KOA assessments29,30,31,32. However, quantitative image 

analysis of non-invasive knee US has only been reported for cartilage thickness 

measurements but not entire cartilage volumes33,34,35. Quantitative image analysis may 

provide more sensitive information regarding early KOA than semi-quantitative grading 

scales, which are subjective and potentially susceptible to US operator/rater differences. 

However, semi-quantitative grading scales are potentially faster than manual quantitative 

image analysis. Therefore, this study builds on previous work and is easily implemented 

in similar clinical settings. 

Many studies have investigated cartilage thickness measurements for assessing KOA 

severity36,37. However, thickness measurements are highly variable and dependent on the 

FAC ROI being measured, which can vary within subjects due to US transducer 

placement and angulation at different time points38,39,40. Detecting changes in cartilage 

loss using thickness measurements requires the ability to sample the same ROI with good 

test-retest reliability. Volume measurements may overcome these limitations by enabling 

quantification of cartilage loss in all dimensions and provide a similar metric to average 

cartilage thickness. Furthermore, 3D US may provide meaningful advantages over MRI 

for quantifying FAC volume. Our 3D US device is compatible with any commercially 

available US machine and is associated with low manufacturing and operating costs. 
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Additionally, the portability of our 3D US device enables FAC volume measurements to 

be acquired at the patient’s bedside. 

2.4.1 Reliability 

Intra-rater ICCs for MRI and 3D US demonstrated excellent reliabilities (> 0.90). Inter-

rater ICC for MRI demonstrated good reliability (0.75 – 0.90) while 3D US ICC 

demonstrated excellent reliability (> 0.90). Intra- and inter-rater Bland-Altman plots 

displayed smaller volume difference variations for 3D US compared to MRI in all 

comparisons (Fig. 5). Additionally, global mean MSD and HD were smaller for 3D US 

than MRI, and mean DSC for 3D US was higher than MRI for intra- and inter-rater 

comparisons (Table 3). Collectively, these results suggest that our 3D US system can 

quantify tFAC volume with similar or perhaps superior reliability and precision than 

MRI. 

The higher spatial resolution of 3D US images acquired with the Canon 14L5 linear 

transducer compared to 3.0 Tesla MRI may partially account for reliability and precision 

differences. Resolution differences between modalities were most apparent during MRI 

segmentations when raters attempted to define the interface between tFAC and the 

synovial lining of Hoffa’s fat pad. Differentiating tFAC from slightly hyperintense 

synovial lining proved extremely difficult or impossible during MRI segmentations 

despite manipulating image contrast. Additionally, the TF cartilage interface was difficult 

to identify on MRI as both cartilage structures were equally hyperintense. The synovial 

lining of Hoffa’s fat pad along with the TF contact point were not within the ROI of 3D 

US acquisitions since images were acquired during maximum knee flexion. Healthy FAC 

produced ideal US images with excellent differentiation from surrounding tissues. The 

difficulties in identifying borders on MRI likely also contributed to higher segmentation 

times compared to 3D US. The MRI and 3D US resolutions were chosen to match what is 

routinely used in both patient care and clinical trials for OA to enable comparisons in a 

clinically relevant context. 
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2.4.2 Validity 

3D US tFAC segmentations possessed larger volumes than MRI segmentations. 

Considering the higher spatial resolution of US compared to MRI, it is possible that MRI 

segmentations were not able to capture the true cartilage volume as effectively as 3D US. 

Medial and lateral portions of the tFAC and condylar cartilage become thin and difficult 

to delineate from thin adipose tissue and may often not be visible in MRI. Due to the high 

spatial resolution of 3D US, the thin medial and lateral portions of tFAC were easily 

identified and therefore included in segmentations. This will be of great importance in 

clinical studies of joint disease since thinner areas of cartilage are particularly susceptible 

to damage and loss in KOA. Our 3D US device was able to visualize tFAC and condylar 

cartilage regions that were difficult or impossible to visualize using MRI, providing a 

more comprehensive model of the cartilage and improved volume quantifications. 

Notwithstanding these differences in absolute cartilage volumes, Spearman Rank-Order 

Correlation and linear regression analyses revealed a strong correlation between MRI and 

3D US tFAC measurements and that MRI tFAC volumes can predict 3D US volumes. 

2.4.3 Limitations and impact 

This study was conducted on volunteers with healthy knees rather than KOA patients. 

Validating our 3D US system on healthy knees prior to testing with KOA patients was a 

necessary first step for developing image acquisition, segmentation, and analysis 

protocols. In KOA patients, FAC characteristically develops fissures, abrasions, and other 

surface irregularities, whereas healthy cartilage is smooth and continuous. Therefore, 

before implementing our 3D US device clinically, the measurement properties of this 

system should also be evaluated in KOA patients. Results from a KOA patient study will 

enable us to determine if KOA cartilage pathology impacts measurement properties of 

our system relative to healthy cartilage. However, given the high resolution and excellent 

soft-tissue contrast of clinical US systems, we anticipate our 3D US system will perform 

similarly in KOA patients. 

Only a portion of FAC was captured in a single pass 3D US acquisition as the FAC 

cannot be visualized through the patella and tibia using US. Therefore, knees were 
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scanned in maximum flexion proximal to the patella to capture the greatest portion of 

FAC possible. However, during maximum knee flexion, the posterior medial and lateral 

condylar cartilage are in contact with the tibial cartilage and are not visible with 3D US. 

This limitation can be overcome if the tFAC is used as a non-invasive imaging “biopsy” 

of knee cartilage, providing clinicians with an indication of FAC status representative of 

overall joint health. Additionally, manual trimming of MRI segmentations to match the 

3D US ROI was only necessary for validating our system against MRI and would not be 

required when using 3D US independently in future studies. While this procedure may 

have introduced variability or bias, repeated registrations, along with repeated trimming, 

revealed nearly perfect reproducibility (Table 3), indicating that our protocol results in 

very little variability or bias. 

The weight-bearing condylar cartilage was able to be visualized using our 3D US device. 

However, this required additional acquisitions on the medial and lateral sides of the 

patella during maximum knee flexion. Since MR images of FAC were acquired during 

minimal knee flexion, variations in patella positioning relative to the FAC surface in MRI 

compared to 3D US resulted in difficulties registering 3D US condylar cartilage 

segmentations to MRI. Therefore, this study focused on the tFAC region for validation 

with MRI, but 3D US could be used for monitoring condylar cartilage volume changes 

over time without requiring MRI comparisons. Finally, a small subset of patients with 

severe KOA may experience limited range of motion, which might interfere with 

visualization of the most inferior aspects of the tFAC. 

The greatest advantage of our 3D US system is the ability to acquire images quickly, 

easily, and comfortably at the patient’s bedside, providing cost-effective and non-

invasive assessments of FAC status for reliable longitudinal monitoring. Our 3D US 

device could alter the workflow of orthopedic, sports medicine, primary care, and 

arthritis clinics by enabling clinicians and researchers to obtain more information without 

added complexity or additional stress and discomfort to patients. This technology may be 

well-suited to longitudinal and interventional clinical studies where detecting changes in 

cartilage volume is required. In the future, this system will also be useful in a routine 

clinical care context. Currently, the use of KL grading for assessing KOA progression is 
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insensitive to change and relies on indirect features of FAC thinning. MRI-based 

measures of cartilage volume are superior to radiographic measures but are limited by 

cost, time, accessibility, and patient-related factors, preventing generalized use of 

quantitative MRI for KOA. Our study demonstrates that cartilage volume measurements 

acquired using 3D US represent a more feasible method to quantitatively assess tFAC 

volume with very high reliability and accuracy. 

In conclusion, we have demonstrated the reliability and validity of a handheld mechanical 

3D US device we developed to quantify tFAC volumes in healthy volunteers. We 

demonstrated that 3D US segmentations are associated with excellent intra- and inter-

rater reliabilities and possess strong agreement with MRI tFAC volume measurements. 

The tFAC is a vital region of the knee joint for investigating the progression of PF OA 

and could also be used as a non-invasive imaging “biopsy” of the FAC to monitor KOA 

progression and response to treatment. Future work will assess the reliability of our 3D 

US device in KOA patients and the ability to monitor FAC volume changes over time. 

Further assessment of measurement properties, including sensitivity to change, is 

necessary before its use can be recommended in clinical trials. Future work will also 

assess the test-retest reliability of 3D US during image acquisitions separated by time. In 

addition to longitudinal construct validity, future work will also assess the intra- and 

inter-rater reliability of 3D US cartilage measurements in a longitudinal study to monitor 

the progression of tFAC change and degradation for early detection of KOA. 3D US is a 

promising, inexpensive, and widely accessible imaging modality for POC assessments of 

KOA and will enable clinicians and researchers to obtain additional information without 

added complexity or discomfort to patients. 
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Chapter 3  

3 Conclusion and future directions 

This chapter revisits the overarching aims of this thesis and summarizes the findings from 

Chapter 2. This chapter also explores the limitations of this work with potential solutions 

and discusses directions for future work. 

3.1 Overview and research objectives 

KOA is one of Canada’s most common chronic health conditions and causes patients to 

suffer from debilitating pain, disability, and a decreased quality of life.1,2 X-ray 

radiography and MRI are the current clinical standards for diagnosing and monitoring the 

progression of KOA and its response to treatment. However, radiographic grading has 

poor sensitivity for detecting FAC changes in early KOA and has poor soft-tissue 

contrast for visualizing FAC.3 MRI is not feasible for POC KOA assessments due to its 

high manufacturing and operating costs, long acquisition times, and inaccessibility to all 

patients at all times.4 Conventional 2D US is an alternative, widely accessible, and more 

cost-effective imaging modality for monitoring KOA at the patient’s bedside. However, 

there are several critical limitations associated with 2D US. Operators must cognitively 

reconstruct the necessary 3D anatomy through several 2D images, leading to variability. 

Additionally, tissue volume measurements using 2D US are associated with low 

accuracy, high variability, and large operator dependency.5 Alternatively, 3D US imaging 

techniques involve translating a 2D US transducer while continually acquiring 

consecutive images that are reconstructed into a 3D image following an acquisition. 3D 

US imaging has the potential to overcome the limitations associated with 2D US and may 

fill the clinical need for a POC imaging tool to monitor KOA progression and response to 

treatment. 

The purpose of this work was to investigate the application of 3D US imaging for 

measuring FAC volume without the limitations associated with x-ray radiography and 

MRI. The central hypothesis of this thesis was that 3D US imaging could be used to 

quantify the volume of FAC with similar reliability and accuracy to the current clinical 
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standard of MRI. This thesis sought to test this hypothesis through the following 

objectives: 

1. Assess the intra- and inter-rater reliabilities of manual FAC segmentations of 

healthy knees from MRI and 3D US. 

2. Assess the validity of segmentation-based FAC volume measurements using 3D 

US compared to the current clinical standard of MRI in healthy knees. 

3.2 Summary 

In Chapter 2, the reliability and validity of our handheld mechanical 3D US imaging 

device were tested by comparing manual FAC volume quantifications against MRI. 

Bilateral knee images of 25 healthy volunteers were acquired with MRI and our 3D US 

scanner. MRI scans were acquired using a 3.0 Tesla General Electric Healthcare system 

with a 3D MERGE acquisition sequence. 3D US scans were acquired using a Canon 

Medical Systems Aplio i800 US machine equipped with a 14L5 linear transducer. Two 

raters manually segmented the tFAC from both MRI and 3D US after receiving training 

from a rheumatologist with advanced diagnostic and interventional musculoskeletal 

ultrasonography experience. Each rater repeated segmentations on five cases during 

separate sessions to assess intra-rater reliability. 3D US and MRI segmentations were 

registered using a semi-automated surface-based registration algorithm. The MRI 

segmentations were trimmed to match the same FAC ROI from 3D US to enable direct 

volume comparisons. Intra- and inter-rater reliabilities were assessed using ICCs 

calculated from the segmentation volumes. Spearman correlation and linear regression 

were used to evaluate the relationships between MRI and 3D US tFAC volumes. 

MRI intra-rater ICCs were 0.97 (0.79, 1.00) and 0.90 (0.25, 0.99) for each rater, with an 

inter-rater ICC of 0.83 (0.48, 0.94). 3D US intra-rater ICCs were 1.00 (0.98, 1.00) and 

0.98 (0.84, 1.00) for each rater, with an inter-rater ICC of 0.96 (0.90, 0.98). Spearman 

correlation and linear regression revealed a strong correlation ρ = 0.88 (0.75, 0.95) and 

regression R2 = 0.85 (0.75, 0.95). These results indicate that 3D US is associated with 

excellent intra- and inter-rater reliabilities and strong concurrent validity with MRI when 
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quantifying healthy tFAC volume with manual segmentations. 3D US imaging has the 

potential to greatly improve feasibility for quantifying knee cartilage volume during 

KOA clinical trials and patient care. 

3.3 Limitations 

This study was conducted on volunteers with healthy knees and not patients diagnosed 

with KOA. In diseased patients, the FAC develops surface abnormalities such as fissures, 

abrasions, divots, and other irregularities. Therefore, the measurement properties of our 

3D US device need to be evaluated in KOA patients before clinical implementation. 

Additionally, 3D US imaging possesses a smaller FOV than MRI, making it difficult to 

visualize the entire FAC in a single 3D US image. It is possible to visualize the weight-

bearing femoral condylar cartilage using 3D US with additional acquisitions. However, 

variations in the patella position relative to the cartilage surface in MRI compared to 3D 

US resulted in difficulties registering condylar cartilage segmentations between 

modalities. 

Due to the large acoustic impedance mismatch between soft tissue and bone, US imaging 

cannot visualize the FAC through the patella and tibia. Therefore, knees were imaged 

during maximum flexion with 3D US to reveal the largest possible region of FAC 

without obstruction by the tibia. The bore size of MRI scanners cannot accommodate legs 

under full knee flexion, making it impossible to acquire MR images of the knee in the 

same orientation as 3D US images. The differences in the degree of knee flexion between 

MRI and 3D US acquisitions result in variations in the patella position along the trochlear 

groove. These variations introduced complications when identifying the intercondylar 

notch for registering MRI and 3D US segmentations. However, registering FAC 

segmentations between MRI and 3D US is only necessary for validating our 3D US 

device against MRI. When using 3D US independently in the clinic and future studies, 

multi-modality registrations will not be required. 
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3.4 Future directions 

The results of this work highlight the potential of 3D US for use as an objective, imaging-

based POC tool to assess KOA status, progression, and response to treatment. In Chapter 

2, FAC volume measurements were acquired using our handheld mechanical 3D US 

device and validated against MRI in healthy volunteers. A study investigating the 

reliability and validity of our 3D US device for quantifying FAC volume in patients 

diagnosed with KOA will be conducted to expand beyond healthy volunteers and provide 

further evidence for clinical feasibility. Longitudinal studies using 3D US to monitor 

FAC volume changes in healthy volunteers and KOA patients should also be conducted 

to evaluate 3D US’s sensitivity to cartilage volume changes. 

Future studies will also investigate the application of our 3D US device for monitoring 

knee synovitis. Synovitis and the resultant pro-inflammatory mediators are essential 

components in the pathogenesis of KOA.6,7 Synovitis may also be linked to heightened 

pain sensitivity through sensitization and activation of sensory neurons.8,9 Monitoring 

changes in synovial volume with 3D US may provide insight into the complex 

relationship between synovitis, pain, and KOA. However, synovitis can cause the 

synovium to expand to several times the size of its healthy state, making it difficult to 

visualize the entire synovium in a single 3D US image. Furthermore, there is an absence 

of rigid anatomical landmarks in the suprapatellar synovium region, making it 

challenging to register several images. To address these challenges, we have developed a 

counterbalanced POC system that can track the position of 3D US acquisitions in 3D 

space. The tracking information enables merging multiple 3D US acquisitions to 

visualize the entire suprapatellar synovium in a single image. The POC system features a 

multi-jointed arm linkage with electromagnetic encoders at each joint to compute the 

position and orientation of our 3D US device using forward kinematics. The tracking 

accuracy of the POC system was validated using an external optical tracking system, 

demonstrating an overall mean absolute tracking error of 3.08 ± 2.01 mm with no 

difference between the two tracking systems (p = 0.965).10 Future work will decrease the 

POC system’s tracking error and test the image registration capabilities using volumetric 

agar phantoms before imaging volunteers and KOA patients. 
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Another direction for future work is to develop automatic cartilage segmentation 

algorithms with deep learning. Several studies have investigated the application of deep 

learning for automatic knee cartilage segmentations.11,12,13 Manual 3D US cartilage 

segmentations are time-consuming and subject to operator dependencies. Automatic 

segmentation will enable clinicians to measure FAC volume directly at the patient’s 

bedside using 3D US. Future studies will also investigate monitoring synovitis using 3D 

US and deep learning. 

3.5 Conclusion 

In conclusion, this thesis investigates applying a handheld mechanical 3D US device for 

monitoring KOA progression and response to treatment at the patient’s bedside. The 

study described in this thesis demonstrates that 3D US FAC volume measurements are 

associated with excellent reliability and strong concurrent validity with the current 

clinical standard of MRI. 3D US imaging is a promising, widely accessible imaging 

modality for POC assessments of KOA and will enable clinicians and researchers to 

obtain valuable information without added discomfort to patients. 
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