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        Abstract 

Identifying error-prone files in large software systems has been an area where significant 

attention has been paid over the years. In this thesis, we propose a process-metrics based 

method for predicting the health status of a file based on its commit profile in its GitHub 

repository. Precisely, for each file and each bug fixing commit a file participates, we 

compute a dependency score of the committed file with its other co-committed files. The 

calculated score is appropriately decayed if the file does not participate in the new bug-

fixing commits in the system. By examining the trend of the dependency score for each file 

as time elapses, we try to deduce whether this file will be participating in a bug fixing 

commit in the immediately following commits. This approach has been evaluated in 21 

mediums to large open-source systems by correlating the dependency metric trend against 

the known outcome obtained from a data set we use as a gold standard. 
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Summary for Lay Audience 

In most approaches to date, classifying a file as error prone or not is primarily based on 

metrics and other structural information extracted from the source code, and to a lesser 

extent on information related to process metrics extracted from the commit history of a file. 

This thesis proposes a process metrics-based method for predicting the error proneness of 

a file based on its commit profile in its GitHub repository. Our approach is based on the 

calculation of a per-file strength metric which indicates the level of dependency and 

commit frequency a file has with other files in a commit. The dependency score, i.e., 

strength metric is appropriately decayed if the file does not participate in the new bug-

fixing commits in the system. By examining the trend of this strength value of a file over 

a period of commits, we aim to predict the error proneness of the file in immediately 

following commits. 
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Chapter 1 – Introduction 

1.1 Preface 

Each industrial software system follows a Software Development Life Cycle (SDLC) 

before delivering it to the client. Once the software is designed and developed, it goes into 

different testing cycles that include validating the software against functional and non-

functional business requirements received during the SDLC requirement gathering phase. 

The successful completion of testing ensures that the software system meets its release 

criteria.  However, industrial systems have strict release deadlines and therefore developers 

and testers need to carefully consider and prioritize the testing depending upon the 

associated risk of failure (error-proneness) for each file or module being tested. Software 

companies cannot overwhelm the testing process, and therefore early detection of error-

prone or risk modules is of essence. In this respect, we need to devise techniques that can 

help developers and testers to be notified early with respect to the error-proneness of a file. 

Utilizing such techniques, the developers and testers can assess the risk early on and 

prioritize their test efforts on files with high risk and delay testing on files with high 

likelihood been healthy. This technique is referred by the software engineering community 

as “shift-left”, as it aims to spread the evaluation of the health of a file across the life cycle 

and not only in the testing phase of the SDLC.  

The primary objective of this thesis is to provide a strategy to model the process-metrics 

based technique in order to calculate a dependency score between a file and its co-

committed files, and consequently use this score to predict the error proneness of the file. 

More specifically, for each file and each bug fixing commit a file participates in, we 

compute a dependency score this file has with its other co-committed files. We refer to this 

dependency score as the file’s Overall Strength. This score is appropriately decayed as new 

bug-fixing commits appear, which do not include this file. By examining the trend of the 

strength score for each file as time elapses in a group of consequent commits we refer to 

as a segment, we try to deduce whether this file will be participating in a bug fixing commit 

or a non-bug fixing commit in the immediately following commits (i.e. the next segment). 

This information is beneficial in developing, testing, and maintaining a software product 
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so that testers and developers can apprehend the risk associated with the file and diligently 

prioritize developing and testing the high-risk file.  

The thesis first, aims to collect the process metrics and quantitative information from the 

GitHub repositories second, analyze the file-level commit behavior to be modeled in the 

form of commit and file change trends and third, use past trend behavior to predict the 

future error-proneness or health of a file. More specifically, for each file, we collect 

information about the files it is co-committed with, information about its code churn, 

number of calls between files, and information about its commit frequency. All this 

information is used to compute the dependency score of one file with its co-committed 

files. We refer to the file-to-file association strength as the Binary Strength of the file. This 

metric can then be used to compute the Overall Strength value of the file by aggregating 

all the file-to-file Binary Strength values of the file with all its co-committed files, in a 

given GitHub commit record. By examining how this Overall Strength  metric behaves 

over time and taking into account the appropriate decay in case of the file's commit-

inactivity, we aim to predict how the file will behave in the immediate future, that is 

predicting whether the file will be identified as buggy or not in the near future commits 

(i.e. the commits which constitute the next segment). 

In this thesis, we present a tractable system that uses the process metrics, like the number 

of times two files are committed together, the number of commits has elapsed since the 

two files have participated in the commit, etc. obtained from GitHub Repository and 

Bugzilla to forecast the health status of a file. According to IEEE terminology [1] we use 

the term error or bug in this thesis to indicate a mistake in the computer program that causes 

deviation from its specified observable and expected behavior.  

The approach has evaluated data collected from 21 open-source systems by comparing the 

obtained results against a gold standard we have compiled by reconciling GitHub and 

Bugzilla data. This result is applied to some known error prone files in a system and files 

whose process metrics trends fluctuate in localized periods.  
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1.2 Problem Description and Motivation 

The problem of using process metrics at the file level over a period of a system’s 

operational life in order to assess the health status of a file in the immediate future can be 

denoted by the following statement: 

“Given a system S composed of files F1, F2, … Fk, which participate in commits C1
1 , C1

2, C1
3 

, … C1
m , … C2

1 , … C2
p , … Ck

1 Ck
w , and where each file Fi in commit Ci

j  is denoted by a 

process metrics vector Mi
j , devise a tractable technique which uses the metrics vectors in 

commits Ci
j-k , Ci

j-(k-1) ,… Ci
j-1 to predict the behavior of the file Fi in commit Ci

j “. 

The rationale behind the motivation of addressing this problem lies first, on the increasing 

complexity of software systems and second, on the need to release software systems using 

shorter release cycles and applying a continuous engineering approach on the DevOps 

cycle. More specifically, over the past few years, we experience a paradigm shift from 

classic DevOps processes to a more agile continuous integration, deployment, and delivery 

model aiming to shorten the software release cycles. It is also very recently that the focus 

has also shifted towards the Ops side of DevOps, emphasizing the use of AI and intelligent 

data analytics to assist software engineers in identifying error-prone and risky modules, 

while at the same time, they maintain and evolve large software systems. This area is 

heralded as AIOps and so far, has gained significant traction in the software engineering 

community. In this respect, AIOps aims to analyze data from the field as the system 

operates or evolves, and to a lesser extent, from static source code properties of the system.  

In this research, we aim to bridge the gap between software developers and testers by 

providing them with a list of risky files that could be buggy in future. This will provide a 

heads up to both developers and testers to prioritize their test cases and helps to mitigate 

the associated risk of a file in the production. Also, minimizing the bugs that may help to 

save both resources and time. Moreover, we provide a system that allows using process 

metrics and related quantitative information collected from GitHub to predict the health 

status of a file in the system. With the help of such a system, developers and testers can 

potentially reduce the time consumed in testing and prioritize the test cases based on fault-

prone areas of the project.  



 
 

4 
 

1.3 Thesis Contributions and Scope 

Machine Learning kept evolving in recent years, and significant research has already been 

conducted to predict the health status of a file using these technologies. However, most 

approaches utilize machine learning and metrics extracted from the source code and to a 

lesser extent on the data related to process metrics to detect error-prone modules. 

Researchers and practitioners are still experimenting with various machine learning 

algorithms, artificial intelligence, source code metrics, process metrics, and repository 

features to develop a framework or a model to predict the behavior of a file over time. 

There are certainly many approaches to predict the fault-proneness of a software module. 

However, two widely used one’s are Machine Learning and Software Metrics. We have 

covered literature review of these approaches in Chapter 2. The certain grey areas, 

constantly appearing in the research, that indeed require attention are: 

• Results indicate there is no single set of metrics that applies to all systems to predict 

the bugginess of a file. 

• Results indicate that there is no specific learning technique that performs the best 

for all the data sets (i.e. systems). 

Thus, we need to devise a framework where we can plug and play with the different 

strategies of choosing software metrics. Additionally, contrary to other software domains 

where a single model can correctly classify all the related instances, this has not been 

proven in the case of Software Engineering Bug Prediction. In particular, if a classifier is 

trained to classify flowers, as is the well-known IRIS example, it can classify other irises 

of the same species too. In contrast, a model trained to perform bug prediction in one 

project, cannot be used to perform the same task in other projects even if the same team is 

working, or they do the same thing. Thus, we have a quest of developing a framework that 

can not only more robustly provide an understanding of the healthy and non-healthy 

systems, but also clearly define the implementation and minute details of how things are 

working internally that can help developers to clear up the smokes of the Black Box 

Approach of Machine Learning. Thus, we have solely focus on process metrics to evaluate 

our Hypothesis. 
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This thesis lies in the area of Experimental Software Engineering. The research objective 

is to predict the health status of a file using process metrics, i.e., the file commit history, 

the total number of lines modified in a file, how long it has been since the file is committed, 

etc. As part of this thesis, we have analyzed 21 open-source systems to perform the 

experiments. The smallest size of commit data of a system that we have studied is 9.923 

KLOC, whereas the most extensive commit data of a system is of size 1453.70 KLOC, and 

the rest of the size of commit data of a system falls between the above size range. We have 

classified the systems we have experimented with into three categories: small size systems, 

large size systems, and medium-size systems, as shown in the Table II.  

Overall, the contributions of this thesis are: 

1. Propose a programming language agnostic technique in order to model and analyze 

process related metrics extracted from software DevOps repositories, for fault-

proneness prediction at file level. More specifically, the thesis proposes a novel 

technique whereby a) sequences of commits are grouped in so called segments; b) fault-

proneness prediction related process metrics are calculated per commit and per 

segment; c) process metrics trends (upward, downward) within a segment are computed 

and; c) analysis of whether process metrics trends in sequences of segments can serve 

as a predictor of fault proneness.  

2. Propose a dynamic framework and a set of novel metrics whereby a) file-to-file intra-

commit dependency metrics and overall strength metrics for a file can be computed 

and serve as fault-proneness indicators for a given file and; b) these file-to-file 

dependency and overall strength metrics can be decayed over time so that the fault-

proneness identification system can exhibit a dynamic realistic behavior over time. 

3. Propose an efficient hash table-based data structure to model and tractably analyze in 

dynamic memory complex commit dependencies and process metrics extracted from 

very large software systems involving tens of thousands of commits.  

4. Develop a modular architecture for the aforementioned system whereby different 

metrics, and analysis strategies can be considered as plugins, providing thus the 

opportunity for different techniques to be evaluated using the proposed architecture. In 
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this respect the architecture can serve as framework and a tool-bench for developing 

new fault-proneness prediction systems.  

5. Provide a comprehensive set of results from experiments conducted with different 

metrics and analysis strategies applied on various large open source systems in order 

to evaluate the effectiveness and performance of the proposed technique.   

The system encompasses the following architectural components: 

• A module to extract process related information from a GitHub repositories.  

• A module to reconcile information extracted for GitHub and Bugzilla repositories, 

in order to establish a gold standard for evaluation purposes.  

• A module to compute Binary Strength (i.e. file-to-file) and Overall Strength (i.e. 

file-to-all-files) scores between a file and its co-committed files.  

• A module to efficiently store and analyze the extracted information and calculate 

trends and strengths of files over time. 

• A module to analyze the overall strength score trend patterns of system files by 

leveraging different correlation strategies and scenarios in order to assess the health 

status of these files. 

• A module to generate result reports in the form of csv files and performance reports.  

For this thesis, we have computed the results on the data collected from GitHub repositories 

of 21 medium to large open source software systems. However, we have not implemented 

the same on the real-time systems or enterprise-level software. Thus, it is difficult to 

conclude how the software will behave for real-time applications. 

1.4 Thesis Organization  

The rest of the thesis organized as follows: 

In Chapter 2, we explore related work or fault and error prediction.  

In Chapter 3, we discuss the data extraction process, the calculation of the process metrics, 

and the design of the modeling framework used for calculating the Binary and the Overall 
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strength scores along with their trends (i.e. slopes) in groups of consequent commits (i.e. 

segments).  

In Chapter 4, we report the results obtained, and we discuss these results using different 

strategies and scenarios.  

Finally, in Chapter 5 we summarize the results, and present pointers for future research in 

this area.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

8 
 

Chapter 2 – Background and Related Work 

This chapter will present related work in the domain of software fault prediction, the 

significance of software metrics in fault prediction, and how machine learning and software 

analytics are currently being used for fault prediction. 

2.1 Background 

2.1.1 Software Fault Prediction (SFP) 

SFP is a standardized way of assuring and improving the quality of a software system by 

leveraging past information to foresee possible bugs or faults that are likely to occur in the 

software in the future. Software is jeopardized by faults that can impede the performance 

of a software product; moreover, it directly impacts the quality of the system [2], may make 

it diverge from its specified requirements, fall out of compliance or even violate laws [2].  

Software is designed to provide quality services to users. Gradually, the requirements of 

the stakeholders start increasing and so does the complexity of the software. The 

introduction of increasingly more complex functionality into software products is a 

potential reason for system breakdown. It is indispensable to determine the error-prone 

modules before release to ensure the quality of the delivered component. It is observed 

from many studies that a fault in one software component can completely shut down the 

entire application, something that would make this a critical fault. Thus, extensive research 

should be performed to predict the error-prone modules to confirm software reliability [5]. 

The more accurate the prediction is, the less likely the software is to exhibit buggy behavior 

[4]. 

Thus, the main challenge for researchers and software scientists is to select an appropriate 

prediction model or a technique that can assist them in predicting defects and to help them 

in conducting result validation [5]. However, there is no direct methodology or strategy for 

fault prediction. Thus, computer scientists utilize different metrics, i.e., source, process, 

and a combination of metrics for different estimation strategies. Using the appropriate 

metrics contributes to achieving the desired estimation.    
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Once a set of metrics for fault prediction has been selected, it is essential to select the 

appropriate prediction techniques. The prediction can be achieved in two ways, regression 

and classification. The primary purpose of regression techniques is to estimate the number 

of defects in software components. In contrast, classification techniques aim to categorize 

a software module as faulty or clean [78].  It has been shown that classification models can 

be trained from defect data on earlier versions of the system [16]. 

In the next sub-section, 2.2 and 2.3, we will take a deep dive into different software quality 

metrics and Machine Learning techniques, respectively, for predicting fault in software 

modules.  

2.1.2 Software Metrics  

The only thing that comes to mind when predicting faults in software, is software metrics 

since they are used to measure the software quality. There is a further classification of 

software metrics, i.e., in-process [6] and end-process metrics. As the name suggests, in-

process metrics has the main objective to improve the development process. In contrast, 

end-process metrics pay closer attention to the final product.  

The two major classes of software metrics based on software life cycle phases are static 

and dynamic code metrics. Static metrics can be achieved at the early stages of Software 

Development Life Cycle (SDLC) and deals with structural features of software [7]. It 

quantifies the effort required to develop and maintain a software product. In comparison, 

dynamic metrics are retrieved at the later cycle of SDLC. However, in contrast with static, 

dynamic code metrics are tough to obtain from the source code. It determines the behavior 

of the system, along with its maintainability, reliability vectors. 

The next section, we will briefly introduce software code metrics, process metrics, and 

combinational metrics approaches.  

Software Code Metrics 

Deciding whether a component has a high likelihood to be defective or not has been proved 

to have a strong correlation with several software metrics. Identifying and measuring those 

software metrics is vital for an array of reasons, including estimating program execution, 
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measuring the effectiveness of software processes, estimating required efforts for 

processes, estimating the number of defects during software development, and monitoring 

and controlling software project processes [8] [9]. Various software metrics have been 

commonly used for defect prediction, including lines of code (LOC) metrics, McCabe 

metrics, Halstead metrics, and object-oriented software metrics. Hence, the automated 

prediction of defective components from extracted software metrics evolved as a very 

active research area. [10]. In [11], Nagappan aims to find the best code metrics to predict 

bugs. This work concludes that complexity metrics can successfully predict post-release 

defects, but there is no single set of metrics applicable to all systems. Hassan et al. have 

investigated the impact of different aspects of the modeling process on the results and the 

interpretation of the models [12] [13] [14] [15]. In defect prediction models, classifiers in 

classification techniques help to identify the defect proneness of a system. The classifier 

has a configurable parameter that usually controls the characteristics of the classification 

technique [12]. According to Hassan et al. [12], the default configurable parameters 

underperform compared to the automated parameterization. Thus, the author has carried 

out his study on 18 datasets and outlined that AUC's performance improves by 40 

percentage points. Moreover, Hassan et al.  [13] evaluate the influence of class rebalancing 

techniques on performance and interpretation of defect models. After evaluating 101 

datasets it is evident that SMOTE and under-sampling technique are beneficial as it 

increases AUC and Recall. Moreover, Hassan [14] addresses the multicollinearity problem 

in defect prediction models and identifies the importance of feature selections and various 

reduction techniques beneficial to improve the performance of the defect prediction model. 

In the paper [15], author Chakkrit Tantithamthavorn evaluates the impact of correlated 

metrics on the performance of defect models.  

Shakhovska et al. investigate the use of unsupervised learning for performing Defect 

Prediction utilizing SOMs (Self Organizing Maps) and Hierarchical Clustering on data 

from the promise software [18] engineering research repository [17].  

Software Process Metrics 

If there is any change made in the system during SDLC it is quantifiable in terms of process 

metrics. The software changes concerning each commit are collected during the lifecycle 
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of a project with multiple software releases [19]. It is calculated using different sources like 

the experience of the developer [5], version history of software [20] [21] [22], change 

frequency, and more.  Significant research has already been done to identify various 

process metrics that can help to predict the fault proneness of a file. NML, NR, NDA, and 

NDVP are the most widely used process metrics.  

1) Number of Modified Lines (NML) – It measures the difference between the two 

software builds in terms of Lines of Change [20][21][22][23] These metrics 

calculate the total number of added and deleted lines from the source code of a file 

compared with the history of a file. Nagappan and Ball [77] identify that the 

Number of Modified lines in a file had a good defect density prediction 

performance. 

2) Number of Revision (NR)- The consequent deployment of the file and its frequently 

changing revisions during development can also predict the fault proneness of a 

file. Version Control Systems, like GitHub helps to keep track of file history on the 

main branch. The NR metrics has already been used as a different name by several 

authors [71] [72][73][74]. 

3) Number of Distinct Authors/Committers (NDA)- The NDA metrics defined as 

number of distinct authors who have participated in the deployment of a file into 

the production. In many researches, it is quite evident there is a high correlation 

between NDA metrics with pre and post-deployment failures [71] [75].   

4) Number of Defects Appeared in Previous Version (NDPV)- The NDVP metrics 

evaluate the correlation of fault proneness of a file based on the history of the 

defects appeared in the previous revision of a file [76]. 

Let us assume that a few lines are added to a file, then delta value will be non-zero. 

However, if we add and delete the same number of lines in a file, the delta value is going 

to show that by remaining equal to zero. Code Churn Metrics (CCM)helps to calculate the 

change in the code. The significance of adhering to the process metrics is that it contains 

more illustrative information about which part of the code is defective. In [24], Majumder 

et. al performed a large-scale comparison between Source Code Metrics and Process 

Metrics utilizing four different statistical models for prediction over a collection of 700 
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GitHub projects comprising 722,471 commits. Their results indicated that when models 

were trained and tested on source code metrics and process metrics, the process metrics 

outperformed the source code metrics. 

2.1.3 Machine Learning 

Machine Learning (ML) is a subset of Artificial Intelligence, it is a computer algorithm 

that enables a system or a machine to evolves automatically, learn from data and 

experience, build prediction models. [25]. ML builds a model based on a training data set 

that can generate predictions without the prediction having been explicitly programmed 

[26].  ML classification depends on the type of data input, the algorithm, and the output 

expected from the algorithm. Based on the above parameters, ML approaches are broadly 

classified as 1) Supervised Machine Learning Algorithm 2) Unsupervised Machine 

Learning Algorithm. In SLA, the model is trained with training data that contain a set of 

input and its corresponding output. In contrast, in ULA, the model is provided with the data 

containing only the input variables and attempts to identify common properties of the data 

structure in the data set.  

There are different types of supervised learning algorithms, which include classification, 

regression, and active learnings [27]. It has been shown that classification models can be 

trained from defect data on earlier versions of the system being analyzed. Some of the most 

commonly used supervised learning techniques for defect prediction are outlined below: 

Logistic Regression (LR): Logistic regression is a supervised classification algorithm 

whereby the target variable O (i.e., output), can take on values in the interval [0, 1] 

representing the probability for a given set of input features I to belong to class 1 or 0.  

Random Forest (RF): RF is an ensemble type of learning method used for both 

classification and regression problems. The key idea behind RF is the construction of 

several decision trees at training time and outputting the mode/mean prediction of the 

individual trees. 

Support Vector Machine (SVM): SVM is a discriminative classifier formally defined by 

a separating hyperplane. In SVMs, given a labeled training data set whereby each data item 
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is marked as belonging to one or the other of two categories, the algorithm outputs an 

optimal hyperplane, which classifies new unseen data in one of these two categories. 

k-Nearest Neighbors (k-NN): k-NN is a non-parametric method that can be used for both 

classification and regression problems. In both cases, the input consists of the k closest 

training examples in a feature space. The output depends on whether k-NN is used for 

classification or regression. In classification, the result is to categorize an input to one of 

the equivalence classes. In regression, the output is to assign a value to the input, usually 

the average of the values of its closest k-neighbors. 

Neural Networks (NN): Neural Networks are nonlinear predictive structures that consists 

of interconnected processing elements called neurons that work together in parallel within 

a network to produce output, often simulating an unknown function or phenomenon. 

Multi-layer Perceptron (MLP): MLPs refer to a class of feedforward artificial neural 

network (ANN). An MLP comprised of a directed graph of multiple layers of nodes, which 

are fully connected to the nodes of the next layer. For training purposes, MLP utilizes a 

supervised learning technique defined as backpropagation. Apart from supervised learning, 

unsupervised techniques have also been used in a number of research papers. Such 

unsupervised learning techniques are outlined below. 

Self-Organizing Maps (SOM): SOM is a type of artificial neural network (ANN) that is 

trained using unsupervised learning to produce a low-dimensional, discretized 

representation of the input space of the training samples, called a map, and is therefore a 

method to do dimensionality reduction. 

K-Means Clustering (KMeans): K-means clustering is a method of vector quantization, 

that aims to partition n observations into k clusters in which each observation belongs to 

the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype 

of the cluster. 

Both these techniques can be used to partition data into two classes without having to use 

labeled data. Such techniques have been investigated [29] by Yang et. al to compare their 

efficacy at performing Just-in-Time Defect Prediction. 
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2.1.4 Evaluation of Classification Models 

Once the type of classification model is decided and created, its effectiveness need to be 

evaluated. This evaluation uses a testing data set that collects data instances that have not 

already been used for training. Specifically, of particular interest are the accuracy and 

precision of a model. There are different ways through which we can assess the 

effectiveness of classification models.  

Accuracy: It is the initial step to evaluate the performance of a classification model. It is 

the frequency of correctly identified instances. However, it is not self-sufficient to evaluate 

the model prediction. Thus, computer scientists recommended using recall, precision, and 

F1 score for model evaluation. The formula for calculating accuracy is given below: 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =    
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)+𝐹𝑎𝑙𝑠𝑒 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

Precision: It is a way to identify the number of files that are classified as buggy files to the 

total number of files. Total number of files contain both buggy and non-buggy files. This 

is used along with the accuracy to know how model performs to identify the bugginess of 

a file. The formula for calculating precision is given below: 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

Recall: It is the proportion of files that are classified as buggy to the total number of files 

that are actually buggy. It is also called sensitivity. The formula for calculating recall is 

given below: 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

F1-Score: It measures the validity of the classification model using precision and recall. 

In other words, it is the harmonic mean of recall and precision. The F1 score values vary 

between 1 and 0. If the F1 score is 1, it is considered as the best fit model for the given data 

set. In contrast, if it 0, then the model doesn't fit in the provided data set. 

  𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙)
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Confusion Matrix: It is well known as an error matrix and helps in providing a tabular 

visualization of evaluating the performance of machine learning algorithms [29]. In the 

table, instances of predicted class are represented in rows whereas instances of the actual 

class define in the column. 

Table I: Confusion Matrix 

 Actual 

Predicted 

 Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

2.1.5 Technical Debt 

Ward Cunningham introduces the concept of technical debt in 1992 positing that the 

introduction of debt helps in quickly achieving software development goals by postponing 

specific code development and the satisfaction of certain test cases to ensure the rapid 

delivery of the product. It seems a lucrative approach. However, fixing these issues in the 

long term can require copious amounts of human effort, time, and costs. Inflexible design 

of the software, poor formatting, lack of documentation, improper test cases, and absence 

of test reports are few examples of technical debt. With the understanding of TD, we can 

assess the risk associated with the software components. The below section defines various 

types of technical debt in software development [30]. 

Testing Technical Debt: It is one of the most commonly known technical debt types. It 

mainly occurs due to the limited number of test cases, improperly documented test results, 

and the absence of automated test cases. 

Design Technical Debt: When the hasty developer does not follow the design principles 

and OOPS terminology during development, the client has to accumulate inflexible design 

debt. Poorly followed design principles, ignorance of object-oriented class, highly coupled 

instances, low cohesion, and the existence of God classes are a few examples of design 

debt. 
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Code Technical Debt: The inexperienced developer who does not follow the desired 

coding practices can add code debt to the software product. It can take a toll on rewriting 

the complete module or refactoring it because the written code may be redundant, the 

performance of the system is deteriorating, and not following the coding standards makes 

it difficult to understand. 

Architectural Technical Debt (ATD): It is defined as the hasty decision taken by software 

architects or developers to satisfy short-term requirements. However, it impedes long-term 

goals [31]. It is stated by many architects that ATD is incurred in software systems due to 

lack of documentation. Usually, in the software industry, design discussions with the 

stakeholders are happened either via chat or e-mails. As a result, developers and architects 

are unable to track it in one consolidated document [31]. 

Build Technical Debt (BTD): BTD is generally incurred in the software system when the 

developer has unbuildable targets, unnecessary command-line flags, and unneeded or 

redundant dependent jars [32]. These files take a toll on computational resources while 

building a software application. 

Requirement Technical Debt (RTD): Software Developers often set the order of the 

requirements based on the priority of the client or user needs. Thus, the long-term gain in 

exchanged for short-term profit [37]. The main issue that can cause the RTD is expensive 

requirements that are hard to achieve, unnecessary requirements, and requirement gap.  

Documentation Technical Debt (DTD): DTD can identify missing, inadequate, or 

incomplete software components [34]. Insufficient information on requirement definitions 

and requirement unpredictability can add to the DTD of the software system. Also, a lack 

of non-functional requirements and dependency between the requirements can impact the 

DTD [35] [36]. 

2.1.6 Bugzilla 

Bugzilla is an open-source defect tracking tool developed by Mozilla on August 26, 1998. 

It is developed on Linux, Apache, using MySQL, and the PHP language. It provides a 

consolidated place for tracking defects in a system that can help the manager or teams track 
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the faulty components and frequently evaluate the risk associated with the components. 

Moreover, we can assess individual developer performance and give them feedback from 

time to time. Bugzilla can track multiple projects at the same time [38]. Besides, it helps to 

submit and review patches and manage quality assurance. One of the best features of 

Bugzilla is a web interface along with its programmatically accessible API which is kept 

up to date through the years while incorporating newer technologies. 

2.1.7 GitHub 

GitHub is a version control website built around the central concept of a repository and 

code change (commit). It has greatly simplified the open-source software development, 

accommodating many web applications and supporting versioning very straightforwardly 

and accessible to all. Besides, it offers access control to manage the repository as a private, 

public, and shared repository. GitHub hosts 40 million users and almost 190 million 

repositories, according to collected data in January 2020 [39] [40].  We can even clone a 

repository to our local machine. With the help of GitHub, one can track the development 

of any component. Every commit in GitHub is associated with commit_id, 

commit_comments, file_id, file_path, user, commit_date, commit_time, and milestone. 

With the help of these attributes, one can identify when who, and which file (or files) is 

committed in the repository. On the other note, during development, it is advisable to create 

a new branch using the main branch and allow merges once the child branch testing is 

successful, which along with other less significant details constitute a set of good practices 

for developing using GitHub. 

2.2 Related Work 

2.2.1 Defect Prediction using Machine Learning 

A variety of machine learning methods have been proposed and assessed for addressing 

the software bug prediction problem. These methods include decision trees [41], neural 

networks [42], [43], Naive Bayes [44], [45], support vector machines [46], Bayesian 

networks [47], and Random Forests [48]. 
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Fig.  1 Supervised Classification for Software Default Prediction [2.9.4] 

 

The work by Cagatay Catal [49] had investigated how the size of a dataset, metrics sets, 

and feature selection technique can affect the results of software fault prediction. The study 

identified random forest offers the best prediction performance for the large data set, while 

the Naïve Bayesian Network algorithm provides the best prediction for small data set. This 

study has selected 13 metrics to evaluate and compare the performance of algorithms.  

The study performed by Ezgi Erturk [50] uses McCabe metrics to evaluate the performance 

predictive models. Artificial Neural Network and Support Vector Machine are used to 

measure the performance of an Artificial Neural Network Inference System. The results 

obtained using McCabe Metrics are 0.7795, 0.8685, and 0.8573 for Support Vector 
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Machine, Artificial Neural Network, and Artificial Neural Network Inference System 

respectively [50]. 

Dejaeger [51] performed a study on an open-source data set from the Eclipse Foundation 

and NASA IV&V facility dataset to evaluate the performance of fifteen Bayesian Network 

(BN) classifiers using Halstead, Lines of Code, and McCabe complexity metrics. The paper 

concludes that Augmented Naïve Bayes Classifier can produce comparable or better 

performance than the Naïve Bayes Classifier [51]. 

According to the study by author Shanthini [51], 21 method-level metrics proposed by 

Halstead, McCabe and ten class-level oriented metrics to evaluate the performance of 

different Naïve Byes, SVM, K-Stars, and Random Forest Algorithms. The study concluded 

that the Support Vector Machine (SVM) performance is better than all other algorithms. 

In [53] the author C. W. Yohannese proposed a framework for software default prediction 

and predicts the performance of the model using four scenarios.  

Learning from normal data sets, feature selection data sets, balanced feature selection data 

subsets, and noise filtered and balanced feature selection subset. The author concludes that 

if we combine feature selection, data balance, and noise filtering approaches for data 

preprocessing to perform SDP the performance is better than the one that does not [53].  

In a study, by Xin Xia [54] deep-learning techniques are proposed to predict fault proneness 

in the file. The designed framework consists of two phases, i.e., the model-building phase 

and the prediction phase.  In the model-building phase, they aim to build a statistical model 

from past changes. While in the prediction phase, they aim to predict if new changes are 

buggy or clean. In the proposed framework, 14 features have been used, and then data 

preprocessing has been performed, including two steps, i.e., data normalization and 

resampling. The results are validated against six large open-source projects using F1-score 

and cost-effectiveness metrics. The results of the above two metrics are 0.69 of recall, and 

0.45 of F1-Score is observed. In cost-effectiveness, 20% of lines of code help, the 

framework can predict 50% of defect-related changes.  
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In [55], Guisheng Fan has proposed a model called defect prediction via an attention-based 

recurrent neural network (DP-ARNN) [55]. The process is divided into steps: Firstly, DP-

ARNN parses the abstract syntax tree of programs and extracts as vectors [55]. Secondly, 

it encrypts vectors as inputs to the DP-ARNN. It allows DP-ARNN to learn syntactic and 

semantic features automatically. Additionally, it provides a mechanism to produce features 

for accurate defect prediction. The author has opted for F1-measure and area under the 

curve as evaluation criteria for seven open-source Java projects to evaluate the model. The 

F1-measure values of DP-ARNN, RNN, and CNN are 0.515, 0.506, and 0.473, 

respectively, whereas RF + RBM and RF are 0.310 and 0.396. In the performance 

comparison, DP-ARNN, RNN, and CNN beat conventional methods. 

2.2.2   Defect Prediction using Software Metrics 

Deciding whether a component has a high likelihood to be defective or not has been proved 

to have a strong correlation with several software metrics. Identifying and measuring 

software metrics is vital for various reasons, including estimating program execution, 

measuring the effectiveness of software processes, estimating required efforts for 

processes, estimating the number of defects during software development as well as 

monitoring and controlling software project processes [8] [9]. Various software metrics 

have been commonly used for defect prediction, including lines of code (LOC) metrics, 

McCabe metrics, Halstead metrics, and object-oriented software metrics. Hence, the 

automated prediction of defective components from extracted software metrics evolved as 

a very active research area [10].  

In [11], Nagappan et. al. aimed to find the best code metric to predict bugs. The authors 

performed their research on five Microsoft projects. Firstly, they collected post-release 

failure data and then they mapped the post-release failures to defects in the entities. In the 

next step, they computed standard complexity metrics for the entities and finally, using 

principal component analysis, they determined the various combinations of metrics to find 

out which metrics best fitted in predicting the failure of the new entity. At last, they 

concluded that complexity metrics can successfully predict post-release defects, but there 

is no single set of metrics that is applicable to all systems.  



 
 

21 
 

In [80], the author investigated mapping between the classes to the number of defects that 

were observed or reported in the first six months before and after release. The authors 

calculated the correlation metrics between pre-and post-release failures. In their research, 

they identified that the number of changes in the pre-release failure had highest correlation 

coefficient as compared to the pre-release failure between different developers. 

In [81], the author investigated several historical characteristics of files, i.e., Defect 

History, Release History, hotfix, post-Release, pre-release, last-minute, moderation and 

their change history. The main objective of this research is to identify the relationship 

between the different historical characteristics of a file and its defect count. They had used 

an empirical approach that uses statistical techniques and visual representations of the data 

to determine indicators for a file's defect count.  In their study, the independent variables 

were historical characteristics and independent variables were defect count of a file that 

occurred between two consecutive releases during its history. They applied their approach 

to nine open-source Java Projects. At last, they concluded that defect count does not 

increase with the number of revisions of a file. There is stronger Statistical evidence of a 

relationship between the number of changes performed just after the file's release and 

defect count. Overall, they said that the software's history is a good indicator of its quality.  

In [82], the author investigated various developer metrics, like, number of code churns 

made by each developer, number of commits made by each developer, and number of 

developers involved in each module to predict the fault proneness of a module or software. 

Also, they investigated the effectiveness of developer metrics for performance 

improvement in fault prediction models. At the first step, the author gathered the developer 

information from the version control system. In the next step, they collected the 

information about the bug from the bug tracking system. After collecting the information, 

they measured the proposed developer’s metrics defined in [18]. They concluded that those 

software modules that are touched by more developers are prone to more errors. Also, it is 

a good predictor for software bug prediction. 

In [71], Graves et al. researched 1.5 million lines of the system, where they aim to predict 

the fault in 80 modules of a system written in C language. The modelling was performed 
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using simple generalized linear models (GMS) that extend the idea of linear regression. In 

their analyses, if they predict the number of faults that appear in the module using the log 

of the number of lines of code in the module, then the number of faults in a module is a 

Poisson Distribution with a mean equal to a constant multiple of some power to the number 

of lines. The author also discussed the stable model that helps to predict the number of 

future faults using numbers of past faults. At last, they concluded the number of lines of 

code in the modules and the number of different developers who had worked on a module 

is not a good predictor in identifying the bug. 

One widely used metric but whose definitions vary from author to author, i.e., age of the 

file. It is considered an important process metric in many studies. Illes-Seifer et al. [81] 

defined three categories: Newborn, Young, Old; Ostrand et al. [72, 74] has categorized file 

into New File and Old File. It is known as File Age, i.e. number of months a given file has 

existed. Different studies indicate different views and result about this indicator. Many 

authors confirmed in their findings that a new file is more prone to error as compared to an 

old file. Ostrand et al. and Bell et al. concluded that fault proneness decreases with the age 

of the file. Also, Graves et al. [71] found that age metrics when combined with delta have 

improved the performance of the model. 

Hassan et al. investigated the impact of different aspects of the modelling process on the 

end results and the interpretation of the models [12] [13] [14] [15]. In [15], Hassan et al. 

examined the effect of correlated metrics on the interpretations of defect models and 

advancement of the performance of defect models when correlated metrics removed. 

Firstly, they removed the correlated metrics to obtain data sets (mitigated data sets), then 

they built the model using the mitigated data sets and un-mitigated data sets. Secondly, 

they analyzed the designed model in a two-step process. In the first step, they calculated 

important score metrics and in the second step, they identified the ranking of metrics. 

Finally, they analyzed the performance of the model and concluded that after eliminating 

all the top-ranked correlated metrics, the consistency of techniques was improved by 15%-

64%. Also, they advised that researchers and scientists should be cautious while removing 

the correlated metrics.  
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In [57], Venkata et al. compared different machine learning predictor models for finding 

faulty software components. The study was performed on the real-time defect datasets 

obtained from NASA. The authors used 70% of training data sets and 30% of test data sets, 

in which the input data to the model was continuous values while the output data could 

take either continuous or discrete values based on the classifier. For the Decision Trees, 

Naïve-Bayes, Logistic Regressions, 1-Rule, and Nearest Neighbor, the input could be 

either continuous or discrete while the output must be discrete. Neural Networks accepted 

both continuous and discrete values for input and output.  Their results showed that the 

combination of 1R and Instance-based Learning along with the Consistency-based Subset 

Evaluation techniques provided comparatively better results [57]. Also, for the 

performance of the model, they concluded that size and complexity metrics are not 

sufficient for correctly predicting software defects. 

In [58], Wang and Yao investigated different types of class imbalance learning methods 

that could help software defect prediction with the objective of finding better solutions. In 

this process, they found that imbalanced distribution between classes in bug prediction was 

the root cause of its learning difficulty. In their research, they selected the data sets that 

were having high imbalance rates, data sizes, and programming languages. The data sets 

used in the research came from the practical projects. Firstly, they sorted the datasets in the 

order of imbalance rate. Each dataset was comprised of an attribute, i.e., module/method 

and a label that identify whether the module contains a defect or not. In the next step, they 

examined five class imbalancing learning methods and covered three types, i.e., Boosting-

based Ensembles, threshold-moving, and under-sampling. After analyzing each method, 

the balanced random under-sampling had a better defect detection rate than the other class 

imbalance learning methods, but it is still not as good as Naive Bayes. 

Similarly, in [59], Zimmermann et al. proposed an approach to predict bugs on cross-

language systems. The work examined many such systems and concluded that only 3.4% 

of the systems had precision and recall prediction levels above 75%. The authors also tested 

the influence of several factors on cross-language prediction success and concluded that 

there was no single factor that led to such successful predictions. The authors used decision 
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trees to train the model and to estimate precision, recall, and accuracy before attempting a 

prediction across systems.  

In [60], Hassan discussed how frequent source code "commits" in the repository negatively 

affect the quality of the software system, meaning that the more changes incurred to a file, 

the higher the chance that the file will contain critical errors. Furthermore, the author in 

[60] presents a model that can quantify the overall system complexity using historical code 

change data instead of plain source code features. 

In [61], Majumder et al. checked how specific conclusions, generated from analytics in-

the-small, and use those conclusions using analytics in-the-large. The authors performed a 

large-scale comparison between Source Code Metrics and Process Metrics utilizing four 

different statistical models for prediction over a collection of 700 GitHub projects 

comprising 722,471 commits. The data was collected in a three-step process. The first step 

was to collect the data for each file in each commit by extracting the commit history of the 

project then further analyzing each commit for their metrics. While assessing each commit, 

they created an object every time a new file was encountered and kept a detailed record of 

process metrics. Along with process metrics, authors kept a track of the files that were 

modified together to calculate the commit-based process metrics. In the next step, they 

identified the bug-fixing commits using simple search algorithms. In the third step, they 

used GitHub release API to assemble the release information for each project. Finally, they 

mined the product metrics using Understand by SciTools. Their results specified that 

process metrics generated better predictors than process metrics for defects. Also, learning 

methods like logistic regression that worked well in-the-small perform comparatively 

much worse when applied in-the-large. 

2.2.3   Defect Prediction using Technical Debt 

Technical Debts start piling up in software when the developers trade of short-term goals 

with long-term goals Zazworka, Nico [62] has proposed four different approaches to detect 

Technical Debts using multiple tools to know their similarities and dissimilarities to assess 

their relationship with the interest indicators. The author has selected four Technical Debt 

Identification techniques, evaluated them, and applied them to thirteen versions of the 
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Apache Hadoop open-source project [62]. Violation of Modularity, accumulated grime, 

code smells, and automatic static analysis issues are the four TD techniques. The output 

shows that different problems in the source code with different approaches. Each technique 

identifies the various area of concern in the source code, i.e., areas of concern vary with 

the selected method. Hence, these techniques have a minimal overlap among themselves. 

To calculate the association between the approaches a five steps process is proposed:  

1) Calculate how indicators are related to each other to evaluate the Technical Debt. 

2) Filter out the strongly related indicators using statistical functions. 

3) Combine the association measures.  

4) Combine the thirteen Hadoop versions into one cumulative measure.  

5) Apply visualization. 

The study concludes the following: 

• There is an increase in Technical Debt as the size of Hadoop increases.  

• Modularity Debt also increased exponentially with the Hadoop releases. Also, 

modularity violation does not occur with code smells. 

• There is a strong coupling between the find bugs issue (high) and a code smell. 

• Finally, change-prone classes tend to be defect-prone classes and vice versa. 

In the paper [63], the accumulated grime (non-pattern-related code) can create an issue of 

test debt. The main reason for the testing debt is the evolution of a system with time because 

of added functionalities. The paper has conducted a study that indicated that design pattern 

grime and organizational grime decrease the system's testability. Hence, testing 

requirements increase as grime accumulated. 

In this paper [64], the author proposes four types of bugs, i.e., tag bugs, debt-prone bugs, 

duplicate bugs, and re-opened bugs. The author has performed a study on Mozilla to 

evaluate the effect of debt-prone bugs in software systems. For this, the author has 

classified the debt prone bugs into three features: the time required to fix the bug, the rate 
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of occurrence of debt-proneness, and the number of bugs. A thorough analysis of these 

debts concludes that it can affect the average time cost of fixing bugs in the product. 

Secondly, ML algorithms are applied to train prediction models on attributes and the 

average time cost of fixing bugs using the product's history. The algorithm results will 

provide a ballpark number to predict the average time taken to fix the bug and help the 

developer monitor the software quality. 

In the discussed literature review we have observed three different approaches to predict 

the bugs in software modules. These are Machine Learning, Software Metrics, and 

Technical Debt. Machine Learning and Software Metrics are two widely used approaches 

in the research area of Software Engineering Bug Prediction. These two approaches have 

their challenges like there is no single set of metrics that applies to all systems to predict 

the bugginess of a file. Also, there is no specific machine learning model that performs the 

best for all the data sets or systems. Thus, we need to devise a framework or system which 

can not only more robustly provide an understanding of the healthy and non-healthy 

systems, but also clearly define the implementation and minute details of how things are 

working internally that can help developers to clear up the smokes of the Black Box 

Approach of Machine Learning. Thus, for our research, we have used process metrics to 

evaluate our Hypothesis. In the following chapter, we have defined the data extraction 

techniques and data model of the designed system to predict faults in software modules.   
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Chapter 3 – Data Extraction and Modeling 

In this chapter, we will first demonstrate how to select appropriate systems and process 

metrics to predict the fault proneness of a file. Second, we will define the data extraction 

techniques utilized to perform the data reconciliation in order to identify the bug fixing 

commits. Third, we will describe the data model of the designed system and the concrete 

data structure used throughout the system. Finally, we will present a case study conducted 

on projects collected from a git source code repository and the KDE.bugzilla bug report 

repository. 

3.1 Overall Framework 

The outline of the overall framework capturing the complete process is depicted in Fig 2. 

The first step is to identify and select the appropriate systems based on the selection criteria 

defined in section 3.2. The second step is to create a program able to retrieve the appropriate 

information from GitHub and Bugzilla. The complete extraction process is described in 

section 3.3. The third step entails the reconciliation of the data collected, from GitHub and 

Bugzilla, not only to enable the evaluation of results but also to create cleaner datasets with 

more precise data points. The reconciliation procedure is explained in section 3.3.3. In the 

fourth and final step, the collected information is processed, and a dependency score is 

calculated for each file with respect to its co-committed files. The calculated score is 

decayed as new commits appear, which do not include the particular file. By examining 

the trend of the dependency score for each file as time elapses, we try to reason on whether 

this file will be participating in a bug fixing commit in the immediately following commits. 
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Fig.  2 Outline of fault proneness prediction process 

3.2 System Selection 

In [65] Kalliamvakou et al. have documented thirteen risks associated with project 

selection on GitHub. Considering these threats, we have selected our projects based on the 

criteria below. 

C1: Many repositories in GitHub refer to individual projects and do not relate to major 

software development: As GitHub is an open-source tool, it is evident that a lot of the 

publicly available repositories pertain to individual software development. If these projects 

are considered, then this may skew the results. Thus, as a part of this thesis, we investigated 

only those open source projects that are extensively used in the software application. 

However, we can separate those repositories by checking the number of distinct committers 

in the repository.  

C2: Identifying the active or inactive projects: According to Kalliamvakou et al., many 

projects are dormant or exhibit minimal activity over a period of time. To counter this 
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threat, we have selected only those projects that are active in software development and 

testing. 

C3: Repository is not a Software Project: In GitHub, a repository can contain multiple 

projects or be a part of a network of repositories. Thus, we judiciously identified such 

projects that are not part of a network of repositories.  

C4: GitHub does not expose all data: The GitHub API does not expose the entire GitHub 

database, but rather a subset of the events or entities. 

C5: Many active projects do not use the GitHub completely and very few projects use the 

pull request feature of GitHub: As part of the current study, we try to find all the projects 

that have shown high GitHub activity. However, we are unable to verify if only GitHub is 

used in these selected projects of other means of version control are also employed. 

C6: Only Successful Merges are considered: Working with a team on the same project 

requires frequent merges on a main development branch as teammates often work on a 

child/cloned branch to introduce their changes. Thus, commit data on child/clone branches 

are not examined.   

Along with these selection criteria, we also considered the size of the candidate projects. 

In order for any results stemming from our hypothesis to be generalizable, and to acquire 

more accurate results, we have considered small, medium, and large projects. Table II 

presents the projects that are used to validate the hypothesis.  

3.3 Data Extraction 

As part of this research, we have collected the process-related metrics from 21 Open Source 

Software Systems of various sizes and complexities.  
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Table II: System Examined 

  
 

3.3.1 GitHub Data 

The data acquisition process from GitHub is divided into two steps. The first step is to 

utilize a custom-made client-side extractor tool to connect to and extract data from GitHub. 

The second step of the raw data acquisition process is to fuse the information extracted by 

each repository record into one repository, which conforms to the raw data schema depicted 

in Fig. 3. The extractor application and its data fusion module are implemented using 

Python 3. The data model is populated by initially downloading a complete repository from 

the corresponding GitHub site and then moving through each commit on the master branch, 

adding the relative data iteratively, thus maintaining the initial structure. Once the model 

is populated, it undergoes several steps of preprocessing that are defined below:   

 

Size of Systems S.No. System’s Name # of files # of commits KLOC

1 kdelibs 9506 140533 1,453.70

2 amarok 2211 63041 367.195

3 kate 829 12166 199.903

4 k3b 898 26068 164.795

5 gwenview 639 15643 103.905

6 konversation 349 20179 92.834

7 ktorrent 657 10953 80.986

8 konsole 345 13061 75.638

9 kget 459 10980 68.556

10 kcolourpaint 412 8345 63.244

11 elisa 207 5017 62.07

12 plasma-nm 418 8170 58.121

13 kios-extras 391 7104 56.933

14 ark 306 8393 48.812

15 lokalize 229 6549 40.629

16 akregator 400 9481 40.496

17 juk 162 7342 34.155

18 solid 401 2847 28.918

19 kmix 188 3584 13.474

20 kompareData 68 2053 10.644

21 systemsettings 123 6075 9.923

Large

Medium

Small
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• The first task is to remove all files that cannot contribute to a defect, such as any 

non-compilable and non-configuration-related files. 

• The next task is to use a simple heuristic to clean up the extracted commits so that 

only actual code-changing commits remain. This entails removing all commits that 

are clearly annotated as a refactoring commit and also retroactively removing all 

files which have eventually been removed from the system. 

• Finally, all merge commits are also removed since they contain change information 

pertaining to different branches and will therefore introduce large amount of noisy 

data points to the dataset. Also, since this study is not focusing on defect introducing 

software changes, the removal of refactoring and merge commits from the dataset 

will not impact its ability to discern between faulty and healthy files. 

After the cleanup stage is completed, the most important remaining task is that of assigning 

the class label for each commit and file.  

This task is accomplished by parsing the commit message for terms that may indicate that 

it is a bug-fixing commit as opposed to a clean one, linking commits to issue tracker entries 

labeled as faults, and optionally applying the same parsing as above to the issue tracker 

messages [66]. However, not all files in a bug-fixing commit may be defective [67], that 

means that we also need to reconcile the information from a GitHub bug-fixing commit cid 

with Bugzilla entries bzid of the same time period in order to identify with higher accuracy 

which was the particular defective file or files fixed in a given commit cid.  
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Fig.  3 Data Model for Raw Repository Data 

The GitHub/Bugzilla reconciliation process is discussed in more detail in the below 

section. 

3.3.2 Bugzilla Data 

The Bugzilla data acquisition process is also based on a custom-made extractor we have 

built for this purpose. The data collected from Bugzilla repositories adhere to the Bugzilla 

data schema, which can be found on [68]. The primary entity within a repository is the bug 

report, which has the following fields bug report ID, product, description, date of 

submission, date of resolution, author name, bug status, and comments that contain a list 

of all the submitted comments for the particular bug. Each comment may also include an 

attachment that may contain additional information about the reported bug or precise 

modifications that will lead to its resolution. The date and comments can be extracted from 
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the bug report data object for all such reports having a bug status equal to resolved, fixed. 

From these comments, the precise files modified to resolve the bug can be identified either 

as plain text submissions or as attachments containing change logs originating from the 

versioning system used for a given project. 

3.3.3 GitHub Bugzilla Data  

The data collected from GitHub and KDE.bugzilla repositories are reconciled to identify 

the faulty file or files in a GitHub commit. It is an essential step for evaluating the obtained 

results (see Chapter 4 for Results). The reconciliation process was performed after the 

extraction of all data was completed and both the GitHub and Bugzilla data models were 

populated.  

Firstly, all resolutions for a particular project were ordered chronologically and grouped by 

bug ID. Secondly, all of the commits available from the GitHub extraction process were 

iterated until one of the dates available in the Bugzilla resolution data was reached. At that 

point, the search space was limited to a window around the date of resolution. The next 

step was calculating the maximal intersection between files committed in each of the 

commits and all modified files of the current resolution. Finally, the commit exhibiting the 

largest intersection while remaining the closest to the Bugzilla resolution date had these 

particular files annotated as faulty. This process was then repeated with the remaining files 

in the Bugzilla resolution set until either the set was exhaustively matched to corresponding 

commits or the search space was depleted. 

More formally, let Bk be a Bugzilla report with timestamp tk that references a set of files 

Ek and resolves file 𝐹𝑘
𝑗
. Next, we identify the GitHub commits cid1, cid2, .... cidm, which 

are within the timestamp window [tk – x, tk + x] where x is set to one month. Let also Si = 

{𝐹1
𝑖 , 𝐹2

𝑖 , …., 𝐹𝑝
𝑖} be the set of files appearing in commit cidi. We select cidn ∈ {cid1, cid2, 

…., cidm} for which the intersection of Ek and Sn is maximal, and its timestamp is closest 

to tk. The concept is depicted in Fig. 4. After cidn and the corresponding files 𝐹𝑖  are 

successfully matched they are then removed from the collection of commits {cid1, cid2, 

…., cidm} and Ek respectively and the process is repeated until no further matches can be 

performed within the timeframe. 
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Fig.  4 Timeline for reconciled data between GitHub and Bugzilla 

3.4 Data Modelling 

The data is stored for internal use in. json format and are shared for use by other systems 

in .csv format. Each data set entry is comprised of the following attributes: commit_id, 

branch, message, parents_id, author, authored_at, committed_at, committer, 

commit_additions, commit_deletions, file_path, changed_files, is_bug_link, 

is_fix_related, is_bug_fixing, previous_file_path, file_additions, file_deletions, and 

file_id.  

However, in the current system, we have used only specific attributes from the data, namely 

file_additions, file_deletions, committed_at, commit_deletions, commit_id, is_bug_fixing, 

and commit_additions. The data is stored internally in guava tables [67]. 

3.4.1 Guava Table 

A Guava Table [67] is a data structure used in the system for organizing the commit 

information of a file. It helps in systematically organizing the complex information and 

facilitates the retrieval of particular portions of it with less of a computation overhead. It is 
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a unique structured map where two keys, i.e., row and column, are combined to refer to a 

single value. The syntax of the guava table is Table<rowKey, columnKey, value>. We have 

enhanced the existing table structure and organized the information in a Guava Table with 

the following structure: 

    Table<String, String, Map<String, List <Object>>> 

Guava Tables offer a wide range of methods that contribute to faster operations at a lower 

computational cost. The most popular operations used are: 

1. boolean contains (Object rowKey, Object columnKey): It returns a boolean value if 

the combination of specified rowKey and columnKey is present in the table. 

2. boolean contains Column (Object columnKey): It returns a boolean value if the 

specified columnKey is present in the table. 

3. V get (Object rowKey, Object columnKey): It returns the corresponding value 

associated with specified rowKey and columnKey. 

4. V put(R rowKey, C columnKey, V value): It puts the respective value at the specified 

location, i.e., rowKey and columnKey. 

5. Boolean isEmpty(): It returns true if the table contains no mapping else, it will 

return false. 

This example of a Guava Table corresponds to Fig. 5 : (27c1b0a5, d1b0) = {abc = [0, 0, 

0, 0, 0, 0.0, 25.0, 25.0, 2015-10-28 04:30:37+00:00, 0, 51, false]}, {def = [7, 8, 0, 7, 8, 

7.5, 25.0, 75.0, 2015-12-05 15:36:23+00:00, 0, 30, false]}, (27c1b0a5,c1b0) = {ghi = [1,2, 

2, 2, 2, 2,0, 25.0, 2016-12-05 15:36:23+00:00, 0, 20, true]} 
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Fig.  5 An instance of the Guava Table Interface defining a file's association with its 

attributes 

Where, List<Object> in the instance of guava table, i.e., Table < String, String, Map < 

String, List<Object>>> comprises of following attributes:  

1. How many times the source file appeared in a bug fixing commit 

2. How many times the source file appeared in a non-bug fixing commit 

3. Number of lines changed in the source 

4. Number of lines changed in the destination 

5. Avg Number of lines changed in the commit 

6. Min Number of lines changed in the commit 

7. Max Number of lines changed in the commit 

8. Date of the commit 

9. Number of lines in a commit that has been modified. 

10. Number of lines in a commit that have been deleted. 

11. Is it a bug fixing commit or a clean commit? 



 
 

37 
 

3.4.2    Process Metrics 

Our approach is based on calculating a per-file strength metric that indicates the level of 

dependency and co-commit frequency a file has with other files in a commit. By examining 

the trend of this strength over groups (henceforth called segments) of commits, we 

endeavor to predict the error proneness of the file in the commits of the next segment.  

The hypothesis is that if the trend is upward, then this is an indication that the file will be 

error-prone in the next segment, while if the trend is downward, then this is an indication 

that the file will not be error-prone.  

The strength value of a file is influenced by many factors, namely, how often a file has 

been committed alone or with another file, the total number of modified, added or deleted 

lines in a file, the time elapsed between consecutive commits of a file, number of distinct 

authors who have committed the file, and number of time file participated in bug fixing 

commit. For calculating file strength, the system requires a data structure to organize the 

information extracted from the GitHub repositories efficiently. This is where the Guava 

Tables data structure was leveraged to retrieve the values from the table with less of a 

computation overhead. Fig 6. depicts the data model for the evaluation of fault proneness 

of a file.  

This section presents a detailed discussion of strength calculation, strength decay, and 

strength value trend (slope) calculations.  
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Fig.  6 Data Model for fault proneness prediction 

Binary Strength (File-to-File Strength) 

As described in the section 3.4.2 the strength of a file is impacted by many factors. Thus, 

we have selected different strategies to compare and evaluate results. This section defines 

different criteria used to calculate the binary strength of a file.  
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Strategy 1  

The file-to-file strength of two files A and B in a commit cid denoted as Bin_Strength(A, 

B, cid) is defined as the summation of the following process-related features of files A and 

B: 

    Bin_Strength (A, B, cid)  

     = CT (A, B) + LR (A, cid) + LR (B, cid) + OC (A, B)                         (1) 

where: 

• CT (A, B) The number of times files A and B have been co-committed divided by 

the sum of the number of times File A and File B have been committed throughout 

the history of the project. 

• LR (A, cid) is the number of modified lines of file A in commit cid divided by the 

total lines modified in the commit cid, not counting the number of modified lines 

in files A and B. 

• LR (B, cid) is the number of modified lines of file B in commit cid divided by the 

total lines modified in the commit cid, not counting the number of modified lines 

in files A and B. 

• OC (A, B) is the total number of commits where file A is committed with other files 

(except B/ without B), between two subsequent co-commits of files A and B divided 

by the number of times File A is committed so far. 

Strategy 2 

 With careful observation of the previous Eq. (1), we found out that OC(A, B) should get 

subtracted from the Bin_Strength (A, B, cid) as we are calculating the Binary Strength of 

File A and File B, whereas OC(A, B) evaluates the value when File A is committed without 

File B. Thus, the new equation for calculating binary strength is: 

    Bin_Strength (A, B, cid)  

     = CT (A, B) + LR (A, cid) + LR (B, cid) - OC (A, B)                  (2) 

where: CT (A, B), LR (A, cid), LR (B,cid), OC(A,B) same as defined in Eq. (1).  
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Strategy-3  

In this strategy, we improved the Binary Strength value by including the coupling between 

two files by looking at its source code metrics. The coupling between two files defined as 

the number of methods calls between two files. Although, we cannot fetch the value of 

those method calls for all 21 projects mentioned in Table II, we have enough data for an 

initial comparison of the results. The new binary strength is thus modified to: 

    Bin_Strength (A, B, cid)  

     = CT (A, B) + LR (A, cid) + LR (B, cid) + CC (A, B, cid) - OC (A, B)      (3) 

where: CT (A, B) , LR (A, cid),  LR (B, cid),  OC (A, B), and where CC (A, B, cid) is 

defined below: 

• CC (A, B, cid) is the number of calls between A to B divided by the average number 

of calls from A to all other co-committed files. Also, we have ignored the self-calls 

value.    

Whenever two files A and B are co-committed in a commit cid, their individual binary 

(file-to-file) strength is recalculated based on the selected strategy. However, for two files 

A, and B, which were co-committed in a previous commit cidp and are not co-committed 

in a subsequent commit cidf, then for each such commit cidf, the binary strength 

Bin_Strength (A, B, cidp) is decayed to yield a new Bin_Strength (A, B, cidf). The pair-

wise decay is defined in Eq. (4) and Eq. (5) below. 

Binary Strength Decay 

 At each commit where file A is co-committed with file B, their binary strength is 

recalculated using a given strategy. However, suppose file C, which has previously co-

committed with file A in a commit cidp, is not co-committed in the current commit cid. In 

that case, the binary strength of file A with file C Bin_Strength (A, C, cidp) is decayed to 

yield a new decayed Bin_Strength(A, B, cid) value. The decay is computed as per Eq. (4) 

and (5). 
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    Bin_Strength (A, B, cid)  

     = Bin_Strength (A, B, cidp) * Pair_Decay (A, B, cid)                         (4) 

where cidp in Eq. (4) is the binary strength of file A with file B in the commit preceding 

cid, as calculated in Eq. (1) and, 

    Pair_Decay (A, B, cid) = e-T (A, B, cid)*0.5                                                                              (5) 

where at time of commit cid, T (A, B, cid) is the total number of commits elapsed since 

File A, and File B have been co-committed. 

Overall Strength 

 We define the overall strength of a file A in a commit cid denoted as Strength(A, cid) to 

be the summation of the binary strengths Bin_Strength(A, Bi, cid) for all files B1, B2, ...., 

Bk which are co-committed with file A in commit cid, plus all decayed binary strengths of 

the file A with files C1, C2, ...., Cn which has been previously co-committed with file A in 

a previous commits cidp and not co-committed with it in the current commit cid (see 

equation (6)). 

     𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝐴, 𝑐𝑖𝑑)

=  ∑ 𝐵𝑖𝑛_ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝐴, 𝐵𝑖 , 𝑐𝑖𝑑)

𝑘

𝑖=1

+ ∑ 𝐵𝑖𝑛_ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝐴, 𝐶𝑗 , 𝑐𝑖𝑑𝑝,𝑗)

𝑛

𝑗=1

                                                                (6) 

Overall Strength Decay 

 It may be the case, that a file A does not participate in subsequent commits cidf. In this 

case, its overall strength should also decay. While file A does not participate in subsequent 

commits cidf, we define the new decayed overall strength of file A in the current commit 

cid in which A does not participate as: 
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    Strength (A, cid) = Decay (A, cid) * Strength (A, cidp)                                                        (7)   

where cidp is the commit file A was last committed, and 

    Decay (A, cid) = e – (NF(A)/NT(A)*Tdiff (A, cid))                                                                      (8) 

where NF(A) is the total number of commits of file A, NT(A) is the total number of 

commits seen until the current commit cid, and Tdiff is the number of commits that have 

passed from current cid back to the time the file A was last seen committed, that is in 

commit cidp. 

Working Example 

 Let us assume the following example represented in Table III. In this example, file A is 

co-committed with four files B, C, D, and E, at commit X. In commit Y, file A is co-

committed with two files B, D, and in commit Z, file A is co-committed with file E only. 

While in the commit K, file A does not participate. 

Table III: Example Commits 

Commit_ID Source File Co-Committed Files 

X A B, C, D, E 

Y A B, D 

Z A E 

K B E 

Let us assume that at commit X, the initial binary strengths of file A with files B, C, D, and 

E are 2.0, 2.5, 1.5, and 3, respectively. Using equation 7, the overall strength of file A at 

commit X is 9. The decayed results for binary and overall strengths for file A are depicted 

in Table IV. 

At commit Y, file A is co-committed with file B and D, and the binary strengths of file A 

with file B and file D are recalculated using equation 1. However, the binary strengths of 

file A with files C and E are decayed as files C and E are not co-committed with file A in 

commit Y. The decayed binary strength of file A with file C and E are 1.5 and 1.8, 
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respectively, using Eq. (4) and Eq. (5), where the value of T(A, B, Y ) is 1 as just one 

commit elapsed since the co-commit of file A with files C and E. 

At commit Z, file A is co-committed with file E, and the binary strength of file A with file 

E is re-calculated using equation 1. However, the binary strength of file A is decayed with 

all the other files except for file E, as E is co-committed with A in commit Z. As per 

equation 3, the value of T (A, B, cid) T (A, D, Z) for files B and D are 1. The value T (A, 

C, Z) for file C is 2, the number of commits elapsed since files A and C were co-committed 

is 2. 

At commit K, file A does not participate in the commit. Thus, the overall decay is applied 

to the value of file A in commit K using equation 5, where the value Tdiff(A, K) is 1 as the 

total number of commits elapsed since file A was committed is 1. If we assume the segment  

width for file A is 4, then in segment [X, K] the slope is negative (  ) i.e. from Strength (A, 

X) = 9 to Strength (A, K) = 2.6). 

Table IV: Decayed Value of an Example Commits 

Commit_ID BS(A,B,cid) BS(A,C,cid) BS(A,D,cid) BS(A,E,cid) OS(A,cid) 

X 2 2.5 1.5 3 9 

Y 2.1 1.5 1.7 1.8 7.1 

Z 1.26 0.9 1.02 2.4 5.58 

K NA NA NA NA 2.6 

 

3.4.3 Error Proneness Identification 

Segments: When we consider a system's commit timeline as a sequence of commits L = 

[cid1, cid2, …., cidn] we can partition this sequence into an ordered  list S of consecutive 

segments  S1, S2, …., Sk, that is S = [S1, S2, …., Sk]. Each segment Si is composed of 

consecutive commits cidm, cidm+1, …., cidm+(p−1). In this case, we say that the width of the 

segment is p commits long. Fig. 7 is a visual representation of a segment width of file A. 
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Fig.  7 Schematic representation of a Segment 

In this respect, one approach would be to set the width of all segments constant and consider 

one width for all segments of all files. However, as different files in the system are 

committed at different rates throughout the system's operational life, the width of segments 

with respect to a given file should vary. Otherwise, files exhibiting high commit 

frequencies will be over represented in a segment of fixed-width p, while infrequently 

committed files may not have any commits in a segment of fixed width p. 

In the proposed framework, we opt to vary the width of the segment per individual file. 

Therefore, one file, say file A, will be analyzed considering segments of width p
A
, while 

another file, say B will be analyzed considering segments of width p
B
. The computation of 

the segment width to be used for a given file is discussed below. 

Segment Width:  Let us assume for file A its n-many commits cidA,1, cidA,2, ...., cidA,n, 

over the system's operational life so far. If we consider the time difference in hours (cidA,i, 

cidA,i+1) of commits elapsed between one commit cidAi where file A is committed and the 

next commit cidA,i+1 where A is again committed, we can obtain a sequence of commit 

segments csegA,1,2 
between commit cidA,1 and cidA,2, csegA,2,3 between cidA,2 and cidA,3, all 

the way up to csegA,n-1,n for commits cidA,n-1 and cidA,n. Once we calculated the time elapsed 

between two commits, we need to normalize the value by taking the modulus, i.e., the 
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remainder of the value when divided by 24. The value 24 is selected because one day has 

24 hours.    

For each such sequence of values csegA,1,2, csegA,2,3, …., csegA,n-1,n for file A, we compute 

the mean value to be the value of segment width for file A. We define the segment width 

SwidthA for file A as: 

    SwidthA = mean (csegA,1,2, csegA,2,3, …., csegA,n-1,n)                                                               (9) 

That is, SwidthA is the average number of appearances of file A per commit for all files 

throughout the operational life of the system. As files are committed with different 

frequencies, the value SwidthA varies for each file A. 

 

Segment Modelling: Based on the above framework, we consider the vector VA = [SA,1, 

SA,2, …., SA, k], of segments for file A. Internally, each segment SA,i is represented by the 

structure: 

    < Fdi, Fcidi, Strength (A, cidj), …., Strength (A, cidj+(k–1)), Ldi, Lcidi, EP (A, Si+1) >     (10) 

where Fdi, corresponds to the first commit date of the segment SA,i, Fcidi is the first 

commit_id of the segment SA,i, followed by the sequence of the overall strength of file A 

for each of its k-many commits in segment SA,i. The number of commits of file A in the 

segment and the number of occurrences of overall strength values in the segment depend 

entirely on the segment's width. The sequence of strength values is followed by a file 

followed by Ldi, and Lcidi, denoting the last commit_id and last commit date in the segment 

SA,i. Finally, EP (A, Si+1) is a Boolean value that contains information about whether file A 

has been found buggy in its subsequent segment SA,i+1. 

Segment Slope: Let us assume that for file A we have calculated its segment width as 

SwidthA, and that in this segment we have k-many commits cidA,m, cidA,m+1, cidA,m+(k-1) of 

the file A, as depicted in Fig. 8. Since for each such commit cidA,j, j ∈ {m, m + 1, …., 

m+(k–1)} we have computed the value Strength(A, cidA,j), we can form a sequence of k-

many values Strength(A, cidA,m), Strength(A, cidA,m+1), …., Strength(A, cidA,m+(k-1) ).  
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Fig.  8 Schematic representation of a Slope 

We define the slope of a segment Si with respect to file A to be the slope of the line LA,Si 

that linearly interpolates all the points (cidA,m, Strength(A, cidA,m)), (cidA,m+1, Strength(A, 

cidA,m+1)), …., (cidA,m+(k-1) , Strength(A, cidA,m+(k-1)))  

    SegSlope (Si, A) = Slope (LA, Si)                                                                                  (11) 

Error Prediction: For our system, we have considered three different scenarios. In the 

first scenario, we have looked at the slope of two consecutive segments and tried to predict 

whether the file was buggy or not in the third segment. In the second scenario, we have 

looked at the slope of three consecutive segments and tried to predict whether the file was 

buggy or not in the fourth segment. Finally, in the third scenario, we have looked at the 

slope of four consecutive segments and tried to predict whether the file was buggy or not 

in the fifth segment. We consider as gold standard the reconciled GitHub and Bugzilla data.  

Fig. 9 schematic representation of an error prediction of a file A. 
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Fig.  9 Schematic representation of an error prediction 

The logic by which we predict whether a file will be buggy in the next segment given its 

slopes for the previous segments is depicted in Table V. 

Table V: Segment Combination Prediction Scenarios 

 2 Segments  

 Slope 

  Predict 3
rd
 3 Segments  

  Slope 

   Predict 4
th
  4 Segments  

 Slope 

  Predict 5
th
 

any of the two ↑ Buggy three ↑ Buggy four ↑ Buggy 

any of the two → Buggy any two ↑ Buggy any three ↑ Buggy 

two ↓ Non-Buggy any two → Buggy any two ↑ Buggy 

NA              NA NA any ↑ any → Buggy any three → Buggy 

NA              NA NA any two ↓ Non-Buggy any two → Buggy 

NA              NA NA three ↓ Non-Buggy any three ↓ Non-Buggy 

NA              NA NA NA NA four ↓ Non-Buggy 
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3.4.4 The Case Study of a File 

This section outlines the case study performed at files collected from the GitHub repository 

and KDE.bugzilla. 

Parsing Strategy: The modeling framework uses the univocity parser [34] to parse the csv 

file produced by the repository data extractor. It directly maps the rows to beans using java 

annotations, limiting the rows to read, ignoring white spaces, and concurrent reading with 

optimized memory cache. Hence, it is suitable for reading large data sets as it reduces the 

computation load. Parsed data is organized into a HashMap so that with the help of two 

keys, we can easily refer to the value in the table. The value associated with the keys 

includes the list of all the files (objects) that belong to the same commit. The commit object 

contains the commit_id, and the file object contains the following attributes: file_id, 

whether the file is buggy or not, the number of lines added, deleted, and changed in the 

file. The structure depicting the files and their attributes for a given commit (here the 

commit ’c78ec24c74d6443ee8de768b9e5c855d7001c812’) is listed below. 

CommitDetails {commit_id= ‘c78ec24c74d6443ee8de768b9e5c855d7001c812’ {= 

[File_Details{file_id=’27c1d7d6-3e41-11eab1b8482ae32cf5b4’,commitId=’c78ec24c74 

d6443ee8d e768b9e5c855d7001c82’, addition =’86’, deletion =’81’, bugFixing=false, 

date = ‘2019-04-08 17:53:59+00:00’, caddition = ‘257’, cdeletion =’530’}], 

[FileDetails {fileId = ‘27c1d7f2-3e41-11ea-ac36482ae32cf5b4’, commitId = ’c78ec24c7 

4d6443ee8de768b9e5c855d7001c812’, addition=’2’, deletion=’0’, bugFixing=false, 

date=’2019-040817:53:59+00:00’, addition=’257’, cdeletion = ’530’}]}       (12) 

In Eq. (12) above, File Id’s ‘27c1d7f2-3e41-11ea-ac36482ae32cf5b4’ and ‘a27c1d7d6-

3e41-11eab1b8482ae32cf5b4’ are committed together in commit_id 

‘c78ec24c74d6443ee8de-768b9e5c855d7001c812’. The lines added and deleted per file 

and for the commit as a whole, are depicted in attributes ‘addition’, ‘deletion’, ‘caddition’ 

and ‘cdeletion’, respectively. The attribute bugFixing indicates whether the commit is a 

bug fixing commit or not. The HashMap presented above in Eq. (12) is then further 

transformed to better depict important file information for any co-committed files. The 

resulting HashMap complies with the Guava table depicted in Fig. 5. 
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c49ebaac-cdcf-11ea-bed7-482ae32cf5b4={c49ebab1-cdcf-11ea-a075-482ae32cf5b4= 

{264=[2, 3, 0, 2, 6, 0, 26, 4.0, 2.702702760696411, 13.51351261138916, 2010-08-20 

14:29:07+00:00, 1, 194, 191, true], 267=[3, 3, 0, 2, 6, 0, 26, 4.0, 2.702702760696411, 

13.51351261138916, 2010-09-01 21:37:58+00:00, 1, 194, 191, true], 579=[6, 8, 21, 3, 

34, 3, 132, 17.0, 63.6363639831543, 9.090909004211426, 2011-07-21 23:14:54+00:00, 

0, 223, 192, false]}, c49f2fe8-cdcf-11ea-85b8-482ae32cf5b4={267=[3, 3, 0, 8, 6, 0, 26, 

4.0, 2.702702760696411, 67.56756591796875, 2010-09-01 21:37:58+00:00, 1, 194, 191, 

true], 579=[7, 8, 21, 4, 34, 3, 132, 17.0, 63.6363639831543, 18.18181800842285, 2011-

07-21 23:14:54+00:00, 0, 223, 192, false], 372=[4, 6, 4, 14, 78, 1, 520, 10.0, 27.27272, 

63.63636398, 2011-08-16 22:40:54+00:00 0, 459, 473, false] . . . ..}                          (13) 

The instance of the resulting Hash Table is shown in Eq. (13), where  'c49ebaac-cdcf-11ea-

bed7482ae32cf5b4' is the source file_id (i.e., the file for which the binary strength is 

calculated), and the rest of the structure contains the details of the target files (i.e., the files 

with which the source file is associated with, and which are co-committed with the source 

file), in this case, the files with file_ids 'c49ebab1-cdcf-11ea-a075-482ae32cf5b4', and' 

c49f2fe8-cdcf-11ea-85b8-482ae32cf5b4'. It also contains the details of all commits where 

these files are committed together. For example in Eq. (13) the source file ’c49ebaac-cdcf- 

11ea-bed7-482ae32cf5b4’ is co-committed with target file ’c49ebab1-cdcf-11ea-a075-

482ae32cf5b4’ in commits 264, 267, and 579, while the source file  is  co-committed  also  

with the target file ’c49f2fe8-cdcf-11ea-85b8-482ae32cf5b4’ in commits 267 and 579.  
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Fig.  10 Visual representation of the attributes 

The values in the sequence [2, 3, 0, 2, 6, 0, 26, 4.0, 2.702702760696411, 

13.51351261138916, 2010- 08-20 14:29:07+00:00, 1, 194, 191, true] indicate in order, the 

number of times the target file appears in bug fixing commit so far (here 2), the number of 

times the target file appears in   a non-bug fixing commit so far (here 3), how many lines 

of source file have changed (here 0), how many lines of target file have changed (here 2), 

the average number of lines changed  in the commit 264 (here 6), the minimum number of 

lines changed in the commit 264 (here 0), the maximum number of lines changed in the 

commit 264 (here 26), the median value of the lines changed in commit 264 (here 4.0), the 

percentile of the source file with respect to lines changed in the commit 264 (here the source 

file is at the top 2.702702%), the percentile of the target file with respect to lines changed 

in the commit 264 (here the target file is at the top 13.51351%), the commit  time stamp of 

the target file (here 2010-08-20 14:29...), the Boolean value whether the source file is 

buggy in the commit 264 (here 1), the total number of lines added in the commit overall in 

commit 264 (here 194), the total number of lines deleted overall in the commit 264 (here 

191), and the boolean value whether the commit 264 is a is bug fixing commit, or not (here 

true). The same structure repeats for commit 579, and later on for the second target file 

’c49f2fe8-cdcf-11ea-85b8- 482ae32cf5b4’. 
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Calculation of Strength Scores: The hash table in Eq. (13) is processed to calculate the 

binary strength value between two files. The higher the strength value, the higher the 

association between the two files. After processing, a file's binary strength is stored in a 

HashMap to provide fast access for retrieval. As discussed above, the file's binary strength 

is decayed if it does not participate in the commit (see Eq. (4) and equation Eq. (5)). 

The overall file strength of a file is computed as the sum of binary strength values of the 

file with all the other files committed together in the commit plus the decayed binary 

strength values of the file with other files which has been co-committed in the past. For 

example, suppose file A is co-committed with file B, file C, and file D in a commit X and 

with file E in a previous commit. In that case, the overall strength of file A is the sum of 

the binary strength of all the other files co-committed with file A in commit X, plus the 

decayed binary strength of file A with file E (see Eq. (6)). 

The introduction of decay of the strength value of a file helps to analyze the behavior of a 

file over time as a file may not be committed in every single commit. In this respect, the 

decay of the overall strength covers the concept that a file may be dormant in the sense that 

it has been committed sometime in the past and not seen since then again on a commit. In 

this case, we should not keep considering the file as highly related to other files. Hence, 

we introduce the decay of the overall strength of a file (see equation 7 and equation 8). 

The listing in Eq. (14) below depicts the behavior of the overall strength of an actual file 

obtained from our dataset where 27c1b0a4-3e41-11ea-9288-482ae32cf5b4 is the file_id, 

the date is the commit_time of a file, followed by the overall strength of a file. More 

specifically in (14) the file ’27c1b0a4-3e41-11ea- 9288-482ae32cf5b4’ has overall strength 

value at time ’2015- 10-11 16:42:54+00:00=2.1333332’ (corresponds to a commit) equal 

to 2.1333332, at time 2015-10-28 04:30:37+00:00 equal to 2.7932, and so on. 

The values depicted in Eq. (14) are straight-up computations of the overall strength without 

applying decay, and only for the commits, the file participates. The same values but when 

we consider all commits in the project and applying decay are depicted Eq. (15). 
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27c1b0a4-3e41-11ea-9288-482ae32cf5b4= {2015-10-11 16:42:54+00:00=2.1333332, 20 

15-10-28 04:30:37+00:00=2.7932, 2015-12-05 15:36:23+00:00=2.6787488, 2017 -07-

07  05:53 :48+00:00=2.522886, 2017-10-11 22:28:07+00:00=6.329699, 20 18-09-27 00 

:24: 19+00:00=0.9582231, 2018-11-11 22:17:32+00: 00=23.295345, 2019-04-08 17:53: 

59 + 00:00=16 .482807, 2019-04-08 23:34:13+00:00=0.47562602}                           (14) 

The listing (15) below depicts the decayed overall strength of the same file listed in (14). 

If we compare the corresponding values in (14) and (15), we see  that  in  commit  with 

timestamp 2015-10-16 01:00:56+00:00 file ’27c1b0a4- 3e41-11ea-9288-482ae32cf5b4’ is 

not committed (see (14), while in (15) the overall strength of the file ’27c1b0a4-3e41- 

11ea-9288-482ae32cf5b4’ is decayed from value 2.1333332 (see (15), to value 1.9753835 

(see (14)). 

27c1b0a4-3e41-11ea-9288-482ae32cf5b4= 2015-10-11 16:42:54+00:00=2.1333332, 

201 5 -10-16 01:00:56+00:00 =1.9753835, 2015-10-16 01:01:07+00:00=1.8493395, 

2015 -10 -26 23:16:08+00:00=1.7466254, 2015-10-28 04:30: 37+00: 00=2.7 93932, 

2015 -12-05 1 5:36:23+00:00=2.6787488, 2016-08-04 00:59:09+00:00=2.267512, 2016-

09-16  01:16:3 4  +00 :00=1.9533783, 2017-02-18 03:30:39+00:00=1.7080456, 2017-

02-23  21:41:55 + 00 :00=1.512738, 2017-07-07 05:53:48+ 00:00=2.5  22886, 2017-09-

08 10:20:09 +00:00 =2.1201575, 2017-10-11 22:28:07+00:00=6.329699, 2017-11-29 

17:13:33+ 00:00 = 5.18 2319 , 2018-01-15 18:49:41+00:00=4.308705, 2018-09-26 

01:25:27+00:00=3.6316864, 2018-09-27 00:24: 19+00:00= 0.9582231,2018-11-11 

22:17:32+00:00= 23. 295345, 20 19 -01-0822:05:31+00:00=18.44734, 2019-02-26 

03:09 :37+00:00 =14.82983, 2019-04-08 17:53: 59+00 :00= 16.48 28 07, 2019-04-08 

23:34:13+00:00=0.47562602, 2019-04-13 15:24:13+ 00:00=  0.36501044, 2019-04-23 

15:30:30 +00:00 =0.28438988, 2019-05-2120:37:07+00:00=0.22466981, 2019-10-07 13 

:44:09+ 00: 00 =0.17976652}                                                                                (15) 

Segment Information: As discussed in Section 3.4.3, the segment width for file A is the 

mean number of commits elapsed between two consecutive commits of file A. This value 

depends on the frequency file A is committed over the project’s operational life. Finally, 

we have normalized the obtained value. 
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In our model, the number of overall strength instances in the segment coincides with 

segment width of a file. In (16) the structure of a segment for file ‘27c1fee8-3e41-11ea-

8184-482ae32cf5b4’ is as follows: start commit date of the segment (here 2009-09-09 00: 

43:47+00:00), the start commit_id of the segment (here 

0a13d17542bbf5f714b334b9814459dfb2b2e29e), the slope value of the segment (here 

0.0), the slope qualifier (i.e., ‘U’ if the segment’s slope is positive and ‘D’ if it is negative 

or 0) (here ‘D’), a boolean value to indicate the error proneness of the file in the subsequent 

segment (here ‘true’), the end commit date of the segment (here 2015-10- 

1601:00:56+00:00), and the end commit_id of the segment (here 01d63daa7-70abfdbc8ef 

30316d595b6b72b5dcff). The instance of this segment is depicted in (16) below: 

27c1fee8-3e41-11ea-8184-482ae32cf5b4=[[2009-09-0900:43:47+00:00, 0a13d17542bbf 

5f714b334b9814459dfb2b2e29e, 0.0, D, true, 2015-10-16 01:00:56 +00:00, 01d63daa7-

70abfdbc8ef 30316d595b6b72b5dcff]]                                            (16) 
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Chapter 4 – Results Evaluation, Analysis, and Conclusion 

This chapter discusses the results obtained by analyzing the dependency score trends 

collected from the designed framework to assess the health status of a file and deduce 

whether a file will participate in a bug fixing or non-bug fixing commit in the project's 

subsequent future commits.  

4.1 Experimental Setup and Objective 

In order to create a system that helps to predict the behavior of a file based on the process 

metrics, we used the following hardware and software components: 

Software components: 

1) We have used IntelliJ IDEA IDE to build our project. 

2) We have used Java-11 as a programming language and its features like lambda, 

and streams to improve performance. 

3) We have developed the complete system in spring boot version 2.4.0 to avoid all 

the manual work of writing boilerplate code, annotations, and complete XML 

configuration. 

Hardware components: 

1) A Laptop and a Desktop computer with 8GB RAM with 552GB SSD running the 

Windows 10 operating system. 

4.1.1 Procedure to run the system 

For our experiments, we have analyzed 21 open source projects mined from KDE.bugzilla 

and Github repositories. The systems we have analyzed are listed in Table II sorted by their 

size in total lines of code. For each of the systems we have applied a reconciliation process, 

that is to identify the most probable buggy file in a bug-fixing GitHub commit by 

reconciling this information with information obtained from Bugzilla repositories, and use 

this information as a gold standard for evaluation purposes.  Note that a GitHub bug-fixing 

commit may involve several files, not all of which are the root causes of the problem. The 

reconciliation process aims to identify which file or files are the buggy ones in a bug-fixing 
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commit. The reconciliation process is discussed in detail in section 3.3.3 and is part of work 

conducted in a related project [79]. The reconciled csv is parsed, and a strength scores 

(Binary Strength, Overall Strength) are calculated for each file in a GitHub commit. The 

calculated scores are decayed as new commits appear. Based on the dependency scores, 

and in particular the Overall Strength score  we examine the trend of each file as time 

elapses, and we try to reason on whether this file will be participating in a bug fixing 

commit in the immediately following commits using reconciliation information. The 

designed system processes the parsed information and generates a .csv that contains the 

numbers associated with different scenarios, i.e., scenario 1 (i.e., the health status of a file 

in one segment predicts its health status on the second segment), scenario 2 (i.e., two-

segments predict the third), scenario 3 (i.e., three segments predict the fourth), and scenario 

4 ( i.e., four segments predict the fifth).  

4.2 Experimental Results 

The results we have obtained are reported a) per strategy and b) per scenario. For each of 

the three analysis strategies presented in Section 3.4.2, we consider four different scenarios. 

The first scenario is to analyze the behavior of a file in one segment and predict its behavior 

on the next segment (note that a segment consists of a series of commits). The second 

scenario is to analyze the behavior of a file in two segments and predict its behavior on the 

next (i.e. third) segment. The third scenario is to analyze the behavior of a file in three 

segments and predict its behavior on the next (i.e. fourth) segment. Finally, the fourth 

scenario is to analyze the behavior of a file in four segments and predict its behavior on the 

next (i.e. fifth) segment. The following Tables starting from Table VI depict the results we 

have obtained form 21 open source systems and for which GitHub and Bugzilla data were 

available for the reconciliation process to be applied.  

In these tables, a U indicates positive segment slope, while D indicates a negative slope. 

For example, in Table XIV and for the system akregator,  we report that in 12.6 cases the 

slope of the segment is positive (i.e. upward trend) and the immediate next segment is 

buggy, whereas in cases 468.3 the slope of the segment is negative (i.e. downward trend) 

and the immediate next segment is non-buggy. These values are in decimal points because 

we have applied the analysis for each system 10 times starting from different segments as 
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an initial point, and we took the average value of the results of all runs. Similarly, Table 

XV contains the summation of given values of all the systems defined in table VI 

(Strategy1 – Scenario 1) with the corresponding value of true and false. The value of 

true/false indicates the ratio of buggy to non-buggy segments.  

In Table VIII, we report results for Strategy 1, Scenario 2 and so on. In Table VIII, UU 

means two consecutive segments both having a positive slope, UD means the first segment 

has a positive slope while the second consecutive segment has a negative slope, DU means 

the first segment has a negative slope while the second consecutive segment has a positive 

slope, and DD means the two consecutive segments has a negative slope.  

4.3 Result analysis of Strategy 1 

4.3.1 Strategy 1 - Scenario 1  

Table VI contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As depicted in Table 

VI, for scenario 1 (i.e. examining the previous segment’s behavior and predict the file’s 

behavior in the next), we observe that the upwards slope is not a good predictor of whether 

the file will be buggy on the next segment. On the other hand, we observe that if the trend 

is downward then this is a very good predictor of whether the file will be non-buggy in the 

next segment.  

In Table VII, we observe that if the trend is downward then this is a very good predictor of 

whether the file will be non-buggy in the next segment. Table VII depicts that 1,038 cases 

being buggy vs. 370,530 being non-buggy in the next segment if the trend is D. On the 

other hand, if the trend is U then this is not a good indicator of whether the file will be 

buggy in the next segment (i.e. if the trend is U in the previous segment, in 117 cases the 

file was buggy in the next segment, and 6207 cases the file was not buggy in the next 

segment) 

However, the ratio of the file being buggy versus being non-buggy in the next segment is 

6.7 times higher (i.e. 0. 01885/0. 002801) when the previous segment has a upward slope 

compared to when segment has downward slope which is an encouraging result and 

requires further analysis. 
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Table VI: Scenario 1- Instances of Individual Project Where One Segment Predicts 

Second 

 

 

Table VII: Scenario 1- Total of One Segment Predict Second 

File Buggy in next 
Segment U D 

TRUE 117 1038 

FALSE 6207 370530 

TRUE/FALSE 0.01885 0.002801 
 

 

In this scenario, we were expecting the number of segments in [TRUE, U], i.e., 117 must 

be more as compared to number of segments in [FALSE, D] to satisfy our hypothesis. On 

the other side, in the case of [FALSE, D], i.e., 370530 we have achieved good numbers if 

compared to [TRUE, D], i.e., 1038.  

Systems File Buggy in next Segment U D Systems File Buggy in next Segment U D

TRUE 1 20 TRUE 3 32

FALSE 175 14420 FALSE 194 11867

TRUE 1 12 TRUE 15 56

FALSE 843 50732 FALSE 223 12738

TRUE 6 66 TRUE 15 56

FALSE 193 10751 FALSE 208 5805

TRUE 2 33 TRUE 6 69

FALSE 226 13815 FALSE 169 9908

TRUE 3 44 TRUE 9 63

FALSE 174 18715 FALSE 193 8303

TRUE 4 41 TRUE 4 28

FALSE 179 9028 FALSE 588 20332

TRUE 8 206 TRUE 16 110

FALSE 529 30361 FALSE 268 9470

TRUE 5 24 TRUE 3 39

FALSE 178 28629 FALSE 216 21810

TRUE 6 49 TRUE 4 24

FALSE 583 13510 FALSE 487 36421

TRUE 2 19 TRUE 3 15

FALSE 136 8447 FALSE 235 10691

TRUE 1 32

FALSE 210 24777
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4.3.2 Strategy 1 - Scenario 2 

Table VIII depicts the number of instances of the next segments that appear in the project 

as bug fixing commit or non-bug fixing commit based on the trend. As given in Table VIII, 

for scenario 2 (i.e., examining the previous two segments' behavior and predict the file’s 

behavior in the third segment), we observe that the upwards slope is not a good predictor 

of whether the file will be buggy on the next segment. On the other hand, we observe that 

if the trend is downward then this is a very good predictor of whether the file will be non-

buggy in the next segment. Table IX depicts the overall behavior of systems using strategy 

2 defined in Table II. 

Table VIII: Scenario 2- Instances of Individual Project Where Two Segment 

Predicts Third 

 

In Table IX, we observe that if the trend is downward then this is a very good predictor of 

whether the file will be non-buggy in the next segment depicts 473 cases being buggy vs. 

172,246 being non-buggy in the next segment. On the other hand, if the trend is upward 

then this is not a good indicator of whether the file will be buggy in the next segment.  

Systems File Buggy in next Segment UU UD DU DD Systems File Buggy in next Segment UU UD DU DD

TRUE 0 0 1 9 TRUE 0 1 2 16

FALSE 4 89 66 6733 FALSE 5 100 79 5509

TRUE 0 0 1 6 TRUE 0 5 6 18

FALSE 7 421 349 23577 FALSE 15 99 85 5926

TRUE 0 3 4 27 TRUE 4 8 5 15

FALSE 6 96 69 4997 FALSE 13 79 87 2662

TRUE 0 1 0 17 TRUE 1 2 1 33

FALSE 12 92 97 6428 FALSE 6 77 74 4600

TRUE 0 6 1 23 TRUE 1 0 5 28

FALSE 3 84 65 8760 FALSE 7 81 89 3835

TRUE 0 0 3 17 TRUE 1 2 1 14

FALSE 9 78 76 4186 FALSE 4 279 263 9330

TRUE 1 5 1 103 TRUE 0 2 8 51

FALSE 25 220 233 14100 FALSE 16 120 109 4352

TRUE 0 1 2 13 TRUE 0 1 0 16

FALSE 2 73 96 13430 FALSE 12 87 93 10212

TRUE 0 1 3 22 TRUE 0 1 2 12

FALSE 19 250 251 6135 FALSE 17 225 205 16980

TRUE 0 2 1 9 TRUE 0 0 3 7

FALSE 4 53 64 3930 FALSE 27 80 89 4962

TRUE 0 0 0 17

FALSE 5 91 100 11602
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Furthermore, the ratio of the file being non-buggy versus being buggy in the next segment 

is 18 times higher (i.e. 0. 036/0. 002) when the previous segment has a downward slope.  

 

Table IX: Scenario 2- Total of Two Segment Predict Third 

File Buggy in next 
Segment UU UD DU DD 

TRUE 8 41 50 473 

FALSE 218 2774 2639 172246 

TRUE/FALSE 0.036697 0.01478 0.018947 0.002746 

4.3.3 Strategy 1 - Scenario 3 

Table X contains the number of instances of the next segments that appear in the project as 

bug fixing commit and non-bug fixing commit based on the trend. As given in Table X, for 

scenario 3 (i.e., examining the previous three segments' behavior and predict the file’s 

behavior in the fourth segment), we observe that the upwards slope is not a good predictor 

of whether the file will be buggy on the next segment. On the other hand, we observe that 

if the trend is downward then this is a very good predictor of whether the file will be non-

buggy in the next segment. Table X depicts the overall behavior of systems using strategy 

3 defined in Table II. 

The result of scenario 3 in Table XI, (i.e. three segments and predict the file’s behavior in 

the fourth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope is an excellent predictor of the file being 

non-buggy. 

In Table XI, we observe that if the trend is downward then this is a very good predictor of 

whether the file will be non-buggy in the next segment (293 cases being buggy vs. 109,804 

being non-buggy in the next segment). On the other hand, if the trend is upward then this 

is not a good indicator of whether the file will be buggy in the next segment.  Here we also 

observe that the ratio of the file being non-buggy versus being buggy in the next segment 

is 26 times higher (i.e. 0.052/0.002) when the previous segment has a downward slope. 
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Table X: Scenario 3- Instances of individual project where three segments predict 

fourth 

 

Systems File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 0 1 1 0 0 0 0 3

FALSE 0 40 56 45 1 3 3 4313

TRUE 0 0 0 0 0 0 0 5

FALSE 0 254 262 212 6 5 4 15015

TRUE 0 4 0 1 0 0 0 15

FALSE 0 53 46 57 4 3 0 3183

TRUE 0 1 0 1 0 0 1 6

FALSE 2 64 48 52 6 6 4 4110

TRUE 0 0 2 2 0 0 0 12

FALSE 0 49 46 36 2 3 6 5628

TRUE 0 1 0 4 0 0 0 11

FALSE 3 35 59 34 4 4 5 2667

TRUE 0 1 2 0 0 0 2 70

FALSE 0 146 140 146 16 7 6 8968

TRUE 0 0 2 0 0 0 0 9

FALSE 0 53 50 53 1 2 2 8639

TRUE 0 1 1 1 0 0 0 15

FALSE 1 128 160 165 9 13 14 3815

TRUE 0 1 0 0 0 0 0 4

FALSE 2 24 37 41 2 1 4 2513

TRUE 0 0 0 0 0 0 0 11

FALSE 0 52 61 65 2 4 3 7447

TRUE 0 0 0 2 0 0 0 8

FALSE 1 50 55 61 1 4 4 3510

TRUE 0 5 4 3 2 0 1 12

FALSE 1 61 43 45 9 8 7 3781

TRUE 1 2 2 3 1 1 0 5

FALSE 2 44 43 42 10 11 9 1683

TRUE 0 3 0 0 0 0 0 21

FALSE 0 50 55 36 6 4 2 2925

TRUE 0 1 4 2 0 1 0 26

FALSE 0 59 45 49 2 5 4 2420

TRUE 0 3 2 1 0 1 0 12

FALSE 0 173 158 171 5 4 4 5868

TRUE 0 0 5 2 0 0 0 25

FALSE 1 66 68 76 10 7 5 2749

TRUE 0 0 0 0 0 0 0 11

FALSE 2 67 54 47 5 6 1 6550

TRUE 0 0 3 0 0 0 0 7

FALSE 2 123 130 136 11 10 5 10859

TRUE 0 0 1 0 0 0 0 5

FALSE 2 46 53 39 11 14 12 3161
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Table XI: Scenario 3- Total of Three Segment Predict Fourth 

 
 

4.3.4 Strategy 1 - Scenario 4 

Table XII contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XII, for scenario 4 (i.e., examining the previous four segments' behavior and predict the 

file’s behavior in the fifth segment), we observe that the upwards slope is again not a good 

predictor of whether the file will be buggy on the next segment. On the other hand, we 

observe that if the trend is downward then this is a very good predictor that the file will be 

non-buggy in the next segment. Table XII depicts the overall behavior of systems using 

strategy 4 defined in Table II. 

The result of scenario 4 in Table XIII, (i.e. fourth segments and predict the file’s behavior 

in the fifth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope is an excellent predictor of the file being 

non-buggy.  

Here we also observe that the ratio of the file being non-buggy versus being buggy in the 

next segment is 166 times higher (i.e. 0.333/0.002) when the previous segment has a 

downward slope. 

 

 

 

 

 

 

File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 1 24 29 22 3 3 4 293

FALSE 19 1637 1669 1608 123 124 104 109804

TRUE/FALSE 0.052632 0.014661 0.017376 0.013682 0.02439 0.024194 0.038462 0.002668
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Table XII: Scenario 4- Instances of individual project where fourt segments predict 

fifth 

 

 

 

Systems File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4

FALSE 0 0 0 0 0 1 0 3 2 3 2 44 38 44 27 3485

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

FALSE 0 0 0 1 0 3 7 3 3 3 4 206 186 227 176 12077

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 14

FALSE 0 1 0 1 0 2 4 2 3 3 3 43 35 46 29 2562

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 4

FALSE 0 0 0 3 0 5 3 4 3 4 3 36 41 49 47 3315

TRUE 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 11

FALSE 0 0 1 0 0 2 2 0 3 6 1 33 33 45 31 4563

TRUE 0 0 0 1 0 0 0 0 0 0 1 0 2 0 0 9

FALSE 0 2 0 0 0 4 1 2 8 3 3 35 30 33 30 2149

TRUE 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 52

FALSE 0 0 2 2 1 7 2 13 4 6 3 114 104 102 125 7235

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6

FALSE 0 0 0 0 1 0 2 1 1 2 0 32 45 35 54 7028

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 11

FALSE 0 1 1 3 1 8 12 7 4 11 15 102 108 132 114 3006

TRUE 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 5

FALSE 0 0 0 0 1 1 2 2 1 3 4 27 24 23 31 2024

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

FALSE 0 0 1 1 0 1 1 3 3 0 4 35 48 54 44 6056

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

FALSE 0 0 0 1 0 1 1 3 1 3 4 49 41 47 31 2832

TRUE 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 7

FALSE 1 1 2 0 1 5 9 4 7 6 4 31 35 47 35 3060

TRUE 1 0 0 1 0 2 0 0 2 2 0 0 0 1 0 6

FALSE 0 1 0 1 3 3 6 4 7 3 5 30 29 31 42 1341

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 11

FALSE 0 0 0 2 0 3 2 2 3 2 2 36 30 35 37 2370

TRUE 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 14

FALSE 0 1 0 1 0 2 4 3 7 1 4 32 41 42 34 1952

TRUE 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 9

FALSE 0 0 0 0 0 2 1 3 5 6 3 140 147 134 127 4658

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 24

FALSE 0 1 0 1 1 3 6 11 2 5 4 52 53 53 50 2195

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7

FALSE 0 1 1 0 1 5 4 4 4 2 0 32 41 50 48 5316

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5

FALSE 0 1 2 1 1 6 0 6 3 3 4 116 106 107 102 8770

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

FALSE 2 2 1 3 2 5 3 11 3 4 9 35 31 30 37 2553
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Table XIII: Scenario 4- Total of four segments predicting fifth 

 
 

4.4 Result analysis of Strategy 2 

4.4.1 Strategy 2 - Scenario 1 

Table XIV helps to examine the previous segment’s behavior and predict the file’s behavior 

in the next using strategy 2. As defined in Table V, we have used different segment 

combinations and prediction scenarios to evaluate the results.  

Table XIV contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XIV, for scenario 1 (i.e. examining the previous segment’s behavior and predict the file’s 

behavior in the next), we observe that the upwards slope is not a good predictor of whether 

the file will be buggy on the next segment. On the other hand, we observe that if the trend 

is downward then this is a very good predictor that the file will be non-buggy in the next 

segment.  

File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD

TRUE 1 0 1 2 0 3 0 0

FALSE 3 12 11 21 13 69 72 91

TRUE/FALSE 0.333333 0 0.090909 0.095238 0 0.043478 0 0

File Buggy in next Segment DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 4 5 1 6 11 9 15 216

FALSE 77 79 81 1260 1246 1366 1251 88547

TRUE/FALSE 0.051948 0.063291 0.012346 0.004762 0.008828 0.006589 0.01199 0.002439
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Table XIV: Scenario 1- Instances of individual project where one segment predicts 

second 

 
 

Table XV: Scenario 1- Total of One Segment Predict Second 

File Buggy in next Segment U D 

TRUE 661.7 3551 

FALSE 15371.7 302082.1 

TRUE/FALSE 0.043047 0.011755 
 

In Table XV, we observe that if the trend is downward then this is a very good predictor of 

whether the file will be non-buggy in the next segment depicts 3,551 cases being buggy vs. 

302,081 being non-buggy in the next segment. On the other hand, if the trend is upward 

then this is not a good indicator of whether the file will be buggy in the next segment. 

Furthermore, the ratio of the file being non-buggy versus being buggy in the next segment 

is 3.6 times higher (i.e. 0.043/0.0117) when the previous segment has a downward slope.  

Systems File Buggy in next Segment U D Systems File Buggy in next Segment U D

TRUE 12.6 54.2 TRUE 11 44.6

FALSE 468.3 13994.5 FALSE 821.7 5116

TRUE 19.4 70.2 TRUE 43.3 125.6

FALSE 399 8594.2 FALSE 562.9 13218.2

TRUE 56.8 198.7 TRUE 23.6 53.7

FALSE 425 5129.1 FALSE 1194.2 14597.7

TRUE 21.8 165.7 TRUE 14 196.3

FALSE 571.5 23206.2 FALSE 790.7 26821.4

TRUE 49.3 213.7 TRUE 14 115.6

FALSE 366.8 8528.6 FALSE 371.8 5530.7

TRUE 7 41.8 TRUE 17.8 141.2

FALSE 1098 25995.5 FALSE 559.6 18037.4

TRUE 130.6 428 TRUE 56.9 251.7

FALSE 603.4 8522 FALSE 520.8 9161.2

TRUE 29.2 207.4 TRUE 45.5 739

FALSE 823.3 20702.1 FALSE 2266.7 26154.8

TRUE 12 68 TRUE 3 20.3

FALSE 374.7 8644.2 FALSE 122.3 4175.5

TRUE 70.8 242.2 TRUE 2 10

FALSE 553 10034.8 FALSE 1906.9 22636.1

TRUE 21.1 163.1

FALSE 571.1 23281.9
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4.4.2 Strategy 2 - Scenario 2 
 

Table XVI: Scenario 2- Instances of individual project where two segments predict 

third 

 

Table XVI contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XVI, for scenario 2 (i.e., examining the previous two segments' behavior and predict the 

file’s behavior in the third segment), we observe that the upwards slope is not a good 

predictor of whether the file will be buggy on the next segment or not. On the other hand, 

we observe that if the trend is downward then this is a very good predictor that file will be 

non-buggy in the next segment. Table XVII depicts the overall behavior of systems using 

strategy 2 defined in Table II. 

 

Systems File Buggy in next Segment UU UD DU DD Systems File Buggy in next Segment UU UD DU DD

TRUE 0.3 4.8 5 21 TRUE 3 11 3 13.1

FALSE 11 201.4 205.5 6412.2 FALSE 83 306 325.1 1948.5

TRUE 0.2 4.1 7.9 29.8 TRUE 2.3 11.5 19.4 45.7

FALSE 36 156.8 151.6 3899.3 FALSE 16.3 251.5 249.2 5991.6

TRUE 5.9 13.6 21 82 TRUE 1.9 4.9 12.3 19.6

FALSE 16.9 197.4 186.6 2221.1 FALSE 31.5 607.3 486.5 6225.2

TRUE 1.1 8.4 10.8 69.9 TRUE 0.8 5.5 4 57.7

FALSE 9.6 260.9 258.6 10687.4 FALSE 12.1 287.5 274 12448.4

TRUE 2.3 20.2 20.1 80.9 TRUE 0 14 4 54.3

FALSE 13.1 159.5 161.3 3867.4 FALSE 15.6 165.2 157 2428.6

TRUE 1 3 2 19.7 TRUE 1.7 7.5 6.7 58.5

FALSE 13.9 504.7 542.3 11589.7 FALSE 16.9 246.2 247.9 8269.9

TRUE 8.1 35.2 55.1 172.7 TRUE 2.8 17.3 26.3 99.8

FALSE 39.7 259.2 244.7 3753.2 FALSE 18.3 240.1 226.3 4087.8

TRUE 0.8 13 12.9 80 TRUE 1.6 16.9 21.9 443.6

FALSE 21.4 369.7 370.6 9408.1 FALSE 45.7 1209.5 900.9 11164.3

TRUE 0.7 5.7 4.3 26.2 TRUE 0 1 0 8.5

FALSE 5.7 173.5 170.1 3917.7 FALSE 1 38.7 64.5 1851.9

TRUE 2.3 20.3 32 91.9 TRUE 0 3 1 2

FALSE 26.5 240.7 239.2 4479.4 FALSE 81.7 1014.9 648.4 9318.8

TRUE 0.6 10.4 9.4 66.2

FALSE 9.6 245.4 259.6 10756.5
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Table XVII: Scenario 2- A total of two segments predict third 

File Buggy in next Segment  UU UD DU DD 

TRUE 37.4 231.3 279.1 1543.1 

FALSE 525.5 7136.1 6369.9 134727 

TRUE/FALSE 0.07117 0.032413 0.043815 0.011454 
 

As depicted in Table XVII, the downward trends are very good predictors of the file being 

healthy in the next segment (1,543.1 being buggy vs. 134,727 being non-buggy). Also, as 

before, the ratio of the file being non-buggy versus being buggy in the next segment is 6 

times higher (i.e. 0.0711/0.0114) when the previous segment has a downward slope. 

4.4.3 Strategy 2 - Scenario 3 

Table XVIII reports the number of instances of the next segments that appear in the project 

as bug fixing commit segment (i.e. it contains a bug fixing commit) and non-bug fixing 

commit segment based on the trend. As depicted in Table XVIII, for scenario 3 (i.e., 

examining the previous three segments' behavior and predict the file’s behavior in the 

fourth segment), we observe that the upwards slope is not a good predictor of whether the 

file will be buggy on the next segment. On the other hand, we observe that if the trend is 

downward then this is a very good predictor of whether the file will be non-buggy in the 

next segment. Table XVIII depicts the overall behavior of systems using strategy 3 define 

in Table II. 
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Table XVIII: Scenario 3- Instances of individual project where three segments 

predict fourth 

 

 

Systems File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 0.2 1.2 2.6 3.3 0.3 0 0.8 11.8

FALSE 0.9 122.5 114.8 128.4 5.4 5.5 13.1 4028.8

TRUE 0 3 5.4 1.7 0.3 0.1 1.2 16.1

FALSE 3.1 81.7 77.8 82.5 20.5 17.3 21.7 2442.9

TRUE 0.2 7.7 11.7 7.3 1.3 3.2 2.5 49.9

FALSE 2.4 106 104.3 121.6 11.6 10.1 15.4 1324.2

TRUE 0 3.4 6.8 5.4 0.3 0.8 0.6 40.1

FALSE 0.2 154.6 160.6 163.4 5.3 4.8 9.7 6766.7

TRUE 0.2 10.8 11.6 11.3 2.1 1 4.2 40.8

FALSE 0.7 90.2 89.9 92.3 8.4 9.2 11.1 2414.6

TRUE 0 1 0 5 0 0 0 10.3

FALSE 1 230.5 269.7 358.4 25.1 4.4 12.7 7432.8

TRUE 1.3 19 24.6 18.7 4.6 4.5 7.2 90.9

FALSE 3.4 148.8 142.6 151.4 21.4 18.5 17.8 2284.3

TRUE 0 9.2 6.6 7.3 0.5 0.1 0.7 46.1

FALSE 0.7 219.3 219.6 227.3 13.7 12.7 19 5866.7

TRUE 0 0 2 1.3 0 1.2 1.3 18.7

FALSE 1.5 78 113.7 134.3 3.5 3.2 6.2 2426.8

TRUE 0.8 13.7 18.1 12.3 1.9 0.5 3.2 46.6

FALSE 1.5 149.1 141.9 143.5 14 13.2 12.7 2757.8

TRUE 0 3.5 4.8 4.4 0.4 0.7 0.8 42.2

FALSE 0.1 165.5 157.1 153.6 6.1 6 9.1 6790.4

TRUE 2 1 2 5 5 0 0 6.2

FALSE 14 134.9 176.6 188.9 70 24 23 1027.8

TRUE 0.1 4.2 9.4 6.4 1.1 1.7 2.9 23.2

FALSE 1.3 149.9 149.1 151.4 11.3 10.1 11.5 3728.9

TRUE 0 1.1 6.4 2.9 0.1 0 1.8 12.9

FALSE 3.8 269.7 307.2 416.2 31.3 16.4 17.3 3763.9

TRUE 0 3.2 3.1 3.6 0.3 0.3 0.5 49.4

FALSE 0.2 217.7 216.4 222 10.6 8.9 14.4 7766.9

TRUE 0 4 5 6 0 0 0 27.2

FALSE 0 94.5 95.2 112.9 10.7 4.2 5.4 1481.6

TRUE 0.1 3.5 4.2 4.7 0.7 0.8 0.9 32.5

FALSE 1.3 146 146.8 143.2 11 10.7 12.9 5211.7

TRUE 0 11.7 12.3 12.7 2.2 2.2 2.6 52.2

FALSE 0.3 141.2 141.6 137.6 9.8 10.8 14.5 2500.8

TRUE 0.5 4.5 12.7 8.9 0.9 0.4 1.5 174.5

FALSE 0.2 582.9 714.2 683.9 16.2 22.1 64.1 6804.5

TRUE 0 0 1 0 1 1 0 5.5

FALSE 0 41.5 23.3 32.4 0 0 0 1167.2

TRUE 0 0 1 0 0 0 0 1

FALSE 10 701.9 342.3 334.1 36.3 26.2 66 5635.5
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The result of scenario 3 in Table XIX, (i.e. three segments and predict the file’s behavior 

in the fourth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope is an excellent predictor of the file being 

non-buggy.  

Also, the ratio of the file being non-buggy versus being buggy in the next segment is 12 

times higher (i.e. 0.115/0.0095) when the previous segment has a downward slope. 

Table XIX: Scenario 3- Total of three segments predicting fourth 

 
 

4.4.4 Strategy 2 - Scenario 4 

Table XX contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XX, for scenario 4 (i.e., examining the previous four segments' behavior and predict the 

file’s behavior in the fifth segment), we observe that the upwards slope is not a good 

predictor of whether the file will be buggy on the next segment. On the other hand, we 

observe that if the trend is downward then this is a very good predictor of whether the file 

will be non-buggy in the next segment. Table XX depicts the overall behavior of systems 

using strategy 4 defined in Table II. 

The result of scenario 4 in Table XXI, (i.e. fourth segments and predict the file’s behavior 

in the fifth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope is an excellent predictor of the file being 

non-buggy.  

Also, the ratio of the file being non-buggy versus being buggy in the next segment is 6 

times higher (i.e. 0.068/0.010) when the previous segment has a downward slope. 

 

File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 5.4 105.7 151.3 128.2 23 18.5 32.7 798.1

FALSE 46.6 4026.4 3904.7 4179.3 342.2 238.3 377.6 83624.8

TRUE/FALSE 0.11588 0.026252 0.038748 0.030675 0.067212 0.077633 0.0866 0.009544
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Table XX: Scenario 4- Instances of individual project where four segments predict 

fifth 

 

 

Systems File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 0 0.1 0 0 0 0.1 0.3 0.2 0 0.3 0.2 0.5 1.7 2.5 2.3 8.7

FALSE 0.3 0.3 0.3 1.3 0.5 4.7 6.8 4.1 3.7 12 8.5 90.6 98.7 95.9 98.2 3189.6

TRUE 0 0 0 0.2 0 0.1 0.8 0.5 1 0.1 0.3 1.5 1.4 1.2 2.6 11.9

FALSE 0.1 2.5 4.7 4.8 1.6 12.8 10.1 11.1 12.9 12.9 11 56.3 55.9 55.4 55.1 1941.9

TRUE 0 0.2 0.2 0 0 2.8 2.4 0.8 0.5 1.5 1.4 13.1 5.3 4.9 6.3 28

FALSE 0.3 1.8 1.2 3.1 1.4 4.1 13.7 6.5 8.4 10.9 11.4 75.5 78.8 73.8 70.4 1020.7

TRUE 0 0 0.1 0.1 0 0.8 0.8 0 0.1 0 0.6 3.8 3.9 3.8 3.4 28.4

FALSE 0 0 0.9 0.5 0.3 4.4 6.4 3.8 5.2 8 6.8 124.1 125.5 124.3 125 5410.3

TRUE 0 0.1 0.6 0.3 0.4 0.7 2.6 0.4 1.5 2.2 2 4.6 7.8 7.4 6.1 29.4

FALSE 0.1 0.4 1.2 1.4 0.4 5.6 6.6 4.9 6.7 7.1 9.5 70.2 71.1 65.8 68.7 1903.8

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 3.1 2 0 6

FALSE 0 1 2 2 0 5.4 35 4.4 8 10.7 12.3 186.4 191.8 184.8 276.3 5425.3

TRUE 0.2 0.5 1 0.6 0.4 1.9 4.4 2.8 3 2.3 6 11.1 13.3 11.8 19.1 61.6

FALSE 0.6 2.2 2.5 3 2.1 15.6 15.6 14.4 14 15.7 9.3 104.6 109.2 114.1 100.7 1757.4

TRUE 0 0 0 0.1 0 0.3 0.7 0.6 0.3 1.2 0.3 4.7 6.4 6.6 7.1 31.6

FALSE 0 0.4 0.7 1.4 0.6 9.1 17.9 9.4 10.7 15.5 12.6 160.5 177.2 167.3 155.9 4641.4

TRUE 0 0 0.2 0 0 0 0 0 0 0 0.3 0 1 1.8 2 11.1

FALSE 0 1.1 0.4 0 0.4 4 3 0.5 5.2 6 3.2 86.5 98.7 76.1 56.4 1871.8

TRUE 0.3 0.2 0 0.6 0.4 0.7 1.8 1.4 0.8 1.4 1.7 6.7 7.9 6.7 11.9 31.6

FALSE 0.8 0.7 1.9 2.3 1.2 10.7 12.5 7.3 8.3 9.3 7.7 106.4 114.4 109.5 106.8 2151.3

TRUE 0 0 0 0 0 0.1 0.7 0.1 0.4 0.6 0.3 2.6 2.9 4.2 3.5 27.9

FALSE 0 0.4 0.8 0.1 0.3 4.1 6.1 4.7 4.6 7.6 7.4 119.7 130.1 122.3 128.7 5429.1

TRUE 0 0 1 0 2 0 0 0 0 0 0 0 3 1 2 5.1

FALSE 4 3 7 3 11 38 27.4 14 9 28 12 120.5 140.9 65.2 116.8 724.2

TRUE 0 0.1 0 0 0.4 1 0.5 0.3 0.5 0.1 2.4 3.3 4.2 5.9 8.3 18.3

FALSE 0 0.8 0.8 0.6 0.5 8.2 11.3 7.9 9.1 9.8 9.4 110.9 112.3 117.1 113.6 2929.9

TRUE 0 0 0 0 0 0 0 0 0 0.9 0.1 1.2 1.1 1.2 4.7 6.7

FALSE 0 0 0.1 0.9 2.9 7 14.2 22.7 14.8 19.3 18.8 253.3 250.1 306.1 179.8 2721

TRUE 0 0.2 0 0 0 0.2 0.1 0 0.1 0.4 0.4 4.6 1.6 3.4 2.7 44.6

FALSE 0.1 0.2 1.4 0.2 0.3 8.2 9.4 6.8 7.2 11 12.7 167.5 159.8 188.9 148.8 6157.6

TRUE 0 0 0 0 0 0 0 0 0 2 1 3 3 5 1 18.4

FALSE 0 0 0 0 0 7.6 8 8.2 5.2 2 2.1 70.4 51.3 47.9 87.3 1102.4

TRUE 0 0.1 0.2 0 0.1 0.7 0.4 0.8 0.3 0.6 0.6 2.9 2.7 3.8 2.8 25.3

FALSE 0 0.9 0.9 1.1 0.6 8.2 7.8 6.1 8.5 9.1 8.9 108.4 110.9 115 115.2 4146.1

TRUE 0 0.2 0.6 0.9 0 0.5 1.8 0.9 1.5 1 2.3 8.2 10.1 6.1 9 35.5

FALSE 0 0.2 1.6 1.9 0.6 7.1 12.9 7.1 5.6 10.7 9.7 98 101.8 109 94.3 1958

TRUE 0 0.1 0 0.5 0.6 0.1 0.4 0 0.2 2.5 1.9 19.7 4.6 6.1 8.3 223.9

FALSE 0 1 9.2 1.2 0.2 20 38.1 15.2 7.9 43.7 40.6 460.2 446.8 576.2 337.1 4855.4

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.5

FALSE 0 0 0 0 0 1 0 0 1 0 0 25.7 35.2 22.2 28.8 926.2

TRUE 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 1

FALSE 1 2 3 3 9 21.3 55 41.3 14 74 10 494.2 237.9 300.4 313.9 4075.5
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Table XXI: Scenario 4- Total of four segments predicting fifth 

 

 

 

4.5 Result analysis of Strategy 3 

4.5.1 Strategy 3 - Scenario 1 

Table XXII helps to examine the previous segment’s behavior and predict the file’s 

behavior in the next using strategy 2. As defined in Table V, we have used different 

segment combinations and prediction scenarios to evaluate the results.  

Table XXII contains the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XXII, for scenario 1 (i.e. examining the previous segment’s behavior and predict the file’s 

behavior in the next), we observe that the upwards slope is not a good predictor of whether 

the file will be buggy on the next segment. On the other hand, we observe that if the trend 

is downward then this is a very good predictor of whether the file will be non-buggy in the 

next segment.  

In Table XXIII, we observe that if the trend is downward then this is a very good predictor 

of whether the file will be non-buggy in the next segment depicts 709 cases being buggy 

vs. 194,124 being non-buggy in the next segment. On the other hand, if the trend is upward 

then this is not a good indicator of whether the file will be buggy in the next segment 

because we have only 79 cases for the file being buggy in next segment vs. 3628 being 

non-buggy. 

Furthermore, the ratio of the file being non-buggy versus being buggy in the next segment 

is 5.9 times higher (i.e. 0.02/0.003) when the previous segment has a downward slope.  

File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD

TRUE 0.5 1.8 3.9 3.3 4.3 10 17.7 8.8

FALSE 7.3 18.9 40.6 31.8 33.9 207.1 317.8 200.4

TRUE/FALSE 0.068493 0.095238 0.096059 0.103774 0.126844 0.048286 0.055695 0.043912

File Buggy in next Segment DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 10.2 18.1 21.8 93.5 85 87.4 104.1 659.5

FALSE 170 323.3 223.9 3089.9 2898.4 3037.3 2777.8 64338.9

TRUE/FALSE 0.06 0.055985 0.097365 0.03026 0.029327 0.028776 0.037476 0.01025
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Table XXII: Scenario 1- Instances of individual project where one segment predicts 

second 

 
 

Table XXIII: Scenario 1- Total of One Segment Predict Second 

 
 

4.5.2 Strategy 3 - Scenario 2 

Table XXIV contains the number of instances of the next segments that appear in the 

project as bug fixing commit and non-bug fixing commit based on the trend. As given in 

Table XXIV, for scenario 2 (i.e., examining the previous two segments' behavior and 

predict the file’s behavior in the third segment), we observe that the upwards slope is not a 

good predictor of whether the file will be buggy on the next segment.  

On the other hand, we observe that if the trend is downward then this is a very good 

predictor of whether the file will be non-buggy in the next segment. Table XXV depicts 

the overall behavior of systems using strategy 2 defined in Table II. 

 

Systems File Buggy in next Segment U D Systems File Buggy in next Segment U D

TRUE 1 12 TRUE 1 32

FALSE 260 14343 FALSE 195 24792

TRUE 22 78 TRUE 13 73

FALSE 203 10713 FALSE 204 12742

TRUE 1 26 TRUE 8 42

FALSE 194 13855 FALSE 152 5882

TRUE 10 40 TRUE 9 55

FALSE 144 9058 FALSE 185 8319

TRUE 4 212 TRUE 1 23

FALSE 553 30335 FALSE 562 20366

TRUE 5 50 TRUE 3 48

FALSE 592 13501 FALSE 250 21767

TRUE 1 18

FALSE 134 8451
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As depicted in Table XXV, the downward trends are very good predictors of the file being 

healthy in the next segment (297 being buggy vs. 90084 being non-buggy).  

Also, as before the ratio of the file being non-buggy versus being buggy in the next segment 

is 14 times higher (i.e. 0.04/0.003) when the previous segment has a downward slope. 

Table XXIV: Scenario 2- Instances of individual project where two segments predict 

third 

 

 

Table XXV: Scenario 2- A total of two segments predict third 

 
 

4.5.3 Strategy 3 - Scenario 3 

Table XXVI reports the number of instances of the next segments that appear in the project 

as bug fixing commit and non-bug fixing commit based on the trend. As given in Table 

XXVI, for scenario 3 (i.e., examining the previous three segments' behavior and predict the 

file’s behavior in the fourth segment), we observe that the upwards slope is not a good 

predictor of whether the file will be buggy on the next segment. On the other hand, we 

observe that if the trend is downward then this is a very good predictor of whether the file 

Systems File Buggy in next Segment UU UD DU DD Systems File Buggy in next Segment UU UD DU DD

TRUE 0 1 0 5 TRUE 0 0 0 13

FALSE 16 111 104 6665 FALSE 6 90 84 11622

TRUE 2 5 10 27 TRUE 2 6 2 29

FALSE 9 87 86 4976 FALSE 9 82 93 5931

TRUE 0 0 1 11 TRUE 0 2 5 17

FALSE 6 84 85 6460 FALSE 9 66 60 2714

TRUE 2 2 3 15 TRUE 0 3 3 22

FALSE 6 72 58 4211 FALSE 8 83 78 3849

TRUE 0 2 2 107 TRUE 0 0 0 9

FALSE 20 243 236 14078 FALSE 9 272 247 9357

TRUE 0 3 2 15 TRUE 0 0 0 19

FALSE 19 283 232 6127 FALSE 8 116 113 10165

TRUE 0 0 0 8

FALSE 3 61 62 3929
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TRUE 6 24 28 297
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will be non-buggy in the next segment. Table XXVII depicts the overall behavior of 

systems using strategy 3 define in Table II. 

Table XXVI: Scenario 3- Instances of individual project where three segments 

predict fourth 

 
 

The result of scenario 3 in Table XXVII, (i.e. three segments and predict the file’s behavior 

in the fourth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope, i.e., 57322 is an excellent predictor of 

the file being non-buggy.  

Systems File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 1 1 0 1 0 0 0 2

FALSE 2 76 64 44 8 5 9 4253

TRUE 0 1 5 2 0 1 0 21

FALSE 0 58 53 47 6 8 5 3159

TRUE 0 1 0 0 0 0 0 6

FALSE 1 55 44 49 4 3 3 4135

TRUE 1 1 2 0 0 2 0 13

FALSE 1 47 34 36 7 2 1 2680

TRUE 0 0 2 0 0 0 0 74

FALSE 1 156 143 142 8 12 11 8955

TRUE 0 1 0 0 1 0 0 14

FALSE 3 130 151 169 10 11 18 3815

TRUE 0 1 0 1 0 0 0 3

FALSE 0 29 37 41 2 1 5 2509

TRUE 0 0 0 0 0 0 0 5

FALSE 0 48 56 61 5 1 3 7466

TRUE 0 2 2 1 1 1 2 20

FALSE 0 50 53 55 4 5 6 3780

TRUE 0 2 3 2 1 0 0 8

FALSE 0 42 33 36 7 4 4 1717

TRUE 0 1 2 3 0 0 2 11

FALSE 0 48 46 43 6 5 2 2449

TRUE 0 1 1 1 0 0 0 3

FALSE 1 158 165 172 3 1 6 5890

TRUE 0 1 0 0 0 0 1 13

FALSE 0 72 63 64 4 6 5 6514
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Also, the ratio of the file being non-buggy versus being buggy in the next segment is 66 

times higher (i.e. 0.22/0.003) when the previous segment has a downward slope. 

Table XXVII: Scenario 3- Total of three segments predicting fourth 

 

4.5.4 Strategy 3 - Scenario 4 

Table XXVIII reports the number of instances of the next segments that appear in the 

project as bug fixing commit and non-bug fixing commit based on the trend. As given in 

Table XXVIII, for scenario 4 (i.e., examining the previous four segments' behavior and 

predict the file’s behavior in the fifth segment), we observe that the upwards slope is not a 

good predictor of whether the file will be buggy on the next segment.  

On the other hand, we observe that if the trend is downward then this is a very good 

predictor of whether the file will be non-buggy in the next segment. Table XXIX depicts 

the overall behavior of systems using strategy 4 defined in Table II. 

The result of scenario 4 in Table XXIX, (i.e. fourth segments and predict the file’s behavior 

in the fifth) we verify the above observations i.e. the upward slope is not a good predictor 

of the file being buggy, while the downward slope is an excellent predictor of the file being 

non-buggy as we observed 46181 cases for the file being non-buggy vs 149 cases for file 

being buggy.  

File Buggy in next Segment UUU UDD DDU DUD UUD DUU UDU DDD

TRUE 2 13 17 11 3 4 5 193

FALSE 9 969 942 959 74 64 78 57322

TRUE/FALSE 0.222222 0.013416 0.018047 0.01147 0.040541 0.0625 0.064103 0.003367
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Table XXVIII: Scenario 4- Instances of individual project where fourt segments 

predict fifth 

 
 

Table XXIX: Scenario 4- Total of four segments predicting fifth 

 

 

 
 

Systems File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

FALSE 2 2 0 0 1 4 5 5 4 3 6 48 40 55 47 3428

TRUE 0 0 0 1 0 1 2 0 2 0 0 1 1 3 7 10

FALSE 0 0 0 0 0 5 5 4 4 3 0 42 39 37 40 2547

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

FALSE 0 1 0 1 0 1 2 3 4 4 5 43 34 31 42 3340

TRUE 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 9

FALSE 0 1 0 0 1 3 1 2 4 2 2 32 20 33 31 2170

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 53

FALSE 0 1 1 1 1 13 6 5 10 8 4 123 117 103 108 7220

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 9

FALSE 1 1 4 5 0 5 18 3 6 17 12 122 101 115 100 3015

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 5

FALSE 0 0 0 0 1 0 2 2 0 2 2 29 32 28 25 2021

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 6

FALSE 0 1 2 1 0 1 1 1 1 3 2 37 37 45 45 6070

TRUE 0 0 0 0 0 0 0 1 0 0 0 0 2 1 1 15

FALSE 0 1 2 0 0 5 2 4 2 6 7 38 37 33 42 3059

TRUE 0 0 0 0 0 0 1 0 0 1 1 0 0 0 2 8

FALSE 0 1 1 1 0 6 3 2 2 4 3 33 21 20 29 1382

TRUE 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 11

FALSE 0 0 1 0 1 5 2 2 3 1 2 41 34 39 40 1957

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1

FALSE 0 0 2 0 0 3 1 4 2 3 7 141 108 132 133 4698

TRUE 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 11

FALSE 0 0 0 0 1 2 3 5 2 4 3 53 65 51 42 5274

kompare

konversation

kTorrent

plasma-nm

k3b

kcolurpaint

kdelibs

kget

kmix

akregator

ark

elisa

juk

File Buggy in next Segment UUUU DUUU UDUU UUDU UUUD DDUU UDDU UUDD

TRUE 0 0 0 1 1 1 4 1

FALSE 3 9 13 9 6 53 51 42

TRUE/FALSE 0 0 0 0.111111 0.166667 0.018868 0.078431 0.02381

File Buggy in next Segment DUUD UDUD DUDU UDDD DUDD DDUD DDDU DDDD

TRUE 2 1 1 7 6 7 15 149

FALSE 44 60 55 782 685 722 724 46181

TRUE/FALSE 0.045455 0.016667 0.018182 0.008951 0.008759 0.009695 0.020718 0.003226
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4.6 Comparison of Different Strategies Results 

With the implementation of Strategy-1, we have observed the peculiarity of numbers in 

false positive when the slope is going upward. If the file is not participating, we were 

expecting its slope should be downward. However, it was not the case with obtained values. 

It means the file is participating in the commit, but they are not buggy. It may be the case 

they are related files that only participate to support other files in the deployment. After a 

meticulous investigation of Strategy-1 and its result, we had improvised our Strategy-1 for 

Strategy 2. However, the results remain the same for all the analyzed scenarios. We didn’t 

observe any significant changes in the results. Thus, we again began our quest of improving 

the strategy by including source code metrics. We have included the static coupling 

between files that are participating in the commit to advance our metrics. After 

investigating 21 projects with Strategy-3 we haven’t seen any significant improvement in 

the numbers of false positives. After careful analysis of different strategies, we have 

observed, there is no significant difference between the values obtained from different 

strategies. However, we have observed that the three strategies behave similarly in the case 

of the prediction of healthy files. With the help of these three strategies, we can easily 

segregate or filter the healthy files in their immediate future commits as there is a very low 

likelihood of a file being the root cause of fault-proneness. 

4.7 Conclusion 

Error prone files constitute a major threat to maintaining and evolving a software system. 

Over the past few years, we have seen a number of approaches that utilize machine learning 

and source code metrics to classify a module or a file as error prone or not. In this thesis, 

we take a different approach and we examine quantitative trends of process metrics in order 

to perform the same task. More specifically, for each file in a software system and for each 

commit it participates in, we compute a file-to-file dependence with all its co-committed 

files, to which we refer as binary strength of the file. This value is then used to compute an 

overall strength for the file. By examining how this value behaves in a window of 

consecutive commits, we investigate whether we can predict the error proneness of the file 

in the next immediate window of commits. The approach has been applied to 21 open 

source systems for which we had access to both GitHub and Bugzilla repositories. The 
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results indicate that a file’s buggy behavior and its strong dependencies with other co-

committed files are not good predictors of whether the file will exhibit buggy behavior in 

the immediate near future. On the other hand, a healthy behavior of a file is an excellent 

predictor of the file remaining healthy in its immediate future commits. In this respect, the 

technique can be directly used to filter out files with very low likelihood of being the root 

causes of an observed failure.  
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Chapter 5 – Discussion and Future Work 

5.1 Discussion 

The results and findings reported in the previous Chapter can be classified into two 

categories: 

1. The first is whether the “healthy” behavior of a file (i.e., few co-commits, low 

interaction with other files) can predict that the file will remain fault-free in the 

immediate future commits. 

2. The second, and most important category, is whether the “erratic” behavior of a file 

(i.e., several and frequent co-commits, high or fluctuating interaction with other 

buggy files) can predict that the file will be faulty in the immediate future commits.  

Our findings indicate that it is highly probable that a file exhibiting a healthy behavior will 

remain healthy, and it is highly unlikely that this file will be the root cause of a failure in 

immediate future commits. However, for the second area, our findings suggest that there is 

not conclusive indication that an observed ‘erratic’ behavior of a file with respect to its 

commit profile and process metrics can serve as a predictor for the file been the root cause 

of a failure observed in the immediate future.  

Currently, by analyzing the results, we can say that the proposed framework in its current 

form provides a very good technique for identifying and filtering out, with a high degree 

of probability, the healthy files of the system. Thus, we can separate files that exhibit low 

risk by using this system. Files with two or more consistent upward trends were expected 

to be classified as faulty, but our results do not support that (we are still experimenting with 

different strength metrics). 

For this work, we have solely focused on file process metrics based on information that 

can be extracted from a version control repository and not the source code of the system 

itself. There are pros and cons in using source code-related data to identify file-to-file 

dependencies and compute strength values and segment slopes. The pros are that such 

dependencies will better depict the actual runtime interactions between files. The cons are 
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that the prediction system will require language specific parsers and source code extractors, 

a task which is very complex, not to mention potentially expensive both in terms of time 

as well as money, for systems written in various languages or for systems written in 

languages for which there are no extractors available. 

5.1.1 Threats to validity 

We identify the following threats to validity: 

1. The first threat has to do with the accuracy of the gold standard data which is used 

to provide us with the absolute frequency and location (in terms of commit) of bug 

fixing file changes. The proposed approach relies on Bugzilla records and the 

reconciliation process heuristic implemented in order to deduce and classify 

whether a file change is a bug-fixing change or not and consequently form the gold 

standard against which the results are obtained. If the reconciliation is not accurate 

or the heuristic introduces some form of bias, it may skew the results. 

2. The second threat is introduced when there are errors in the measurement. As we 

use file churn to compute the strength of a file, a case can be made that that 

developers have made merges or squashed edits to a file, where in this case we 

cannot retrieve the exact incremental churn value.  

3. The third threat has to do with the volume of the analyzed systems. We have 

analyzed 21 open-source systems for which we could find both Bugzilla and 

GitHub repositories. It would be useful to experiment with more systems, even 

some industrial ones, to compare these results with those we have obtained so far. 

4. The proposed technique utilized process metrics in a way that failed to conclusively 

predict the error proneness of a file in its immediate future commits but succeeded 

on asserting that a file will remain healthy in its immediate future commits.   

5. Most projects in the early 2000s did not use Bugzilla as a bug tracking system and 

GitHub as the version control repository. Thus, we are not sure whether every 

commit and bug is reported to GitHub and Bugzilla, respectively. Therefore, a lack 

of data may have skewed our results. In this respect, more systems can be 

considered for analysis and in order to verify the results obtained by these 21 open 

source systems.  
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5.2 Future Work 

The research presented as part of our thesis can be stretched into four major research areas 

that are defined as follows: 

1. Improving the reconciliation of data can help in improving predicting technique 

results since, if we are able to achieve a 100% true reconciliation rate, this can 

greatly contribute in improving the prediction of fault-prone/buggy files through 

the various frameworks set forth for this task. 

2. Considering more advanced process metrics or a hybrid metrics approach can help 

to produce better results.   

3. Lastly, we can investigate how Technical Debt measures can affect the behavior of 

a file, and also how such measures can contribute to a variant of the current or 

another similar framework in order to improve their efficacy.  

5.2.1 Improving Data Reconciliation 

As part of this thesis, data is collected from GitHub and KDE.bugzilla repositories and 

reconciled to identify which particular files were the faulty and healthy ones in a GitHub 

commit. However, as technology advances, software developers rely on multiple tools to 

report and track bugs. Thus, we need to reconcile a corpus of information originating from 

numerous tools to form our datasets. There are various tools available in the market that 

keeps track of bugs, like, Trac, Bugzilla, BugHerd, ReQtest, JIRA, Mantis, and many more. 

Also, there is a high probability that each bug is reported in more than one bug tracking 

tool. Hence, we need to track how many repositories are used in a system to track defects. 

Thus, we need a strategy that will encompass a more universal approach towards issue 

tracking systems to find the bug fixing commits/file-changes of a project. Moreover, we 

need to work towards a filtering tool able to perform an initial separation between fixing 

commits and development commits.  

5.2.2 Advanced Metrics and Projects 

Another proposed addition to this work is to opt for the hybrid metrics approach, i.e., a 

combination of process, source code, and model metrics. For this work, we have solely 
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focused on file-to-file process dependencies based on information extracted only by the 

repository and not the source code of the system itself. 

There are pros and cons to using source code-related information to spot file-to-file 

dependencies to compute strength values and segment slopes. The pros are that such 

dependencies will better depict the real interactions between files. The cons are that the 

prediction system would require language parsers and ASCII text file extractors, a difficult 

task for systems written in various languages or for systems written in 

languages that there aren't any extractors available. Moreover, the system interacts with the 

files which will be written in several languages. Thus, again it'll be more difficult to put in 

writing a parser. We can also consider the projects within which bugs are reported in JIRA, 

not in Bugzilla. With the assistance of this, we will compare the system efficiency and 

integrity. 

5.2.3 Dynamic Coupling 

As part of our effort, we have included only static level coupling. However, there are other 

dependencies pertaining to the dynamic behavior of modules that can only be inferred at 

run-time. For example, in object-oriented software systems, it is difficult to determine the 

receiver and sender classes because of polymorphism and inheritance. The actual 

relationship between the classes and method invocations can only be determined at run-

time. Hence, it is not possible to extract the same information from the static coupling. 

Thus, including dynamic coupling instead of static coupling needs consideration. On the 

other side, the dynamic coupling is always a more difficult and expensive metric to 

calculate as compared to static coupling. Thus, we need to investigate projects and see the 

potential benefits of dynamic coupling if it outweighs the collection cost. 
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