
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

6-29-2021 2:00 PM 

Addressing Bias in Non-Experimental Studies Assessing Addressing Bias in Non-Experimental Studies Assessing 

Treatment Outcomes in Prostate Cancer Treatment Outcomes in Prostate Cancer 

David E. Guy, The University of Western Ontario 

Supervisor: Rodrigues, George B., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Epidemiology and Biostatistics 

© David E. Guy 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biostatistics Commons, Neoplasms Commons, Oncology Commons, Radiation Medicine 

Commons, Surgery Commons, and the Survival Analysis Commons 

Recommended Citation Recommended Citation 
Guy, David E., "Addressing Bias in Non-Experimental Studies Assessing Treatment Outcomes in Prostate 
Cancer" (2021). Electronic Thesis and Dissertation Repository. 7935. 
https://ir.lib.uwo.ca/etd/7935 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1416?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1416?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/825?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7935?utm_source=ir.lib.uwo.ca%2Fetd%2F7935&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 v 

Abstract 
 

Confounding is a critical concern in non-experimental comparative effectiveness 

research. Although regression can reduce confounding, issues of non-positivity and model 

dependence remain when baseline characteristics between treatment groups vary 

considerably. As such, we evaluated the ability of matching techniques to balance baseline 

characteristics between treatment groups using non-experimental data. We identified a set of 

balance diagnostics that assessed key differences in baseline covariates with potential for 

confounding. These diagnostics were used in a novel systematic approach to developing and 

evaluating models for use in propensity score matching that optimized balance and data 

retention. We then compared the performance of propensity score and coarsened exact 

matching strategies in optimizing balance and data retention, using non-experimental data 

from a pan-Canadian prostate cancer database. Both matching techniques balanced baseline 

covariates adequately and retained approximately 70% of the data. Improvements in balance 

after matching were associated with closer agreement in the effect estimate with the 

associated RCT compared to regression modeling alone. Furthermore, regression modelling 

after matching led to even closer agreement compared to matching alone. To study the role of 

treatment selection and prostate cancer outcomes, we performed a systematic review and 

meta-analysis that examined the rate of prostate cancer-specific mortality among those with 

high-risk non-metastatic prostate cancer who were initially treated with radiation or surgery. 

No statistically significant difference was found between groups in this analysis; however, this 

might be explained by the moderator variables of radiation type. In follow-up to this analysis, 
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we compared the rate of metastatic progression following treatment between those with 

unfavorable-risk non-metastatic prostate cancer and treated with radiation or surgery, using 

data acquired from two Ontario cancer centers. The novel approaches to matching developed 

in this thesis were used to balance baseline characteristics between groups. Results from this 

comparison showed no statistically significant difference between treatment groups. In 

summary, a systematic approach to matching can be effective in balancing baseline covariates 

and producing more accurate effect estimates from non-experimental data. Moreover, initial 

treatment selection between radiation and surgery in the realm of higher risk prostate cancer 

does not appear to significantly influence important oncological outcomes.  

Keywords: Comparative effectiveness research; non-experimental data; confounding; balance; 

propensity score matching; coarsened exact matching; regression analysis; prostate cancer; 

unfavorable-risk non-metastatic; high-risk non-metastatic; radiation therapy; external beam 

radiation therapy; brachytherapy; radical prostatectomy; androgen deprivation therapy  
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Summary for Lay Audience 
 

Accounting for bias in research performed using nonrandomized data is necessary to 

validly quantify differences in treatment effectiveness. Although statistical techniques can 

reduce bias, they are of limited value when treatment groups vary substantially. Matching 

individuals between treatment groups can overcome this issue; however, depending on how 

matching is accomplished, different issues may persist. For example, matching directly on all 

patient characteristics can lead to too few matches from which to draw valid conclusions. 

Alternatively, using a simple score derived from patient characteristics (e.g., a health score as 

defined by the presence of multiple illnesses, health behaviors such as smoking, exercise and 

diet, and age) might be limited in its ability to differentiate between those with similar scores 

who might still vary considerably in important ways. As such, we compared the ability of 

different matching strategies to balance important patient characteristics between treatment 

groups, while generating enough matches. To accomplish this, a set of tests were identified 

from previous research that adequately quantify important differences between treatment 

groups when attempting to estimate treatment effects. We developed a systematic approach 

to matching that optimized similarity in characteristics between groups, while maximizing the 

number of matches made. Finally, the ability of two different matching strategies were 

compared using nonrandomized data obtained from a pan-Canadian radiotherapy database of 

men diagnosed with prostate cancer. Both strategies performed well, leading to minimal 

differences between treatment groups, while generating enough matches to validly estimate 

treatment effects. In follow-up to the matching project using prostate cancer data, we 
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aggregated effect estimates from studies comparing the effectiveness of radiation and surgery 

in treating high-risk prostate cancer, using a research technique called a systematic review and 

meta-analysis. No difference was found in the effectiveness of these two treatment modalities 

in this patient population. The last project in this thesis used the matching strategies developed 

in earlier chapters to compare the effectiveness of radiation and surgery in the treatment of 

higher-risk prostate cancer with newly acquired patient data. Like other studies, no difference 

in effectiveness was identified between these treatment modalities. However, due to data 

limitations, these estimates could not account for several potential biases which are explored in 

this thesis.  
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Thesis Map and Orientation 
 

The goal of this thesis was to investigate methods used to mitigate bias when comparing 

the effectiveness of radiation therapy relative to radical prostatectomy as initial management 

options in treating unfavorable-risk non-metastatic prostate cancer. The first chapter provided 

a general review of the carcinogenesis, epidemiology, and clinical management of prostate 

cancer to provide understanding of the nature of this disease, information on the relative 

health burden and the standard of care in screening, diagnosis, prognosis, and management. 

This chapter also provides a review of the current state of research on the effectiveness of 

available treatments used in the management of unfavorable-risk non-metastatic prostate 

cancer and associated knowledge gaps. The challenges to performing RCTs when comparing 

radiation therapy and radical prostatectomy, which are the upfront standard of care options, 

are reviewed and illustrate the importance of evidence generated from non-experimental data 

when estimating their relative treatment effectiveness. A discussion on how confounding 

manifests when comparing the effectiveness of radiation therapy and radical prostatectomy 

using non-experimental data obtained from routine clinical practice is provided.  

In chapter two, commonly employed methods for preventing and controlling 

confounding when performing comparative effectiveness research using non-experimental data 

(e.g., regression modeling and matching strategies) are explored. To measure the effectiveness 

of matching strategies in preventing confounding, balance in the distribution of baseline 

covariates with potential for confounding needed to be assessed. As such, in chapter three, 

available balance diagnostics are reviewed and a set that comprehensively measured 

imbalances in the multivariable distribution of baseline covariates with prognostic value when 
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comparing treatments using non-experimental data was subsequently identified. The identified 

set of balance diagnostics is then used in the research work described in chapter four to inform 

a systematic approach to developing and evaluating propensity score models for matching. An 

illustration is provided using a treatment comparison from the prostate cancer literature. In 

chapter five, the performance of propensity score matching versus coarsened exact matching in 

balancing baseline covariates and thus preventing confounding is compared. This involved the 

use of a pan-Canadian radiation therapy database to provide two treatment comparisons. 

Treatment comparisons were informed by two RCTs to enable guidance in the interpretation of 

effect estimates before and after matching so that one could infer whether matching led to 

effect estimates closer to or further from those obtained from RCTs.  

In chapter six, a systematic review and meta-analysis of available non-experimental 

studies comparing the rate of prostate cancer-specific mortality between men diagnosed with 

high-risk non-metastatic prostate cancer who were initially treated with radiation therapy or 

radical prostatectomy is performed. This analysis was performed to assess the quality and to 

survey the findings available in this patient population which is lacking randomized data to 

guide treatment selection. In chapter seven, the relative rate of metastatic progression 

between men diagnosed with unfavorable-risk non-metastatic prostate cancer who initially 

underwent radiation therapy or radical prostatectomy is estimated. For this project, non-

experimental data were obtained from a Canadian academic multidisciplinary clinic where men 

eligible for both radiation therapy and radical prostatectomy were consulted by both a surgeon 

and radiation oncologist so were less likely to differ prognostically than those seen in traditional 

clinics. The matching methods developed in chapter four and five were used to mitigate 
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differences in the distribution of baseline covariates and the balance diagnostics identified in 

chapter three were used to measure their effectiveness.  

This thesis concluded with an integrated discussion of the findings from the projects 

performed and provided suggestions for future research on this basis. 
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Chapter 1: An Epidemiological and Clinical Review of Prostate Cancer 
 
1.1 Prostate Carcinogenesis and Epidemiology 
 

The prostate is an exocrine gland that makes part of the male reproductive tract.(1) It 

serves to secrete an alkaline fluid as part of the ejaculate, which protects sperm from the acidic 

vaginal environment to promote successful fertilization.(1) Prostate cancer (PCa) typically 

develops in the prostatic epithelial tissue, and growth is typically dependent on androgen 

signaling.(2) PCa was the second leading cancer diagnosis and fifth leading cause of cancer 

death globally in 2018.(3) In 2020, the Canadian Cancer Society estimated that about 23,300 

men would be diagnosed with PCa in Canada and over 4,200 of those diagnosed would die from 

their disease.(4) Age is a well-established risk factor for PCa, with incidence increasing sharply 

after 50 years of age.(5) The prevalence in Canada is approximately 100 per 100,000 men 

between 50 and 54 years of age, increasing to 700 per 100,000 among men aged 60-64 and 

over 700 per 100,000 for men older than 80 years.(6) Family history is also a risk factor for PCa, 

increasing the incidence at an earlier age in men with compared to without a family history of 

PCa.(7,8) Differences in incidence rates and severity of disease have also been noted for 

different races.(9,10) In 2015, 157.6 per 100 000 black men were diagnosed with PCa, 

compared with 93.9 per 100 000 white men in the United States.(10) Black men also tend to 

have more aggressive disease on diagnosis and are more likely to die from their PCa than white 

men.(9) 

 

1.2 Screening and Diagnosis 
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 In earlier stages of PCa, cases are generally asymptomatic.(11) In later stages of the 

disease, urinary symptoms include hesitancy, nocturia and retention.(11) In the case of 

advanced metastatic PCa, systemic signs and symptoms may arise, including fatigue, weight 

loss, and bone pain.(11) Most cases of PCa are identified in their earlier stages through 

prostate-specific antigen (PSA) testing.(12)  

The PSA is an androgen-regulated serine protease produced by the epithelial cells of the 

prostate.(13) The PSA is often elevated in the context of PCa, benign prostatic hyperplasia and 

prostatitis, and transiently after prostate biopsy, acute urinary retention, physical activity, and 

other activities.(1) PCa screening using PSA has been a controversial issue over the past few 

decades.(14) Although it increases diagnosis of indolent disease that may lead to ‘unnecessary’ 

treatment, it also increases diagnosis of aggressive PCa in its earlier and more treatable 

stages.(15) The most recent guidelines for PCa screening in Canada come from the Canadian 

Urological Association, which were published in 2017.(15) Since evidence remains equivocal 

surrounding the relative benefits and harms of PSA screening for patients, it is suggested that 

men over the age of 50 with a greater than 10-year life expectancy be engaged in a shared 

decision-making process of whether or not to undergo PSA screening.(15) Men younger than 45 

years with a first or second-degree family history of PCa should also be considered for screening 

as they are at an increased risk for clinically significant PCa. Intervals between screening tests 

should be individualized according to previous PSA levels (e.g., PSA < 1 ng/ml and 1-3 ng/ml 

should repeat in four and two years, respectively).(15) More frequent intervals or adjunctive 

testing strategies should be considered for a significantly elevated PSA (i.e. > 3 ng/ml).(15) 

Deciding when to discontinue PSA screening should involve consideration of life expectancy and 
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PSA levels. For instance, men aged 60 with a PSA < 1 ng/ml, and men who are aged over 70 

years or have a less than 10-year life expectancy should have PSA screening discontinued.(15)  

Physical examination of the prostate through digital-rectal examination allows the size 

of the prostate gland to be assessed, nodules or lumps to be detected, and a clinical tumor 

stage to be assigned.(11) The digital-rectal examination and PSA testing as screening measures 

are often carried out by a general practitioner such as a family physician.(16) Results from these 

tests together with consideration of the patient’s age, family history of PCa and race are used to 

inform whether the patient should be referred to the urologist for consideration of more 

definitive forms of diagnosis through prostate biopsy and histological examination.(16) If 

appropriate, the urologist performs a prostate biopsy and sends tissue samples to the 

pathologist. The pathologist examines the microscopic appearance of the prostate’s glandular 

architecture. It is the responsibility of the pathologist to diagnose the PCa and assign a grade or 

score based on the Gleason system.(17) A Gleason grade of 1 to 2 is assigned when the 

glandular appearance is very organized and non-dysplastic upon microscopic examination.(18) 

A Gleason grade of 3 indicates that the glandular appearance is sufficiently disorganized to 

warrant a diagnosis of PCa.(18) Further information on Gleason grading will be covered in 

Section 1.3.3.  

 

1.3 Risk-Stratification 
 

Risk-stratification of PCa is defined by the association of pre-treatment variables with 

the trajectory of disease following treatment. To objectively define and validate the prognostic 

value of risk-strata, characteristics of the disease are measured before treatment and are 
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correlated with measures of disease progression following treatment.(19) Risk-stratification 

serves important purposes in research and clinical contexts.(20) First, clinical trials can 

condition/adjust estimates of treatment effect on risk strata to reduce heterogeneity, therefore 

improving statistical power to identify treatment effects. This also has the added benefit of 

improving precision and accuracy in effect estimates for specific subpopulations and allows 

advances in treatment protocols to target different levels of disease appropriately (e.g., 

multimodal treatment for more aggressive diseases vs unimodal treatment for more indolent 

disease). Clinicians can use this information to guide treatment decisions regarding selection of 

modality and the use of multimodal therapies. This ultimately reduces the variability in 

treatment decisions because of clinician bias, experience, and knowledge. Risk-stratification 

also provides a common nomenclature to define PCa characteristics, improving communication 

between clinicians and institutions. This facilitates collaboration in research and patient 

management to ultimately improve progress and patient care. 

Recommended baseline characteristics used to define risk-strata in the clinical context 

include measurements of PSA, clinical stage derived from digital-rectal exam, Grade Group, 

amount of cancer on biopsy and imaging.(21) Their use in defining risk-strata is based on their 

demonstrated predictability of important disease endpoints following treatment. The following 

paragraphs describe each factor and how they relate to clinical endpoints and thus the 

rationale for their contribution in risk-stratification. A summary table is provided outlining 

current definitions of risk-strata. 

 

1.3.1 The Prognostic Role of PSA 
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Studies investigating the association of PSA and pathological outcomes following 

surgical resection of the prostate through radical prostatectomy (RP) have demonstrated 

significant correlation between rising PSA from 4 ng/ml and important clinical and surgical 

endpoints (i.e., pathological stage, organ-confined disease, extraprostatic extension, seminal 

vesicle invasion and disease-free survival).(22,23) Similar results were found following PCa 

radiation therapy (RT) in two clinical trials where high-risk PCa patients with PSA levels greater 

than 50 ng/ml had inferior clinical and biochemical endpoints (i.e., overall survival, distant 

metastasis, and biochemical failure) compared to other high-risk PCa patients.(20) Common 

ranges of PSA that are used in risk-stratification include <10, 10.1-20, and >20 ng/ml;(21,24,25) 

however, new cut-off values are also being evaluated.(20)  

 

1.3.2 The Prognostic Role of Clinical Staging 
 

Clinical staging is accomplished through digital-rectal examination, imaging, and 

histological results from tissue biopsy. Upon digital-rectal examination, presence of prostatic 

nodules, asymmetry and/or induration elevate suspicion of PCa and can help determine the 

extent of tumour involvement.(26) Imaging modalities such as transrectal ultrasound and 

magnetic resonance imaging can also detect prostatic lesions which might represent malignant 

disease.(21) The most widely used system for clinical staging is the American Joint Committee 

on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) tumor, node and metastasis 

staging system.(27) Since the work in this thesis focuses on non-metastatic PCa, only the tumor 

(T) aspect of the AJCC/UICC staging system will be reviewed. Clinical stage T1 (cT1) is a clinically 

inapparent tumor that is neither detectable on digital-rectal exam nor imaging. 
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Subcategorization of cT1a and cT1b correspond to an incidental tumor finding on transurethral 

resection of the prostate involving ≤5% and >5%, respectively, of the number of chips or 

amount of tissue resected out for clinically benign disease. Patients undergo transurethral 

resection of the prostate to relieve their obstructive urinary symptoms and function, usually 

due to benign prostatic hypertrophy.(18) cT1c corresponds to identification from needle biopsy 

secondary to an elevated PSA test without palpable disease. Clinical stage T2 (cT2) are tumors 

detectable by digital-rectal exam or imaging but that are perceived to be confined within the 

prostate. cT2a tumor involves up to one-half of one lobe, cT2b involves more than one-half of 

one lobe and cT2c involves both lobes. Clinical stage T3 indicates that the tumor has grown 

outside of the prostate and either has not spread to the seminal vesicles (T3a) or has spread to 

the seminal vesicles (T3b). Clinical stage T4 indicates that the tumor has spread to tissues next 

to the prostate other than the seminal vesicles. 

The AJCC/UICC staging system describes the anatomic extent of disease, which has value 

in treatment planning. For instance, a greater cT stage indicates a greater anatomic spread of 

the disease that might warrant delivering RT to the tissues surrounding the prostatic capsule or 

pelvic lymph node dissection through RP to evaluate whether the cancer has metastasized 

beyond adjacent tissues. Increased classification, however, is not necessarily associated with 

poorer prognosis.(28) For instance, many studies have demonstrated similar PSA recurrence 

rates post-RP between cT1c and cT2a tumors.(29–34) The lack of differentiation between cT1c 

and cT2a likely results from the low sensitivity of digital-rectal examination in assessing the 

presence and extent of PCa since it relies on the clinician’s ability to detect aspects of the tumor 

and the patient’s anatomy to facilitate examination (e.g., prostates of overweight compared to 
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normal weight patients are generally more difficult to palpate). Obek and colleagues found that 

in PCa tumors characterized by digital-rectal examination as unilateral, 69% were pathologically 

bilateral and 4% were cancer free in the lobe with a palpable abnormality.(35) Moreover, 

increasing tumor involvement laterally has not significantly correlated with biochemical failure 

independent of other established prognostic factors.(36) Finally, subcategorization of T1a and 

T1b is derived from a single study, involving 117 patients that found subdividing disease into 

transurethral resection of the prostate specimens with more or less than 5% tumor was 

associated with noticeable differences in clinical outcomes.(37) Since very few instances of PCa 

are detected through transurethral resection of the prostate, these cT1 subcategorizations have 

limited applicability. 

 

1.3.3 The Prognostic Role of Grade Group 
 

Grade Group is determined by the most and second most predominant pathological 

Gleason grade on biopsy.(21) Gleason grade is based on glandular differentiation, with well-

differentiated tumors representing lower-risk PCa that tends to grow and spread slower, thus 

indicating a better prognosis.(24,25) Although Gleason grading has been reported in a variety of 

ways, the Grade Group system has been recommended for risk-stratification to inform 

decisions regarding treatment of localized prostate cancer.(17,21) However, since the data 

analyzed in the this thesis arose from before the latest Grade Group system was adopted, the 

traditional Gleason sum will be used instead. A Grade Group of 1 corresponds to the most and 

second most predominant Gleason score on biopsy of 3 and 3, respectively. This corresponds to 

a Gleason sum of 6 (3+3). A Grade Group of 2 corresponds to a Gleason sum of 7 (3+4), while a 
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Grade Group of 3 is defined by a Gleason sum of 7 (4+3). Finally, Grade Groups of 4 and 5 

correspond to Gleason sums of 8 (3+5, 4+4, or 5+3) and 9 (4+5 or 5+4) to 10 (5+5), 

respectively.(17) The prognostic ability of the Grade Group system has been validated by 

multiple institutions on the basis of 4-year biochemical progression-free survival (BPFS) rates 

with increased clinical Grade Group values corresponding to significantly decreased rates of 

BPFS.(38)  

Other measures used in the subcategorization of low-risk PCa into very low-risk PCa 

include PSA density, percentage of biopsy cores positive for malignancy, and highest 

involvement of malignant tissue in a biopsy core.(21) PSA density is a quotient of serum PSA 

and prostate volume. Specifically, a value exceeding 0.15 ng/ml of PSA per cm3 of prostatic 

tissue increases the suspicion for clinically significant PCa.(15,39) Percentage of positive biopsy 

cores has been strongly associated with PCa death when assessed as a continuous and ordinal 

variable.(40) Moreover, the extent of core involvement on tissue biopsy has also been 

associated with important endpoints (e.g., ≤10, >10-25, >25-75 and >75% core involvement 

rates corresponded to PCa death rates of 8, 21, 38, and 56%, respectively).(40) Multiple studies 

have found that men presenting with low-risk PCa who also had a PSA density <0.15ng/ml/cm3, 

≤2 positive cores on biopsy and no core with >50% involvement had a very low probability of 

adverse pathology at surgery and rate of metastatic disease when managed with active 

surveillance.(41–43) 

 

1.3.4 Summary 
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Risk-categories are intended to simplify decision making and have both research and 

clinical value.(19,21) Very low-risk PCa has a metastatic progression rate of <1% while on active 

surveillance at 15 years whereas PCa progression of men with low-risk PCa while on active 

surveillance is not as clear.(42,44,45) As a result, patients with very low-risk disease should be 

strongly recommended active surveillance whereas select patients with low-risk may be offered 

definitive therapy.(21) Further subcategorization of the traditional intermediate-risk category 

into favorable and unfavorable intermediate-risk was precipitated by significant differences in 

recommended management options in imaging, pelvic node dissection during RP, and 

advisability of androgen deprivation therapy (ADT) in conjunction with RT.(21) Finally, 

substratification of high-risk PCa into high and very high-risk does not provide much clinical 

utility, as management plans are very similar even though outcomes differ significantly.(19,21) 

As a result, these risk strata have been collapsed for clinical purposes, but retain value for 

research purposes. 

Table 1.1 Risk-stratification of non-metastatic prostate cancer 
 *AUA/ASTRO/SUO Guidelines ProCaRS Risk-Stratification NCCN 

Very low risk 

PSA <10 AND Grade Group 1 AND 
clinical stage T1-T2a AND <34% of 
biopsy cores positive AND no core 
with >50% involved, AND PSA 
density <0.15 ng/ml/cc 

Clinical stage T1–T2a AND PSA ≤6 
AND Gleason score ≤6 

Clinical stage T1c, Gleason sum 
≤6, PSA <10, <3 biopsy cores 
positive, ≤50% cancer in each 
core, and PSA density <0.15 
ng/ml/g 

Low risk 
Clinical stage T1-2a AND PSA <10 
AND Grade Group 1 AND not very-
low-risk 

Clinical stage T1–T2a AND PSA >6 to 
≤10 AND Gleason sum ≤6 

Clinical stage T1-2a, Gleason sum 
≤6, and PSA <10 AND not very-
low-risk 

Favorable 
intermediate 

risk 

Clinical stage T2b-c AND Grade 
Group 1 (with PSA 10 to <20) OR 
Grade Group 2 (with PSA <10) 

PSA ≤10 (with T2b-c OR Gleason sum 
=7) OR PSA >10 to ≤20 (with T1-2a 
AND Gleason sum ≤6) 

Clinical stage T1–T2, PSA ≤20, and 
Gleason score ≤7 not otherwise 
low-risk 
 

Unfavorable 
intermediate 

risk 

Grade Group 2 (with either PSA 10 
to <20 or clinical stage T2b-c) OR 
Grade Group 3 (with PSA <20) 

Gleason sum=7 and at least one of 
PSA >10 to ≤20 OR T2b-c 

High risk 
PSA ≥20 or Grade Group 4-5 OR 
clinical stage ≥T3 

Core positivity <87.5% AND 
Clinical stage T3–T4 OR (PSA >20 to 
PSA <30) OR Gleason sum 8 to 10 

Clinical stage T3–T4 or PSA >20, 
or Gleason score 8–10 
 

Very high risk 
- Clinical stage T3–T4 OR (PSA >20 to 

PSA <30) OR Gleason sum 8 to 10 
Clinical stage T3b–4 
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AND (PSA >30 OR core positivity 
>87.5%) 

*AUA = American Urological Association; ASTRO = American Society for Radiation Oncology; SUO = Society of Urologic Oncology; 
ProCaRS = Prostate Cancer Risk-Stratification; NCCN = National Comprehensive Cancer Network 

 
 
1.4 Oncological Outcomes in Prostate Cancer  
 

Assessing treatment outcomes in PCa is necessary to inform patients and clinicians of 

the relative harm to benefit ratio for different therapeutic options. Outcome measures should 

be meaningful or reliably determine meaningful outcomes in PCa such as disease-free status 

and survival. As well, they should occur frequently enough to allow comparison between 

therapies and standardized to enable valid comparisons between studies. In the context of 

localized PCa, the optimal outcome is PCa-specific survival (CSS) rather than overall survival 

(OS), as PCa is slow growing and many patients with PCa die from other causes.(46) However, 

OS is also important as treatments can directly and indirectly lead to death. Unfortunately, 

meaningful comparisons of CSS might only be feasible many years after follow-up due to the 

slow growing nature of PCa.(47,48) Surrogate markers are often used to assess short-term 

outcomes associated with CSS such as changes in PSA following therapy, and development of 

radiographic or bone scan evidence of metastasis.(46) These measures have been found to 

antedate CSS by approximately 13 and 5 years, respectively, while occurring approximately 2- 

and 10-years post-intervention, respectively.(47–49) Moreover, metastatic progression has 

been found to be the primary determinant of CSS.(47,49) As a result, studies comparing new 

therapies or prognostic markers in the realm of localized PCa use such definitions to accomplish 

their work in a more reasonable time frame. 
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1.4.1 Biochemical Failure 
 
 In the context of localized PCa, values indicating biochemical failure depend on the type 

of intervention. In the setting of RP, surgeons attempt to remove all benign and malignant 

prostatic tissue, so PSA should fall to an undetectable level if treatment is successful.(50) 

However, this does not occur for about 4 weeks since serum PSA half-life is about 2.6 days.(50) 

As such, it is recommended that the first PSA-test be performed 3-months after surgery.(51) 

Approximately, 20-40% of cases will demonstrate rises in PSA level post-intervention.(52,53) 

Minimal rises in PSA may indicate incomplete resection of benign prostate tissue whereas more 

significant and rising PSA levels raise concern of persistent local or distant metastatic 

disease.(54) Although a consensus has not been reached on what denotes a significant PSA 

level post-RP, different thresholds have been proposed for indicating biochemical recurrence 

following RP, ranging from ≥0.2 to ≥0.5 ng/ml.(46) Patients with a PSA of ≥0.2 ng/ml post-RP 

are said to have biochemical failure and are 53% likely to develop clinical recurrence over 

time.(47) Others have suggested ≥0.4 ng/ml as a more clinically relevant cut-off since it has 

been shown to optimally discriminate men who later present with metastatic progression as 

well as strongly correlate with continued PSA progression, secondary therapy, and a rapid PSA 

doubling time compared to competing definitions.(49,55,56) As such, they suggest that this 

should be the standard definition of biochemical recurrence for reporting outcomes following 

RP for biochemical endpoints in clinical trials using combined modality treatment strategies and 

to identify patients suitable for systemic therapy in clinical trials post-RP.(49) However, other 

factors should be considered when deciding to initiate salvage treatment such as life-

expectancy as determined by age and general health status as well as Gleason score, 
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pathological stage, surgical margin, and lymph-node status, since these also predict biochemical 

and clinical progression, and disease-specific and overall mortality.(57)  

 Changes in PSA following RT differ compared to RP and even among different RT 

approaches, making classification of biochemical failure complicated.(58,59) As prostatic tissue 

is irradiated, cells are damaged and become inflamed, releasing PSA into the circulation.(58) A 

phenomenon known as PSA bounce also commonly occurs in the setting of radioactive seed 

implantation followed by external beam radiation (EBRT).(59) In 1996, the American Society for 

Therapeutic Radiology and Oncology initially defined biochemical failure after EBRT as three 

consecutive PSA rises after nadir.(60) The date of failure was defined as the halfway point 

between the nadir date and the first rise. This definition posed several short-comings, including 

not being linked to clinical progression or survival, performing poorly among those receiving 

ADT, biasing estimates of event-free survival and violated the proportional hazards assumption 

leading to statistical limitations in its reporting.(61) As such, the definition has been revised to 

address these shortcomings in a second consensus panel by the American Society for 

Therapeutic Radiation Oncology - Radiation Therapy Oncology Group.(61) They recommended 

that a rise of PSA by ≥2 ng/ml above the nadir should be the standard definition of biochemical 

failure after EBRT with or without ADT, which is now convention.(61) Thompson et al further 

evaluated this definition in the context of brachytherapy (BT) and found that 44% of patients 

whose PSA rose ≥2 ng/ml above nadir, subsequently fell to ≤0.5 ng/ml without intervention.(62) 

They defined this as the benign phenomenon known as PSA bounce. Other definitions of PSA 

bounce include specified increases in PSA above nadir by 0.1,(63,64) 0.2,(64–66) 15%,(67) and 

35%.(64) Interestingly, patients who experience PSA bounce after BT tend to have better 
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outcomes in terms of biochemical failure, metastatic progression, and OS than those not 

demonstrating PSA bounce.(68)  

 

1.5 Management  
 

The most established management methods include active surveillance, RT, and RP, 

while more investigative novel ablative techniques include high-intensity focused ultrasound 

and cryotherapy.(21) Many factors are involved when deciding upon treatment for PCa such as 

risk-strata of PCa, age, life expectancy, pre-treatment general function and genitourinary 

symptoms, expected post-treatment function, and potential for salvage therapy.(21) Many 

treatments are clinically acceptable in the realm of PCa with the ratio of harm to benefit often 

being equivalent.(69,70) As such, guidelines developed by the American Urological Association, 

American Society for Therapeutic Radiation Oncology and Society of Urologic Oncology stress 

the importance of a shared decision-making process that incorporates best evidence with 

patient values to determine the appropriate course of therapy.(21) This involves consideration 

of the aforementioned factors that influence treatment decision and consultation with different 

PCa care specialists.(12,21)  

 

1.5.1 Favourable-Risk Prostate Cancer 
 

The standard of care for a diagnosis of very low-risk or low-risk PCa is active 

surveillance.(71) Active surveillance entails delayed treatment in the presence of continuous 

monitoring of PCa growth and progression wherein reclassification to a higher risk of disease 

progression prompts consideration of definitive intervention.(18) This differs from watchful 

waiting wherein the consideration of treatment does not occur until symptoms and/or signs 
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emerge.(18) Watchful waiting might be the appropriate choice for an individual who has 

competing illnesses such as cardiovascular and respiratory diseases that decrease their life-

expectancy, reducing the utility of active treatment to improve life-expectancy or quality of life. 

Several longitudinal studies have indicated that delayed intervention in the context of active 

surveillance compared to immediate definitive therapy does not lead to significant differences 

in biochemical recurrence rates, positive surgical margins, extraprostatic extension,(72–74) or 

risk of incurable disease.(75,76) Moreover, multiple active surveillance programs have 

demonstrated OS rates to be between 97% to 100% at 15-years.(42,77–82) 

Based on the international success of many active surveillance programs, a best practice 

guideline was created outlining appropriate steps in active surveillance monitoring.(71) 

Guidelines suggest that following a diagnosis of very low- and low-risk PCa, patients should 

receive a PSA test every 3 to 6 months, an annual digital-rectal examination, and a 12 to 14 core 

confirmatory transrectal ultrasound biopsy within 6 to 12 months of diagnosis with biopsies 

repeated every 3 to 5 years thereafter.(71) Clinicians may also consider multiparametric MRI if 

pathologic and clinical findings are discordant,(71) as research has shown high negative 

predictive values between 83% and 100%,(83) and has shown multiparametric MRI to be a 

good predictor of disease reclassification in the context of active surveillance.(84,85)  

Upon re-biopsy, an increase in Gleason sum or volume should prompt consideration of 

definitive therapy.(86,87) Specifically, a Gleason sum of at least 7 (3 + 4) with greater than 10% 

involvement of Gleason 4 warrants definitive treatment.(71) Moreover, significant increases in 

Gleason sum 6 volume should also prompt consideration of definitive therapy; however, clear 

criteria for total volume are currently not available. These recommendations are supported by 
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results showing reduced risk of distant metastasis and PCa-specific mortality for men 

undergoing RP versus watchful waiting in the Scandinavian Prostate Cancer Group-4 

Randomized Trial.(87) The following modes of definitive treatment can be considered in the 

context of reclassification while on active surveillance. 

 

1.5.2 Intermediate-Risk Prostate cancer 
 
 As mentioned previously, intermediate-risk PCa can be categorized as favourable or 

unfavourable. Patients diagnosed with favourable intermediate-risk PCa should consider active 

surveillance.(71) The standard therapy for unfavourable intermediate-risk PCa is either RP or RT 

with adjuvant ADT.(21) Other options include RT alone, whole gland cryosurgery, high intensity 

focused ultrasound and focal therapy; however, evidence surrounding these options is less 

robust.(21) Unfavourable intermediate-risk PCa patients may also be offered active surveillance 

if life expectancy is ≤ 5 years.(21)  

 RP involves surgical removal of the prostate gland with curative intent of PCa. 

Derivations of the procedure exist, including open, laparoscopic, and robotic approaches. In the 

Scandinavian Prostate Cancer Group Study Number 4 (SPCG-4), men randomized to RP with a 

diagnosis of Gleason sum of ≥ 7 and PSA ≥10 ng/ml had a reduced relative risk of death from 

any cause and PCa-specific mortality compared to men randomized to watchful waiting.(87) 

However, watchful waiting in this study did not emulate active surveillance in that men were 

not continuously monitored and were offered trans-urethral resection of the prostate (TURP) in 

the presence of obstructive voiding symptoms or ADT upon image detected metastases. 

Observations from the Prostate Cancer Intervention versus Observation Trial (PIVOT) also 
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indicated significant reduction in PCa-specific mortality among intermediate-risk PCa or with a 

baseline PSA ≥10 ng/ml who underwent RP.(86) Similarly, however, the observation arm did not 

include continuous monitoring but rather palliative and chemotherapy in the presence of 

symptomatic or metastatic progression. Ten-year results from the ProtecT trial demonstrated 

no difference in PCa-specific mortality among patients with localized PCa who were randomized 

to active surveillance, RP or RT+ADT.(88,89) These results did not vary according to PSA level (< 

or ≥6 ng/ml), Gleason sum (6 or ≥7), or clinical stage (T1c or T2) at diagnosis. However, 

incidence of metastatic disease and clinical progression were significantly higher in the active 

surveillance compared to the RP and RT groups. Since PCa is more often a slow growing tumor, 

the authors note that longer follow-up is necessary to ascertain results regarding CSS. 

 The practice of RT has evolved over the past few decades and encompass a number of 

techniques including EBRT, and BT.(90) EBRT approaches include intensity modulated and 

stereotactic body RT, while BT includes both low and high dose rate.(90) Low dose rate BT is 

reserved for less aggressive PCa as a monotherapy wherein radioactive seeds are placed in the 

prostate and left permanently.(18) High dose rate BT, on the other hand, involves the insertion 

of thin metal rods to direct high doses of radioactive rays to the prostate.(18) It can be used in 

conjunction with EBRT to deliver the total required RT dose in fewer treatments.(18)  

The RTOG 9408 randomized trial found benefit in RT with compared to without short-

term ADT in 10-year OS and CSS among 1979 men diagnosed with early stage localized PCa.(91) 

Post-hoc analysis revealed a stronger benefit in intermediate- compared to low-risk men. These 

findings were consistent with a smaller trial which randomized men to RT with versus without 

six-months of ADT and found a 15-year OS benefit.(90) A series of comparative outcome studies 
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based on retrospective data suggest benefit in survival for RP compared to EBRT and 

BT.(92,93,102,94–101) 

 Since RT and RP are not appropriate for all patients, certain circumstances warrant 

cryosurgery, HIFU and focal therapy. Recent guidelines for management of clinically localized 

PCa suggest cryotherapy may be appropriate in select patients depending on preferences, 

comorbidities and life expectancy.(90) Further, HIFU and focal therapy offer quality of life 

advantages to traditional approaches; however, studies comparing effectiveness with 

traditional approaches are lacking so are recommended to be offered only in the setting of a 

clinical trial.(90)  

 

1.5.3 High-Risk Prostate Cancer 
 

 Recommended therapy for high-risk PCa is RP or RT with ADT.(90) Results from the 

SPCG-4 trial have demonstrated benefit in OS and CSS for RP over watchful waiting.(87) Results 

from PIVOT indicated reduced metastases at 10 and 12-year follow up among those who 

underwent RP over watchful waiting, while men with high-risk disease specifically had a lower 

PCa-specific mortality rate (9.1% v 17.5%).(86) A randomized trial has shown benefit in clinical 

disease-free survival among locally advanced PCa patients receiving RT and ADT over RT 

alone.(103) Moreover, the rate of PCa-specific mortality among men with locally advanced PCa 

was elevated for those receiving short-term (6 months) compared to long-term (3 years) ADT 

(HR: 1.71 [1.14 – 2.57]).(104) OS and CSS were also improved among men with Gleason 8-10 

who were randomized to long-term compared to short-term ADT and RT (31.9% vs 45.1% and 

83.9% vs 88.7%, respectively).(105)  
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 Data comparing cryosurgery and traditional therapies (i.e., RP and RT) in high-risk 

patients is insufficient for the triage of patients between these two modalities.(90,106) 

Similarly, data comparing effectiveness between HIFU and traditional therapies is non-existent, 

while clinical studies vary in outcome reporting.(107) As such, guidelines recommend that these 

therapies be offered to high-risk patients only in the context of a clinical trial.(90) 

 

1.6 Gaps in Evidence Informing Care of Men Diagnosed with Unfavorable-Risk Prostate 
Cancer 
 

Despite the advances surrounding treatment selection and sequencing for unfavorable 

intermediate- and high-risk PCa noted above (referred to collectively as unfavorable-risk PCa), 

optimal initial therapy remains an area of intense academic and clinical debate.(108) The lack of 

clinical management clarity is due to barriers in obtaining high-quality evidence on the relative 

efficacy between common initial treatment options in the current era (i.e., RP and RT).(109) For 

instance, strong patient preferences surrounding RP and RT have resulted in numerous RCTs 

failing to accrue to completion, especially in North America.(110)(111) This occurs as RP is 

associated with increased rates of certain adverse functional outcomes, including erectile 

dysfunction,(88) and urinary incontinence,(112) while RT is typically associated with increased 

rates of urinary obstruction and irritation and bowel dysfunction and rectal bleeding.(113) Since 

most patients have strong preferences with regards to such outcomes, they generally decline 

randomization. 

In the absence of RCT data, multiple investigations have been performed to compare 

common treatment options using non-randomized data, which has its own 

challenges/limitations when trying to generate credible evidence to inform clinical practice. As 
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patients are not randomized, treatment assignment is influenced by both observed and 

unobserved factors that also influence relevant clinical outcomes of interest. For instance, 

candidates for RP compared to RT generally have less aggressive tumor characteristics, are 

younger and with fewer comorbidities.(114) This occurs as patients who are older, especially 

those with multiple comorbidities, are less suitable for RP because of peri-operative risks and 

delayed recovery.(115) As a result, these patients are more likely to be treated with RT. In 

addition, almost all patients are diagnosed with PCa by their urologists, and many are not seen 

by a radiation oncologist first to discuss management options. Since each specialist is more 

likely to recommend the treatment that they provide, candidates eligible for both RP and RT 

(i.e., younger patients with fewer comorbidities and less aggressive disease) are more likely to 

receive RP.(116) Age, comorbidity status and PCa aggressiveness are known to influence 

outcomes of interest negatively. As a result, patients undergoing RP are more likely to have 

better outcomes than those undergoing RT independent of treatment assignment. Crude 

categorization of confounders and/or not including all confounders in adjusted analyses and 

limitations in statistical adjustment can lead to improved CSS and OS among patients receiving 

RP compared to RT independent of treatment status.(117–120)  

Common endpoints used to compare treatment effectiveness in PCa also have potential 

for bias. As mentioned before, these include BPFS, metastatic progression-free survival (MPFS), 

CSS and OS. As mentioned previously, the definition of biochemical failure among patients 

treated with RP and RT differ. Since RP removes the whole prostate gland, it is anticipated that 

the prostate specific biomarker (used to define biochemical failure) maintain a non-significant 

value of <0.2ng/ml.(121,122) Since RT does not remove the gland, it is anticipated that some 
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prostate specific biomarker remains at significant levels of >2ng/ml above nadir.(61) The 

biochemical failure definition post-RP is intended to indicate cure whereas the definition post-

RT is sensitive and specific for future clinical outcomes of interest (e.g., distant 

failure).(123,124) These definitions represent different disease kinetics and outcomes and 

should not be compared in the context of comparative effectiveness research. Evidence of 

metastasis depends on the presence of prompts to image such as biochemical failure and 

symptoms. Prompts may differ depending on whether the patient underwent RP or RT and the 

frequency of follow-up, which is dependent on characteristics of the patient, physician, and 

treatment centre among other factors. Finally, PCa-specific mortality as ascertained by death 

certificates is not immune to bias. Death is sometimes misattributed to PCa among PCa patients 

who die of other causes.(125) This misattribution bias is more likely to occur among those with 

multiple comorbidities, as deciphering cause of death among multiple causes can be difficult. 

Since RT patients are more likely to have multiple comorbidities, this would negatively impact 

survival outcomes when compared with patients undergoing RP independent of treatment 

status. OS poses little concern for measurement bias, as causes of death do not have to be 

ascertained. 

Ascertainment bias can also influence treatment effect estimates. Consider a patient 

diagnosed with PCa and treated with RT. Diagnosis of PCa is accomplished through obtaining 

prostate tissue samples through needle biopsy to confirm the histopathological presence of 

cancer. In the case of a patient diagnosed with PCa and treated with RP, surgical resection of 

the prostate would allow for more thorough examination to detect any missed pathology on 

biopsy, resulting in upstaging of Grade Group.(126) As a result, patients undergoing RT may 
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harbor more aggressive cancer identified at diagnosis compared to patients undergoing RP. 

Consider comparing survival outcomes between a group of PCa patients treated with RT who 

received a diagnosis of Grade Group 1 (low-risk PCa phenotype) on biopsy with a group of PCa 

patients treated with RP who received a diagnosis of Grade Group 1 based on surgical 

pathology. Some patients in the RT group will likely harbor Grade Group 2 disease, which is 

associated with lower rates of survival while individuals in the RP group are unlikely to harbor 

Grade Group 2 cancer. As a result, patients treated with RP will appear to have better survival 

outcomes independent of their treatment. 

Finally, RT technology has evolved rapidly in recent years, such that observational data 

tends to reflect outdated regimens deemed less effective.(127)(128) Many authors have 

therefore discounted the results from such studies on the basis of irresolvable bias and 

technological drift.(108) Without relevant high-quality evidence, treatment decisions become 

more dependent on physician biases, differences in knowledge and experience as well as 

educational background. As such, it is important to address and account for identified sources 

of bias in observational studies and investigate modern RT approaches in relation to RP to 

improve evidence quality and credibility in guiding treatment decisions. 

 

1.7 Transition to Chapter Two 
 
 This chapter provided a review on the nature of PCa, basic Epidemiological information 

and approaches to identification of PCa through screening and diagnosis, categorization of the 

risk of PCa through risk-stratification and subsequent management options. The main thrust of 

this thesis, as per the title, is mitigating bias in PCa comparative effectiveness research. As such, 

a focus was placed on the bias associated with comparing the effectiveness of RT and RP as an 
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initial treatment for men diagnosed with unfavorable-risk non-metastatic PCa (i.e., unfavorable 

intermediate- to very high-risk non-metastatic PCa), as this is a substantial concern in the field 

of PCa comparative effectiveness research. The following chapter provided a review on popular 

methods in the management of confounding (i.e., both prevention through matching and 

control/adjustment through regression analysis) when performing comparative effectiveness 

research using non-experimental data. 
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Chapter 2: Background and Objectives 
 

2.1 The Value of Non-Experimental Data in Comparative Effectiveness Research 
 

Non-experimental comparative effectiveness research aims to generate evidence on the 

relative effectiveness and safety of different treatment approaches based on observations from 

routine clinical practice. This evidence can be used to identify more suitable treatment 

approaches for particular patients. Since the implementation of electronic patient health 

records, the proliferation of medical record and administrative claims databases has led to non-

experimental research occupying a large proportion of comparative effectiveness 

research.(129) Benefits attributable to large non-experimental databases include potentially 

increased power for statistical analysis, a broader range of patient characteristics (which can 

help enhance the applicability of results), longer follow-up periods (allowing for study of longer-

term outcomes), and the ability to address research questions that are impractical in the setting 

of a RCT.(129) Evidence from comparative effectiveness research using non-experimental data 

is also becoming increasingly implemented to guide clinical and policy decision-making based 

on the effectiveness and safety of treatments.(129)  

 

2.2 The Issue of Confounding in Non-Experimental Datasets 
 

Unlike in RCTs, subjects in non-experimental studies are not randomized to treatment 

groups; rather, treatment decisions are influenced by factors such as age, health status, disease 

severity, income, education, and patient and physician preferences, among other factors. These 

factors may also influence the occurrence/level of the outcomes of interest. As such, crude 

comparisons of the occurrence/level of the outcomes between treatment groups may not 
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reflect differences in effectiveness in the treatments under comparison. Factors that influence 

both treatment decisions and the occurrence or level of the outcome are known as 

confounders and must be accounted for when estimating treatment effects using non-

experimental data. 

 

2.3 The Counterfactual Theory for Valid Causal Inference 
 

The counterfactual theory for causal contrasts is a popular and useful framework for 

defining and addressing confounding in order to accurately estimate treatment effects.(130) 

The theory requires that in order to estimate a causal effect, we need to set up a valid causal 

contrast.(130) The ideal causal contrast is one where individuals from a population of interest 

that are exposed to a treatment of interest (index-treatment) are identical to those from the 

same population of interest but are unexposed or exposed to an alternative therapy used for 

comparison (reference-treatment). If this requirement is met, the observed variation in the 

outcome of interest is due to the difference in index- and reference-treatments. This 

relationship can be represented by the equation 𝐸[𝑌𝑖] = ∑(𝑌𝑖 − 𝑌𝑟)  wherein 𝐸[𝑌𝑖] denotes 

the expected mean index-treatment effect at the population level and Yi denotes the outcome 

in those who received the index-treatment and Yr denotes the outcome in those who received 

the index-treatment had they been exposed to the reference-treatment. Since the ideal causal 

contrast is not observed in reality, it is counter to what is factual, and must be estimated from 

available data.(131) The goal of comparative effectiveness research using non-experimental 

data under this framework then becomes estimating the average outcome among the 
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reference-population to accurately estimate the counterfactual contrast in order to validly 

estimate index-treatment effects.  

The gold standard for estimating the counterfactual contrast is through a RCT. By 

randomizing individuals from a population of interest to index- and reference-treatments, each 

group contains individuals that, on average, share a similar distribution of baseline 

characteristics. As calendar time progresses, any variation in the presence or level of the 

outcome of interest observed between the index- and reference-treatment groups can be 

attributed to the difference in treatments. This assumes that drop-out between groups is non-

random/informative with regard to the outcome risk. The index-treatment effect can then be 

calculated through comparing the average outcome level between index- and reference-

treatment groups. This differs from the ideal measure in that no two individuals from different 

treatment groups will be identical, thus preventing us from calculating the individual index-

treatment effect. However, we expect that, on average, the distribution of characteristics 

between the two groups will be approximately the same, so most of the observed outcome 

variation that results between the groups can be attributed to the index-treatment. This 

enables us to estimate the average index-treatment effect rather than the individual index-

treatment effect (i.e., 𝐸[𝑌𝑖] = 𝐸[𝑌𝑖] − 𝐸[𝑌𝑟]). However, the average index-treatment effect is 

equal to the average of individual index-treatment effects. 

Hernàn and Robins outline three key conditions required to identify and accurately 

estimate the index-treatment effects under the counterfactual framework: exchangeability, 

positivity and consistency.(130) Exchangeability implies that if individuals from the reference-

treatment group were instead exposed to the index-treatment, we would observe the same 
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population effect as those in the index-treatment group and vice versa. That is, prognostically 

relevant characteristics (i.e., potential confounders) from the reference-treatment and index-

treatment groups are the same. Although in RCTs, random variability may introduce some 

imbalance in baseline characteristics between exchangeable groups, we anticipate that as the 

sample size grows larger, this imbalance dissipates and becomes less consequential. Positivity 

indicates that the probabilities of an individual receiving the index- or reference-treatment are 

both positive given their baseline characteristics (e.g., age, income, education, etc.) so that 

baseline characteristics that influence the outcome overlap between treatment groups. This is 

apparent in RCTs as the probability of receiving either treatment does not depend on individual 

characteristics but on a random process wherein each individual has an equal probability (e.g., 

0.5) of being assigned to either treatment. Finally, consistency indicates that the index- and 

reference-treatments, explicitly and clearly defined, are the same between individuals so that 

one individual does not receive a different intensity or timing of either treatment, thereby 

reducing outcome heterogeneity as a result of one index- or reference-treatment rather than 

multiple subtypes of either treatment. This is approximated in RCTs, to varying degrees, as each 

participant is expected to, thought does not always, adhere to the same treatment protocol. 

Since well-performed RCTs closely approximate these three conditions, they are 

regarded as the gold standard when making causal inferences. Unfortunately, RCTs are costly, 

time-intensive and often pose ethical constraints.(111) As a result, clinicians and policy makers 

often rely on evidence generated from non-experimental data, which tends to deviate 

substantially from all three principles of the counterfactual framework. For example, when 

trying to estimate index-treatment effectiveness using non-experimental datasets, those 
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receiving the index-treatment likely differ in important prognostic variables compared with 

those receiving the reference-treatment, thus deviating from exchangeability. Also, the reason 

some participants do not receive the index- or reference-treatment could be due to absolute or 

relative contraindications, thus deviating from positivity. Finally, the index- and reference-

treatments may vary in how they are delivered in terms of intensity, timing, and adjunctive 

therapies, thus deviating from the consistency condition. Issues of positivity and consistency in 

this scenario can be mitigated through restricting the analysis to only those eligible for both 

index- and reference-treatments who received similar exposure intensities, at similar times, 

and with similar adjunctive therapies. Exchangeability, however, remains as one of the most 

vexing issues in causal inference when using non-experimental datasets.(132) Lack of 

exchangeability can introduce confounding, since baseline characteristics that differ between 

treatment groups might also influence the outcome, making effect estimates inaccurate. 

 

2.4 Adjusting for Bias in Non-Experimental Data Using Regression Modeling 
 

Typically, when estimating the relative treatment effect, the occurrence/level of the 

outcome of interest would be modelled as a function of treatment received and potential-

confounding variables. Thus, a multivariable regression model would generally be fitted to 

estimate the regression coefficients for treatment received and potentially confounding 

variables through algorithms such as maximum likelihood estimation, among others.(133) The 

model fit could then be assessed through examination of residual plots and goodness-of-fit 

tests.(134) If the model fit was poor, modifications in the functional form of relation being 
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modelled could be made via adding higher-order terms for some characteristics, and/or 

interaction terms combining some independent variables. 

However, the occurrence or level of the outcome of interest could vary as a function of 

the confounding variables in a manner that does not tightly adhere to or is difficult to identify 

with functional forms or simple two-way interactions commonly used in health research. 

Inability to accurately quantify outcome variation attributable to confounding through 

appropriate modeling leads to residual confounding and biased effect-estimates.(135) 

Furthermore, since the functional form of the association of the study outcome with the 

treatment received and potential confounders can be specified to yield multiple models with 

reasonable fit, the model that is most consistent with the scientist’s hypothesis can be chosen. 

This is known as model dependence and increases the likelihood of falsely rejecting the null 

hypothesis, increasing the frequency of a type I error.(136)  

Issues of residual confounding and model dependence are further exacerbated with 

decreasing balance and/or overlap in the distribution of baseline covariates between treatment 

groups, as accurate estimation of regression coefficients becomes more reliant on model 

specification.(137) To explain, increasing imbalance in the multivariable distribution of baseline 

covariates increases the potential for confounding of effect estimates as treatment groups are 

not exchangeable. This can only be remedied through accurate model specification, which is 

dependent on overlap in the distribution, as the full range of values for each baseline covariate 

and combination of values for multiple baseline covariates must be observed in each treatment 

group (i.e., positivity) to accurately estimate regression coefficients. Otherwise, estimates for 
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regression coefficients rely on interpolation and extrapolation, which can lead to bias in effect 

estimates.(130) 

 

2.5 Preprocessing Non-Experimental Data to Improve Exchangeability and Positivity  
 
 To overcome these issues, data preprocessing techniques can increase the overlap and 

balance in the distribution of baseline covariates between treatment groups.(138,139)  

 

2.5.1 Preprocessing Non-Experimental Data Using Propensity Score Matching 
 

Propensity score matching (PSM) is an example of a data preprocessing technique that 

has become increasingly popular in recent years.(140) The propensity score (PS) can be defined 

as the probability of receiving the index- treatment given a subject’s baseline covariates.(141) 

Issues of missing data may prevent an accurate estimation of the PS. Matching subjects 

between treatment groups on the PS has the potential to balance observed baseline covariates 

between treatment groups and can thereby reduce, or even eliminate, confounding by those 

covariates.(141) This reduces reliance on model specification to control for confounding and 

thus reduces the potential model dependence.(138,139) However, unmatched subjects may 

systematically differ from those who remain in the matched sample. This has implications that 

limit the representativeness of the study population and the generalizability of the overall study 

findings. Further, confounding control through PSM is limited to observed covariates and may, 

in some circumstances, exacerbate hidden bias through furthering imbalance in unobserved 

confounders. Methods exist to overcome issues of unobserved confounding, including 
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instrumental variable approaches; however, are only effective when a valid instrumental 

variable exists for the causal contrast being considered.(134)  

Many studies demonstrate strong comparability in effect estimates produced from 

regression modeling with and without preprocessing by PSM.(142,143) However, PSM 

procedures are generally not performed optimally.(140) That is, systematic identification of 

PSM strategies that optimize balance in baseline covariates between treatment groups while 

retaining a sufficient sample size is not commonly done.(143,144) In one review, data were 

obtained from large RCTs where violations of positivity and exchangeability are not of 

concern,(143) thus limiting the ability of PSM to further reduce bias in effect estimates. 

Moreover, many authors do not control for residual confounding through multivariable 

regression modelling after PSM, leading to biased effect estimates.(140,142) 

Although PSM has many benefits when applied before regression modeling in the realm 

of comparative effectiveness research, King and Nielsen have recently identified a major issue 

in PSM that threatens the validity of treatment effect estimates.(136) Specifically, the “PSM 

paradox” is that as the strictness of the match (i.e., smaller allowed distance in the PS between 

matched individuals) increases, imbalance in baseline variables decreases until a certain point 

where imbalance begins to increase. This phenomenon occurs as matching on the PS does not 

use all the information from baseline covariates provided but rather takes an aggregate score, 

so it becomes incapable of discriminating between individuals who differ in individual or 

specific combinations of baseline covariates that are not captured in their PS. Once the PS 

extends beyond its means, increasing the strictness of the match increases imbalance through 

random elimination of individuals from the final matched cohort. Although concerning when 
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considering the increasing number of studies using PSM,(140) Ripollone et al rigorously 

reviewed the pharmacoepidemiology literature and did not find an empirical instance of the 

PSM paradox, but rather found all studies that used PS matching to have improved balance in 

baseline covariates between treatment groups.(145) 

 

2.5.2 Preprocessing Non-Experimental Data Using Coarsened Exact Matching 
 
 King and Nielsen recommend coarsened exact matching (CEM) as a superior alternative 

to PSM that uses information from all baseline covariates to decrease imbalance further than 

with PSM.(136) In this approach, continuous and ordinal characteristics are categorized, while 

some categories of inherently nominal characteristics get ‘collapsed’, resulting in fewer 

categories. In other words, CEM involves ‘coarsening’ of (at least some of) the potential 

confounders to facilitate the matching process. After variables are coarsened, multivariable 

strata containing observations from both treatment groups (i.e., areas of positivity) are 

retained, while the remaining strata are discarded. Index- and reference-treatments are 

defined, and a binary variable is adopted to represent the treatment group. Weights are then 

applied to each observation within each stratum to estimate the average treatment effect in 

the index-treatment group. This is accomplished with a weight of one for each observation 

remaining in the index-treatment group after matching. Weights for observations in the 

reference-treatment group are calculated as the proportion of total observations from the 

matched index-treatment group in a particular stratum (i.e., 𝑛𝑖𝑠
/𝑛𝑖) divided by the proportion 

of total observations from the matched reference-treatment group in that same stratum ( i.e., 

𝑛𝑟𝑠
/𝑛𝑟).(146)  
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A disadvantage to using CEM compared to PSM is that as the number of parameters 

increases, fewer matches become available unless the coarsening of parameters increases, 

which increases imbalance. Although PSM is not immune to this issue,(136) Elze and colleagues 

have demonstrated ability to balance baseline covariates between groups with as many as 17 

baseline covariates, while still retaining a substantial portion of the original population.(143) 

However, this was shown in an RCT, so it may have little applicability to non-experimental 

datasets where less overlap in the distribution of baseline characteristics is expected. Since 

much of the research on PSM and CEM has surfaced only recently, little evidence exists to 

support the use of either approach over the other in specific situations. 

Fullerton et al. examined the performance of different matching strategies in 

preprocessing non-experimental data, including PSM and CEM.(147) They found that although 

CEM improved balance in baseline covariates according to several measures of imbalance, it 

resulted in smaller matched subsamples that were not generalizable to the original cohort. In 

contrast, PSM led to improvements in only two of the three measures of imbalance but 

maintained the characteristics of the original cohort to a greater degree. Ripollone et al. also 

found that CEM was superior to PSM with regard to providing balanced covariate datasets 

according to the Mahalanobis distance measure.(148) However, CEM produced the least 

precise estimates due to lower levels of data retention after matching. Both comparisons used 

high-dimensional datasets with the smallest dataset involving 19 continuous and binary 

covariates and the largest having >100 covariates. Upon simulation analyses, Ripollone et al 

found effect estimates obtained through CEM maintained comparable precision to PSM in 
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lower dimensional datasets involving 8 covariates, while providing more balance in baseline 

covariates between comparison groups. 

Major limitations in these studies that hinder the validity and applicability of their 

results should be noted. First, neither study used a systematic approach to identifying and 

evaluating PS models that optimize data retention and balance. They also did not evaluate 

different matching ratios or caliper widths when using PSM, which has a potential to further 

improve balance between groups and precision in the effect estimate.(144) Third, both 

comparisons used high-dimensional empirical datasets with the smallest dataset involving 19 

continuous and binary covariates and the largest having >100 covariates. Fourth, they often 

relied upon quantile-based rules for coarsening continuous variables, such as Sturges’ rule.(149) 

In contrast, in many areas of comparative effectiveness research, the number of baseline 

covariates that consistently influence treatment decisions and are associated with important 

outcomes is relatively small;(144,150) furthermore, there often is a priori information on the 

prognostic value of continuous and ordinal variables that can allow one to create more 

prognostically meaningful strata rather than strata formed from quantile-based rules, which 

may not align. This can lead to retention of observations from the index-treatment and 

reference-treatment groups in the same strata that have distinguishable clinical prognoses. 

Moreover, index-treatment and/or reference-treatment observations with similar prognoses 

that do not fall into quantile-based strata might be lost. Overall, retention of observations with 

distinguishable clinical prognoses and loss of observations with similar prognoses reduces 

potential balance and levels of data retention, respectively, that could be achieved if ranges of 

baseline covariate values were informed by prior evidence on prognosis. Finally, Fullerton et al 
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and Ripollone et al did not control for residual confounding through multivariable regression 

modelling after matching, which is recommended to control for remaining bias after 

matching.(140,142) 

 

2.6 Transition to Chapter Three 
 

This chapter provided a review of the value of evidence produced from non-

experimental data in informing treatment decision making. Importance was placed on the 

concern for bias through confounding in evidence produced from non-experimental data. The 

counterfactual theory was reviewed to provide a theoretical basis from which to discuss the 

ability of popular statistical techniques in preventing (i.e., PSM and CEM) and adjusting for (i.e., 

regression modeling) confounding when estimating treatment effects and their associated 

shortcomings. Although previous studies have compared PSM and CEM in the prevention of 

confounding when estimating treatment effects using non-experimental data, several 

shortcomings in these comparisons were noted. In particular, there was a lack of a systematic 

approach to developing and evaluating PSM and CEM strategies that optimize data retention 

and balance.  

Chapter three provides a review of diagnostics used to assess balance in the 

multivariable distribution of baseline covariates when comparing treatment outcomes using 

non-experimental data. A sufficient set that captures important differences in the distribution 

of baseline covariates with potential to introduce confounding, according to the counterfactual 

theory, is recommended to evaluate the success of matching in preventing confounding. This 

groundwork was necessary to inform the systematic approach to developing and evaluating 
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PSM and CEM strategies that optimizes data retention and balance between treatment groups 

obtained from non-experimental data covered in chapter four. 
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Chapter 3: Assessing the Potential for Confounding through Balance 
Diagnostics 
 

To compare the performance of matching strategies in the ability to balance treatment 

groups, the appropriate metric should be used. Many methods have been developed to assess 

comparability between baseline covariates between exposure groups after matching. These 

methods are generally termed “balance diagnostics”.(151) All balance diagnostics have a similar 

goal: to quantify the difference in the multivariate distribution of baseline covariates between 

treatment groups in order to measure the degree of exchangeability. A common approach to 

quantifying balance is to compare means and/or medians of continuous variables and the 

distribution of categorical variables in index- and reference-treatment groups.(152) This 

approach is in line with the CONSORT statement, which requires that authors provide a 

summary table of the baseline characteristics in different treatment arms.(153) Comparison of 

continuous variables using a t-test and dichotomous variables using a chi-square test have been 

proposed and are most commonly utilized in non-experimental comparative effectiveness 

research.(153) However, these are not appropriate when performing adjustment techniques 

that reduce the sample size (i.e., matching). Since these tests are dependent on sample size, as 

the number of subjects who are not eligible for matching increases, the sample size in each 

group decreases, increasing the likelihood of a non-statistically-significant difference in baseline 

covariates, irrespective of whether balance actually improves (Figure 3.1).(154)  
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Figure 3.1  (a) the t-statistic 

comparing difference in means 

between treatment and control 

groups decreases as control units 

are randomly dropped; (b) 

indicates a constant difference in 

means and quantile–quantile plot 

mean deviation between treatment 

and control groups as control units 

are randomly dropped.(154) 

 

 

3.1 Balance Diagnostics for the Central Tendency of Single Variables 
 

Another approach to comparing the difference in means and proportions between 

treatment groups involves calculating the standardized mean difference (SMD).(152) This has 

become the standard approach, as the SMD is easy to compute and understand,(155) while 

being independent of sample size. Moreover, it allows for the comparison between covariates 

with different units since the SMD is unitless. For continuous variables, this can be calculated as 

the quotient of the difference in means between groups in the numerator and the root of the 

average of the sample variance in each group in the denominator. For categorical variables, this 

can be calculated as the quotient of the difference in proportions between groups in the 

numerator and the average of the variance in sample proportions in each group in the 

denominator. 
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Peter Austin shows that when the SMD <0.1, the amount of non-overlap in the baseline 

covariate between groups is <7.7%, indicating a high-degree of comparability.(152) However, 

this is based on several assumptions including that the covariate under investigation is normally 

distributed with equal variance between the two treatment groups being compared and that 

groups have similar sample sizes. Although such a difference might seem negligible, it is 

important to consider the prognostic association of the baseline variable. For example, if the 

association is non-linear then confounding can still manifest when SMD <0.1 since a greater 

proportion of one group might occupy greater levels of the confounding variable with greater 

prognostic value, while the other group clusters around the mean. Stuart et al. performed 

multiple data simulations with varying confounder relationships between a binary treatment 

and continuous outcome.(156) They found that both the correlation between the mean SMD of 

all confounders or proportion of confounders with SMD <0.1 and the true bias was stronger 

among simulations limited to continuous confounding variables with linear main effects 

compared with simulations involving both continuous and categorical confounding variables 

with non-linear effects. This indicates that small values of SMD do not necessarily indicate 

comparability, especially among covariate structures involving categorical and non-linear 

continuous variables, which are common in the medical literature. 

 

3.2 Balance Diagnostics for the Variance of Single Variables 
 

Imai et al. suggest that higher order moments of the baseline covariate distributions 

between treatment groups be compared in order to address this potential issue.(154) After the 

mean, which indicates the central tendency of the distribution, the variance, which indicates 
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the amount of deviation, is the second moment in the covariate distribution. As such, 

estimating the ratio of variances in baseline covariates between groups in addition to SMD has 

been recommended.(152) Peter Austin demonstrated that under the null hypothesis, the 95% 

confidence interval for equality in variances between two independent groups amounts to a 

lower bound of approximately 0.92 and an upper bound of 1.08.(152) This was derived from a 

data simulation study of 2430 matched pairs and an F-distribution with 2429 and 2429 degrees 

of freedom so has limited applicability in different settings. Imai et al., have suggested quantile-

quantile plots for comparison of the distribution of continuous covariates for assessing balance 

between two groups.(154) As such, comparing both the variance ratios and quantile-quantile 

plots can assist in identifying any notable differences between exposure groups. 

 

3.3 Limitations of Balance Diagnostics for Single Confounding Variables 
 
 Thus far, we have discussed imbalance in single covariates, which has only the potential 

to assess main effects of confounding. However, most comparative effectiveness research 

includes multiple baseline covariates that have potential for confounding. As the number of 

baseline covariates increases, the amount of potential bias increases even when SMD <0.1 and 

the variance ratio is between 0.92 and 1.08. Moreover, other aspects of multivariable 

distributions between comparison groups could differ on the basis of covariance between 

multiple confounding variables, which might indicate different levels of effect modification at 

the level of confounding between comparison groups. Small differences in SMD and variance 

ratios in many baseline covariates coupled with differences in covariance have potential to bias 

treatment effect estimates in the presence of “balanced” baseline covariate distributions as 
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commonly defined by the “acceptable” ranges of SMD and variance ratios.(155,156) For 

instance, Stuart et al found that the correlation between true bias and measures of imbalance 

based on SMD, as described above, became weaker when their data simulations involved an 

interaction effect between confounding variables compared to main effects alone. This issue 

can be overcome through calculating the SMD for appropriate interaction terms;(152) however, 

such interaction is not always easily identifiable in real datasets. Moreover, interactions 

between two variables can vary according to a third,(157) which makes identification of 

appropriate interaction terms for assessing balance more complicated. 

 

3.4 Prognostic Scores 
 

Stuart et al propose checking balance by examining SMD in a prognostic score.(156) This 

is accomplished by first identifying prognostic factors through a thorough examination of the 

literature and expert consultation. The outcome of interest is then modelled as a function of 

the prognostic variables using the referent category under comparison in order to obtain the 

estimated baseline prognosis in the absence of the index-treatment. Using this model, the 

predicted prognosis is estimated for each individual in the index- and reference-treatment 

groups to derive their “prognostic scores”. The SMD in prognostic scores between groups is 

then calculated to obtain estimates of balance. Compared to a number of other balance 

diagnostics, including mean SMD and proportion of SMD <0.1, the SMD in prognostic score 

consistently obtained stronger correlations with true bias in most situations (>0.90). However, 

this was dependent on whether the true prognostic score was appropriately specified. In 

situations where the prognostic score was not appropriately specified, the correlation between 
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the SMD in prognostic score with the true bias were as low as 0.31. Since the true prognostic 

score might involve many regression coefficients, estimation in smaller datasets may be 

unreliable, leading to improperly estimated prognostic scores and thus unreliable measures of 

imbalance. One way to overcome this is to use validated prognostic scores. For example, in PCa 

research, as mentioned in chapter one, risk-groups, reflecting different prognoses post-

treatment, have been identified as one of the most reliable predictors for biochemical 

progression, which is an important oncological outcome.(158) The SMD in the proportion of 

observations occupying different risk-groups are used in chapter four as the SMD in prognostic 

scores. 

 

3.5 Global Imbalance Measure 
 
 One way to overcome the issues of assessing balance in multiple covariates and their 

relationships between one another as well as model dependence would be to calculate the 

distance between multivariate distributions between comparison groups. This can be 

accomplished using the global imbalance measure (L1) developed by Iacus et al.(159) In this 

approach, each variable whether continuous or categorical are stratified using bounds that 

define acceptable levels of variation based on previous research.  

The stratified covariates can be cross tabulated to create multidimensional histograms. 

The absolute difference in multidimensional histograms divided by two provides an estimate of 

global imbalance between groups (L1), as demonstrated below: 

ℒ1(𝑓, 𝑔; 𝐻) =
1

2
∑ |𝑓𝑙1…𝑙𝑘

− 𝑔𝑙1…𝑙𝑘
|

𝑙1…𝑙𝑘∈𝐻(𝑿)
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Wherein f and g denote the relative empirical multivariable frequency distributions for the 

index- and referent-units, respectively, and 𝑓𝑙1…𝑙𝑘
 and 𝑔𝑙1…𝑙𝑘

denote the relative frequency for 

observations belonging to the cell with coordinates 𝑙1 … 𝑙𝑘  of the multivariable cross-

tabulation.(159) This can be interpreted in that if two empirical distributions are completely 

separated, then L1=1 and there is 0% overlap between the two groups with regard to the 

multivariate distribution in baseline covariates. If the two distributions are the same, L1=0 and 

there is 100% overlap in multivariable distribution between the two groups. 

In theory, the global imbalance measure appears superior to other balance diagnostics 

in its ability to adequately capture all bias due to differences between groups in single 

covariates and any interaction among two or more covariates. However, data simulations have 

demonstrated that decreasing bias associated with improvements in covariate balance are not 

strongly correlated with reduction in the global imbalance measure.(160) These findings are 

consistent when trying to balance covariates using cohort data in that improvements in balance 

in prognostic covariates are not strongly correlated with reduction in the global imbalance 

measure.(147) This might occur as it does not weigh covariates and their interactions according 

to their prognostic value but rather measures all imbalances in the multivariable distribution 

equally important. This is further emphasized by Belitser et al. who demonstrated that when 

weights were applied to balance diagnostics to represent their prognostic value, the negative 

correlation between balance and bias became stronger.(161) 

The absence of a strong correlation between the global imbalance measure and bias 

limits the utility of it as an imbalance measure. For instance, when optimizing matching 

algorithms to improve baseline covariate balance between exposure groups and thus reduce 
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bias, changes in balance diagnostics sensitive to improvements in covariate balance are helpful 

to identify the matching algorithm capable of reducing the most imbalance given a level of data 

retention. As such, the global imbalance measure has limited utility in assessing bias due to 

covariate imbalance in the context of causal inference using nonrandomized data. 

 

3.6 Other balance diagnostics 
 

Although other measures of imbalance exist such as the Kolmogorov-Smirnov distance, 

the Lévy distance, and the overlapping coefficient, previous studies have demonstrated weaker 

correlation with bias in addition to theoretical limitations that make them less informative and 

suitable.(152,160,161) As such, these imbalance measures are not considered. 

 

3.7 Recommended use of balance diagnostics for development and evaluation of the PS 
model in PSM 
 

Herein, we recommend a set of balance diagnostics to measure all imbalances in the 

multivariable distribution with prognostic value when comparing treatment effectiveness from 

non-experimental data. Since the average absolute SMD of all baseline covariates reflects 

balance in typical values that are deemed most important, it should be used to evaluate general 

improvements in balance as the width of the PSM caliper decreases. However, since the 

average absolute SMD might decrease, while the absolute SMD of individual covariates might 

increase, we also propose that the number of individual covariates with |SMD| <0.1 be 

measured to ensure no gross imbalance in any single variable. Likewise, to capture general 

improvements in balance for higher-order moments, the average of variance ratios for 
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continuous variables can be monitored in conjunction with the number of variables falling 

below 1.08 (if ratio is <1.00 then take the reciprocal) to ensure no gross violations in the second 

moment of individual covariate distributions.(152) Finally, a validated prognostic score should 

be used to capture important combinations of covariate values that might be missed. If no 

validated prognostic scores are available, one can estimate a prognostic score from their 

dataset using methods established by Stuart et al,(156) provided there are a sufficient number 

of events and non-events available. 

 
3.8 Transition to Chapter Four 
 

This chapter provided a review of balance diagnostics and their relative informativeness 

with regard to assessing the potential for confounding when comparing treatment outcomes 

using non-experimental data. A recommended set of diagnostics was identified that 

comprehensively evaluates differences in the multivariable distribution of baseline covariates 

with confounding potential. The following chapter demonstrates how to use the recommended 

set of balance diagnostics to guide the development of a propensity score model for matching 

that optimizes efficiency with respect to balance achieved in the multivariable distribution as 

well as retention of observations from the original dataset. 
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Chapter 4: A Systematic Approach to Developing and Evaluating 
Propensity Score Models for Matching 
 
 Despite the existence of multiple guidelines on how to perform PSM in comparative 

effectiveness research,(162–164) information surrounding the use of balance diagnostics in 

guiding the development and evaluation of PSM strategies remains elusive and subject to 

criticism. For example, most guidelines for clinical researchers emphasize the use of a 

standardized caliper (e.g., 0.2 of the standard deviation of the logit of the PS) for matching 

strategies and recommend iteratively exploring balance achieved after matching as a diagnostic 

tool for adequacy of the PS model.(162–166) However, the performance of different PS models 

used in matching depends on the balance diagnostic used for assessment (e.g. standardized 

mean difference (SMD), variance ratio, etc.) and caliper size. For instance, one PS model might 

lead to better balance than some alternative model given certain combinations of caliper sizes 

and balance diagnostics but to worse balance when compared to the same alternative given 

different balance diagnostics and caliper sizes. 

Moreover, the balance diagnostics recommended by such guidelines often do not 

capture all differences in the multivariable distribution of baseline covariates between 

treatment groups. Often, the SMD is recommended to evaluate the differences in the central 

moment and, sometimes, the variance ratio to evaluate higher-order moment of imbalance in 

the distribution of individual covariates. As mentioned in chapter three, these balance 

diagnostics neglect important interactions that hold prognostic value about the outcome of 

interest and thus have potential to confound associations even in the presence of balanced 

individual covariates.  
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In this chapter, we offer a systematic approach to developing and evaluating PS models 

used in matching that maximize balance in all key aspects of the multivariable distribution to 

mitigate potential for confounding, while also maximizing retention of observations from the 

original dataset. A working example is provided from the PCa literature.  

 

4.1 Working Example: Comparing the Rates of Biochemical Failure between Different 
Radiotherapy Approaches for Prostate Cancer 
 
4.1.1 Background and Data Source 
 

Different approaches to RT are available for the treatment of PCa.(2) BT involves the 

insertion of a radioactive isotope into the prostate gland.(3) Compared with the EBRT, BT is 

capable of delivering greater doses of radiation to the prostate gland while sparing adjacent 

structures such as the rectum and bladder.(4) As such, it is generally reserved for the 

monotherapy of tumors that maintain a lower-risk of extraprostatic extension unless it is 

combined with EBRT for higher risk situations.(4) Risk of extraprostatic extension is estimated 

by consideration of PSA, GS, and cT stage.(5) These characteristics also hold considerable 

prognostic value regarding important oncological outcomes such as BPFS, MPFS, CSS and OS.(6) 

Thus, when comparing BT with EBRT, it is important to adjust for all of these factors, among 

other baseline patient characteristics.  

 For this demonstration, we abstracted data from the Prostate Cancer Risk Stratification 

(ProCaRS) database. This database contains data on 7974 patients diagnosed with PCa and 

treated with different forms of primary RT between 1994 and 2010 from four Canadian 

institutions in Toronto, Quebec City, Montreal and Vancouver.(144) Details regarding ethics 
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approval, database construction and quality assurance have been previously described.(20) The 

example comparison for our approach was informed by a RCT performed by Morris and 

colleagues, which compared the rate of biochemical failure among men diagnosed with 

intermediate-risk PCa according to the National Comprehensive Network and treated with 

either BT and hormone therapy (BT) or EBRT and hormone therapy (EBRT).(167) In this trial, the 

authors found an increased incidence of biochemical failure in the EBRT relative to the BT group 

(hazard ratio [95% confidence interval]: 2.04 [1.25, 3.33]). 

 

4.1.2 Descriptive Measures 
 

 We begin with an initial examination of characteristics in the unmatched samples from 

the ProCaRS dataset. Table 4.1 shows that the BT group was, on average, treated at earlier 

dates than the EBRT group (median treatment year of 2002 vs 2003, respectively), and had less 

advanced tumor characteristics, as expected. 

Table 4.1 Descriptive statistics and balance diagnostics for unmatched BT and EBRT samples 

 BT (n=433) EBRT (n=132) |SMD| Variance 
Ratio 

RT Start Year 

Median 2002 2003 0.3029 1.49 

IQR 2001, 2004 2002, 2004   

PSA (ng/ml) 

Median 7.60 9.02 0.3468 1.60 

IQR 5.70, 10.50 5.88, 12.60   

Clinical T-Stage 

T1a-2a 373 86.14% 122 92.42% 0.2041  

T2b-c 60 13.86% 10 7.58%   

Gleason Grade 

1 126 29.10% 23 17.42% 0.2790  

2 249 57.51% 64 48.48% 0.1815  

3 58 13.39% 45 34.09% 0.5014  

PROCARS Risk-Group 
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Low-intermediate 404 93.30% 99 75% 0.5177  

High-intermediate 29 6.70% 33 25%   

 Average 0.2936 1.29 

 

 Table 4.1 also shows that the two groups are imbalanced with regard to the SMD for 

individual covariates, and risk-group as well as the average absolute SMD for all covariates. The 

average variance ratio and individual variance ratios were also greater than the accepted 

threshold of 1.08. 

 

4.2 Model Development 
 

In developing PS models, we propose beginning with more general models (i.e., using 

simple linear terms for continuous covariates, original categories for categorical variables and 

without interactions) and increasing the complexity to better fit the relation between 

treatment predictors and treatment received by adding higher-order and interaction terms. 

Here, we use a logistic model to specify our PS. Since power is driven by the smaller comparison 

group, we would like to optimize retention of the smaller group. In this case, EBRT is the smaller 

group, so treatment status is coded as EBRT = 1 and BT = 0.  

 

4.2.1 Model One 
 

The first model involved simple linear terms for continuous characteristics and ‘dummy’ 

variables to represent categorical characteristics. The reader is referred to an article by 

Brookhart et al for an in-depth discussion on covariate selection in PS models.(168) In brief, it is 

recommended that any variable notably associated with the outcome be included to enhance 

precision and accuracy in effect estimates. The term ‘PSA’ in model one represents the 



 52 

regression coefficient for baseline PSA (ng/ml), ‘GS’ represents the regression coefficient for 

Gleason score, ‘TS’ represents the regression coefficient for clinical T-stage, ‘TxYr’ represents 

the regression coefficient for year that RT was initiated. We specify a logistic regression model 

with treatment as the dependent variable using the ‘glm’ (or generalized linear model) 

command with ‘family=binomial’ option in RStudio.(169) 

 
> model1 <- glm(Tx ~ PSA + GS + TS + TxYr, data = PROCARS, family = "binomial") 

 

The general form for the linear logistic model is given below: 

𝑙𝑜𝑔 [
𝑃(𝑥)

1 − 𝑃(𝑥)
] = 𝛽0 + 𝛽𝑃𝑆𝐴x𝑃𝑆𝐴 + 𝛽𝐺𝑆x𝐺𝑆 + 𝛽𝑇𝑆x𝑇𝑆 + 𝛽𝑇𝑥𝑌𝑟x𝑇𝑥𝑌𝑟 

 
4.2.2 Model two: Identifying departures from linearity and improving functional form in the 
relation between continuous predictors and treatment received 
 

The second model attempts to improve the accuracy of the PS in predicting the 

treatment received through improving model fit of the functional form of the relation between 

continuous covariates and treatment status. To identify departures from linearity in the 

relationship between continuous predictors and the logit of the probability for receiving the 

treatment of interest, locally weighted scatterplot smoothers can be used. Evaluation of 

whether proposed transformations using higher-order terms improve model fit can be verified 

using the likelihood-ratio test for nested models and the pseudo-R2 for both nested and non-

nested models.(134) In our example, we found that a restricted cubic spline for baseline PSA 

(‘rPSA’) and categorization of treatment start date into two-year increments (‘TxYr2’) improved 

model fit,(134) which was confirmed using the likelihood ratio test (p=0.00052) and pseudo-R2 

(model one = 0.13 vs model two = 0.17). As such, we added these terms to our second model: 
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> model2 <- glm(Tx ~ PSA + rPSA + GS + TS + TxYr2, data = PROCARS, family = "binomial") 

 
 

4.2.3 Model Three: Identifying interaction terms 
 

Finally, the third model attempts to improve accuracy of the PS in predicting the 

treatment received through identifying interaction terms between independent variables that 

improve model fit. Again, improvements in model fit can be verified using the likelihood-ratio 

test and pseudo-R2 value. In the example provided, all two-way interactions among 

independent variables were assessed and a notable improvement in model fit relative to model 

two (likelihood ratio test p=0.0057 and pseudo-R2 = 0.18) was found with the addition of an 

interaction term between baseline PSA and Gleason score, represented by the ‘PSA*GS’ term, 

which was added to our third model: 

> model3 <- glm(Tx ~ PSA + rPSA + PSA*GS + GS + TS + TxYr2, data = PROCARS, family = "binomial") 
 
 

4.3 Propensity Score Matching Characteristics 
 

Now that multiple candidate PS models have been specified, decisions regarding 

matching algorithm, matching ratio, and caliper size must be made. The most common 

combination involves the use of nearest-neighbor matching with select caliper width and 

without replacement.(170) That is, a random exposed subject is matched to an unexposed 

subject with the most similar propensity score (i.e. nearest-neighbor) who has a predicted PS 

within a pre-specified range of the exposed subject’s PS (i.e. caliper). After the unexposed 

subject is matched, they are removed as a candidate for further matching (i.e., without 

replacement). This is often done in a one-to-one fashion; however, depending on the 
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proportion of exposed to unexposed subjects, many to one or one to many might be ideal. In 

our example, there are approximately 3.3 BT observations for every one EBRT observation. As 

such, a matching ratio of 3:1 BT to EBRT observations might be favorable to maximize retention 

of BT observations. Other methods of matching involve nearest-neighbor matching without 

calipers, optimal matching wherein exposed and unexposed subjects are matched so as to 

minimize the total within-matched PS difference, and full-matching. The reader is referred to 

another guideline that reviews these matching algorithms thoroughly.(163)  

Caliper size impacts variance and bias in the effect estimate as well as how baseline 

variables are balanced in the final model. A smaller caliper size will reduce the number of 

observations matched, thus eliminating more subjects from the final matched sample, while 

larger calipers will have the opposite effect. This ultimately impacts precision of the effect 

estimate with larger and smaller calipers generally leading to more and less precise effect 

estimates, respectively. Bias increases with caliper size as larger calipers enable more dissimilar 

subjects to be matched. Thus, when selecting caliper widths, a balance must be achieved 

between precision and validity of the effect estimate.  

Popular calipers include fixed widths of the PS as well as a function of the logit of the 

propensity score (Logit(PS)), as the logit is more likely to approximate a normal distribution 

than the probability metric. Cochrane and Rubin have demonstrated that matching on a 

normally distributed confounding variable with caliper widths of 0.6 and 0.2 standard 

deviations (SD) of the Logit(PS) can remove 90% to 99% of confounding for that particular 

variable, respectively.(171) However, the caliper width that optimizes the balance between bias 

and precision will depend on the characteristics of the dataset (i.e., the multivariable 
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distributions of baseline covariates in the treatment groups). As such, we propose that analysts 

start with wider calipers and explore progressively more narrow calipers to identify a ‘plateau’ 

in the association between improvements in balance and retention of the original dataset. The 

plateau is operationally defined as the point where further decreasing the PSM caliper leads to 

negligible improvements in balance, while leading to further decreases in data retention. The 

concept of a plateau will be demonstrated in the section 4.4. 

 We used the ‘MatchIt’ package in R to perform matching strategies with nearest-

neighbor matching (R input option: method="nearest") as the algorithm,(146) a matching ratio of 

3:1 for BT:EBRT (R input option: ratio = 3), matching BT to EBRT observations, without 

replacement (R input option: replace = FALSE), and with progressively more narrow calipers (R 

input option: caliper = 0.1). An example is given below: 

psmatch<-matchit(Tx ~ BasePSA + cGS + cTS + TxYr, data=PROCARS, method="nearest", ratio = 3, caliper = 

0.1,  replace = FALSE) 

 

4.4 Evaluating Model Performance 
 

To evaluate the performance among candidate PS models used in matching, we propose 

that the efficiency of the candidate models be compared. Efficiency, as defined here, is the 

amount of balance improvement for a given level of the original population retained. Measures 

of SMD, and variance ratios can be obtained through the cobalt package in R.(172) Afterward, 

measures can be examined graphically using plots with the balance achieved through PSM for 

each candidate PS model for a given percentage of the original population retained. In other 

words, the PS model that leads to better balance among all diagnostics with the same or 
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greater percentage of the original population retained is deemed the most efficient PS model 

and will be the selected model based on this performance. 

 

4.4.1 Identifying the most efficient caliper width to compare efficiency between PS models 
 

A standardized rule for identifying a specific caliper width is required to compare the 

efficiency of each candidate model. We propose that the point at which further narrowing PSM 

calipers for each PS model leads to a ‘plateau’ be used for this purpose. That is, when further 

narrowing the matching caliper leads to negligible improvements in or worsening balance at the 

expense of a decrease in the percentage of the original population retained. In our example, we 

explored balance achieved after matching without a caliper wherein the nearest-neighbor 

referent-unit of a randomly selected index-unit is matched and this process is repeated until 

each index-unit is matched with the specified number of referent-units. After, we matched with 

caliper limits of 2.0, 1.5, 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.02, 0.015 and 0.01 

SD(logit(PS) to capture the plateau. Using model one from our example and looking from right 

to left, we see that the average SMD plateaus at approximately 70% retention (Figure 4.1). This 

corresponds to a plateau in the average variance ratio (Figure 4.2) and risk-group SMD (Figure 

4.3). We can also see at approximately 40-50% data retention, what King and Nielsen have 

termed, the PSM paradox where decreasing caliper size paradoxically leads to increasing 

imbalance.(136) The caliper width of 0.1 standard deviations of the logit of the PS, which leads 

to approximately 67% retention of the original cohort and plateau in all balance diagnostics 

appears to be the most efficient PSM strategy using model one. Likewise, a caliper width of 0.1 

standard deviations of the logit of the PS for models two and three, which lead to 
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approximately 66% and 63% retention of the original cohort, respectively, lead to a plateau in 

balance reduction for all balance diagnostics. 

 
Figure 4.1 Association between percent of original population retained and average 

absolute standardized mean difference 
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Figure 4.2 Association between percent of original population retained and the average 

variance ratio for continuous baseline covariates between treatment groups 
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Figure 4.3 Association between percent of original population retained and the risk-

group standardized mean difference. 
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4.4.2 Comparing balance after matching on candidate PS models 
 

Given the similar percentage of retention among all matching strategies at the 

previously selected caliper width, we can compare the balance achieved in our five balance 

diagnostics between our candidate models (Table 4.2). The first model leads to an average 

absolute SMD of 0.027 with no covariate SMD>0.1, average variance ratio of 1.39 with both 

continuous variable variance ratios >1.08, and a risk-group SMD of 0.22. The second model 

leads to an average absolute SMD of 0.027 with no covariate SMD>0.1, average variance ratio 

of 1.08 with one continuous variable variance ratio >1.08, and risk-group SMD of 0.098. Finally, 

the third model leads to an average absolute SMD of 0.030 with no covariate SMD>0.1, average 

variance ratio of 1.04 without either continuous variable variance ratio >1.08, and risk-group 

SMD of 0.046. The second and third model led to better overall balance with the third 

outperforming the second. As a result, the third model provided the most efficient matching 

strategy in comparison with models one and two.  

Table 4.2 Comparison of the percentage retained in the original cohort and balance in baseline 
covariates after matching using the most efficient caliper width for each candidate PS model 

Model Retention 
(%) 

Average 
Absolute 

SMD 

Number of 
covariates 

with SMD>0.1 

Average 
Variance 

Ratio 

Number of 
covariates with a 

variance ratio >1.08 

Risk-group 
SMD 

1 67.3 0.027 0 1.39 2 0.22 

2 66.0 0.027 0 1.08 1 0.098 
3 63.2 0.030 0 1.04 0 0.046 

 

4.5 Strengths 
 
 In this section, we review the strengths of this approach in light of previous guidelines. 

The standardization in developing and evaluating PS models used for PSM in comparative 

effectiveness research helps reduce researcher bias. To explain, since multiple combinations of 
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PS models and caliper widths might lead to “reasonable” balance, and effect estimates 

randomly vary, the combination of a particular PS model and caliper width that led to an effect 

estimate more in-line with the scientist’s hypothesis can be chosen. Although this is still 

possible with our approach, it is considerably more limited since there will be fewer available 

options. Second, the set of balance diagnostics proposed is comprehensive in evaluating 

multiple characteristics of the multivariable distribution in baseline covariates that have 

potential to confound effect estimates based on the counterfactual theory of causal contrasts. 

Obtaining balance in this set of diagnostics offers more convincing conclusions regarding 

relative treatment effectiveness from which to base patient- and policy-level decisions. 

Compared to previous suggestions of iteratively exploring random combinations of PS models, 

and calipers, our systematic approach to identifying the most efficient caliper width associated 

with each PS model after matching allows the most efficient approach to identifying the PS 

model and caliper width that leads to the least imbalance for a given level of data retention. 

 

4.6 Limitations 
 
 In this section, we discuss some limitations to the proposed approach that might arise 

with different datasets and offer potential solutions. One concern is if a plateau occurs in one 

balance diagnostic at a different level of data retention than another balance diagnostic (e.g., 

stabilization in the average absolute SMD occurs at approximately 80% data retention but 

occurs at 70% for the average variance ratio and 60% with the prognostic score based SMD). In 

this scenario, if the level of balance remains stable with progressively narrower calipers in the 

balance diagnostics that plateau first, the point at which the other balance diagnostics plateau 

should be used as the most efficient caliper width for comparison. If the level of balance 
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worsens with progressively narrower calipers in the balance diagnostics that plateau first, 

multiple calipers consistent with each plateau in each balance diagnostic should be used for 

comparison. This might lead to two sets of matched samples for comparison generated from 

two caliper widths if the plateau occurs at a different data retention level for only one balance 

diagnostic or three sets of matched samples for comparison generated from three caliper 

widths if the plateau occurs at different data retention levels for all balance diagnostics. A 

reasonable alternative to this approach might include a caliper that leads to a mid-level of 

balance in all diagnostics for the same level of data retention. Inevitably, there will always be 

some exceptions where these rules will not apply, and the analyst will need to formulate their 

own decision. It is recommended that the rationale for such a decision be transparent to allow 

the reader sufficient information to evaluate the reasonableness of the decision. In addition, 

the author should report results from other reasonable matching strategies to demonstrate 

consistency in effect estimates.  

 

 4.7 Summary 
 

In summary, we propose that a set of balance diagnostics that sufficiently capture 

important differences in the multivariable distribution be used in a systematic approach to 

developing and evaluating PS models used for PSM. We invite criticism and commentary 

surrounding the approach developed and presented here to improve the conduct and reporting 

of PSM for observational data in comparative effectiveness research. Since RCTs are becoming 

increasingly more difficult to perform due to multiple available standards of care with varying 

characteristics that preclude randomization for ethical and financial reasons, the accuracy of 
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evidence produced from observational datasets is becoming increasingly important to guide 

patient- and policy-level decisions. As such, improvements in this field hold considerable value 

to researchers, clinicians, and patients alike. 

 

4.8 Transition to Chapter Five 
 
 This chapter provided a systematic approach to developing and evaluating propensity 

score models for matching that optimizes balance in the multivariable distribution of baseline 

covariates and data retention. Improvements in balance per amount of data retained were 

achieved in models involving higher order terms for continuous covariates and interaction 

terms between some terms relative to simpler models. This shows that previous guidelines for 

developing models used in propensity score matching are inadequate and highlights the need 

to assess model performance using multiple balance diagnostics in a systematic fashion that 

also evaluates data retention.   

The systematic approach to developing matching strategies is used in the following 

chapter to compare the performance of propensity score matching and coarsened exact 

matching in ability to balance the multivariable distribution of baseline covariates per level of 

data retention. 
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Chapter 5: Comparing the performance of coarsened exact matching 
and propensity score matching in non-experimental prostate cancer 
comparative effectiveness research  
 
5.1 Objective 
 

In this chapter, the performance of CEM and PSM in preprocessing data from a non-

experimental database containing information on men diagnosed with intermediate-risk PCa 

and treated with different combinations of RT and ADT was compared.  

 

5.2 Methodology 
 
5.2.1 Data source 
 

Data were abstracted from the Prostate Cancer Risk Stratification (ProCaRS) database. 

This database contains data on 7974 patients diagnosed with prostate cancer and treated with 

different forms of primary RT between 1994 and 2010 from four Canadian institutions in 

Toronto, Quebec City, Montreal and Vancouver.(144) Median follow-up was 79 months, and a 

total of 1442 (19%) patients developed biochemical failure. Details regarding ethics approval, 

database construction and quality assurance have been previously described.(20) 

 

5.2.2 Comparison one: BT and ADT versus EBRT and ADT 
 

The first comparison was based on a RCT performed by Morris and colleagues, which 

compared the rate of biochemical failure among men diagnosed with intermediate-risk PCa 

according to the National Comprehensive Network and treated with EBRT and either low-dose 

rate BT boost therapy and ADT (BT+ADT) or dose escalated EBRT and ADT (E+ADT).(167) 
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Patients from the ProCaRS database were included in the comparison if they met the PCa-

specific eligibility criteria specified by Morris et al., with two modifications. First, patients who 

received low-dose rate BT as a monotherapy and without EBRT were included in the BT+ADT. 

Second, a range for ADT duration (4 to 16 months) was allowed rather than that specified by 

Morris et al (12 months) to accommodate a greater number of patients for analysis, as few 

patients underwent approximately 12 months of ADT in both treatment groups. Second, 

instead of specific dose-escalation protocols as investigated by Morris et al, patients 

undergoing E+ADT with a dose of ≥74 Gy or BT with a dose of ≥144 Gy were eligible for 

comparison. The final sizes of the BT+ADT and E+ADT groups were 433 and 132, respectively. 

The patient selection process is outlined in Figure 5.1a. 

 

7974 Men registered in ProCaRS database 

2037 men with complete information on required fields (age at diagnosis, tumor 
characteristics at diagnosis, treatment information, biochemical failure information)  

1275 men who started adjuvant hormone therapy 2-12 months before primary 
radiation therapy and had between 4 and 16 months of adjuvant hormone therapy 

674 men diagnosed with intermediate-risk disease (NCCN category 3) 

132 men treated with E+ADT 
with total dose ≥7400 Gy  

433 men treated with BT+ADT 
with dose ≥14400 Gy 

 

Figure 5.1a Selection process for comparison one. 
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5.2.3 Comparison two: EBRT with vs without ADT 
 

As shown in chapter four, issues of confounding arose when comparing BPFS between 

men diagnosed with intermediate-risk non-metastatic PCa and treated with BT or EBRT due to 

differences in the risk of extraprostatic extention as defined by baseline PSA, cTS, and GS. 

Confounding is also a concern when comparing the occurrence of oncological outcomes among 

men diagnosed with PCa and treated with RT alone or in combination with androgen 

deprivation therapy (ADT). Administration of ADT has demonstrated improvements in 

oncological outcomes attributed to a radiosensitization effect that improves response to RT 

while targeting occult micrometastases and extraprostatic extension.(173,174) However, since 

ADT leads to side effects and increases the risk of non-PCa death,(175) administration is 

reserved for those with higher PSA, Gleason score and clinical stage who are at an increased 

risk of biochemical failure, and PCa-specific death.  

The second treatment comparison was based on a RCT performed by Jones and 

colleagues, which sought to compare, among other outcomes, rate of biochemical failure 

among men diagnosed with localized PCa and treated with External Beam RT alone (EBRT) or in 

combination with short-term ADT (E+ADT).(91) Patients from the ProCaRS database were 

included in the comparison if they adhered to PCa-specific eligibility criteria as specified by 

Jones et al. This involved those with histologically confirmed prostate adenocarcinoma who had 

PSA levels of ≤20 ng/ml, a clinical T-stage ≤2, and without nodal or metastatic involvement at 

the time of diagnosis. Since the results of the study by Jones et al. suggested effect modification 

by risk-group, and the majority of men selected for this comparison (64.4%) from the ProCaRs 

database had intermediate-risk PCa, we further limited the source population to those 
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diagnosed with intermediate-risk PCa, using the definition provided by Jones et al. EBRT dose in 

both groups was limited to a total of ≥66 Gy, which slightly varies from the 66.6 Gy 

implemented by Jones and colleagues but was done to increase the number of participants for 

our comparison. Further, those who received 3-6 months of ADT before EBRT were included in 

the E+ADT group, which varies slightly from the four-month duration implemented by Jones et 

al. but was done for the purpose of increasing the sample size. The definition of biochemical 

failure was defined as an increase in the PSA level post-treatment of >2ng/ml above the 

nadir.(61) The final sample size included 126 and 579 men in the E+ADT and EBRT-only groups, 

respectively. A flowchart of the patient selection process is shown in Figure 5.1b. 
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Figure 5.1b Selection process for comparison two. 

 
 
5.2.4 Covariate selection 
 

We explored the potential for confounding through examining differences between 

treatment groups in distributions of baseline covariates that have demonstrated a prognostic 

role in relation to the rate of biochemical failure in previous literature.(19) Covariates included 

tumor characteristics (i.e. pre­biopsy PSA level, clinical T stage, and Gleason score), EBRT dose 

and treatment start date. Age was not included as a covariate since it has not demonstrated a 

consistent association with rate of biochemical failure in previous literature,(176,177) and did 

not demonstrate a notable association with the rate of biochemical failure in either 

comparison. Further, age was strongly associated with treatment choice, which would bias 

effect estimates if adjusted for.(168) 

 

7974 Men registered in ProCaRS database 

2568 men with complete information on required fields (age at diagnosis, tumor 
characteristics at diagnosis, treatment information, biochemical failure information)  

1764 men with baseline PSA ≤20 ng/ml and clinical T stage ≤2c 

126 men diagnosed with intermediate-
risk PCa and treated with 3-6 months of 

adjuvant hormone therapy 

1379 men treated with EBRT with total dose ≥6600 Gy 

579 men diagnosed with intermediate-
risk PCa and treated without adjuvant 

hormone therapy 
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5.2.5 Propensity score matching 
 

The PS model was built according to the systematic approach given in chapter four using the 

set of balance diagnostics recommended in chapter three to guide development and 

evaluation. Briefly, the PS model was a logistic model with prognostic characteristics as 

independent variables and type of treatment received as a binary dependent variable.(168) We 

explored the possibility of interactions and non-linearity for baseline covariates when 

developing the PS model, as appropriate specification of interaction and non-linear terms has 

demonstrated ability to achieve greater balance in baseline covariates between treatment 

groups.(152,178) Locally weighted scatterplot smoothers were used to assess for departures 

from linearity in the relationship between continuous predictors and the log odds of the 

probability for receiving E+ADT. Improvements in the model fit were assessed using the 

likelihood ratio test and pseudo-R2. Baseline PSA was modeled as a restricted cubic spline with 

four knots, treatment start year was treated as a discrete variable with 2-year categories, and 

an interaction term between baseline PSA and Gleason score was added, as the model 

specifications improved the predictive value. The Hosmer-Lemeshow goodness-of-fit statistic 

was examined to test for model adequacy. Further, a plot of DFBETA statistics revealed one 

outlier wherein a subject received E+ADT instead of BT+ADT despite a very low PSA, clinical T-

stage, and Gleason score. This patient was retained, as he did not have any relative or absolute 

contraindications to receiving E+ADT. The MatchIt package in R was used to match participants 

between treatment groups on the PS using progressively smaller calipers to identify the optimal 

balance to sample size trade-off.(146) Specifically, ratios of 1:3 and 1:4 were used for 

comparison one and two, respectively, given the ratio of index to reference observations 
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available. We also examined matching ratios of 1:1 and 1:2 but did not find any meaningful 

difference in balance or effect estimates other than decreased precision compared to 1:3 and 

1:4 matching ratios. Caliper widths included a range of 0.5 to 0.005 standard deviations of the 

logit of the PS (S Tables 5.1a and 5.1b). Nearest-neighbour matching was used without 

replacement. Compared to other matching approaches, nearest-neighbor matching with 

calipers and without replacement has been found to be less computationally burdensome and 

produce matches resulting in similar or increased balance, and similar or decreased bias and 

variance.(179)  

 
5.2.6 Coarsened exact matching 
 

Coarsening of baseline covariates used in CEM were informed by previous evidence 

surrounding the risk of PCa-specific death over 15 years after diagnosis.(180) In patients with a 

PSA of <4, 4 to 10, 10.1 to 20 and 20.1 to 50 ng/ml, the risk of PCa-specific death has been 

estimated to be 4%, 9%, 11%, and 22%, respectively.(180) Moreover, risk evaluation used to 

guide treatment decisions heavily relies on such thresholds.(19) As such, progressive coarsening 

for PSA was based on these ranges. Clinical stage, as determined through physical examination 

of the prostate or imaging, is an ordinal characteristic that takes on values of stages 1-4 with 

substages ‘a’ through ‘d’. Stages 1a-1c at diagnosis are assigned when there is no palpable 

tumor detected through digital rectal examination. Along with palpable tumors that occupy one 

side of the prostate (i.e., T2a and T2b, depending on year of classification), the risk of PCa-

specific death over 15 years has been estimated to be between 6% and 7%, so were collapsed 

into one category.(180) In contrast, patients with bilateral disease not felt to extend outside the 

prostate upon digital rectal examination (T2b depending on year of classification and T2c) have 
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been estimated to have approximately twice the risk of PCa-specific death over 15 years post-

diagnosis as those with unilateral disease, so formed another category for matching. Gleason 

score was divided into 6 (3+3), 7 (3+4) and 7 (4+3), as these values are associated with notable 

differences in prognosis. 

Patients were matched directly on ordinal covariates (i.e., Gleason score, and collapsed 

categories of clinical T-stage) and progressively coarsened continuous variables (i.e., PSA, year 

of RT, EBRT dose (if applicable)). Progressive coarsening for year of treatment was 

accomplished by dividing the range of values approximately evenly (i.e., halves, thirds, etc.)  in 

the E+ADT group. EBRT dose was split into low (≥6600 Gy and <7300 Gy) and high (≥7300 Gy to 

<7980 Gy) dosage. Coarsening ranges are presented in S Tables 5.2a and 5.2b. 

 

5.2.7 Balance diagnostics 
 
 Many balance diagnostics exist and have been rigorously assessed using various 

empirical and simulation datasets that represent a broad range of data characteristics. We 

chose three balance measures that consider different data characteristics in order to monitor 

improvements in balance when further restricting matching strategies (i.e., using finer ranges 

for continuous variables in CEM and smaller caliper widths in PSM), while enabling a 

comprehensive comparison of improvements in balance between PSM and CEM. The 

standardized mean difference (SMD) in proportion of observations having high-intermediate 

risk versus low-intermediate risk PCa as defined by the ProCaRS system was used as a 

prognostic score-based balance measure.(19) The ProCaRS risk-groups capture imbalance in 

combinations of specific values for baseline covariates to the extent that each is associated with 
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variation in the rate of biochemical failure. Stuart et al. have demonstrated that a prognostic 

score-based imbalance measure strongly correlated with bias in effect estimates.(156) Since 

our prognostic score-based balance measure only involved two risk-groups, it was limited in 

capturing subtle differences in individual variables. As such, we also examined the absolute 

SMD for individual variables to improve sensitivity in identifying violations of balance in 

individual variables and the average absolute SMD for baseline covariates to monitor average 

reduction in absolute SMD when restricting matching strategies to improve balance. Both the 

absolute and average absolute SMD for baseline covariates have demonstrated a strong 

correlation with bias in effect estimates in simulation studies.(156,160,161) In addition to these 

three measures, we also examined the overlap in continuous baseline covariates through 

overlying density plots and variance ratios. 

 

5.2.8 Descriptive statistics and multivariable regression analysis 
 
 All statistical analyses were performed using RStudio version 3.6.0.(169) Descriptive 

statistics were calculated for each treatment group before and after matching. The median and 

interquartile range are presented for continuous variables and proportions for categorical 

variables. Cox proportional-hazards regression analyses for estimating the effect of treatment 

group on the hazard of biochemical failure were performed using the Survival package.(181) 

Log-minus-log survival plots and scaled Schoenfeld residuals were examined for violations of 

proportional hazards, which, when present, were handled by modeling variables as a function 

of time. Improvements in model fit were examined through informally comparing the model log 

likelihoods after incorporating higher order terms and transformations for continuous 
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covariates. Examination of a plot of DBETA statistics did not identify any influential 

observations. Hazard ratios and 95% confidence intervals were estimated from unmatched data 

both without and with adjustment for the natural logarithm of PSA, clinical stage, Gleason 

score, RT start year, and EBRT dose (if applicable). For matched data, we employed Cox models 

clustered by the matched sets with associated weights to account for variable matching ratios, 

using robust variance estimators to generate confidence intervals.(181,182) For the CEM 

strategies, the continuous covariates were included in the model to control for possible residual 

confounding. For the PSM strategies, all covariates were included in the Cox model. 

 

5.3 Results 
 
5.3.1 Comparison one: BT+ADT versus E+ADT 
 
5.3.1.1 Descriptive statistics 

 Descriptive statistics for the unmatched treatment groups in comparison one are 

reported in Table 5.1a. Men treated with BT+ADT were, on average, younger (median age of 68 

vs 72 years, respectively) and were treated at earlier dates than men in the E+ADT group 

(median treatment start year of 2002 vs 2003, respectively). Tumor characteristics were 

generally less advanced in the BT+ADT group than in the E+ADT group (median PSA: 7.5 vs 9.0 

ng/ml, respectively; percentage of Gleason score 7 (4+3): 13% vs 34%) other than clinical stage 

wherein a greater proportion of BT+ADT had clinical T stage of T2b-c (14% vs 8%, respectively). 

This paralleled the smaller percentage of BT+ADT occupying the high-intermediate risk strata 

(7% vs 25%, respectively). Finally, the median duration of ADT was similar between groups (6.0 

vs 5.4 months).  
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Table 5.1a Descriptive statistics for comparison one 

 BT+ADT (n=433) E+ADT (n=132) SMD Variance 
Ratio 

Age   

Median 68 72 0.7644 0.55 

IQR 63, 72 69, 75   

Clinical T-Stage   

T1a-2a 373 86.14% 122 92.42% 0.2041  

T2b-c 60 13.86% 10 7.58%   

PSA (ng/ml)   

Median 7.60 9.02 0.3468 0.92 

IQR 5.70, 10.50 5.88, 12.60   

Gleason Grade   

1 126 29.10% 23 17.42% 0.2790  

2 249 57.51% 64 48.48% 0.1815  

3 58 13.39% 45 34.09% 0.5014  

RT Start Year   

Median 2002 2003 0.3029 0.67 

IQR 2001, 2004 2002, 2004   

ADT Duration (Months)   

Median 5.98 5.45 0.1285 2.84 

IQR 5.55, 6.81 4.82, 8.46   

PROCARS Risk Groups   

Low-intermediate 404 93.30% 99 75% 0.5177  

High-intermediate 29 6.70% 33 25%   

 

5.3.1.2 Performance of matching strategies  

The number of patients and events retained for each CEM and PSM strategy were 

examined in comparison one and are presented in S Tables 5.1a and 5.3a, respectively. PSM 

strategy 10 and CEM strategy eight led to optimal balance to sample size trade-off so were used 

for further analysis. 
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Figure 5.2a Balance achieved with each PSM strategy by percent of data retained for comparison one.  

*The red dot indicates the chosen matching strategy 
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Figure 5.2b Balance achieved with each CEM strategy by percent of data retained for comparison one.  

*The red dot indicates the chosen matching strategy 
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E+ADT until a certain point wherein characteristics in both groups tended toward those of the 

BT+ADT group. In the matching strategy chosen, characteristics for both groups represented an 

average of both groups, as would be expected in areas of common support. 

 Density plots for continuous covariates before and after matching are presented in S 

Figures 5.2a and 5.2b. Overlap in treatment start date and baseline ln(PSA) improved after both 

matching strategies.  

Descriptive statistics for the matched groups from the selected PSM and CEM strategies 

are presented in Table 5.2a. The distribution of baseline covariate values in the matched 

samples represents an average of the distribution of covariates from both groups.  

Table 5.2a Descriptive statistics for PSM strategy 10 and CEM strategy 8 in comparison one 

 PSM 10 CEM 8 

 BT+ADT (n=248) E+ADT (n=109) BT+ADT (n=276) E+ADT (n=96) 

Age (years)   

Median 69 72 69.5 72 

IQR 64, 72 69, 75 64, 72.25 69, 75 

Clinical T-Stage   

T1a-c 231 93.12% 102 93.58% 264 95.83% 92 95.83% 

T2b-c 17 6.88% 7 6.42% 12 4.17% 4 4.17% 

PSA (ng/ml)   

Median 7.60 8.06 7.95 8.47 

IQR 5.65, 10.60 5.63, 10.70 6.08, 11.00 5.72, 11.78 

Gleason Grade   

1 52 21.10% 23 21.10% 63 22.92% 22 22.92% 

2 119 47.86% 52 47.71% 152 55.21% 53 55.21% 

3 77 31.04% 34 31.19% 60 21.88% 21 21.88% 

RT Start Year   

Median 2003 2003 2003.5 2003.5 

IQR 2002, 2004 2002, 2004 2002, 2005 2002, 2005 

ADT Duration (Months)   

Median 5.98 5.49 5.95 5.67 

IQR 5.55, 6.78 4.80, 8.08 5.48, 6.83 4.93, 8.51 

PROCARS Risk Groups   

Low-intermediate 26 10.55% 13 11.93% 236 85.42% 92.89 85.42% 
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High-intermediate 222 89.45% 96 88.07% 40 14.58% 3.11 14.58% 
 
 
 SMDs of individual covariates after PSM and CEM relative to the source population are 

presented in Figure 5.3. PSM and CEM improved balance in the absolute SMD relative to the 

unmatched sample. CEM achieved similar or more balance in the absolute SMD relative to PSM. 

 

Figure 5.3 Love plot of the absolute SMD for individual baseline covariates before 

matching and after PSM and CEM in comparison one. 

 

The effect estimates are presented in Table 5.3a. For the benchmark RCT hazard ratio 

estimate (95% confidence interval) of 2.04 [1.25, 3.33], the corresponding unadjusted effect 

hazard-ratio estimate (95% CI) was 6.55 [3.82, 11.26], while adjusting for relevant baseline 

covariates, the hazard-ratio estimate (95% CI) decreased to 4.48 [2.44, 8.22]. The unadjusted 

and multivariable adjusted hazard-ratio estimates (95% CI) after PSM were 4.06 [1.98, 8.11] and 
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3.84 [1.91, 8.71], respectively, while those after CEM were 4.04 [1.88, 8.66] and 3.84 [1.77, 

8.34], respectively. Other candidate matching strategies for both PSM and CEM that 

demonstrated similar improvements in imbalance led to similar point estimates and confidence 

intervals (Table 5.3a). 

Table 5.3a Effect estimates obtained from unmatched and matched samples from comparison 
one, and the benchmark trial 

Matching 
Strategy 

Unadjusted Adjusted 
Hazard 
Ratio 

Lower 
Bound 

Upper 
Bound 

Hazard 
Ratio 

Lower 
Bound 

Upper 
Bound 

RCT 2.17 1.33 3.45 2.04 1.25 3.33 

UNM 6.55 3.82 11.26 4.48 2.44 8.22 

CEM 6 3.79 1.78 8.08 3.67 1.68 8.02 
CEM 8 4.04 1.88 8.66 3.84 1.77 8.34 

CEM 9 2.81 1.17 6.81 2.74 1.12 6.73 
PSM 9 4.25 2.23 8.08 3.76 1.94 7.27 

PSM 10 4.06 1.98 8.11 3.84 1.91 7.71 
PSM 11 3.86 1.85 8.05 3.87 1.84 8.15 

 
 
5.3.2 Comparison two: EBRT versus E+ADT 
 
5.3.2.1 Descriptive Statistics  

 Descriptive statistics for unmatched treatment groups in analysis two are reported in 

Table 5.1b. Treatment groups were similar (SMD<0.1) with respect to age, PSA, and proportion 

of low- vs high-intermediate risk-group status. The E+ADT group had a slightly greater 

proportion of men diagnosed with clinical T1a-2a disease than the EBRT group. Those in the 

E+ADT group also had a greater proportion of Gleason sum 7 (3+4) and 7 (4+3) disease and 

received higher doses of EBRT, on average. Men from the E+ADT group also received 

treatment, on average, later than those from the EBRT group in calendar time. 
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Table 5.1b Descriptive statistics for PSM strategy 4 and CEM strategy 7 in comparison two 
 PSM 6 CEM 7 

 E+ADT (n=126) EBRT (n=347) E+ADT (n=118) BT+ADT (n=377) 

Age (years)   

Median 72 72 72 72 

IQR 68.25, 75 68, 75 69, 75 66, 74 

Clinical T-Stage   

T1a-c 109 86.51% 298 85.91% 105 88.98% 335 88.98% 

T2b-c 17 13.49% 49 14.09% 13 11.02% 42 11.02% 

PSA (ng/ml)   

Median 8.75 8.47 8.81 8.50 

IQR 5.71, 12.46 5.87, 12.05 5.75, 12.15 6.10, 12.30 

Gleason Grade   

1 23 18.25% 68 19.64% 22 18.64% 70 18.64% 

2 67 53.18% 179 51.46% 66 55.93% 211 55.93% 

3 36 28.57% 100 28.90% 30 25.42% 96 25.42% 

RT Start Year   

Median 2001 2001 2001 2001 

IQR 2000, 2004 2000, 2004 2000, 2004 2000, 2004 

EBRT Dose (Gy)   

Median 7560 7560 7560 7560 

IQR 7400, 7980 7400, 7980 7400, 7980 7400, 7980 

PROCARS Risk Groups   

Low-intermediate 88 69.84% 252 72.75% 82 69.49% 258 68.40% 

High-intermediate 38 30.16% 95 27.25% 36 30.51% 119 31.60% 

 

5.3.2.2 Performance of matching strategies  

Data characteristics for PSM and CEM strategies examined in comparison two are 

presented in S Tables 5.1b and 5.3b, respectively. PSM strategy six and CEM strategy seven led 

to optimal balance to sample size trade-off so were used for further analysis. Figures 5.4a and 

5.4b show the selection processes for PSM and CEM, respectively, with the red data points 

representing the matching strategies that led to optimal balance to sample size trade-off. Sixty-

eight percent and 70% of the source population were retained through PSM and CEM, 

respectively. The associated mean SMDs were 0.034 and 0.015, while the risk-group SMDs were 
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0.022 and 0.024, respectively. Both strategies maintained SMD for all individual covariates 

under <0.1, and variance ratios for continuous covariates within the acceptable range of 0.92 to 

1.08.(152) 

  

  

Figure 5.4a Balance achieved with each PSM strategy by percent of data retained for comparison two. 

*The red dot indicates the chosen matching strategy  
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Figure 5.4b Balance achieved with each CEM strategy by percent of data retained for comparison two.  

*The red dot indicates the chosen matching strategy 
 

Descriptive statistics for the matched groups from the selected CEM and PSM strategies 

are presented in Table 5.2b. The distribution of baseline covariate values in the matched 

samples represents an average of both groups where common support exists. 
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Table 5.2b Descriptive statistics for PSM strategy 4 and CEM strategy 7 in comparison two 

 PSM 6 CEM 7 

 E+ADT (n=126) EBRT (n=347) E+ADT (n=118) BT+ADT (n=377) 

Age (years)   

Median 72 72 72 72 

IQR 68.25, 75 68, 75 69, 75 66, 74 

Clinical T-Stage   

T1a-c 109 86.51% 298 85.91% 105 88.98% 335 88.98% 

T2b-c 17 13.49% 49 14.09% 13 11.02% 42 11.02% 

PSA (ng/ml)   

Median 8.75 8.47 8.81 8.50 

IQR 5.71, 12.46 5.87, 12.05 5.75, 12.15 6.10, 12.30 

Gleason Grade   

1 23 18.25% 68 19.64% 22 18.64% 70 18.64% 

2 67 53.18% 179 51.46% 66 55.93% 211 55.93% 

3 36 28.57% 100 28.90% 30 25.42% 96 25.42% 

RT Start Year   

Median 2001 2001 2001 2001 

IQR 2000, 2004 2000, 2004 2000, 2004 2000, 2004 

EBRT Dose (Gy)   

Median 7560 7560 7560 7560 

IQR 7400, 7980 7400, 7980 7400, 7980 7400, 7980 

PROCARS Risk Groups   

Low-intermediate 88 69.84% 252 72.75% 82 69.49% 258 68.40% 

High-intermediate 38 30.16% 95 27.25% 36 30.51% 119 31.60% 

 

Median values for continuous covariates and proportions for categorical covariates 

according to matching strategy are presented in S Figures 5.3a and 5.3b. As matching 

approaches became stricter, the EBRT group characteristics tended toward those of the E+ADT 

until a certain point wherein characteristics in both groups tended toward those of the EBRT 

group. In the matching strategy chosen, characteristics for both groups represented an average 

of both groups, as would be expected in areas of common support. 
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Density plots for continuous covariates before and after matching are presented in S 

Figures 5.4a and 5.4b. Similar to comparison one, overlap in treatment start date and baseline 

ln(PSA) improved after both matching strategies compared to the unmatched sample.  

SMDs of individual covariates after PSM and CEM relative to the unmatched sample are 

presented in Figure 5.5. Both matching strategies improved balance in the absolute SMD in all 

covariates relative to the unmatched sample except baseline ln(PSA), as this variables was 

already balanced between groups.  

 
Figure 5.5 Love plot of the absolute SMD for individual baseline covariates before 

matching and after PSM and CEM in comparison two. 

 

The effect estimates are presented in Table 5.3b. Compared to the benchmark RCT 

hazard ratio (95% CI) of 1.79 [1.45, 2.21], the unadjusted effect estimate (95% CI) was 1.40 

[0.99, 1.98]. After adjusting for relevant baseline covariates, the hazard ratio estimate (95% CI) 
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increased to 1.52 [1.06, 2.16]. The unadjusted and multivariable adjusted hazard-ratio 

estimates (95% CI) after PSM were 1.39 [0.97, 1.99] and 1.44 [1.00, 2.05]. CEM provided similar 

effect estimates (1.53 [0.95, 2.46] without adjustment and 1.55 [0.98, 2.45] after multivariable 

adjustment). Other candidate matching strategies for both PSM and CEM that demonstrated 

similar improvements in imbalance led to similar point estimates and confidence intervals 

(Table 5.3b). 

Table 5.3b Effect estimates obtained from unmatched and matched samples from comparison 
two, and the benchmark trial 

Matching 
Strategy 

Unadjusted Adjusted 

Hazard 
Ratio 

Lower 
Bound 

Upper 
Bound 

Hazard 
Ratio 

Lower 
Bound 

Upper 
Bound 

RCT - - - 1.79 1.45 2.21 
UNM 1.40 0.99 1.98 1.52 1.06 2.16 

CEM 7 1.53 0.95 2.46 1.55 0.98 2.45 
CEM 8 1.49 0.98 2.26 1.52 1.00 2.29 

CEM 9 1.48 0.93 2.36 1.52 0.92 2.43 

PSM 4 1.43 1.01 2.01 1.47 1.04 2.07 
PSM 5 1.43 1.00 2.04 1.46 1.02 2.08 

PSM 6 1.39 0.97 1.99 1.44 1.00 2.05 

 

5.4 Discussion 
 
 The purpose of this study was to compare the performance of two popular data-

preprocessing techniques in the context of non-experimental datasets, using two examples 

from PCa CER. Balance in the distributions of individual variables, as measured by SMD, was 

improved with both PSM and CEM. CEM generally led to smaller SMDs for individual covariates 

and overall average SMD when compared with PSM, with similar proportions of retention of 

observations from the original dataset. Furthermore, the risk-group SMD, which reflects 

imbalance in prognostic score between treatment groups was improved through both PSM and 
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CEM, but to a greater extent after CEM. Likewise, the variance ratio for continuous covariates 

was closer to one after both matching strategies but more so after CEM than PSM for baseline 

PSA and treatment start date; however, PSM led to a variance-variance ratio closer to one for 

radiation treatment dosing between treatment groups. These findings are consistent with other 

studies wherein large improvements in balance were observed after CEM compared to PSM 

using balance diagnostics based on the comparison of multivariable distributions between 

treatment groups.(147,148) 

 In the first comparison, the rate of biochemical progression was elevated in the E+ADT 

compared with the BT+ADT group. Some of the difference in the rate of biochemical 

progression between treatment groups can be attributed to differences in the risk of 

extraprostatic extension, which is reflected in the baseline measures of PSA, clinical stage, and 

Gleason sum in addition to changing clinical practices and technology that occur overtime, 

which are reflected, in part, by the calendar year of treatment. After adjusting for such 

variables, the hazard ratio was attenuated (6.55 vs 4.48). The adjusted effect estimate is more 

consistent with that of the benchmark RCT (2.04). After both PSM and CEM, however, the 

effect estimate after multivariable modeling was, on average, closer to that of the benchmark 

RCT (3.84 and 3.84, respectively). Attenuation of the effect estimate after matching might be 

due to the limitations of multivariable regression modeling to adequately control for 

confounding. To clarify, appropriate model specification would require adequate 

representation of the functional forms of the relations between the study outcome and the 

treatment and confounders at issue (which may necessitate inclusion of polynomial terms for 

continuous characteristics), as well as adequate inclusion of the requisite – and possibly multi-
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way – interaction terms between the independent variables. However, these relations do not 

necessarily operate according to such specifications. Furthermore, accurate modelling of effect 

estimates rests on the assumption of positivity, with even small violations of which potentially 

resulting in biased effect estimates.(183)  

Even without further adjustment for confounding, matching led to a stronger 

attenuation in the effect estimate than multivariable matching (4.06 and 4.04 for PSM and 

CEM, respectively, versus 4.48 after multivariable modeling alone) that was closer to the 

benchmark RCT. This might demonstrate the bias reduction potential offered through PSM and 

CEM even without further multivariable adjustment. However, the further attenuation in the 

effect estimate afforded through multivariable adjustment after matching demonstrates the 

remaining confounding not entirely managed by through matching strategies performed. 

In the second comparison, the rate of biochemical progression was elevated in the EBRT 

compared to the E+ADT group; however, the difference was likely underestimated since, as 

mentioned in the background, ADT is generally reserved for those with a greater risk of 

extraprostatic extension. This is reflected in the differences in baseline characteristics between 

treatment groups wherein those undergoing E+ADT had, on average, worse prognosis than 

those in the EBRT group. However, such differences in prognosis were not as substantial as 

differences in prognosis between treatment groups in the first comparison, as demonstrated by 

the smaller risk-group SMD in comparison two relative to one (0.075 versus 0.52, respectively). 

Multivariable adjustment led to an increased effect estimate (1.52 versus 1.40) after adjusting 

for potential confounding variables. The relative difference in unadjusted and adjusted effect 

estimate compared with the first comparison was much smaller. This is likely attributable to the 
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greater balance observed between treatment groups in comparison two relative to that in 

comparison one. This notion is further supported in that matching did not substantially change 

effect estimates (1.44 and 1.55 after PSM and CEM, respectively).  

 An alternative explanation for the observed differences in the effect estimates might be 

the differences in treatments implemented in the randomized trial relative to those 

administered in the ProCaRS database. Since BT monotherapy and EBRT without dose 

escalation are likely to have different impacts on the rate of biochemical failure compared to 

EBRT with BT boost and EBRT with dose-escalation, the ASCENDE-trial can serve only as a loose 

guideline in interpreting effect estimates rather than a gold standard. Another explanation 

could be that each approach estimates a different parameter. Specifically, multivariable 

regression modeling estimates – albeit approximately – the average treatment effect in the 

study population. In contrast, PSM and CEM provide for estimates of the average treatment 

effect among the index-treatment group (i.e., E+ADT), which has been termed the average 

treatment effect among the treated. In our case, however, since some observations from the 

index-treatment group were dropped after PSM and CEM, we estimated the average treatment 

effect among the treated who remained after matching, which has been termed by Iacus and 

colleagues as the feasible sample average treatment effect among the treated.(159) Random 

variation of the hazards ratio might also explain the findings, at least partly. However, effect 

estimates drawn from several candidate PSM and CEM strategies consistently estimated effects 

more in line with the benchmark RCT in comparison one where imbalance was substantial; 

whereas effect estimates provided through several candidate PSM and CEM strategies 

consistently estimated effects similar to that provided through multivariable modeling where 
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imbalance was not as substantial. The comparison of results from the benchmark RCTs with 

those obtained after matching to support trends in bias reduction is limited since characteristics 

of the treatment groups and treatment approaches for each comparison varied notably from 

the chosen benchmark RCT. 

We found that both CEM and PSM led to matched samples with average values of 

characteristics falling in a range of observed values of characteristics in each treatment group. 

This is expected since it represents areas of common support. This is also favorable since results 

are more ‘generalizable’ to patient groups with characteristics that are amenable for either 

treatment under comparison. In contrast, Fullerton et al. found that CEM led to matched 

samples that differed greatly from the original population and either treatment group in their 

baseline characteristics.(147) This seeming discrepancy is likely explained by the difference in 

dimensionality between datasets used for matching. The covariate sets Fullerton et al. used to 

match between comparison groups involved over 80 variables, whereas we only used matching 

on four and five covariates. This explanation is supported by findings from Ripollone et al., who 

reported that smaller covariate sets of 8 covariates retained a substantially greater proportion 

of the original population compared to larger covariate sets with up to 119 covariates (32.5% vs 

3.6%, respectively).(148)  

The precision of effect estimates did not differ notably between PSM and for CEM. 

Although Fullerton et al. and Ripollone et al. found that greater precision was observed for PSM 

than for CEM in high-dimensional datasets, differences attenuated as the number of covariates 

decreased.(147,148) Since our datasets included a small number of covariates, similarity in 

precision achieved after PSM and CEM is to be expected. 
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 The PSM paradox, as demonstrated by King and Nielsen,(136) became apparent when 

restricting matches to exceedingly smaller caliper ranges. In particular, measures of imbalance 

became very sporadic, increasing and decreasing with progressively smaller calipers ≤0.1 in 

analysis one and ≤0.2 in analysis two (Figures 5.2a and 5.4a). This could also be due to the fact 

that sample sizes of comparison groups became exceedingly smaller as caliper size 

progressively decreased. Austin noted that the standard deviation of SMD increases in smaller 

samples, so greater variation of SMD is expected with progressively smaller calipers.(152) This 

phenomenon was also observed in a study by Belitser et al., who found correlation of SMD with 

bias decreased in smaller sample sizes.(161) These findings have substantial implications for 

researchers who use standard caliper sizes instead of exploring progressively smaller caliper 

ranges to identify optimal balance before the PSM paradox kicks in or when estimation of 

balance becomes sporadic and unreliable. Thus, we recommend that analysts explore 

progressively smaller matching calipers when PSM in order to examine the trade-off between 

balance and sample size and identify a suitable matching strategy for their research purposes. 

 Our study had several strengths. First, we used a systematic approach to identifying an 

optimal matching strategy through identifying the ‘plateau’ in the association between balance 

and percentage of retention of the original study population with progressively stricter 

matching criteria (i.e., smaller caliper sizes in PSM and finer ranges in continuous variables in 

CEM). Second, we used matching ratios that retained a greater number of reference-treatment 

observations to enhance precision of the effect estimates after PSM. Third, we took advantage 

of a priori knowledge to inform our decisions on CEM cut-points for continuous variables rather 

than rely solely on quantile-based rules, as in previous studies.(145,147) This has the potential 
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to optimize the efficiency of matching strategies by reducing imbalance while retaining a 

greater part of the original sample. Finally, the use of effect estimates from real world evidence 

provided from RCTs performed in a similar era among patients with similar characteristics 

provided further guidance in the interpretation of the results.   

  

5.5 Conclusions 
 

 In summary, both matching strategies appear to be effective in managing confounding. 

The use of multivariable adjustment should be used in conjunction with matching strategies, as 

shown here, has potential to control for residual confounding after matching. In contrast with 

recent reports, CEM appears to be a feasible strategy for pre-processing of non-experimental 

data with a relatively small number of covariates that can result in retention of a large 

proportion of the original study sample from which to generate effect estimates with 

reasonable precision and utility to inform clinical practice in the absence of RCTs. CEM also has 

potential to further improve balance in the multivariable distribution of baseline covariates 

between comparison groups, compared with PSM. 

 

5.6 Transition to Chapter Six 
 
 This chapter compared the performance of propensity score matching and coarsened 

exact matching in the ability to balance the multivariable distribution of baseline covariates per 

level of data retention using methods developed in chapter four. Two treatment comparisons 

of men diagnosed with PCa and treated with different combinations of RT and ADT in Canada 
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were used to compare these matching strategies. RCTs that compared similar groups of men 

who were similarly managed were used to further inform how changes in balance led to 

changes in effect estimates. The results from this comparison thus add to the real-world 

evidence on the performance of matching strategies and show the potential that matching can 

have in improving the validity of effect estimates in PCa comparative effectiveness research. As 

such, the methods developed and evaluated in chapters four and five were used in a 

comparison of the rate of MPFS between men diagnosed with unfavorable-risk non-metastatic 

PCa who were initially treated with either RT or RP in chapter seven.  

However, before chapter seven, a systematic review and meta-analysis of studies 

comparing the rate of CSS between men diagnosed with high-risk non-metastatic PCa who were 

initially treated with either RT or RP was performed in response to limitations in a previous 

meta-analysis on the topic and to provide context from the medical literature for the 

comparison done in chapter seven. Comparisons using records from men diagnosed with high-

risk non-metastatic PCa instead of unfavorable-risk (i.e., unfavorable-intermediate-, high- and 

very-risk) non-metastatic PCa is performed, as the term unfavorable-risk is a recent change in 

risk-stratification terminology.(19) Therefore, most studies with sufficient follow-up for CSS that 

are available for systematic review and meta-analysis do not use this terminology. 
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Abstract:  

 
Background 

 
Identifying the optimal management of high-risk non-metastatic prostate cancer (PCa) is an 

important public health concern given the large burden of this disease. We performed a meta-

analysis of studies comparing PCa-specific mortality (CSM) and all-cause mortality (ACM) among 

men diagnosed with high-risk non-metastatic PCa who were treated with primary radiotherapy 

(RT) and radical prostatectomy (RP).  

Methods 

 
Medline and EMBASE were queried for articles between 2005 to 2020. After title and abstract 

screening, two authors independently reviewed full-text articles for inclusion. Data were 

abstracted and a modified version of the Newcastle-Ottawa Scale, involving a comprehensive 

list of confounding variables, was used to assess risk of bias. 

Results 

 
Fourteen studies involving 88,543 patients were included. No difference in adjusted CSM in RT 

relative to RP was shown (hazard ratio, 1.02 [95% confidence interval: 0.84, 1.25]). Increased 

CSM was found in a moderator analysis comparing external beam radiation therapy (EBRT) with 

RP (1.35 [1.10, 1.68]) whereas EBRT combined with brachytherapy (BT) versus RP showed lower 

CSM (0.68 [0.48, 0.95]). All studies demonstrated a high risk of bias, as none fully adjusted for 

all confounding variables. 

Conclusion 

 
We found no difference in CSM and ACM between men diagnosed with non-metastatic high-

risk PCa treated with RP or RT; however, this is likely explained by increased CSM in men 
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treated with EBRT and decreased CSM in men treated with EBRT+BT studies relative to RP. 

High-risk of bias in all studies identifies the need for better data collection and confounding 

control in PCa research. 
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6.1 Rationale and Objectives 
 

Prostate cancer (PCa) was the second most frequently diagnosed cancer and fifth 

leading cause of cancer death worldwide as of 2018.(3) High-risk PCa, as defined by a clinical 

stage ≥T3, Gleason score 8-10 or prostate-specific antigen >20ng/ml at the time of 

diagnosis,(184) accounts for approximately one quarter of all PCa diagnoses but was 

responsible for a disproportionately larger share of PCa-specific mortality (CSM).(185) Optimal 

selection and sequencing of therapy for high-risk non-metastatic PCa, such as the choice 

between radical prostatectomy (RP) and radical radiotherapy (RT), remains an area of intense 

academic and clinical debate.(108) Unfortunately, no RCTs on this topic have been completed 

due to low patient and provider equipoise surrounding RP and RT, especially in North 

America.(110)(111) As such, investigations comparing RP and RT outcomes have mostly been 

performed using non-randomized data. In the absence of RCTs, meta-analyses that summarize 

non-randomized data can inform treatment decisions for physicians and policymakers.  

Previous meta-analyses that have compared mortality outcomes between patients 

diagnosed with PCa and treated with RP or RT involved studies that compared older treatment 

approaches, which greatly differ from current standards of care.(186) Publications included in 

these meta-analyses have since been updated to include longer follow-up periods of more 

contemporary RT approaches such as dose-escalation protocols for external beam radiation 

therapy (EBRT), use of brachytherapy boost (BT) and adjuvant androgen deprivation therapy 

(ADT),(101,120,187,188) which may lead to better oncological outcomes for men diagnosed 

with high-risk non-metastatic PCa.(91,167,189) Although a more recent meta-analyses has been 

conducted,(190) numerous errors were made, limiting the utility of the aggregated effect 
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estimates for use in clinical practice. For instance, multiple effect estimates were generated 

from overlapping data,(99,120,191–196) leading to some patient data overinfluencing 

aggregate effect estimates as well as inclusion of a study investigating low-risk PCa.(187) 

Moreover, the authors aggregated studies involving patients diagnosed with non-metastatic 

and nodal metastatic high-risk PCa,(193) which have heterogenous disease trajectories and 

ultimately call for different management approaches that are not comparable.(21) 

The objective of this study was to compare the rates of CSM and ACM between men 

diagnosed with high-risk non-metastatic PCa and treated with RP or RT as their primary 

treatment modality. 

 

6.2 Methods 
 
6.2.1 Research question 
 

The primary and secondary objectives of the study were to summarize the relative CSM 

and ACM, respectively, of patients diagnosed with non-metastatic high-risk PCa treated 

primarily with either RP or RT. 

Common endpoints used to compare treatment effectiveness in PCa also have potential 

for bias. These include BFFS, metastatic progression-free survival (MPFS), CSS and OS. The 

definition of biochemical failure among patients treated with RP and RT differ. Since RP 

removes the whole prostate gland, it is anticipated that the prostate specific biomarker (used 

to define biochemical failure) maintain a non-significant value of <0.2ng/ml.(121,122) Since RT 

does not remove the gland, it is anticipated that some prostate specific biomarker remains.(61) 

The biochemical failure definition post-RP intended to indicate cure whereas the definition 
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post-RT is sensitive and specific for future clinical outcomes of interest (e.g. distant failure, PSA 

>25 ng/ml, etc.).(123,124) These definitions represent different disease kinetics and outcomes 

and should not be compared in the context of comparative effectiveness research. Evidence of 

metastasis depends on the presence of prompts to image such as biochemical failure and 

symptoms.  Prompts may differ depending on whether the patient underwent RP or RT and the 

frequency of follow-up, which is dependent on characteristics of the patient, physician, and 

treatment centre among other factors. Finally, PCa-specific mortality as ascertained by death 

certificates is not immune to bias. Death is sometimes misattributed to PCa among PCa patients 

who die of other causes. This misattribution bias is more likely to occur among those with 

multiple comorbidities, as deciphering cause of death among multiple causes can be difficult. 

Since RT patients are more likely to have multiple comorbidities, this would negatively impact 

survival outcomes when compared with patients undergoing RP independent of treatment 

status. OS poses little concern for measurement bias, as causes do not have to be ascertained. 

 

6.2.2 Protocol and search strategy 
 

The systematic review was conducted in accordance with the PRISMA guidelines.(197) 

The review protocol has been registered with PROSPERO (registration number: 

CRD42020150710). The search strategy is provided in Appendix E1. Studies were included in our 

analysis if they were published after 2005 to limit attention to analyses of more contemporary 

treatment periods up to February 11, 2020. Only full-text articles published in English in a peer-

reviewed journal were considered.  
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We included only cohort studies in our review since case-control studies typically do not 

evaluate hazard ratios. Furthermore, previous RCTs were excluded since, due to insufficient 

numbers of men diagnosed with nonmetastatic high-risk PCa, hazard ratios for this risk-group 

were not provided.(198) Editorials, letters to the editor, commentaries, guidelines and review 

articles were also excluded. 

We included studies that reported on men of any age diagnosed with non-metastatic 

high-risk PCa, according to the National Comprehensive Cancer Network (clinical stage ≥ T3 or 

Gleason score 8-10 or prostate specific antigen > 20 ng/ml),(184) or D’Amico criteria (clinical 

stage ≥ T2c or Gleason score 8-10 or prostate specific antigen > 20 ng/ml)(25) who were treated 

with either primary RP or RT. All common forms of RP (e.g., open retropubic, laparoscopic, and 

robotic) and RT (e.g., conformal external beam, intensity-modulated, brachytherapy or 

combination of radiotherapy modalities with curative intent) were considered. Studies 

assessing adjuvant or salvage therapies as the primary objective were excluded. We included 

only studies that provided a hazard ratio for CSM or ACM, both having managed confounding 

(i.e., through prevention or adjustment). Studies reporting on surrogate outcome measures 

such as biochemical progression were excluded, since definitions for RP and RT differ.  

 

6.2.3 Article review 
 

The first phase of the project involved title and abstract review by DG to discard non-

relevant citations and duplications. Full-text reviews of remaining studies were examined in the 

second phase by DG and HC to determine eligibility for inclusion based on pre-determined 

criteria. Afterward, DG and HC independently reviewed the records, and GBR settled 
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discrepancies on inclusion/exclusion of certain records. Where more than one publication 

existed using the same patient population, the most relevant, updated, and complete 

publication was selected. A diagram describing the study flow is outlined in Figure 6.1.  

 

Figure 6.1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow 

diagram outlining search strategy and final included and excluded studies. 

 
6.2.4 Data extraction and risk of bias assessment 
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A data extraction form was completed for each study as outlined in Appendix E2. We 

used a modified version of the Newcastle Ottawa Scale to include a comprehensive list of items 

identifying confounding variables (see Appendix E3). Confounding variables included those 

relating to tumor characteristics (baseline PSA, Gleason score, and clinical stage), age, 

comorbidity status, year of diagnosis or treatment, study center (if multiple), and at least one 

demographic characteristic (e.g., education, income, rural or urban residence). This list was 

reviewed and approved by both a radiation oncologist (GR) and uro-oncologist (JC).  

 

6.2.5 Publication bias 
 
 We assessed publication bias using funnel plots and the Egger test. Hazard ratios from 

included studies were plotted as a function of their standard error in relation to the aggregate 

effect estimate generated through random-effects models. Residual values were also estimated 

using mixed-effects models to account for heterogeneity due to moderator variables (RT 

approach for CSM and ACM, and age for ACM) in order to improve interpretation of funnel 

plots for the assessment of publication bias. 

 

6.2.6 Assessment of heterogeneity 
 

The Q-test was performed to identify significant heterogeneity in treatment effect 

estimates, using the Dersimonian-Laird method, and quantified through the I2 statistic.(199) 

 

6.2.7 Statistical analysis 
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 General study information, PCa treatment and endpoint information, and 

methodological information were categorized into tables using frequency or proportions for 

categorical variables, medians or means for continuous variables, and descriptive terms for 

other variables where appropriate.  

The meta-analysis was performed in R (x64, version 3.3.2; R Foundation for Statistical 

Computing) with the “metafor” package (version 1.9-9).(200) The primary meta-analysis with 

CSM as the outcome and initial treatment received (i.e., RP or RT) as the only independent 

variable was carried out using inverse variance-weighted random effects models. We then 

performed a series of univariable meta-regressions to explore sources of heterogeneity. Input 

variables included treatment era (examined as a binary variable with values of 1 and 0 for 

values above and below the median year of diagnosis, respectively), approach to RT (external 

beam radiation therapy with or without brachytherapy boost), length of follow-up (examined as 

a binary variable with values of 1 and 0 for values above and below the median, respectively), 

geographical location (United States versus other) and age (examined as a binary variable with 

values of 1 and 0 for values above and below the median, respectively). Insufficient data were 

available to explore the effect of RT dose, RP approach (i.e., open, laparoscopic, robotic), 

proportion receiving systemic therapy (i.e., androgen deprivation therapy, chemotherapy, and 

adjuvant RT), and type of EBRT (i.e., 3D conformal, IMRT, etc.). All statistical tests were two-

sided with significance levels of <0.05. 

 

6.3 Results 
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 Fourteen studies involving 89,167 total patients were identified for inclusion. The article 

selection flowchart is outlined in Figure 6.1.  

 

6.3.1 Study characteristics 
 

Table 6.1 shows characteristics for individual studies. Four studies compared treatment 

groups from a single institution, another four studies compared groups from different 

institutions, another four studies used national registries to compare treatment groups and two 

studies made comparisons across multiple institutions. Patient characteristics varied across 

studies due to variations in inclusion and exclusion criteria. In general, RT patients were, on 

average, older, had a greater number of comorbidities and poorer prognostic characteristics. 

Median follow-up varied substantially between studies and between treatment groups. 

Treatment details were scarcely reported for the RP group, while details regarding RT dose, 

proportion receiving ADT and whether EBRT was performed in conjunction with BT were 

provided in most studies. 

  



 106 

Table 6.1 General characteristics of included studies 

Author Year 
Treatment  

Comparison 
Data Source  

(study interval) 

Median follow-up  
duration (RP/RT), 

months 
RP (n) RT (n) 

Median (IQR) age  
(RP/RT), years 

Median RT  
Dose (Gy) 

Adjuvant  
Therapy 

Yin 2019 
EBRT+BT±ADT 

 v RP SEER 21  
(2004, 2015) 

58/87 
59540 

355 63.8/66.1 na ADT: 
RT: "majority" 

RP: na EBRT±ADT 
 v RP /62 2638 /69.4  

Jayadevappa 2019 

EBRT+BT±ADT 
 v RP 

SEER-Medicare  
(1996, 2003) 

≥120 
677 

4141 71.7/73.1 na not reported 

EBRT+ADT 
 v RP  1478 /75.5  

ADT: 
RT: 100% 

RP: na 

Gunnarsson 2019 EBRT±BT±ADT 
 v RP+RT+ADT 

Kalmar County Hospital, 
Sweden (RP);  

The National Prostate 
Cancer Register (RT) (1995, 

2010) 

na 153 702 65/65 EBRT≤78 and  
EBRT+BT 20/50 

ADT: 
RT: "preferred" 

RP: 100% 
aRT: 64% 

Cano-
Velasco 2019 EBRT+ADT 

 v RP+ADT 

Hospital General 
Universitario  

Gregorio Maran ̃ón, Madrid, 
Spain (1996, 2008) 

152/97 145 141 65/71 EBRT 74 
ADT: 

RT: 100% 
RP: 100% 

Tilki 2018 

EBRT+BT+ADT 
 v RP 

Chicago Prostate Cancer 
Centre (RT); Martini-Klinik 

Prostate Cancer Center (RP)  
(1992, 2013) 

58.7/66.1 372 

80 

66.4/70.3 

EBRT 45 
BT (I125 Pd103 

and Cs131)  
108/90/100 

ADT: 
RT: 100% 

RP: 0% 
aRT: 0% 

v RP+ADT 46.4/ 88 66.6/ RP: 100% 
aRT: 0% 

v RP+aRT 58.6/ 49 66/ RP: 0% 
aRT: 100% 

v 
RP+ADT+aRT 57.4/ 50 66.4/ RP: 100% 

aRT: 100% 

Robinson 2018 EBRT±BT±ADT 
 v RP 

Swedish National Prostate 
Cancer Registry (1998, 2012) 75.6/70.8 3761 6462 63.1/67 na not reported 

Ciezki 2017 

EBRT 
 v RP 

Cleveland Clinic (1996, 
2012) 

55.6/94.6 
1308 

734 62/68.5 
(52%) at 78 (2 
Gy fraction)  

& (48%) at 70 
(2.5 Gy fraction) 

ADT: 
RT: 93% 
RP: 19% 

EBRT+BT 
 v RP /48.9 515 /70  

ADT: 
RT: 53% 
RP: 19% 

Kishan 

2017 EBRT 
 v RP 

Multi-institutional  
(12 centres) (2000, 2013) 

50.4/61.2 

639 

734 61.2/68 EBRT 74.3 
ADT: 

RT: 89.5% 
RP: 39% 
aRT: 34% 

 
EBRT+BT 

 v RP 50.4/75.6 436 /68  

ADT: 
RT: 92.4% 
RP: 39% 
aRT: 34% 

Greenberg 2015 EBRT+ADT 
 v RP 

Anglia Cancer Network,  
UK (2000, 2010) na/na na na na/na na 

ADT: 
RT: 88.2% 

RP: na 
Lee 2014 EBRT±ADT 

 v RP 
Severance Hospital, Seoul, 

Korea (1990, 2009) 74/85.5 251 125 67.5/68.6 EBRT (range)  
74-79 not reported 

Yamamoto 2014 EBRT±ADT 
 v RP 

Cancer Institute Hospital in 
Tokyo, Japan (1994, 2005) 93/85 112 119 67/72 EBRT 70 

ADT: 
RT: 95.8% 
RP: 76.8% 

Westover 2012 EBRT+BT+ADT 
 v RP 

Duke University (RP) (1988, 
2008); Chicago Prostate 

Cancer Centre /21st Century 
Oncology Establishment (RT)  

(1991, 2005) 

91.2/43.2 285 372 65/70 
EBRT 45 

BT I125/Pd103 
108/90 

ADT: 
RT: 100% 

RP: 0% 
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Kibel 2012 
EBRT 
 v RP Barnes-Jewish Hospital  

and Cleveland Clinic  
(1995, 2005) 

(59 to 72)/(70 to 
74) 

525 
676 60.4/69.4 

EBRT (median) 
74 to 78 

BT na 
ADT: 

RT: 82% 
RP: na EBRT+BT 

 v RP 
(59 to 72)/(51 to 

70) 33 /68.4  

Boorjian 2011 

EBRT 
 v RP Mayo Clinic Prostatectomy  

Registry (RP) and the Fox  
Chase Cancer Centre (RT) 

(1988, 2004) 

122.4/87.6 
1238 

344 66/69.3 
EBRT 72 

ADT: 
RT: 0% 

RP: 40.6% 

EBRT+ADT 
 v RP /72 265 /68.8 

ADT: 
RT: 100% 
RP: 40.6% 

Abbreviations: RP = radical prostatectomy; RT = radiation therapy; Gy = Gray; EBRT = external beam radiation 
therapy; BT = brachytherapy; SEER = Surveillance, Epidemiology, and End Results Program; ADT = androgen 
deprivation therapy; I125 = Iodine-125; Pd103 = Palladium-103; Cs131 = Cesium-131 

 
 
6.3.2 Risk of bias assessment 
 
 The overall risk of bias was high for all studies (Table 6.2), as none examined all 

potential confounders and applied adjustments as appropriate. Most studies had a low risk of 

bias for the ‘selection’ section other than those comparing treatment groups from tertiary 

centers. The ‘comparability’ section varied due to variation in covariate control. All studies 

controlled for age, most studies provided adequate control for tumor characteristics (i.e., PSA, 

clinical stage, and Gleason scores) (13/14), while fewer studies controlled for comorbidities 

(7/14), demographic characteristics (4/14) and study center (7/14). Finally, most studies did not 

have a sufficient median follow-up, leading to a score of 2/3 for the ‘outcome’ section for 12/14 

studies. There was no indication of publication bias. The Egger test for publication bias was not 

statistically significant (p = 0.22 for CSM and 0.92 for ACM; Figure 6.2). 
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Figure 6.2 Funnel plots of meta-analysis for (a) prostate cancer-specific mortality, and 

(b) all-cause mortality using random-effects models. Mixed-effects models with 

moderators to reduce heterogeneity in effect estimates and improve symmetry in funnel 

plots for assessment of publication bias are shown in (c) for CSM (adjusted for receipt 

of BT) and (d) for all-cause mortality (adjusted for receipt of BT and age). 

Abbreviations: HR = hazard ratio 
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Table 6.2 Modified Newcastle-Ottawa Scale for risk of bias assessment of studies included in the meta-
analysis 

Study Information Selection 

Author (Year) 
Representativeness  

of the exposed  
cohort (RT) 

Representativeness 
 of the non-exposed  

cohort (RP) 

Ascertainment  
of exposure 

Demonstration that  
outcome of interest  

was not present at start 
Total 

Yin (2019) 1 1 1 1 4 

Jayadevappa (2019) 1 1 1 1 4 
Gunnarsson (2019) 1 0.5 1 1 3.5 

Cano-Velasco (2019) 0.5 0.5 1 1 3 
Tilki (2018) 0.5 0.5 1 1 3 

Robinson (2018) 1 1 1 1 4 
Ciezki (2017) 0.5 0.5 1 1 3 
Kishan (2017) 1 1 1 1 2 

Greenberg (2015) 1 1 1 1 4 
Lee (2014) 1 1 1 1 4 

Yamamoto (2014) 0.5 0.5 1 1 3 
Westover (2012) 0.5 0.5 1 1 3 

Kibel (2012) 1 1 1 1 4 
Boorjian (2011) 0.5 0.5 1 1 4 

 Comparability 

Author (Year) cT GS PSA Age Comorbidity 
Demographic 
characteristic 

Year of diagnosis 
or treatment 

Study center 
(if applicable) 

Total 

Yin (2019) 1 1 1 1 0 1 1 1 3.5 

Jayadevappa (2019) 0 0 0 1 1 1 1 1 2.5 

Gunnarsson (2019) 0.5 0.5 0.5 1 0 1 0 0 1.75 

Cano-Velasco (2019) 1 1 1 1 0 0 0 1 2.5 

Tilki (2018) 1 1 1 1 1 1 0 0 3 

Robinson (2018) 1 1 1 1 1 1 1 0 3.5 

Ciezki (2017) 1 1 1 1 0 0 0 1 2.5 

Kishan (2017) 1 1 1 1 0 0 0 1 2.5 

Greenberg (2015) 1 1 1 1 0 0 0 0 2 

Lee (2014) 1 1 1 1 1 1 0 1 3.5 

Yamamoto (2014) 1 1 1 1 1 0 0 1 3 

Westover (2012) 1 1 1 1 1 1 0 0 3 

Kibel (2012) 1 1 1 1 1 0 1 0 3 

Boorjian (2011) 1 1 1 1 0 1 0 0 2.5 

 Outcome 

Author (Year) 
Ascertainment  

of outcome 
Adequate cohort  

follow-up intensity 
Sufficient follow-

up duration? 
Total Risk of Bias 

Yin (2019) 1 1 0 2 High 

Jayadevappa (2019) 1 1 0 2 High 

Gunnarsson (2019) 1 1 0 2 High 

Cano-Velasco (2019) 0 1 1 2 High 

Tilki (2018) 1 1 0 2 High 

Robinson (2018) 1 1 0 2 High 

Ciezki (2017) 1 1 0 2 High 

Kishan (2017) 1 1 0 2 High 

Greenberg (2015) 1 1 0 2 High 

Lee (2014) 1 0 0 1 High 

Yamamoto (2014) 1 1 0 2 High 

Westover (2012) 1 1 0 2 High 

Kibel (2012) 1 1 0 2 High 

Boorjian (2011) 1 1 1 3 High 
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Abbreviations: RP = radical prostatectomy; RT = radiation therapy; cT = clinical stage; GS = Gleason score; PSA = 
prostate-specific antigen 

 

 
Table 6.3. Subgroup analyses assessing risk of prostate cancer-specific mortality and all-cause 
mortality following radiotherapy and surgery for prostate cancer 
 Prostate cancer-specific mortality Overall mortality 

 
Adjusted HR (95% CI; p-value) I2 Adjusted HR (95% CI; p-

value) 
I2 

Radiotherapy 
modality 

  

EBRT±ADT 1.35 (1.10, 1.67; p=0.0048) 59% 1.54 (1.14, 2.09; p=0.0054) 91% 

EBRT+BT±ADT 0.68 (0.48, 0.95; p=0.024) 47% 0.89 (0.55, 1.44; p=0.64) 86% 

Treatment Era   

Before 2002 1.03 (0.75, 1.42; p=0.84) 69% 1.45 (0.92, 2.30; p=0.11) 97% 

After 2002 1.00 (0.76, 1.30; p=0.98) 71% 1.00 (0.71, 1.42; p=0.99) 73% 
Age   

≤67.4 years 1.04 (0.84, 1.29; p=0.72) 59% 1.58 (1.36, 1.85; p<0.0001) 39% 

>67.4 years 0.97 (0.63, 1.47; p=0.87) 77% 0.94 (0.62, 1.43; p=0.78) 95% 

Median follow-up     

≤67 months 1.04 (0.82, 1.32; p=0.73) 63% 1.06 (0.62, 1.81; p=0.83) 83% 

>67 months 0.98 (0.67, 1.41; p=0.90) 74% 1.28 (0.83, 1.98; p=0.27) 97% 
Geographic region     

United States 1.10 (0.87, 1.38; p=0.42) 71% 1.35 (0.90, 2.01; p=0.14) 97% 

Other 0.81 (0.49, 1.32; p=0.40) 62% 1.01 (0.61, 1.66; p=0.98) 77% 

Abbreviations: HR = hazard ratio; CI = confidence interval; EBRT = external beam radiation therapy; BT = 
brachytherapy; ADT = androgen deprivation therapy  

 

6.3.4 Prostate cancer-specific mortality 
 

Ten studies with 88,026 patients were included in the primary meta-analysis for CSM. 

The resulting adjusted hazard ratio [95% confidence interval] was 1.02 [0.84, 1.25] with 

substantial heterogeneity (I2=69%) as shown in Figure 6.3a. Moderator analysis revealed a 

statistically significant effect by RT approach (p<0.0001). Specifically, CSM was increased among 

EBRT±ADT compared to RP (1.35 [1.10, 1.68]; p=0.0048), but decreased among EBRT+BT±ADT 

compared to RP (0.68 [0.48, 0.95]; p=0.024) (Table 6.3; Figure E6.1a). Including this variable in 

the moderator analysis was also associated with decreased, though still substantial, 
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heterogeneity (I2=59% and 47%, respectively). The remaining moderator analyses did not differ 

notably from the primary analysis. 

 

6.3.5 All-cause mortality 
 

Seven studies with 74,210 patients were included in the secondary meta-analysis for 

ACM. The resulting adjusted HR [95%CI] was 1.21 [0.89, 1.65] with substantial heterogeneity 

(I2=95%) as shown in Figure 6.3b. Moderator analysis revealed a statistically significant effect by 

RT approach (p=0.03). Specifically, ACM was increased among EBRT±ADT compared to RP (1.54 

(1.14, 2.09; p=0.0054)), but no statistically significant difference among those treated with 

EBRT+BT±ADT relative to RP (0.89 (0.55, 1.44; p=0.64)) (Table 6.3; Figure E6.1b). Both 

moderator analyses were associated with substantial heterogeneity (I2=91% and 86%, 

respectively). Moderator analysis by median age also revealed a significant effect (p=0.0001). A 

statistically significantly higher rate of ACM among RT relative to RP was observed among 

studies with younger patient groups (1.58 [1.36, 1.85]; p<0.0001; I2=39%) compared to those 

with older patient groups (0.94 [0.62, 1.43]; p=0.78; I2=95%) (Table 6.3; Fig E6.2b). Effect 

estimates also varied from the main analysis among moderator analyses of studies assessing 

men diagnosed and/or treated before 2002 (1.45 [0.92, 2.30]), but not after 2002 (1.00 [0.71, 

1.42]) median follow-up of >67 months (1.28 [0.83, 1.98]), but not ≤67 months (1.06 (0.62, 

1.81), and studies performed in the United States (1.35 [0.90, 2.01]) versus other geographic 

locations (1.01 [0.61, 1.66]).  
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Figure 6.3 Forest plot assessing the risk of (a) prostate cancer-specific mortality and (b) all-

cause mortality following radiotherapy and surgery for prostate cancer 

Abbreviations: HR = hazard ratio; CI = confidence interval; RT = radiation therapy; RP = radical prostatectomy 
 

6.4 Discussion 
 
 Our aggregate effect estimates for adjusted CSM showed no statistically significant 

differences between RP and RT for high-risk non-metastatic PCa patients. Moderator analysis 

revealed a significant increased incidence of CSM among men treated with EBRT±ADT relative 

to the RP group and a decreased incidence of CSM among men treated with EBRT+BT±ADT 

relative to the RP group. This is consistent with results from the ASCENDE-RT trial wherein an 

increased incidence of biochemical failure was found among men diagnosed with intermediate- 

and high-risk non-metastatic PCa and treated with dose-escalation RT protocols using EBRT 
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alone compared with those using combination EBRT+BT (HR [95%CI]: 2.04 [1.25, 3.33]).(167) 

Remaining moderator analyses did not differ from the primary analysis. 

Multiple reports indicate that, since the early 2000’s, the use of BT boost in high-risk 

patients has declined in use in the United States,(201) and other geographic regions.(202) 

Interestingly, however, the use of prostate BT boost has increased since the early 2000’s in 

certain European centers and in Canada.(203,204) This discrepancy may be attributable to 

differences in resident exposure in providing sufficient training opportunities given the steep 

learning curve associated with administering BT,(205–207) and unfavorable reimbursement 

relative to EBRT in the United States relative to publicly funded healthcare systems.(203,208) 

Given the CSM benefit associated with BT boost among high-risk patients reported in RCTs and 

estimated here, we encourage investment in overcoming the aforementioned obstacles 

through increasing resident exposure, and improving reimbursement models to encourage use 

BT boost.  

The HR comparing relative incidence of CSM between EBRT±ADT and RP groups was 

smaller compared to that in a previous meta-analysis performed in 2016 (1.35 [1.10, 1.68] 

versus 1.83 [1.51–2.22]).(118) These differences might be explained by more recent changes in 

treatment approaches including the increasing use of dose-escalation protocols and adjuvant 

ADT paired with RT,(201,202) which have both demonstrated improvements in oncological 

outcomes, though only the addition neoadjuvant ADT to RT has demonstrated improvements in 

CSM.(91,186,202)  

 The analysis of relative ACM between RT and RP also revealed no statistically significant 

difference between the treatment groups. However, moderator analysis revealed a statistically 
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significantly increased incidence of ACM among the EBRT±ADT relative to the RP group, while 

there was an insignificant decrease in ACM between the EBRT+BT±ADT and RP groups. In 

addition to the CSM benefit afforded through RP and EBRT+BT±ADT relative to EBRT±ADT, 

differences in cardiopulmonary health requirements before undergoing general anesthetic that 

is required for RP and BT, and lack of control for comorbidities in many of the included studies 

might contribute to the observed differences. Studies conducted among younger age groups 

demonstrated increased incidence of ACM in the RT relative to the RP group. Finally, a 

tendency toward increased incidence of ACM in the RT relative to the RP group was also noted 

when restricting analyses among studies conducted in earlier treatment eras, longer follow-up 

periods and among studies conducted only in the United States. However, this is likely 

explained by the greater proportion of comparisons with RP involving EBRT±ADT instead of 

EBRT+BT±ADT among studies conducted in earlier treatments eras, which were associated with 

longer follow-up periods and were mostly performed in the United States versus other 

geographic locations. 

Overall, the risk of bias was deemed high for all studies due to the partial control of 

confounding variables. This stands in contrast with a previous meta-analysis performed by 

Wallis et al who found a low to moderate risk of bias for all studies included in their meta-

analysis comparing the rate of ACM and CSM between patients who underwent RT and RP. 

Interestingly, four studies used in both analyses indicated perfect comparability between RT 

and RP groups by Wallis et al., yet some of these studies did not control for study 

center,(92,209,210) year of diagnosis,(100,209,210) or demographic characteristics.(92) Since 

patients undergoing RT are more likely to be older, have poorer prognostic characteristics, and 
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sociodemographic characteristics that are associated with poorer CSM and ACM,(211–213) we 

anticipate the influence of these unaccounted-for biases to overestimate CSM and ACM in the 

RT group relative to the RP group. However, the discrepancy in such baseline characteristics 

appears more prominent among those undergoing EBRT±ADT rather than EBRT+BT±ADT 

wherein patients are more similar to those undergoing RP.(211,212) As such, collecting 

information on these variables and properly controlling for them is crucial when estimating 

relative treatment effects between groups to more accurately inform treatment decisions. 

Our study has certain limitations. There was a high level of heterogeneity in effect 

estimates. This was substantially reduced through moderator analyses comparing RP with 

EBRT±ADT and EBRT+BT±ADT, and among comparisons involving younger populations, though 

heterogeneity still remained high and was unaccounted for through additional moderator 

analyses. Unfortunately, information surrounding treatment details such as RT dose, type of 

EBRT (i.e., 3D conformal, IMRT, etc.), use of adjunct therapies and surgeon experience, which 

might account for a large proportion of this heterogeneity, was missing in many of the studies.  

Given the high risk of bias in all studies, the aggregated effect estimates provided in this 

study are limited in informing clinical decisions. In light of this and considering the relatively 

small difference in CSM between treatment approaches, other factors such as patient 

preferences, patient health (i.e., comorbidities), and treatment factors (e.g., operative risk and 

prostate volume for BT) should be considered when forming treatment decisions. This should 

occur through a shared decision-making process, involving the patient and providing urologist 

and radiation oncologist to optimize satisfaction in patient outcomes.  
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6.5 Conclusions 
 
  We identified no statistically significant difference in the rate of CSM between patients 

diagnosed with high-risk non-metastatic PCa and treated with RP relative to RT. However, there 

was significant subgroup effect with the use of EBRT+BT±ADT, highlighting the necessity of 

differentiating RT with or without BT in future comparative effectiveness studies. The high risk 

of bias in all studies reviewed emphasizes the need for better control of all potentially 

confounding variables to provide higher quality non-randomized evidence. This is exceedingly 

important when RCTs are unlikely to be feasible in this patient population.(110,111) 

 

6.6 Transition to Chapter Seven 
 
 In this chapter, we found no difference in the rate of CSM between men diagnosed with 

high-risk non-metastatic PCa who were initially treated with RT or RP. Although differences in 

outcomes seemed to depend on RT type and age. Moreover, the risk of bias for all included 

studies was high. This was mainly due to inadequate control for all observable confounding 

variables, which might have been due to limitations in data collection and/or 

inadequate/inappropriate management of confounding. The results from this systematic review 

and meta-analysis provide context for the following chapter, which compared MPFS, a 

validated surrogate for CSM, between men diagnosed with unfavorable-risk non-metastatic PCa 

who were initially treated with RT or RP.  
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Abstract 
 
Background 
 
Identifying the optimal management of unfavorable-risk non-metastatic prostate cancer (PCa) 

is an important public health concern given the large burden of this disease. We compared the 

rate of metastatic progression-free survival among men diagnosed with unfavorable-risk non-

metastatic PCa and treated with radiation therapy (RT) or radical prostatectomy (RP).  

Methods 
 
We reviewed medical records obtained from two academic centers in Toronto and London, 

Ontario, Canada of men diagnosed with unfavorable-risk non-metastatic PCa and treated with 

primary RT or RP. Patients were matched on prognostic covariates using two matching 

techniques. Multivariable Cox proportional hazards models were used to estimate the hazard 

ratios and confidence intervals for metastatic progression-free survival between groups. 

Results 
 
A total of 164 and 169 men were included in the RT and RP treatment groups, respectively.  

After a median follow-up of 83.9 and 96.9 months of men in the RT and RP groups, respectively, 

no difference in the rate of metastatic progression-free survival was found between groups 

(unadjusted HR [95%CI]: 1.29 [0.74, 2.26]; p=0.37 and adjusted: 1.16 [0.63, 2.13]; p=0.64). 

Effect estimates did not change notably after matching. 

Conclusion 
 
The rate of metastatic progression-free survival did not differ between men diagnosed with 

unfavorable-risk non-metastatic PCa who were treated with either RT or RP.  
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7.1 Background and Rationale 
 

Prostate cancer (PCa) was the second leading cancer diagnosis and fifth leading cause of 

cancer death globally in 2018.(3) Unfavorable-risk non-metastatic disease, including high-

intermediate, high and extremely high-risk disease,(19) accounts for approximately one third of 

all PCa diagnoses, but a disproportionate amount of morbidity and mortality.(180,202,214) 

Optimizing the efficacy and safety of treatments for this disease is thus a major public health 

concern. Common definitive management options include surgical resection of the prostate 

(radical prostatectomy [RP]) and irradiation of the prostate through radiation therapy (RT).(21) 

Compared to watchful waiting, definitive management with RT or RP among men diagnosed 

with localized PCa has been shown in RCTs to decrease the rate of metastatic progression, PCa-

specific mortality and overall mortality.(87,215) 

The selective use of adjuvant and salvage therapies alongside definitive management 

has also been shown to further improve outcomes. For instance, the use of adjuvant RT in the 

context of adverse pathological findings post-RP has been found to decrease rates of 

biochemical recurrence and local relapse.(216–218) The addition of androgen deprivation 

therapy (ADT) to RT post-RP has been shown to reduce rates of metastatic progression and 

PCa-specific mortality among those with adverse pathological features relative to RT alone. For 

patients with unfavorable-risk non-metastatic PCa who undergo RT, decreased risk of 

metastatic progression and PCa-specific death has been observed with the use of adjuvant 

ADT.(105,219) Results from the ASCENDE-RT trial have also shown improvements in 

biochemical control from combination external beam RT (EBRT) with BT compared to EBRT 
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alone.(167) Finally, RT dose-escalation protocols have demonstrated improvements in 

biochemical control such that traditional regimens of <70 Gy are no longer standard.(21) 

Despite the progress made in the selection and sequencing of adjuvant and salvage 

therapies and refinements in RT approaches, optimal local control has not been adequately 

evaluated through a RCT for this patient population. In turn, clinicians and patients rely on 

evidence generated from observational data to guide treatment decisions, which have 

limitations due to confounding and comparisons involving outdated treatment regimens. For 

example, candidates for RP compared to RT generally have less aggressive tumor 

characteristics, are younger and with fewer comorbidities.(114) Vast disparities in these 

baseline characteristics make the assumptions of positivity required for valid estimation of 

treatment effects through regression modeling questionable.(183) As such, identifying patients 

with similar baseline characteristics who are treated with RP and RT and who have undergone 

more contemporary forms of treatment is necessary to improve the internal and external 

validity of evidence on this topic. 

In this study, we compared the rate of metastatic-progression between men diagnosed 

with unfavorable-risk non-metastatic PCa and treated with RT and RP as definitive local 

therapies. Issues of non-positivity are mitigated through the use of data obtained from a 

multidisciplinary clinic wherein RT patients were also eligible for RP. Furthermore, we take 

advantage of data preprocessing techniques that have been developed to improve the degree 

of comparability between treatment groups obtained from observational data.(138,139) 

Established techniques include propensity score matching and coarsened exact 

matching.(141,159) 
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7.2 Methodology 
 
7.2.1 Data source 
 

Ethics approval was provided from both institutional review boards at Sunnybrook 

Health Sciences Centre and London Health Science Centre (LHSC). We identified the records of 

men diagnosed between 2007-2012 with high-intermediate to extremely high-risk non-

metastatic PCa in the multi-disciplinary diagnostic assessment program in the Gale and Graham 

Wright Prostate Centre (GGWPC) at North York General Hospital in Toronto, Ontario, Canada. 

Patients in the RT group included those who had undergone EBRT with or without 

brachytherapy boost (BT) (low-or high dose rate) and with or without ADT. Patients in the RP 

group included those who had undergone RP as their primary treatment modality. Due to 

limited RP observations from the GGWPC, we also included men diagnosed between 2007-2012 

with high-intermediate to extremely high-risk non-metastatic PCa who were treated with 

primary RP at LHSC in London, Ontario, Canada.  

 

7.2.2 Data Collection 
 

We reviewed electronic medical records from identified patients. Information regarding 

patient age at diagnosis, biopsy date, prognostic factors at diagnosis (pre­biopsy PSA level, TNM 

stage, Gleason Score (GS), and percentage of biopsy cores containing tumor), initial treatment 

decision, treatment date, and treatment details were obtained. Patients were eligible for the 

study if they met the following criteria: 
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1. Diagnosed with high-intermediate, high or extremely high-risk PCa according to the 

Prostate Cancer Risk Stratification (ProCaRS) database.(19)  

2. No evidence of regional or metastatic disease at the time of diagnosis and staging 

3. Consulting radiation oncologist offered the RT 

4. Consulting urologist offered patient RP 

5. Diagnosed between July 2007 and December 2012 

6. Had at least one year of follow-up 

 

ProCaRS high intermediate­risk disease (HIR) is defined as having a GS=7 and one or 

both of PSA 10­20 ng/mL and/or bilateral clinical disease. High-risk disease (HR) is defined as 

having a PSA > 20 ng/mL, cT stage = 3-4 or GS = 8­10, while extremely high-risk disease (EHR) is 

defined as having a PSA > 30 ng/mL or high-volume disease, defined as > 87.5% biopsy core 

involvement. Information on patient comorbidities, socioeconomic and demographic 

characteristics was not available for the majority of patients, and consequently, was not used in 

analysis. 

 

7.2.3 Outcomes 
 
 We analyzed the rate of metastatic progression-free survival between treatment 

groups. Metastatic progression was confirmed through imaging reports. Progression-free 

survival time was defined as the interval between the date of PCa treatment initiation (i.e., RT 

or RP) and the date of metastatic progression or last documented encounter with their 

providing oncologist. Patients who were event-free at the end of the study period were 
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censored at that point and contributed the time interval from their date of treatment to the 

end of the study in the survival analysis. 

 

7.2.4 Covariate selection 
 

We explored the potential for confounding through examining differences between 

treatment groups in distributions of baseline covariates that have demonstrated a prognostic 

role in relation to the rate of treatment failure in previous literature.(19) Covariates included 

tumor characteristics (i.e. pre­biopsy PSA level, clinical T (cT) stage, and GS). Age was not 

included as a covariate since it has not demonstrated a predictable association with the 

outcome examined in previous research,(176,177) nor did it demonstrate an association in 

either of the comparisons performed here (adjusted for treatment received: HR [95%CI]: 0.98 

[0.93, 1.03]; p-value=0.50 and HR [95%CI]: 1.00 [0.98, 1.02]; p-value=0.99 for datasets used in 

comparison one and two, respectively). Further, age was strongly associated with treatment 

choice, which would bias effect estimates if adjusted for.(168) An insufficient number of 

patients had specific information related to the percentage of tumor containing biopsy cores. 

Thus, this variable is only reported in the descriptive statistics and not used for adjustment. 

 

7.2.5 Propensity score matching 
 

The propensity score model was a logistic model with prognostic characteristics as 

independent variables and type of treatment received as a binary dependent variable.(168) We 

explored the possibility of interactions and non-linearity for baseline covariates when fitting the 

propensity score model.(152,178) Locally weighted scatterplot smoothers were used to assess 
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for departures from linearity in the relationship between baseline PSA and the logit of the 

probability of receiving RP. Improvements in the model fit were assessed using the likelihood 

ratio test and pseudo-R2. DFBETA statistics did not reveal any outliers. Model one involved 

baseline PSA as a linear term and cT stage (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a, and 4b) and GS 

(6, 7, 8, 9, 10) as categorical variables. A restricted cubic spline with four knots was found to 

improve model fit for baseline PSA, and thus was included in model two. The MatchIt package 

in R was used to match participants with a ratio of 1:1 between treatment groups.(146) 

Although chapters four and five used many-to-one and one-to-many matching ratios, the 

number of participants in those comparisons varied substantially between treatment groups. 

Here, the number of participants in each treatment group is approximately the same so a 1:1 

matching ratio was used. We explored a range of caliper widths between 1.0 and 0.01 standard 

deviations of the logit of the propensity score. Nearest-neighbour matching was used without 

replacement.(179)  

 

7.2.6 Coarsened exact matching 
 

Patients were matched on progressively coarsened covariates (i.e., GS, cT stage, and 

baseline PSA). GS was first dichotomized into ≤7 or 8-10 and then using each category (6, 7, 8, 

9, and 10). Clinical T stage was first dichotomized into ≤2 and 3-4 and then using each category 

(1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a and 4b). Due to missing information, categorizing GS in 

more detail (i.e., GS=7 as 3+4 vs 4+3) was not feasible without substantial data loss. Progressive 

coarsening for PSA involved cut points from 0 ng/ml to 300 ng/ml first at 20 and 100 ng/ml, 
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with additional cut points at 30 and 50 ng/ml and further at 6 and 10 ng/ml. Coarsening ranges 

are presented in S Table 1.  

 

7.2.7 Balance diagnostics 
 
 Many balance diagnostics exist and have been rigorously assessed using various 

empirical and simulation datasets that represent a broad range of data characteristics. We 

chose four balance measures that considered different data characteristics in order to monitor 

improvements in balance when further restricting matching strategies (i.e., using finer ranges 

for covariates in coarsened exact matching and smaller caliper widths in propensity score 

matching). This enabled systematic identification of matching strategies that optimized balance 

in the multivariable distribution of baseline covariates as a function of data retention. This 

process is shown in Figures E1&2 for both matching strategies. 

 

7.2.8 Descriptive statistics and multivariable regression analysis 
 
 All statistical analyses were performed using RStudio version 3.6.0.(169) Descriptive 

statistics were calculated for each treatment group before and after matching. The mean and 

standard deviation are presented for continuous variables and proportions for categorical 

variables. MPFS was plotted for each group using Kaplan-Meier curves and the log-rank test 

was used to calculate if MPFS significantly differed between groups. Cox proportional-hazards 

regression analyses were performed for estimating the effect of treatment group on the hazard 

of metastatic progression using the Survival package.(181) The proportional-hazards 

assumption was confirmed using log-minus-log survival plots and scaled Schoenfeld residuals. 
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Improvements in model fit were examined through comparing the model log likelihoods after 

incorporating interaction terms and higher order terms and transformations for continuous 

covariates. Examination of a plot of DBETA statistics did not identify any influential 

observations. Hazard ratios and 95% confidence intervals were calculated from unmatched data 

both without and with adjustment for baseline PSA, cT stage, and GS as well as interactions 

between baseline PSA and GS and baseline PSA and cT stage. For matched data, we employed 

Cox models clustered by the matched sets, using robust variance estimators to generate 

confidence intervals.(181,182) Both unadjusted and adjusted estimates were calculated. 

 

7.3 Results 
 
 Descriptive characteristics are displayed in Table 1. At diagnosis, men treated with RT 

relative to RP were older, had higher PSA levels, a greater percentage of tumor containing 

biopsy cores, less advanced tumor staging, and comparable GS. A greater proportion of men 

treated with RT presented with high-intermediate risk, and a smaller proportion of high-risk 

disease than those treated with RP, while similar proportions of each treatment group were 

considered extremely high-risk disease.  

Sixty-seven (40.9%) men treated with RT received neoadjuvant ADT compared to only 

40 (23.7%) men treated with RP. Twenty-eight (17.1%) of men treated with RT received 

adjuvant ADT, while over 43% of the RP group did. Local and systemic salvage therapy was 

initiated among 30.8% and 28.4%, respectively, among men treated with RP, while only one 

man (0.6%) treated with RT received systemic salvage therapy aside from adjuvant ADT. The 

most common form of RT was EBRT without BT boost for which 84.6% of men received. The 
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median dose for men receiving EBRT without BT boost was 78 Gy. Of the 19 (11.2%) of men 

who received BT boost, the vast majority received HDR, while only one (0.6%) man received 

LDR. Finally, two men (1.2%) treated with RT received SBRT boost. The median dose for this 

group was 113.57 Gy. 

 Descriptive characteristics after matching are displayed in Table 2. After propensity 

score matching, 117 subjects were retained in each group, while coarsened exact matching led 

to retention of 138 and 141 patients from the RT and RP groups, respectively. Both matching 

strategies led to balance in the multivariable covariate structure according to conventional 

thresholds for balance (i.e., SMD<0.1 and variance ratio between 0.92 to 1.08).(152) Mean 

percent of tumor containing biopsy cores remained imbalanced. 

 Kaplan-Meier curves showing the probability of metastatic progression-free survival 

over time stratified by treatment group are shown in Figure 2. Overall, both treatment groups 

demonstrated similar rates of metastatic progression-free survival over time. Unadjusted and 

adjusted hazards ratios and 95% confidence intervals are presented in Table 3. The unadjusted 

HR [95%CI] estimated before matching was 1.29 [0.74, 2.26], which attenuated to 1.16 [0.63, 

2.13] upon adjustment. The HR [95%CI] was 1.06 [0.50, 2.26] after propensity score matching 

and 1.55 [0.60, 3.98] after coarsened exact matching. Given the small number of events, 

variation in the effect estimates might be attributable to random error. Moreover, changes in 

the effect estimates are expected with sample changes due to matching. 
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Table 7.1 Descriptive patient and treatment characteristics 

Treatment Group 
Radiation 
Therapy 

Radical 
Prostatectomy 

|SMD| Variance 
Ratio 

GGWPC 
RP 

LHSC 
RP 

|SMD| Variance 
Ratio 

N=164 N=169   N=75 N=94   

Follow-up time 
(months) 
Median (Q1, Q3) 

83.9  
(58.8, 106.3) 

96.9 
(67.8, 118.4) 

  
98.8  

(69.3, 124.0) 
94.5 

(65.2, 113.1) 
 

 

Metastatic Events  
n (%) 

20 (12.2) 33 (19.5) 0.20  11 (14.7) 22 (23.4) 0.22 
 

Age (years) at 
Diagnosis, Mean (SD) 

72.5 (7.5) 62.6 (6.4) 
1.42 0.74 

62.1 (6.7) 63.6 (5.9) 
0.15 0.83 

Missing n (%) 3 (1.8) 0 (0) 0 (0) 0 (0) 

Baseline PSA (ng/ml) 
Mean (SD) 

19.7 (21.9) 16.4 (15.3) 
0.18 0.49 

14.4 (10.9) 17.9 (18.0) 
0.24 2.70 

Missing n (%) 1 (0.6) 0 (0) 0 (0) 0 (0) 
Clinical T Stage         

1 75 (48.4) 65 (40.1) 0.17  43 (62.3) 22 (23.7) 0.85  

2 67 (43.2) 57 (35.2) 0.17  20 (29.0) 37 (39.8) 0.23  

3 13 (8.4) 37 (22.8) 0.41  6 (8.7) 31 (33.3) 0.63  

4 0 (0) 3 (1.9) 0.19  0 (0) 3 (3.2) 0.26  

Missing n (%) 9 (5.5) 7 (4.1)   6 (8.0) 1 (1.1)   
Gleason Score         

≤6 4 (2.4) 5 (3.0) 0.03  2 (2.9) 3 (3.2) 0.03  

7 108 (65.9) 103 (61.0) 0.10  46 (66.7) 55 (58.5) 0.13  

8 20 (12.2) 31 (18.3) 0.17  7 (10.1) 22 (23.4) 0.30  

9 32 (19.5) 28 (16.6) 0.08  14 (20.3) 13 (13.8) 0.17  

10 0 (0) 2 (1.2) 0.15  0 (0) 1 (1.1) 0.02  
Missing n (%) 0 (0) 0 (0)   0 (0) 0 (0)   

(%) Core Positivity 
Mean (SD)  

56.4 (27.8) 51.0 (25) 0.20 0.81 50.5 (24.2) 51.7 (25.6) 0.06 1.14 

≥50% 97 (59.2) 93 (59.2) 0.00  39 (56.5) 48 (63.2) 0.18  

Missing n (%) 0 (0) 12 (7.1)   0 (0) 12 (12.8)   

ProCaRS Risk-Groups         

High-Intermediate 72 (47.4) 58 (40.6) 0.14  29 (45.7) 29 (38.7) 0.08  

High 48 (31.6) 59 (41.3) 0.20  27 (39.7) 32 (42.7) 0.06  

Extremely High 32 (21.1) 26 (18.2) 0.07  12 (17.7) 14 (18.7) 0.03  

Missing n (%) 12 (7.3) 26 (18.4)   7 (10.4) 19 (20.2)   

Treatment Characteristics 

Radiotherapy Patients 

EQD2 for EBRT 
Median (min, max) 

78  
(70, 108.5) 

       

EQD2 for EBRT+BT 
Median (min, max) 

113.57 
(113.1, 116.7) 

       

ADT n (%) 95 (57.9)        
Initial ADT n (%) 67 (40.9)        

Duration ADT 
Median (min, max) 

22.1  
(2.5, 43.3) 

       

Brachytherapy boost type 

Low-dose rate 1 (0.6)        

High-dose rate 18 (10.6)        
Prostatectomy patients 
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Neoadjuvant 
systemic therapy 

 40 (23.7)   2 (2.7) 38 (40.4)   

Adjuvant 
radiotherapy 

 57 (33.7)   
9 (12) 48 (51.1) 

  

Adjuvant systemic  32 (18.9)   8 (10.7) 24 (25.5)   

All patients 

Local salvage 0 (0) 52 (30.8)   36 (48.0) 16 (17.0)   

Systemic salvage 1 (0.6) 48 (28.4)   20 (26.7) 28 (29.8)   
Abbreviations: |SMD| = absolute standardized mean difference; LHSC = London Health Sciences Centre; RP = Radical Prostatectomy; 
ADT = androgen deprivation therapy; RT = radiation therapy; EQD2 = Equivalent dose in 2-Gy fractions 
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Figure 7.2 Kaplan-Meier curves showing the probability of metastatic progression-free 

survival over time stratified by treatment group. 

 



 132 

  

Table 7.2 Descriptive patient characteristics in matched samples 
 Propensity Score Matching Coarsened Exact Matching 

Treatment Group 
Radiation 
Therapy 

Radical 
Prostatectomy 

|SMD| Variance 
Ratio 

Radiation 
Therapy 

Radical 
Prostatectomy 

|SMD| Variance 
Ratio 

N=117 N=117   N=138 N=141   

Age at Diagnosis 
Mean (SD) 

72.3 (7.4) 62.1 (6.5) 
1.46 1.28 

72.4 (7.3) 62.6 (6.3) 
1.45 1.39 

Missing n (%) 0 (0) 0 (0)   

Baseline PSA 
(ng/ml) 
Mean (SD) 

17.3 (13.2) 17.1 (13.6) 
0.02 1.07 

16.4 
(10.5) 

16.0 (11.9) 
0.06 1.08 

Missing n (%) 0 (0) 0 (0) 0 (0) 0 (0) 

Clinical T Stage         

1 58 (49.6) 63 (53.9) 0.09  71 (51.5) 73 (51.5) 0  

2 47 (40.2) 44 (37.6) 0.05  58 (42.0) 59 (42.0) 0  

3 12 (10.3) 10 (8.6) 0.06  9 (6.5) 9 (6.5) 0  
4 0 (0) 0 (0) 0  0 (0) 0 (0) 0  

Missing n (%) 0 (0) 0 (0)       

Gleason Score         

≤6 3 (2.6) 3 (2.6) 0  2 (1.4) 2 (1.4) 0  

7 80 (68.4) 80 (68.4) 0  98 (71.0) 100 (71.0) 0  

8 17 (14.5) 15 (12.8) 0.05  15 (10.9) 15 (10.9) 0  
9 17 (14.5) 19 (16.2) 0.05  23 (16.7) 24 (16.7) 0  

10 0 (0) 0 (0) 0  0 (0) 0 (0) 0  

Missing n (%) 0 (0) 0 (0)       

(%) Core Positivity 
Mean (SD)  

57.7 (27.8) 49.2 (24.2) 0.33 1.33 
56.0 

(27.0) 
49.0 (22.0) 0.26 1.51 

≥50% 75 (64.1) 63 (54.8) 0.19  83 (60.1) 80 (58.6) 0.03  
Missing n (%) 0 (0) 2 (1.7)   0 (0) 9 (6.4)   

ProCaRS Risk-
Groups 

        

High-Intermediate 57 (50.9) 54 (48.2) 0.05  72 (54.5) 76 (57.9) 0.07  

High 35 (31.3) 40 (35.7) 0.09  41 (31.1) 41 (31.2) 0.00  

Extremely High 20 (17.9) 18 (16.1) 0.05  19 (14.4) 14 (10.9) <0.10  
Missing n (%) 5 (4.3) 5 (4.3)   6 (4.3) 9 (6.4)   

Abbreviations: |SMD| = absolute standardized mean difference; LHSC = London Health Sciences Centre; RP = Radical 
Prostatectomy; ADT = androgen deprivation therapy; RT = radiation therapy 
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Table 7.3 Hazards ratios and confidence intervals for metastatic progression in RP relative to RT 
 Unadjusted *Adjusted 

 Hazard ratio 95% CI p-value Hazard ratio 95% CI p-value 

Unmatched 1.29 0.74, 2.26 0.37 1.16 0.63, 2.13 0.64 

PSM 1.01 0.50, 2.05 0.64 1.06 0.50, 2.26 0.87 

CEM 1.32 0.62, 2.82 0.47 1.55 0.60, 3.98 0.37 

Abbreviations: RP = radical prostatectomy; RT = radiation therapy; PSM = propensity score matched; CEM = coarsened exact 
matched; CI = confidence interval 
*Adjusted model includes baseline PSA, clinical T stage, and Gleason score as continuous linear variables with interactions 
between baseline PSA and clinical T stage and baseline PSA and Gleason score 

 

7.4 Discussion 
 
 We compared the rate of metastatic progression between men diagnosed with 

unfavorable-risk non-metastatic PCa who were treated with RT or RP. No significant difference 

was observed in the rate of metastatic progression between treatment groups. Previous 

reports have demonstrated reduced rates of metastatic progression among men diagnosed 

with unfavorable-risk non-metastatic PCa who were initially treated with RT relative to 

RP.(220–222) This includes a very similar study of men diagnosed with high- and very high-risk 

PCa in a multidisciplinary clinic and treated with RT or RP wherein rates of distant metastasis 

were elevated among those treated with RP relative to those treated with RT (HR [95%CI]: 2.5 

[0.8, 7.8]; p=0.11); however, this analysis might not have been adequately powered, given the 

point estimate, as only 35 events were observed.(222) These findings are consistent with 

another comparison of rates of metastatic progression among men diagnosed with 

unfavorable-risk PCa and treated with EBRT+ADT relative to RP.(221) The attenuated effect 

estimate in our study relative to previous studies might be attributable to non-consistency in 

ADT administration, as only 57.9% of men in our study received any neoadjuvant or adjuvant 

ADT whereas ADT use in the aforementioned studies among those treated with EBRT was 

approximately 100%.  
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Substantial variation in oncological outcomes has also been observed with the use of 

combination EBRT+BT relative to EBRT alone. For instance, lower rates of metastatic 

progression have been found among men diagnosed with unfavorable-risk non-metastatic PCa 

and treated with combination EBRT+BT relative to RP (0.27 [0.17, 0.43]). This finding is 

consistent with other reports demonstrating improved PCa-specific survival among 

combination EBRT+BT relative to EBRT alone.(211,212) Only 19 (11.2%) men in our cohort 

received combination EBRT+BT so subgroup comparisons were not feasible. As such, our 

findings likely represent a combination of two different effect estimates for combination 

EBRT+BT and EBRT alone. 

 The rate of salvage therapy post-RP was much higher than that post-RT. Local and 

systemic salvage therapy were administered to approximately 30% of men post-RP, while only 

one man treated with RT received salvage therapy. These observations are consistent with 

previous investigations by Kishan et al who found similar rates of local and systemic salvage 

therapy post-RP,(220) and Markovina et al who found salvage much more common post-RP 

than post-RT.(221) This can, in part, be explained by the increased rates of biochemical-failure 

among men diagnosed with unfavorable-risk non-metastatic PCa who undergo RP relative to 

RT. Administration of salvage therapy is also less likely among men undergoing RT. Since men 

who undergo RT are generally older, with poorer health and lower life expectancies, the 

benefits of salvage therapy are limited, while side effects from it can adversely affect quality of 

life. Moreover, the rate of salvage therapy post-RT might be hampered due to limited 

awareness and availability of modalities such as cryotherapy and high intensity focused ultra-

sound. 
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 The median follow-up time was 13 months shorter in the RT relative to the RP group. 

This might be explained by increased rates of competing events that would increase losses to 

follow-up. To explain, those receiving RT were also approximately 10 years older than those 

receiving RP and likely had increased comorbidities. During later phases of PCa management, 

competing illnesses that decrease life-expectancy may take priority and patients might stop 

attending follow-up appointments for their PCa if it poses less threat to their survival. 

Unfortunately, data from other clinics indicating development of metastasis was not available, 

preventing competing risks analyses. This missing data issue can bias effect estimates either 

through limiting the contribution of event-free follow-up time or limiting the identification 

metastatic progression.  

Other missing data issues involved 17 subjects for clinical tumor stage and 23 subjects 

for percent core positivity, which prevented these observations from contributing to regression 

and post-matching effect estimation. However, due to the limited number of subjects missing 

information on these variables, inferences regarding the distribution of missing data is limited 

and data imputation methods, such as multiple imputation, are unlikely to lead to notably 

different effect estimates or provide additional information.  

 The strengths of our study include the comparison of men treated with RT who were 

also eligible for RP thereby mitigating violations of positivity required for the conduct of 

regression analysis.(183) Moreover, systematic identification of comparable treatment groups 

through propensity score matching and coarsened exact matching has potential to reduce 

reliance on model specification,(138) thereby improving the robustness of confounding control. 

Finally, since men were diagnosed between 2007 and 2012 from two large academic centers, 
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treatment approaches are expected to be more consistent with contemporary treatment 

approaches. 

 The findings of this study are subject to limitations. First, the proportion of men treated 

with RT who received ADT was much lower than other similar investigations. Since ADT has 

been shown to decrease the rate of metastatic progression, the rates observed among men 

treated with RT in our cohort may exceed those achievable through the current standard of 

care, which recommends RT and ADT for men diagnosed with unfavorable-risk PCa.(90) In 

addition, the series of men treated at LHSC may not have been comparable to men treated at 

GGWPC so there is potential for confounding of effect estimates by treatment center. Finally, 

due to data limitations, percent of tumor containing biopsy cores, comorbidities, and 

socioeconomic and demographic characteristics could not be controlled for, potentially biasing 

effect estimates. Based on the risk of bias assessment tool used in the chapter seven, this study 

would be given a high-risk of bias. 

 

7.5 Conclusion 
 
 The results from our study support findings from previous analyses that more 

contemporary forms of treatment involving RT as an initial strategy may be, at least, 

comparable to those involving initial RP for men diagnosed with unfavorable-risk PCa. 

Furthermore, the decreased use of salvage therapies among men treated with RT relative to RP 

may have benefits with regard to fewer side effects in the long-term management of this 

patient population. Given the aforementioned limitations of this study, the results provided 

here must be interpreted with caution. However, since evidence from RCTs is unlikely to 
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surface within the next decade,(109) the value of observational research holds great value in 

informing treatment decisions.  
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8.0 Integrated Discussion 
  

In this thesis, we developed a systematic approach to developing and evaluating 

matching strategies that improve balance in the multivariable distribution of baseline 

covariates while optimizing data retention. In our analyses, both propensity score matching, 

and coarsened exact matching performed similarly. However, due to the small number of 

covariates, the performance of coarsened exact matching might decrease with larger covariate 

sets, as shown in previous studies.  

One concern with propensity score matching is its limited ability to balance past the 

propensity score matching paradox. A hybrid matching approach, with elements of both 

propensity score matching and coarsened exact matching, could be used to overcome the 

limitations of propensity score, and coarsened exact matching. Specifically, matching on latent 

variables would reduce the number of variables used in coarsened exact matching, while 

providing more granular data than the scalar value of the propensity score from which to 

inform matches to improve balance potential past the propensity score matching paradox. For 

example, a latent variable for risk of extraprostatic extension could be represented by PSA, 

Gleason Grade, clinical tumor stage, and percent of positive biopsy cores. Another latent 

variable for how estimated life expectancy impacts treatment decisions could be modeled using 

comorbidity information and age at diagnosis.  

Moving forward, I am currently working with a PhD candidate in Statistics at the 

University of Waterloo to develop an RStudio package to improve upon the statistical 

sophistication and automatization of the systematic matching algorithm developed in chapter 
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four. This work will provide analysts with an open access to a more user-friendly version of our 

systematic approach to matching and hopefully improve the quality of matching in the realm 

comparative effectiveness research using non-experimental data. We also aim to develop a 

latent variable matching strategy and assess its performance relative to propensity score 

matching and coarsened exact matching, using the approach demonstrated in chapter five.  

The matching methods developed and presented in this thesis (specifically in chapter 

four) were used in chapter seven to compare the rate of metastatic progression between men 

diagnosed with unfavorable-risk non-metastatic prostate cancer who were initially treated with 

radiation therapy or radical prostatectomy. Despite the high-level of sophistication in the 

management of confounding through matching and regression modeling, the risk of bias in this 

study was still deemed to be high. This was the case for each study included in the systematic 

review and meta-analysis performed in chapter six as well. There are two reasons for this. Most 

studies, including that performed in chapter seven, did not involve all observable confounding 

variables. The second reason pertains to the inappropriate use of matching and regression 

strategies. 

The reason for not including all potentially confounding variables could be due to 

limitations in obtaining information on comorbidities, demographic, socioeconomic, 

geographic, diagnostic, treatment, and outcome information. Institutional databases included 

in our systematic review and meta-analysis generally provided sufficient detail on diagnostic, 

treatment, and outcome related information. However, information pertaining to 

comorbidities, geographic location, demographic, and socioeconomic characteristics were 

generally unavailable. On the other hand, national registry databases provided this information, 
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but in turn lacked detailed diagnostic, treatment and/or outcome related information. In our 

case, primary care medical records of patients diagnosed and treated at the GGWPC and LHSC 

were not readily obtainable due to concerns with privacy and confidentiality as well as 

practicality in collating information from paper-based documents and electronic medical 

records that likely used different software platforms. This resulted in inconsistently reported 

and incomplete information on comorbidities, demographic, socioeconomic, and geographic 

location, limiting our ability to effectively control for any potential confounding these variables 

might have introduced.  

A concerted effort to improve the standardization in reporting diagnostic, treatment, 

and clinical follow-up information in detail and that has potential for linkage with medical 

records from primary and tertiary care providers (to provide information on comorbidities) and 

with administrative databases (that have demographic, and socioeconomic information) would 

have great value in the realm of comparative effectiveness research. This has been 

demonstrated, to some extent, with the National Prostate Cancer Register in Sweden, which 

collects detailed screening, diagnostic, risk-stratification, treatment and follow-up information 

and has potential for linkage to other national registries with information on comorbidities, 

demographic, socioeconomic, and geographic location.(223) However, follow-up information 

on margin status post-RP, biochemical progression, and metastatic progression and subsequent 

adjuvant and salvage therapy is still lacking. 

To overcome the inappropriate use of regression techniques used in comparative 

effectiveness research, research ethics boards, grant reviewing bodies, and other organizations 

should ensure that projects meet standards for statistical analyses. Additionally, academic 
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journals, such as the Journal of Urology, should continue to mandate that authors report 

specifics related to their statistical analyses, ensuring standard recommendations are met. This 

approach should be emulated by all journals to motivate the proper use and reporting of 

statistical analyses. An explanation for the subpar use of matching techniques could be due to 

the relatively recent development of any standardized guideline.(140) Further, such guidelines, 

as shown in chapter four, are incomplete in that no set of balance diagnostics are 

recommended to guide the development and evaluation of matching strategies.  

It is my goal that through the publication of the recommended set of balance 

diagnostics presented in chapter three and the proposed systematic approach to developing 

and evaluating propensity score models for matching presented in chapter four, that the 

conduct of propensity score matching might improve in the field of prostate cancer and other 

fields of comparative effectiveness research.  
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Supplementary Tables and Figures 
 
S Table 5.1a Characteristics of PSM strategies for comparison one 

PSM Strategy Caliper Width SD of logit(PS) BT+ADT (n) E+ADT (n) Events (n) 

Unmatched - 433 132 56 
Nearest no caliper 396 132 56 

1 2.0 343 132 52 
2 1.5 321 125 51 

3 1.0 299 122 48 
4 0.8 287 121 47 

5 0.6 274 118 44 

6 0.5 270 117 45 
7 0.4 268 116 45 

8 0.3 264 114 45 
9 0.2 258 112 44 

10 0.1 248 109 41 

11 0.05 234 104 37 
12 0.025 214 104 33 

13 0.01 182 82 30 
14 0.005 139 69 24 

 
S Table 5.1b Characteristics of PSM strategies for comparison two 
PSM Strategy Caliper Width SD of logit(PS) E+ADT (n) EBRT (n) Events (n) 

Unmatched - 579 126 256 
Nearest No caliper 504 126 237 

1 2.0 443 126 210 

2 1.5 405 126 192 
3 1.0 374 126 180 

4 0.8 361 126 175 

5 0.6 352 126 173 

6 0.5 347 126 171 

7 0.4 345 126 170 
8 0.3 343 124 167 

9 0.2 339 121 164 

10 0.1 330 115 156 

11 0.05 303 111 138 

12 0.025 277 105 130 
13 0.01 230 90 109 

14 0.005 181 78 89 
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S Table 5.2a Coarsening of covariates used in CEM for comparison one 
Variable Coarsening Matching Range Boundaries 

PSA (ng/ml)    

 1 0, 2, 4, 6, 8, 10, 13, 16, 20 

 2 0, 2, 4, 7, 10, 14, 20 

 3 0, 4, 10, 20 
Treatment Year   

 1 Exact 

 2 1997, 2000, 2002, 2004, 2007 

 3 1997, 2002, 2007 

 
 
S Table 5.2b Coarsening of covariates used in CEM for comparison two 

Variable Coarsening Matching Range Boundaries 

PSA (ng/ml)    

 1 0, 2, 4, 6, 8, 10, 13, 16, 20 
 2 0, 2, 4, 7, 10, 14, 20 

 3 0, 4, 10, 20 

Treatment Year   

 1 1995, 1997, 1999, 2001, 2003, 2006 
 2 1995, 1999, 2002, 2006 

 3 1993, 1999, 2006 

EBRT Dose (Gy)   
 1 6600, 7300, 7980 
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S Table 5.3a Characteristics of CEM strategies for comparison one 
CEM Strategy RT Year Coarsening PSA Coarsening BT+ADT (n) E+ADT (n) Events (n) 

Unmatched - - 433 132 56 

1 3 3 391 123 50 

2 3 2 371 116 48 

3 3 1 363 109 45 

4 2 3 372 112 41 

5 2 2 353 106 40 

6 2 1 343 100 38 

7 1 3 308 107 35 

8 1 2 276 96 34 

9 1 1 242 90 32 

 
S Table 5.3b Characteristics of CEM strategies for comparison two 

CEM Strategy RT Year 
Coarsening 

PSA 
Coarsening 

EBRT Dose 
Coarsening 

E+ADT (n) EBRT (n) Events (n) 

Unmatched - - - 579 126 256 

1 3 3 1 492 123 227 

2 3 2 1 445 122 209 

3 3 1 1 436 119 203 

4 3 3 1 439 122 211 

5 3 2 1 398 122 194 

6 3 1 1 373 118 180 

7 2 3 1 377 118 176 

8 2 2 1 337 116 160 

9 2 1 1 295 108 138 
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S Figure 5.1a Distribution of baseline covariates by PSM caliper width for comparison 

one 
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S Figure 5.1b Distribution of baseline covariates by CEM strategy for comparison one. 
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S Figure 5.2a Distribution of baseline ln(PSA) in BT+ADT (blue) and E+ADT (orange) groups for unmatched 

samples and for samples obtained after PSM and CEM. 
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S Figure 5.2b Distribution of RT start year in BT+ADT (blue) and EBRT+ADT (orange) groups for 

unmatched samples and for samples obtained after PSM and CEM 
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S Figure 5.3a Distribution of baseline covariates by PSM caliper width for comparison 

two.  
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S Figure 5.3b Distribution of baseline covariates by CEM strategy for comparison two.  
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S Figure 5.4a Distribution of baseline ln(PSA) in E+ADT (blue) and EBRT (orange) groups for unmatched 

samples and for samples obtained after PSM and CEM 
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S Figure 5.4b Distribution of RT start year in E+ADT (blue) and EBRT (orange) groups for unmatched 

samples and for samples obtained after PSM and CEM 
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S Figure 6.1 Forest plot showing subgroup effects for EBRT and EBRT+BT assessing 
the risk of (a) prostate cancer-specific mortality and (b) all-cause mortality following 
radiotherapy and surgery for prostate cancer 
Abbreviations: HR = hazard ratio; CI = confidence interval; RP = radical prostatectomy; RT = radiation therapy; EBRT 
= external beam radiation therapy; BT = brachytherapy; CSM = cancer-specific mortality; ACM = all-cause mortality 
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S Figure 6.2 Forest plot showing subgroup effects for studies conducted among 
younger and older patient groups assessing the risk of (a) prostate cancer-specific 
mortality and (b) all-cause mortality following radiotherapy and surgery for prostate 
cancer 
Abbreviations: HR = hazard ratio; CI = confidence interval; RP = radical prostatectomy; RT = radiation therapy; CSM 
= cancer-specific mortality; ACM = all-cause mortality 
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S Table 7.1 Ranges of coarsened variables 
Variable Ranges 

PSA (ng/ml) 0, 20, 100, 300 

 0, 20, 30, 50, 100, 300 

 0, 6, 10, 20, 30, 50, 100, 300 

Gleason Score 6, 8, 10 
 6, 7, 8, 9, 10 

Clinical Tumor Stage 1, 2, 4, 

 1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a and 4b 
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S Figure 7.1a The average absolute standardized mean difference (SMD) is plotted per 

level of data retention for each matching caliper used in propensity score matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.1b The number of absolute standardized mean differences (SMD) that 

exceed the threshold of 0.1 is plotted per level of data retention for each matching 

caliper used in propensity score matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.1c The average absolute standardized mean difference (SMD) for the 

proportion of patients in each treatment group occupying each ProCaRS risk-group (i.e., 

high-intermediate, high, and extremely high) is plotted per level of data retention for 

each matching caliper used in propensity score matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.1d The variance ratio for baseline PSA between treatment groups is plotted 

per level of data retention for each matching caliper used in propensity score matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.2a The average absolute standardized mean difference (SMD) is plotted per 

level of data retention for each combination of coarsened variables used in coarsened 

exact matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.2b The number of absolute standardized mean differences (SMD) that 

exceed the threshold of 0.1 is plotted per level of data retention for each combination of 

coarsened variables used in coarsened exact matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.2c The average absolute standardized mean difference (SMD) for the 

proportion of patients in each treatment group occupying each ProCaRS risk-group is 

plotted per level of data retention for each combination of coarsened variables used in 

coarsened exact matching.  

*The red dot indicates the matching strategy chosen. 
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S Figure 7.2d The variance ratio for baseline PSA between treatment groups is plotted 

per level of data retention for each combination of coarsened variables used in 

coarsened exact matching.  

*The red dot indicates the matching strategy chosen. 
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Appendix A: Data Extraction Items 
 

a) General study information: 

- Title 

- Authors 

- Publication date 

- Study design 

o Prospective vs retrospective 

- Data source: 

o National-level databases 

o Single-institutional 

o Multi-institutional 

o Range of calendar years of diagnosis and treatment included 

o Geographical location 

 

b) Prostate cancer, treatment and endpoint information: 

- Dates of patient inclusion 

- Follow-up duration 

- Median age in each group 

- Treatment information:  

o Number treated in each group 

o Approach to radiotherapy (e.g., dose, fractions, duration, 3D, IMRT, 

brachytherapy, dose-escalation, proton beam, SBRT, combination, etc.) 

o approach to radical prostatectomy (e.g., open- retropubic or perineal, 

laparoscopic or robotic) 

o use of neoadjuvant or adjuvant hormonal or chemotherapy and duration 

- Adjusted HR for prostate cancer-specific mortality and all-cause mortality 
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Appendix B: Search Strategy 
 
A search strategy was performed by Gabriel Boldt, a clinician librarian, and yielded a total of 

5,487 articles total between PubMed and EMBASE databases before screening. Search 

strategies was completed as follows:  

 

PubMed Strategy: 

(radiotherapy[mh] OR radiation therapy[tw] OR radiotherapy[tw] OR surgery[mh] OR 

prostatectomy[tw] OR surgeries[tw]) 

AND 

prostat*[tw] 

AND 

surviv*[tw] 

AND 

(high risk[tw] OR intermediate[tw] OR non-metastatic[tw] OR nonmetastatic[tw] OR 

localised[tw] OR localized[tw] OR locally[tw] OR local[tw]) 

NOT 

review[pt] 

Limits:  Human, 2005-2020, English 

Results 4325 

 

EMBASE Strategy: 

(radiotherapy.mp. or exp radiotherapy/ or radiation therapy.mp. or surgery.mp. or exp surgery/ 

or exp prostatectomy/ or prostatectomy.mp. or surgeries.mp.) 

and  

(prostate tumor/ or prostat*.mp. or exp prostate carcinoma/ or exp prostate cancer/ or exp 

prostate hypertrophy/) 

and 

(surviv*.mp. or exp survival/) 

and 
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(high risk or intermediate or non-metastatic or nonmetastatic or localised or localized or locally 

or local).mp. 

limit to (human and english language and exclude medline journals and yr="2005 - 2000") 

Results 1162 
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Appendix C: Modified Newcastle-Ottawa Scale for Risk of Bias Assessment 
 
Items having potential to bias the relationship between treatment modality (i.e. radical 
prostatectomy (RP) or radiation therapy (RT)) and outcomes of interest (i.e. cancer specific or 
overall survival) 
 
Selection 

1. Representativeness of the exposed cohort 
a. 1 point for data representing the general population (i.e. in terms of 

socioeconomic and demographic characteristics) 
b. 0 point if data is not representative or indicated (e.g. selected group of users like 

nurses, volunteers, insured, safety-net hospitals, secondary data from other 
clinical population, etc.) 
 

2. Representativeness of the non-exposed cohort 
a. 1 point if drawn from the same community as the exposed cohort 
b. 0 points if drawn from a different source or not specified 

 
3. Ascertainment of exposure 

a. 1 point if obtained from a secure record (e.g. surgical records) or self-report 
b. 0 points if no description 

 
4. Demonstration that outcome of interest was not present at the start 

a. 1 point if yes 
b. 0 points if no 

 
Comparability 
 

5. Comparability of treatment groups after matching (if applicable) or accounted for in 
multivariable analysis. Maximum of 4 points awarded if the following factors are 
controlled for or not significantly different after matching as indicated by a standardized 
mean difference >0.10 or p>0.05: 

i. TNM 
ii. GS 

iii. PSA 
iv. Comorbidity status 
v. Age 

vi. ≥1 of year of diagnosis or treatment 
vii. ≥1 demographic characteristic (education, income, rural/urban) 

viii. Study center (if multiple) 
b. 0.5 point deducted for each variable not included in the model, unless tested 

and shown to have insignificant influence on the final results. 
 
Outcome 
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6. Ascertainment of outcome 

a. 1 point if record linkage or blind assessment 
b. 0 points if assessment is not blinded or not reported 

 
7. Adequacy of follow-up of cohorts  

a. 1 point if no subjects lost to follow up or those lost are unlikely to introduce bias 
(i.e. number lost ≤20% or description of those lost suggested no different from 
those followed) 

b. 0 points if follow up rate <80% and no description of those lost or if no 
statement was made 
 

8. Was follow-up long enough for outcomes to occur? 
a. 1 point if median follow-up was ≥10 years, as 10-year cancer specific survival is 

estimated to be 88% in patients diagnosed with high-risk PCa undergoing multi-
modal treatment.(224) 
 

 
 
Thresholds for converting to low, moderate and high risks of bias: 
 
Low risk of bias: ≥3 points in selection domain AND 4 points in comparability domain AND ≥2 
points in outcome domain 
 
Moderate risk of bias: 2 points in selection domain AND 4 points in comparability domain AND 
≥2 points in outcome domain 
 
High risk of bias: ≤1 point in selection domain OR ≤3 points in comparability domain OR ≤1 
point in outcome domain 
 
This scoring system is adapted from the Newcastle Ottawa Scale. We gave more weight to Item 
5 as these confounding variables have demonstrated substantial impact on the comparison 
between RP and RT and overall and cause-specific mortality in prostate cancer research.(101) 
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