
Western University
Scholarship@Western

Obstetrics & Gynaecology Publications Obstetrics & Gynaecology Department

8-1-2005

p38 mitogen-activated protein kinase (MAPK) first
regulates filamentous actin at the 8-16-cell stage
during preimplantation development.
Andrew J M Paliga

David R Natale

Andrew J Watson

Follow this and additional works at: https://ir.lib.uwo.ca/obsgynpub

Part of the Obstetrics and Gynecology Commons

Citation of this paper:
Paliga, Andrew J M; Natale, David R; and Watson, Andrew J, "p38 mitogen-activated protein kinase (MAPK) first regulates
filamentous actin at the 8-16-cell stage during preimplantation development." (2005). Obstetrics & Gynaecology Publications. 45.
https://ir.lib.uwo.ca/obsgynpub/45

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/obsgynpub?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/obsgyn?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/obsgynpub?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/693?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/obsgynpub/45?utm_source=ir.lib.uwo.ca%2Fobsgynpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages


Biol. Cell (2005) 97, 629–640 (Printed in Great Britain) Research article

p38 mitogen-activated protein
kinase (MAPK) first regulates
filamentous actin at the 8–16-cell
stage during preimplantation
development
Andrew J.M. Paliga*†‡, David R. Natale*†1 and Andrew J. Watson*†‡2

*Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1, †Department of Obstetrics

and Gynaecology, University of Western Ontario, London, ON, Canada N6A 4G5, and ‡Child Health Research Institute, 5th Floor,

Victoria Research Laboratories, 800 Commissioners Road East, London, ON, Canada N6A 4G5

Background information. The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate
signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-
signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly
conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation
development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-
activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27
(heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-
inflammatory drugs (CSAIDTM; SB203580 and SB220025) display a reversible blockade of development at the 8–16-cell
stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present
study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine
preimplantation development.

Results. Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDTM) resulted in a blockade of pre-
implantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phos-
phorylated HSP25/27) and a redistribution of α-catenin immunofluorescence by 12 h of treatment. In contrast, treatment
of 2- and 4-cell-stage embryos with CSAIDTM drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of
rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor,
and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with
PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin.

Conclusion. Murine preimplantation development becomes dependent on p38 MAPK at the 8–16-cell stage, which
corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.

1Present address: Health Sciences Centre, The University of Calgary, 3330
Hospital Drive NW, Calgary, AB, Canada T2N4N1.
2To whom correspondence should be addressed (email awatson@uwo.ca).
Key words: blastocyst, cytoskeleton, embryo, in vitro fertilization.
Abbreviations used: DAPI, 4,6-diamidino-2-phenylindole; ERK, extracellular-
signal-regulated kinase; hCG, human chorionic gonadotropin; HSP, heat-shock
protein; HSP-p, phosphorylated HSP25/27; KSOMaa, potassium simplex
optimized medium plus amino acid; MAPK, mitogen-activated protein kinase;
MAPKAPK, MAPK-activated protein kinase; MEK, MAPK kinase/ERK
kinase; MK-p, phosphorylated MAPKAPK2/3; PFA, paraformaldehyde;
PRAK, p38 regulated/activated kinase.

Introduction
Preimplantation development is characterized by the
differentiation of the first epithelium, the trophec-
toderm, and this occurs as the apolar cells of the
cleavage-stage embryo polarize, undergo compac-
tion and finally become a differentiated epithe-
lium that mediates embryo attachment and invasion
into the uterine wall (Watson, 1992; Watson et al.,
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1992; Fleming et al., 1994; Watson and Barcroft,
2001; Schultz, 2002). This process, which defines
preimplantation development, is unique to eutherian
mammals and allows for an investigation of the
mechanisms controlling the ‘de novo’ differentiation
of an epithelium (Kidder and McLachlin, 1985;
McLachlin and Kidder, 1986; Watson et al., 1992;
Fleming et al., 1994; Watson and Barcroft, 2001).

Research conducted over the past three decades has
established roles for the cytoskeleton, cell junctions
(adherens junctions, tight junctions and desmosomes)
and ion transporters in mediating trophectoderm dif-
ferentiation. From this research, the cell biology
of trophectoderm differentiation has become well-
defined (Kidder and McLachlin, 1985; McLachlin
and Kidder, 1986; Watson, 1992; Watson et al.,
1992; Fleming et al., 1994; Watson and Barcroft,
2001). More recently, however, investigations have
focused on how these gene products may be regulated
and their actions co-ordinated within the blastomere
during compaction and progression towards the tro-
phectoderm cell type. For example, studies have im-
plicated members of the protein kinase C family,
calmodulin and RhoGTPases in these events (Clayton
et al., 1999; Pauken and Capco, 1999, 2000; Capco,
2001).

We are interested in defining the roles of MAPK
(mitogen-activated protein kinase) pathways during
preimplantation development. The MAPK super-
family of proteins consists of four separate signalling
cascades: the c-Jun N-terminal kinase or stress-activ-
ated protein kinases (Woodgett et al., 1996;
Whitmarsh and Davis, 2001); the ERKs (extra-
cellular-signal-regulated kinases) (Boulton and Cobb,
1991; Pouyssegur et al., 2002); the ERK5 or big
MAPK1 (Lee et al., 1995; Zhou et al., 1995); and
the p38 MAPK group of protein kinases (Han et al.,
1994), all of which are highly conserved in all
eukaryotic systems (Kyriakis and Avruch, 2001). The
MAPK proteins respond co-operatively to several
stimuli, resulting in the mediation of cellular res-
ponses that include apoptosis, immune responses as
well as growth and differentiation, cytoskeletal re-
arrangements and cell proliferation.

To date, our studies have focused on the p38
MAPK pathway (Natale et al., 2004). This MAPK
subfamily includes four protein isoforms: p38 α, β, γ
and δ, which regulate cellular processes such as in-
flammation, cytoskeleton rearrangements, as well as

cell proliferation and apoptosis (Enslen et al., 2000;
Ono and Han, 2000; Kyriakis and Avruch, 2001).
p38 MAPK regulates actin filament formation first
through MAPKAPK2/3 (MAPK-activated protein
kinase 2/3) or MAPKAPK5 [(PRAK (p38 regulated/
activated kinase)] and subsequently through HSP25/
27 (heat shock protein 25/27) (Lavoie et al., 1995;
Guay et al., 1997; Huot et al., 1998; Dalle-Donne
et al., 2001; Khurana and Dey, 2003). We have
determined that all principal members of the p38
MAPK family are expressed throughout murine pre-
implantation development (Natale et al., 2004).
More importantly, we discovered that inhibition of
p38 MAPK activity at the 2-cell stage of murine
preimplantation development with cytokine sup-
pressive anti-inflammatory drugs (CSAIDTM;
SB203580 and SB220025 active forms; SB202474
inactive form control) results in a blockade of devel-
opment at the 8–16-cell stage that is fully reversible
for at least a 48 h treatment period (Natale et al.,
2004). This class of compounds specifically inhibits
p38 MAPK α and β isoforms (Cuenda et al., 1995;
Badger et al., 1996; Jackson et al., 1998; Davidson
and Morange, 2000; Davies et al., 2000; Cirillo
et al., 2002; English and Cobb, 2002).

In the present study, we have investigated the
embryo-stage-specific action of p38 MAPK by ex-
amining its role in regulating filamentous actin
during preimplantation development. Our results
demonstrate that inhibition of p38 MAPK activity
does not affect filamentous actin at the 2- or 4-cell
stage of development. However, at the 8-cell stage,
effects on filamentous actin are observed within 12 h
of treatment with p38 MAPK inhibitors (CSAIDTM

drugs SB203580 and SB220025) and this is accom-
panied by a decline in MK-p (phosphorylated MAP-
KAPK2/3) and HSP-p (phosphorylated HSP25/27)
and a redistribution of α-catenin. All of these effects
of p38 MAPK inhibition are reversed upon removal of
the inhibitor, and development resumes in a delayed
but normal manner to the blastocyst stage.

Results
Effects of p38 MAPK inhibitors on filamentous
actin in 2- and 4-cell-stage embryos
In our first study (Natale et al., 2004), we deter-
mined that 2-cell-stage embryos can be treated with
CSAIDTM drugs (SB203580 and SB220025 active
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Figure 1 Effects of p38MAPK inhibitors on
phospho-MAPKAPK2 (MK-p) and phospho-HSP25/27
(HSP-p) and filamentous actin in 2-cell and 4-cell
CSAIDTM-treated embryos
Two-cell embryos were collected and cultured for 12 h in either

KSOMaa + 0.01% DMSO (vehicle control), KSOMaa + 20 µM

SB202474 (drug control; A, E) or KSOMaa + 20 µM SB220025

(C, G). Four-cell embryos were treated for 12 h in either

KSOMaa + 0.01% DMSO (vehicle control), KSOMaa + 20 µM

SB202474 (drug control; B, F) or KSOMaa + 20 µM SB220025

(D, H). Green represents MK-p and HSP-p fluorescence, red

indicates rhodamine fluorescence and blue denotes DNA.

Co-localization of HSP-p and filamentous actin appear as yel-

low. MK-p in 2- and 4-cell control embryos was predominantly

confined to the interphase nucleus of each blastomere (A, B).

In the SB220025 treatment group, we observed a complete

loss of MK-p fluorescence in both 2- and 4-cell treated em-

bryos by 12 h of treatment (C, D). HSP-p co-localized with

F-actin in the cell cortex encircling the periphery of each

blastomere within all 2- and 4-cell embryos in the control

group (E, F). However, the SB220025-treated embryos dis-

played a complete loss of HSP-p fluorescence by 12 h (G, H).

In contrast with the loss of MK-p and HSP-p fluorescence,

there was no reduction in cortical rhodamine fluorescence in

SB220025-treated 2- and 4-cell-stage embryos compared

with controls (A–H). Scale bar, 40 µm.

forms and SB202474 inactive form control) and still
progress normally through the 4- and 8-cell stage
only to arrest their development at the 8–16-cell
stage. One possible reason for the stage-specific block-
ade of development at the 8–16-cell stage after
CSAIDTM treatment is that the p38 MAPK pathway
is not active in early cleavage-stage embryos. To in-
vestigate this possibility, in the present study, we
investigated the stage-specific effects of CSAIDTM

drugs on 2- and 4-cell-stage preimplantation em-
bryos. Two-cell and 4-cell embryos were treated with
20 µM SB220025 for 12 h. MK-p in 2- and 4-cell
control embryos was predominantly confined to the
interphase nucleus of each blastomere (Figures 1A
and 1B). In the SB220025 treatment group, we ob-
served a complete loss of MK-p fluorescence in both
2- and 4-cell-treated embryos by 12 h of treatment
(Figures 1C and 1D). HSP-p co-localized with F-actin
in the cell cortex encircling the periphery of each
blastomere within all 2- and 4-cell-stage embryos in
the control group (Figures 1E and 1F). However, the
SB220025-treated embryos displayed a complete loss
of HSP-p fluorescence by 12 h (Figures 1G and 1H).
In contrast with the loss of MK-p and HSP-p fluor-
escence, there was no reduction in cortical rhodamine
fluorescence in SB220025-treated 2- and 4-cell-stage
embryos compared with controls (Figures 1A–1H).

Effect of p38 MAPK inhibitors on the development
of 8-cell embryos
Since it was now apparent that the p38MAPK path-
way was active during the 2- and 4-cell stages, we
next wished to determine whether the absence of ef-
fect of CSAIDTM treatment on development at these
early stages was due to a requirement for a more
extended CSAIDTM treatment period or due to the
onset of stage-specific sensitivity to CSAIDTM treat-
ment at the 8-cell stage. To distinguish between these
possibilities, we focused subsequent experiments
on the 8-cell stage of development. Treatment of
8-cell embryos with either SB203580 or SB220025
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Figure 2 Effect of p38 MAPK inhibitors on development of 8-cell embryos and morphology of embryos after 24 h
CSAIDTM treatment
(A) Development of 8-cells stage embryos was evaluated after treatment in KSOMaa + 0.01% DMSO (vehicle control),

KSOMaa + 20 µM SB202474 (drug control), KSOMaa + 20 µM SB220025 or KSOMaa + 20 µM SB203580. a, b, significant

differences between percentage of embryos that reach the blastocyst stage; c, d, morula; and f, g, 8-cell-stage embryos. All dif-

ferences were considered significant with P �0.05. Development did not vary significantly between vehicle and drug controls.

However, a significant reduction in the number of embryos that reached the blastocyst, morula and 8-cell stages was observed

in both CSAIDTM treatment groups. (B) (a) Vehicle control group; (b) KSOMaa + 20 µM SB202474; and (c) KSOMaa + 20 µM

SB220025. Eight-cell-stage embryos in both vehicle control (a) and drug control (b) groups display a high rate of development

to the blastocyst stage, whereas 8-cell embryos treated with the active CSAIDTM (c) displayed a developmental blockade with

the majority of treated embryos blocking at the 8–16 cell stages. Scale bar = 100 µm.

results in a significant decrease in the proportion of
embryos that reached the blastocyst stage compared
with controls (Figures 2A and 2B). There was a cor-
responding significant increase in the number of em-
bryos that remained at the morula (8–16 cell) stage
in the SB203580 and SB220025 treatment groups
compared with controls (Figures 2A and 2B). After
release from the drug treatments, all embryos re-
covered and developed to the blastocyst stage with
the same frequency as controls after 24 h of recovery
(results not shown). Cell viability was also assayed at
this time using the vital dye, Trypan Blue (Humason,
1979), and there was no appreciable uptake of dye by
embryos in any group (results not shown).

Time course of p38 MAPK inhibition on
development of 8-cell embryos and the actin
cytoskeleton
Since CSAIDTM treatment at the 8-cell stage res-
ulted in a more rapid onset of the developmental

blockade than that observed when 2- or 4-cell-stage
embryos were treated, we next defined a more pre-
cise time course for CSAIDTM inhibition of p38
MAPK in 8-cell-stage embryos. Eight-cell embryos
were treated with 20 µM SB220025 and em-
bryos were removed at 3, 6 and 12 h post-treatment
for analysis. In both control groups (KSOMaa + 0.1%
DMSO and KSOMaa + SB202474; where KSOMaa
stands for potassium simplex optimized medium plus
amino acids), MK-p was predominantly confined to
the interphase nucleus of each blastomere, just as
was observed for control 2- and 4-cell embryos (Fig-
ures 3A and 3B). In the controls, for all time points,
there was no change observed in either the localiz-
ation or the intensity of MK-p. In the SB220025 treat-
ment group, there was an obvious decrease in MK-p
intensity by 3 h, which was followed by a complete
absence of MK-p fluorescence by 12 h of treatment
(Figures 3C–3E). In contrast with the MK-p distri-
bution, HSP-p co-localized with F-actin in the cell
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Figure 3 Time course of p38 MAPK inhibition on
localization of MK-p, HSP-p, αα-catenin protein and the
actin cytoskeleton in CSAIDTM-treated embryos
8-cell embryos were cultured for up to 12 h in either

KSOMaa + 0.01% DMSO (vehicle control), KSOMaa + 20 µM

SB202474 (drug control) or KSOMaa + 20 µM SB220025. A

subset of embryos from each group was removed at 3, 6 and

12 h, fixed in 2% PFA and then processed for whole-mount

indirect immunofluorescence. Green represents MK-p protein

localization. Co-localization of HSP-p and filamentous actin

appear as yellow. Red indicates rhodamine phalloidin (A–O)

and blue denotes DNA (A–O). No variation in localization pat-

tern or intensity of MK-p, HSP-p or α-catenin fluorescence

was observed between vehicle and drug control groups (A, B,

F, G, K, L). Localization also did not vary for these proteins in

the drug-treated groups after 3 h of treatment (C, H, M); how-

ever, a reduction in the levels of MK-p is apparent as indicated

by the reduced nuclear fluorescence after 6 h of treatment

(D). After 12 h of treatment, a further reduction in MK-p is

observed combined with the complete loss of the rhod-

amine phalloidin fluorescence (E). A reduction in HSP-p

fluorescence is observed at 6 h of treatment (I), with a com-

plete loss of HSP-p and rhodamine phalloidin fluorescence by

12 h of treatment (J). During 6 h of treatment, the distribution

of α-catenin fluorescence transitioned from a predominantly

cortical pattern in adjacent cell-to-cell margins, to include

a cytoplasmic fluorescent foci (N). After 12 h of treatment,

α-catenin fluorescence intensity was considerably reduced

by this treatment time (O). Scale bar = 50 µm.

cortex encircling the periphery of each blastomere
within all embryos from both control groups (Fig-
ures 3F and 3G). However, the SB220025-treated
groups of embryos displayed a reduction in HSP-p
fluorescence by 6 h, followed by a complete absence
of fluorescence by 12 h (Figures 3H–3J). These ex-
periments were repeated using 2 µM SB220025 and
identical results were obtained, with the exception
that MK-p and HSP-p fluorescence was reduced to
barely detectable levels, but never completely dis-
appeared after treatment with this concentration of
the inhibitor (results not shown).

Effect of p38 inhibitors on F-actin in
8-cell-stage embryos
Eight-cell control embryos displayed a cortical loc-
alization of F-actin encircling the periphery of
each blastomere (Figures 3A, 3B, 3F, 3G, 3K and
3L). There was no detectable change in actin local-
ization or rhodamine phalloidin fluorescence inten-
sity throughout the 3, 6 and 12 h experimental time
points in the control groups (Figures 3A, 3B, 3F,
3G, 3K and 3L). However, by 6 h of treatment with
20 µM SB220025, an obvious reduction in the F-
actin fluorescence was observed, followed by a com-
plete loss of rhodamine phalloidin fluorescence by
the 12 h treatment time (Figures 3C–3E, 3H–3J and
3M–3O). These experiments were replicated using a
2 µM concentration of SB220025 and identical out-
comes were observed, except that the rhodamine phal-
loidin fluorescence was reduced to barely detectable
levels, but did not completely disappear by the 12 h
treatment time (results not shown).

Effects of p38 MAPK inhibitors on adherens
junction proteins in 8-cell-stage embryos
Eight-cell control embryos displayed an expected
fluorescence pattern that consisted predominantly of
a cortical pattern confined to the juxtaposed borders
of adjacent cells for both α-catenin (Figures 3K and
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Figure 4 Effect of MEK inhibition on development of murine embryos and localization of MK-p, HSP-p and
phospho-p42/44 in PD098059- and SB220025-treated embryos
(A) Murine embryos were flushed from timed-pregnant oviducts at the 2-cell stage (48 h post-hCG), pooled, washed and

divided equally into four treatment groups consisting of (1) KSOMaa + 0.1% DMSO, (2) KSOMaa + 1 µM PD098059 (PD98059),

(3) KSOMaa + 10 µM PD098059 and (4) KSOMaa + 100 µM PD098059. Embryos were assessed for morphology and progression

through to the blastocyst stage. No significant differences in the proportion of embryos developing to the blastocyst stage were

observed between PD098058-treated and control groups. (B) Phospho-P42/44 fluorescence is represented in green (1 and 4),

as is MK-p in panel 2. The yellow-orange fluorescence represents HSP-p protein co-localizing with rhodamine phalloidin (3). Red

indicates rhodamine phalloidin, and blue denotes DNA (1–4). Panels 1–3 depict embryos from PD098059 treatments, whereas

panel 4 displays embryos from the SB220025 treatment group. There was no difference in the fluorescence pattern of either

MK-p or HSP-p in the PD098059-treated embryos (2, 3), although there was an absence of phospho-p42/44 fluorescence in

these embryos (1). There was no variation in rhodamine phalloidin fluorescence in the PD098059-treated embryos (1–3). Similarly,

no variation in the fluorescence of the phosphorylated-P42/44 antiserum was detected in the SB220025 treatment group (4).

Rhodamine phalloidin fluorescence was reduced in the SB220025-treated embryos (4). Scale bar = 50 µm.

3L) and β-catenin antisera (results not shown). After
treatment with SB220025, β-catenin localization
and intensity did not vary from that of controls at all
observed time points (results not shown). In contrast,
after 6 h of treatment with SB220025, the distri-
bution of α-catenin transitioned from a completely
cortical pattern primarily confined to juxtaposed cell
borders, to include an apolar localization (distinct
fluorescence in free apical cell surfaces) as well as a
cytoplasmic distribution consisting of diffuse fluor-
escent foci (Figure 3N). After 12 h of treatment, the
α-catenin fluorescence pattern was consistently re-
duced in intensity (Figure 3O).

MEK-1 (MAPK/ERK kinase) inhibitor experiments
To investigate the possible involvement of the ERK/
MAPK pathway in mediating these events, we con-
ducted experiments with PD098059, which targets
MEK-1 and thus is a potent inhibitor of ERK-1.
Experiments employing this inhibitor did not affect
development to the blastocyst stage (even at concen-
trations as high as 100 µM; Figure 4A) and did not
affect the intensity or localization of MK-p or HSP-p
fluorescence in the treated embryos [Figures 4B(2)
and 4B(3)]. PD098059 treatment was efficacious
in these experiments as we observed a signific-
ant reduction in fluorescence of the phosphorylated
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form of p42/44 (p42/44-p; ERK-1/2), which is a
downstream target of MEK-1 [Figure 4B(1)]. No
effects on p42/44-p fluorescence were observed in
embryos treated with the p38 MAPK inhibitor
SB220025 [Figure 4B(4)].

Embryo recovery from treatment with
p38 MAPK inhibitors
After 3 h of recovery in drug-free medium,
SB220025-treated embryos displayed an abrupt re-
appearance of MK-p and HSP-p fluorescence (Fig-
ures 5D–5F). Once again, the MK-p fluorescence was
predominantly confined to the interphase nuclei in
each blastomere, whereas the HSP-p fluorescence was
cortical, encircling the periphery of each cell (Fig-
ures 5D and 5E). MK-p was observed within the
cytoplasm in dividing blastomeres (Figure 5D). Fur-
thermore, α-catenin fluorescence also recovered its
intensity and exclusive basolateral localization pat-
tern. No detection of a cytoplasmic α-catenin was
observed beyond 3 h of recovery (Figure 5F). Most
importantly, the rhodamine phalloidin fluorescence
reappeared by 3 h of recovery time, indicating that
actin had reassembled to become filamentous, cor-
tical actin once again (Figures 5D–5F). By 24 h of
recovery time, the fluorescence patterns for MK-p,
HSP-p, actin, α-catenin and the appearance of blasto-
cysts in the treated groups (Figures 5G–5I) did not
vary from the untreated controls (Figures 5A–5C).

Discussion
We have recently reported that mRNAs and poly-
peptides encoding p38 MAPK α, β, γ and δ, and
other members of the p38 MAPK signalling cas-
cade including the downstream effectors, MK2, p38-
related PRAK (MK5) and HSP25/27, are expressed
throughout murine preimplantation development
(Natale et al., 2004). More importantly, we demon-
strated that treatment of 2-cell-stage mouse em-
bryos with p38 MAPK inhibitors SB203580 and
SB220025 resulted in a reversible blockade of devel-
opment that occurs at the 8–16-cell stage of de-
velopment (Natale et al., 2004).

The present study investigated the stage-specific
activation of p38 MAPK signalling, and has charac-
terized the timing of p38 MAPK regulation of fila-
mentous actin, α-catenin and embryo development.
We have demonstrated that treatment of 8-cell em-
bryos with CSAIDTM drugs results in a reversible

Figure 5 Embryo recovery from treatment with p38
MAPK inhibitors
Eight-cell embryos were collected and cultured for a period

of 12 h in either KSOMaa + 0.01% DMSO (vehicle control),

KSOMaa + 20 µM SB202474 (drug control) or KSOMaa +
20 µM SB220025. After treatment, embryos were washed

and returned to KSOMaa. Green represents MK-p and co-

localization of HSP-p and filamentous actin appear as yellow.

Red indicates rhodamine phalloidin (A–I) and blue denotes

DNA (A–I). No variation in the distribution of these proteins

was observed between the vehicle and drug control groups

(A–C). MK-p fluorescence reappeared by 3 h of recovery

and was confined to the nuclei except in cells undergoing

mitosis (D). HSP-p fluorescence reappeared by 3 h (E).

α-Catenin fluorescence was also restored by 3 h of recovery

time (F). Rhodamine phalloidin fluorescence recovered within

3 h (D–F). By 24 h of recovery, all CSAIDTM-treated groups dis-

played a normal developmental frequency to the blastocyst

stage and a normal localization for MK-p (G), HSP-p (H),

α-catenin (I) and filamentous actin (G–I) that was indistinguish-

able from that of controls. Scale bar = 50 µm.

blockade of development (by 12 h) that is associated
with a loss of phosphorylation of MK2, HSP25/27,
redistribution of α-catenin and a loss of filamentous
actin. Furthermore, these effects of p38 MAPK
inhibition on 8–16-cell-stage embryos are fully re-
versible and are not observed when the ERK path-
way is inhibited. The most intriguing finding of our
study is that despite the presence of an active p38
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MAPK pathway at the 2- and 4-cell stage of de-
velopment, this pathway does not regulate filament-
ous actin in these embryo stages. Therefore the p38
MAPK pathway plays an important stage-specific
role in mediating the events of preimplantation de-
velopment. One of these roles is to promote the as-
sembly of filamentous actin beginning at the 8-cell
stage of development.

In several cell systems, p38 MAPKs regulate actin
dynamics (Guay et al., 1997; Dalle-Donne et al.,
2001; Khurana and Dey, 2003). The signalling cas-
cade propagates actin filament restructuring through
the phosphorylation of p38 MAPK. Active p38
MAPK in turn phosphorylates MAPKAPK2, which
then activates HSP27 (Benndorf et al., 1994; Dalle-
Donne et al., 2001; Kyriakis and Avruch, 2001). The
present study demonstrated that CSAIDTM inactiv-
ation of p38 MAPK results in a corresponding de-
crease in the levels of phospho-forms of MAPKAPK2,
and HSP25/27, which precedes a significant decrease
in filamentous actin in the 8–16-cell embryo. These
observations concur with a recent model proposed
by Gerthoffer and Gunst (2001), which predicts that
p38 MAPK exerts its influences on actin by mod-
ulating PP2A (protein type 2 phosphatase), which
in turn regulates the polymerization and stability of
filamentous actin fibres. Future studies will be dir-
ected at testing the validity of this model during
preimplantation development.

Other kinase pathways can cross-talk with the p38
MAPK pathway. For example, ERK can interplay
with the p38 MAPK pathway at the level of MKK4
(MAPK kinase 4) (Kyriakis and Avruch, 2001). How-
ever, inhibition of 2-cell embryos with the MEK1
(ERK1) inhibitor PD098059 at concentrations of 1,
10 and 100 µM did not affect development, as a nor-
mal progression to the blastocyst stage was observed
in their presence. This was associated with no obvious
effects on the actin cytoskeleton. For these reasons,
we conclude that the ERK/MAPK pathway is not a
principal regulator of the actin cytoskeleton during
preimplantation development.

Actin plays an integral role in a significant number
of cellular processes, one of which is the anchoring and
maintenance of the adherens junctions during embryo
compaction (Pratt et al., 1982). Adherens junctions
are cadherin-dependent adhesive structures that are
intricately linked to the actin microfilament network
(Kidder and McLachlin, 1985; Levy et al., 1986;

McLachlin and Kidder, 1986; Ohsugi et al., 1996,
1997, 1999; Goval et al., 2000). In the presence of
calcium, cadherin molecules of adjacent cells bind
forming a junction that brings the cell membranes of
neighbouring cells into close proximity. Cadherin, a
membrane-spanning protein, is bound by β-catenin,
which is in turn bound to α-catenin. α-Catenin then
interacts with the filamentous actin network to an-
chor the junctional complex (Perez-Moreno et al.,
2003). The assembly and formation of adheren junc-
tions between neighbouring cells in the developing
embryo results in the closer and more intimate associ-
ation of cells, eventually obscuring the individual
cell borders and resulting in the morphogenetic
event of compaction (Kidder and McLachlin, 1985;
Levy et al., 1986; McLachlin and Kidder, 1986;
Ohsugi et al., 1996, 1997, 1999; Goval et al., 2000).
We predict that the changes in α-catenin localization
that we observed after CSAIDTM treatment occur as
a consequence of depolymerization of the filament-
ous actin, which results in the formation of unstable
adherens junctions in CSAIDTM-treated embryos.
This result is intriguing and provides a possible ex-
planation for why most of the treated embryos do not
complete compaction in the presence of CSAIDTM

drugs and block at the 8–16-cell stage. Without
proper assembly of stable adherens junctions, com-
paction cannot proceed.

Recovery from CSAIDTM treatment resulted in a
rapid reappearance of the phosphorylated proteins of
the p38 MAPK pathway as well as the adherens
junction-associated proteins and filamentous actin in
treated embryos. The rapid pace of the F-actin reas-
sembly was as expected, since actin may require as
little as a few seconds to repolymerize (Schmidt and
Hall, 1998; Pollard et al., 2000; Gallicano, 2001).
The re-establishment of the active forms of the p38
MAPK family members as well as the adherens
junction-associated proteins could indicate that once
the CSAIDTM block is removed, the embryos respond
immediately to re-establish a normal developmental
programme. The ability of the treated embryos to re-
cover and re-engage the normal developmental pro-
gramme after CSAIDTM treatment demonstrates that
the treatment is not permanently debilitating.

The most intriguing finding of our study is that
treatment of 2- and 4-cell-stage embryos with
CSAIDTM drugs did not result in a blockade of
development or the depolymerization of actin. A
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down-regulation of MK-p and HSP-p was observed,
indicating that CSAIDTM treatment is still able to in-
activate the p38 MAPK pathway at these cell stages.
This result suggests that the p38 MAPK may be ac-
tive in these early cleavage stages but not as a primary
regulator of filamentous actin.

In conclusion, p38 MAPKs regulate many cellular
processes such as inflammation, cytoskeletal re-
arrangements, as well as cell proliferation and apop-
tosis in several different cellular systems (Enslen
et al., 2000; Ono and Han, 2000; Kyriakis and
Avruch, 2001). The principal findings of our study
clearly indicate that the p38 MAPK pathway exerts
a stage-specific control over actin polymerization
during preimplantation development.

Materials and methods
Materials
SB203580, SB220025, SB202474 and PD098059 were pur-
chased from Calbiochem (La Jolla, CA, U.S.A.). These com-
pounds were prepared in DMSO to make stock concentrations
of 10 mM and were stored at –20◦C. All embryo culture was
performed in KSOMaa (Ho et al., 1995).

Antisera and actin labelling
Rabbit antisera raised against the phosphorylated human forms
of phospho-MAPKAPK2, phospho-HSP25/27 and phospho-
p44/42 were used (New England Biolabs, Beverly, MA, U.S.A.)
(Sarkar et al., 2002; Wu and Janknecht, 2002; Yu et al., 2002).
The α- and β-catenin antisera used were mouse monoclonal
antibodies raised against human α- and β-catenins respectively
(BD Transduction Laboratories, San Diego, CA, U.S.A.). All
primary antibodies were tested over a range of concentrations
and were most effective at a dilution of 1:100 from the com-
mercial stock concentration. Primary antibodies were labelled
using FITC-conjugated donkey anti-rabbit secondary antisera
(Jackson Immunoresearch Laboratories, West Grove, MA,
U.S.A.) and FITC-conjugated donkey anti-mouse secondary
antisera (Jackson Immunoresearch Laboratories) respectively.
F-actin was stained using rhodamine-conjugated phalloidin and
DNA was visualized using DAPI (4,6-diamidino-2-phenyl-
indole).

Super-ovulation and embryo collection
Female CD-1 mice (Charles River, Canada), 4–5 weeks of age,
were injected with 10 i.u. of PMSG (pregnant mare’s serum
gonadotropin) (Sigma, St. Louis, MO, U.S.A.), followed by
10 i.u. of hCG (human chorionic gonadotropin; Sigma) 48 h
later and just before mating with CB6F1/J males. Successful
mating was determined the next morning by the presence of
a vaginal plug and was considered day 0.5 of development.
Timing post-hCG was used to measure embryonic develop-
ment and the following embryo stages and times post-hCG
were used in the present study: 2-cell, 48 h; 4-cell, 60 h; and
8-cell, 72 h. Two-cell to 8-cell-stage embryos were flushed from

oviducts of female mice using flushing medium I (1.71 mM
calcium lactate, 0.25 mM sodium pyruvate, 3 mg/ml BSA and
10 × Leibovitz-modified Hanks balanced salt solution, all di-
luted with water to 1×) (Spindle, 1980). Animal care and
treatment were according to the guidelines of the University
of Western Ontario Animal Care Committee.

Whole-mount indirect immunofluorescence
Localization of the p38 MAPK signalling pathway members,
catenins and actin, in preimplantation stage mouse embryos, was
assessed by whole-mount indirect immunofluorescence methods
combined with observation using a laser-scanning confocal
microscope. For each antiserum, the experiment was applied
to a minimum of three replicate embryo series, representing a
minimum of 50 embryos for each treatment group, including the
drug control, vehicle control and drug treatments. Negative con-
trols were also conducted in which embryos were exposed to the
same procedure in the absence of primary antibody to assess
the levels of background and non-specific binding of second-
ary antibody. After collection, embryos were washed once with
1 × PBS and then fixed in 2% (w/v) PFA (paraformaldehyde)
in PBS for 20 min at room temperature (20◦C). After fixation,
embryos were washed with 1 × PBS and either processed imme-
diately for immunostaining or stored at 4◦C in 1 × PBS + 0.09%
sodium azide (embryo storage buffer) for up to 2 weeks.

For immunostaining, fixed embryos were permeabilized and
blocked in 1 × PBS + 5% (v/v) donkey serum + 0.01% Triton
X-100 for 1 h at room temperature. Embryos were washed
with 1 × PBS and incubated with primary antibody diluted
1:100 in 1 × PBS + 1% donkey serum + 0.005% Triton X-100
for 1 h at room temperature followed by additional washes
totalling 1 h at 37◦C. Primary antibodies were detected by ex-
posure for 1 h to FITC-conjugated secondary antibodies (Jackson
Immunoresearch Laboratories) diluted 1:200. Embryos were
then treated with 5 µg/ml (1:20) rhodamine-conjugated phal-
loidin and 1 mg/ml (1:2000) DAPI for 30 min at 37◦C followed
by two washes for 2 h each at 37◦C. Embryos were mounted
in Fluoro-Guard Antifade Mounting reagent (Bio-Rad Labor-
atories, Mississauga, ON, Canada). Fluorescence patterns were
examined using a Zeiss LSM 410 (laser-scanning microscope)
with an inverted Axiovert 100 microscope under ×40 water
Zeiss Plan Apochromat objective lens with a numerical aperture
of 1.2. The microscope room is maintained at a temperature of
22◦C. The confocal microscope uses cooled photomultiplier
tubes produced by Hamamatsu Photonics (Bridgewater, NJ,
U.S.A.). The images were then captured and stored as TIFF
files by the Zeiss LSM software package.

Influence of p38 MAPK inhibitors on development of 2- and
4-cell-stage embryos and the actin cytoskeleton
All experiments were replicated three times using embryos
collected from separate groups of animals. For each experi-
mental replicate, embryos were treated with the CSAIDTM

drugs SB203580 or SB220025 as well as an inactive analogue,
SB202474. A group of embryos treated with vehicle only (0.1%
DMSO in KSOMaa) was included in each experimental repli-
cate as a control. Murine embryos were flushed from timed-
pregnant oviducts at 48 h post-hCG to collect 2-cell-stage em-
bryos. Half of the embryos were pooled, washed and divided
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into one of four treatment groups: (i) KSOMaa + 0.1% DMSO,
(ii) KSOMaa + 2.0 µM SB220025, (iii) KSOMaa + 20 µM
SB220025 and (iv) KSOMaa + 20 µM SB202474. Embryos
were cultured for 12 h and then removed and fixed using 2%
PFA before processing for whole-mount indirect immunofluores-
cence. The second half of the 2-cell embryos in each replicate was
placed into KSOMaa medium for 12 h to allow for development
to the 4-cell stage. At that time, they were washed and divided
into one of the four treatment groups defined above. These em-
bryos were cultured for 12 h before removal from treatment and
fixation with 2% PFA. Whole-mount indirect immunofluores-
cence was then performed as described by Natale et al. (2004).

Influence of p38 MAPK inhibitors on development of
8-cell-stage embryos and the actin cytoskeleton
Murine embryos were flushed from timed-pregnant oviducts at
the 8-cell stage (72 h post-hCG), pooled, washed and divided
equally into one of the four treatment groups: (i) KSOMaa +
0.1% DMSO, (ii) KSOMaa + 20 µM SB202474, (iii)
KSOMaa + 20 µM SB203580 and (iv) KSOMaa + 20 µM
SB220025. Embryos were assessed for morphology and pro-
gression through cleavage divisions 12 h after treatment (84 h
post-hCG), at which time half of the embryos in groups 3
and 4 were removed from culture, washed and placed in fresh
KSOMaa culture drops for the remainder of the experiment.
Embryos in all groups were assessed again 24 h after treat-
ment (96 h post-hCG) to determine progression to the blastocyst
stage. Cell viability was also assayed at this time using a vital
dye, Trypan Blue (Humason, 1979). After treatment, embryos
were subjected to whole-mount indirect immunofluorescence as-
says and filamentous actin was stained using rhodamine-conju-
gated phalloidin. For the assessment of CSAIDTM time-course
effects, murine embryos were flushed from timed-pregnant ovi-
ducts at the 8-cell stage (72 h post-hCG), pooled, washed
and divided equally into four treatment groups consisting of
(i) KSOMaa + 0.1% DMSO, (ii) KSOMaa + 2.0 µM SB220025,
(iii) KSOMaa + 20 µM SB220025 and (iv) KSOMaa + 20 µM
SB202474 for 3, 6 and 12 h. At each time point, a subset of
embryos was removed and fixed in 2% PFA for processing by
immunofluorescence analysis.

MEK-1 inhibitor experiments
Murine embryos were flushed from timed-pregnant oviducts at
the 2-cell stage (48 h post-hCG), pooled, washed and divided
equally into four treatment groups consisting of (i) KSOMaa +
0.1% DMSO, (ii) KSOMaa + 1 µM PD098059, (iii)
KSOMaa + 10 µM PD098059 and (iv) KSOMaa + 100 µM
PD098059. Embryos were assessed for morphology and pro-
gression through cleavage divisions at 24 h postdrug treat-
ment (72 h post-hCG), at which time point half of the em-
bryos in groups 2, 3 and 4 were removed from culture, washed
and placed in fresh KSOMaa culture drops for the remainder
of the experiment. All embryos were then assessed again at
24 h postdrug treatment (96 h post-hCG) for progression to
the blastocyst stage. Cell viability was also assayed at this time
using a vital dye, Trypan Blue (Humason, 1979). After treat-
ment, embryos were processed for whole-mount indirect im-
munofluorescence assays and filamentous actin was stained using
rhodamine-conjugated phalloidin.

Embryo recovery from CSAIDTM treatment
Murine embryos were flushed from timed-pregnant oviducts at
the 8-cell stage (72 h post-hCG), pooled, washed and divided
equally into one of the four treatments: (i) KSOMaa + 0.1%
DMSO, (ii) KSOMaa + 2.0 µM SB220025, (iii) KSOMaa +
20 µM SB220025 and (iv) KSOMaa + 20 µM SB202474. Em-
bryos were cultured for 12 h (84 h post-hCG) and then washed
with 1 × PBS for 20 min and placed into drug-free KSOMaa for
the remainder of the experiment to assay the recovery. Embryos
were removed from culture at 3, 6, 12 and 24 h intervals (87,
90, 96 and 108 h post-hCG respectively) and fixed in 2% PFA
for processing by immunofluorescence analysis.

Statistical analysis
Statistical analysis of data was performed using SigmaStat
(Jandel Scientific, San Rafael, CA, U.S.A.) software package.
Data showed normal distribution and one-way ANOVA was
used to determine treatment effects, followed by Tukey’s Mul-
tiple Comparison Test to determine the statistical significance.
P � 0.05 was considered statistically significant.
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