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Abstract 

This study used the semantic similarity between citation contexts to develop one scheme 

for weighting direct citations, and another scheme for allocating residual citations to a 

publication from its nth citation generation level publication. A relationship between the 

new direct citation weighting scheme and each of five existing schemes was investigated 

while the new residual citation scheme was compared with the cascading citation scheme. 

Two datasets from biomedical publications were used for this study, one each for the direct 

and residual citation weighting aspects of the study. The sample for the direct citation 

aspect contained 100 publications that received 7317 citations, 11,234 citation contexts, 

and 9,795 citation context pairs. A sample of 981 citation context pairs was given to two 

human experts for annotation into “similar”, “somewhat similar”, and “not similar” classes. 

Semantic similarity scores between the 11,234 citation contexts were obtained using 

BioSent2Vec word-embedding model for biomedical publications. The residual citation 

aspect sample included ten base articles and five generations of citations from which 5272 

citation context pairs were obtained. Results of the Spearman’s rank correlation test showed 

that the correlation coefficients between the proposed direct citation weighting scheme and 

each of the weighting schemes “number of positive sentiments,” “number of multiple 

citation mentions,” “sum of multiple citation mentions,” “number of citations,” and 

“number of citation mentions” were .83, .89, .89, .93, and .99 respectively. The average 

residual citations received from the 2nd, 3rd, 4th and 5th citation generation level papers 

were 0.47, 0.43, 0.40, and 0.37 respectively. These average residual citations were 

significantly different from the averages of 0.5, 0.25, 0.125, and 0.0625 suggested by the 
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cascading citation scheme. Even though the proposed direct citation weighting scheme and 

the residual citation scheme require more complex computations, it is recommended that 

they should be considered as credible alternatives to the “number of citation mentions” and 

cascading citation scheme respectively. 
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Summary for Lay Audience 

One of the objectives of evaluative bibliometrics, a branch of Information Science, is to 

fairly and appropriately quantify the contributions from previously written (cited) papers 

to the citing scientific paper. Citation mention count, which is the number of times a cited 

publication is mentioned in the citing paper, is a popular method for weighting contribution 

of citations, it however does not take into account citation context information (the wording 

associated with the in-text citations). Firstly, this research proposes a more nuanced 

weighting method that incorporates citation contexts into citation mention count. Secondly, 

this study exploits the citation context information to create a system for weighting residual 

citation, where residual citations are accumulated by a publication depending on its 

contributions to other publications on its citation path. Conversely, on a citation path A-B-

C, publication A was cited by publication B and publication C cited publication B, 

publication A contributed to publication C if the citation context of publication A in 

publication B is similar to the citation context of publication B in publication C. Two 

datasets were used for this thesis; one each for the direct and residual citation weighting 

aspects of the study. The first sample contained 100 publications that received 7317 

citations, 11,234 citation contexts, and 9,795 citation context pairs. The proposed semantic 

similarity-based weighting allocated more weights to unique citation contexts. The indirect 

citation sample included ten base articles and five generations of citations from which 5272 

citation context pairs were obtained. Statistical test revealed the number of citation 

mentions was the most similar metric to the proposed citation weight. This implies the 

proposed weighting method is similar to the citation mention method. Similar to the 
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cascading citation system, residual citations received by articles from their generations of 

citations decreased as the number of generations increased. However, residual citations 

accrued to publications at all the generations were statistically different between the 

proposed and existing systems. This implies the proposed residual citation weighting is 

different from the cascading citation system. Though the proposed metrics require deeper 

computation, they are more novel because they are based on the contribution of the cited 

publications. 
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Chapter 1 

1 Introduction 

Included in the first section of this chapter is a background to the ideas of direct and residual 

citations in academia. A statement of the research problem is presented in the second 

section of this chapter. Other sections are the statement of research objectives, research 

questions and hypothesis in the third, fourth and fifth sections, respectively. The last three 

sections are the significance of the study, definition of terms and an outline of the thesis.  

 Citation in Practice 

Citation is an integral part of the scientific culture and ecosystem. Citation analysis, and 

bibliometrics in general, as a way of studying science, is science (McKeown et al., 2016). 

Citations, as records and art (of citing), are considered sacrosanct in science as citations are 

made in and produced from a seemingly reputable scholarship system where researchers 

are mandated to make references to original owners of the ideas that they have consulted, 

referenced or used in scholarly communications. Citations in science refer explicitly to the 

credits or references made to intellectual contributions published in journal articles, books 

or book chapters, web pages, conference proceedings, and other scholarly communication 

channels by users of the published information. Citations are made to attribute ideas, 

opinions, results or observations that were made in prior research to the source (Wan & 

Liu, 2014).  In other words, citations are considered accolades in scholarship, which can be 

accumulated by individual scholars, organizations, countries, or research outputs. Over 
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time, these accolades can translate to economic, political and academic values. For instance, 

more cited articles are considered more valuable, and authors of such articles wield more 

political force in their fields of study. Besides, research works of the highly cited authors 

are more likely to be funded because more citations connote experience and trustworthiness 

in their areas of expertise. Also, criteria for the choice of academic prize winners are 

sometimes based on citation numbers as higher citation numbers are considered higher 

influence and impact. Lastly, highly cited journals are viewed to be of higher quality than 

journals that are less cited.  

Quality assessment in the research community today is primarily built around citations and 

peer reviews. Though scientific publications go through the critical peer-review process, 

citations have more influence in the evaluation of science. According to MacRoberts and 

MacRoberts (1989) and Wallin (2005), very highly cited papers over time are considered 

more factual and are accepted as part of the universe of knowledge. Citations are academic 

commodities that are sold by researchers and bought by academic employers, prize panels 

and promotion boards for academic appointments, awards and promotions, respectively. 

Financially, citation analysis has an enormous stake as it is an “integral part of research 

quality evaluation and has been changing the practice of research” (Bornmann & 

Leydesdorff, 2014, p. 1228); more than one trillion dollars was spent on research and 

development globally in 2017 (Organization for Economic Co-operation and Development, 

2018). 

Citation analysis provides the most widely used methods for research evaluation ( 

Bornmann & Leydesdorff, 2014). It helps to understand the “conceptual and professional 
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evolution” of science (Larivière et al., 2012, p. 1000) through the study of diffusion of ideas 

(Sun et al., 2016; Zhao & Logan, 2002; Zhao & Strotmann, 2008). It also helps to 

understand the scope and characteristics of the scientific network and communities (Sun et 

al., 2016; Wagner & Leydesdorff, 2005). Other aspects include co-citation analysis, which 

is the study of citations that occur together. This is mainly used in studying the relationships 

between documents, research areas and researchers by analyzing the co-occurrence of 

citations in scientific communications. Co-citation analysis is also applied to document 

information retrieval and studying the features and evolution of scientific communities  

(Cottrill, Rogers, & Mills, 1989;  Jeong, 2016; Jeong, Song, & Ding, 2014; Kim, Jeong, & 

Song, 2016). Bibliographic coupling, another aspect of citation analysis, is the study of the 

references that scientific papers share. This is applied to document ranking in information 

retrieval systems and also for quantifying the contribution of cited papers in the citing 

papers (Biscaro & Giupponi, 2014).  

Famous metrics, which are based on the simple citation count, include the journal impact 

factor (JIF) which was proposed by Garfield (1972). The 2-year JIF of a journal in a given 

year, for instance, is the ratio of citations received by the journal in the year to the number 

of the citable items that were published in the journal in the preceding two years. For 

example, JIF for the year 2018 is the ratio of citations received by a journal in 2018 to the 

number of citable items that were published in the journal in years 2016 and 2017.  

The EigenFactor (EF) score of the Thomson Reuters’ Journal Citation Report (JCR) is a 

measure of the influence of a journal in relation to other journals in a field. EF is calculated 

as the citation number a journal has received from other journals (without counting self-
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citations) within a five-year window prior to a given year, divided by the number of citable 

articles that were published in the journal. The EF is identitical to the five-year JIF, except 

that citations are weighted while calculating the EF, where highly cited journals are 

weighted more. The Article influence score (AIS) is the normalized value of the EF by the 

total number of articles that have been published in a journal for five years (Bergstrom et 

al., 2008). H-index (Hirsch, 2005) and its variants like h2-index (Kosmulski, 2006), w-

index (Wu, 2008), R and AR-indices (Jin, Liang, Rousseau, and Egghe, 2007) and g-index 

(Egghe, 2006) are metrics for ranking authors based on the citation numbers.  

P-rank (Yan and Ding, 2010) is a citation count-based metric for measuring the prestige of 

articles, journals or authors where the citations received by an author, journal or article is 

weighted based on the number of citations received by the citation source. Therefore, 

citations from more cited journals, authors, or articles are allocated higher weights than 

those from less cited journals, authors or articles. The citation half-life is a metric for 

measuring the rate of obsolescence of journal articles (Burton and Kebler, 1960). The 

PageRank metric of the Google search engine, which is a weighted citation count-based 

metric, is used for ranking resources on the web, where more cited or more in-linked web 

pages or web articles are more weighted than less cited or less in-linked articles. Other 

popular search engines such as Microsoft Academic Search and CiteSeerX have also 

adopted citation count-based ranking systems for retrieval of scholarly articles (Wan and 

Liu, 2014).  

Citation analysis, which is central to bibliometrics research, has many advantages over 

other research evaluation methods like peer review. First, datasets for bibliometrics 
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research are easily obtainable where data is captured for a vast array of disciplines, huge 

samples (possibly almost exhaustible) and over long periods (possibly since the inception 

of science). This makes the bibliometric research more objective, less biased and 

reproducible (Asubiaro, 2018; Bornmann & Leydesdorff, 2014; Katz & Martin, 1997). 

Second, studies have shown that bibliometric indicators correlate well with other research 

evaluation metrics such as the number of external funding and scientific prizes won by 

researchers (Bornmann & Leydesdorff, 2014) and journals’ ranking by experts’ opinion 

(Sellers et al., 2004).  

Thirdly, bibliometrics is concerned with the crème-de-la-creme of scientific work; 

publications in journals, conference proceedings and books are assumed to be research 

outputs that matter in the scientific community and unpublished results are deemed 

unimportant (Bornmann & Leydesdorff, 2014). Fourth, citation data is considered less 

biased because they are scientific artefacts which are produced by authors and are organized 

in bibliographic databases by independent bodies or computer algorithms. Authors, who 

are the citation data producers, are mostly not part of the bibliometric research processes, 

unlike producers of data for other research methods like surveys. Furthermore, the process 

of producing citation is embedded in a system that is largely reputable; citers “express their 

recognition and the influence of others’ work” (Bornmann & Leydesdorff, 2014, p. 1228). 

Lastly, bibliometrics is a developed field with many standardized metrics, computer 

software, theories and methods (Asubiaro, 2018; Katz & Martin, 1997). Over the years, 

bibliometrics research has also applied methods and tools from fields like NLP, machine 

learning, content analysis and data science in a bid to produce more robust metrics.  
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Critics of the use of citation for research evaluation have identified some downsides. The 

downsides identified are in twofold: unethical authorship and fraudulent accumulation of 

citations (Bennett & Taylor, 2003; Teixeira da Silva & Dobránszki, 2016). Unethical 

authorship attribution includes gift, honorary, unjustified and guest authorship, which refers 

to the “inclusion of an individual in the by‐line who does not meet authorship criteria” 

(Bennett & Taylor, 2003, p. 266). These can be in the form of the inclusion of the name of 

influential or senior academics as co-authors, with or without their knowledge or request. 

On the other hand, ghost authorship refers to “the failure to name an individual as an author 

when they have contributed substantially to the research or writing of the article” (Bennett 

& Taylor, 2003, p. 266).  

Fraudulent accumulation of citation is achieved by practices such as “back-scratching” 

citations that occur among scholars that form “citation clubs”, a cycle of academics that 

cite themselves (Corbyn, 2008). Coercive citation, which is another citation malpractice, 

refers to subtle forceful means of making authors cite articles that may not necessarily 

improve their paper. Coercive citations are requested by some journal publishers or editors 

that ask authors to cite papers that are published in their journals as a pre-condition for 

manuscript acceptance (Fong & Wilhite, 2017; Wilhite & Fong, 2012).  

Similarly, some crucial forms of research participation and engagements cannot be 

published, acknowledged in scientific publications, or rewarded with authorship. These 

engagements and participations include “casual interactions between researchers during 

which breakthrough ideas about a research work are mentioned”(Asubiaro, 2018, p. 29), or 
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research ideas generated from discussions in a classroom classes (Glänzel & Schubert, 

2004; Katz & Martin, 1997).  

Furthermore, citation numbers are largely dependent on certain social, political, and 

technological factors. First, language plays an essential role in who gets cited by a potential 

research audience. Most studies in English are more cited because the audience for research 

written in English is larger than the audience for the studies in other languages. Second, 

some journals are not produced electronically and are not available to users on the internet; 

regardless of the quality or importance of the articles published in such journals, they are 

only likely to be cited locally. Third, the technological influence of document ranking 

affects citation. For instance, articles with accurate descriptions (metadata) are likely to be 

ranked higher, though the content may not be accurate or of quality. If such articles appear 

more in the first pages of search results,  they are likely going to be read, utilized and cited 

more. Another technological influence is the ranking algorithm of popular search engines 

such as Google, which is influenced by the number of in-links to web pages (of scholarly 

articles alike), and it is designed to rank highly cited papers that are authored by more 

influential authors higher, thereby creating a loop. Less cited documents, authored by less 

influential authors, of more relevance and importance to a query may not be ranked high 

by the search engine.  

Also, the simple citation count-based evaluation method assumes that all citations are equal. 

This does not reflect real-life research evaluation task, which is a complex and multi-

dimensional problem. Several studies on citation classification and weighting have shown 

that some citations contribute more to the citing articles than others. These studies have 
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classified or weighted citations based on functions, impact, importance, utility, location, 

frequency and sentiment. (Strotmann and Zhao, 2014; Wan and Liu, 2014; Zhao and 

Strotmann, 2016).  

Citation context analysis incorporates the examination of citation contexts into citation 

analysis, and has been found useful in addressing some shortcomings of the traditional 

citation analysis and has profoundly influenced citation analysis field (Ding et al., 2014; 

Jeong et al., 2014). There are other citation weighting methods that do not require the 

inclusion of citation contexts, and these methods are mostly based on citation counts and 

theories from computer science and mathematics. For instance, the PageRank (Page et al., 

1999) algorithm in Computer Science, which was proposed for ranking web pages, has 

been applied to citation-count based weighting (Fiala, 2012; Fiala et al., 2015; Fiala & 

Tutoky, 2017). 

 Citation Weighting Paradigm 

Citation weighting, a paradigm shift from the traditional simple citation counting method, 

is based on the principle that citations are not of equal importance. Citation is either 

weighted for its contribution or impact in the content of the citing document relative to 

other citations or its antecedents, such as the influence of the journal from which the cited 

paper was published, the influence (citation numbers) of its author or its metadata such as 

the publication’s age when cited. In the first instance, citation weighting refers to allocating 

a numerical value to the contribution(s) of a cited scientific paper in relation to other 

citations in the citing scientific paper in a fair and representative manner. Citation weighting 

based on the contribution of cited scientific papers is usually a complex and multi-



9 

 

 

dimensional problem. Citation weighting systems, therefore, have considered the inclusion 

of multiple dimensions of analysis to achieve more robust and objective systems. For 

example, citation weighting based on the dimension of function alone (without considering 

the citation sentiment, for instance), may not capture the effect of the negative, positive or 

neutral sentiments of the citations. Citation function, sentiment, frequency and location are 

some of the popular dimensions of analysis for weighting the contribution of citations. The 

inclusion of these dimensions or methods, and more, for citation weighting, will potentially 

present a more robust system.  

Citation weighting methods that do not harness citation contexts are sometimes based on 

the source of citations' antecedents: that is, weighting is obtained by quantifying the relative 

fame or influence of the source (journal) or author of the cited scientific paper. It is assumed 

that a citation's contribution is directly proportional to the importance of its source (journal 

in which it was published) or author. Citation weighting in this category allocates more 

weight to articles from influential or famous journals or authors. Another method that is 

used for allocating weight is by considering the metadata of the cited article, such as its age 

at the time of citing, where it is assumed that more recent articles should be allocated more 

weights than older articles because current articles are perceived to be more important than 

older ones.  

A more nuanced method for allocating weights to citations is through citation contexts or 

citation content analysis. Both citation context and citation content are used 

interchangeably in this thesis as they refer to the same concept. Citation context is usually 

the text that surrounds the in-text citation “used to refer to other scientific works” (Doslu 
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& Bingol, 2016, p. 654) and represents the context in which a citation is referenced.  

Citation context also refers to the span of texts that represent the contribution of the cited 

publication in the citing publication (Doslu & Bingol, 2016). Citation context is usually 

part of or the entire sentence in which the in-text citation to the cited article in the citing 

article is located. The sentence in which the in-text citation is located is called the citation 

sentence. In addition to the citation sentence, citation context can also include a number of 

sentences before and/or after the citation sentence (Ding et al., 2014, p. 1821). Citation 

context identification, a non-trivial scientific assignment, is an endeavour to identify 

citation contexts.  

Unlike the citation count, which allocates a count of one to the number of citations when a 

citing publication cites a paper, there could be more than one citation context of the cited 

publication in the citing publication. Each in-text citation of the cited publication is referred 

to as a citation mention. Therefore, the number of citation mentions of a cited publication 

represents the number of citation contexts of the cited publication.  

 Citation context analysis is concerned with the analysis of the citation context for 

allocating citation weights or classifying citations. Citation content analysis is a generic 

term, and it includes citation context analysis as it encompasses the analysis of some parts 

or the entire full text of the cited publication and/or citing publications for citation 

weighting or classification. Citation context analysis profer some solutions to a number of 

the shortcomings of ordinary citation count. For instance, while ordinary citation counts 

may not detect coercive citations, research has shown that citation weighting methods could 

be used for detecting coercive citations. Wilhite & Fong, (2012, p. 542) described coercive 
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self-citation from journal editors to authors that submit manuscripts for peer-review as 

requests that (i) give no indication that a submitted manuscript is lacking in attribution; (ii) 

“make no suggestion as to specific articles, authors, or a body of work requiring review; 

and (iii) only guide authors to add citations from the editor’s journal”. Studies such as Yu, 

Yu, and Wang (2014), which focused on automatically detecting coercive citation, provide 

a shred of evidence that with citation context analysis, coercive citations could be detected 

automatically. 

According to the literature, one of the most important methods in citation weighting is the 

citation mention analysis which allocates weights to citations based on the number of times 

a cited document is mentioned in a citing document (Zhu, Turney, Lemire, and Vellino, 

2015; Boyack, van Eck, Colavizza, and Waltman, 2018; Sánchez-Gil, Gorraiz, and Melero-

Fuentes, 2018). Studies have shown that the number of times a cited publication is 

mentioned is related to its contribution or importance in the citing document; about 75% of 

citations are mentioned once and perfunctorily (Stremersch et al., 2015; Zhao & Strotmann, 

2014a). While the literature has shown citation frequency as a crucial syntactic feature for 

citation weighting, it is based on ordinary in-text citation count and ignores the citation 

context, which could be analyzed for more nuanced weights. 

 Residual Citations on Citation Path 

One of the developments in citation analysis is the cascading citation research (Dervos & 

Kalkanis, 2005) that proposes that scientific publications assert more influence beyond the 

direct citations they get. Therefore, scientific publications should receive credit as residual 

or indirect citations from papers citing their citations. The justification for this idea is that 
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scientific publications are an embodiment of contributions from different publications they 

cited. Hence, papers that cite the scientific publications are benefiting from the 

contributions from the scientific publications that were cited. The documents that cite the 

citations of a scientific publication are its second-generation citations, and indirect citations 

should be accrued from the second-generation (and subsequently nth generation) citations 

(Dervos & Kalkanis, 2005).   

Looking at scientific publications from the perspective of a network, in practice, all 

publications are networked. On research networks, two publications are either connected 

by citation, co-citation or bibliographic coupling, the three defining factors for relatedness. 

Relatedness by citation refers to the relationship between two publications that is 

established by the citation, which suggest a level of relatedness between the citing and cited 

documents. Relatedness by co-citation refers to two documents that are cited together in 

the same documents and are therefore likely related. Lastly, bibliographic coupling occurs 

when two publications share a proportion of references, this is also a determinant of their 

level of relationship. The residual citation concept introduces a type of relatedness that is 

beyond these three traditional metrics, which is formed on citation paths. Citation paths 

refers to generations of citations from a previously cited publication. For instance, if there 

are three publications A, B, and C, where B cited A, and C cited B, there is a citation path 

from A to C while A-B-C is a citation chain. The three existing forms of relatedness on 

citation networks are only defined between A-B and B-C, with no account for exploring 

relationship between A and C beyond the purview of bibliographic coupling and co-

citation. 
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The residual citation idea brings into play the exploration of the A-C (and beyond) 

relatedness. While Dervos and Kalkanis (2005) and Fragkiadaki, Evangelidis, Samaras, and 

Dervos (2009) pioneered the residual citation allocation idea, the proposed implementation 

based on the cascading citation system that recommended allocating some fractional value 

(1/2n-1) for nth generation citations comes short of exploring citation context information 

for weighting. With the citation context analysis using computational methods, it is possible 

to quantify the level of relatedness between publications A-C based on the contribution of 

A in C, which could be antithetical to the cascading citation idea that allocates an equal 

value of citation residual to every indirect citation. While there is a robust literature on 

relatedness that is based on citation, co-citation and bibliographic coupling, none has 

explored the possibility of establishing the pattern of relatedness between articles on 

citation path that may not have been directly connected by citation.   

 Statement of the Research Problem 

One of the objectives of citation weighting is to be fair in quantifying the contribution of a 

cited scientific paper in the citing scientific paper. While citation frequency analysis for 

citation weighting is simple, the fact that it is based on ordinary citation context count and 

texts of citation context is not considered in its computation suggests more nuanced 

weighting methods, that incorporate citation contexts analysis, could be created. Citation 

frequency citation weighting assumes that more frequently mentioned citations contribute 

more ideas and should receive more weights. There is a possibility that in some cases, the 

number of citation contexts may not accurately represent the contribution of the cited 

publications in the citing publication. Two cited articles may have the same number of 
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citation mentions, but one may contain more unique contributions while the other only 

contains repeated contributions.  

A citation context is a contribution of a cited article in the citing article. Therefore, a cited 

article that is referenced multiple times in a citing article is assumed to have contributed 

the number of times it is mentioned in the citing article, according to the citation mention 

weighting method. However, this thesis probes further by examining the possibility of 

allocating weights based on the uniqueness of contributions of the cited article. Thus, for 

the number of mentions of the cited article (marked by in-text citations), unique 

contributions are given more weights than repeated ones. There is a possibility that a 

citation that is mentioned multiple times in the cited article is only a repetition of citation 

contexts. Having a metric that is weighted based is on the uniqueness citation context is 

important because it gives a insight into the quality of contribution, as opposed to the 

quantity which is communicated through the citation mention analysis.  This proposed 

method weights the contributions of the cited article in the citing articles better because the 

citation mention weighting method merely counted the number of contribution markers- 

the number of citation mentions, while our method places premium on the uniqueness of 

the contributions.  

In practice, the idea of allocating residual citations to publications is fair. There are 

behavioural citation patterns that justify the allocation of residual citations to publications. 

For instance, some academics reference ideas that are part of in-text citations in scientific 

publication without giving credit to the original source; they only cite the paper in which 

they found the in-text citation context without citing the original paper. Similarly, the 
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richness of a paper’s contribution may be reflected in its nth generation citation. The state-

of-the-art in allocating residual citation is based on cascading citation system that suggests 

all articles should receive equal residual citations from all their nth generation citations.  

Though the cascading citation system provides a mechanism for accruing residual credits 

to scientific publications, this thesis argues that the cascading citation system is partly based 

on the conventional citation count idea, i.e., citations are equally weighed in each 

generation of citation. It is possible the cascading citation system is under-allocating or 

over-allocating residual citation to generations of citations based on its equal allocation of 

residual citations.  

 Research Objectives   

The broad aim of this doctoral thesis is to propose a system for weighting citation 

based on the semantic similarity of the citation contexts and to explore the pattern of 

residual citations between sampled scientific publications and their five generations of 

citations. The specific objectives of the study are to: 

1. create a system for weighting citations based on the semantic similarity of the 

citation contexts, and 

2. investigate the knowledge flow pattern from a document to its second, third, fourth 

and-fifth generation citations. 
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 Research Questions 

The following research questions are intended to guide this study: 

1. What is the relationship between the proposed semantic similarity-based citation 

context weight and existing metrics? 

2. How different is the proposed semantic similarity-based residual citation weights 

from the cascading citation weights? 

3. What differences exist in the residual citations among the generations of citation? 

4. What is the residual citation pattern from cited documents and their nth generation 

citations?  

 Hypotheses 

Hypothesis 10: There is no correlation between the number of citations and the proposed 

citation context similarity-based citation weight. 

Hypothesis 20: There is no correlation between the number of citation mentions and the 

proposed citation context similarity-based citation weight. 

Hypothesis 30: There is no correlation between the number of multiple citation mentions 

and the proposed citation context similarity-based citation weight 

Hypothesis 40: There is no correlation between the sum of multiple citation mentions and 

the proposed citation context similarity-based citation weight 



17 

 

 

Hypothesis 50: There is no correlation between the number of positive sentiments and the 

proposed citation context similarity-based citation weight 

Hypothesis 60: The average residual citation score per paper is the same for all the 

generations of citation. 

Hypothesis 70: There is no significant difference between the cascading citation weight of 

½ and the average residual citation score per second-generation article. 

Hypothesis 80: There is no significant difference between the cascading citation weight of 

¼ and the average residual citation score per third-generation article. 

Hypothesis 90: There is no significant difference between the cascading citation weight of 

1/8 and the average residual citation score per fourth-generation article. 

Hypothesis 100: There is no significant difference between the cascading citation weight 

of 1/16 and the average residual citation score per fifth-generation article. 

 Significance of the Study 

One of the objectives of evaluative bibliometrics in the Library and Information Science 

sub-field of bibliometics, is to fairly and appropriately quantify the attribution of scientific 

contributions and knowledge flow from previously written (cited) papers to the citing 

scientific paper. In more traditional bibliometric methods, such as citation analysis, and in 

more recent citation weighting methods like citation mention analysis, metrics are 

computed without taking into account citation contribution. This research proposes metrics 

that incorporate citation context information into citation mention analysis. While there are 
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many existing metrics for evaluating research, one of the potential benefits of this thesis is 

the proposed metrics which would potentially make attribution more fair because they are 

based on the contribution of the cited publication in citing publication. New metrics 

generate new discussions and studies; these metrics have the potential of being studied 

extensively for improvements, and complementing existing ones in evaluating research. 

Secondly, much has been written in literature on contribution of citations to the citing 

documents. However, there is no information on the contributions of publications to 

indirect citations on their citation paths, though the evidence of certain citation habits 

suggest that studying contributions to indirect citation is an important aspect of evaluative 

bibliometrics. The results from this thesis will provide the information about the 

possibilities of contribution to generations of citations and how this type of contribution 

changes over time. This will potentially open a new discussion in bibliometrics, 

Information Science field and in academia about the phenomenon of residual citation 

allocation through the weighting of contribution of a publication.  

Thirdly, citation context analysis is a budding research area with developments on the 

automatic identification of citation contexts. State-of-the art large scale studies use citation 

contexts that comprise a pre-specified window of text around citation markers, while 

studies have shown that a specified window of texts does not accurately represent citation 

because it can either over-represent or under-represents the citation contexts. These studies 

rely on this method because there are no clear-cut computational models or algorithms for 

accurately identifying citation contexts. One of the potential benefits of this study is the 
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datasets which will be made available publicly for research. These datasets can be used for 

computational modelling, and other citation context studies. 

 Definition of Terms 

1. Unweighted Citation: Citation counts in which every citation in the reference list is 

allocated the weight of one regardless of the contribution of the citation to the citing 

paper or the importance of the antecedent of its source. 

2. Weighted Citation: Citation count system in which citations are not allocated the 

equal weights. Citations are either allocated weights based on their contribution or 

the importance of antecedents of its source. 

3. Citation graph: A citation graph is “a representation of the relationships that exist 

between research articles based on the references that each article provides.” On a 

citation graph, articles are the nodes (Fragkiadaki, Evangelidis, Samaras, and 

Dervos, 2010)  

4. Citation path: Citation path refers to the linear relationship between two articles that 

are related by citation, but not directly connected by citation. For instance, in Figure 

1, A-B-I is a citation path, A-C-E-H is another path. Citation paths are normally 

acyclic. 
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Figure 1.1: Citation network sample 

5. Nth-generation citation: Nth Generation citation refers to the least number of nodes 

between a cited article and a given article that exist on its citation path. For instance, 

between A and B, there is only one. Therefore A receives 1st generation citation 

from B. First-generation citations are referred to as direct citations while subsequent 

generations are indirect citations.  

6. Residual Citation: This is the credit attribution received by a publication from its 

second-generation citations to its nth generation citations. 

7. Knowledge Flow: Knowledge flow is assumed to have occurred from a publication 

to its nth generation citation when the citation context of its n-1th generation in the 

nth generation citation is semantically similar to the citation context of the 

publication in its direct citation. 
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 Outline of the Thesis 

This thesis consists of six chapters. The first chapter provides a background to the subject 

of citation, its flaws and importance to scholarship. An introduction to the citation 

weighting paradigm is also discussed in detail, preparing readers for the depth of the report. 

Chapter one also contains a statement of research problems, an explanation of the research 

gap this thesis work fills. The research objectives, research questions and hypotheses are 

also presented in Chapter One. And lastly the significance of this thesis is presented in the 

first chapter. 

Chapter two is the literature review chapter. Literature on citation context analysis, citation 

context classification and citation context weighting was reviewed in the first three sub-

sections of chapter two. Literature on the existing citation weighting frameworks was 

explored in the fourth sub-section. Proposed frameworks for direct and indirect citation 

weighting were also presented in the second chapter. Lastly, the contribution of this study 

is presented. 

The third chapter presents the methodology of this study. The first sub-section in the 

methodology chapter presents the data sampling method for the direct and indirect citation 

analysis parts of this study. The second sub-section of the third chapter contains text 

extracting data-citation contexts- from the full texts of the sampled scientific publications. 

The data pre-processing sub-section includes the text cleaning and preprocessing steps that 

were taken. Steps taken to annotate a sample of the direct citation weighting dataset by 

human experts is presented in the fourth sub-section of the methodology chapter. An 
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algorithm for obtaining the semantic similarity between citation contexts, based on the 

cosine value between their vectors, was presented in the third chapter's fifth sub-section. 

The three implementations of the proposed methods for weighting direct citation contexts 

were presented in the methodology chapter's sixth sub-section. The strategy for indirect 

citation context weighting and analysis was presented in the methodology chapter's last 

sub-section. 

The results of the analysis are presented in the fourth chapter. The results are presented in 

four major sections of the fourth chapter. The result of the human annotation of a portion 

of the direct citation context dataset is presented in the first sub-section of chapter four. The 

second sub-section contains the description of the direct citation datasets. The analyses of 

the direct and indirect citation contexts are presented in the third and fourth sub-sections of 

the fourth chapter, respectively. 

Chapter five contains the discussion of the salient results from the analysis. The results 

were discussed under the four research questions guiding this study. Therefore, the 

discussion section has one sub-section for the direct citation weighting aspect of this thesis. 

The last three sub-sections are discussions on the results of the residual citations aspect this 

research work. 

Chapter six, the last chapter, contains the conclusion and recommendation. The sixth 

chapter is divided into four major parts. The first part of the sixth chapter contains a 

summary of findings from the study. The second part contains the conclusion to the doctoral 

work. The third part contains the recommendations for improvement and suggestions for 
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further studies on the subject of direct and indirect citation weighting. The last sub-section 

of chapter six presents the limitations of this thesis. 
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Chapter 2 

2 Literature Review 

The literature review chapter is divided into eight sections. The first section reviews citation 

classification literature. The second section reviews the literature on citations weighing 

schemes and frameworks. The third and fourth sections focus on citation weighting and 

citation weighting frameworks, respectively. The fifth section presents an overview of 

citation context in citation weighting, while the cascading citation system is reviewed in 

the sixth section. The last two sections present the proposed frameworks for direct and 

residual citation weighting. 

 Citation Context Analysis 

Citation context is the span of texts that surround the citation marker; used for referring to 

cited publications, they can be used to “identify the main contributions of a scientific 

publication” (Doslu & Bingol, 2016, p. 654). The definition of a citation context was 

described as the “citation’s context within the full text of the scientific paper” that cited it, 

rather than the simple citation count (Ding et al., 2014, p. 1821). A citation context in the 

citing article is incomplete without considering all the mentions of the citation in the full 

text of the article. Citation context, therefore, could be a sentence or phrase. In some cases, 

a citation context can span sentences or a paragraph. To identify the citation context, studies 

have suggesting various windows of text to capture the extent of the contribution of the 

cited publication in the citing publications. In the review of the citation context window 

size by Iqbal et al., (2021), it was revealed that range of one to four sentence-window and 
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50 to 100 word-window have been recommended in the previous studies for citation context 

identification. 

Citation context analysis studies have resulted in two classes of research-citation context 

weighting and classification. Weights are finitely or infinitely continuous quantitative 

values, while classes are finite categories. In some instances, weighted citations are 

converted to categories and vice-versa. For instance, citation context sentiment analysis 

have resulted in citation polarity or citation sentiments. While citation polarity is a 

continuous variable with values between +1 and -1, citation sentiment is the classification 

of citation polarity where values that are greater than zero are classified as positive 

sentiment citations, polarities that are less than zero are classified as negative sentiment 

citation and polarities that are equal to zero are classified as neutral sentiment citations.  

Syntactic elements that describe a citation are consolidated in the structure of scientific 

communication that mostly follows specific patterns. For instance, scientific 

communications are mostly presented in the introductory, methodology, discussion, 

recommendation and conclusion sections. Other sections are the article title, abstract, 

keywords, and bibliography. Considering these syntactic elements in processing citation 

data has provided new insights into citation classification research. Theoretical studies have 

propounded that the structure of scientific communications is useful in classifying citation 

contexts. Therefore, some aspects of citation context analysis are dedicated to analyzing 

citation context location for allocating weights and categories. 

Studies in the 1970s and 1980s, such as Herlach (1976), Peritz (1983), and Voos and 

Dagaev, (1976) considered citation location and frequency in citation classification. 
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Recently, other features apart from the citation location and frequency, such as citation 

context lengths, citation intent, author overlap, number of direct citations, number of 

indirect citations, and PageRank of the cited article (Pride & Knoth, 2017; Valenzuela et 

al., 2015a), have been considered for citation classification in the literature.  While the older 

studies were either done manually (Voos & Dagaev, 1976) or based on supervised machine 

learning methods (Teufel et al., 2006; Zhu et al., 2015), later ones such as  Nazir et al., 

(2020), and Wang et al., (2020) used unsupervised machine learning methods such as neural 

networks, multiple regression analysis, support vector machine, random forest, and KNN 

for citation context classification. 

Later works have studied syntactic features embedded in the linguistic structures of 

scientific communication. The theoretical background for the studies by Di Marco et al. 

(2006) and Mercer et al. (2004) was based on the idea that hedging (expressions that make 

statements more  fuzzy) cues that are most familiar in citation contexts could be used for 

citation purpose classification. Using a catalogue of regular expressions of hedging cues, 

categories of citation contexts were identified, confirming that stylistic and rhetorical 

structure in scientific communication is useful in citation context classification. Citation 

function classification (Cohan et al., 2019; Teufel et al., 2006), citation intent classification 

(Dong & Schafer, 2011), citation importance classification (Qayyum & Afzal, 2019) were 

computed using other patterns such as subject, quantity, frequency, tense, example, suggest, 

hedge, idea, basis, comparison and result cues. 

Metadata have also been used to investigate the relationship between citing and cited 

documents. For instance, Bonzi (1982) investigated the features of scientific publications 
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that can determine relatedness between the cited and citing papers in LIS. Metadata such 

as article type, citation source, date of publication, sex of author, article type, article length, 

number of citations, many mentions of articles, placement of citations in articles, number 

of citation footnotes and journal type were features that could determine the relationship 

between the scientific articles. Only the journal type, article type and multiple mentions of 

citations were statistically significant in the analysis.  

Semantic citation context analysis is usually carried out between some portions of the full 

texts of the cited and citing articles on the premise that the degree of similarity between the 

cited and citing document determines the cited article's contribution to the citing article. 

Semantic similarity between portions of the citing and cited articles’ full text such as title, 

abstract, complete full text, introduction sections, and conclusion sections in citation 

context analysis studies are essential. Zhu et al. (2015) used the semantic similarity between 

the title of a cited paper and the title, introduction, conclusion, and abstract of the citing 

article in determining the contribution of the cited article in the citing article. Pride and 

Knoth (2017) and Hassan et al. (2017) concluded in their studies that the best feature for 

citation classification is the similarity between the abstract of the citing and the cited paper. 

Semantometrics, a citation influence metric, in Knoth and Herrmannova (2014) was based 

on the premise that a citation context’s influence is proportional to the semantic distance 

between the cited article and its citing article.  
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 Citation Classification 

Basic quantitative or bibliometric features such as citation numbers, age, number of 

authors, author rank and citation mention count remain the most popular input for citation 

classification studies. From these basic bibliometric features, there are natural citation 

classes such as self-citation and external citations. Similarly, the bibliometric features are 

combined with qualitative features from the citation contexts in more complex citation 

classification studies. Other bibliometric metrics, such as the average citation score, the 

JIF, AIS, EF h-index and PageRank, which are derived from citation numbers, are mostly 

used in the literature for creating weighted metrics like the Field-Weighted Citation Impact 

(FWCI) (Colledge, 2014), co-author weight coefficients (Zhang, 2009), weighted citation 

(Yan & Ding, 2010). While citation weights are mostly represented as continuous data, 

citation classes are ordinal or categorical, though citation classifications are sometimes 

represented as weights. Qualitative features of a citation for classification are generated 

from the content or context in which citation appears in the citing text and sometimes in 

relation to the cited paper.  

 

 Citation Importance Classification 

Studies have classified citation contexts based on their impact, contribution, importance or 

influence in the citing article. The essence of this type of classification is not to classify 

based on function or sentiment; rather, the distinction in the classes are meant to reflect the 

contribution of the citations. However, some of the classes in citation function studies 
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reflect differentials in citation context contributions because the objective of such studies 

is not to illuminate the contribution of the citations; not all the classifications reflect 

differences in impact. 

Different citation function classification schemes were proposed in the literature. The 

binary citation functions are the most popular, and classification schemes are based on 

importance or influence. Maričić, Spaventi, Pavičić, & Pifat‐Mrzljak, (1998) adopted a 

binary citation function scheme; that is, cursory and meaningful citation functions. The 

cursory and meaningful citations are named differently in other studies with more citation 

function classes. According to Maričić, Spaventi, Pavičić, & Pifat-Mrzljak (1998) the 

cursory citations were classified as non-essential in Cano (1989), perfunctory in Moravcsik 

and Murugesan (1975) and peripheral in McCain and Turner (1989). The meaningful 

citations were classified as essential in Cano (1989), organic in Moravcsik and Murugesan 

(1975) and central in McCain and Turner (1989). One of the important results of Maričić, 

Spaventi, Pavičić, and Pifat-Mrzljak (1998) is that citations in the Introduction section of 

scientific publications are perfunctory, while citations in the methodology, discussion, and 

results sections are important. 

Other studies which have developed binary classification schemes for citation function are 

Hassan et al. (2018), Valenzuela et al. (2015) and Hassan et al. (2017). While Hassan et al. 

(2018), and Qayyum and Afzal (2019) classified citation functions as ‘important’ and ‘non-

important’, Valenzuela et al. (2015), and  Hassan et al. (2017) created the ‘important’ vs 

the ‘incidental’ classes, where the incidental classes included the ‘related work’ and 
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‘comparison’ sub-classes and the ‘important’ classes included the ‘using the work’ and 

‘extending the work’ sub-classes. 

One feature that has been used to determine the importance of a citation is the location of 

the reference in the citing paper. Citation location analysis in citation classification assumes 

that citations in some sections of scientific write-ups contribute more than citations in most 

sections of a scientific paper. Paper sections that contain the fewest citations are the results 

section, but these sections will likely contain the most important citations. Herlach (1976) 

and Voos and Dagaev (1976) are two of the earliest studies that considered citation location 

analysis in finding out the contributions of cited documents in citing documents. These 

studies, though manually done and using a relatively small sample size, submitted that the 

fewest citations were located in the results section.  

Citation locations have been mapped to citation impact. Maričić, Spaventi, Pavičić, & Pifat-

Mrzljak, (1998) worked on identifying cursory and essential citation in the different 

sections of scientific publications and reported that the introductory section contains more 

cursory citations while other sections like the results, discussion and methodology contain 

fewer but more important citations. In this case, studies such as Hassan, Akram, and 

Haddawy, (2017), Pride and Knoth, (2017), An, Kim, Kan, Chandrasekaran, and Song, 

(2017), and Ding et al., (2013) showed that citations in the introductory and 

results/discussion sections are perfunctory or unimportant while in-text citations that were 

in the abstract or methodology are more important. Some studies like An, Kim, Kan, 

Chandrasekaran, and Song, (2017),  and Ding et al. (2013) have provided descriptive 

analyses of the distribution of in-text citations in the full text of articles based on their 
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locations (paper sections), and these studies have shown that citations are unequally 

distributed in the body of the texts of articles. 

 Citation Function Classification 

Citation function studies investigate the “whys” a paper was cited. In some articles in the 

literature, citation function is also referred to as citation motivation, intention (HernáNdez-

Alvarez & Gomez, 2016) or utility (Stremersch et al., 2015). In citation function 

classification studies, citations are grouped by classes based on the motivation, reason, or 

use of citations. The task in citation function study is to unravel the reason or intention of 

the citing author (Teufel et al., 2006) or how the cited work was used by the citing author 

(Tuarob et al., 2020). Most of the citation function classification schemes do not provide 

classes based on the importance or the impact of the papers that are cited. Rather, the classes 

give an idea of the different motivations for citing; a behavioural analysis. According to 

Moravcsik & Murugesan, (1975, p. 88), the distinctions in the classes are “not meant to be 

a value judgement, and are not to be taken as synonymous with judging the importance of 

the paper referred to.” For instance, of the citation functions classes use/application, 

affirmation/support, review, negation, and perfunctory citation functions (Baumgartner & 

Pieters, 2003), it could be argued that perfunctory or negation citation function classes are 

less important than others. However, these classes were created to capture the use of the 

references in the articles that cited them. Negation citation function could arise from a 

citer’s challenge of the ideas in a cited article, which could result in a study based on the 

cited article. In this case, several mentions of the cited articles could occur in the citing 
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article, mostly negating the cited article. The negated citation may be more influential than 

citations in other citation functions classes. 

Citation function studies use surveys and content analysis of publications as the two 

primary data collection methods. Few citation function classification studies collected 

survey data from researchers and the focus was on citation motivation. Survey data 

collection method is limited because of small sample sizes. Sample sizes in content analysis 

of publications are much larger due to improved computational methods for data science. 

For instance, Maričić, Spaventi, Pavičić, and Pifat‐Mrzljak (1998), one of the oldest studies 

on citation function used about 300 publications for their study, while McKeown et al., 

(2016), performed a large-scale experiment with 3.8 million full-texts. 

Two classes of citation functions are the least in the literature. Meyers (2013) suggested 

two classes of citation functions: contrasting and corroborating citation functions. The two 

citation function classes were based on how the cited and citing documents compare on the 

ideas or approaches. While the contrasting citation function category indicates a situation 

where the citing article may describe approaches or opinions different from the cited 

article’s, on the other hand, corroborating citation function indicates a situation where both 

citing and cited articles follow the same approach. Tuarob et al. (2020) proposed a binary 

citation function scheme for algorithm citations in computer science publication, with 

utilize and nonutilize categories. The categories were based on the use or non-use of an 

algorithm from the cited publications. Utilize citation category was further sub-divied into 

use, and extend, while the nonutilized category was sub-divided into mention and not an 

algorithmic citation context.  
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Cohan et al. (2019) classified citation intent into three classes: background citation, method 

citation and result extension citation. Some three-class citation functions have been mapped 

to polarity (positive, negative, neutral) (HernáNdez-Alvarez & Gomez, 2016). For 

example, Li et al. (2013)’s citation function classification scheme contained three 

categories (positive, neutral, and negative), each of the three categories were further divided 

into subcategories. Positive citation function was further divided into based on, 

corroboration, discover, positive, practical, significant, standard, and supply. Neutral 

citation function was further divided into contrast, co-citation and neutral citation function 

classes. Teufel et al. (2006) mapped their 12-category citation function classification into 

three sentiment polarities. Weak (weakness of cited approach) and co-co (author's work is 

stated to be superior to cited work) categories were mapped to negative sentiment polarity. 

PMot (this citation is positive, about approach used, or problem addressed in the cited 

paper), PUse (author uses tools/algorithms/data/definitions), PBas(author uses cited work 

as basis or starting point), PModi (author adapts or modifies tools/algorithms/data), PSim 

(Author's work and cited work are similar), PSup (author's work and cited work are 

compatible/provide support for each other), were mapped to positive sentiment polarity. 

CoCoGM (contrast/comparison in goals or methods(neutral)), CoCoR0 

(contrast/comparison in results (neutral)), CoCoXY (contrast between 2 cited methods), 

Nuet (neutral description of cited work, or not enough textual evidence for prior categories, 

or unlisted citation function) were mapped to neutral sentiment polarity. 

Meng et al. (2017) adopting Dong and Schafer (2011), proposed the following four 

categories of citation functions: background, fundamental idea, technical basis, 
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comparison. Jurgens et al. (2016) created a citation function classification scheme of six 

categories- background, motivation, uses, extension, continuation, comparison or contrast 

and future.  

Using the Information and Science and Technology journal (JASIST) articles, Tabatabaei, 

(2013) categorized citation functions by research impact into five; ‘applied,’ ‘contrastive,’ 

‘supportive,’ ‘reviewed’ and ‘perfunctory.’ The classification by Tabatabaei (2013) has 

some locational annotations, though the citation functions were based on their impact in 

the citing publication. The ‘applied’ citation function included citations that were 

mentioned in the analysis approach, the research model or theoretical framework sections 

of the citing documents. The ‘applied’ citation function also includes citations regarding 

the data, concepts, software/algorithm, criteria specified, or the hypothesis stated in the 

cited paper. ‘Applied’ citation function also includes the citations that are made in 

“Continuation/expansion/modification of previous studies.” ‘Contrastive’ citation function 

can either be “comparative,” “affirmative” or “critical.” ‘Supportive’ citation functions are 

cited as part of the methodology, findings, assumptions, research purpose, data, sample 

size, algorithm and further research suggestions sections.  Zhao, Strotmann and Cappello, 

(2018) adopted the citation functions that were identified by Tabatabaei (2013) for 

categorizing self-citations in JASIST articles and reclassified the ‘reviewed’ and 

‘perfunctory’ citation functions as non-essentials. 

Peritz (1983) developed a more complex classification scheme of eight categories for 

citation motivation for empirical studies in the social sciences. The eight citation 

motivations or functions developed were: ‘setting the stage,’ ‘background,’ 
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‘methodological,’ ‘comparative,’ ‘argumental’/’speculative’/’hypothetical,’ 

‘documentary,’ ‘historical’ and ‘casual.’ Abu-Jbara, Ezra, & Radev, (2013) classified 

citation function or purpose into six categories. The categories include ‘criticizing’ which 

could have ‘positive’ or ‘negative’ polarity, ‘comparison’ which overlaps with the 

‘comparative’ category in the Peritz (1983) classification scheme, and use which refers to 

citations that use methods of the cited work. Other classes are ‘substantiating’, which 

implies that the results or claims of the cited documents are referenced, ‘basis’ when the 

citing paper cites the cited document as a motivation or starting point and ‘neutral’ when 

the citing cannot be categorized under any of the prior classes. 

The most granular citation function classification scheme was proposed by Garzone and 

Mercer, (2000). Thirty-four citation function types in ten categories were proposed (see 

Table 2.1). 

Table 2.1: Citation Function Classification Categories in Garzone & Mercer, (2000) 

 Negational Type Categories 

1 Citing work totally disputes some aspect of cited work. 

2 Citing work partially disputes some aspect of cited work. 

3 Citing work is totally not supported by cited work. 

4 Citing work is partially not supported by cited work. 

5 Citing work disputes priority claims. 

6 Citing work corrects cited work. 

7 Citing work questions cited work. 

 Affirmational Type Categories 

8 Citing work totally conrms cited work. 

9 Citing work partially conrms cited work. 

10 Citing work is totally supported by cited work. 

11 Citing work is partially supported by cited work. 

12 Citing work is illustrated or clarified by cited work. 

 Assumptive Type Citations 

13 Citing work refers to assumed knowledge which is general background. 

14 Citing work refers to assumed knowledge which is specic background 

15 Citing work refers to assumed knowledge in an historical account. 

16 Citing work acknowledges cited work pioneers 
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 Tentative Type Categories 

17 Citing work refers to tentative knowledge. 

 Methodological Type Categories 

18 Use of materials, equipment, or tools. 

19 Use of theoretical equation 

20 Use of methods, procedures, and design to generate results 

21 Use of conditions and precautions to obtain valid results 

22 Use of analysis method on results 

 Interpretational/Developmental Type Categories 

23 Used for interpreting results. 

24 Used for developing new hypothesis or model 

25 Used for extending an existing hypothesis or model. 

 Future Research Type Categories 

26 Used in making suggestions of future research 

 Use of Conceptual Material Type Categories 

27 Use of denition 

28 Use of numerical data. 

 Contrastive Type Categories 

29 Citing work contrasts between the current work and other work. 

30 Citing work contrasts other works with each other. 

 Reader Alert Type Categories 

31 Citing work makes a perfunctory reference to cited work.32. 

32 Citing work points out cited works as bibliographic leads 

33 Citing work identies eponymic concept or term of cited work 

34 Citing work refers to more complete descriptions of data or raw sources of data. 

 

 Citation Sentiment Classification 

Citation sentiment analysis, otherwise called polarity analysis, focuses on analyzing the 

texts around citations to classify citations into positive, neutral or negative sentiments. The 

difference between citation sentiment and polarity is that sentiments classes are finite-

positive, neutral and negative, while polarity is between -1 and +1. Citation sentiment 

classifications are often based on polarity; citation contexts with polarity below zero are 

classified as negative sentiments, citation contexts with polarity above zero are classified 

as positive sentiments, and citation contexts with zero polarity are classified as neutral. 

Earlier studies on citation sentiment analysis have considered the sentence in which a 

citation occurs for citation sentiment analysis (Ritchie et al., 2008). Others studies 
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recommended the n sentence window with the inclusion of n sentences or words before and 

n sentences or words after the citation sentence in sentiment analysis detection (Athar & 

Teufel, 2012b; Ritchie et al., 2008). However, Athar (2011), and Athar and Teufel (2012b) 

contended that the sentence-level sentiment analysis method might not work best for 

citation sentiment because of the complexity of sentiments expressed in scientific writings. 

Hedging, which is practised when expressing negative sentiments in academic writings, is 

an instance of the complexities in citation sentiment analysis. Athar (2011) therefore 

recommended that the n-gram and dependency relations work better for citation sentiment 

analysis. While (Xu et al., 2015) used the decision tree method with a sentence or paragraph 

window boundary because of the complexity of sentiments in the citation, Athar & Teufel, 

(2012a) considered a window of four sentences for citation context boundary marking. 
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Table 2.2: Citation Context Weighting/Classification Studies 

Data Source Content (full-text, or sectional)  
Qualitative Data 

Metadata 
Quantitative Data 

…and 
External Data 

 CCA-Semantic Analysis CCA-Syntactic Analysis Statistical and Mathematical Analysis  

 Semantic 
similarity 

Citation 
sentiment 

Citation 
Function 

Citation 
Location 

Citation 
Frequency 

Syntactic similarity Metadata-
based 

Citation-count  

Metrics        PageRank 
 

JIF MI,  
co-citation 

Types        Recursive Non-
recursive 

 

Mechanism/ 
based on 

Semantic 
relationship 
btw whole 
or part (e.g. 
title, 
abstract, 
keywords, 
intro etc.) of 
the cited 
and citing 
papers. 

Based on 
the polarity 
of citation 
context 
which could 
be positive, 
neutral or 
negative 

The 
contribution 
of the cited 
paper in the 
citing paper 
which could 
be based on 
impact, the 
importance 
Perfunctory,  
 

Location 
of the 
citation 
mention 
in the full-
text 

Number of 
citation 
mentions in 
the full-text 

-Overlap btw 
references 
(bibliographic 
coupling) 
-Overlap btw 
keywords 
 
 

-1/n of no 
reference 
-1/n of no 
authors 
-Publication age 

Final value 
does not 
depend on 
the initial 
value; 
values a 
calculated 
recursively 
in such as 
way that 
highly 
influential 
citations 
are 
allocated 
more 
weights 

The final 
value is 
equivalent 
to the initial 
value 

Using the 
content or 
metadata and 
external data 
(data not 
found as the 
content or 
metadata of 
citing or cited 
the papers) 
such as the 
citation or 
publication 
number of the 
author as in 
MI or number 
of times the 
citing and 
cited papers 
have been co-
cited 
 



39 

 

 

 

 Citation Weighting 

Citation weighting is concerned with allocating quantitative value or weights to citations. 

The task of allocating appropriate weight to citations is multidimensional as many citation 

weighting studies consider one or more dimensions such as size, impact, prestige, 

productivity, use, influence etc. Leydesdorff (2009) defined influence as a “combination of 

impact and productivity,” while Prathap and Nishy (2016) and Prathap, Nishy and Savithri, 

(2016) defined influence as a combination of size (quantity) and impact (quality). 

Popularity was also defined by Yan and Ding, (2010) as the number of citations received 

by an article. Also, citation prestige was defined as the impact (which could be measured 

in impact factor) of the journal in which the citing article was published (Yan et al., 2011; 

Yan & Ding, 2010). In other words, more prestigious journals have higher impact factor 

while less prestigious journals have lower impact factor.  

The review of the literature on citation weighting is classified based on the types of analysis 

studies on citation weighting perform. Ten dimensions of analyses in citation weighing 

were identified during the literature review of citation weighting studies (see Table 2.2). 

Citation weighting studies included the analysis of one or more elements of scientific 

publications in their methodologies. Citation location, for instance, has been included as 

one of or the only elements in citation weighting studies such as Hassan et al. (2018, 2017), 

Maričić, Spaventi, Pavičić, and Pifat-Mrzljak (1998), Pride and Knoth (2017), Strotmann 

and Zhao (2014).  
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 Citation Weighting based on Semantic Similarity 

Semantic similarity analysis is carried out in citation weighting studies to find out the 

relationship between the citing and cited articles. The semantic similarity analysis is 

employed on the premise that a cited document could only contribute to the citing document 

if there is a semantic relationship between the citing document and the cited document and 

that the closer the semantic relationship, the greater the influence of the cited document in 

the citing document. In other words, “the influence of a cited paper on a given citing paper 

(the citer) is proportional to the overlap in the semantic content of the cited paper and the 

citer” (Zhu et al., 2015, p. 412). Different methods and techniques have been employed for 

finding the semantic relationship between cited and citing articles for citation weighting 

purpose, mostly, by analyzing and extracting features and/or indexes from the full-texts, 

parts of the full-texts or metadata of the citing and cited articles.   

Valenzuela, Ha, and Etzioni (2015) carried out a study on identifying important citations. 

One of the tested features is the semantic relationship between the abstract of the cited and 

citing papers using the td-idf cosine similarity scores. It was assumed that “the closer the 

abstracts, the more likely the new work extends the cited paper”. Thus, the extension of a 

cited work was marked as an indicator of importance. However, the study concluded that 

the relationship between the “degree of similarity between the abstracts of the cited and 

citing documnents” and citation influence was weak.  Pride and Knoth, (2017), Hassan, 

Akram, and Haddawy (2017) and Hassan, Safder, Akram, and Kamiran (2018), as follow-

ups to Valenzuela et al. (2015), also focused on the semantic relationship between the 

abstracts of the citing and cited papers by using the td-idf cosine similarity. According to 
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Pride and Knoth, (2017), the results of the study “demonstrate that abstract similarity 

between citing and cited paper is more predictive of citation influence” than previously 

shown because the abstract similarity measure provided the most important feature for 

identifying essential citations. Hassan et al. (2017) likewise concluded that the best 

performing feature for identifying important citations was the similarity between the 

abstract of the citing and the cited paper. These conclusions contradicted the position of 

Valenzuela et al. (2015). 

While other studies on the relatedness between cited and citing documents have considered 

one of the sections of scientific publications, studies such as Zhu et al. (2015) have 

considered several parts of the citing and cited documents. Zhu et al. (2015)  carried out a 

study on automatic citation weighting of the influence or importance of citations in the 

citing work. The study used title, abstract, introduction, conclusion and other core sections 

in the body of scientific articles, apart from the acknowledgements in measuring the 

semantic relationship. It was assumed that the title of a scientific article is a good summary 

or information surrogate about the full text. Another surrogate or summary of a full-text 

that was considered is the citation context, that is, from two words around the in-text 

citation to several sentences around it. The similarities between the citation contexts and 

the title, abstract, introduction and conclusion of the citing paper were calculated. The 

cosine similarity scores between the citation context and the abstract correlated most with 

academic influence, followed by context-conclusion, context-title, and context-

introduction (Turney & Pantel, 2010) 
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While other studies focused on one or more sections of the full-texts or the metadata, Knoth 

and Herrmannova, (2014) considered the semantic similarity between full-texts of the cited 

and the citing papers for calculating contribution score, an indicator of citation weight. The 

contribution score was calculated by using the cosine similarity measure of tf-idf term-

document vectors, as proposed by Manning, Raghavan, & Schütze (2009). The distance 

between the cited and citing papers was calculated as dist(d1, d2) = 1 — sim(d1, d2), where 

sim(d1, d2) is the cosine similarity of documents d1 and d2.  

 Citation Weighting based on Citation Function 

Allocating weights based on citation function or motivation has mostly been done manually 

by allocating categorical weights. For instance, McCain and Turner, (1989) provided 

weights to citation functions with the weight of 0.5 to peripheral citations and 1.0 to central 

citations. Valenzuela, Ha, and Etzioni, (2015), focused on identifying essential citations as 

a binary classification task, providing a numeric scale as displayed in increasing order of 

importance as displayed in Table 2.3 below. Hassan, Akram, and Haddawy, (2017) 

extended the scheme in Table 2 by allocating the value of zero and one to the incidental 

and important citation classes respectively. 

Table 2.3:Citation Annotation Labels 

Citation Type Fine-grained Label Coarse Label 

Related work 0 Incidental 

Comparison 1 Incidental 

Using the work 2 Important 

Extending the work 3 Important 
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 Citation Weighting based on Citation Location  

Nazir et al. (2020) used Multiple Regression and Neural Network which are supervised 

machine learning models to allocate weights to citations based on their location in the 

surveyed scientific papers. As shown in Table 2.4, from the multiple regression analysis, 

the methodology section received the highest weight, followed by the results and 

discussions section, the introduction section, and the literature review section. Also, the 

normalized weights by neural networks allocated the highest weight to the citation in the 

results and discussions sections, followed by methodology, introduction, and literature 

review sections. 

Table 2.4: Weights allocated by Regression Analysis in Nazir et al. (2020) 

Sections Weights Weight Rank 

Introduction 0.1891921316 3 

Literature Review 0.1470393226 4 

Methodology 0.3663496373 1 

Results and Discussions 0.2974189085 2 

 Citation Context weighting based on Citation Frequency 

Citation frequency or citation mention analysis deals with the number of times a 

citation is mentioned in a document. There are two types of citation frequency analysis; 

that is, the in-text citation frequency analysis and the reference analysis. In-text citation 

frequency analysis is the commonest in citation weighting and is based on the idea that 

cited publications that are mentioned more frequently are likely to contribute more to the 

citing document than those citations that are cited infrequently. Citation frequency remains 

the most adopted measure for citation weighing, and this shows its relevance to the subject. 
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Its main attraction is the simplistic nature of frequency analysis which is based on a simple 

or “rough” count of in-text citations (Zhao & Strotmann, 2014b). 

Herlach, (1976) was one of earliest study that provided evidence for the use of citation 

frequency in quantifying the contribution of cited document in the citing document. Herlach 

(1976) considered the citation frequency analysis in finding the relationship between citing 

and cited documents for information retrieval by asking humans to rate the relevance of 

articles with multiple in-text citations and articles with single in-text citations to their cited 

publications. The result of the study indicated that articles with multiple in-text citations 

were found more relevant to the publications they cited than articles with single in-text 

citation by an approximate ratio of two to one. This provided a basis for other studies to 

assume that cited documents with more mentions contribute more than citations with less 

mention in the citing document. Voos & Dagaev, (1976) and Peritz, (1983), also studied 

the pattern of the distribution of citations in the sections of research papers. These studies 

concluded, like Herlach, (1976), that the citation frequency in a research paper is associated 

with the contribution of cited publication to the citing research paper. 

Zhu, Turney, Lemire, and Vellino, (2015) is another study which sought to find out the 

most important research articles’ features for weighing citations. The research submitted 

that citation frequency was more important than other features such as citation location and 

semantics. Empirical studies such as (Boyack, van Eck, Colavizza, and Waltman, 2018; 

Ding, Liu, Guo, and Cronin, 2013; Strotmann and Zhao, 2014; (Pride and Knoth, 2017; 

Sánchez-Gil, Gorraiz, and Melero-Fuentes, 2018; Hu, Chen, and Liu, 2013 Hassan et al., 

2017; Maričić, Spaventi, Pavičić, & Pifat‐Mrzljak, 1998) have also shown that the citation 
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frequency is important to citation weighing and that it provides a different indicator from 

the traditional citation count that could enhance research impact evaluation. Re-citation 

analysis is another method which has been proposed for citation frequency analysis by 

(Zhao & Strotmann, 2015). The re-citation approach considers only in-text citations that 

have been cited more than once while discounting uni-citations as perfunctory.  

Zhao & Strotmann, (2016) compared 11 different citation weighting schemes based on the 

number of mentions for author ranking. These citation weighting schemes were either 

author or paper-based. Zhao and Strotmann, (2016), considered the following methods: 

“Paper-Based Counting 

1. cW1P is traditional citation counting, which adds 1 to an author’s citation 

count whenever a paper by this author is cited regardless of how many 

times this paper is cited there. 

2. cWnP adds N to an author’s citation count when a paper by this author is 

cited N times in a citing paper. 

3. cWn2P adds N2 to an author’s citation count when a paper by this author is 

cited N times in a citing paper. 

4. rW1P is a re-citation counting method that adds 1 to an author’s citation 

count for each paper by this author that is re-cited (i.e., cited at least 

twice) in a citing paper. 

5. rWnP adds N to an author’s citation count when a paper by this author is 

re-cited N times in a citing paper, that is, when it is cited N + 1 times 

there. 

6. rWn2P adds N2 to an author’s citation count when a paper by this author is 

re-cited N times in a citing paper. 

Author-Based Counting 

7. cW1A adds 1 to an author’s citation count if this author is cited in the text 

of a citing paper regardless of how many times this author is cited or how 

many papers by this author are cited there. 
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8. cWnA adds N to an author’s citation count if this author is cited N times in 

the text of a citing paper regardless how many papers by this author are 

cited there; it always gives results identical to those of cWnP; 

9. cWn2Aadds N2 to an author’s citation count if this author is cited N times 

in the text of a citing paper regardless of how many papers by this author 

are cited there. 

10. rW1A adds 1 to an author’s citation count if this author is re-cited (i.e., 

cited at least twice) in the text of a citing paper regardless of how many 

times this author is cited or how many papers by this author are cited 

there. 

11. rWnA adds N to an author’s citation count if this author is re-cited N times 

in the text of a citing paper regardless of how many papers by this author 

are cited there.” 

 Citation Context in Citation Weighting 

Citation context describes the expanse of words which have been written about a citation. 

Citation context was described by Khalid et al. (2018, p. 607) as “the text segments used to 

characterize a target citation” which could span a few words, phrases or sentences. 

Recognizing citation context is important to citation content, citation sentiment analysis, 

citation-based information retrieval and citation weighting research. Identifying citation 

context, like many human language problems, is a complex concept in computing because 

of the unstructured nature of human writings. While a citation context might span a phrase, 

another might span sentences or paragraphs. To address citation context problems in 

citation weighting studies, the two major methods that have been adopted are the rule of 

thumb and decision tree. 

The commonest method which has been employed in citation context identification is the 

use of a fixed window or a specific number of characters, words or sentences in, before and 
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after the citation sentence. The use of a fixed citation window is based on the assumption 

that citation contexts are captured in the text around the citation and therefore citation 

contexts could be identified by the marked boundaries. Doslu and Bingol (2016) specified 

“around 400 characters which are equally divided to both sides of citation marker” as their 

definition of citation context. Liu et al. (2014) defined the citation context as the sentence 

in which the cited publication is mentioned. Athar and Teufel (2012a, p. 598) showed some 

dynamism in applying the fixed window in that they considered “every sentence that is in 

a window of 4 sentences of the citation” for examination for references to the citation and 

sentences that did not contain a reference to the citation were excluded as citation context. 

Abu-Jbara, Ezra, and Radev (2013) also applied the fixed four sentence window, which 

only includes the sentence before the citing sentence, the citing sentence, and two sentences 

after the citing sentence. This method does not reflect the real-life citation context situation 

because of the dynamism of human languages. These citation contexts could be 

underrepresented or overrepresented.   

Other studies have attempted to identify citation contexts without pre-setting a window, 

thereby identifying all the phrases or sentences that characterize a target citation. Khalid, 

Alam, and Ahmed (2018) proposed a heuristic algorithm which is built on the transition-

based dependency parsing. Dependency parsers analyze the grammatical structure of 

sentences by capturing the syntactic relationship between the words in the sentence. Unlike 

other methods of citation context extraction, this method did focus on multiple and single 

reference text and subjective and objective citation contexts. This method appears to mirror 
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the real-life situation of citation context identification as previous methods with fixed 

citation context windows have serious limitations. 

 Cascading Citation Analysis 

Cascading citation is a relatively new research front for research assessment. It was 

proposed by Dervos and Kalkanis (2005) on the assumption that credits due to a publication 

should not be limited to direct citations (first-generation citation) it has received. The 

publication should also receive some form of credit for the citations (n-generations 

citations) to the publications that have cited it.  Therefore, citations to an article cascade as 

it receives citations that are made “not just the number of citations made directly to the 

article in question, but also the ones made to the corresponding citing article(s)” (Dervos 

& Kalkanis, 2005, p. 668). 

Articles are allocated 1/2^(𝑛 − 1)  citation from their nth generation citations. All the 

direct citations of an article are also categorized as its first-generation citations; in this case 

the value of n is 1. Therefore articles get a citation of 1 from all its direct citations. 

Subsequently, articles that cited the first-generation citations are the second-generation 

citations, and the original article is allocated a residual citation of 1 ⁄ 2 (half) from the 

second-generation articles. All generations of citations apart from those that are categorized 

in the first-generation class are indirect citations. The original article receives ¼, 1/8,…1/2n-

1 citation each from the third, fourth,…, and nth generations, respectively. Scholarly 

communications evaluations do not receive citation residual for second-generation 

citations, which have been claimed to be a necessity in Dervos and Kalkanis, (2005), 
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Fragkiadaki, Evangelidis, Samaras, and Dervos (2010) because it is fair for an article to 

receive some residual citations from other articles that have cited the article that cited it.  

According to Latour’s law of citation, a study is considered an unquestionable fact as the 

number of citations (influence) increases (Latour, 1987, Pg 51). Eventually, the idea may 

be reconstructed, shortened, eroded, distorted or become obliterated by incorporations to 

the extent that people will stop citing the original source. With the idea of cascading 

citation, there is a possibility that the influence of an article goes beyond its diminuendo 

(when people stop citing it) due to ageing/obsolescence (Burrel, 2001; Burrell, 2002, 2003). 

For instance, many studies mention and apply the “page rank” algorithm, an influential 

study, without citing Page et al. (1999), while its derivatives are cited. With the cascading 

citation weighting method, the original Page et al. (1999) will receive some indirect 

citations from the articles that cited the derivatives of the “page rank” algorithm. 

It is perhaps reasonable to assume that the influence of an article may be theoretically 

infinitesimal because an article may have n generations citation, where n can be infinity. 

However, the publication may have significantly contributed and subsequently received 

few direct citations from very influential articles. These citing influential articles may have, 

in turn, received many direct and indirect citations. In this situation, the original article has 

received a fraction of its citations due to the current system of allocating credits for only 

direct citations. The cascading citation system presents a method that will potentially make 

it possible for studies to receive credit for the influence they have beyond the first 

generation. 
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 Benchmark Datasets for Semantic Similarity  

BIOSSES is a benchmark data set which is a collection of 100 sentence pairs from the 

biomedical domain, and the sentence pairs were selected from citation sentences. There are 

varying degrees of similarity between the citation sentence; some citation sentences cite the 

same reference articles for similar reason and are likely to be semantically similar while 

others cite different reference articles and are likely to be semantically different. The 

semantic similarity between the sentence pairs was determined manually by five different 

human experts, with the similarity scores set between 0 and 4. An evaluation of the 

performance of BioSentVec in determining semantic similarity between the BIOSSES 

sentence pairs gave a result of 0.795 correlation to the human annotation benchmark.  

MedSTS is a dataset of 174,629 sentence pairs gathered from a clinical corpus of clinical 

notes at Mayo Clinic. A sample of 1250 sentence pairs were annotated by two medical 

experts with semantic similarity scores between zero and five (0=low to 5= high similarity). 

An evaluation of the performance of BioSentVec in determining semantic similarity 

between the MedSTS sentence pairs gave a result of 0.767 correlation to the human 

annotation benchmark. 

 Proposed Framework for Direct Citation Weighting 

This thesis proposes a method for weighting citations, specifically those that are mentioned 

more than once in the citing publications, by placing a premium on the uniqueness of the 

citation contexts. This idea extends the citation mention analysis for weighting citations, 

where citation weights depend on the number of times a citation is mentioned in the citing 
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document. The citation mention analysis assumes that all citation mentions are equal and 

allocate equal weights for each citation mentions. The whole citation context weighting 

research is built on analyzing citation contexts or citation mentions. This thesis is a 

paradigm shift in citation analysis because it is more interested in the contributions of the 

cited article than the quantitative values that are independent of these contributions.  

Identifying “contributions” in the citation contexts may be finding the semantic similarity 

between the citation contexts of the cited paper in the citing paper and can help to 

understand if the different citation mentions referenced different ideas from the cited paper. 

If all the citation contexts of a citation are the same or identical, the semantic similarity 

between citation contexts will be high or close to one. This study uses a semantic similarity 

score generated by a computer algorithm to determine the uniqueness of citation contexts. 

This is done by comparing the texts of the two citation contexts. 

Citations were depicted with arrows that connect two citing and cited documents in citation 

networks. The contributions which are acknowledged through citations could only be 

analyzed through citation contexts. Though in citation networks, one point of connection 

exists between the cited and citing documents, this connection does not take into 

consideration the number of citation mentions of a citation. Each citation mention in a citing 

paper is a potential point of knowledge flow between the citing and cited the paper. 

Therefore the point of connection between citing and cited paper could be more than one 

in cases where there is more than one mention of a citation in the citing paper. For instance, 

citing document ‘E’ may cite the definition, the methodology and the results or conclusion 

of another document F with twelve in-text citations. The potential knowledge flows 
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between the citing and cited paper or first-generation citations can be identified by 

analyzing the citation context. 

 Citation Classification using Semantic Similarity Scores 

In practice, raw semantic similarity scores do not give precise information about texts that 

are similar, somewhat similar or not similar. By using inputs from human experts, 

boundaries that mark the three classes can be set. This framework starts with allocating 

weights to a citation that is mentioned twice. The framework for direct citation weighting 

centres around establishing the semantic similarity between multiple mentions of a citation. 

In order to execute a systematic strategy where the semantic similarity between all citation 

context pairs is possible, this framework recognizes the first citation mention in citations 

that are mentioned multiple times in the citing article as a unique citation context and is 

allocated the weight of one, regardless of the number of citation mentions. For instance, if 

a citation is mentioned twice (m1, m2) in a citing article, m1 is automatically allocated the 

weight of one. Similarly, if a citation is mentioned three times (m1, m2, m3) in a citing article, 

m1 is also allocated a weight of one. This move is to establish a starting point for the 

comparison between the citation contexts.  

The next stage is to find out the semantic similarity between the first and second citation 

contexts regardless of the number of citation mentions. In practice, the task is to find out if 

the second citation is different from the first. For instance, in Figure 2.1, after allocating 

the weight of one to Mention 1, the next move was to find the semantic similarity between 

Mention 1 and Mention 2. If the semantic similarity between the two mentions is high and 

belongs to the similar semantic similarity class, it would be determined that the two are the 
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same idea. In that case, Mention 2 was adding nothing new to Mention 1, and zero was 

added to the weight of one that Mention 1 had earlier, making one; the two citation contexts 

are identical. Otherwise, if the semantic similarity score was classified as not similar, the 

two citation contexts were counted as two different ideas. Therefore, one was added to the 

weight of Mention 1, making two; two different citation contexts. 

 

Figure 2.1: Paper A with Two mentions of Citation A 

If the number of citation mentions is greater than two, the steps taken in the previous 

paragraph will precede the process. For instance, if there were four mentions of a cited 

article, as shown in Figure 2.2, the next step is to find out how the third mention-Mention 

3- is different from the first two mentions -Mention 1 and Mention 2. That is, having 

established the semantic similarity between Mention 1 and Mention 2, and allocated weight 

to them accordingly, the next task was determining if Mention 3 is different from Mention 

1 and Mention 2. This will be achieved by comparing Mention 3 with Mention 1 and 

Mention 2 in pairs; Mention 1|Mention 3 and Mention 2|Mention 3. The citation context 

pairs Mention 1|Mention 3 and Mention 2|Mention 3 were classified and weighted using 

their semantic similarity scores. For instance, if Mention 1|Mention 3 were similar, a weight 
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of zero was allocated, and if Mention 2|Mention 3 were not similar, a weight of one was 

allocated. The next step was finding the average of the two weights and adding it to the 

weights that were obtained in the previous section. 

The next step was to find out how Mention 4 was different from Mention 1, Mention 2, and 

Mention 3 by comparing Mention 4 to Mention 3, mention 2, and Mention 1 in pairs; 

Mention 1|Mention 4, Mention 2|Mention 4, Mention 3|Mention 4. The next step was 

obtaining the semantic similarity scores of the three pairs (Mention 1|Mention 4, Mention 

2|Mention 4, Mention 3|Mention 4), classifying the citation context pairs based on their 

semantic similarity scores, and allocating weights to them. The last step was adding the 

average of the weights to what was obtained previously 

 
Figure 2.2: Citation with Four Mentions 

This framework was proposed to complement the citation mention analysis, which counts 
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 the number of times a citation is mentioned in a paper. As opposed to counting the number 

of mentions in a paper alone, this study proposed considering the number of unique citation 

contexts that have been referenced by the multiple mentions of a citation. Multiple ideas 

from a cited paper may have been mentioned at different locations of the citing paper and 

should be allocated more weights. Otherwise, identical ideas should attract lower weights. 

This proposed framework has two merits: first, the interaction between every citation 

mention was captured in the comparisons, regardless of the number of citation mentions. N 

combination 2 (nC2) number of citation context pairs were obtained, where n=the number 

of citation mentions. Second, each citation mention had a possibility of being assigned a 

maximum weight of one. 

 Proposed Framework for Residual Citation Weighting 

Allocating weights to indirect citation mentions is different from allocating weights to 

direct citations. Direct citations weighting was done for multiple citation mentions in a 

citing document. On the other hand, the theoretical framework for allocating residual 

citation weight on a citation chain is based on the semantic similarity between the 

contributions of a publication in its citing article and the contribution of its nth generation 

citation in n+1th generation article. Citation contexts are surrogates of cited publications’ 

contribution. 

On a citation network, citation paths or citation chains exist beyond conventional direct 

citations. Direct citations are only the origins of the chains, with the base article at the 

summit and direct citation is the node next to the base article. Using publications A, B, C, 
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D, and E as examples of articles on a citation chain, where publication B cited publication 

A, publication C cited publication B, publication D cited publication C and publication E 

cited publication D. Therefore, there is a citation path or citation chain A-B-C-D-E, where 

any of the publications, except E can be the base article. In this framework section, article 

A will be taken as the base article. Taken that publication A is the base article, publication 

B, C, D, and E is the first generation or direct citation, second generation, third generation 

and fourth generation citations, respectively. 

In theory, residual citation does not have to accrue to the base article all the time. For 

example, paper B may copy a methodological section from paper A citing a source and thus 

citing paper A, and paper C may also copy the source methodology aspect from paper B 

and thus cite paper B, but does not cite paper A. In this case, publication A deserves residual 

citation from paper C. However, it is possible for paper C to cite an aspect of paper B (e.g. 

sampling methods which is completely different from the aspect that paper B cited in paper 

A (e.g. data analysis technique). In such a case, paper A does not deserve a residual citation 

from paper C. 

To determine if the residual citation can be accrued from the second generation to paper A, 

for instance, we obtain the semantic similarity score between the contribution of the base 

article in publication B, and the contribution of publication B in publication C. Using Figure 

2.3, it can be observed that there are six citation contexts of paper A in paper B (A-B0, A-

B1, A-B2, A-B3, A-B4, and A-B5), but only one citation context of paper B in paper C (B-

C0). We need to compare all the contributions of paper A in paper B and all the 
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contributions of paper B in paper C, thereby obtaining the following six pairs: A-B0|B-C0, 

A-B1|B-C0, A-B2|B-C0, A-B3|B-C0, A-B4|B-C0, and A-B5|B-C0.   

 

Figure 2.3: Three publications on a citation chain 

Importantly, the theoretical framework assumes that the citation context pairs with the 

highest semantic similarity can be used to assess the weight of residual citation that should 

accrue to the base article. Using the above example, the citation context pairs with the 

highest semantic similarity among the six pairs of citation contexts would be considered 

for allocating citation residual to publication A from its second generation citation B. 

Therefore, if the semantic similarity score of the pair of citation contexts with the highest 

semantic similarity is significant enough to the categorized as “similar”, then at least a 

contribution of publication A in publication B is similar to the contribution of publication 

B in publication C. Thus, publication A deserves residual citation from its second-

generation citation.  
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 Summary of the Literature Review Chapter 

The literature review chapter is divided into eight sections. The first section presents a 

literature review of citation context analysis; this provides a background review of citation 

context literature. A review of literature on citation classification was presented in the 

second section. Research literature covering classifications such as citation function, 

citation sentiment and citation importance were explored. The third section of the literature 

review covered citation weighting analytical methods; these methods were reviewed based 

on semantic similarity, citation function, citation location and citation frequency. The 

fourth section presents a review of the literature on the significance of citation context in 

citation weighting studies. The fifth section focused on the cascading citation system. The 

seventh and eight sections contain proposed frameworks for the direct and residual citation 

aspects of this study, respectively. 
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Chapter 3 

3 Methodology 

The methodology for this proposed study is written in seven sections. The data sampling 

strategy is presented in section one. Section two provides details on the data collection 

strategies and the steps that were taken to extract citation context from the articles’ full text. 

Data pre-processing is presented in section three with details of the strings that were either 

removed or replaced so that the semantics of the citation context were not jeopardized. The 

data annotation by experts was explained in section four. The citation similarity algorithm 

which is based on cosine distance between two citation contexts, is presented in section 

five. The citation weighting method, which is based on the citation context similarity, is 

presented in section six. Data analysis methods for the direct and indirect citation aspects 

of this thesis are provided in sections six and seven, respectively.  

 Data Sampling 

The two datasets for this thesis were collected from the PubMed database, using the Web 

of Science search interface, since there are no available annotated datasets for cascading 

citation scheme that incorporate citation weighting. The scope of the study is limited to the 

biomedical sciences disciplines because of the readily available robust computational 

knowledge representation models such as word/sentence vectors space models and word 

embeddings, which were scarcely available for other scientific disciplines.  
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 Sampling Articles for Direct Citation Context Weighting 

The first dataset meant for direct citation consists of one hundred (100) articles sampled 

from moderately cited articles published in 2014 and indexed in MEDLINE. Moderately 

cited articles were operationalized as articles that received 50 to 200 citations within five 

years of publication, that is, between 2014 and 2019. To retrieve the biomedical 

publications that were published five years before 2019 from the WoS, MEDLINE was 

searched with the “year published” set at 2014. The query returned 1,037,524 results, and 

when the results were limited to journal articles alone, the numbers reduced to 950,143. A 

sampling frame was created from articles that had 200 to 50 citations after sorting the 

articles in decreasing number of citations. 58,938 fell within this category and were ranked 

between 5,230th and 64,168th. Every 590th article was sampled: 5,230, 5,820, 

6,410….63,640th articles. The 100 articles dataset for direct citation was collected between 

the 11th and 23rd January 2020.  

3.2.2 Sampling Articles for Indirect Citation Weighting 

The process of sampling articles for the indirect citation aspect of this study was quite 

different from that of the direct citation. Sampling, in this case, was done in six stages with 

the first stage for the base articles, and the last five stages for five generations of citations, 

one stage per generation. The ten base articles were sampled as the ten most-cited 

biomedical articles that were published in the year 2014. Articles in other fields such as 

Materials Science that ranked among the most cited biomedical articles were ignored and 

replaced with articles that ranked next to them because after probing down from their first 
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to subsequent generations, their citation bases shifted more from biomedical fields to their 

core fields. Example of such articles include Zhou, et al. (2014)1. This step was taken 

because the semantic similarity algorithm was based on a knowledge representation model 

that was trained on biomedical publications. Therefore, including articles outside the 

domain of the training corpus could produce non-optimal result in the semantic similarity 

tasks. Duplicates of already sampled articles were also not included. 

For the first stage sampling, only the most cited five papers that cited each of the base 

articles were sampled, provided their full texts were available. Hence, for the ten base 

articles, this resulted in 50 first-generation citations. The next stage was sampling the 

second-generation citations, which was done by sampling the most cited two citations of 

each of the 50 first-generation citations, that is a total of 100 second-generation citations. 

The most cited top two citations for each of the 100 second-generation articles were also 

sampled as third-generation articles, making a total of 200 third-generation citations after 

removing duplicates. This was repeated for the fourth and fifth generations to give 400 and 

800 potential fourth and fifth-generation articles, respectively.  

 

1 “Zhou, et al. (2014) Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 

Vol. 345 (6193).” 
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Duplicates were not recorded during the data collection, i.e., once an article is sampled, it 

was not sampled again in subsequent generations. For instance, Ross et al (2016)2 and 

Alexander et al (2017)3 were second-generation citations for one of the base articles, 

Alexander et al (2017) also cited the Ross et al (2016), and ranked as one of its two most 

cited articles citing articles. However, Alexander (2017) was not sampled as a third-

generation article. Some other articles were also excluded based on discretion during the 

sampling period. For instance, articles in other disciplines, not in biomedicine e.g. 

Krittanawong C. et.al. (2019)4 created generations of articles mostly in computer science, 

were ignored at the first or second-generation level because articles at the subsequent 

generations significantly deviated from biomedicine. It was intended that the sample would 

be core biomedical publications, and including articles from other disciplines outside 

biomedicine would have defeated this purpose. Other versions of identical articles were 

 

2 Ross et al (2016) 2016 American Thyroid Association Guidelines for Diagnosis and 

Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 26(10) 

Pp1343-1421” 

3 Alexander et al (2017) 2017 Guidelines of the American Thyroid Association for the 

Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum” 

Thyroid 27(3) Pp.315-389 

4 Krittanawong C. et.al. (2019) Deep learning for cardiovascular medicine: a practical 

primer” European Heart Journal 40 (25). Pp 2058–2073 
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excluded after the inclusion of the most cited. For instance, Aboyans et. al (2017)5 had three 

other duplicates in the WoS database. Articles that mentioned a cited paper more than 20 

times in the full text were ignored for ease of computation. For example, Hendrickx et al., 

(2019) was excluded because of 63 citation mentions of Sidor & Hopson (2018). 

The sampling was executed between November 22, 2019 and January 11, 2020 to produce 

a sampling frame, but selected articles in the first three generations, where full texts were 

not available were replaced. Unavailable articles in the fourth and fifth generations were 

not replaced because at the fourth generation some articles stopped having indirect citation. 

 Data Collection 

Data collection for the selected articles for direct and indirect citation aspects of this study 

proceeded in two parts. First, full texts of the citing papers in the two aspects were 

downloaded so that citation contexts could be extracted. At this stage of the study, 

unavailable full texts were not included in the direct citation aspect of the study. Similarly, 

some articles were excluded because the cited articles were not found in the full texts or 

 

5 Aboyans V, et. al (2017). ESC Guidelines on the Diagnosis and Treatment of Peripheral 

Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): 

Document covering atherosclerotic disease of extracranial carotid and vertebral, 

mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke 

Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial 

Diseases of the European Society of Cardiology (ESC) and of the European Society for 

Vascular Surgery (ESVS). Eur Heart J 2017;39:763–816. 
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the only citation(s) were part of Table or Figure.  Therefore, the citation count for each of 

the 100 direct citation articles reduced by a little bit. For the indirect citations, a sampled 

article, whose full text was unavailable at the time of data collection, was replaced with an 

available article that ranked next in the number of citations. 

For the direct citation aspect of the study, citation contexts of cited scientific papers in the 

citing papers were extracted. Whereas the citation contexts of the ten base articles from the 

full texts of all the five generations of publications were extracted, data collection was done 

manually by identifying and extracting the span of texts that accurately represent the 

context of idea that was referenced from an in-text citation. Citation context can span a few 

words within a sentence (a phrase), one or more sentences or a paragraph. The sentences 

that accurately represent the citation context are usually the texts around the in-text 

references, while some other times, citation contexts are located separately from the in-text 

citation.  

The task of identifying citation contexts is not a trivial manual or computing task. Studies 

that have adopted the automatic means of identifying/extracting citation contexts have used 

a fixed window of sentences or words before and/or after the in-text references (Caragea et 

al., 2014; Dong & Schafer, 2011; Houngbo & Mercer, 2017; Singha Roy et al., 2020). 

While this method looks easy and fast, cleaning and preprocessing full texts of scientific 

papers to machine-readable formats is not trivial, considering the task that is involved in 

converting the different files and referencing formats into a format that is useable for 

NLP/computation. Besides, using the fixed window of words or sentences is prone to 

errors; citation contexts are misrepresented in cases where citation contexts are not the texts 
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around the in-text references, and they are under/over-represented in cases where the span 

of text is shorter or longer than the fixed window. Citation contexts were identified 

manually in this study, though this method was more cumbersome than the use of a fixed 

window. This path was chosen to collect more accurate citation contexts.  

The citation context was the span of texts about the cited publication's in-text citation that 

explains or represents the contribution referenced by the citing article. Most times, the 

citation contexts were located as the texts around the in-text citations and a few times, the 

citation contexts occurred in words after or before the in-text references. The citation 

contexts were collected from the publications that cited the 100 sampled articles for the 

direct citation aspect of the study. In the case of the indirect citations, the citation contexts 

of the ten base articles and those of first to fifth generation publications were collected.  

Rule that were observed are discussed in the next sub sections. Citation context examples 

are in italics. 

 Single Sentence Citation Contexts 

This is the commonest citation context and most of the citation contexts belong to this 

category. In this case, the sentence in which the citation is mentioned adequately represents 

the citation context. 

 Continuous Multiple Sentence Citation Contexts 

Most of the multiple sentence citation contexts belong to this category as citation contexts 

span the sentence in which the citation is mentioned and the sentence(s) before and/or after. 
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 Multiple Sentence Citation Contexts with implicit references 

Sometimes, multiple sentence citation contexts are represented with sentences that do not 

follow each other sequentially. In this case, the citation sentence contains an implicit 

reference to a list or object which is mentioned in the sentence(s) that are not placed directly 

before or after it. 

Considering an in-text citation referred to as 11, this citation sentence “The symptoms appear 

to be more frequent in physically active individuals.11” makes an implicit reference to “The 

symptoms”. “The symptoms” were listed in the first sentence of the paragraph as shown 

below:  

In the absence of a standardized classification of SAMS, we propose to 

integrate all muscle-related complaints (e.g. pain, weakness, or cramps) as 

‘muscle symptoms’, subdivided by the presence or absence of CK elevation 

(Table 1). Pain and weakness in typical SAMS are usually symmetrical and 

proximal, and generally affect large muscle groups including the thighs, 

buttocks, calves, and back muscles. Discomfort and weakness typically 

occur early (within 4–6 weeks after starting statin therapy22), but may still 

occur after many years of treatment. Onset of new symptoms may occur with 

an increase in statin dose or initiation of an interacting drug. The symptoms 

appear to be more frequent in physically active individuals.11 Statin-

associated muscle symptoms often appear more promptly when patients are 

re-exposed to the same statin. 
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Therefore, this sentence “In the absence of a standardized classification of SAMS, we propose 

to integrate all muscle-related complaints (e.g. pain, weakness, or cramps) as ‘muscle 

symptoms…” was included as part of the citation context for citation 11 

 Multiple unique in-text citations in a sentence 

This occurs when more than one in-text citation is mentioned in a sentence. In each of the 

instances below, two contexts were extracted. 

Instance 1: “We used the GBD 2013 results for YLLs2 and YLDs1 to calculate DALYs.”  

Context 1 :”We used the GBD 2013 results for YLDs1 to calculate DALYs.” 

Context 2:“We used the GBD 2013 results for YLLs2 to calculate DALYs” respectively. 

Instance 2: Wang and colleagues2 have described data sources and methods to estimate 

mortality and life tables, and Vos and colleagues1 have described these for the 

measurement of prevalence of sequelae and disability weights.1  

Context 1: Wang and colleagues2 have described data sources and methods to estimate 

mortality and life tables. 

Context 2: Vos and colleagues1 have described these for the measurement of prevalence of 

sequelae and disability weights.1  

Instance 3: The notion of the epidemiological transition has been expanded to recognise 

the phase in transition that leads to double burden of disease9, 28, 29 and the 

https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib9
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib28
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib29
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countertransitions of the HIV/AIDS epidemic and the rise of mortality in the former Soviet 

Union.2, 10, 11, 13, 30, 31, 32. 

Context 1: (in-text citations 9, 28, 29): The notion of the epidemiological transition has 

been expanded to recognise the phase in transition that leads to double burden of disease 

and the rise of mortality in the former Soviet 

Context 2: (in-text citations 2, 10, 11, 13, 30, 31, 32): The notion of the epidemiological 

transition has been expanded to recognise the phase in transition that leads to the 

countertransitions of the HIV/AIDS epidemic and the rise of mortality in the former Soviet. 

 Multiple mentions of a citation in a sentence 

When an in-text citation appears more than once in a sentence, the two mentions are treated 

as one. For instance, citation 1 was mentioned twice in “Wang and colleagues2 have 

described data sources and methods to estimate mortality and life tables, and Vos and 

colleagues1 have described these for the measurement of prevalence of sequelae and 

disability weights.1”.  

The in-text citation 1 has only one context: “Vos and colleagues1 have described these for 

the measurement of prevalence of sequelae and disability weights.1”  

 Citation context phrases 

In some instances, including all the texts in the citation sentence may not accurately 

represent the citation context as the citation context may only be represented by a phrase, 

which is less than a whole sentence. For instance, in this sentence “Muscle pain or aching, 

https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib11
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib30
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib31
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib32
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib9
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib28
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib29
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib11
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib30
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib31
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib32
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib1
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stiffness, tenderness or cramp (often referred to as ‘myalgia’19) attributed by patients to 

their statin use is usually symmetrical but may be localized, and can be accompanied by 

muscle weakness; any of these effects occur predominantly without an elevation of CK” the 

context of citation 19 is “Muscle pain or aching, stiffness, tenderness or cramp (often 

referred to as ‘myalgia’)” 

 In-text citation that appears in two or more consecutive 
sentences 

In cases where an in-text citation is mentioned in sentences following one another and 

references or mentions of at least a keyword in one of the two sentences is made in the second 

sentence, the two in-text citations were treated as a citation context, regardless of the 

relationships between the citation contexts. Example is in-text citation 20 in this sentence: Few 

other RCTs have queried for muscle complaints among participants.20 Muscle complaints 

in other clinical trials have been similar in statin-treated and placebo subjects.4,20,23,24. 

Citation context for in-text citation becomes: Few other RCTs have queried for muscle 

complaints among participants. Muscle complaints in other clinical trials have been 

similar in statin-treated and placebo subjects.  

 References to Tables, Figures, Appendices and Supplementary 

Materials 

In-text citations in and references to Tables, Figures, Appendices supplementary materials 

and their headings were ignored. For example, the reference to supplementary material in 

this context was ignored: Indeed, a definitive diagnosis of SAMS is difficult because symptoms 

are subjective and there is no ‘gold standard’ diagnostic test. Importantly, there is also no 
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validated muscle symptom questionnaire, although the National Lipid Association has 

proposed a symptom scoring system based on the STOMP trial and the PRIMO survey 

(see Supplementary material online, Table S2) 

 List explicitly, to uncover hidden in-text citation 

For Example, this citation context: In randomized, controlled trials (RCTs), adverse event 

rates (including complaints of muscle pain) are similar in statin and placebo groups,2–4 

Becomes: In randomized, controlled trials (RCTs), adverse event rates (including 

complaints of muscle pain) are similar in statin and placebo groups,2, 3, 4 so that in-text 

citation context 3 will explicitly be listed as an in-text citation. 

 In-text citations in lists 

Below are in-text citations 28, 29 and 30. 

Pressure and flow tracings in the last minute at each phase were analyzed, and the 

following parameters were collected: 

(1) The mean Paw during either the inspiratory or expiratory phase28; 

(2) The peak inspiratory and expiratory flow rate (PIF and PEF); 

(3) The inspiratory VT integrated by flow tracing, and RR and minute ventilation (MV); 

(4) The Pes swing during inspiration (∆Pes)
29,30; 

Becomes two contexts: 

Context 1 (for in-text citation 28): Pressure and flow tracings in the last minute at each 

phase were analyzed, and the following parameters were collected: The mean Paw during 

either the inspiratory or expiratory phase; 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/eurheartj/36/17/10.1093_eurheartj_ehv043/1/ehv043_Supplementary_Data.zip?Expires=1568739728&Signature=FekUU-gFJzbWt2QgKcy1R-gCrGR5QfW5WlN1TJXZT0ZYJOSip48amzvp-fuCyUP26v71bcrFzwpmhfhywrtFSYYeUrPxaOH6SEFBFCK~RavUok6f6y1jTS7MUNITcQZaBYxqMTMAW6LVIXTcImgjgOWD0aFI2X41VCJP4pmI3iBJWyiI56lIwrkpElbrXQ~nMDa~bB-cC3oMheNyUStT9PLwGKJrm4jqp3QBipGRpwf0gHwa24PL-59qVT5ANg4H523nCQuwZv7mhz5PJEUp0Qs2G7XJT6TFafJJcv2KCDxTg3V3vNdO9KnqjroS4bMb5jZzPLwNQUWQ6~6afWnUBQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://www.nature.com/articles/s41598-019-51158-0#ref-CR28
https://www.nature.com/articles/s41598-019-51158-0#ref-CR29
https://www.nature.com/articles/s41598-019-51158-0#ref-CR30
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Context 2 (for in-text citation 29 and 30): Pressure and flow tracings in the last minute at 

each phase were analyzed, and the following parameters were collected: The peak 

inspiratory and expiratory flow rate (PIF and PEF);The inspiratory VT integrated by flow 

tracing, and RR and minute ventilation (MV); The Pes swing during inspiration (∆Pes); 

 

 Exceptions 

Some citation mentions were ignored because they did not represent citation contexts of 

the cited article.  

Instance 1: Some editorials that announce or promote articles in issues of a journal 

sometimes include in-text citations that do not represent knowledge from the cited 

document. Some of the citation mentions in such editorials were not recorded.  

Example (in-text citation 1) 6: 

We thank for Dr Čulić’s interest in our article,1 and his comment on the public health relevance 

of our findings 

Instance 2: Citation mentions as part of Tables, Figures and Supplementary materials. 

Citation mentions in equations. 

 

6 Chen, K., Peters, A., Schneider, A., Peters, A., Schulz, H., Schwettmann, L., Leidl, R., 

Heier, M., & Strauch, K. (2019). Burden of myocardial infarctions attributable to 

heat and cold. European Heart Journal, 40(41), 3440–3441. 

https://doi.org/10.1093/eurheartj/ehz612 

javascript:;
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Instance 3: Unusually long (typically more than one paragraph) in-text citations were also 

not included. Biosent2vec, the computer algorithm for semantic similarity measurement 

that was used for this study works better on sentences, supplying citation contexts that span 

paragraphs may produce sub-optimal results. This is a limitation of this study; however 

citation contexts in this category are very rare. An example is the citation context below.  

On the basis of NHANES 2011 to 2012, the average dietary consumption by US children 

and teenagers of selected foods and nutrients related to cardiometabolic health is detailed 

below3: 

• Whole grain consumption was <1 serving per day in all age and sex groups, with 

<5% of all children in different age and sex subgroups meeting guidelines of ≥3 

servings per day.17 

• Fruit consumption was low and decreased with age: 1.7 to 1.9 servings per day in 

younger boys and girls (5–9 years of age), 1.4 servings per day in adolescent boys 

and girls (10–14 years of age), and 0.9 to 1.3 servings per day in teenage boys 

and girls (15–19 years of age). The proportion meeting guidelines of ≥2 cups per 

day was also low and decreased with age: ≈8% to 14% in those 5 to 9 years of 

age, 3% to 8% in those 10 to 14 years of age, and 5% to 6% in those 15 to 19 

years of age. When 100% fruit juices were included, the number of servings 

consumed increased by ≈50%, and proportions consuming ≥2 cups per day 

increased to nearly 25% of those 5 to 9 years of age, 20% of those 10 to 14 years 

of age, and 15% of those 15 to 19 years of age. 

• Nonstarchy vegetable consumption was low, ranging from 1.1 to 1.5 servings per 

day, with <1.5% of children in different age and sex subgroups meeting guidelines 

of ≥2.5 cups per day. 

• Consumption of fish and shellfish was low, ranging between 0.3 and 1.0 servings 

per week in all age and sex groups. Among all ages, only 7% to 14% of youths 

consumed ≥2 servings per week. 

• Consumption of nuts, seeds, and beans ranged from 1.1 to 2.7 servings per week 

among different age and sex groups, and generally <15% of children in different 

age and sex subgroups consumed ≥4 servings per week. 

https://www-ahajournals-org.proxy1.lib.uwo.ca/doi/10.1161/CIR.0000000000000659#R5-3
https://www-ahajournals-org.proxy1.lib.uwo.ca/doi/10.1161/CIR.0000000000000659#R5-17
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• Consumption of unprocessed red meats was higher in boys than in girls and 

increased with age, up to 3.6 and 2.5 servings per week in 15- to 19-year-old boys 

and girls, respectively. 

• Consumption of processed meats ranged from 1.4 to 2.3 servings per week, and 

the majority of children consumed <2 servings per week of processed meats. 

• Consumption of SSBs was higher in boys than in girls in the 5- to 9-year-old 

(7.7±6.2 versus 6.0±3.8 servings per week) and 10- to 14-year-old (11.6±5.3 

versus 9.7±7.9 servings per week) groups, but it was higher in girls than in boys 

in the 15- to 19-year-old group (14±6.0 versus 12.4±5.8 servings per week). Only 

about half of children 5 to 9 years of age and one-quarter of boys 15 to 19 years 

of age consumed <4.5 servings per week. 

• Consumption of sweets and bakery desserts was higher among 5- to 9-year-old 

and 10- to 14-year-old boys and girls and modestly lower (4.7 to 6 servings per 

week) among 15- to 19-year-olds. A minority of children in all age and sex 

subgroups consumed <2.5 servings per week. 

• Consumption of eicosapentaenoic acid and docosahexaenoic acid was low, 

ranging from 0.034 to 0.065 g/d in boys and girls in all age groups. Fewer than 

7% of children and teenagers at any age consumed ≥0.250 g/d. 

• Consumption of SFAs was ≈11% of calories in boys and girls in all age groups, 

and average consumption of dietary cholesterol ranged from ≈210 to 270 mg/d, 

increasing with age. Approximately 25% to 40% of youths consumed <10% 

energy from SFAs, and ≈70% to 80% consumed <300 mg of dietary cholesterol 

per day. 

• Consumption of dietary fiber ranged from ≈14 to 16 g/d. Fewer than 3% of 

children in all age and sex subgroups consumed ≥28 g/d. 

• Consumption of sodium ranged from 3.1 to 3.5 g/d. Only 2% to 11% of children in 

different age and sex subgroups consumed <2.3 g/d. 

 Data Pre-processing 

Extracted citation contexts were pre-processed for computing so that unwanted texts would 

not interfere in the linguistic features of the dataset. The following steps were taken for pre-

processing.  
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 Implicit and Explicit in-text citations 

Implicit and explicit in-text citations were treated differently. While implicit in-text 

citations were removed, explicit in-text citations were replaced. Implicit in-text citations 

example is (Sergio, 2020) or (Sergio et.al., 2020), while on the other hand, Sergio (2020) 

or Sergio et. al. (2020) is an example of explicit citation. 

As part of the preprocessing, place holders for implicit in-text citations were removed. 

Placeholders for implicit in-text citations refer to the texts that represent the in-text citation, 

and depending on the referencing format, could be numerals or alphanumeric (e.g. (Sergio, 

2020), 25-90, 23-34). The placeholders for implicit in-text references add no semantic value 

to the citation contexts; rather their presence may unnecessarily alter the semantics of the 

citation context.  

For instance, 23, 24 and 92-94 were removed from the two citation contexts below. 

Citation context 1: Some studies examine associations with income per person, whereas 

others use variables such as mean age of the population 23, 24. 

Citation context 2: The interaction of statins with muscle mitochondria can involve (i) 

reduced production of prenylated proteins including the mitochondrial electron transport 

chain (ETC) protein, ubiquinone (coenzyme Q10), (ii) subnormal levels of farnesyl 

pyrophosphate and geranylgeranyl pyrophosphate leading to impaired cell growth and 

autophagy, (iii) low membrane cholesterol content affecting membrane fluidity and ion 

channels, and (iv) the triggered calcium release from the sarcoplasmic reticulum via 

ryanodine receptors, resulting in impaired calcium signalling.92–94 

https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib23
https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib24
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Explicit in-text citations were replaced with in_text_ref. For example: Our findings support 

those of Salomon and colleagues,8 which showed that HALE is increasing more slowly than 

life expectancy: ie, as life expectancy increases, the expectation of years lived with multiple 

sequelae increases as well. became Our findings support those of in_text_ref which showed 

that HALE is increasing more slowly than life expectancy: ie, as life expectancy increases, 

the expectation of years lived with multiple sequelae increases as well. 

 Acronyms 

Ambiguous and unambiguous acronyms were treated differently. Ambiguous acronyms 

were replaced with their full meanings while unambiguous acronyms were not replaced. 

Ambiguous acronyms refer to acronyms that could have many meanings at different places 

or contexts, in biomedical or general texts. Disambiguation, with the aim of increasing 

precision, makes it necessary to replace the ambiguous acronyms with full meanings. 

Examples of ambiguous acronyms with different full meanings include commonly used 

medical terms such as ER, which does not always mean emergency room; but it could also 

mean endoplasmic reticulum. Another ambiguous acronym is CV is often construed as 

curriculum vitae, but could also mean cardiovascular or cardinal vein. Other examples of 

ambiguous acronyms that have different full meanings in different countries or contexts 

include EPA, which could stand for Evolutionary Placement Algorithm, Environmental 

Protection Agency (United States of America), European Psychiatric Association (Europe), 

Environmental Protection Authority (Australia), Environmental Protection Act (Canada) or 

Eicosapentaenoic Acid. Another example of ambiguous acronym is ML methods which 

could mean machine learning methods or maximum likelihood methods. ICD could mean 

https://www.sciencedirect.com/science/article/pii/S014067361561340X?via%3Dihub#bib8
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implantable cardioverter–defibrillator or International Classification of Diseases or induced 

circular dichroism. Some publications such as editorials are written colloquially and 

acronyms are sometimes written without definitions in full the first time they are 

mentioned. This makes automatic disambiguation difficult simply through referencing or 

dependency relations.  

Another set of ambiguous acronyms are represented by tokens that also amount to English 

words. Examples are WHO which is an English word-who (a pronoun) and also an acronym 

for the World Health Organization; NO could either be “nitric oxide”, “neuromyelitis 

optica” or “no” as in opposite of yes. US could be United States, us (a pronous), or ultra-

sound. ACE could stand for Adverse Childhood Experiences, Angiotensin-converting 

enzyme, or the word ace (an expert or champion).  

While it is necessary to adequately disambiguate, some acronyms could lose their meanings 

if they are replaced, and therefore unambiguous acronyms were not replaced with their full 

meanings. For instance, replacing HIV with its full meaning could make it lose its value 

because HIV has been the generally accepted name for the human immunodeficiency 

viruses which cause a disease called acquired immunodeficiency syndrome (AIDS). 

Therefore, HIV represents the disease more in texts than its full meaning. Other common 

examples of unambiguous acronyms include drug names (e.g. NAMI-A and KP1019, 

CRISPR), DNA/RNA (e.g. LncRNA SNHG3), computer tools (e.g. FastQC, RDP4) and 

research areas (e.g. GWAS) 

Another side of disambiguation is collocation. Full meaning of acronyms also replaced 

acronyms where they were found to be used inconsistently. For instance, Resveratrol was 
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denoted as RES in (Liao et al., 2018)7 while it was denoted as RSV in (Annunziata et al., 

2019)8.  

 Direct Citation Context Pairing 

This stage of data pre-processing proceeded after the previously described pre-processing 

steps. Citation context pairing was done differently for the direct and indirect citation 

contexts categories. For the 100 sampled articles in the direct citation aspects of this study, 

only citing articles that referenced the sampled articles at least twice in their full texts were 

included in the citation context pairing. Citation context pairing occurred between the 

mentions of a cited document in the citing document. Therefore, if a cited paper is 

mentioned twice in the citing paper, the number of citation context pairs will be one. If a 

 

7 Liao, W., Yin, X., Li, Q., Zhang, H., Liu, Z., Zheng, X., Zheng, L., & Feng, X. (2018). 

Resveratrol-Induced White Adipose Tissue Browning in Obese Mice by 

Remodeling Fecal Microbiota. Molecules, 23(12). 

https://doi.org/10.3390/molecules23123356 

8 Annunziata, G., Maisto, M., Schisano, C., Ciampaglia, R., Narciso, V., Tenore, G. C., & 

Novellino, E. (2019). Effects of Grape Pomace Polyphenolic Extract (Taurisolo®) 

in Reducing TMAO Serum Levels in Humans: Preliminary Results from a 

Randomized, Placebo-Controlled, Cross-Over Study. Nutrients, 11(1). 

https://doi.org/10.3390/nu11010139 
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cited paper is mentioned four times, the number of citation context pairs will be six. Number 

of citation context pairs was n combination 2 (
n
C2), where n is the number of citation 

mentions.  

Using | to denote pairing of the two contexts, therefore, for a citation that is mentioned 

twice, Ma and Mb, the citation context pairs are Ma|Mb. For a citation that is mentioned three 

times Ma, Mb, Mc, the citation context pairs are Ma|Mb, Ma|Mc and Mb|Mc.  

For a citation that is mentioned four times Ma, Mb, Mc, Md the citation context pairs are 

Ma|Mb, Ma|Mc, Mb|Mc, Ma|Md, Mb|Md, and Mc|Md. 

For a citation that is mentioned five times Ma, Mb, Mc, Md, Me the citation context pairs are 

Ma|Mb, Ma|Mc, Mb|Mc, Ma|Md, Mb|Md, Mc|Md, Ma|Me, Mb|Me, Mc|Me, and Md|Me.  

For a citation that is mentioned six times Ma, Mb, Mc, Md, Me, Mf the citation context pairs 

are Ma|Mb, Ma|Mc, Mb|Mc, Ma|Md, Mb|Md, Mc|Md, Ma|Me, Mb|Me, Mc|Me, Md|Me, Ma|Mf, 

Mb|Mf, Mc|Mf, Md|Mf and Me|Mf.  

 Indirect Citation Context Pairing 

An indirect citation context pair refers to two points on a citation chain. The first point is 

the mention of the base article in the first generation article, and the second point is the 

mention of the nth generation article in the n+1th generation article. For simplicity’s sake, 

let us assume that the base article was mentioned three times in the first generation citation. 

Then, we can represent the three citation contexts as Ma-01, Mb-01, and Mc-01. Using the same 

convention, and assuming that the 1st generation citation was mentioned four times in the 
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2nd generation citations four times, we can represent the citation contexts of the 1st 

generation citation in the second-generation citation as Ma-12, Mb-12, Mc-12, and Md-12. Then 

the citation context pairs will be Ma-01|Ma-12, Mb-01|Ma-12, Mc-01|Ma-12, Ma-01|Mb-12, Mb-01|Mb-

12, Mc-01|Mb-12, Ma-01|Mc-12, Mb-01|Mc-12, Mc-01|Mc-12, Ma-01|Md-12, Mb-01|Md-12, Mc-01|Md-12 

So, in general, if there are n number of citation contexts of a base article in first generation 

articles, and m number of citation contexts of the first-generation article in the second 

generation article, the number of pairs obtainable for the first-second generation citation 

context comparison is n multiplied by m. For instance, there was one citation context of a 

base article in a first-generation article (denoted by FirstGen-article1) and while there were 

six citation contexts of the first-generation article in a second-generation article (denoted 

by SecondGen-article1). The citation pairs are shown in Figure 4.1 below. 

 

Figure 3.1: Citation context pairs from first-generation and second-generation 

articles 

 Citation Context Similarity Classification based on 

Experts’ Annotation 

There was a need to manually classify the citation context pairs to three classes of semantic 

similarity (similar, somewhat similar and not similar) since there is no existing human 

annotated citation context semantic similarity corpora. Computer algorithm allocates 
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semantic similarity scores between zero and one. The semantic similarity scores can be 

interpreted as the closer the semantic similarity score is to one, the more similar are the two 

texts and the closer the semantic similarity score to zero, the less similar the two texts. 

However, there are no known boundaries in the semantic similarity scores (between zero 

and one) that can be used to demarcate the three semantic similarity classes. The expert 

human/manual annotation objective was meant to help identify boundaries between the 

three semantic similarity classes so that semantic similarity scores of citation context pairs 

could be used to classify the citation context pairs. 

Out of the 9795 pairs of citation contexts for the direct citation weighting aspect of this 

thesis, systematic random sampling was used to select every tenth citation context pair. 981 

citation context pairs were sampled and given to two early-career biomedical experts for 

annotation. The first expert had completed a bachelor’s degree in three biomedical 

disciplines: Biochemistry, Biomedical Sciences, and Nursing. At the time of data 

collection, the expert was enrolled in a master’s degree program in Nursing in Western 

University, Canada. The second expert had completed a four-year bachelor’s degree in 

biomedical sciences and additional years of training in the clinical sciences to become a 

Physiotherapist. The second expert was also enrolled in a master’s degree in Neurological 

Physiotherapy at the University of Ibadan, Nigeria at the time of data annotation. The two 

experts were categorized as early-career experts because they had both worked for less than 

five years and were enrolled in master’s degree programs in medical and nursing programs.  

The experts were trained on how to code the sample. During the training, they were shown 

the modalities of classifying citation contexts into semantic similarity classes. One of the 
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overarching instructions was to consider the similarity of concepts/keywords in the two 

citation contexts as a basis for drawing semantic similarities. The annotation was a 

classification task into three categories of similarity: “not similar”, “somewhat similar” and 

“similar” based on the experts’ knowledge. Table 3.1 contains a detailed description of the 

three categories similarities.  Therefore, a pair of citation contexts was classified as “not 

similar”, “somewhat similar” or “similar” based on the similarity in the concepts/keywords 

between the two citation contexts. Boundaries between the three classes of citation context 

semantic similarity were not specified, and each of the two experts decided the citation 

contexts' classifications.  

The two experts were adequately briefed on the annotation objectives and about the citation 

contexts datasets. Afterwards, training was conducted online for the two experts on the 

semantic similarity tasks. The experts grouped citation contexts under the “not similar” 

class if the citation context pairs did not share similar concepts or keywords or the meanings 

of most or all the concepts or keywords in the citation contexts were different, thereby 

making the meaning of the citation context pairs not similar. On the other hand, citation 

context pairs were grouped under the “somewhat similar” class if the two citation contexts 

share some similar concepts or the keywords/concepts in the two citation contexts share 

some meanings. Lastly, experts classified citation contexts as “similar” if all the 

concepts/keywords are similar and, therefore, the citation context pair are similar in 

meaning. The two experts independently annotated all the sampled 981 citation context 

pairs. 
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Table 3.1: Details of human annotation’s semantic similarity classes 

Classes Description 

Not similar None of the concepts/keywords that are identifiable in these two 
citation contexts are similar. Therefore, I think the two citation contexts 

are not similar in meaning, or they are not semantically similar. 

Somewhat similar Some of the concepts/keywords that are identifiable in these two 
citation contexts are similar. Therefore, I think the two citation contexts 

are somewhat similar in meaning, or they are somewhat semantically 
similar. 

Similar All or most of the concepts/keywords that are identifiable in these two 
citation contexts are similar. Therefore, I think the two citation contexts 

are similar in meaning, or they are semantically similar. 

 Citation Contexts Similarity Algorithm 

The proposed thesis is based on citation context similarity, and this section of the 

methodology provides information on the computer program for the calculation of the 

citation context similarity score. Manually collected and pre-processed citation contexts 

were the inputs at this stage of the study. This stage of the study was automated using a 

computer program to calculate the semantic similarity score between citation contexts 

based on their cosine similarity measures. A python program that implements the 

BioSentVec sentence embeddings models was used for automating the semantic similarity 

measurement (Chen et al., 2019). BioSent2Vec model is the state-of-the-art for biomedical 

scientific publications language representation, and the model was trained on a PubMed 

dataset with over 28 million biomedical scientific publications. BioSent2Vec is based on 

the FastText’s Sent2vec language text representation model which was proposed by 

Bojanowski, Grave, Joulin, and Mikolov (2017).  

The BioSentVec converts texts to numerical representation on a multi-dimensional vector 

space so that the distance on the vector space represents the semantic differences between 
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the words. It, therefore, generates sentence vectors given any arbitrary sentences as inputs, 

and the cosine of the angle between the representations of the sentences on vector space is 

the semantic similarity between the two sentences. Mathematically, the cosine value is 

given as:  

 

 cos (θ) 
𝐴. 𝐵

|𝐴|. |𝐵|
  

 

BiosentVec is an excellent fit for the tasks of semantic similarity because of its high 

accuracy in finding semantic similarities between sentence pairs when compared to human 

annotators. The performance of BioSentVec in finding semantic similarities was tested on 

the humanly annotated sentence pairs from BIOSSES (Soğancıoğlu et al., 2017) and 

MedSTS (Wang et al., 2018).  

Thresholds for the three classes of semantic similarities of citation contexts (“similar”, 

“somewhat similar”, and “not similar”) were obtained using the citation contexts semantic 

similarity classification by human experts that was described in the previous section. The 

weights of the citation contexts in each of the semantic similarity classes from human expert 

annotation were obtained, using histogram of the distribution of the three classes and 

through iteration, the boundaries of the three classes were obtained. 
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 Existing Citation Metrics and Citation sentiment 

Included in this thesis is a comparison between earlier citation metrics with the proposed 

semantic similarity citation context weighting method. All the selected existing metrics - 

number of citations received by a publication, number of citation mentions and number of 

multiple citation mentions, and sum of multiple citation mentions- were derivatives of 

citation and citation mentions, except number of positive citation sentiment. Citation 

sentiments were obtained using a python implementation of pattern.en. Pattern.en was 

created by Smedt & Daelemans, (2012), researchers at the Centre for Computational 

Linguistics and Pyscholinuistics (CLIPS), University of Antwep, Belgium as python 

package for natural language processing research in both scientific and non-scientific 

settings. 

 Direct Citation Data Weighting 

Weights were allocated to citation context similarity based on thresholds that were 

established using the experts’ annotation. Two unique, not similar, citation contexts were 

allocated a weight of two. Therefore, each of the two unique citation contexts was assigned 

a weight of one. The theoretical consideration for this is the simple counting of unique 

items in mundane activities or real world, where one is added whenever a unique item is 

added. Two perfectly similar citation contexts were allocated weight of one. In theory, the 

two similar citation contexts are similar to the extent that the two citation contexts could be 

regarded as one. Two somewhat similar citation contexts were allocated a weight of 1.5. In 

theory, two somewhat similar citation contexts are entitled to a weight that is less than those 
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of unique citation contexts and greater than those of similar citation contexts. Therefore, 

each of the somewhat similar citation contexts was allocated a weight of 0.75. With this 

weighting system, one citation context did not receive a weight that is greater than one. 

This is a simple way of allocating weights for the two mentions of a cited paper in a citing 

paper. However, if there are more than two mentions, the number of citation contexts will 

be greater than two. Hence, in the next paragraph, we present a general algorithm for 

allocating weights to a cited paper that is mentioned n times in the citing paper. 

Let us start with a cited paper that is mentioned twice in the citing paper. The first citation 

context is allocated a weight of one, but the additional weight allocated to the second 

citation context is determined by its semantic similarity to the first. Therefore, a weight of 

0 is allocated if the second citation context was similar to the first, weight of 0.5 is allocated 

it the two citation contexts are somewhat similar, and a weight of 1 was allocated if the two 

citation contexts are not similar.  For a cited paper that is mentioned three times (n=3) Ma, 

Mb, Mc, the citation context pairs are Ma|Mb, Ma|Mc and Mb|Mc. For the last citation context 

Mc, it could only be allocated the weight of one. However, its weight depends on its 

comparison with citation contexts Ma and Mb. In theory, the maximum weight that could 

be obtained for Mc wrt Ma =1 and Mc wrt Ma=1, adding the two maximum weights and 

dividing by 2 ((1+1)/2)=1. So, the weight of a citation with three mentions is calculated as  

= weight of Ma + weight of Mb|Ma + (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑐 | 𝑀𝑎+weight of 𝑀𝑐 | 𝑀𝑏 

2
) 
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For a citation that is mentioned four times Ma, Mb, Mc, Md the citation context pairs are 

Ma|Mb, Ma|Mc, Mb|Mc, Ma|Md, Mb|Md and Mc|Md. and the weight was calculated as 

weight of Ma + weight of Mb | Ma + (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑐 | 𝑀𝑎 + weight of 𝑀𝑐| 𝑀𝑏 

2
)

+ (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑑  | 𝑀𝑎 + weight of 𝑀𝑑  | 𝑀𝑏 + weight of 𝑀𝑑  | 𝑀𝑐 

3
) 

For a citation that is mentioned five times Ma, Mb, Mc, Md, Me the citation context pairs are 

Ma|Mb, Ma|Mc, Mb|Mc, Ma|Md, Mb|Md, Mc|Md, Ma|Me, Mb|Me, Mc|Me, and Md|Me, and the 

weight was obtained as 

weight of Ma + weight of Mb|Ma + (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑐  | 𝑀𝑎 + weight of 𝑀𝑐  | 𝑀𝑏 

2
)

+ (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑑  | 𝑀𝑎 + weight of 𝑀𝑑 | 𝑀𝑏 + weight of 𝑀𝑑 | 𝑀𝑐  

3
)

+ (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑒 | 𝑀𝑎 + weight of 𝑀𝑒 | 𝑀𝑏 + weight of 𝑀𝑒 | 𝑀𝑐 +  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑒 | 𝑀𝑑

4
) 

In general, for a citation that is mentioned n times M1, M2, M3, M4,… Mn-1, Mn the citation 

context pairs are M1|M2, M1|M3, M1|M4, … Mn-1|Mn, and the weight was obtained as 

weight of 𝑀1 + weight of 𝑀2 | 𝑀1 + (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀3 | 𝑀1 + weight of 𝑀3 | 𝑀2 

2
)

+ (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀4 𝑤𝑟𝑡 𝑀1 + weight of 𝑀4 | 𝑀2 + weight of 𝑀4 | 𝑀3 

3
) + ⋯

+ (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑛 | 𝑀1 + weight of 𝑀𝑛 | 𝑀2 + ⋯ +  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝑀𝑛 | 𝑀𝑛−1

𝑛 − 1
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 Indirect Citation Data Weighting 

Firstly, in order to determine the amount of residual citation that should accrue to a paper 

article from a second generation, we examined the number of mentions of the base article 

in the first generation citation and the number of mentions of the first generation citations 

in the second generation citation. Secondly, in order to determine the amount of residual 

citation that should accrue to a base article from a third generation citation, we examined 

the number of mentions of the base article in the first generation citation and the number of 

mentions of the second generation paper in the third generation citations. Thirdly, in order 

to determine the amount of residual citation that should accrue to a base article from a 

fourth generation citation, we examined the number of mentions of the base article in the 

first generation citation and the number of mentions of the third generation paper in the 

fourth generation citations. Finally, in order to determine the amount of residual citation 

that should accrue to a base article from a fifth generation citation, we examined the number 

of mentions of the base article in the first generation citation and the number of mentions 

of the fourth generation paper in the fifth generation citations. 

In each of the four cases above, citation contexts of the two sets of mentions were collected 

and were paired up. For example, let the base article be mentioned in a first generation 

citation three times, and the first generation citation be mentioned in the second generation 

citation four times,. Let us represent these mentions as follows: Ma_01, Mb_01,and Mc_01; 

Ma_12, Mb_12, Mc_12, and Md_12. By pairing each citation context from the first set against 

each of the citation context in the second set, we obtained the following 12 citation context 

pairs: Ma_01| Ma_12, Ma_01| Mb_12, Ma_01| Mc_12, Ma_01| Md_12, Mb_01| Ma_12, Mb_01| Mb_12, 
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Mb_01| Mc_12, Mb_01| Md_12, Mc_01| Ma_12, Mc_01| Mb_12, Mc_01| Mc_12, and Mc_01| Md_12. We 

then calculated the similarity score between the two citation contexts in each pair and the 

highest similarity score is assigned as the residual citation accruing to the base paper from 

the second generation citation. 

To illustrate the method described above, in Figure 3.2, a paper was cited by two first 

generation articles (FirstGen-article1 and FirstGen-article2), and each of the two first 

generation articles were cited by two second generation articles- while FirstGen-article1 

was cited by SecondGen-article1 and SecondGen-article2, FirstGen-article2 was cited by 

SecondGen-article3 and SecondGen-article4. The base article was referenced once in the 

FirstGen-article1, while FirstGen-article1 was mentioned seven times in SecondGen-

article1 and five times in SecondGen-article2. On the other hand, the base article was 

mentioned six times in FirstGen-article2 while both SecondGen-article3 and SecondGen-

article4 referenced FirstGen-article2 once. The citation context pairs with the highest 

semantic similarity measures were indicated with arrows and marked 1 to 4.  
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Figure 3.2: Citation context pairs for four articles with marked highest semantic similarity measures
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 Statistical Analysis 

We used tables and charts to illustrate the data collected and appropriate measures of central 

of tendency were also used to describe the data. In testing the hypothesis, non-parametric 

tests were preferred over parametric tests due to the features of the datasets. Specifically, 

Spearman’s Rank Correlation and Kruskal-Wallis tests were used. The level of significance 

was set at 0.05. 
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Chapter 4 

4 Results 

The chapter presents results from the analysis of the datasets using the methods that were 

described in the previous chapter. The results are presented in four sections. Results of the 

human expert annotation are presented in the first section. Descriptive Statistics and 

metadata of the direct citation datasets are presented in the second section of this chapter. 

Result of the comparison between the proposed semantic similarity-based citation weights 

and existing metrics are presented in the third section. Lastly, results of the analysis of the 

indirect citation datasets are presented in section 4 of this chapter. 

 Human Annotation and Class Thresholds 

The two experts independently annotated all the sampled 981 citation context pairs, and the 

inter-coder agreement of the two coders was 66.16% (649/981) based on the percentage 

agreement and 0.27 Cohen Kappa score. Semantic similarity scores were obtained by 

computer algorithm for citation context pairs that were classified into three classes by 

human annotators. Identifying the boundaries for three classes for semantic similarity score 

obtained from computer algorithm was done manually using a histogram (see Figure 4.1) 

and a frequency table (see Table 4.1). Data points between two classes (somewhat 

similar/similar, and not similar/somewhat similar) that returned the highest percentages of 

true positives for the two classes whose boundaries were chosen as the boundary between 

the two classes. 
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Table 4.1: Distribution of the semantic similarity scores vs Human Classification 

interval not similar (machine) somewhat similar (machine) similar (machine) 

0.1 1   

0.15 2   

0.2 9   

0.25 14   

0.3 34   

0.35 60 1  
0.4 86 3  

0.45 89 5 1 

0.5 68 9 0 

0.55 81 12 0 

0.6 44 23 2 

0.65 23 19 3 

0.7 13 11 2 

0.75 4 5 3 

0.8 1 1 7 

0.85  1 3 

0.9   5 

0.95   1 

1   3 

Figure 4.1: Histogram of Semantic Similarity Scores versus Human Classification 
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The boundaries for the citation context classifications are displayed in Table 4.2. For the 

“not similar” semantic class, the boundary was pegged at 0<x<0.51. At this boundary, 

71.46% of the citation context pairs that were classified as “not similar” by humans were 

classified correctly. If the threshold increased, more citation context pairs in the “not 

similar” will be captured but simultaneously, more citation context pairs of the “somewhat 

similar” class will also be wrongly classified, thereby increasing the recall and reducing the 

precision. This process was repeated for the two other classes. 

Table 4.2: Boundaries between the three classes of semantic similarity 
Classes Not similar Somewhat similar similar 

Boundary for computer algorithm <0.51 >=0.51 and <0.71 >=0.71 

Percentage accuracy for computer algorithm 71.46% 72.22% 73.33% 

 Direct Citation Data Description 

The 100 sampled articles received 7317 citations (max.=179, min.=31, average=73.17); 

that is, citation contexts were extracted from 7317 citing articles. Please, note that citations 

received refers to the number of citing articles that were available during the data collection. 

The 100 sampled articles originally received 8208 citations but 891 articles were removed 

either because they were not available during data collection, the cited articles were not 

found in the full text, or the cited articles in-text citations were part of Tables or Figures. 

Details about the 100 articles can be found in Appendix A. 

The frequency distribution of mentions of the 100 cited articles as in-text citations in the 

7317 citing articles are displayed in Table 4.3. Most of the citations of the publications 

(73.02%) were mentioned once in the citing articles, which means that only 26.98% of the 
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citations were included in the citation context similarity weighting. There were 11,234 

citation contexts or mentions, and the highest number of mentions was 31. 

Table 4.3: Number of Citation mentions 

Number of citation mentions Frequency Percentage 

1 5333 72.89 

2 1174 16.045 

3 399 5.45 

4 187 2.56 

5 77 1.05 

6 51 0.70 

7 30 0.41 

8 16 0.22 

9 11 0.15 

10 14 0.19 

11 6 0.082 

12 8 0.109 

13 2 0.027 

14 2 0.027 

15 1 0.014 

16 2 0.027 

19 2 0.027 

25 1 0.014 

31 1 0.014 

Total 7317  

 Results of the Existing Citation weights  

The distributions of the number of citations and citation mentions by the 100 cited articles 

are presented in Figure 4.2 and Figure 4.3, respectively, which show that the distributions 

are approximately normal. The normal distributions of the samples justify the use of mean 

as the measure of central tendency. The distributions of the sum of multiple citation 

mentions, the number of multiple citation mentions and the number of positive citation 

sentiments in Figure 4.4, Figure 4.5, and Figure 4.6, respectively, show that the three 

datasets are asymmetrical.  
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Figure 4.2: Distribution of the citation numbers received 

 
Figure 4.3: Distribution of citation mentions per cited article 
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Figure 4.4: Distribution of the number of multiple citation mentions 

 

 

 

 

 

Figure 4.5: Distribution of the sum of multiple citation mentions 
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Figure 4.6: Distribution of the number of positive citation context sentiment per 

cited article 

 Relationship between the proposed semantic similarity-based 
citation weight and existing metrics? 

Results in this sub-sections are tied to Research Question 1 guiding this thesis. The 

distribution of semantic similarity-based citation weights is presented in Figure 4.7. The 

figure shows that the distribution is approximately normal. Thus, mean was presented as 

the measure of central tendency. The sampled article received a mean of 99.72 

(maximum=248.96, minimum=40.29) semantic similarity-based citation weights. 
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Figure 4.7: Distribution of the proposed semantic similarity-based citation weights 

In theory, the proposed semantic similarity-based citation context weight is greater than or 

equal to the citation count and less than or equal to the number of citation mentions. A 

comparison of the proposed semantic-similarity-based citation context weights, citation 

count and the number of citation mentions of all the 100 sampled articles is visualized in 

Figure 4.8 to give a holistic picture of the validity of the proposed citation weight in theory. 

Figure 4.8 shows that the implementation of the proposed semantic similarity-based 

citation context weight from this doctoral thesis produced a valid result. The sampled 

articles received semantic similarity-based weights that are less than the number of citation 

mentions but greater than the number of citations. This shows that the semantic similarity-

based citation weight implementation is accurate since the weights discounted ordinary 

citation mention count. However, the proposed semantic similarity-based citation weight 

in this thesis places a premium on the citation context's uniqueness. Therefore, for every 
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multiple mentioned citation, there is at least a unique citation mention and a maximum 

number of unique citation mentions equal to the number of citation mentions. 

 
Figure 4.8: Sampled articles ranked by citation number 

The following hypotheses were tested using Spearman’s rho correlation statistical test. The 

results of the tests are displayed in Table 4.4.  

Hypothesis 10: There is no correlation between the number of citations and the proposed 

citation context similarity-based citation weight 

Hypothesis 20: There is no correlation between the number of citation mentions and the 

proposed citation context similarity-based citation weight 

Hypothesis 30: There is no correlation between the number of multiple citation mentions 

and the proposed citation context similarity-based citation weight 
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Hypothesis 40: There is no correlation between the sum of multiple citation mentions and 

the proposed citation context similarity-based citation weight 

Hypothesis 50: There is no correlation between the number of positive sentiments and the 

proposed citation context similarity-based citation weight 

Table 4.4: Correlations between the proposed citation weighting methods and 

existing metrics 
 Metric Correlation co-

efficient 
Significant 
level (2 
tailed) 

Statistically 
significant 

Proposed Metric Number of citations .93 .00 Yes 

Number of citation 
mentions 

.99 .00 Yes 

Number of multiple 
citation mentions 

.89 .00 Yes 

Sum of multiple citation 
mentions 

.89 .00 Yes 

Number of positive 
sentiments 

.86 .00 Yes 

Proposed Metric with 
semantic similarity scores 
(without citation count) 

.83 .00 Yes 

 

The results of Spearman’s rho correlation tests in Table 4.4 show there is a strong, positive, 

and significant relationship between the proposed measure and each of  the number of 

citations received, the number of citation mentions, the number of multiple citation 

mentions, the sum of multiple citation mentions, and the number of positive citation 

sentiments. Therefore, Hypothesis 10, Hypothesis 20, Hypothesis 30, Hypothesis 40, and 

Hypothesis 50 are rejected. 
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 Residual Citation 

The number of articles sampled at every generation of citation, as well as the number of 

citation contexts at every citation generation for each of the 10 base articles can be found 

in Table 4.5. Included in Table 4.5 are the number of citation contexts collected from 

generations one to five. The average number of citation contexts of the base articles that 

were extracted from the first generation was 9.8 (maximum=20, minimum=5). A total of 

221 (average=22.1, maximum=44, minimum=13) citation contexts of the first-generation 

articles were extracted from the second-generation articles. 439 (average=43.9, 

maximum=61, minimum=22) citation contexts of the second-generation articles were 

extracted from the third-generation articles. Fourth-generation articles produced 748 

(average=74.8, maximum=102, minimum=40) citation contexts of third-generation 

articles. Similarly, fifth-generation articles produced 1257 (average=125.7, 

maximum=141, minimum=113) citation contexts of fifth-generation articles. For ease of 

reporting, citation contexts of the base articles from the first-generation articles were 

labelled first-generation citation contexts. Similarly, citation contexts of the first-generation 

articles that were obtained from the second-generation articles were labelled second-

generation citation contexts. The same rule applies to the citation from other generations. 

The number of citation context pairs between the citation contexts of first-generation 

articles and citation contexts of articles in other generations is displayed in Table 4.6. The 

result shows that the number of citation context pairs from the first- and second-generation 

citation contexts was 419 (average= 41.9, maximum=103, minimum=15). The number of 

citation context pairs from the first- and third-generation citation contexts was 879 
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(average=87.9, maximum=194, minimum=36). The number of citation context pairs from 

the first- and fourth-generation publications was 1524 (average=152.4, maximum=259, 

minimum=79). The number of citation context pairs from the first- and fifth-generation 

publications is 2450 (average=245.0, maximum=563, minimum=127). 

The number of citation pairs depends on the number of citation mentions in the citing 

articles of the two generations in question. The number of citation context pairs between 

an article with m citation mentions and another article with n citation mentions was 

obtained as nxm. The lowest citation context pairs (n=249) from the first and other 

generation papers were recorded by the second article, while the highest number (n=1,114) 

of citation context pairs were from the ninth article. The total number of citation context 

pairs for the indirect citation weighting part of this thesis was 5272.  
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Table 4.5: Indirect Citations Statistics 

 

Table 
times 
cited 

sample size per generation citation contexts no/generation 

1 2 3 4 5 1 2 3 4 5 

1 Siegel, R. et al (2014) Cancer statistics, 2014. 9090 5 10  20  40  69 11 22 22 40 113 

2 Bolger, A.M., Lohse, M. and Usadel, B. (2014). Trimmomatic: 
a flexible trimmer for Illumina sequence data. 8864 

5 10  20  40  74 5 15 36 71 
127 

3 Stamatakis, A. (2014). RAxML version 8: a tool for 
phylogenetic analysis and post-analysis of large phylogenies. 8508 

5 10  20  40  73 8 19 41 76 
128 

4 Love, M. I., Huber, W., and Anders, S. (2014). Moderated 
estimation of fold change and dispersion for RNA-seq data 
with DESeq2. 6732 

5 10  20  40  78 6 17 41 65 

131 

5 Ogden, C.I. et al (2014). Prevalence of childhood and adult 
obesity in the United States, 2011-2012. 4928 

5 10  20  40  67 10 15 60 89 
112 

6 Ng., M. (2014). Global, regional, and national prevalence of 
overweight and obesity in children and adults during 1980-
2013: a systematic analysis for the Global Burden of Disease 
Study 2013. 4576 

5 10  20  40  68 10 44 61 83 

130 

7 Go, A., et al (2014). Photovoltaics. Interface engineering of 
highly efficient perovskite solar cells. 3905 

5 10  20  40  67 7 13 52 76 
141 

8 Koln, P., et al (2014). Heart disease and stroke statistics--
2014 update: a report from the American Heart Association. 3880 

5 10  20  40  65 12 21 42 102 
117 

9 Schizophrenia Working Group of the Psychiatric Genomics 
Consortium (2014) Black phosphorus field-effect 
transistors. 3577 

5 10  20  40  75 20 30 51 68 

137 

10 Lamouille, S., Xu, J., and Derynck, R. (2014). Solvent 
engineering for high-performance inorganic-organic hybrid 
perovskite solar cells. 3323 

5 10  20  40  74 9 25 33 78 

121 

 50 100 200 400 710 98 221 439 748 1257 
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Table 4.6: Number of citation context pairs in the Indirect Citation Dataset 

 No of pairs between first and other generations  
First-second First-third First-fourth First-fifth Total 

Article 1 34 89 168 266 557 

Article 2 15 36 71 127 249 

Article 3 28 59 117 208 412 

Article 4 21 45 79 151 296 

Article 5 29 97 171 238 535 

Article 6 74 122 163 221 580 

Article 7 19 82 108 202 411 

Article 8 55 107 251 276 689 

Article 9 103 194 254 562 1113 

Article 10 41 49 138 202 430 

Total 419 880 1520 2450 5272 

Descriptive Statistics of the semantic similarity measure between citation context pairs are 

presented in Table 4.7. below. First, the distributions of the semantic similarity measures 

on histogram graphs were inspected visually for normality. The distributions are presented 

in Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12, and they are symmetrical in shape. 

Table 4.14 shows that averages of the weights of the residual citations received by the base 

articles from the second, third, fourth and fifth generations are 0.47, 0.43, 0.40 and 0.37, 

respectively. The average reduced consistently from the second to the fifth citation 

generations.  

Table 4.7: Averages of the residual citations received from the second to the fifth 

citation generations 
 Second 

Generation 

 Third 
Generation 

Fourth 
Generation 

Fifth 
Generation 

article 1 0.51 0.41 0.40 0.39 

article 2 0.31 0.33 0.30 0.28 

article 3 0.44 0.41 0.36 0.31 

article 4 0.3 0.27 0.29 0.27 

article 5 0.5 0.44 0.43 0.40 

article 6 0.52 0.5 0.45 0.42 

article 7 0.41 0.41 0.40 0.38 

article 8 0.62 0.57 0.53 0.48 
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article 9 0.59 0.5 0.48 0.42 

article 10 0.48 0.45 0.41 0.40 

all 0.47 0.43 0.40 .37 

 

Figure 4.9: Distribution of the residual citations received from the second generation 

citations 

 

Figure 4.10: Distribution of the residual citations received from the third generation 

citations 
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Figure 4.11: Distribution of the residual citations received from the fourth 

generation citations 

 

Figure 4.12: Distribution of the residual citations received from the fifth generation 

citations 
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 Residual Citation Patterns between the cited documents and 

their nth Generation Citations 

This subsection presents the results on the Research Question 4. The semantic similarity-

based residual citation weights were categorized using the thresholds that were specified in 

Section 4.1 for classifying the citation weights. Not similar citation context pairs (i.e. with 

less than 0.51 semantic similarity score) were allocated zero weight. Somewhat similar 

citation context pairs (i.e., greater than or equal to 0.51 and less than 0.71 semantic 

similarity score) were allocated a weight of 0.5. Similar citation context pairs (i.e. greater 

than or equal to 0.71 semantic similarity score) were allocated a weight of one. 

Categorization of the weights (see Table 4.8) shows that the fewest of weights received by 

the base articles was that of 1. Most of the weights received were zero and the proportion 

of zero weights increased from second generation to the fifth generation. 

Table 4.8: Categories of the residual citation semantic similarity scores 

Generation Weight=1 Weight=0.5 Weight=0 N 

Second 4% 37.00% 59% 100 

Third 0 26.50% 73.50% 200 

Fourth 1% 20% 79% 400 

Fifth 0% 10% 90% 710 

The percentage of non-zero weights received by the base articles from the second to the 

fifth generations are presented in Table 4.9. The result shows the percentage of non-zero 

weights received by each of the base articles reduced from the second generation (43%) to 

the fifth generation (10%). Article 8 consistently received that highest percentage of non-

zero weight at all the generations, with 90% non-zero weight at the second generation, more 
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than 50% non-zero weights at all the generation except the 5th generation. On the other 

hand, the worst performing base articles-Article 2 and Article 4- received no non-zero 

residual weights at three of the four generations of citations. 

Table 4.9: Non-zero indirect Citation weights 

Base articles Non-zero residual weights 

 
2nd Generation 3rd Generation 4th Generation 5th Generation 

article 1 40% 15% 22.5% 10.14% 

article 2 0% 5% 0% 0% 

article 3 10% 25% 12.5% 2.74% 

article 4 0% 0% 5% 0% 

article 5 30% 30% 17.5% 8.96% 

article 6 80% 45% 17.5% 13.24% 

article 7 20% 10% 12.5% 7.35% 

article 8 90% 80% 60% 36.92% 

article 9 90% 50% 37.5% 18.67% 

article 10 50% 5% 12.5% 5.41% 

Total 43% 26.5% 19.75% 10% 

 

 Differences in the residual citations between the generations of 

citation 

This sub-section contains the results on Research Question 2. From the observations in 

Table 4.7, the averages of the semantic similarity scores between the citation context pairs 

reduced from the first generation to the fifth. This observation was consolidated with the 

number of non-zero weights in Table 4.9 as the number of non-zero weights also reduced 

from the first to fifth generation citations. To find out if the differences in the averages are 

statistically significant, Hypothesis 60 was stated and tested. 
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Hypothesis 60: The residual citation score per paper is the same for all the generations of 

citation. 

The averages of the semantic similarity scores between the citation context in the first- 

generation articles and subsequent generations decreased as the generations got farther 

from the base article. In other words, using semantic similarity score between the citation 

contexts as a measure of residual citations from the base article, the result of the averages 

of the semantic similarity measure shows that the residual citations received by the base 

article continuously reduced as the generations of citations increased. Therefore, 

Hypothesis 60 was stated to guide this thesis. Inferential statistics was therefore performed 

to confirm if the observed differences in the averages are significant. 

Since the data is continuous, a recommended statistical test is the analysis of variance 

(ANOVA). It was tested to determine if the datasets conformed to other conditions for 

ANOVA test. The following conditions were examined: 

1. Dependent variable (interval data type): semantic similarity scores 

2. Normally distributed samples: The histogram of the four distributions are displayed in 

Figure 4.13, Figure 4.14, Figure 4.15 and Figure 4.16, which shows all the distributions 

are approximately normal. 

3. Test of Homogeneity: Result of the Levene’s test of homogeneity of variances is 

displayed in Table 4.9. We reject the null hypothesis as p<0.05. The variances are not 

equal. The datasets violated the test of homogeneity of variances; therefore, the 

datasets are not appropriate for ANOVA. Kruskal Wallis, a non-parametric test, was 
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considered as an alternative to ANOVA to test if the differences between the citation 

context pairs’ semantic similarity scores are significant. 

Table 4.10: Tests of Homogeneity of Variances for the semantic similarity score per 

paper 

 Levene Statistic df1 df2 Sig. 

Based on Mean 5.333 3 1406 .001 

Based on Median 5.125 3 1406 .002 

Based on Median and with adjusted df 5.125 3 1367.793 .002 

Based on trimmed mean 5.345 3 1406 .001 

Kruskal-Wallis Test 

The result of the Kruskal-Wallis statistic test is displayed in Table 4.11 below.  A Kruskal-

Wallis test showed there was a statistically significant difference in the semantic similarity  

score per paper between the generations of citation, χ2(3) = 65.58, p = 0.00, with a mean 

rank semantic similarity score of 917.31 for the second generation citations, 817.79 for the 

third generation citations, 731.23 for the third generation citations, and 629.54 for the fifth 

generation citations. The mean rank statistic shows that the citation context similarities 

reduced as the generations went farther from the base article, and this is statistically 

significant. 

Table 4.11: Mean Rank Statistics 

 Semantic similarity categories N Mean Rank 

Residual citation weights 

score per paper from the 

four generations 

Second generation citations 100 917.31 

Third generation citations 200 817.79 

Fourth generation citations 400 731.23 

Fifth generation citations 710 629.54 

Total 1410  
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Table 4.12: Independent-Samples Kruskal-Wallis Test Summary 

Total N 1410 

Test Statistic 68.58a 

Degree Of Freedom 3 

Asymptotic Sig.(2-sided test) .00 

a. The test statistic is adjusted for ties. 

Given that Hypothesis 60 was rejected as there was a statistical difference between the 

semantic similarity scores between the generations of citation, pairwise comparisons 

between consecutive generations was examined using Bonferroni correction. Result of the 

pairwise comparison test is displayed in Table 4.13.  

Table 4.13: Pairwise Comparisons of the Semantic Similarity Score categories 

Sample 1-Sample 2 Test 
Statistic 

Std. 
Error 

Std. Test 
Statistic 

Sig. Adj. Sig.a 

Second generation residual citation-
fourth generation residual citation 

101.69 25.46 4.00 .000 .000 

Fifth generation residual citation-third 
generation residual citation 

188.24 32.60 5.78 .000 .000 

Fifth generation residual citation-second 
generation residual citation 

287.77 43.49 6.62 .000 .000 

Fourth generation residual citation-third 
generation residual citation 

86.55 35.26 2.46 .014 .085 

Fourth generation residual citation-
second generation residual citation 

186.08 45.52 4.09 .000 .000 

Third generation residual citation-
second generation residual citation 

99.53 49.87 2.00 .046 .276 

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 
 Asymptotic significances (2-sided tests) are displayed. The significance level is .050. 
a Significance values have been adjusted by the Bonferroni correction for multiple tests.  

The result of the pairwise comparison as shown in Table 4.13, The difference between first-

generation and every other generation under consideration is significant. 
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 Difference between the proposed residual citation and the 

cascading citation weights 

This sub-section contains the results on Research Question 3. The comparison between the 

cascading citation system and the proposed residual citation weights is in two phases. In 

the first phase, cascading citation weights were compared to the proposed indirect citation 

weights for each of the ten base articles at every generation. At the second phase, cascading 

citation weight per indirect citation was compared to the average semantic similarity score.  

4.3.3.1 Cascading citation weights and the proposed indirect citation weights per base 

article 

The cascading citation weights compared to the proposed indirect citation weights for each 

of the ten base articles at the second generation is visualized in Figure 4.13: Second 

Generation Indirect Citation Weights ComparisonFigure 4.13. A total of 20% of all the 

base articles received zero indirect semantic similarity-based citation weights, while all the 

base articles received equal cascading residual citations. Article 8 and article 9 received the 

highest residual semantic similarity-based citation weight of 5. Only two articles (article 8 

and article 9) received the same value of cascading citation weights and semantic similarity-

based citation weight. At least 80% of the residual citation weights of three base articles’ 

(article 6, article 8 and article 9) second-generation articles were allocated non-zero 

semantic similarity-based citation weights. Nevertheless, the weights under the proposed 

method were lower than those of the cascading citation system, except on two occasions. 
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Figure 4.13: Second Generation Indirect Citation Weights Comparison 

The comparison between the proposed citation weights and the cascading citation system 

at the third generation is visualized in Figure 4.14. At the third generation, the number of 

indirect citations to the base articles doubled, though the cascading citation weights 

remained the same. The number of base articles that got zero residual citations also 

increased at the third generation. Unexpectedly, the number of non-zero weights reduced 

from the second generation though the number of indirect citations increased at this 

generation as 50% of the base articles received zero weights when the lowest citation 

contexts’ semantic similarity scores were considered for weight allocation. On the other 

hand, on two occasions, base articles got more residual citations from the proposed method 
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than the cascading citation when the highest citation contexts’ similarity scores were 

considered for weight allocation.  

 

Figure 4.14: Third Generation Indirect Citation Weights Comparison 

The comparison between the proposed citation weights and the cascading citation system 

at the fourth generation is visualized in Figure 4.14. The number of indirect citations to the 

base articles quadrupled at the third generation, though the cascading citation weights 

remained the same. The number of base articles that got zero residual citations also 

increased at the third generation. The average value of residual citations per base article 

continued to increase, though the semantic similarity score average reduced. 
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Figure 4.15: Fourth Generation Indirect Citation Weights Comparison 

The comparison between the proposed citation weights and the cascading citation system 

at the fifth generation is visualized in Figure 4.14. The number of indirect citations to the 

base articles increased eight folds at the fifth generation, though the cascading citation 

weights remained the same. The number of base articles that got zero residual citations also 

increased at the fifth generation.  
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Figure 4.16: Fifth Generation Indirect Citation Weights Comparison 

 

4.3.3.2 Comparison between cascading citation weight and the highest semantic 

similarity score per second-generation article 

Hypothesis 70, Hypothesis 80, Hypothesis 90, and Hypothesis 100 were stated to guide the 

study. The hypotheses were stated to determine if the differences between ½, ¼, 1/8, and 

1/16 (cascading citation weights) and the semantic similarity scores per second, third, 

fourth and fifth-generation articles, respectively. For instance, Hypothesis 70  was stated to 

investigate if there was a significant difference between ½ (second-generation cascading 

citation weight) and the semantic similarity scores at the second generation.  
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Since the distributions of the semantic similarity weights are normal (see Figure 4.9, Figure 

4.10, Figure 4.11 and Figure 4.12), one sample T-Test was considered appropriate to 

investigate if there is are statistical differences between the semantic similarity scores and 

cascading citations. The result of one sample-T-test statistical test that was performed on 

the appropriate datasets to investigate the stated hypotheses is displayed in Table 4.14. The 

result showed that there is a significant difference between the cascading citation weight 

and the residual citation score at every generation. It was found there was a significant 

difference t(99)=-2.47, p=.02, between the cascading citation weight and average residual 

citation score at the second generation. It was found there was a significant difference 

t(199)=20, p=.00, between the cascading citation weight and average residual citation score 

at the third generation. It was found there was a significant difference t(399)=46.13, p=.00, 

between the cascading citation weight and  average residual score at the fourth generation. 

It was found there was a significant difference t(709)=75.41, p=.00, between the cascading 

citation weight and average residual citation score at the fifth generation. 

Hypothesis 70: There is no significant difference between the cascading citation weight 

and average residual citation score per second-generation article. 

Hypothesis 80: There is no significant difference between the cascading citation weight 

and average residual citation score per third-generation article. 

Hypothesis 90: There is no significant difference between the cascading citation weight 

and average residual citation score per fourth-generation article. 
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Hypothesis 100: There is no significant difference between the cascading citation weight 

and average residual citation score per fifth-generation article. 

Table 4.14: One-Sample T-Test result for the Average Residual Citation Score 

 t df 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval of the Difference 

Lower Upper 

Second generation -9.61 42 .000 -.058 -.0697 -.0460 

Third generation 38.95 88 .000 .14 .1321 .1461 

Fourth generation 89.04 15 .000 .25 .2443 .2553 

Fifth generation 138.59 2449 .000 .27829 .2743 .2822 

One sample T-test result, presented in Table 4.14 shows from second to the fifth generation, 

the residual citations accrued by the sampled articles derived from the proposed semantic 

similarity method and the old cascading citation system are significantly different. The 

residual citations were mostly under-estimated by the cascading citation system.  
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Chapter 5 

5 Discussion 

This chapter discusses the findings as they relate to the research questions that were stated 

in chapter 1 of this thesis. Contributions of this study to knowledge in the relevant fields 

that may not be captured under the research questions were also included in the discussion 

section. 

 Research Question 1: What is the relationship between 
the proposed semantic similarity-based citation context 
weight and existing metrics? 

The proposed semantic similarity-based citation weight was compared with the following 

existing metrics; the number of citations, number of citation mentions, number of multiple 

citations, the sum of multiple citation mentions and number of positive sentiments. The 

comparisons were based on three methods. First, the proposed weight was compared with 

the number of citations and the number of citation mentions using visualization in the 

methodology section. Secondly, the proposed metric was compared to the existing metrics 

using Spearman’s rho statistical test to investigate the relationship between the proposed 

metric and the existing. In addition, it was investigated if the relationships between the 

proposed and existing metrics were statistically significant. Thirdly, the rankings of the 

sampled articles obtained when based on the proposed metric was compared with the 

rankings obtained when based on each of the existing metrics. Ranking the sampled articles 

gave a different picture of the relationship between the sampled articles. The first twenty-
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five of the sampled articles' ranking by the proposed semantic similarity-based citation 

weight is presented in Table 5.1. 

Table 5.1 shows significant rank changes among the 25 top cited publications when they 

were ranked using the proposed semantic similarity-based metric. For instance, article 25 

that received only 93 citations moved up 20 places because of its influence in the citing 

publications with high number of citation mentions and multiple mentioned citations. 

Article 25 moved above articles that received 70 citations more. This in turn reflected in its 

high semantic similarity-based metric. Other notable upward rank change occurred with the 

ranked 28 publication that moved up by 18 positions. Notable downward rank changes 

occurred at the article 13 and article 14 publications that moved by ten positions, despite 

receiving 20 more citations than many publications above it in the new position. Article 13 

and article 14 moved significantly downward because they received lower number of 

citation mentions and multiple citation mentions. 
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Table 5.1: The first 25 articles ranked by the proposed weighted citation 
Rank by citation 

number Diff in rank 
Semantic similarity-based 

citation weight citation  citation mentions 
Number 

mentions>1 
Sum  

mentions>1 
Positive sentiment 

citation 

rank 1 0 249.96 180 326 70 216 241 

rank 3 1 241.03 162 267 51 156 135 

rank 7 4 230.58 128 267 47 186 118 

rank 6 2 215.72 137 256 47 166 119 

rank 25 20 212.52 93 252 55 214 127 

rank 11 5 202.24 110 221 41 152 113 

rank 2 5 197.92 167 215 29 77 146 

rank 5 3 190.58 149 204 34 89 114 

rank 4 5 178.5 157 194 29 66 39 

rank 28 18 170.14 85 184 32 131 94 

rank 8 3 169.88 124 205 41 122 68 

rank 21 9 157.67 96 180 32 116 56 

rank 16 3 156.56 102 172 32 102 54 

rank 12 2 149.21 110 169 33 92 64 

rank 10 5 148.75 117 159 20 62 90 

rank 22 6 148.36 96 180 45 129 53 

rank 17 0 145.02 101 168 33 100 78 

rank 9 9 142.73 118 160 26 68 79 

rank 20 1 142.48 97 164 32 99 73 

rank 15 5 140.26 102 155 23 76 58 

rank 27 6 139.23 87 161 35 109 80 

rank 19 3 135.33 100 156 33 89 59 

rank 13 10 130.91 107 141 21 55 80 

rank 14 10 126.74 107 139 21 53 57 

rank 30 5 124.04 82 146 31 95 53 
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This study showed a strong, positive and significant relationship between the proposed 

citation weight and the number of citations received by the sampled articles. This 

observation implies a linear relationship between the number of citations and the proposed 

semantic similarity-based citation weights, and the proposed citation weight is an 

alternative to the number of citations. The number of citations is an easy to compute metric, 

though superficial. On the other hand, the proposed metric is more complex to compute 

but more nuanced as it depicts a degree of contribution because it is a measure that is based 

on the analysis of the contribution of the cited article in the citing article. Secondly, the 

proposed metric serves the practical use of citation, given that citations are supposedly 

points of knowledge exchange between citing and cited publications. The proposed citation 

weight places a premium on allocating weight based on the uniqueness of contribution 

from every knowledge exchange point (citation mentions). In theory, the proposed weight 

is a count of unique contribution from the cited and citing article, given that zero weight is 

added whenever a citation mention is not different from the others; therefore, a more 

nuanced method than the number of citations and number of citation mentions. 

It is interesting to note that the proposed semantic similarity-based citation weight 

correlated highly with the number of citations. A partial list of metrics that highly corelated 

with number of citations in previous studies include citation mentions, number of multiple 

citation mentions, the sum of multiple citation mentions (N-weighted recitation weight) 

and N-squared citation counting (Zhao & Strotmann, 2016). In contrast, Hassan et al. 

(2017) reported a weak correlation coefficient between the importance of a paper and the 

average number of citations received per year. Similarly, the number of citations, while 
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regarded as a weak feature in this previous study, was yet classified as one of the best 

features for classifying citations based on importance (Valenzuela et al., 2015b) 

Although the relationship between the number of citations and the proposed citation weight 

was high and statistically significant, the comparison of the ranks (see Appendix B) of the 

sampled articles by the proposed citation weight and citation number shows only 7% of the 

sampled articles retained their ranks. Of the 93% of the sampled articles that changed ranks, 

seven articles changed at least 20 places, and the most significant change in position is 30. 

The average position change was 8.28. This result shows that though the proposed citation 

weight is statistically related to citation number, the change in ranks of the sampled articles 

using the two metrics shows that they are practically different metrics.  

Among other metrics, the relationship between the proposed citation weights and citation 

mentions is the strongest statistically. Notably, citation mentions had a perfect correlation 

with the proposed semantic similarity-based citation weights. It is speculated that the high 

number of single mentions which constituted about 73% of the sample contributed to the 

high correlation. First, it appears that the effect of discounting citation count in favour of 

placing more weights on uniqueness was unexpectedly not visible on the relationship 

between the two metrics. Secondly, the high correlation between the proposed semantic 

similarity-based citation weight and the number of citation mentions suggests that the 

proposed citation weights may rank among important metrics for determining the 

contribution of citations. Previous studies regarded the number of citation mentions as the 

strongest feature for measuring the contribution of cited documents in the citing documents 

(Yu et al., 2019; Zhu et al., 2015). In light of this, it will be of interest to find out in future 
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studies how well the proposed citation weight performs in predicting the contribution, 

importance or influence of cited publications in citing publications.  

It is important to note that the strong relationship between the number of citation mentions 

and the proposed citation weighting connotes the importance of the proposed citation 

weighting in predicting and measuring contribution. The proposed semantic similarity-

based citation weighting, which is a derivative of citation mention, could be categorized as 

a contribution metric, given that Yu et al. (2019) suggested that the number of citation 

mentions is a useful metric for measuring contribution. Similarly, Zhu et al. (2015) found 

in-text citation mention as the most vital feature for predicting scientific publications' 

academic influence. Zhao et al. (2017) mapped uni-citation and multi-citations to citation 

functions. It was observed that most single mentioned citations were non-essential (either 

perfunctory or reviewed citation functions), while multiple citations were likely to be 

influential on the citing paper.  

It appears despite the high likelihood of citation mentions to predict the importance or 

contribution of publications and its high correlation with content-based metrics that predict 

contribution, content-based metrics perform better in some studies in predicting the 

contribution of cited publications than the syntactic feature. In Hassan et al. (2017), citation 

mentions had the highest correlation coefficient among other contextual, cue word-based, 

and textual features for determining important citation classes. However, Hassan et al. 

(2017) further found out that the correlation coefficient did not tell the whole story as 

features such as the similarity between the abstract of cited paper and text of citing paper, 

and cue words for using and extending research were more informative in classifying 
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citations into important/non-important classes than the number of citation mentions. 

Similarly, for Yu et al. (2019), result was mixed; despite the usefulness of citation mention 

frequency for measuring contribution, the correlation between relevancy, a content-based 

metric, and the number of citation mention was not linear. Yu et al. (2019) regarded 

“relevance” as a degree of contribution from the cited article to the citing article. The 

statistical relationship between relevance and citation mentions was low but was the 

strongest among other investigated metrics.  

Unsurprising, the change in rank when the sampled articles were ranked using the proposed 

citation weights and citation mentions is the lowest among other investigated metrics, 

showing that these two metrics are the most similar. The average rank change was 2.08, 

while 77% changed ranks, and the highest rank change was 12.  

Surprisingly, the relationship between the proposed citation weights and each of two other 

metrics, the number of multiple citation mentions and the sum of multiple citation mentions 

was moderately strong and significant. The two metrics had the same correlation 

coefficient with the proposed citation weights. This result implies that the removal of single 

mentioned citations (supposedly the non-essential citations) does not improve the 

relationship between citation mentions and the proposed metric for measuring contribution, 

as revealed earlier that citation mention count had a higher correlation coefficient than the 

multiple citation metrics. Secondly, given that the two metrics under consideration had the 

same value of correlation co-efficient with the proposed semantic similarity-based citation 

weights suggests that counting or summing multiple citation mentions makes no difference 

in practice for the prediction of contribution.  
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The sampled 100 articles, when ranked with the number of multiple citation mentions, are 

presented in 
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Appendix E. The average rank change was 9.66, while 97% of the sampled articles changed 

ranks, and the highest rank change was 35. The result of the sampled 100 articles when 

ranked with the sum of multiple citation mentions is presented in 
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Appendix F. The change in rank when the sampled articles were ranked by the proposed 

citation weights and sum of citation mentions was the highest of the four existing metrics 

after the number of positive citation sentiments. The average rank change was 10.52, while 

94% of the sampled articles changed ranks, and the highest rank change was 35.   

The correlation coefficient of the the proposed semantic similarity-based citation and the 

number of positive citation sentiments, though moderately strong, positive and significant, 

was the lowest among the metrics that were compared with the proposed metric. Yan et al., 

(2020) found a positive, weak and significant correlation between sentiment and journal 

citation impact. The result of the sampled 100 articles when ranked with the number of 

positive citations is presented in Appendix G. The change in rank when the sampled articles 

were ranked by the proposed citation weights and the number of positive citations was the 

highest. The average rank change was 11.82, while 96% of the sampled articles changed 

ranks, and the highest rank change was 56.   

 Research Question 2: How different is the proposed 
semantic similarity-based residual citation weights from 
the cascading citation weights? 

Similar to the cascading citation weighting, it was observed that the average semantic 

similarities values reduced as the number of citation generation increased. However, there 

were differences between these average values and those proposed by the cascading citation 

weights. The average for the highest semantic similarity score was lower than the average 

indirect citation from the cascading citation system at the second generation. In contrast, 

the average for the highest semantic similarity score was higher than the average indirect 

citation from the cascading citation system at the third, fourth and fifth generations. This 
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implies the change in the average semantic similarity from one generation to the next was 

not exponential in the proposed indirect citation weighting system, unlike the cascading 

citation system.    

Since the proposed indirect citation is a derivative of the semantic similarities, it is only 

logical that the average residual citations accrued to the base articles reduced as the number 

of citation generation increased. It is interesting to note that the cascading citation system 

is limited in many ways. First, this study has revealed that some blanket values cannot 

determine the residual citation accrued to an article from its indirect citations. Residual 

citations are dependent on factors that could be behavioural; indirect citations are therefore 

dynamic, as shown in this study. From the result of this thesis, some articles were able to 

accrue indirect citation greater than the cascading citation weights; others accrued less. 

 Research Question 3: What differences exist in the 
residual citations between the generations of citation? 

As expected, the similarity between the citation context of the first-generation citation and 

the second, third, fourth and fifth generations declined as the number of generations 

increased. This means, on average, the rate at which a publication potentially transfers 

knowledge to its indirect citations reduces as the generations increases. In corollary, the 

number of residual citations due to an article reduces as the number of citation generations 

also increases. Like the cascading citation weighting system, the average amount of residual 

citations accrued from the indirect citation was highest at the second generation and 

reduced as the number of generations increased.  

It was interesting to observe at individual base articles how this played out. The amount of 

knowledge transferred from the individual base articles reduced consistently from the 
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second to the fifth in articles. Interestingly, for base articles that received above-average 

residual citation at the second generation, the residual citation they received at the 

subsequent generations was also above average, and vice-versa. This means scientific 

publications possess different features, and possibly some factors determine the 

contributions of an article beyond its direct citations. While some consistently contribute 

indirectly above average and others do not, this is an area of research that deserves some 

attention in the future. 

 Research Question 4: What is the Residual Citation 
pattern between cited documents and the nth generation 
citations?  

How often does an article receive non-zero residual citation weights from its indirect 

articles? It was revealed that about 40% of the indirect articles produced non-zero weights 

at the second generation; this proportion reduced to 26.5%, 21%, and 10% at the third, 

fourth and fifth generations, respectively. This is not surprising given that it was initially 

noted that the semantic similarity scores reduced as the number of generations increased. 

The non-zero weights pattern throws more light onto the number of the indirect citations 

that received meaningful contributions from the base articles. The semantic similarities 

averages do not tell the whole story because they do not give the idea about how meaningful 

the contributions from base articles are to indirect citations. For instance, this result shows 

the proposed weighting system's dynamism instead of the linear system proposed by the 

cascading citation system. While the difference in the proportion of non-zero weights 

between the third and fourth generations seems close, further investigation is needed to 
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ascertain the pattern of decline in the proportion of non-zero indirect citation weights as the 

number of generations increases. 

Three categories of base articles were observed. The first category includes articles that 

received zero non-zero weights from all their indirect citations at all generations. The 

second category of base articles are averagely looking; they received average non-zero 

weights from their indirect citations across all generations. The third categories of base 

articles received above-average non-zero weights from their indirect citations across all 

generations. The result showed that the base articles in the three categories that were 

described received either relatively high or low numbers of non-zero weights at every 

generation. This implies that beyond the behavioural factor that may impact the amount of 

residual citation that could be accrued to an article, some articles could be influential 

probably because of the amount of information they contain. Therefore, very useful articles 

receive more residual citations than less useful articles. The proposed indirect citation 

weighting, therefore, is an important metric for weighting the influence of an article.  
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Chapter 6 

6 Conclusion and Recommendation 

 Summary and Conclusion 

 Direct Citation Weighting 

This thesis proposes a weighting method for citation mentions/contexts, where unique 

citation contexts are allocated more weights. This thesis is built on the citation mention 

analysis as a method for weighting citations. Like citation mention analysis, cited articles 

with more citation mentions receive more weights. A total of 100 publications that received 

moderate citations (maximum=179, minimum=31, average=73.17) and were published in 

2014 were systematically sampled from the Web of Science database. Most of the articles 

(73.02%) were mentioned once in the citing articles. There were 11,234 citation contexts; 

5918 citations were mentioned more than once in the citing publications. A total of 9795 

citation context pairs were obtained from the 5918 citation contexts that were mentioned 

more once. Citation context pairing occurred between at least two citation mentions of a 

cited document in the citing document. All the possible citation context pairs in multiple 

citation mentions were obtained. The number of citation context pairs per citing document 

was obtained as n combination 2 (
n
C2), where n is the number of citation mentions.  

A python program that implemented the BioSentVec sentence embeddings model  was used 

for automating the semantic similarity measurement between citation context pairs. The 

semantic similarity score between a citation context pair represented as the cosine value of 
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the angle between the representations of the citation contexts on vector space was a 

numerical value between zero and one. Manually classified citation context pairs to three 

semantic similarity classes (similar, somewhat similar, and not similar) was necessary since 

there were no existing human-annotated citation context semantic similarity corpora. Out 

of the 9795 pairs of citation contexts, a total of 981 citation context pairs were given to two 

biomedical experts for annotation. The annotation was used for creating boundaries 

between zero and one for the three semantic similarity classes, semantic similarity score 

equal to zero and less than 0.51 were categorized as “not similar” and allocated weight of 

one, semantic similarity scores that were equal to 0.51 and less than 0.71, were categorized 

as “somewhat similar”  and allocated weight of 0.5, while semantic similarity scores that 

fell between to 0.71 and one were categorized as “similar” and allocated weights of zero. 

Spearman rho’s correlation test revealed citation mentions was the most similar metric to 

the proposed direct citation metric. This result implies the expected impact of discounting 

the ordinary count of citation mentions was of no effect on the ranking of the sampled 

publication using the proposed citation weighting system and the number of citation 

mentions. Other existing metrics were less similar to the proposed citation weighting 

system, and this was reflected in the rank change, which varied significantly when the 

sampled articles were ranked using the proposed citation weighting in comparison to the 

existing metrics. 

 Indirect Citation Weighting 

Indirect citation weighting is concerned with allocating weights that are based on the 

contribution of a previously cited article in publications that did not cite it, but exist as a 
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generation of citation on its citation path. Allocating weights to indirect citation in this 

thesis is exploratory and the research inquiries focused on the following; are there situations 

where papers should be allocated residual citations from papers that indirectly cited them 

by considering the contribution of the previously cited paper in the generations of its 

citation. 

The top ten most cited biomedical publications that were published in 2014 were sampled 

as the base articles. A total of 50 first-generation articles, 100 second-generation articles, 

200 third-generation articles, 400 fourth generation articles and 710 fifth-generation articles 

were sampled. Citation context pairs were obtained from the citation context of the first 

generation articles and citation contexts of nth generation citation. Citation context pairs 

were fed to the already trained python program that is based on the already trained 

BioSentVec model to obtain the semantic similarity scores. The citation context pair of a 

first-generation article and its nth generation article with the highest semantic similarity 

score was selected as proof of the contribution of base article in the  the contribution of the 

base article in the nth generation article and considered for allocating residual citation.  The 

selected semantic similarity scores were classified as “not similar”, “somewhat similar”, 

and “similar” using the boundaries obtained in the direct citation weighting aspect of this 

thesis.  

The result of the indirect citation weighting part of this study revealed like the cascading 

citation system, that residual citations to articles from their generations of citations 

decreased as the number of generations increased. However, residual citations accrued to 
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publications at all the generations were statistically different between the proposed indirect 

weighting and the cascading citation system.  

 Recommendations 

According to the results of the analysis of the collected data, the proposed semantic 

similarity-based citation weighting method is similar to citation mention frequency weight. 

However, it is recommended that the proposed method be used in future studies with bigger 

datasets and improved computational methods for obtaining semantic similarity in 

biomedical and other fields. It is obvious that obtaining the number of citation mentions is 

simpler than the proposed method; however, the proposed method presents an alternative 

method for weighting the contribution of cited documents in the citing documents. 

The proposed residual citation weighting method requires more complex computation than 

the cascading citation system. However, the proposed residual weighting system helps to 

fulfil the objective of residual citation allocation, which is to fairly quantify the attribution 

of scientific contributions to generations of citation on the citation path of a previously cited 

article. These so-called residual citations, i.e., the ones that are typically overlooked as a 

contribution by omission /attrition, in consequent citations in the second, third or nth 

generations, are then reconstituted. Therefore, it is recommended that future studies 

compare computed results based on the proposed method to human judgement for the 

allocation of residual citations from scientific articles. Secondly, the proposed residual 

citation weighting is recommended over the cascading citation method because this method 

is based on the contribution of articles. 
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 Contributions of the Thesis 

This study contributed both to practice and research in Computer Science and Library 

Information Science disciplines, specifically scholarly communication, bibliometrics, data 

science, and natural language processing sub-fields. 

 Datasets 

 One of the research outputs of this thesis is the datasets from the direct and indirect citation 

weighting parts. There were 11,234 citation contexts for the direct citation and 1,257 

citation contexts for the indirect citation aspects of this doctoral thesis, which translated to 

9,795 citation context pairs and 5,272 citation context pairs, respectively. Citation context 

datasets were collected manually from the sampled articles and without a pre-determined 

window of words or sentences. Similarly to the result in earlier studies, 73.02% of the 

sampled articles' citations for the direct citation context weighting were mentioned once in 

the citing articles. An analysis of the full texts of the journal of informetrics’, a LIS journal, 

74.3% were cited once (Hu et al., 2015). In a multidisciplinary study by Boyack et al. 

(2018), 71.5% of the in-text citations from PubMed Central Open Access Subset (PCMOA) 

and 69.5% of the in-text citations from Elsevier (ELS) journals were cited once. Given that 

the proposed semantic similarity-based citation weighting method is useful for weighting 

multi-mentioned citation contexts, the practical implication of this observation is only 

about 25% of citations can be qualified for weighting. 

One of the merits of the datasets is the manual data collection method, without a fixed 

window of sentences or words. Data collection was focused on painstakingly identifying 
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the span of text that represented the cited knowledge in a well-described manner (see 

section 3.2 for details). The data collection is unlike the method that is used to identify 

citation context in recent large scale studies, which adopts a pre-determined window of 

words or sentences and is optimized for collecting large corpora.  A premium was placed 

on accurately identifying the citation context as opposed to quantity; therefore, strict steps 

were followed to achieve this goal. Identifying citation contexts accurately without a pre-

determined window of text is a work-in-progress(Kang & Kim, 2012; Kaplan et al., 2009; 

Ou & Kim, 2018). Recent studies relied on the use of a fixed window of texts for automatic 

(Houngbo & Mercer, 2017; Singha Roy et al., 2020) and manual (Tabatabaei, 2013) 

identification of citation contexts and this method has been reported in recent studies. While 

automating the use of a fixed window of texts have led to the successful collection of large 

corpora in many studies, research has shown that pre-determined window of texts does not 

always accurately represent the citation contexts (Cohan et al., 2015; Kaplan et al., 2009; 

Ritchie et al., 2006).  In contrast to the existing method of collecting citation context data 

using fixed windows of words or sentences, fairly large citation context corpora were 

collected in this study.  

Another dataset from this thesis is the annotated sample of about 10.02% of the direct 

citation dataset. This dataset had 981 citation context pairs that were annotated into three 

semantic similarity classes -similar, somewhat similar and not similar- by two human 

experts. The sampled datasets were annotated to identify the thresholds between the three 

semantic similarity classes, and there was no corpus in the literature with citation contexts 

in the three semantic similarity classes. The two experts independently annotated all the 
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sampled 981 citation context pairs, and the inter-coder agreement of the two coders was 

66.16% based on the percentage agreement and 0.27 Cohen Kappa score. The inter-rater 

reliability was fair; better inter-rater reliability is desired. 

 New Bibliometric Measures 

One of the contributions of this thesis are the proposed metrics-semantic similarity-based 

citation weighting method and the residual citation weighting method. The proposed 

metrics are based on methods that are different from previous metrics, though the results 

suggest that the proposed direct citation metric is similar to citation mention count, unlike 

the residual citation metric that is different from the existing cascading citation method. 

 Relatedness on Citation Path 

The proposed metrics will potentially start new discussion in scholarly communications 

discipline. For instance, new discussion about the idea of residual citation may lead to a 

new area of research interest because of the potentials for acknowledging contributions 

beyond the conventional direct citation as it is currently known. Secondly, the residual 

citation method exposes new way of exploring relatedness on citation networks, which can 

impact bibliometric enhance-information retrieval. 

 Limitations of the Study 

The experts that were employed to annotate a sample of the citation contexts were early 

career professionals as their knowledge of the discipline is budding. Employing more 

experienced professionals for the data annotation would have been more desirable. 

Furthermore, the inter-rater agreement was below 70%, while the Cohen Kappa score was 
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not strong (0.27). This is a limitation because lower inter-rater reliability scores connotes 

lower reliability of data collection instrument. However, the effect of the lower-inter coder 

reliability was tempered by considering only the datapoints where the two annotators 

agreed, while other records where they disagreed were disregarded. Besides, coding such a 

diverse and multidisciplinary texts may be more difficult than texts from narrower or more 

specific disciplines/sub-discipline such as Biochemistry, Chemistry, Library and 

Information Science etc. This could be one of explanations for the low inter-rater agreement 

between the expert annotators. 

Secondly, only biomedical publications were considered for this study. This may affect the 

external validity of the result of this thesis. Perhaps the results would be different if corpus 

from other disciplines were considered where citing practices are different. Similarly, half-

life of publications can play a role in the residual citation pattern of publications. In fields 

where there are short half-lives, subsequent generations of residual citation characteristics 

could vary a lot. 

 Suggestions for Further Studies 

It is suggested that future studies consider to investigate:  

1. the relationship between citation context polarity, number of citation mentions, and 

function on the contribution of a publication in the generations of its citation, 

2. the correlation between the proposed semantic similarity-based citation weighting 

and citation polarity, citation importance and citation function. 
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3. the performance of the proposed weighting methods using bigger datasets in 

different disciplines, and 

4. the performance of the proposed weighting methods using different methods for 

obtaining semantic similarity scores with annotated datasets by more experienced 

professionals and more trainings. 
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Appendices 

Appendix 1 

Appendix A: Sampled 100 articles for the Direct Citation aspect of this Thesis 

WoS rank Title actual 
# of 
pairs 

# of 
citations 
from WoS removed 

Article 1 
Right heart dysfunction in heart failure with preserved ejection 
fraction. 180 349 200 21 

Article 2 
The application of esophageal pressure measurement in patients 
with respiratory failure. 162 84 180 13 

Article 3 
Combined photothermal and photodynamic therapy delivered by 
PEGylated MoS2 nanosheets. 167 218 188 26 

Article 4 

Development of the EUCAST disk diffusion antimicrobial 
susceptibility testing method and its implementation in routine 
microbiology laboratories. 157 48 170 13 

Article 5 
Structural basis for Ca2+ selectivity of a voltage-gated calcium 
channel. 137 90 155 6 

Article 6 

Highly conducting, strong nanocomposites based on 
nanocellulose-assisted aqueous dispersions of single-wall carbon 
nanotubes. 149 298 157 20 

Article 7 
Consensus statement on the diagnosis, treatment and follow-up 
of patients with primary adrenal insufficiency. 110 425 140 12 

Article 8 
ER contact sites define the position and timing of endosome 
fission. 124 170 142 18 

Article 9 
Complementary genomic approaches highlight the PI3K/mTOR 
pathway as a common vulnerability in osteosarcoma. 128 67 136 18 
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Article 10 
Temporal trends in marijuana attitudes, availability and use in 
Colorado compared to non-medical marijuana states: 2003-11. 118 119 130 13 

Article 11 

Front-line transplantation program with lenalidomide, 
bortezomib, and dexamethasone combination as induction and 
consolidation followed by lenalidomide maintenance in patients 
with multiple myeloma: a phase II study by the Intergroupe 
Francophone du Myelome. 101 642 150 40 

Article 12 

New materials graphyne, graphdiyne, graphone, and graphane: 
review of properties, synthesis, and application in 
nanotechnology. 117 107 115 5 

Article 13 Pore size effect of collagen scaffolds on cartilage regeneration. 107 59 123 16 

Article 14 
Altitudinal changes in malaria incidence in highlands of Ethiopia 
and Colombia. 100 52 109 2 

Article 15 

Effects of dexamethasone as a local anaesthetic adjuvant for 
brachial plexus block: a systematic review and meta-analysis of 
randomized trials. 102 153 116 14 

Article 16 
Effects of resveratrol on gut microbiota and fat storage in a 
mouse model with high-fat-induced obesity. 110 211 107 5 

Article 17 Use of epigenetic drugs in disease: an overview. 93 166 132 31 

Article 18 Synucleins regulate the kinetics of synaptic vesicle endocytosis. 107 50 115 15 

Article 19 
Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule 
them all. 100 86 109 9 

Article 20 
Interactions of aluminum with biochars and oxidized biochars: 
implications for the biochar aging process. 102 138 102 5 

Article 21 
Ultrafast thin-disk laser with 80 muJ pulse energy and 242 W of 
average power. 68 279 101 5 

Article 22 
Platelets mediate lymphovenous hemostasis to maintain blood-
lymphatic separation throughout life. 97 168 98 2 

Article 23 
The unfolded-protein-response sensor IRE-1alpha regulates the 
function of CD8alpha+ dendritic cells. 96 28 100 6 

Article 24 Identification of pathways for bipolar disorder: a meta-analysis. 94 122 105 12 
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Article 25 
Host cell entry of Middle East respiratory syndrome coronavirus 
after two-step, furin-mediated activation of the spike protein. 96 444 95 2 

Article 26 
Restoring visual function to blind mice with a photoswitch that 
exploits electrophysiological remodeling of retinal ganglion cells. 85 46 94 6 

Article 27 A meta-analysis and review of holistic face processing. 93 152 91 4 

Article 28 

The liquid phase epitaxy approach for the successful construction 
of ultra-thin and defect-free ZIF-8 membranes: pure and mixed 
gas transport study. 88 340 95 10 

Article 29 

Oxygen at nanomolar levels reversibly suppresses process rates 
and gene expression in anammox and denitrification in the 
oxygen minimum zone off northern Chile. 87 21 88 3 

Article 30 Synthesis of isatins by I2/TBHP mediated oxidation of indoles. 78 158 85 3 

Article 31 

Real-time contact force sensing for pulmonary vein isolation in 
the setting of paroxysmal atrial fibrillation: procedural and 1-year 
results. 69 43 83 3 

Article 32 
Organophosphorus flame retardants (PFRs) in human breast milk 
from several Asian countries. 85 39 82 2 

Article 33 
Community-supported models of care for people on HIV 
treatment in sub-Saharan Africa. 82 28 91 13 

Article 34 
Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved 
mechanical, barrier and antibacterial properties. 75 52 83 6 

Article 35 Increasing sensing resolution with error correction. 77 131 81 6 

Article 36 

Recurrent glioblastoma treated with bevacizumab: contrast-
enhanced T1-weighted subtraction maps improve tumor 
delineation and aid prediction of survival in a multicenter clinical 
trial. 80 31 80 6 

Article 37 
Multiplexed homogeneous assays of proteolytic activity using a 
smartphone and quantum dots. 80 15 78 4 

Article 38 
Defining language networks from resting-state fMRI for surgical 
planning--a feasibility study. 72 25 80 7 
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Article 39 

Encapsulating Pd nanoparticles in double-shelled 
graphene@carbon hollow spheres for excellent chemical catalytic 
property. 73 14 77 4 

Article 40 

Enhanced colorimetric immunoassay accompanying with enzyme 
cascade amplification strategy for ultrasensitive detection of low-
abundance protein. 74 136 79 7 

Article 41 
Body mass index categories and mortality risk in US adults: the 
effect of overweight and obesity on advancing death. 74 216 76 4 

Article 42 

High-flow nasal cannula versus conventional oxygen therapy after 
endotracheal extubation: a randomized crossover physiologic 
study. 58 37 72 1 

Article 43 
MiR-203 is downregulated in laryngeal squamous cell carcinoma 
and can suppress proliferation and induce apoptosis of tumours. 73 13 74 4 

Article 44 
Understanding trust as an essential element of trainee 
supervision and learning in the workplace. 72 78 89 20 

Article 45 Molecular biomarkers in idiopathic pulmonary fibrosis. 52 74 105 37 

Article 46 

Pulsed-EPR evidence of a manganese(II) hydroxycarbonyl 
intermediate in the electrocatalytic reduction of carbon dioxide 
by a manganese bipyridyl derivative. 65 31 72 6 

Article 47 
Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase 
drives Th17 inflammation in gastric adenocarcinoma. 70 73 73 8 

Article 48 Maintenance of postmitotic neuronal cell identity. 71 80 65 1 

Article 49 
Persistence of DNMT3A mutations at long-term remission in adult 
patients with AML. 66 12 67 3 

Article 50 
Microwave assisted extraction of pectin from waste Citrullus 
lanatus fruit rinds. 52 189 70 7 

Article 51 
Homochiral columns constructed by chiral self-sorting during 
supramolecular helical organization of hat-shaped molecules. 62 57 64 1 

Article 52 

Sleep, fatigue, depression, and circadian activity rhythms in 
women with breast cancer before and after treatment: a 1-year 
longitudinal study. 63 248 71 9 

Article 53 Differential methylation of the TRPA1 promoter in pain sensitivity. 64 33 65 4 
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Article 54 

MiR-429 inhibits cells growth and invasion and regulates EMT-
related marker genes by targeting Onecut2 in colorectal 
carcinoma. 60 56 62 1 

Article 55 

Non-steroidal anti-inflammatory drug use in chronic pain 
conditions with special emphasis on the elderly and patients with 
relevant comorbidities: management and mitigation of risks and 
adverse effects. 50 27 68 8 

Article 56 

Evaluation of two matrix-assisted laser desorption ionization-time 
of flight mass spectrometry (MALDI-TOF MS) systems for the 
identification of Candida species. 52 42 66 7 

Article 57 
Additive-free hollow-structured Co3O4 nanoparticle Li-ion 
battery: the origins of irreversible capacity loss. 64 194 62 3 

Article 58 
Biology of adeno-associated viral vectors in the central nervous 
system. 61 433 78 20 

Article 59 

Locoregional recurrence risk for patients with T1,2 breast cancer 
with 1-3 positive lymph nodes treated with mastectomy and 
systemic treatment. 59 340 61 4 

Article 60 

Safety and efficacy of edoxaban, an oral factor Xa inhibitor, versus 
enoxaparin for thromboprophylaxis after total knee arthroplasty: 
the STARS E-3 trial. 43 106 59 2 

Article 61 

Breed differences in insulin sensitivity and insulinemic responses 
to oral glucose in horses and ponies of moderate body condition 
score. 39 68 58 2 

Article 62 
Biased agonism at G protein-coupled receptors: the promise and 
the challenges--a medicinal chemistry perspective. 63 12 59 3 

Article 63 
Pharmacogenetic-guided dosing of coumarin anticoagulants: 
algorithms for warfarin, acenocoumarol and phenprocoumon. 51 31 63 9 

Article 64 
Cavity quantum electrodynamics on a nanofiber using a 
composite photonic crystal cavity. 54 176 61 7 

Article 65 
Maternal diabetes and the risk of autism spectrum disorders in 
the offspring: a systematic review and meta-analysis. 50 30 61 7 
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Article 66 

Interleukin-22 regulates the complement system to promote 
resistance against pathobionts after pathogen-induced intestinal 
damage. 61 59 59 5 

Article 67 
Attenuation and restoration of severe acute respiratory syndrome 
coronavirus mutant lacking 2'-o-methyltransferase activity. 59 19 58 4 

Article 68 
Coronavirus cell entry occurs through the endo-/lysosomal 
pathway in a proteolysis-dependent manner. 54 10 58 4 

Article 69 
Normal ranges of right ventricular systolic and diastolic strain 
measures in children: a systematic review and meta-analysis. 57 133 57 4 

Article 70 
Plant phytochemicals as epigenetic modulators: role in cancer 
chemoprevention. 54 49 75 23 

Article 71 

Problematic stabilizing films in petroleum emulsions: shear 
rheological response of viscoelastic asphaltene films and the 
effect on drop coalescence. 57 36 66 14 

Article 72 
Targeting of NAD metabolism in pancreatic cancer cells: potential 
novel therapy for pancreatic tumors. 54 18 65 13 

Article 73 Myasthenia Gravis: paradox versus paradigm in autoimmunity. 56 124 58 6 

Article 74 
Mendelian randomization in health research: using appropriate 
genetic variants and avoiding biased estimates. 56 41 57 5 

Article 75 
Ag(x)@WO₃ core-shell nanostructure for LSP enhanced chemical 
sensors. 54 16 56 4 

Article 76 

Predictably selective (sp3)C-O bond formation through copper 
catalyzed dehydrogenative coupling: facile synthesis of dihydro-
oxazinone derivatives. 54 31 64 13 

Article 77 The origin of segmentation motor activity in the intestine. 52 15 66 16 

Article 78 

Phosphotungstic acid encapsulated in the mesocages of amine-
functionalized metal-organic frameworks for catalytic oxidative 
desulfurization. 52 21 63 13 

Article 79 
Prefrontal cortical GABAergic dysfunction contributes to age-
related working memory impairment. 53 34 51 2 

Article 80 
Directed evolution of an ultrastable carbonic anhydrase for highly 
efficient carbon capture from flue gas. 49 16 56 7 
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Article 81 Tumor necrosis factor alpha in mycobacterial infection. 52 15 52 3 

Article 82 Epigenetic biomarkers in urological tumors: A systematic review. 49 232 51 2 

Article 83 
MicroRNA-145: a potent tumour suppressor that regulates 
multiple cellular pathways. 45 8 52 4 

Article 84 Vitamin B₁₂-containing plant food sources for vegetarians. 40 27 51 4 

Article 85 
Complex interaction of dendritic connectivity and hierarchical 
patch size on biodiversity in river-like landscapes. 46 65 54 8 

Article 86 
The autophagy regulators Ambra1 and Beclin 1 are required for 
adult neurogenesis in the brain subventricular zone. 49 25 49 3 

Article 87 
MicroRNA-145 suppresses hepatocellular carcinoma by targeting 
IRS1 and its downstream Akt signaling. 45 12 55 10 

Article 88 Molecular mechanisms of endothelial NO synthase uncoupling. 44 9 53 8 

Article 89 
Defect-free, size-tunable graphene for high-performance lithium 
ion battery. 48 21 52 7 

Article 90 

Social support predicts inflammation, pain, and depressive 
symptoms: longitudinal relationships among breast cancer 
survivors. 45 68 52 7 

Article 91 Animal models of CNS disorders. 47 6 50 6 

Article 92 

The airway microbiome of intubated premature infants: 
characteristics and changes that predict the development of 
bronchopulmonary dysplasia. 45 41 49 5 

Article 93 On the evolutionary origins of obesity: a new hypothesis. 44 61 65 22 

Article 94 
Predictive value of methicillin-resistant Staphylococcus aureus 
(MRSA) nasal swab PCR assay for MRSA pneumonia. 31 13 47 5 

Article 95 
Impact of postoperative non-steroidal anti-inflammatory drugs on 
adverse events after gastrointestinal surgery. 41 9 48 6 

Article 96 
DNA methylation markers for early detection of women's cancer: 
promise and challenges. 38 12 51 10 

Article 97 
Evaluation of predictions in the CASP10 model refinement 
category. 49 17 48 8 

Article 98 
SALL4, a novel marker for human gastric carcinogenesis and 
metastasis. 46 32 65 26 



166 

 

 

Article 99 
Therapeutic applications of curcumin for patients with pancreatic 
cancer. 42 7 49 11 

Article 100 
Autoantibody biomarkers in childhood-acquired demyelinating 
syndromes: results from a national surveillance cohort 42 33 43 12 

Total  7317 9795 8209 890 

Avg  73.17 97.95 82.09 8.9 

Max  179 642 200 40 

Min  31 6 43 0 
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Appendix B: Ranking of the sampled articles based on the proposed direct citation weight 

 

citation 
# 

# of 
citation 

mentions mentions>1 
# citation 

mentions>1 Positive 

Proposed 
Metric (using 

classifications) 

1 180 326 70 216 241 249.96 

2 167 215 29 77 146 197.92 

3 162 267 51 156 135 241.03 

4 157 194 29 66 39 178.50 

5 149 204 34 89 114 190.58 

6 137 256 47 166 119 215.72 

7 128 267 47 186 118 230.58 

8 124 205 41 122 68 169.88 

9 118 160 26 68 79 142.73 

10 117 159 20 62 90 148.75 

11 110 221 41 152 113 202.24 

12 110 169 33 92 64 149.21 

13 107 141 21 55 80 130.91 

14 107 139 21 53 57 126.74 

15 102 172 32 102 58 156.56 

16 102 155 23 76 54 140.26 

17 101 168 33 100 78 145.02 

18 100 156 33 89 77 135.33 

19 100 133 23 56 59 119.69 

20 97 164 32 99 73 142.48 

21 96 180 32 116 56 157.67 

22 96 180 45 129 53 148.36 

23 94 118 20 44 45 107.25 

24 93 252 55 214 127 212.52 
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25 93 131 16 54 63 117.82 

26 88 118 18 48 57 112.50 

27 87 161 35 109 80 139.23 

28 85 184 32 131 94 170.14 

29 85 102 13 30 21 96.00 

30 82 146 31 95 53 124.04 

31 80 111 20 51 47 103.42 

32 80 100 10 30 41 93.38 

33 78 98 15 35 47 92.92 

34 77 108 18 49 64 93.63 

35 75 133 25 83 64 116.68 

36 74 96 15 37 57 90.33 

37 74 87 11 24 49 82.00 

38 73 87 9 23 62 81.40 

39 73 86 13 26 29 79.50 

40 72 151 29 108 76 122.13 

41 72 127 26 81 67 113.40 

42 71 100 22 51 49 85.50 

43 70 80 7 17 35 77.25 

44 69 105 17 53 63 95.51 

45 68 106 20 58 51 88.33 

46 66 87 14 35 54 76.83 

47 65 105 24 64 47 97.90 

48 64 100 18 54 50 88.55 

49 64 74 8 18 49 69.25 

50 63 107 15 59 56 97.74 

51 63 99 22 58 36 87.88 

52 62 114 14 66 53 97.89 
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53 61 94 19 52 52 81.96 

54 61 88 22 49 37 79.33 

55 60 77 11 28 21 69.42 

56 59 110 16 67 66 91.95 

57 59 90 23 54 51 71.58 

58 58 138 25 105 52 117.66 

59 57 125 23 91 91 107.01 

60 57 106 21 70 44 83.85 

61 56 83 13 40 39 73.21 

62 56 67 10 21 20 61.00 

63 54 105 18 69 42 92.84 

64 54 91 22 59 42 74.58 

65 54 72 11 29 39 65.17 

66 54 68 10 24 37 64.92 

67 54 67 9 22 35 61.42 

68 54 64 9 19 32 58.75 

69 53 104 21 72 44 90.88 

70 52 87 18 53 34 79.24 

71 52 78 16 42 33 71.21 

72 52 75 13 36 32 66.40 

73 52 70 10 28 31 66.01 

74 52 64 7 19 28 62.00 

75 52 66 12 26 24 59.00 

76 51 68 10 27 45 64.47 

77 50 66 12 28 35 59.08 

78 50 61 8 19 26 57.75 

79 49 98 17 66 56 84.68 

80 49 73 16 40 52 64.42 
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81 49 62 10 23 36 57.50 

82 49 60 9 20 32 56.25 

83 48 56 8 16 29 52.00 

84 47 63 9 25 39 57.54 

85 46 78 16 48 53 69.04 

86 46 66 15 35 23 55.67 

87 45 74 12 41 44 66.48 

88 45 56 10 21 32 50.75 

89 45 58 7 20 21 50.42 

90 45 53 7 15 16 48.25 

91 44 66 12 34 36 59.83 

92 44 50 6 12 15 46.50 

93 43 72 14 43 30 63.15 

94 42 54 11 23 28 51.00 

95 42 50 7 15 23 46.50 

96 41 51 8 18 25 48.75 

97 40 54 11 25 28 49.25 

98 39 61 13 35 34 53.08 

99 38 44 5 11 27 42.75 

100 31 47 9 25 25 41.29 
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Appendix C: Rank Change with Number of Citations and the Proposed Metrics 

 

No of 
citations  

Propose Metric 
from semantic 
similarity classes 

Change in rank (Propose 
Metric from semantic 
similarity classes) 

1 180 249.96 0 

2 167 197.92 5 

3 162 241.03 1 

4 157 178.50 5 

5 149 190.58 3 

6 137 215.72 2 

7 128 230.58 4 

8 124 169.88 3 

9 118 142.73 9 

10 117 148.75 5 

11 110 202.24 5 

12 110 149.21 2 

13 107 130.91 10 

14 107 126.74 10 

16 102 140.26 4 

15 102 156.56 2 

17 101 145.02 0 

19 100 119.69 8 

18 100 135.33 4 

20 97 142.48 1 

21 96 157.67 9 

22 96 148.36 6 

23 94 107.25 10 

25 93 117.82 3 

24 93 212.52 19 

26 88 112.50 6 

27 87 139.23 6 

28 85 170.14 18 

29 85 96.00 10 

30 82 124.04 5 

31 80 103.42 4 

32 80 93.38 10 

33 78 92.92 10 

34 77 93.63 7 

35 75 116.68 5 

36 74 90.33 11 

37 74 82.00 17 
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38 73 81.40 18 

39 73 79.50 18 

41 72 113.40 10 

40 72 122.13 14 

42 71 85.50 9 

43 70 77.25 17 

44 69 95.51 4 

45 68 88.33 4 

46 66 76.83 15 

47 65 97.90 11 

48 64 88.55 0 

49 64 69.25 18 

50 63 97.74 12 

51 63 87.88 1 

52 62 97.89 15 

54 61 79.33 4 

53 61 81.96 2 

55 60 69.42 11 

57 59 71.58 7 

56 59 91.95 11 

58 58 117.66 29 

59 57 107.01 25 

60 57 83.85 7 

61 56 73.21 2 

62 56 61.00 17 

64 54 74.58 2 

66 54 64.92 7 

65 54 65.17 7 

67 54 61.42 11 

63 54 92.84 19 

68 54 58.75 15 

69 53 90.88 23 

73 52 66.01 2 

74 52 62.00 3 

70 52 79.24 11 

71 52 71.21 6 

72 52 66.40 2 

75 52 59.00 7 

76 51 64.47 2 

78 50 57.75 6 

77 50 59.08 4 

82 49 56.25 5 



173 

 

 

79 49 84.68 27 

80 49 64.42 5 

81 49 57.50 5 

83 48 52.00 7 

84 47 57.54 1 

85 46 69.04 17 

86 46 55.67 2 

90 45 48.25 6 

89 45 50.42 4 

87 45 66.48 18 

88 45 50.75 4 

92 44 46.50 5 

91 44 59.83 11 

93 43 63.15 17 

94 42 51.00 3 

95 42 46.50 3 

96 41 48.75 1 

97 40 49.25 3 

98 39 53.08 9 

99 38 42.75 0 

100 31 41.29 0 

 

 

Appendix D: Change in rank by the number of Citation mentions and the proposed 

Citation weights 

 

# of 
citation 

mentions 

Propose Metric 
from semantic 
similarity classes 

Change in rank 
(Propose Metric from 
semantic similarity 
classes) 

1 326 249.96 0 

2 267 241.03 0 

3 267 230.58 0 

4 256 215.72 0 

5 252 212.52 0 

6 221 202.24 0 

7 215 197.92 0 

8 205 169.88 3 

9 204 190.58 1 

10 194 178.50 1 
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11 184 170.14 1 

12 180 157.67 0 

13 180 148.36 3 

14 172 156.56 1 

15 169 149.21 1 

16 168 145.02 1 

17 164 142.48 2 

18 161 139.23 3 

19 160 142.73 1 

20 159 148.75 5 

21 156 135.33 1 

22 155 140.26 2 

23 151 122.13 3 

24 146 124.04 1 

25 141 130.91 2 

26 139 126.74 2 

27 138 117.66 2 

28 133 119.69 1 

29 133 116.68 1 

30 131 117.82 2 

31 127 113.40 0 

32 125 107.01 2 

33 118 112.50 2 

34 118 107.25 0 

35 114 97.89 2 

36 111 103.42 1 

37 110 91.95 8 

38 108 93.63 3 

39 107 97.74 1 

40 106 88.33 9 

41 106 83.85 12 

42 105 97.90 7 

43 105 95.51 2 

44 105 92.84 0 

45 104 90.88 1 

46 102 96.00 7 

47 100 93.38 5 

48 100 88.55 1 

49 100 85.50 3 

50 99 87.88 0 

51 98 92.92 8 

52 98 84.68 0 
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53 96 90.33 6 

54 94 81.96 1 

55 91 74.58 7 

56 90 71.58 8 

57 88 79.33 1 

58 87 82.00 4 

59 87 81.40 3 

60 87 79.24 2 

61 87 76.83 1 

62 86 79.50 5 

63 83 73.21 0 

64 80 77.25 4 

65 78 71.21 0 

66 78 69.04 2 

67 77 69.42 1 

68 75 66.40 2 

69 74 69.25 2 

70 74 66.48 1 

71 73 64.42 4 

72 72 65.17 0 

73 72 63.15 3 

74 70 66.01 3 

75 68 64.92 2 

76 68 64.47 2 

77 67 61.42 0 

78 67 61.00 2 

79 66 59.83 2 

80 66 59.08 1 

81 66 59.00 3 

82 66 55.67 7 

83 64 62.00 7 

84 64 58.75 0 

85 63 57.54 0 

86 62 57.50 0 

87 61 57.75 3 

88 61 53.08 1 

89 60 56.25 2 

90 58 50.42 3 

91 56 52.00 1 

92 56 50.75 0 

93 54 51.00 2 

94 54 49.25 0 



176 

 

 

95 53 48.25 1 

96 51 48.75 1 

97 50 46.50 0 

98 50 46.50 0 

99 47 41.29 1 

100 44 42.75 1 
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Appendix E: Change in Rank by the number of Multiple Citation mentions and the 

proposed citation weight 

 

No of 
mentions>1 

Proposed 
Metric (using 
classifications) 

Change in rank 
(Propose Metric 
from semantic 
similarity classes) 

1 70 249.96 0 

2 55 212.52 3 

3 51 241.03 1 

5 47 230.58 2 

4 47 215.72 0 

6 45 148.36 10 

8 41 202.24 2 

7 41 169.88 4 

9 35 139.23 12 

10 34 190.58 2 

12 33 145.02 5 

11 33 149.21 3 

13 33 135.33 9 

17 32 170.14 7 

16 32 157.67 4 

15 32 142.48 4 

14 32 156.56 1 

18 31 124.04 7 

21 29 122.13 5 

19 29 197.92 12 

20 29 178.50 11 

23 26 113.40 8 

22 26 142.73 4 

25 25 117.66 4 

24 25 116.68 6 

26 24 97.90 10 

27 23 140.26 7 

30 23 107.01 4 

28 23 119.69 1 

29 23 71.58 35 

34 22 74.58 28 

32 22 87.88 18 

33 22 79.33 25 

31 22 85.50 20 
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38 21 90.88 8 

37 21 83.85 16 

35 21 130.91 12 

36 21 126.74 12 

39 20 148.75 24 

41 20 103.42 6 

42 20 88.33 7 

40 20 107.25 7 

43 19 81.96 12 

46 18 88.55 2 

44 18 112.50 12 

45 18 93.63 4 

48 18 79.24 11 

47 18 92.84 3 

49 17 95.51 9 

50 17 84.68 2 

51 16 117.82 23 

55 16 69.04 13 

52 16 91.95 7 

53 16 71.21 12 

54 16 64.42 21 

58 15 97.74 20 

57 15 90.33 10 

56 15 92.92 13 

59 15 55.67 29 

61 14 97.89 24 

62 14 63.15 14 

60 14 76.83 1 

65 13 73.21 2 

67 13 53.08 22 

63 13 96.00 24 

66 13 66.40 4 

64 13 79.50 7 

68 12 59.00 14 

69 12 59.08 12 

70 12 66.48 1 

71 12 59.83 9 

74 11 65.17 2 

73 11 69.42 7 

76 11 49.25 18 

75 11 51.00 16 

72 11 82.00 18 
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80 10 66.01 9 

79 10 64.92 6 

77 10 93.38 35 

81 10 64.47 7 

82 10 57.50 4 

78 10 61.00 1 

83 10 50.75 9 

87 9 56.25 0 

88 9 57.54 3 

85 9 61.42 7 

89 9 41.29 11 

84 9 81.40 28 

86 9 58.75 3 

91 8 57.75 7 

93 8 48.75 2 

90 8 69.25 23 

92 8 52.00 2 

97 7 48.25 1 

95 7 62.00 18 

96 7 50.42 3 

94 7 77.25 34 

98 7 46.50 1 

99 6 46.50 1 

100 5 42.75 1 
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Appendix F: Sampled articles ranked by the sum of multiple citations 

 

Sum of 
multiple 
citation 
mentions 

Propose Metric 
from semantic 
similarity 
classes 

Change in rank 
(Propose Metric 
from semantic 
similarity classes) 

1 216 249.96 0 

2 214 212.52 3 

3 186 230.58 0 

4 166 215.72 0 

5 156 241.03 3 

6 152 202.24 0 

7 131 170.14 3 

8 129 148.36 8 

9 122 169.88 2 

10 116 157.67 2 

11 109 139.23 10 

12 108 122.13 14 

13 105 117.66 16 

14 102 156.56 1 

15 100 145.02 2 

16 99 142.48 3 

17 95 124.04 8 

18 92 149.21 4 

19 91 107.01 15 

20 89 190.58 12 

21 89 135.33 1 

22 83 116.68 8 

23 81 113.40 8 

24 77 197.92 17 

25 76 140.26 5 

26 72 90.88 20 

27 70 83.85 26 

28 69 92.84 16 

29 68 142.73 11 

30 67 91.95 15 

32 66 97.89 5 

31 66 178.50 22 

33 66 84.68 19 

34 64 97.90 2 

35 62 148.75 20 

37 59 74.58 25 

36 59 97.74 2 
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39 58 87.88 11 

38 58 88.33 11 

40 56 119.69 13 

41 55 130.91 18 

42 54 117.82 14 

44 54 71.58 20 

43 54 88.55 5 

46 53 95.51 6 

45 53 126.74 21 

47 53 79.24 12 

48 52 81.96 7 

49 51 103.42 14 

50 51 85.50 1 

52 49 79.33 6 

51 49 93.63 10 

54 48 69.04 14 

53 48 112.50 21 

55 44 107.25 22 

56 43 63.15 20 

57 42 71.21 8 

58 41 66.48 11 

59 40 73.21 4 

60 40 64.42 15 

61 37 90.33 14 

62 36 66.40 8 

63 35 92.92 20 

66 35 53.08 23 

64 35 76.83 3 

65 35 55.67 23 

67 34 59.83 13 

69 30 93.38 27 

68 30 96.00 29 

70 29 65.17 2 

72 28 66.01 1 

71 28 69.42 5 

73 28 59.08 8 

74 27 64.47 0 

76 26 59.00 6 

75 26 79.50 18 

77 25 57.54 8 

79 25 41.29 21 

78 25 49.25 16 
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81 24 64.92 8 

80 24 82.00 26 

82 23 81.40 26 

84 23 51.00 7 

83 23 57.50 3 

85 22 61.42 7 

86 21 61.00 7 

87 21 50.75 5 

88 20 56.25 1 

89 20 50.42 4 

91 19 62.00 14 

92 19 57.75 8 

90 19 58.75 7 

94 18 48.75 1 

93 18 69.25 26 

95 17 77.25 35 

96 16 52.00 6 

97 15 48.25 1 

98 15 46.50 1 

99 12 46.50 1 

100 11 42.75 1 
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Appendix G: Ranking by the number of Positive Citation Sentiments 

 

Positive 
citation 
sentiment 

Propose Metric 
from semantic 
similarity classes 

Change in rank 
(Propose Metric 
from semantic 
similarity classes) 

1 241 249.96 0 

2 146 197.92 5 

3 135 241.03 1 

4 127 212.52 1 

5 119 215.72 1 

6 118 230.58 3 

7 114 190.58 1 

8 113 202.24 2 

9 94 170.14 1 

10 91 107.01 24 

11 90 148.75 4 

13 80 139.23 8 

12 80 130.91 11 

14 79 142.73 4 

15 78 145.02 2 

16 77 135.33 6 

17 76 122.13 9 

18 73 142.48 1 

19 68 169.88 8 

20 67 113.40 11 

21 66 91.95 24 

24 64 116.68 6 

22 64 149.21 8 

23 64 93.63 18 

25 63 117.82 3 

26 63 95.51 14 

27 62 81.40 29 

28 59 119.69 1 

29 58 156.56 16 

31 57 112.50 1 

30 57 126.74 6 

32 57 90.33 15 

33 56 157.67 21 

34 56 97.74 4 

35 56 84.68 17 

36 54 140.26 16 
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37 54 76.83 24 

38 53 148.36 22 

39 53 124.04 14 

40 53 97.89 3 

41 53 69.04 27 

43 52 117.66 14 

42 52 81.96 13 

44 52 64.42 31 

46 51 71.58 18 

45 51 88.33 4 

47 50 88.55 1 

49 49 85.50 2 

48 49 82.00 6 

50 49 69.25 17 

53 47 97.90 17 

51 47 103.42 16 

52 47 92.92 9 

54 45 107.25 21 

55 45 64.47 19 

57 44 90.88 11 

56 44 83.85 3 

58 44 66.48 11 

60 42 74.58 2 

59 42 92.84 15 

61 41 93.38 19 

62 39 178.50 53 

63 39 73.21 0 

64 39 65.17 8 

65 39 57.54 20 

67 37 64.92 6 

66 37 79.33 8 

68 36 87.88 18 

69 36 57.50 17 

70 36 59.83 10 

72 35 61.42 6 

73 35 59.08 8 

71 35 77.25 11 

74 34 79.24 15 

75 34 53.08 14 

76 33 71.21 11 

79 32 56.25 8 

78 32 66.40 8 
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77 32 58.75 6 

80 32 50.75 12 

81 31 66.01 10 

82 30 63.15 6 

83 29 79.50 26 

84 29 52.00 6 

85 28 62.00 8 

87 28 49.25 7 

86 28 51.00 5 

88 27 42.75 11 

89 26 57.75 5 

91 25 41.29 9 

90 25 48.75 5 

92 24 59.00 10 

93 23 55.67 5 

94 23 46.50 3 

95 21 96.00 56 

96 21 69.42 30 

97 21 50.42 4 

98 20 61.00 19 

99 16 48.25 3 

100 15 46.50 2 
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