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Abstract 

Patient neurological outcomes following cardiac surgery are improved when near-infrared 

spectroscopy (NIRS) is used to optimize intraoperative cerebral oxygen delivery. However, 

current NIRS analysis methods have difficulties monitoring adult brains due to 

contamination from the extracerebral layer (ECL). 

The objective of this thesis is to develop a time-resolved (TR) NIRS data analysis method for 

monitoring adult cerebral oxygen saturation (ScO2) and total hemoglobin (HbT) by assuming 

the head is composed of two layers – the ECL and the brain. We tested the validity of this 

assumption using in silico data from an adult human head using two approaches; a few-

wavelength, single detector method, and a hyperspectral, two-detector method that does not 

require prior knowledge of exact ECL thickness. Both methods were able to recover ScO2 

and HbT with mean percent differences below 3%. Additionally, the hyperspectral method 

requires only 0.22 seconds per measurement, enabling quasi-real-time adult neuromonitoring. 
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Summary for Lay Audience 

Cardiac surgery is associated with high incidence of brain injury during and after the 

operation, occurring in approximately 6% of patients. These injuries include stroke, seizures, 

and other types of brain damage, and can have lasting impacts on patient quality of life. 

There is growing evidence that patient neurological outcomes are improved when near-

infrared spectroscopy (NIRS) is used to optimize cerebral oxygen delivery during the 

operation. NIRS uses near-infrared light to non-invasively monitor brain health by measuring 

cerebral oxygen saturation (ScO2) and total hemoglobin concentration (HbT). However, 

current NIRS analysis methods have difficulties monitoring adult brains due to 

contamination from the scalp, skull, and cerebrospinal fluid, collectively referred to as the 

extracerebral layers (ECL). 

The objective of this thesis is to develop a time-resolved (TR) NIRS data analysis method for 

monitoring adult ScO2 and HbT by assuming the head is composed of two layers – the ECL 

and the brain. A TR-NIRS system releases pulses of light into the tissue and records how 

long the light takes to reach a detector. The detected light is then analyzed to measure the 

physiological parameters of interest. We tested the validity of the two-layer assumption using 

simulated data of light transport in an adult human head using two approaches. The 

approaches differ primarily in two ways: the number of wavelengths of light used, and the 

number of detectors. The first approach uses data from a single source-detector pair at four 

wavelengths to estimate ScO2 and HbT with a mean percent difference of 2.3% and 2.9%, 

respectively. The second method recovers the same parameters from 150 wavelengths 

(referred to as hyperspectral) and uses two detectors. The added information provided by 

using more wavelengths and a second detector allows the hyperspectral method to estimate 

the thickness of the ECL, making it more versatile. The accuracy of the hyperspectral method 

is comparable to the few-wavelength alternative, recovering ScO2 and HbT with mean 

percent differences of 2.4% each. The hyperspectral method can analyze TR-NIRS data in 

near-real-time, requiring only 0.22 seconds per measurement, which is a major step towards 

real-time monitoring of the brain during cardiac surgery.  



 

v 

 

Co-Authorship Statement 

Chapter 2 of this thesis is adapted from a published proceeding paper, while Chapter 3 is an 

unpublished journal article currently being prepared for submission. As the first author on 

both articles, I contributed significantly to all aspects of the work, including study design, 

data generation, analysis, interpretation of results, and preparation of the manuscripts. As my 

supervisor and the primary investigator, Dr. Mamadou Diop oversaw and provided support 

for each study from conception to completion, providing his expertise where necessary. Dr. 

Diop also secured funding for both studies, aided with interpretation of the results, and edited 

the manuscripts and approved them for publication. Both of the following manuscripts 

include a list of co-authors that contributed significantly to the work, and their individual 

contributions are listed for their respective chapters below.   

Chapter 2 is adapted from a proceeding paper titled: “Estimating adult cerebral oxygen 

saturation from time-resolved near-infrared spectroscopy measurements with few discrete 

wavelengths at a single source-detector distance” published in Proceedings Volume 11639, 

Optical Tomography and Spectroscopy of Tissue XIV in 2021 by David Jonathan Fulop 

Cohen, Natalie C. Li, and Mamadou Diop. Natalie C. Li aided in the development of the data 

analysis method. Natalie C. Li and Mamadou Diop both edited the manuscript and approved 

it for submission.  

Chapter 3 is an unpublished work titled “Fast Estimation of Adult Cerebral Oxygen 

Saturation and Total Hemoglobin using Hyperspectral Time-Resolved Near-Infrared 

Spectroscopy” by David Jonathan Fulop Cohen, Natalie C. Li, Seva Ioussoufovitch, 

Vladislav Toronov, and Mamadou Diop. Natalie C. Li aided in the development of the late-

photon analysis method and in editing the manuscript. Seva Ioussoufovitch and Vladislav 

Toronov aided in the development of the two-layer hyperspectral time-resolved analysis 

method. Mamadou Diop was involved throughout the work from data generation to analysis 

and edited the manuscript.  

  



 

vi 

 

Dedication 

I would like to dedicate this thesis first and foremost to my family for their constant love and 

support. To my mom and dad, Addrienne Fulop and Sam Cohen, thank you for always 

supporting me in every manner that you can. Your love, support, and encouragement have 

been key in keeping me motivated throughout my Masters, and throughout my life. I could 

not have gotten to where I am now without you both guiding me along the way. I would 

especially like to thank my mom for all the editing she has done throughout my graduate and 

undergraduate degrees; she can probably explain my research as well as I can at this point.  

To my sister, Mackenzie Cohen, thank you for making me laugh constantly and supporting 

me in anyway you can. You are my biggest cheerleader, and I appreciate your support more 

than I can ever express.  

To my Bubbie, Papa, and Papi (Mariam and Ignatz Fulop and Maurice Cohen), thank you for 

being such amazing grandparents and supporting me throughout my journey, and praying for 

my success. To my late Mémé (Fortune Cohen), thank you for looking out for me. I would 

like to think you would be proud of everything I have accomplished. May your memory be a 

blessing.  

To my martial arts instructor, Guru Pak Chan, thank you for teaching me the dedication and 

perseverance required to be successful. I will always remember the first lesson you taught 

me, “It takes 30 days to make a habit, but only 3 days to break it.” Your guidance and 

support throughout the years has been valuable beyond measure.  

Finally, to my many friends and family who have given me a home away from home. The 

memories and experiences I have made with you will last me a lifetime. I dedicate this work 

to you all.   



 

vii 

 

Acknowledgments 

I am eternally grateful for all the help, mentorship, and support I have received over the years 

from the many people at Western University. The work in this thesis would not have been 

possible without each and every one of you.  

First off, I want to thank my supervisor and mentor, Dr. Mamadou Diop. Joining your lab for 

my third-year undergraduate research project was one of the best decisions I have ever made. 

You are not only an incredible researcher and mentor, but an amazing leader as well. None of 

the scholarships, conference presentations, or awards I have received would have been 

possible without your invaluable input and guidance. Thank you for introducing me to the 

world of biomedical optics, research, and scientific writing. I truly appreciate the countless 

hours you have put into improving my writing and pushing me to achieve my goals.  

I would also like to thank my lab-mate and good friend Seva Ioussoufovitch for being my 

constant sounding board over the past 4 years. Thank you for patiently listening to me 

complain about how my code is not working during the hundreds of hours we spent in the lab 

together and offering useful feedback where appropriate.  You have helped to show me how 

exciting research can be, even when it's not going perfectly.  

To my lab-mate and friend Natalie Li, thank you for listening to my ideas for the late-photon 

analysis method. The brain storming conversations we have had on the topic helped develop 

the method into what it is today.  

This thesis would not have gotten written if not for Laura Mawdsley. The hours we spent on 

Zoom keeping each other on track are entirely responsible for this thesis being written in any 

reasonable amount of time. You managed to make what is usually a very difficult and time-

consuming experience into an entertaining one.   

I would like to thank Lawrence Yip and Drs. Ajay Rajaram, Daniel Milej, and Androu 

Abdalmalak for their input and guidance over the years for my various projects. Your 

feedback has helped me become a better presenter and taught me how to formulate more 

complete answers.  



 

viii 

 

To my committee members, Drs. Keith St. Lawrence and Ali Khan, thank you for taking the 

time to help point my project in the right direction. Your guidance and insight helped ensure 

this project stayed on track and within scope.  

To Dr. Vladislav Toronov, thank you for your input into how to code the two-layer time-

resolved analytical model. The insights and code you provided saved me several months of 

work and effort, and I am extremely grateful for it.  

This acknowledgement section would be incomplete without thanking the incredible 

administrative staff from the Department of Medical Biophysics (Jennifer Devlin, Kathleen 

Petts, and Kathleen Mendelson). I deeply appreciate all the help and kindness you have 

provided me since becoming a student in the department in the third year of my 

undergraduate degree. I am also grateful to Dr. Daniel Goldman for providing me the 

opportunity to be the teaching assistant for MEDBIO 3507. The leadership and teaching 

experience has been a valuable experience for me and helped me better develop my ability to 

communicate complex topics in understandable ways.  

Finally, I would like to thank the following sources of funding, without which this work 

would not have been possible: Natural Sciences and Engineering Council (NSERC), Queen 

Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST), the Lawson 

Health Research Institute, Western University, Schulich School of Medicine and Dentistry, 

and the Department of Medical Biophysics. 



 

ix 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iv 

Co-Authorship Statement.................................................................................................... v 

Dedication .......................................................................................................................... vi 

Acknowledgments............................................................................................................. vii 

Table of Contents ............................................................................................................... ix 

List of Tables .................................................................................................................... xii 

List of Figures .................................................................................................................. xiii 

List of Appendices ........................................................................................................... xvi 

List of Abbreviations ...................................................................................................... xvii 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 Clinical Motivation ................................................................................................. 1 

1.1.1 Brain Injury during cardiac surgery ............................................................ 1 

1.1.2 Current Methods of Detecting Brain Injury ................................................ 3 

1.2 Near-Infrared Spectroscopy .................................................................................... 4 

1.2.1 Background and Uses ................................................................................. 4 

1.2.2 Optical Properties........................................................................................ 5 

1.2.3 Tissue Optical Properties ............................................................................ 6 

1.2.4 Beer-Lambert Law .................................................................................... 12 

1.2.5 Diffusion Approximation .......................................................................... 14 

1.2.6 Blood, Oxygen, and the Brain................................................................... 18 

1.3 Continuous-wave NIRS ........................................................................................ 20 

1.4 Time-Resolved NIRS ............................................................................................ 21 



 

x 

 

1.4.1 General Theory and Uses .......................................................................... 21 

1.4.2 Multi-spectral and Hyperspectral TR-NIRS ............................................. 23 

1.5 Research Objectives .............................................................................................. 24 

1.6 Monte-Carlo Simulations ...................................................................................... 24 

1.7 Thesis Outline ....................................................................................................... 25 

1.7.1 Chapter 2: Estimating adult cerebral oxygen saturation from time-resolved 

near-infrared spectroscopy measurements with few discrete wavelengths at 

a single source-detector distance .............................................................. 25 

1.7.2 Chapter 3: Fast Estimation of Adult Cerebral Oxygen Saturation and Total 

Hemoglobin using Hyperspectral Time-Resolved Near-Infrared 

Spectroscopy ............................................................................................. 26 

1.7.3 Chapter 4: Conclusion and Future Work .................................................. 26 

References .................................................................................................................... 27 

Chapter 2 ........................................................................................................................... 44 

2 Estimating adult cerebral oxygen saturation from time-resolved near-infrared 

spectroscopy measurements with few discrete wavelengths at a single source-detector 

distance ......................................................................................................................... 44 

 Abstract ................................................................................................................. 44 

 Introduction ........................................................................................................... 45 

 Methods................................................................................................................. 46 

2.3.1 Monte Carlo Simulations .......................................................................... 46 

2.3.2 Data Analysis ............................................................................................ 47 

 Results ................................................................................................................... 49 

2.4.1 Simulations ............................................................................................... 49 

2.4.2 Data analysis ............................................................................................. 49 

 Discussion ............................................................................................................. 52 

 Conclusion ............................................................................................................ 54 

 Acknowledgements ............................................................................................... 54 

 References ............................................................................................................. 55 



 

xi 

 

Chapter 3 ........................................................................................................................... 58 

3 Fast Estimation of Adult Cerebral Oxygen Saturation and Total Hemoglobin using 

Hyperspectral Time-Resolved Near-Infrared Spectroscopy ........................................ 58 

 Introduction ........................................................................................................... 58 

 Methods................................................................................................................. 60 

3.2.1 Phase 1: Estimation of baseline chromophore concentrations .................. 61 

3.2.2 Phase 2: Rapid Cerebral Concentration Recovery .................................... 65 

3.2.3 Validation .................................................................................................. 66 

 Results ................................................................................................................... 68 

3.3.1 Phase 1: Baseline chromophore concentrations ........................................ 68 

3.3.2 Phase 2: Active Monitoring ...................................................................... 71 

 Discussion and Conclusion ................................................................................... 72 

 References ............................................................................................................. 76 

Chapter 4 ........................................................................................................................... 81 

4 Conclusion ................................................................................................................... 81 

 Research Objectives .............................................................................................. 81 

 Summary of Chapters ........................................................................................... 83 

4.2.1 Chapter 2: Estimating adult cerebral oxygen saturation from time-resolved 

near-infrared spectroscopy measurements with few discrete wavelengths at 

a single source-detector distance .............................................................. 83 

4.2.2 Chapter 3: Fast Estimation of Adult Cerebral Oxygen Saturation and Total 

Hemoglobin using Hyperspectral Time-Resolved Near-Infrared 

Spectroscopy ............................................................................................. 83 

 Limitations ............................................................................................................ 84 

 Future Work .......................................................................................................... 85 

 Conclusion ............................................................................................................ 85 

 References ............................................................................................................. 87 

Appendices ........................................................................................................................ 92 



 

xii 

 

List of Tables 

Table 1.1: Anisotropic Factor and Refractive Index of Tissues ............................................... 7 

Table 1.2: The values for the scattering coefficients at 500 nm (a) for Scalp, Skull, and Brain 

tissue, and their respective scattering powers (b). .................................................................... 8 

 



 

xiii 

 

List of Figures 

Figure 1.1: Wavelength Dependent Scattering Coefficients. For the scalp, skull, and brain, 

the values are found using Eq 1.2 and the values from Table 1.2 for every wavelength 

between 650 nm and 950 nm. For the cerebrospinal fluid, the values were assumed to be 

0.0001 mm-1 for every wavelength. .......................................................................................... 8 

Figure 1.2: Sample absorption spectra of the four tissue types that compose the head. The 

brain spectrum (yellow) is for a brain containing 55 µM of hemoglobin with 70% ScO2, and 

80% water. ................................................................................................................................ 9 

Figure 1.3: Extinction coefficient spectra of water on the right axis and oxy- and 

deoxyhemoglobin on the left axis. .......................................................................................... 10 

Figure 1.4: Sample absorption coefficient (𝝁𝒂) spectra for brain tissue depending on the 

concentrations of oxy- (HbO2) and deoxyhemoglobin (Hb). The total hemoglobin is equal to 

55 µMol in each spectrum, meaning the differences in the curves are due to the proportions 

of oxy- and deoxyhemoglobin. ............................................................................................... 12 

Figure 1.5: A) Transmittance: The source (red) and detector (green) are on opposite faces of 

the tissue.  B) Reflectance: The source (red) and detector (green) are on the same face of the 

tissue. ...................................................................................................................................... 15 

Figure 1.6: The one- and two-layer solutions to the diffusion approximation (DA). Optical 

properties in both layers of the two-layer solution are the same for a direct comparison to the 

homogeneous semi-infinite solution. Absorption is 0.0161 mm-1, reduced scattering 

coefficient is 0.840 mm-1, and the refractive index is assumed to be 1.4. .............................. 18 

Figure 1.7:  Late-photon analysis. The log of the time-of-flight curve approaches a linear 

slope as time increases. The region in red corresponds with the late-arriving photons and 

provides sufficient signal-to-noise ratio for analysis in an in vivo setting. The dotted black 

line is a linear fitting of the region of interest, and its slope is equal to the denominator of the 

right part of Eq. 1.22 and is related to the absorption coefficient of the medium. ................. 23 



 

xiv 

 

Figure 2.1: Four-layer adult head model used for the Monte Carlo simulations: A) full head 

model and B) cross-section along the source-detector plane. The four layers are the scalp 

(dark blue), skull (cyan), cerebrospinal fluid (orange), and brain tissue (yellow). Though the 

full head was segmented, only the portion shown in colour was used in the simulations due to 

GPU memory limitations. The source (red star) and the detector (green star) are located 3 cm 

apart......................................................................................................................................... 47 

Figure 2.2: Recovered cerebral oxy- (A) and deoxyhemoglobin (B) concentrations for each 

ScO2. The values plotted in blue are the recovered values, while the dotted black line 

represents the inputted concentrations. (C) and (D) show the percent differences between the 

recovered concentrations and the simulated values. ............................................................... 51 

Figure 2.3: Recovered ScO2 (A) and total hemoglobin concentration (B) for each simulated 

ScO2. In both cases, the mean and standard deviation values are calculated across skin 

oxygenation, for each inputted ScO2. The recovered values are plotted in blue, while the 

dotted black line represents the true values. (C) and (D) show the percent differences 

between the recovered values and the ground truth. ............................................................... 52 

Figure 3.1: Flowchart of the two-phase hyperspectral TR-NIRS algorithm: Phase 1 revolves 

around the recovery of the absolute chromophore concentrations in the deep tissue (brain) 

using a two-layer analytical model of light transport in diffuse media. Phase 2 uses the 

absolute concentrations, estimated from Phase 1, to correct for the contribution of the ECL to 

late-arriving photon (from the tail of the TPSFs), allowing for quasi-real-time monitoring of 

cerebral blood content and oxygenation. ................................................................................ 60 

Figure 3.2: The outputs of the three rounds of homogenous fitting on the absorption (A) and 

scattering (B) coefficients. ...................................................................................................... 62 

Figure 3.3: Adult head with source (red) and detectors (purple). The detectors are 2 cm and 3 

cm away from the source. The tissues shown are skin (dark blue), skull (light blue), 

cerebrospinal fluid (orange), and brain (yellow). Due to GPU limitations, only the right upper 

octant of the head was simulated, as shown above (grey tissues not simulated). The voxel 

size in the model is 1 mm3. ..................................................................................................... 67 



 

xv 

 

Figure 3.4: A) Recovered absorption coefficient from the 40%, 50%, 60%, and 70% brain 

oxygen saturations with skin oxygen saturation set to 70% and the true (inputted) values. B) 

Recovered and true (inputted) absorption coefficient spectra from 50%, 60%, and 70% skin 

oxygen saturation at 70% brain oxygen saturation. ................................................................ 69 

Figure 3.5: Results from Phase 1; for every cerebral oxygen saturation, three skin saturations 

were evaluated. A) The recovered brain SO2, B) recovered oxyhemoglobin, C) recovered 

deoxyhemoglobin, and D) recovered total hemoglobin plotted versus the inputted ScO2. The 

dotted black lines are the expected values. E) The recovered top layer thickness versus the 

inputted ScO2. The true thickness of the ECL is approximately 12 mm. F) and G) show the 

percent difference for SO2 and total hemoglobin. .................................................................. 70 

Figure 3.6: Results from Phase 1 with known ECL thickness; for every cerebral oxygen 

saturation, three skin saturations were evaluated. A) The recovered brain SO2, B) recovered 

oxyhemoglobin, C) recovered deoxyhemoglobin, and D) recovered total hemoglobin plotted 

versus the inputted ScO2. The dotted black lines are the expected values. E) and F) show the 

percent difference for SO2 and total hemoglobin. .................................................................. 71 

Figure 3.7: Results of Phase 2 analysis when using the concentrations estimated from Phase 1 

for brain and skin oxygen saturation at 70%. A) The recovered brain ScO2, B) recovered 

oxyhemoglobin, C) recovered deoxyhemoglobin, and D) recovered total hemoglobin plotted 

versus the inputted ScO2. The dotted black lines are the expected values. ............................ 72 

 

  



 

xvi 

 

List of Appendices 

Appendix A: Permission for Reproduction of Scientific Articles .......................................... 92 

Appendix B: Curriculum Vitae ............................................................................................... 93 

 



 

xvii 

 

List of Abbreviations 

 

a Scattering coefficient at 500 nm 

A Attenuation 

b Scattering power 

CABG Coronary artery bypass graft 

CCO  Cytochrome C Oxidase 

CSF Cerebrospinal fluid 

CT Computed tomography 

CW Continuous-wave 

CW-NIRS Continuous-wave near-infrared spectroscopy 

DA Diffusion approximation 

DTOF Distribution Time of Flight 

DWI Diffusion-weighted imaging 

ECL Extracerebral layer 

EEG Electroencephalogram 

GPU Graphics Processing Unit 

Hb Deoxyhemoglobin  

HbO2 Oxyhemoglobin 



 

xviii 

 

HbT Total Hemoglobin 

IRF Instrument Response Function 

MCX Monte Carlo Extreme 

MRI Magnetic resonance imaging 

n Refractive Index 

NIRS Near-infrared spectroscopy 

OR Operating room 

RTE Radiative Transfer Equation 

ScO2 Cerebral oxygen saturation 

SO2 Blood oxygen saturation 

TCD Transcranial Doppler ultrasound 

TIA Transient ischemic attack 

TPSF Temporal Point-Spread Function 

TR Time-resolved 

TR-NIRS Time-resolved near-infrared Spectroscopy 

WF Water fraction 

λ Wavelength 

Φ Fluence rate 

𝐶 Concentration 



 

xix 

 

𝑅 Reflectance rate 

𝑔 Anisotropic factor 

𝑡 time 

𝑣 Speed of light in a medium 

𝜀 Molar extinction coefficient 

𝜇′s Reduced scattering coefficient 

𝜇a Absorption coefficient  

𝜇s Scattering coefficient 



1 

 

 

Chapter 1  

1 Introduction 

A core tenet of medicine is the concept of non-maleficence; do no harm. Physicians 

weigh the risks and benefits of each course of treatment, ensuring it is the right option for 

their patient. One of these crucial decisions is if a patient should undergo cardiac surgery. 

Despite surgery being necessary to correct many heart conditions, it carries with it a high 

risk of neurological injury. There is growing evidence that continuous intraoperative 

neuromonitoring is needed to detect cerebral complications as they occur, allowing 

physicians to provide early medical intervention. Near-infrared spectroscopy (NIRS) is a 

promising optical spectroscopy technique to accomplish just that. However, the majority 

of NIRS neuromonitoring methods have low brain sensitivity in adult populations; the 

population where they are often most needed.  

This introductory chapter provides the background knowledge required to understand the 

NIRS neuromonitoring methods developed throughout this thesis. It starts by providing 

an understanding of the clinical need for adult neuromonitoring during cardiac surgery, 

the neuromonitoring methods currently available, and the current limitations of those 

neuromonitoring techniques. The subsequent section will provide the reader with the 

necessary background for understanding the theory behind NIRS analysis. Finally, the 

research objectives will be explained, and a brief overview of the subsequent chapters is 

included.  

1.1 Clinical Motivation 

1.1.1 Brain Injury during cardiac surgery 

The brain is extremely vulnerable during the time surrounding cardiac surgery, and 

perioperative brain injury is a major complication of cardiac operations1–3. Under 

standard conditions the brain is protected from fluctuations in oxygen delivery via a 

process called cerebral autoregulation, which maintains homeostasis in the brain by 

regulating the flow and pressure of the cerebral blood supply4,5. When the cerebral 

perfusion pressure is between 60 mmHg and 150 mmHg, cerebral autoregulation ensures 
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the brain is protected from dramatic changes in oxygen delivery by regulating resistance 

in the cerebral arteries4. However, cerebral autoregulation can be heavily impaired 

outside of this pressure range, leaving the brain at a higher risk for ischemic injury6,7. An 

article by Ono et. al. in 2012 reported that 20% of patients who undergo cardiopulmonary 

bypass suffer from impaired cerebral autoregulation during the operation7.  There is a 

high risk of various types of brain injuries during cardiac operations due to the various 

disruptions to blood flow associated with heart surgery and the manipulation of major 

vessels commonly resulting in dislodging plaque from vessel walls8.  

The American College of Cardiology and American Heart Association Task Force 

classify neuronal deficits resulting from cardiac surgery in two categories9. Type 1 brain 

injuries are those which are focal injuries, including a focal stroke, transient ischemic 

attack (TIA), and fatal cerebral injuries; these are insults that have a clear point source. In 

contrast, Type 2 deficits are typically global brain injuries, often associated with a 

decrease in intellectual function or memory, increases in confusion or agitation, or 

seizures without evidence of a focal point. Examples of Type 2 injuries include 

encephalopathy, neurocognitive dysfunction, and delirium. A study by Roach et al. found 

that the prevalence of postoperative brain injuries is evenly split between these two types 

(3.1% for Type 1 and 3.0% for Type 2) and are present in approximately 6.1% of cardiac 

surgery patients who undergo a coronary artery bypass graft (CABG)2. Type 1 and 2 

brain injuries are also associated with higher mortality rates (21% for type 1, 10% for 

type 2, and 2% for those without cerebral injury) and longer hospitalizations (25 days for 

Type 1 and 21 days for Type 2, versus 10 days for those without cerebral injury)2. More 

recent studies using magnetic resonance imaging (MRI) with diffusion-weighted imaging 

(DWI) have found that between 18% and 26% of low-risk patients undergoing a CABG 

surgery suffer from acute perioperative brain ischemia10,11. That range increases to as 

high as 45% to 62% for high-risk patients12,13. As such, perioperative brain injury not 

only negatively impacts patient outcomes, but also greatly increases treatment costs.   

It is estimated that over 1 million cardiac surgeries are performed each year worldwide, 

and this number is expected to significantly increase as the population ages14. Even with 

the current numbers, approximately 60,000 patients suffer from cardiac surgery related 
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cerebral complications each year. As such, there is a clear need for intraoperative brain 

monitoring during cardiac surgery to permit timely interventions that can prevent 

permanent brain injury.  

1.1.2 Current Methods of Detecting Brain Injury 

There are several methods for diagnosing brain injuries, including neurological 

examination, MRI, computed tomography (CT), transcranial doppler ultrasound (TCD), 

electroencephalography (EEG), and NIRS15. Each of these modalities have their own 

strengths and limitations that make them better suited for certain applications than others.  

Neurological examinations can be used to evaluate changes in memory, attention, and 

motor skills, and may reveal conditions that are not readily detectable by other 

modalities15,16. However, neurological examination has the obvious setback of requiring 

the patient to be conscious, which is not feasible during cardiac surgery. MRI with DWI 

has been shown to be highly sensitive to postoperative cerebral injury17, but due to the 

large size of MRIs and the strong magnetic fields inherent to the technology, it is not 

practical to use in an operating room (OR) for continuous monitoring. While CTs are 

smaller than MRIs, the use of ionizing radiation similarly reduces the practicality of the 

modality for continuous intraoperative monitoring as doing so would significantly 

increase a patient’s radiation dose18. Despite being unsuitable for intraoperative 

monitoring, the high sensitivity and specificity of these three modalities make them 

reliable pre- and post-operative neurodiagnostic tools. 

Unlike the three aforementioned modalities, TCD, EEG, and NIRS are well suited for 

intraoperative neuromonitoring due to their small size, non-invasiveness, and lack of 

ionizing radiation. TCD can measure changes in blood flow velocity in arteries such as 

the middle cerebral artery; however, TCD cannot directly measure tissue perfusion, but 

instead provides an estimate of blood flow from the velocity and a predefined average 

artery size19–21.  Additionally, it is easy to misdiagnose an embolic event as an artifact, 

requiring a skilled interpreter to maximize the effectiveness of this modality. EEGs work 

by monitoring for changes in the electrical potentials produced by neurons and is the 

most used modality for intraoperative monitoring19,20,22. However, EEGs also require 

skilled interpreters and have the additional limitation of being influenced by general 
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anaesthesia, body temperature, and cerebral oxygen content, limiting its suitability for 

cardiac surgery22. 

The third intraoperative monitor, NIRS, uses near-infrared light to measure light 

attenuation by tissue and interprets that optical signal to calculate changes in cerebral 

oxygen saturation (ScO2) and total hemoglobin concentration23–26. NIRS output provides 

objective metrics that are more easily interpreted by physicians than EEG or TCD, 

without the need for specialized training27. Additionally, it has been shown that 

maintaining the ScO2 as close to the preoperative baseline as possible results in a 

significant reduction in the incidence of post-operative stroke28. The major limitation of 

NIRS when attempting to non-invasively probe the adult brain is that the extracerebral 

tissues (ECL) significantly contaminate the optical signal29. As will be discussed in 

greater detail throughout this thesis, the methods described in Chapters 2 and 3 solve this 

limitation by assuming the head is composed of two layers: one layer is the ECL, and the 

other layer is the brain tissue.  

1.2 Near-Infrared Spectroscopy 

1.2.1 Background and Uses 

NIRS is a non-destructive optical spectroscopy method that uses safe, nonionizing near-

infrared light to probe media23,30–32. While NIRS has many applications, including in 

astronomy33,34, agriculture35,36, and material sciences37–39, this work will focus on its 

biomedical applications. The first report of the use of NIRS for monitoring biological 

tissue was by Jöbsis in 1977 at Duke University40. Since that initial publication, NIRS has 

found many biomedical applications ranging from musculoskeletal41–44, to diabetes45–50, 

kinetic modeling of blood flow51–54, and brain monitoring28,29,52,55,56.  

The wavelengths of light used for NIRS varies depending on the application but are 

typically within the first optical window (650 nm to 1000 nm)57,58. This range of 

wavelengths is ideal for probing biological tissue because of the relatively low absorption 

and scattering of the tissue in the near infrared range. Notably, light is highly absorbed by 

blood below 650 nm, while above 1000 nm the absorption of water impedes the use of 

NIRS, greatly reducing the amount of signal available for analysis59. It is important to 
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note that NIRS is primarily sensitive to the microvasculature, as light experiences nearly-

complete attenuation in vessels larger than 1 mm60,61.   

1.2.2 Optical Properties 

Unlike X-rays, near-infrared light does not travel in a straight line between the source and 

detector in tissue. By comparison, the light within the near-infrared range experiences 

significant scattering when passing through biological tissues, resulting in the stochastic 

path of the photons59,62. There are four primary optical properties that describe the 

behavior of light in biological tissues. These properties are the absorption coefficient, 

scattering coefficient, anisotropic factor, and refractive index59,63–65.  

The absorption coefficient represents the amount of light expected to be absorbed by a 

medium after traveling a specific distance and is primarily affected by the chemical 

composition of tissue59. The concentrations of light absorbing chemicals (chromophores) 

are directly related to the strength of the absorption in the tissue.  

The scattering coefficient is the fraction of light that changes its direction of propagation 

when it passes through a medium, divided by the medium thickness65–67. The primary 

form of photon scattering in biological tissues is Mie scattering, which is a type of elastic 

scattering – the photon conserves its energy while its direction changes. Mie scattering is 

primarily due to the light interacting with cellular structures in the tissue such as the 

nuclei, organelles, and the cell membranes. Both the absorption and scattering coefficient 

of tissue are typically expressed in units of cm-1 or mm-1 59. 

The anisotropy factor is a measure of how much of the forward direction (i.e., along its 

original trajectory) is retained after each scattering event59,68. The values of the 

anisotropic factor range from -1 to 1 and are unitless. A photon in a medium with an 

anisotropic factor of 1 is perfectly scattered in the forward direction, giving the 

impression that no scattering event has occurred. Conversely, a photon which has been 

scattering in a medium with an anisotropic factor of -1 will be perfectly backscattered, 

resulting in the photon appearing as if it has reversed directions along its vector. Finally, 



6 

 

 

a medium with an anisotropic factor of 0 is considered isotropic, meaning the photon has 

an equal chance of being scattered in any direction. 

The final optical property is the refractive index, which is the ratio of the speed of light in 

a vacuum to the speed of light in the tissue59,69. The refractive index also defines how the 

direction of the light will change at tissue boundaries using Snell’s Law70. 

All four optical properties are independent of each other and depend on the wavelength of 

light59. As such, they must be independently estimated in order to accurately model light 

transport in a given tissue for a specified wavelength. However, in a highly scattering 

media such as most biological tissues, the net scattering of photons quickly becomes 

random, resulting in homogenous scattering after a few millimeters. As a result, the 

scattering coefficient (𝜇𝑠) and anisotropic factor (𝑔) can be combined into the reduced 

scattering coefficient (𝜇𝑠
′ ), which can be calculated using the following equation59,71: 

𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔)                                                      (1.1) 

1.2.3 Tissue Optical Properties 

While the adult head contains many tissues, in this thesis it is assumed that the head 

consists of scalp, skull, cerebrospinal fluid (CSF), and brain tissue. While this is 

obviously a simplification, it is noteworthy that these four tissues compose the bulk of the 

adult head, and this decomposition is a fair approximation. In this thesis the terms scalp 

and skin are used interchangeably. Further, the optical properties of these four tissues 

have been well studied in the literature, and in 2013 Steven Jacques conducted an 

extensive review of tissue optical properties59. Table 1.1 shows typical values for 

anisotropic factor and refractive index for the scalp, skull, CSF, and brain tissue59.  
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Table 1.1: Anisotropic Factor and Refractive Index of Tissues 

Tissue 
Anisotropic 

factor (g) 

Refractive 

index (n) 

Scalp 0.85 1.4 

Skull 0.85 1.4 

Cerebrospinal 

fluid (CSF) 
0.8 1.33 

Brain 0.85 1.4 

While the anisotropic factor and refractive index are dependent of wavelength, there is 

negligible change in the value of these variables over the wavelengths used throughout 

this work59. As such, the values in Table 1.1 are assumed to be true for all wavelengths.   

The absorption and scattering coefficients vary considerably between the various tissues 

and wavelengths59. Figure 1.1 shows the scattering coefficients for the four tissue types 

between 650 nm and 950 nm. The scattering coefficients can be modeled using Eq 1.2:  

𝜇𝑠 =
𝑎(

𝜆

500
)−𝑏

(1−𝑔)
                                                        (1.2) 

where a is the scattering coefficient at 500 nm for that tissue, b characterizes the 

wavelength dependence and is called the scattering power, and λ is the wavelength (in 

nm). Table 1.2 lists the values of a and b for the skin, skull, and brain tissues. The 

scattering coefficient of the CSF is effectively that of water (~0.0001 mm-1)72,73, and is 

consequently assumed to be a negligible throughout this thesis.  
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Figure 1.1: Wavelength Dependent Scattering Coefficients. For the scalp, skull, and 

brain, the values are found using Eq 1.2 and the values from Table 1.2 for every 

wavelength between 650 nm and 950 nm. For the cerebrospinal fluid, the values 

were assumed to be 0.0001 mm-1 for every wavelength.  

Table 1.2: The values for the scattering coefficients at 500 nm (a) for Scalp, Skull, 

and Brain tissue, and their respective scattering powers (b). 

Tissue a (mm-1) b 

Scalp 4.60 1.42 

Skull 2.29 0.72 

Brain 2.42 1.61 

The absorption spectra (i.e., the absorption coefficients of a tissue over a wide range of 

consecutive wavelengths) of tissues have been widely studied in the literature59. Sample 

absorption spectra for skin, bone, CSF, and brain tissue are shown in Figure 1.2.  
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Figure 1.2: Sample absorption spectra of the four tissue types that compose the 

head. The brain spectrum (yellow) is for a brain containing 55 µM of hemoglobin 

with 70% ScO2, and 80% water. 

As mentioned in Section 1.2.2, the absorption coefficient depends on the chemical 

composition of the tissue. Chromophores absorb different wavelengths of light in varying 

amounts, and the amount of absorption at a given wavelength, normalized against its 

concentration, is given by the extinction coefficient (units mm-1µM-1). The left axis of 

Figure 1.3 shows the extinction spectra for oxy- and deoxyhemoglobin between 650 nm 

and 950 nm74–76.  
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Figure 1.3: Extinction coefficient spectra of water on the right axis and oxy- and 

deoxyhemoglobin on the left axis.  

Eq 1.3 can be used to estimate the absorption coefficient (𝜇𝑎) of a tissue by knowing the 

extinction coefficients of its chromophores (𝜀𝑖) and their concentrations59: 

𝜇𝑎(𝜆) = ∑ (𝐶𝑖 ∗ 𝜀𝑖(𝜆))𝑖                                                      (1.3) 

where 𝐶𝑖 is the concentration of a given chromophore in the tissue. While the brain and 

skin have many chromophores, the major contributors to near-infrared light absorption 

are water, oxyhemoglobin, and deoxyhemoglobin59,77,78. As such, the absorption 

coefficient of the brain and scalp can be estimated from the concentrations of these three 

chromophores using the following equation: 

𝜇𝑎(𝜆) = 𝜀𝑊𝑎𝑡𝑒𝑟(𝜆) ∗ 𝑊𝐹 + 𝐶𝐻𝑏𝑂2 ∗ 𝜀𝐻𝑏𝑂2(𝜆) + 𝐶𝐻𝑏 ∗ 𝜀𝐻𝑏(𝜆)                  (1.4) 

where 𝜀𝑊𝑎𝑡𝑒𝑟, 𝜀𝐻𝑏, and 𝜀𝐻𝑏𝑂2 are the extinction coefficients of water, deoxyhemoglobin, 

and oxyhemoglobin, respectively, and 𝑊𝐹 (water fraction), 𝐶𝐻𝑏, and 𝐶𝐻𝑏𝑂2 are their 

respective tissue concentrations. Notice that extinction coefficients of water have the 
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units mm-1 instead of mm-1µM-1. This is due to being based on a volume that is 100% 

water and is the reason why water absorption coefficient is expressed in terms of water 

fraction, which is the percent of tissue volume occupied by water. The right axis of 

Figure 1.3 shows the extinction coefficients of water between 650 nm and 950 nm74,75.  

The water fraction in the adult brain is well known and quite consistent across many 

species79. The adult human brain is composed of approximately 80% water79,80 and is 

expected to be constant over short periods of time, such as during cardiac surgery. 

Additionally, it has been shown in the literature that inaccurate recovery of the brain’s 

water fraction has a negligible impact on the recovery of the ScO278,81,82. In the skin the 

water fraction is approximately 50%, and similarly is relatively constant over short 

periods of time83. As both brain and scalp water fractions should be stable over short 

time-frames, major changes in the absorption coefficient of the brain and skin can be 

attributed to changes in the oxy- and deoxyhemoglobin concentrations. Figure 1.4 shows 

three sample brain absorption coefficient spectra that are possible over the course of a 

cardiac surgery depending on the concentrations of oxy- and deoxyhemoglobin.  

It is important to note that the optical properties of the skin may vary during procedures 

due to many variables, including whether the patient is awake vs asleep and skin 

temperature variation at the measurement site84. Because of this, in my simulations I 

investigate the effects of changing the skin physiological parameters on the recovered 

brain parameters. 
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Figure 1.4: Sample absorption coefficient (𝝁𝒂) spectra for brain tissue depending on 

the concentrations of oxy- (HbO2) and deoxyhemoglobin (Hb). The total hemoglobin 

is equal to 55 µMol in each spectrum, meaning the differences in the curves are due 

to the proportions of oxy- and deoxyhemoglobin.  

1.2.4 Beer-Lambert Law 

In 1729, Pierre Bouguer discovered that the amount of light absorbed by a tissue is 

directly related to the thickness of the medium the light travels through85. This law would 

later be reported by Johann Heinrich Lambert in Photometria, his seminal book published 

in 1760 on the measurement of light86,87. This property of light was further expanded by 

August Beer in 1852, when he discovered that the attenuation of light is also related to 

the concentration of light absorbers in the medium88,89. The combined law is commonly 

referred to as the Beer-Lambert law (Eq. 1.5):  

𝐴(𝜆) = log10(
𝐼0(𝜆)

𝐼(𝜆)
) = ∑ 𝜀𝑖(𝜆)𝐶𝑖𝑑𝑖𝑖                                          (1.5) 

where 𝐴 is the attenuation, 𝐼0(𝜆) is the reference light intensity and 𝐼(𝜆) is the light 

intensity after it travels through the sample, for a given wavelength. The Beer-Lambert 

law relates the light attenuation to the sum of the product of the extinction coefficient (𝜀), 
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concentration (𝐶), and physical thickness (𝑑) for each light absorber present in the 

sample. The Beer-Lambert law can be combined with Eq. 1.3 to calculate attenuation in 

terms of absorption coefficient: 

𝐴(𝜆) = ∑ 𝜇𝑎𝑖𝑑𝑖𝑖                                                          (1.6) 

Eq. 1.6 shows a clear proportional relationship between the attenuation of a sample and 

the thickness of the medium. However, the Beer-Lambert law has a major limitation; it is 

only valid for non-scattering media. The Beer-Lambert law assumes that light travels 

along the line-of-sight between the source and the detector. As mentioned earlier, this is 

not the case in biological tissues. Near-infrared light in tissue experiences significant 

scattering, resulting in a substantial increase in photon pathlength in the medium and thus 

greater attenuation than would be expected. This results in the attenuation no longer 

being linearly related to the absorption coefficient. Furthermore, scattering produces 

attenuation even when there is no light absorption. As such, the Beer-Lambert law needs 

to be modified to accommodate this change in light behavior in tissue90,91: 

𝐴(𝜆) = 𝐷𝑃(𝜆)∑ 𝜀𝑖(𝜆)𝐶𝑖𝑖 + 𝐺(𝜆) = 𝐷𝑃(𝜆)∑ (𝜇𝑎𝑖(𝜆))𝑖 + 𝐺(𝜆)             (1.7) 

where DP is the differential pathlength and G is a term that accounts for light attenuation 

due to scattering. Differential pathlength represents the mean distance traveled by the 

light in the scattering medium and is typically three to six times the distance between the 

point of entry to and point of exit from the medium (i.e., the distance between the source 

and detector). The differential pathlength is equal to the physical distance between the 

source and detector times the differential pathlength factor (DPF). Furthermore, the 

differential pathlength is dependent on the absorption and reduced scattering coefficients 

of the medium92,93: 

𝐷𝑃(𝜆) = 𝐷𝑃𝐹(𝜆) × 𝑑 ≈
1

2
√
3𝜇𝑠

′(𝜆)

𝜇𝑎(𝜆)
× 𝑑                                        (1.8) 

As shown in Equation 1.8, the differential pathlength factor depends on the optical 

properties of the tissue94. In some techniques the differential pathlength is assumed to be 

constant. However, there are many procedures where the absorption coefficient of the 
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tissue may change rapidly84,95. Thus, assuming a constant differential pathlength factor 

may confound the results and lead to uncertainty in the estimation.  

1.2.5 Diffusion Approximation 

A more advanced method for quantifying the optical properties of a medium is to use the 

radiative transfer equation (RTE).  The RTE is a theory based on observations describing 

the transfer of energy through a scattering medium. Unfortunately, the RTE does not 

have a practical solution, making it difficult to solve59,96. Approximations are often made 

to reduce the complexity of the problem, with the diffusion approximation (DA) being 

the most commonly used approach. The DA to the RTE assumes that the light is traveling 

through a highly scattering medium, meaning the light transport can be treated as diffuse 

throughout the medium. The DA provides a differential equation that expresses the 

photon fluence rate, Φ(𝑟, 𝑡), in the tissue as a function of the optical properties97:  

1

𝑣

𝜕

𝜕𝑡
Φ(𝑟, 𝑡) − 𝐷∇2Φ(𝑟, 𝑡) + 𝜇𝑎Φ(𝑟, 𝑡) = 𝑆(𝑟, 𝑡)                       (1.9) 

where 𝑣 is the speed of light in the medium, 𝑟 is the position in the tissue, 𝑡 is time, 𝐷 is 

the photon diffusion coefficient, and 𝑆(𝑟, 𝑡) describes the light source. The photon 

diffusion coefficient is given by96,97:  

𝐷 =
1

3(𝜇𝑠
′+𝜇𝑎)

                                                        (1.10) 

The solution to the diffusion approximation depends on the boundary conditions, but 

before the boundary conditions can be discussed the two primary measurement 

orientations used in NIRS will be introduced. The first orientation is to have the detector 

positioned directly across the tissue. This is referred to as transmittance and can be seen 

in Figure 1.5A50,98. This orientation is limited by the thickness of the tissue, as the light 

must travel through its entirety before reaching the detector. Common applications of 

such measurement geometry are finger and earlobes, for which short source-detector 

distances are possible. The other measurement orientation is reflectance wherein a NIRS 

system is set up such that both the source and detector are on the same surface, as shown 

in Figure 1.5B50,98. This setup requires a highly scattering medium, such as biological 
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tissues, to redirect the photons back towards the surface. Reflectance mode is typically 

used for larger tissues such as the human head or leg muscles, for which measurements in 

transmittance mode would be challenging due to absorption. The analysis methods 

throughout this thesis use the reflectance geometry, as it is better suited for the adult 

head.  

 

Figure 1.5: A) Transmittance: The source (red) and detector (green) are on opposite 

faces of the tissue.  B) Reflectance: The source (red) and detector (green) are on the 

same face of the tissue. 

The most common boundary conditions used for the adult head is to assume an optically 

semi-infinite medium, with the light source and detector located on the surface of the 

medium96. This postulate is based on the fact that light does not effectively reach the 

opposite side of the adult head due to its size, strong light scattering, and absorption, 

which justify the semi-infinite medium assumption. Under these boundary conditions the 

reflectance (𝑅) at the detector can be expressed as a function of the photon fluence rate96: 

𝑅(𝜌, 𝑡) = 0.118Φ(𝜌, 𝑧 = 0, 𝑡) + 0.306𝑅𝑓                         (1.11) 

where 𝜌 is the source-detector distance, 𝑧 is the distance to the tissue boundary and is set 

to 0 since the detectors are typically placed on the tissue surface, and 𝑅𝑓 is the diffuse 

reflectance from the medium across the tissue boundary96. For a pulsed light source 

behaving as a delta function (both spatially and temporally) under these boundary 

conditions, the fluence rate (Φ) can be expressed as96:  

A) B) 



16 

 

 

Φ(𝜌, 𝑧, 𝑡) =
𝑣

(4𝜋𝐷𝑣𝑡)
3
2

× 𝑒−𝜇𝑎𝑣𝑡 × (𝑒−
(𝑧−𝑧0)

2+𝜌2

4𝐷𝑣𝑡 − 𝑒−
(𝑧+𝑧0+2𝑧𝑏)

2+𝜌2

4𝐷𝑣𝑡 )              (1.12) 

where 𝑧0 and 𝑧𝑏 are given by equations 1.13 and 1.14, respectively.  

𝑧0 =
1

(𝜇𝑎+𝜇𝑠
′)

                                                      (1.13) 

𝑧𝑏 =
1+𝑅𝑒𝑓𝑓

1−𝑅𝑒𝑓𝑓
2𝐷                                                   (1.14) 

In Eq 1.14, 𝑅𝑒𝑓𝑓 is the fraction of the light that is internally reflected at the tissue 

boundary and is approximately 0.493 for the refractive index is 1.4 such as in tissues. The 

diffuse reflectance due to the tissue boundary (𝑅𝑓) in Eq 1.11 is given by Eq 1.15:  

𝑅𝑓(𝜌, 𝑡) =
1

2
(4𝜋𝐷𝑣)−

3

2𝑡−
5

2𝑒−𝜇𝑎𝑣𝑡 ∗ (𝑧0𝑒
−
(𝑧0
2+𝜌2)

2

4𝐷𝑣𝑡 + (𝑧0 + 2𝑧𝑏)𝑒
−
((𝑧0+2𝑧𝑏)

2
+𝜌2)

2

4𝐷𝑣𝑡 ),  (1.15) 

A major limitation of using these boundary conditions when solving the DA is that it 

assumes the sample is a homogenous medium96. This means there is no distinction 

between the ECL and the brain, resulting in contamination when these analytical 

solutions are used to analyze NIRS brain measurements. This issue is negligible in 

neonates due to their thin skulls; however, in adult measurements, 50-80% of the optical 

signal come from the ECL even when the source and detector distance is at 3 cm, 

resulting in significant contamination29.  

The two-layer solution to the DA addresses this issue by assigning different optical 

properties for the top (i.e., ECL) and bottom (i.e., brain) layers. The two-layer DA 

solution developed by Kienle et. al. in 1998 uses a fast Fourier transform to calculate the 

time-resolved solution from the frequency-domain solution at many frequencies99. The 

two-layer DA solution in the frequency domain is given by Eq 1.16:  

𝑅(𝑓)(𝜌, 𝜔) = 0.118Φ1
(𝑓)(𝜌, 𝑧 = 0,𝜔) + 0.306𝐷

𝜕

𝜕𝑧
Φ1
(𝑓)
(𝜌, 𝑧, 𝜔)|

𝑧=0
           (1.16) 
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where the Φ1
(𝑓)

 is the two-layer DA fluence solution, and 𝜔 is the angular frequency of 

the light source. The superscript (𝑓) is used to represent variables that are in the 

frequency domain. The two-layer DA fluence solution in the frequency domain is given 

by Eq 1.1799:  

Φ1
(𝑓)
(𝜌, 𝑧) =

1

2𝜋
∫ ϕ

1
(𝑓)(𝑧, 𝑠)

∞

0
𝑠𝐽0(𝑠𝜌)𝑑𝑠                                  (1.17) 

In Eq 1.17 𝑠 is an integration variable, 𝐽0 is the zeroth order Bessel function of the First 

kind (Eq. 1.18), and ϕ1
(𝑓)

 is given by eq. 1.19 when the source is located on the tissue 

surface99:  

𝐽0(𝑠𝜌) = ∑
(−1)𝑘(

𝑠𝜌

2
)2𝑘

𝑘!Γ(𝑘+1)

∞
𝑘=0                                  (1.18) 

ϕ1
(𝑓)(𝑧, 𝑠) =

sinh(𝛼1(𝑧𝑏+𝑧0)

𝐷1𝛼1
∗
𝐷1𝛼1 cosh[𝛼1(𝑙−𝑧)]+𝐷2𝛼2 sinh[𝛼1(𝑙−𝑧)]

𝐷1𝛼1 cosh[𝛼1(𝑙+𝑧)]+𝐷2𝛼2 sinh[𝛼1(𝑙+𝑧)]
−

sinh[𝛼1(𝑧0−𝑧)]

𝐷1𝛼1
,   (1.19) 

where 𝑙 is the top layer thickness and 𝐷1 and 𝐷2 are calculated using Eq. 1.10 for with the 

optical properties of the top (1) and bottom (2) layers. 𝛼1 and 𝛼2 are provided in Eq. 1.20 

for their respective tissue:  

𝛼𝑖 = √𝐷𝑖𝑠
2+𝜇𝑎𝑖+

√−1𝜔

𝑣

𝐷𝑖
                                                       (1.20) 

After solving the equation at many frequencies, the Fast Fourier Transform converts the 

solutions from the frequency domain into the time domain99. Figure 1.6 shows a 

comparison of the homogeneous DA and the two-layer DA, both as a function of time. 

As shown, the two solutions are highly comparable when the optical properties of the top 

and bottom layers are identical, and the same as those of the homogenous semi-infinite 

medium.  
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Figure 1.6: The one- and two-layer solutions to the diffusion approximation (DA). 

Optical properties in both layers of the two-layer solution are the same for a direct 

comparison to the homogeneous semi-infinite solution. Absorption is 0.0161 mm-1, 

reduced scattering coefficient is 0.840 mm-1, and the refractive index is assumed to 

be 1.4.  

1.2.6 Blood, Oxygen, and the Brain 

Oxygen is the terminal electron acceptor from the electron transport chain and thus a key 

component in the cellular respiration process100. Without a constant supply of oxygen 

brain tissues quickly become hypoxic, eventually leading to necrosis and brain 

damage101,102. The heart constantly pumps blood throughout the body to ensure there is 

sufficient oxygen reaching all organs, particularly the brain. While there is a small 

amount of oxygen freely diffusing in the blood, much of the circulatory oxygen is bound 

to hemoglobin molecules inside erythrocytes (red blood cells)103. While a description of 

the exact biochemical structure of hemoglobin is beyond the scope of this thesis, it can be 

simply described as a protein comprised of four globular protein subunits, each 

containing a heme group bound to an iron atom103. The hemoglobin protein can bind up 

to 4 oxygen molecules, facilitating circulatory oxygen transport. There are two primary 

forms of hemoglobin that are of interests for this project: oxyhemoglobin and 

deoxyhemoglobin. Oxyhemoglobin refers to the hemoglobin molecules that have bound 

four oxygen atoms, while deoxyhemoglobin refers to the fully unbound hemoglobin 
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protein. Throughout this thesis, the terms hemoglobin and total hemoglobin are used 

interchangeably to refer to the sum of oxy- and deoxyhemoglobin in the tissue.   

The distinct absorption of oxy- and deoxyhemoglobin in the first optical window and 

their critical importance to cell viability make them ideal chromophores for NIRS. As 

mentioned in Section 1.2.4, the extinction spectra for the two states of hemoglobin are 

major contributors to light absorption in the brain82,104,105. Thus, NIRS measurements at 

several wavelengths can be used to compute the concentrations of oxy- and 

deoxyhemoglobin in the probed tissue31,77,106. From the concentrations of oxy- and 

deoxyhemoglobin, the blood oxygen saturation (SO2) in the tissue can be calculated using 

Eq 1.2131:  

𝑆𝑂2 =
𝐻𝑏𝑂2

𝐻𝑏𝑂2+𝐻𝑏
                                                   (1.21) 

Tissue oxygen saturation (i.e., tissue blood oxygen saturation) is a useful biomarker of 

tissue viability because it provides direct information about the oxygen availability to the 

tissues of interest, informing physicians about the balance between oxygen delivery and 

tissue oxygen consumption53,107. Thus, low tissue oxygen saturation can lead to hypoxia, 

which can produce a cascade of failures potentially leading to tissue death101–103. The side 

effects are especially devastating in cerebral hypoxia, which can lead to temporary or 

permanent memory loss, loss of mobility, shortened attention span, and impaired decision 

making, or more serious side effects such as seizures or brain death15,108. Further, 

knowing the absolute concentrations of oxy- and deoxyhemoglobin instead of only the 

ratio between the two is important because it provides additional information about the 

cerebral blood flow and blood content. Sudden changes in these measures can indicate 

changes in tissue perfusion or metabolism109.  

Furthermore, in contrast to a pulse oximeter that only monitors for systemic blood 

oxygen saturation (i.e., arterial blood oxygen saturation), NIRS is capable of directly 

monitoring the oxygen saturation in specific regions of interest107. This is particularly 

important during cardiac surgery, since there can be vascular injuries that only impact 

specific brain regions, causing no change in the pulse oximeter reading and thus would 
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not be detected. An ideal NIRS system for neuromonitoring during cardiac surgery would 

have multiple source-detector pairs sampling the 8 cerebral vascular territories110. 

1.3 Continuous-wave NIRS 

The vast majority of commercial NIRS systems are based on continuous-wave (CW) 

NIRS, which is the simplest NIRS method107.  In CW-NIRS, a beam of near-infrared 

light of fixed intensity is directed into the tissue and the attenuation of the beam is 

measured over an extended period of time.  The changes in the light intensity are then 

analyzed to estimate changes in tissue composition, such as the ratio of oxy- and 

deoxyhemoglobin81,105,111. Like many optical spectroscopy techniques, CW-NIRS 

typically uses measurements acquired at several wavelengths, ranging from two 

wavelengths to a full spectrum, to estimate tissue chromophore content.  

CW-NIRS is especially well suited for neonates due to their thin skulls112–114. The ECL in 

a neonate is typically less than 2 mm, growing to approximately 4 mm by the time they 

are 3 years old115. The thinner ECL leads to less contamination of the optical signal 

compared to adult brain measurements, where the thickness of the ECL is 10-15 mm116. 

Additionally, the thicker adult ECL makes CW-NIRS more sensitive to changes in the 

scalp, which may be mistaken for changes in the brain. Selb et. al. showed that the 

sensitivity to the brain for CW-NIRS is only 8% in adults at a 3 cm source-detector 

distance, while the sensitivity to the scalp is approximately 88% at that same distance117.  

Despite this low brain sensitivity, CW-NIRS analysis methods continue to be widely used 

because they are computationally efficient, allowing for the rapid recovery of changes in 

tissue absorption coefficients. However, because commercial CW-NIRS analysis 

methods primarily rely on the modified Beer-Lambert law, they are unable to calculate 

absolute values for the chromophore concentrations. This is due to the uncertainty in their 

photon pathlength resulting from the scattering nature of tissue107. This reduces the 

suitability of CW-NIRS for longitudinal studies as a new baseline must be established for 

each session, as well as limits inter-subject comparability.  
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Several more advanced methods have been developed to address these issues, and the 

most common methods for correcting for the ECL involves increasing the source-detector 

distance and the number of detectors118. Increasing the distance between the source and 

detector can increase brain sensitivity, since depth penetration is related to the source-

detector distance117. In contrast, increasing the number of detectors does not improve 

depth sensitivity but allows users to better differentiate which tissue layer is responsible 

for changes in the optical signal119. A third method for increasing sensitivity is to utilize 

additional wavelengths, leveraging the spectral features of oxy- and deoxyhemoglobin to 

aid in their recovery23,81,82,105. Hyperspectral CW-NIRS systems, also referred to as 

broadband NIRS, have proven to have greater accuracy than those that use few 

wavelengths. Hyperspectral CW-NIRS systems also have the additional ability to 

calculate absolute cerebral concentrations of oxy- and deoxyhemoglobin, though the 

accuracy of this recovery decreases as ECL thickness increases105. 

1.4 Time-Resolved NIRS 

1.4.1 General Theory and Uses 

Despite the recent advancements in CW-NIRS, it is well known that time-resolved (TR) 

NIRS is the superior NIRS method as it provides a greater amount of information54. TR-

NIRS systems use pulses of near-infrared light (typically only a few picoseconds in 

duration) instead of a continuous beam107,111,120. TR-NIRS detectors produce time-of-

flight curves such as those seen earlier in Figure 1.6 by recording the time it takes for 

photons to travel from the light source to the detector107. These time-of-flight curves are 

also called temporal point spread functions (TPSFs), which is the nomenclature used 

throughout this work. The amount of time the photons take to reach the detector is 

directly related to their travel distance because the speed of light in the tissues are 

relatively constant59. Consequently, later arriving photons travel longer distances in the 

tissue and are more likely to have probed deeper tissue layers. Thus, to increase 

sensitivity to the brain, it is important to analyze later arriving photons.  

TR-NIRS has a few disadvantages compared to CW-NIRS. For one, TR-NIRS requires 

more expensive and more complex equipment than CW-NIRS, including pulsed lasers 
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that operate at high frequencies, sensitive detectors such as photomultiplier tubes to 

detect individual photons, and high-precision electronics to precisely measure the arrival 

time of each photon with respect to the laser pulse121. As well, TR-NIRS analysis 

methods are typically more computationally intensive than those associated with CW-

NIRS. This is because they typically involve a larger number of datapoints, compared to 

CW-NIRS, and often require the use of more computationally intensive mathematical 

operations, such as the Fourier Transform96,99,106,122. Nevertheless, the increased 

information gained with the use of TR-NIRS makes the technique extremely valuable in 

many applications including adult neuromonitoring.  

An important benefit of TR-NIRS is that the scattering and absorption coefficients 

become uncoupled in the time-of-flight curves, allowing for the recovery of their absolute 

values123,124. As shown in Figure 1.7, the natural log of the reflectance approaches 

linearity as time progresses. The slope of the late-arriving photons in this region has a 

quasi-linear dependence on the absorption coefficient of the medium123: 

𝜇𝑎(𝜆) = −
𝜕

𝜕𝑡
log(𝑅(𝑡→∞,𝜆))

𝑣
                                            (1.22) 

The later the time, the greater the decoupling and the more accurate the estimate of 

absorption coefficient from the tail of the TPSF. However, the trade-off with using later 

time points is that the noise in the data increases as there are fewer photons in the tail of 

the TPSF. It is important when using TR-NIRS that there is a high signal-to-noise ratio to 

ensure the data being analyzed is representative of the tissue optical properties.  
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Figure 1.7:  Late-photon analysis. The log of the time-of-flight curve approaches a 

linear slope as time increases. The region in red corresponds with the late-arriving 

photons and provides sufficient signal-to-noise ratio for analysis in an in vivo setting. 

The dotted black line is a linear fitting of the region of interest, and its slope is equal 

to the denominator of the right part of Eq. 1.22 and is related to the absorption 

coefficient of the medium. 

1.4.2 Multi-spectral and Hyperspectral TR-NIRS 

As mentioned in Section 1.2, the optical properties of the tissue are dependent on the 

wavelengths chosen. The concentrations of oxy- and deoxyhemoglobin can be more 

accurately recovered by using additional wavelengths to leverage their spectral features82. 

Most TR-NIRS systems use two to four wavelengths, though some have used up to 

sixteen in the past106. These systems are typically referred to as multi-spectral TR-NIRS 

or few-wavelength TR-NIRS. The wavelengths chosen in these systems typically 

correspond with the absorption peaks of oxy- and deoxyhemoglobin to minimize 

crosstalk between chromophores106. 

An alternative approach is to use a hyperspectral system124. A hyperspectral TR-NIRS 

system uses a much larger number of wavelengths spanning a wide range. Hyperspectral 

TR-NIRS is a novel approach and there is currently a limited body of work in this field. I 
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previously demonstrated during my undergraduate studies that hyperspectral TR-NIRS 

can increase sensitivity to adult brain oxygen saturation124. These results confirmed the 

benefit of using hyperspectral approaches in TR-NIRS and laid the foundation for the 

current work. 

1.5 Research Objectives 

The goal of the research project reported in this master’s thesis was to develop a TR-

NIRS data analysis method that achieves a fast computation time without sacrificing 

accuracy to allow for quasi-real-time monitoring of adult ScO2 and total cerebral 

hemoglobin concentration. There were two primary objectives:  

1. Develop a two-layer fitting approach for few-wavelength TR-NIRS to recover 

ScO2 and total hemoglobin in adults using a single detector with high accuracy. 

2. Develop a hyperspectral TR-NIRS fitting algorithm based on the two-layer 

approach developed in objective 1 and the hyperspectral late-photon analysis 

method I previously developed in order to achieve near-real-time adult 

neuromonitoring with high accuracy.  

The analysis methods developed in pursuit of these objectives are validated using Monte-

Carlo simulations of photon transport in biological tissues.  

1.6 Monte-Carlo Simulations 

The Monte-Carlo method is a statistics-based computational algorithm that generates 

accurate solutions by estimating the probability of random events occurring125. As 

mentioned earlier, modeling light transport in biological tissues is difficult to accurately 

achieve due to the many random events that can occur, drastically changing a given 

photon’s travel path. Instead of attempting to precisely model the outcome with a single 

analytical solution, a Monte-Carlo simulation will conduct millions of independent 

random trials to calculate independent photon-paths126–128. With sufficient photon-paths 

calculated, the results begin to approach a realistic solution based on the probability of a 

given event occurring. This is analogous to flipping a coin; you may get a few heads in a 

row, but eventually you will approach the expected 50-50 distribution.  
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Monte Carlo Extreme (MCX) is a photon simulation platform that uses GPUs (Graphics 

Processing Units) to calculate many photon-paths in parallel, thereby increasing the speed 

of a given simulation by 300-fold127,128. The accuracy of MCX simulations has been 

previously validated128. The methods developed in pursuit of objectives one and two are 

validated using MCX simulations conducted in a four-layer adult head model with 

appropriate optical properties. More information about the simulations can be found in 

Chapters 2 and 3.  

MCX simulations are used instead of in vivo experiments for the validation of these 

methods because they provide exact values to which the analysis methods can be 

compared. Additionally, conducting these experiments in silico rather than in vivo 

provides greater control of the experimental environment than would be otherwise 

possible. In an in vivo experiment there would be some degree of uncertainty in terms of 

the baseline optical properties. Conducting the validation in silico also allows for these 

methods to be validated over a wide variety of conditions without the need to conduct 

extensive in vivo studies. Unlike in vivo studies, an in silico study has no risk to patients 

or animals, is less burdensome, and can be easily scaled to include as many samples as 

required129.      

1.7 Thesis Outline 

This thesis will present the development of two fast and reliable TR-NIRS analysis 

methods. The following two chapters will focus on addressing the above stated research 

objectives, with the method described in Chapter 3 addressing many of the limitations in 

Chapter 2. Chapter 4 will provide a summary and discussion of the major findings of this 

work and provide a conclusion.  

1.7.1 Chapter 2: Estimating adult cerebral oxygen saturation from 
time-resolved near-infrared spectroscopy measurements with 
few discrete wavelengths at a single source-detector distance 

Chapter 2 focuses on addressing objective 1, which is to develop an accurate TR-NIRS 

method that uses a single detector and few-wavelengths to recover adult ScO2 and total 

cerebral hemoglobin content. This was accomplished using a two-layer analytical fitting 
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approach. The work presented in this chapter is adapted from my proceeding paper 

published by SPIE (Photonic West 2021), titled “Estimating adult cerebral oxygen 

saturation from time-resolved near-infrared spectroscopy measurements with few discrete 

wavelengths at a single source-detector distance,” by David Jonathan Fulop Cohen, 

Natalie Li, and Mamadou Diop.  

1.7.2 Chapter 3: Fast Estimation of Adult Cerebral Oxygen Saturation 
and Total Hemoglobin using Hyperspectral Time-Resolved 
Near-Infrared Spectroscopy 

Chapter 3 focuses on addressing objective 2, which is to develop an analysis method that 

can quickly and accurately recover adult ScO2 and total cerebral hemoglobin from 

Hyperspectral TR-NIRS measurements. The approach taken in this chapter is a two-stage 

approach which allows for the accurate estimation of the initial baseline tissue 

hemoglobin and blood oxygenation, followed by the rapid recovery of these parameters 

during subsequent measurements. This chapter is adapted from an upcoming publication 

titled “Fast Estimation of Adult Cerebral Oxygen Saturation and Total Hemoglobin using 

Hyperspectral Time-Resolved Near-Infrared Spectroscopy” by David Jonathan Fulop 

Cohen, Natalie C. Li, Seva Ioussoufovitch, Vladislav Toronov, and Mamadou Diop.  

1.7.3 Chapter 4: Conclusion and Future Work 

Chapter 4 summarizes the major findings of the research provided as well as discusses its 

implications and limitations. The objectives and goal of this thesis will be revisited, and 

future work will be discussed. Finally, an overall conclusion will be provided.  
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Chapter 2  

2 Estimating adult cerebral oxygen saturation from time-
resolved near-infrared spectroscopy measurements 
with few discrete wavelengths at a single source-
detector distance 

This chapter is adapted from a proceeding paper titled: “Estimating adult cerebral oxygen 

saturation from time-resolved near-infrared spectroscopy measurements with few discrete 

wavelengths at a single source-detector distance” published in Proceedings Volume 

11639, Optical Tomography and Spectroscopy of Tissue XIV in 2021 by David Jonathan 

Fulop Cohen, Natalie C. Li, and Mamadou Diop.  

 Abstract 

Time-resolved Near-Infrared Spectroscopy (TR-NIRS) methods typically use multiple 

wavelengths and source-detector distances in conjunction with a solution of the diffusion 

approximation to quantify tissue blood content and oxygenation. This approach can be 

both computationally intensive and costly, as multiple detectors are required. We propose 

a novel two-layer fitting approach for multi-wavelength TR-NIRS, which uses a single 

detector while providing accurate estimates of cerebral oxygen saturation (ScO2) and 

hemoglobin content. The method uses a multi-step fitting algorithm to establish rough 

estimates of the absorption and scattering coefficients in the extracerebral layer and the 

brain, and subsequently refine those estimates, to improve accuracy while reducing 

crosstalk and complexity. Validation was conducted using Monte Carlo simulations in a 

realistic adult head model with appropriate optical properties at 680nm, 750nm, 800nm, 

and 830nm. The detector was located 30 mm anteriorly from the source, which was 

placed 50 mm above the right temple. Scalp oxygen saturation (SO2) (50%, 60%, and 

70%) and ScO2 (40%-80%, 2% increments) were varied independently. The recovered 

ScO2 had a difference (mean±standard deviation) of 2.31±2.93% from inputted values, 

and cerebral total hemoglobin was recovered with a difference of 2.94±3.47%. Such high 

accuracy demonstrates the robustness of this computationally efficient two-layer fitting 

approach for analyzing multi-wavelength TR-NIRS measurements acquired with a single 
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detector. Future work will involve validating the technique in tissue mimicking phantoms 

and animal studies. 

 Introduction 

Intraoperative brain injury is a serious complication of cardiac surgery that is currently 

difficult to detect since there are few clinically significant signs or symptoms while the 

patient is under general anesthesia1-4. Time-resolved near-infrared spectroscopy (TR-

NIRS) could address this clinical need, as it is sensitive to cerebral oxygen saturation 

(ScO2), an important biomarker for brain health5-8. Additionally, because TR-NIRS 

measures regional ScO2 rather than specifically arterial or venous oxygen saturation, it 

can be used to assess regional tissue wellbeing9.  

TR-NIRS measurements are typically analyzed using simple analytical solutions of the 

diffusion approximation (DA) to the radiative transport equation, which assumes that the 

head is a homogenous medium10. While this assumption is reasonable for neonates11, 

given the smaller contribution of their thin extracerebral layers (ECL) to the optical 

signal, it is inappropriate for adults where skull thickness can reach more than 10 mm12. 

More advanced algorithms use a two-layer approach to distinguish the ECL and brain 

signals13; however, they often require fitting many source-detector distances 

simultaneously to better constrain the estimation of ScO2 and cerebral blood content13, 14. 

Given the complexity and cost of current TR-NIRS devices, it is desirable to minimize 

the number of detectors required to achieve accurate estimates of ScO2 and blood 

content. In this work, we propose a two-layer fitting approach for multi-wavelength TR-

NIRS, capable of recovering ScO2 and total hemoglobin concentration in the brain with 

high accuracy using a single source detector distance. The accuracy of this method was 

tested using in silico data generated from a segmented adult head model to closely mimic 

tissue geometry and optical properties. The reduction in the number of detectors required 

to achieve high accuracy makes this method very attractive compared to the multi-

detector methods commonly reported in the literature.  
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 Methods 

2.3.1 Monte Carlo Simulations 

Monte-Carlo simulations were conducted to validate the two-layer fitting method 

described below. A four-layer head model, consisting of scalp, skull, cerebrospinal fluid 

(CSF), and brain tissue, was previously segmented from a 3D MRI of an adult human 

head15. Each layer was assigned optical properties (absorptions, scattering, anisotropic 

factor, and refractive index) characteristic of the tissue they represent and were adjusted 

appropriately depending on the simulated wavelength16. For the scalp and brain tissues, 

the absorption coefficients (𝜇𝑎)were calculated using Equation 2.116, where 𝜆 is the 

wavelength of light, 𝜀𝑊𝑎𝑡𝑒𝑟, 𝜀𝐻𝑏, and 𝜀𝐻𝑏𝑂2 are the extinction coefficients of water, 

deoxyhemoglobin, and oxyhemoglobin, respectively, and 𝑊𝐹 (water fraction), 𝐶𝐻𝑏, and 

𝐶𝐻𝑏𝑂2 were their respective tissue concentrations. 

𝜇𝑎(𝜆) = 𝜀𝑊𝑎𝑡𝑒𝑟(𝜆) ∗ 𝑊𝐹 + 𝜀𝐻𝑏(𝜆) ∗ 𝐶𝐻𝑏 + 𝜀𝐻𝑏𝑂2(𝜆) ∗ 𝐶𝐻𝑏𝑂2 ,(2.1) 

This allowed for the generation of a wide range of brain-scalp oxygen saturation (SO2) 

pairs. Notably, Monte Carlo simulations17, 18 were conducted with ScO2 ranging from 

40% to 80% in 2% increments, with three distinct scalp oxygen saturations (50%, 60%, 

and 70%) simulated for each ScO2. For each brain-scalp SO2 pair, the wavelengths 

simulated were 680 nm, 750 nm, 800 nm, and 830 nm. These wavelengths were chosen 

due to their wide coverage of the first optical window, wide availability for experimental 

implementation, and prevalence in the literature for monitoring oxy- and 

deoxyhemoglobin19-21. Each simulation used 3 billion photons to obtain a realistic signal-

to-noise ratio. In all simulations, the source was located 50 mm above the right temple, 

where the mean extracerebral thickness is approximately 12 mm, and a detector was 

positioned 30 mm anteriorly, as shown in Figure 2.1. Due to GPU memory limitations, 

only one octant of the full head volume was simulated.  
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Figure 2.1: Four-layer adult head model used for the Monte Carlo simulations: A) 

full head model and B) cross-section along the source-detector plane. The four 

layers are the scalp (dark blue), skull (cyan), cerebrospinal fluid (orange), and brain 

tissue (yellow). Though the full head was segmented, only the portion shown in 

colour was used in the simulations due to GPU memory limitations. The source (red 

star) and the detector (green star) are located 3 cm apart.  

2.3.2 Data Analysis 

The two-layer analysis is prone to crosstalk because of the larger number of fitting 

parameters (five). As such, a multi-step approach is implemented to reduce crosstalk 

between the variables. The first step is to obtain a rough estimate of the optical properties 

in both layers, while the second step refines those initial estimates.  

The rough estimates of the optical properties are obtained using two techniques. The first 

approach is a two-stage homogenous fitting of each temporal point-spread function 

(TPSF) to recover the absorption coefficient of the extracerebral layer (ECL) and the 

mean reduced scattering coefficient of the entire volume of tissue probed by the optical 

signal. Note that even at a 30 mm source-detector distance, the ECL contribution 

dominates the TPSF in the region of interest (50% of the maximum signal before the 

peak, to 5% after). As such, fitting the TPSFs with a homogenous model22 to obtain a 

rough estimate of the optical properties of the ECL is reasonable. The first stage of the 

homogenous fitting is used to calculate the mean amplitude (i.e., the multiplication factor 

that is used to account for the variable number of detected photons in the Monte Carlo 

A) B) 
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simulations) of the optical signal for the four wavelengths. Fixing the amplitude to the 

mean value for a second homogenous fitting of the same four TPSFs reduces the 

crosstalk between the amplitude term and the other fitting parameters, and results in more 

stable estimates of the absorption coefficients of the ECL and scattering coefficients. 

Assuming an average scattering for the whole head rather than unique scatterings for the 

top and bottom layers of the two-layer fitting reduces the complexity of the fitting 

algorithm and computation time and did not impact accuracy.  

The TPSFs are then fit between 5% and 1% of the maximum signal after the peak using 

Equation 2.2; R is the reflectance, t is time, c is the speed of light in a vacuum, and n is 

the refractive index of the tissue, which was set to 1.4.  Equation 2.2 is used to estimate 

the absorption coefficients of the brain tissue because the tail of the TPSF is more 

sensitive to the bottom layer (brain) absorption coefficient; late-arriving photons have a 

longer pathlength and are therefore more likely to have interrogated deeper tissue23. 

𝜇
𝑎
(𝜆) = −

𝜕(𝑅(𝜆,𝑡))

𝜕𝑡
𝑐

𝑛

                                                          (2.2) 

Once the initial estimate of the absorption coefficients in both layers and the homogenous 

reduced scattering coefficients are obtained, the two-layer fitting algorithm is used to 

refine the estimates. The two-layer fitting algorithm uses the two-layer solution to the DA 

developed by Kienle et al. in 1998 24. To leverage the spectral information provided by 

the four wavelengths, the concentrations of oxy- and deoxyhemoglobin are calculated 

from the absorption coefficients of the ECL and brain, using Eq. 1 and assuming 80% 

water fraction. Similar to the two-stage homogenous fitting routine, the two-layer fitting 

is conducted in two stages. The first stage refines the concentrations in the ECL, while 

the second refines the concentrations in the brain tissue. In the first stage, the 

concentrations, amplitude, and reduced scattering coefficient estimated from the 

homogenous fitting are assigned as the initial values, and the top layer (ECL) thickness is 

set to a known a priori value obtained from the head segmentation. In a clinical setting, 

such information can be obtained from a prior MRI or CT scan. During the first stage of 

the fitting the ECL concentrations are constrained to vary within 10% from the initial 



49 

 

 

estimate. The refined ECL concentrations are then fixed during the second stage of the 

fitting for which the concentrations of oxy- and deoxyhemoglobin in the brain are the 

only fitting parameters.  

Once refined estimates of the brain oxy- and deoxyhemoglobin have been calculated, 

Equations 2.3 and 2.4 are used to compute the total hemoglobin and ScO2, respectively: 

𝐶𝐻𝑏𝑇 = 𝐶𝐻𝑏𝑂2 + 𝐶𝐻𝑏                                                (2.3) 

𝑆𝑐𝑂2 =
𝐶𝐻𝑏𝑂2

(𝐶𝐻𝑏+𝐶𝐻𝑏𝑂2)
∗ 100%                                           (2.4) 

 Results 

2.4.1 Simulations 

A total of 264 simulations were conducted in the four-layer head model to validate the 

TR-NIRS data analysis algorithm. To test the validity of the semi-infinite medium 

assumption, the trajectories of the photons which reached the detector were analyzed in a 

sample (20) of the simulations. Since no photons that made it to the detector had 

interacted with the simulation boundary, it was concluded that the assumption was valid 

despite simulating an octant rather than the full volume of the head. Additionally, a 

negligible number of photons reached the simulation boundary in the first 1.5 ns after the 

simulated photon pulse (the maximum time of interest), which further supports our 

postulate that using only one octant of the full head does not impact the validity of the 

simulations.  

2.4.2 Data analysis 

The two-layer multi-wavelength analysis takes approximately 27.8 seconds per set of 

four TPSFs. The recovered cerebral oxy- and deoxyhemoglobin concentrations are 

displayed in Figure 2.2. The difference (mean± standard deviation) between the 

simulated and recovered oxyhemoglobin is 4.64±5.68% with a very strong correlation 

coefficient of 0.9976 between the estimated values and the ground truth. The minimum 

and maximum percent differences for the recovered oxyhemoglobin are 0.0% and 14.1%, 
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respectively. Deoxyhemoglobin was recovered with a similar accuracy (mean± standard 

deviation) of 2.88±3.03%, and a correlation coefficient of 0.9993 when compared to the 

true values. The percent differences for the deoxyhemoglobin ranged from 0.1% and 

10.0%.  

The ScO2 and total cerebral hemoglobin calculated from the cerebral concentrations of 

oxy- and deoxyhemoglobin are summarized in Figure 2.3. The recovered ScO2 is 

strongly correlated with the simulated ScO2 (0.9987), with a difference (mean± standard 

deviation) of 2.31±2.93%, with a minimum and maximum difference of 0.1% and 7.7%, 

respectively. Similarly, the cerebral total hemoglobin was recovered with a difference 

(mean± standard deviation) of 2.94±3.47%, with a minimum difference of 0.2% and 

maximum difference of 7.1%. 
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Figure 2.2: Recovered cerebral oxy- (A) and deoxyhemoglobin (B) concentrations 

for each ScO2. The values plotted in blue are the recovered values, while the dotted 

black line represents the inputted concentrations. (C) and (D) show the percent 

differences between the recovered concentrations and the simulated values.  

A) B) 

C) D) 
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Figure 2.3: Recovered ScO2 (A) and total hemoglobin concentration (B) for each 

simulated ScO2. In both cases, the mean and standard deviation values are 

calculated across skin oxygenation, for each inputted ScO2. The recovered values 

are plotted in blue, while the dotted black line represents the true values. (C) and 

(D) show the percent differences between the recovered values and the ground 

truth. 

 Discussion 

In this study, a two-layer fitting algorithm that can recover adult cerebral oxygen 

saturation and total hemoglobin from multi-wavelength TR-NIRS measurements, 

acquired from a single detector, was developed and evaluated using Monte-Carlo 

A) B) 

C) D) 
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simulations. The analysis reveals a strong correlation between the recovered and the 

simulated values, with sub 5% mean percent differences. This method has greater 

accuracy for deoxyhemoglobin than for oxyhemoglobin. This is further shown examining 

the absolute concentrations, where deoxyhemoglobin is recovered with a mean absolute 

difference of 0.61±0.66 µMol, while oxyhemoglobin is recovered with a mean absolute 

difference of 1.53±1.83 µMol. As shown in Figure 2.2, the recovery of oxyhemoglobin is 

overestimated when ScO2 is high, while underestimated when ScO2 is low. This is likely 

a result of the wavelengths selected for the analysis; two wavelengths (680 nm and 750 

nm) correspond to the region where deoxyhemoglobin has a higher extinction coefficient, 

while only one wavelength (830 nm) is in the region where oxyhemoglobin has stronger 

absorption. The same trend is observed for ScO2 and total hemoglobin, as the 

concentration of oxyhemoglobin is used in their estimation. The mean absolute 

differences for ScO2 and cerebral total hemoglobin are 1.31±1.57% and 1.62±1.91 µMol, 

respectively. 

The high accuracy of this method should allow for non-invasive measurement of ScO2 

and blood content at the bedside. With the average age of the population continuing to 

increase, an increasing number of seniors will require heart surgery, which is associated 

with a high risk of intraoperative brain injury. Previous studies have shown that 

modifying cerebral oxygen delivery to maintain intraoperative cerebral oximeter values at 

the preoperative baseline significantly reduces instances of permanent post-operative 

stroke (0.97% vs 2.5%)25. Thus, bedside neuromonitoring could enable real-time 

detection of oxygen desaturation events to allow timely initiation of treatment. 

A potential limitation of this work is that the simulations did not include an instrument 

response function (IRF)26. As such, we can only speculate on the potential effects of the 

IRF on the accuracy of the method; however, beside a slight increase in computational 

time needed for convolving the IRFs with the theoretical model, we do not anticipate 

significant differences from the findings of the current study. A second limitation is that 

the method requires a priori knowledge of the ECL thickness. This may be an issue in 

emergency situations where it will not be possible to measure the ECL thickness before 

surgery via MRI or CT imaging. However, with the additional spectral information 
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available from an increased number of wavelengths, it may be possible to estimate the 

ECL thickness which will increase the robustness of the method. Future work will 

involve evaluating this method with hyperspectral TR-NIRS data to test this hypothesis.  

 Conclusion 

We have developed a robust method for accurate recovery of adult ScO2 and hemoglobin 

content using a multi-wavelength two-layer analysis of TR-NIRS data acquired at a 

single detector. The method reliably recovers the absolute oxy- and deoxyhemoglobin 

concentrations, enabling accurate calculation of ScO2 and total hemoglobin. Future work 

will involve further validation of this method in an animal model of the adult head, as 

well as expanding the number of wavelengths (i.e., hyperspectral TR-NIRS) to permit 

estimation of the ECL directly from the TR-NIRS measurements. 
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Chapter 3  

3 Fast Estimation of Adult Cerebral Oxygen Saturation 
and Total Hemoglobin using Hyperspectral Time-
Resolved Near-Infrared Spectroscopy 

This chapter features unpublished work in preparation for submission by David Jonathan 

Fulop Cohen, Natalie C. Li, Seva Ioussoufovitch, Vladislav Toronov, and Mamadou 

Diop. 

 Introduction 

Near-infrared spectroscopy (NIRS) is a portable technology that uses safe (i.e., non-

ionizing) near-infrared light to noninvasively probe living tissue1. NIRS has high 

sensitivity to key biomarkers of brain health such as cerebral blood content and 

oxygenation2, and is now widely used for neuromonitoring in both pre-clinical and 

clinical research3–5. Several NIRS methods have been developed over the years, but the 

most widely used devices are based on continuous-wave NIRS (CW-NIRS) technology. 

CW-NIRS is the simplest NIRS technology and is based on sending a constant beam of 

light into the tissue and monitoring for changes in its intensity6,7. By using a CW-NIRS 

technique that can measure light attenuation at many wavelengths, rather than just a few 

(e.g., 2-3), the spectral features of the main light absorbers in the brain (e.g., water, oxy- 

and deoxyhemoglobin) can be leveraged to improve the accuracy of CW-NIRS. This 

approach is often called hyperspectral CW-NIRS and has been shown to provide reliable 

results in neonates8,9; however, hyperspectral CW-NIRS neuromonitoring in adults 

remains a challenge due to significant contamination from their thicker skin and skull8,10. 

To mitigate this challenge, alternative NIRS methods that are more sensitive to the adult 

brain have been investigated, and the most advanced of such techniques are based on 

time-resolved NIRS (TR-NIRS)11,12. In TR-NIRS neuromonitoring, short pulses of light 

are sent into the brain and the time it takes for the photons to arrive at the detector is 

precisely measured to generate a temporal point-spread function (TPSF). This allows for 

the differentiation of early-arriving photons − that have only passed through the 
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extracerebral layers (ECL; scalp, skull, and cerebrospinal fluid) − from late-arriving 

photons that are more likely to interrogate the brain. Several studies have demonstrated 

the superior brain sensitivity of TR-NIRS13–16; however, analyzing TR-NIRS brain 

measurements is challenging, and measurements are often analyzed by assuming that the 

brain is a homogeneous medium17–19. While such an approach may work in neonates, 

given their thin ECL, modelling the adult head as a homogeneous medium is obviously 

an oversimplification. Notably, when interrogating the brain non-invasively − with 

probes positioned on the scalp − NIRS measurements contain significant contribution 

from the ECL since light must travel through the skin (1.2-1.5 mm) and skull (~10 mm) 

before reaching the brain20. 

A simple, yet more accurate, approach to account for the ECL contribution is to divide 

the head into two compartments: brain and ECL12. This permits the use of analytical 

solutions of light propagation in two-layer turbid media to analyze adult TR-NIRS brain 

measurements21. Nevertheless, traditional TR-NIRS analyses with a two-layer analytical 

solution are prone to crosstalk because of the increased number of fitting parameters 

(from three, for a homogeneous medium, to six); 4 parameters for the absorption and 

scattering coefficients of both layers, the thickness of the top layer, and an amplitude 

term that accounts for the unknown gain of the TR-NIRS system. We posit that acquiring 

TR-NIRS measurements at many wavelengths, similar to hyperspectral CW-NIRS, will 

allow for the use of the spectral features of the tissue chromophores to better constrain 

the fitting and reduce crosstalk. 

To test this hypothesis, we developed a two-phase fitting algorithm − based on a two-

layer analytical model of light propagation in diffuse media − that leverages the spectral 

features of oxy- and deoxyhemoglobin to estimate their concentration in the adult brain 

from hyperspectral TR-NIRS data acquired with probes positioned on the surface of the 

scalp. In the first phase of the analysis, all the TPSF curves are fit to the two-layer 

analytical model to estimate the absolute concentrations of oxy- and deoxyhemoglobin in 

the brain. These initial concentrations are used in the second phase to rapidly recover 

changes from subsequent measurements; this significantly reduces the computational 

time while accounting for the ECL contribution to the optical signal. The accuracy of the 
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algorithm was tested with in silico data from Monte-Carlo simulations of hyperspectral 

TR-NIRS in a model of the adult head obtained from a high-resolution 3D MRI image. 

The estimated concentrations were compared using Pearson’s correlation against the 

known inputted parameters for validation. 

 Methods 

The different steps of the two-phase fitting algorithm are depicted in Figure 3.1. The first 

phase uses data from two source-detector distances (2 and 3 cm) and the solution to the 

diffusion approximation (DA) for a two-layer semi-infinite medium to recover the 

absolute concentrations of oxy- and deoxyhemoglobin in the brain tissue (i.e., baseline 

concentrations)21. The second phase focuses on the rapid recovery of brain chromophore 

concentrations once their baseline values are known. As detailed in Section 2.2, the latter 

was accomplished by using data from the shorter source-detector distance (2 cm) to 

account for the ECL contamination of the absorption coefficient recovered using late-

photon analysis of the tail of the TPSFs from the long source-detector distance (3 cm). 

 

Figure 3.1: Flowchart of the two-phase hyperspectral TR-NIRS algorithm: Phase 1 

revolves around the recovery of the absolute chromophore concentrations in the deep 

tissue (brain) using a two-layer analytical model of light transport in diffuse media. Phase 

2 uses the absolute concentrations, estimated from Phase 1, to correct for the contribution 

of the ECL to late-arriving photon (from the tail of the TPSFs), allowing for quasi-real-

time monitoring of cerebral blood content and oxygenation. 

Phase 1
Step 1: Rough estimate of chromophore 

concentrations in ECL

Step 2: Rough estimate of chromophore 
concentrations in Brain

Step 3: Accurate estimation of the 
scattering coef

Step 4: Refine chromophore 
concentrations in ECL

Step 5: Refine chromophore 
concentrations in Brain

Phase 2
Step 6: Estimate ECL contribution to the 

late-photon data

Step 7: Rapid recovery of chromophore 
concentrations in Brain

Repeat Step 7 for every subsequent 
hyperspectral dataset
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3.2.1 Phase 1: Estimation of baseline chromophore concentrations 

There are typically six fitting parameters when TR-NIRS data are analyzed with a two-

layer analytical model: the scattering and absorption coefficients in both layers, top layer 

thickness, and an amplitude term. Such a procedure is known to be prone to parameter 

crosstalk12. To address this challenge, the algorithm introduced in this paper was 

designed to estimate the brain chromophore concentrations in five steps: i) rough 

estimation of the ECL chromophore concentrations, ii) rough estimation of the brain 

chromophore concentrations, iii) accurate estimation of the scattering coefficients, iv) 

refine the ECL concentrations, and v) refine the brain concentrations. By breaking the 

estimation of the baseline concentrations into five steps and establishing rough estimates 

of concentrations in the ECL and the brain, the algorithm reduces crosstalk and improves 

the robustness of the data analysis. Further, the algorithm leverages the spectral 

information provided by the hyperspectral TR-NIRS to constrain the fitting parameters, 

thereby further reducing crosstalk. The details of each step are provided in the following 

sections.  

Step 1: Estimating the ECL oxy- and deoxyhemoglobin 
concentrations 

The goal of this step is to calculate a rough estimate of the concentrations of oxy- and 

deoxyhemoglobin in the ECL using the shorter source-detector distance (2 cm). Note that 

these estimates are used as the initial guess of the ECL chromophore concentrations in 

the fitting of the 3 cm distance data with the two-layer analytical model; this provided an 

objective means of constraining the possible values of the ECL concentrations. At this 

source-detector distance the ECL dominates the NIRS signal10. The chromophore 

concentrations obtained by analyzing the data with a solution to the DA for a semi-

infinite homogeneous medium will be heavily weighted toward the ECL values. The 

homogeneous fitting was implemented using a bounded least-squares regression method 

(fminsearchbnd 22) to minimize the difference between the one-layer DA and the TPSF 

for every wavelength. The TPSFs were fit from 50% of the max on the leading edge to 

5% of the max after the peak. The three fitting parameters in the homogeneous fitting 

were the absorption coefficient, scattering coefficient, and amplitude. The 2 cm data were 
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first fit by allowing all three parameters to vary freely. Thereafter, the data were fit a 

second time − with the amplitude at all wavelengths fixed to the mean amplitude − to 

obtain an estimate of the wavelength-dependent scattering and absorption coefficients. 

The wavelength-dependent scattering coefficients recovered from this round were then fit 

with a model of Mie Scattering (Eq. 3.1) to further reduce the noise in the estimated 

scattering coefficient. Note that in Equation 3.1, a and b are fitting parameters which 

depend on the scattering of the tissue, λ is the wavelength in nm, and 𝜇′𝑠(𝜆) is the 

wavelength-dependent reduced scattering coefficient (𝑚𝑚−1). The data is fit a third time 

– with both the amplitude and scattering values fixed – to obtain an estimate of the 

wavelength dependent absorption coefficient (Figure 3.2).  

𝜇′𝑠(𝜆) = 𝑎(
𝜆

800
)−𝑏                                                (3.1) 

 

Figure 3.2: The outputs of the three rounds of homogenous fitting on the absorption (A) 

and scattering (B) coefficients.  

The absorption coefficient of a tissue is dependent on its chromophore concentrations (𝐶) 

and their wavelength-dependent extinction coefficients (𝜀), as shown in Equation 3.2: 

𝜇𝑎(λ) = ∑ 𝐶𝑖𝜀𝑖(𝜆)𝑖                                                  (3.2) 

A) B) 
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This relationship can be used to recover the concentrations of oxy- (HbO2) and 

deoxyhemoglobin (Hb) from the recovered absorption coefficients by solving a system of 

linear equations (Eq. 3.3):  

𝜇𝑎(λ1)
𝜇𝑎(λ2)

⋮
𝜇𝑎(λ𝑛)

=

𝑊𝐹𝜀𝑊𝑎𝑡𝑒𝑟(λ1) + 𝐶𝐻𝑏𝜀𝐻𝑏(λ1) + 𝐶𝐻𝑏𝑂2𝜀𝐻𝑏𝑂2(λ1)

𝑊𝐹𝜀𝑊𝑎𝑡𝑒𝑟(λ2) + 𝐶𝐻𝑏𝜀𝐻𝑏(λ2) + 𝐶𝐻𝑏𝑂2𝜀𝐻𝑏𝑂2(λ2)

⋮
𝑊𝐹𝜀𝑊𝑎𝑡𝑒𝑟(λ𝑛) + 𝐶𝐻𝑏𝜀𝐻𝑏(λ𝑛) + 𝐶𝐻𝑏𝑂2𝜀𝐻𝑏𝑂2(λ𝑛)

                (3.3) 

where WF is the water fraction and is assumed to be 80%.  

Step 2: Estimating the brain oxy- and deoxyhemoglobin 
concentrations 

Step 2 establishes a preliminary estimate of the concentrations of oxy- and 

deoxyhemoglobin in the brain. One of the benefits of using TR-NIRS is that the tail of 

the TPSF is more sensitive to absorption. As such, late-photon analysis, also known as 

tail-fitting, can extract the absorption coefficient from the Reflectance (R) measurements 

(i.e., TPSFs) using Equation 3.4:  

𝜇𝑎(𝜆) = −
𝜕ln(𝑅(𝜆,𝑡))

𝜕𝑡
𝑐

𝑛

                                                   (3.4)  

where c is the speed of light in a vacuum, and n is the refractive index of the tissue. The 

TPSFs were fit between 5% and 1% of the max after the peak. All wavelengths from the 

long source-detector distance (3 cm) were analyzed using Equation 3.4, and the results 

were used to calculate the initial estimate of oxy- and deoxyhemoglobin concentrations in 

the brain. These concentrations are used to constrain the fitting of the 3 cm data against 

the two-layer analytical model. 

Step 3: Scattering Coefficient Estimation 

Step 3 calculates the wavelength-dependent scattering coefficient of the head as if it were 

a homogenous tissue. The wavelength-dependent scattering coefficient is recovered from 

the 3 cm source-detector distance using the process outlined in Section 3.2.1 up until 

using Equation 3.1 to fit the scattering data. The recovered scattering coefficients are 
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assigned to both tissues in the two-layer analytical fitting. Using a homogenous scattering 

instead of layer specific scattering had negligible impact on the final results, but reduced 

the complexity and fitting time.  

Step 4: Refining the Extracerebral Concentrations 

Step 4 refines the estimates of oxy- and deoxyhemoglobin concentration in the ECL 

using a two-layer analytical fitting21. For this step, the fitting parameters are the 

concentrations of oxy- and deoxyhemoglobin in both layers, the ECL thickness, and the 

amplitude of the TPSFs. The fitting algorithm calculates the wavelength-dependent 

absorption coefficients using Equation 3.2 before using those properties in the two-layer 

analytical model. A fitting algorithm built using the MATLAB function fminsearchbnd 

adjusts the fitting parameters to minimize the difference between the analytical models 

and the TPSFs for the full spectrum.  

The brain concentrations of oxy- and deoxyhemoglobin are fixed to the values found in 

Step 3 for this fitting to reduce crosstalk between the tissues. The ECL concentrations 

found in Step 1 are assigned as the initial values and allowed to vary ±50%, while the 

ECL thickness is assigned an initial value that is an average from the segmented MRI and 

can vary ±10%. Finally, the amplitude is assigned an appropriate value based on the 

amplitude from the homogenous fitting in Step 3. The fitting is conducted on the 3 cm 

source-detector distance TPSFs from 50% of the maximum on the leading edge to 5% 

after the peak. The refined ECL concentrations and thickness are then used in Step 5 to 

refine the brain concentrations.  

Step 5: Refining the Cerebral Concentrations 

The final step of Phase 1 uses the two-layer fitting algorithm from step 4 to refine the 

estimates of cerebral oxy- and deoxyhemoglobin concentrations. The parameters 

recovered in Step 4 are fixed, and the cerebral concentrations of oxy- and 

deoxyhemoglobin can vary between 0 and 80 µM, with an initial value of 30 µM. The fit 

is conducted from 5% to 1% of the maximum on the tailing edge for all TPSFs from the 3 

cm source-detector distance. The outputted concentrations are the baseline brain oxy- and 
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deoxyhemoglobin concentrations which will be used in Phase 2 for real-time brain 

monitoring. 

3.2.2 Phase 2: Rapid Cerebral Concentration Recovery 

Phase 2 corrects for the ECL contamination of the absorption coefficients recovered 

using late-photon analysis of the 3 cm source-detector distance by leveraging the absolute 

concentrations of oxy- and deoxyhemoglobin in the brain and ECL measured in Phase 1. 

Phase 2 has two steps: estimate ECL contribution to the absorption coefficient calculated 

using late-photon analysis (step 6), and rapid recovery of chromophore concentrations in 

the brain (step 7). Step 7 can be repeated for all subsequent dataset (i.e., spectral TPSFs), 

enabling quasi real-time monitoring. Note that while phase 1 uses a spectral resolution of 

10 nm, phase 2 requires a spectral resolution of 2 nm between 680 nm and 930nm. The 

increased spectral resolution is required for the late-photon analysis due to the decrease in 

the signal-to-noise ratio (SNR) inherent to the late-arriving photons when compared to 

earlier arriving photons.  

Step 6: Calculate Extracerebral Contribution 

Step 6 calculates the contribution of the ECL to the absorption coefficients recovered 

from the late-photon analysis of the 3 cm TPSFs, allowing for correction of the 

contamination in subsequent hyperspectral TR-NIRS datasets. The absorption coefficient 

of a heterogeneous medium such as the adult head can be expressed as a weighted 

average of the absorption coefficients of its different compartments (Equation 3.5)23: 

𝜇𝑎𝐿𝑃(𝑡, 𝜆) = 𝑓𝐸𝐶𝐿(𝜆) × 𝜇𝑎𝐸𝐶𝐿(𝑡, 𝜆) + 𝑓𝐵𝑟𝑎𝑖𝑛(𝜆) × 𝜇𝑎𝐵𝑟𝑎𝑖𝑛(𝑡, 𝜆)                  (3.5) 

In this two-layer head model, the fraction of one tissue is written in terms of the other, in 

the form of 𝑓𝐵𝑟𝑎𝑖𝑛 = 1 − 𝑓𝐸𝐶𝐿, where 𝑓𝐵𝑟𝑎𝑖𝑛 is the fraction of the absorption coefficient 

coming from the brain tissue and 𝑓𝐸𝐶𝐿 is the fraction from the ECL. The ECL fraction is a 

measure of the ECL contamination because the tissue of interest is the brain. Equation 3.5 

can be rearranged to isolate the ECL fraction:  

𝑓𝐸𝐶𝐿(λ) =
𝜇𝑎𝐿𝑃(𝑡=0,λ)−𝜇𝑎𝐵𝑟𝑎𝑖𝑛(𝑡=0,λ)

𝜇𝑎𝐸𝐶𝐿(𝑡=0,λ)−𝜇𝑎𝐵𝑟𝑎𝑖𝑛(𝑡=0,λ)
         (3.6) 
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where 𝜇𝑎𝐵𝑟𝑎𝑖𝑛(𝑡 = 0, 𝜆) and 𝜇𝑎𝐸𝐶𝐿(𝑡 = 0, 𝜆) are the initial brain and ECL absorption 

coefficients calculated using Equation 3.2 and the absolute concentrations recovered in 

Phase 1, and 𝜇𝑎𝐿𝑃(𝑡 = 0, 𝜆) is the absorption coefficients recovered using late-photon 

analysis.  

Step 7: Rapid Deep Tissue Recovery 

Step 7 focuses on the rapid recovery of oxy- and deoxyhemoglobin concentrations. 

Equation 3.7 was established from Equation 3.5 and the percent change equation, and 

uses the baseline absorption coefficients in each layer, the ECL fraction, and the baseline 

late-photon absorption coefficient to remove the ECL contamination from subsequent 

late-photon derived absorption coefficient:   

𝜇𝑎𝐵𝑟𝑎𝑖𝑛(𝑡, 𝜆) =  𝜇𝑎𝐵𝑟𝑎𝑖𝑛 (t = 0, 𝜆) ∗ (1 +
𝜇𝑎𝐿𝑃(𝑡,𝜆)−𝜇𝑎𝐿𝑃(𝑡=0,𝜆)

𝜇𝑎𝐿𝑃(𝑡=0,𝜆)−𝑓𝐸𝐶𝐿(𝜆)𝜇𝑎𝐸𝐶𝐿
(𝑡=0,𝜆)

)        (3.7) 

The outputted absorption coefficients are the absorption coefficients of the brain.  

Using Equation 3.2, assuming a water concentration of 80%, converts the wavelength-

dependent absorption coefficient into concentrations of oxy- and deoxyhemoglobin in the 

brain. Cerebral oxygen saturation and total hemoglobin are then computed using 

Equations 3.8 and 3.9, respectively.  

𝑆𝑂2 =
𝐶𝐻𝑏𝑂2

𝐶𝐻𝑏𝑂2+𝐶𝐻𝑏
                                                      (3.8) 

𝐻𝑏𝑇 = 𝐶𝐻𝑏𝑂2 + 𝐶𝐻𝑏                                                   (3.9) 

3.2.3 Validation 

Validation was conducted in silico using Monte-Carlo Extreme (MCX) in a four-layer 

adult head model at various skin and brain oxygen saturations24,25. Conducting the 

validation in silico instead of in vivo allows for better control of the experimental 

environment while maintaining realistic geometry and optical properties. To better mimic 

experimental conditions, we segmented a 3D MRI of an adult human head into four 

layers; skin, skull, cerebrospinal fluid (CSF), and brain tissue using 3DSlicer. Brain 
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oxygen saturation ranged from 40% to 82% in 2% increments, repeating each brain 

saturation three times with varying skin oxygen saturations (50%, 60%, and 70%). There 

is considerable debate concerning therapeutic thresholds for cerebral oxygen saturation; 

however, the proposed thresholds are typically absolute values of 40% to 50% or 

decreases of 20% to 30% from baseline26–29. The simulated brain oxygen saturations were 

chosen to encompass these therapeutic thresholds. 126 simulations were conducted for 

each brain-skin pair, corresponding with the wavelengths ranging from 680 nm to 930 nm 

at 2 nm increments. In total, we completed 8,316 simulations for this validation. The 

source was positioned on the right side of the head with the detectors placed 2 cm and 3 

cm towards the forehead, as shown in Figure 3.3. Each simulation had a total of 3 billion 

photons simulated with random seeds, ensuring realistic photon simulation with a good 

SNR at both detectors. All the optical properties for bone and CSF, as well as the 

scattering, anisotropic factor, and refractive index of the skin and brain, are from 

literature23,30. Because the absorption coefficient is dependent on the chromophore 

concentration, we calculated the absorption coefficient of the skin and brain using 

Equation 3.2 for the beforementioned oxygen saturation ranges. The total hemoglobin 

concentrations in the skin and brain for all simulations were 12.4 Mol and 55 Mol, 

respectively31–34.  

 

Figure 3.3: Adult head with source (red) and detectors (purple). The detectors are 2 cm 

and 3 cm away from the source. The tissues shown are skin (dark blue), skull (light blue), 

cerebrospinal fluid (orange), and brain (yellow). Due to GPU limitations, only the right 
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upper octant of the head was simulated, as shown above (grey tissues not simulated). The 

voxel size in the model is 1 mm3. 

 Results 

The algorithm was validated using a hyperspectral dataset of 66 brain-skin oxygen 

saturation pairs. Accuracy and robustness of the method were evaluated by calculating 

the percent differences between the recovered oxy- and deoxyhemoglobin concentrations 

and the simulated values for the chromophore concentrations in the brain. Estimating the 

baseline chromophore concentrations from a full spectrum required an average of 4.7 

minutes (282 seconds) for Phase 1, while Phase 2 only takes 0.22 seconds, representing a 

five orders of magnitude increase in speed (CPU: Intel Core i7-6800K @ 3.4GHz, using 

parallel computing with 6 cores, GPU: EVGA NVIDIA GEFORCE GTX 1080 8GB, 

RAM: 4 Kingston HyperX 32GB, totaling 128GB).  

3.3.1 Phase 1: Baseline chromophore concentrations 

Estimated absorption spectra and the corresponding expected spectra for four brain and 

three skin oxygen saturations are shown in Figure 3.4 to illustrate the qualitative 

similarity between the recovered and input spectra. As oxygen saturation decreases, the 

error between the recovered and inputted spectra increases; this trend is particularly 

obvious above 800 nm and is a result of the error in the recovered oxyhemoglobin 

concentration (Figure 3.4A). Figure 3.4B shows that the ECL oxygen saturation has 

minor impact on the accuracy of the brain parameter recovery. Further, the largest error 

occurred in the analysis of the 50% skin - 70% brain oxygen saturation simulation set and 

is the result of the method failing to accurately estimate the ECL thickness.  
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Figure 3.4: A) Recovered absorption coefficient from the 40%, 50%, 60%, and 70% brain 

oxygen saturations with skin oxygen saturation set to 70% and the true (inputted) values. 

B) Recovered and true (inputted) absorption coefficient spectra from 50%, 60%, and 70% 

skin oxygen saturation at 70% brain oxygen saturation. 

The results of the quantitative analysis are shown in Figure 3.5. The mean (±standard 

deviation) percent difference between the recovered brain oxygen saturation and the true 

values is 2.4±2.1%, and the correlation coefficient between the true and recovered values 

is 0.9993. For total hemoglobin, the mean (standard deviation) percent difference 

between the recovered concentration and the simulated concentration of 55 Mol was 

2.41.4%.   

 

A) B) 
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Figure 3.5: Results from Phase 1; for every cerebral oxygen saturation, three skin 

saturations were evaluated. A) The recovered brain SO2, B) recovered oxyhemoglobin, 

C) recovered deoxyhemoglobin, and D) recovered total hemoglobin plotted versus the 

inputted ScO2. The dotted black lines are the expected values. E) The recovered top layer 

thickness versus the inputted ScO2. The true thickness of the ECL is approximately 12 

mm. F) and G) show the percent difference for SO2 and total hemoglobin. 

The results are further improved when the ECL thickness is known (Figure 3.6). The 

mean (±standard deviation) percent difference between the recovered brain oxygen 

saturation and the true values becomes 1.3±1.1%, and the correlation coefficient becomes 

0.9996. For total hemoglobin, the mean (standard deviation) percent difference becomes 

1.71.1%.   

A) 

B) 

C) 

D)

) 

E) 

F) 

G) 
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Figure 3.6: Results from Phase 1 with known ECL thickness; for every cerebral oxygen 

saturation, three skin saturations were evaluated. A) The recovered brain SO2, B) 

recovered oxyhemoglobin, C) recovered deoxyhemoglobin, and D) recovered total 

hemoglobin plotted versus the inputted ScO2. The dotted black lines are the expected 

values. E) and F) show the percent difference for SO2 and total hemoglobin. 

3.3.2 Phase 2: Active Monitoring  

The recovered cerebral oxygen saturations from Phase 2 are shown in Figure 3.7. Once 

the baseline chromophore concentrations are estimated, the subsequent TR-NIRS spectra 

can be quickly analyzed to determine the cerebral blood content and oxygenation with 

high accuracy. Notably, the mean (±standard deviation) percent difference between the 

recovered and expected brain oxygen saturation and total hemoglobin are 1.5±1.1% and 

1.9±1.2%, respectively. Further, there is a very strong agreement between the recovered 

and simulated values with a Pearson’s correlation coefficient of 0.999. 

A) 

B) 

C)

) 

D)

) 

E) 

F) 

G) 
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Figure 3.7: Results of Phase 2 analysis when using the concentrations estimated from 

Phase 1 for brain and skin oxygen saturation at 70%. A) The recovered brain ScO2, B) 

recovered oxyhemoglobin, C) recovered deoxyhemoglobin, and D) recovered total 

hemoglobin plotted versus the inputted ScO2. The dotted black lines are the expected 

values. 

 Discussion and Conclusion 

Continuous bedside monitoring of cerebral blood content and oxygenation in adults 

requires both accuracy and speed for reliable real-time assessment. In this work, we 

developed a multi-step hyperspectral TR-NIRS data analysis algorithm that can quickly 

and reliably estimate cerebral concentrations of cerebral oxy- and deoxyhemoglobin. 

Both phases of the algorithm show high accuracy for estimating cerebral oxygen 

saturation and total hemoglobin concentration. While it takes 4.2 minutes to analyze a 

full TR-NIRS spectrum with Phase 1, which is too slow for real-time monitoring, it is 

A) B) 

C) D) 
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only needed once per subject to establish the baseline concentrations of oxy- and 

deoxyhemoglobin. Once this initial analysis is complete, all subsequent TR-NIRS spectra 

are analyzed using Phase 2, which takes only 0.22 seconds. This significant increase in 

speed would allow for quasi real-time neuromonitoring, while maintaining high accuracy. 

This approach could be used for cerebral monitoring in brain-at-risk patients such as 

those undergoing cardiac surgery35.  

One of the main challenges when using NIRS for adult neuromonitoring is significant 

signal contamination by the ECL. Previous studies have reported contamination from the 

ECL is responsible for between 52% and 88% of detector readings at 2 and 3cm, posing a 

significant issue when trying to obtain accurate estimates of brain chromophore 

concentrations10,36. To investigate the potential confounding effects of changes in skin 

oxygen saturation on accuracy, three scalp blood oxygenations were simulated for every 

brain oxygen saturation. As shown in Figure 3.5 and Figure 3.7, the algorithm is capable 

of estimating cerebral oxygenation with high accuracy despite the change in scalp oxygen 

saturation. The reliability of the method under a variety of ECL conditions bodes well for 

its use in cardiac surgery and other high-risk for hypoxia procedures, as the brain is 

considered an index organ for oxygen supply to other organs; if the oxygen supply to the 

brain is compromised, it is likely that there is a larger systemic issue37.  

A major benefit of this method is that the exact ECL thickness does not need to be 

precisely known prior to analysis, as the fitting algorithm (in Step 4) estimates the ECL 

thickness within 10% of a prior estimate. During emergencies it is not always possible for 

the patient to get an MRI or CT; nevertheless, this method will allow them to receive 

intraoperative neuromonitoring. Additionally, not requiring the exact ECL thickness be 

known a priori reduces the specificity of where the probes must be placed; the minor 

variations that are present in the ECL thickness are accounted for by this algorithm.  

To improve robustness and reduce crosstalk, we assumed a cerebral water concentration 

of 80%. Since the water concentrations in our simulations were 80% as well, we 

conducted additional analyses by assuming cerebral water concentration between 70% 

and 90% (true value 80%). The analysis revealed that an error of 10% in the assumed 
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concentration of water has a negligible impact on the accuracy of the recovered oxy- and 

deoxyhemoglobin. In addition, given the water concentration in the brain is relative 

stable, assuming an 80% cerebral water concentration is a reasonable approach.  

To reduce the computational burden, Phase 1 uses a sparse spectrum (every 10nm), 

instead of the dense spectrum (2 nm resolution) used for Phase 2. The sparse sampling 

had negligible effects on accuracy; however, accuracy dropped when the spectral 

sampling was further reduced (i.e., more than 10nm separation between consecutive 

wavelengths). Further, the algorithm can be modified to recover other chromophores by 

increasing the number of chromophores in the fitting parameters and changing the 

wavelength region of interest to cover the optical spectral range of the target 

chromophores. Notably, future work will include adapting the algorithm to monitor the 

redox state of Cytochrome C Oxidase (CCO), a key biomarker of brain health38. 

A potential limitation of this work is that we did not include the effects of the instrument 

response function (IRF). To analyze experimental data, the theoretical model of light 

propagation in a two-layer medium would be convolved with the measured IRF at each 

wavelength before fitting to the measured TR-NIRS data. While this correction has not 

yet been tested with this method, we believe this modification will have a negligible 

impact on the conclusions of this work, as similar corrections have previously been 

accomplished in our lab with minimal variations in the results39. Another potential 

limitation of this work is that simulations were conducted on one octant of the full head 

due to GPU memory limitations. To assess the potential impact of this approach, we 

randomly picked 20 simulations and analyzed the photon trajectories. We found that no 

photons reached the volume boundaries; thus, it is reasonable to treat the volume used in 

the simulations as an optically semi-infinite medium. 

An additional potential limitation is that all validations were conducted in a single 

geometry. While the oxygen saturations in the scalp and brain were varied extensively, 

the medium was kept constant throughout. However, we expect the algorithm to work 

with other ECL thicknesses since this parameter is estimated in Step 4 and thus does not 
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need to be perfectly known. Future work will include validation of the algorithm in tissue 

mimicking phantoms and in an animal model of an adult human head.  

The multi-step hyperspectral TR-NIRS data analysis algorithm developed in this work 

allows for the quasi-real-time monitoring of the brain in adult subjects. The approach 

does not require the ECL thickness to be precisely known a priori, increasing the 

usability of this method. Combined with the rapid recovery of cerebral oxygen saturation 

and total hemoglobin content, this method will have valuable applications in a wide 

variety of settings for adult cerebral monitoring, including during cardiac surgery.  
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Chapter 4  

4 Conclusion 

This final chapter reviews the primary objectives of this thesis and summarizes the major 

findings. The limitations of the research are presented, and potential solutions are 

explored. Finally, the future work and the potential impact of this research are discussed. 

   

 Research Objectives 

Perioperative brain injury is a major complication during cardiac surgery, effecting 

between 6% and 62% of patients who undergo a CABG, depending on their risk factors1–

5. Cardiac operations can be extremely traumatic for brain tissue due to disruptions in 

blood flow and the dislodging of plaque from vessel walls, resulting from tissue and 

vessel manipulation6,7. Cerebral injuries that occur during cardiac surgeries, such as 

stroke, seizure, and encephalopathy, often go undiagnosed until after the surgery has 

completed8. This is a major limitation as treatment is most effective when intervention is 

started as soon as the injury occurs, in hopes of preventing further damage. With over a 

million cardiac surgeries per year worldwide, there is a clear need for intraoperative brain 

monitoring9.  

MRI, CT, and neurocognitive assessment are the best methods currently available for 

detecting brain injury10. Unfortunately, these methods are unsuitable for use in the OR 

due to their size (MRI), the radiation dose the patient would receive (CT), or the use of 

general anaesthesia reducing (or eliminating) the patient’s response (neurocognitive 

assessment)10–13. Other options for intraoperative neuromonitoring include TCD 

ultrasound and EEGs, however these methods require a skilled interpreter to be used 

effectively and are user dependent14–16. A final alternative – and the one explored in this 

thesis – is the use of NIRS, which is capable of directly measuring cerebral oxygen 

saturation17–21.  

As mentioned in Chapter 1, NIRS uses near-infrared light to non-invasively probe a 

tissue. TR-NIRS, the NIRS method explored throughout this thesis, creates photon time-
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of-flight curves by recording how long the photons take to reach the detector18,22–24. The 

shape of that curve is dependent on the optical properties of the tissues. Of note is the 

absorption coefficient, a measure of the absorption of light as it passes through a medium, 

which is directly related to the concentration of chromophores – light absorbing 

chemicals25. NIRS can be used for neuromonitoring by measuring the concentrations of 

oxy- and deoxyhemoglobin in the brain, which are then used to calculate the cerebral 

oxygen saturation and total hemoglobin content26,27.  

A major limitation to using NIRS for adult patients is that the ECL is highly absorbing, 

leading to contamination of the optical signal28. While this contamination can be 

negligible in neonates, the adult ECL can be over 1 cm thick in many regions resulting in 

the contamination dominating the optical signal28,29. Additionally, the majority of 

commercial NIRS devices use CW-NIRS, focusing on tracking changes in oxygen 

saturation and total hemoglobin rather than absolute values30. While monitoring changes 

is an important first step, the absolute and baseline values of these parameters are 

important factors in ensuring sufficient cerebral oxygen supply18.  

The focus of this thesis was to develop a method which can quickly and accurately 

recover absolute adult ScO2 and total hemoglobin concentration from TR-NIRS data, 

despite the ECL contamination. This was accomplished by addressing our two primary 

objectives:  

1. Develop a reliable two-layer fitting approach for few-wavelength TR-NIRS to 

recover ScO2 and total hemoglobin in adults using a single source-detector pair. 

2. Develop a hyperspectral TR-NIRS fitting algorithm using a two-layer approach 

and late-photon analysis to achieve quasi real-time adult neuromonitoring with 

high accuracy.  
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 Summary of Chapters 

4.2.1 Chapter 2: Estimating adult cerebral oxygen saturation from 
time-resolved near-infrared spectroscopy measurements 
with few discrete wavelengths at a single source-detector 
distance 

Chapter 2 focused on developing a reliable method for estimating ScO2 and total 

hemoglobin content from adult subjects. This method fits few-wavelength TR-NIRS data 

from a single source-detector pair against a two-layer analytical model of light 

propagation in highly scattering medium, to recover the concentrations of oxy- and 

deoxyhemoglobin. The wavelengths used were 680 nm, 750 nm, 800 nm, and 830 nm. 

This method was validated using Monte Carlo simulations in a realistic head model with 

three scalp oxygen saturations (50%, 60%, and 70%) and ScO2 ranging from 40% to 

80% in 2% increments. The recovered ScO2 had a mean ±standard deviation percent 

difference of 2.31±2.93% from inputted values, and cerebral total hemoglobin was 

recovered with a percent difference of 2.94±3.47%. The correlation coefficient for the 

recovered ScO2 versus the inputted values was 0.9987. The high accuracy of this few-

wavelength method showed that it is possible to overcome the ECL contamination in 

adult subjects by dividing the head into two layers (ELC and brain).  

4.2.2 Chapter 3: Fast Estimation of Adult Cerebral Oxygen 
Saturation and Total Hemoglobin using Hyperspectral Time-
Resolved Near-Infrared Spectroscopy 

Chapter 3 focused on developing a quasi-real-time method for accurate estimation of 

adult ScO2 and total hemoglobin using Hyperspectral TR-NIRS. The method uses a two-

phase approach; Phase 1 establishes the baseline cerebral hemoglobin concentrations 

using a two-layer approach, while Phase 2 conducts a rapid concentration recovery by 

using late-photon analysis and leveraging the calculated ECL contamination fraction. 

This method was also validated using Monte Carlo simulations in a four-layer adult head 

model. The mean (standard deviation) percent difference between the recovered ScO2 

and the inputted values for Phases 1 and 2 were 2.4±2.1% and 1.5±1.1%, respectively. 

Their respective correlation coefficients are 0.9993 and 0.9990. Similarly, the mean 
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(standard deviation) percent difference between the recovered total hemoglobin 

concentrations and the inputted values for Phases 1 and 2 were 2.41.4% and 1.71.1%, 

respectively. This two-phase method enables quasi real-time monitoring once the 

baseline has been established; Phase 1 requires 4.2 minutes to analyze a full 

Hyperspectral TR-NIRS spectrum, while Phase 2 only requires 0.22 seconds to complete 

the same analysis.  

 Limitations 

There are several limitations to this work. The first one is that analysis methods were 

validated in silico rather than in vivo. Choosing an in silico method for validation allowed 

us to compare our estimated values against the true baseline, granted us greater control of 

the experimental environment, and allowed for a greater number of cerebral oxygen 

saturations to be tested as is often difficult to precisely control the ScO2 in vivo. 

However, the Monte Carlo simulations do not have an Instrument Response Function 

(IRF), which characterizes the temporal dispersion of the TR-NIRS system 31. Monte 

Carlo simulations treat all simulated photons as if they have been released using a delta 

function; that is to say, they are all instantaneously released at the same timepoint. In an 

in vivo setting the measured distribution of time-of-flight (DTOF) is in fact a convolution 

of the TPSF with the IRF22. There are two options available to correct for the IRF: either 

removing the IRF from the DTOF, or accounting for the IRF in the analytical model. The 

former of these options is extremely difficult (involving a deconvolution)22, thus the 

second option is preferred18,23. While this has not yet been tested with our method, we do 

not expect any major challenge in implementing it in an in vivo setting by convolving the 

two-layer analytical model with the IRF to fit the measured DTOFs.  

Another potential limitation common to both studies is that while the ScO2 and scalp 

oxygenation were varied extensively, the validations were conducted in a single head 

geometry. Despite this, we predict both methods presented in this work will work with 

other head geometries; the method presented in Chapter 2 requires the ECL thickness to 

be known a priori, while the method from Chapter 3 is able to tolerate error in the ECL 
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estimation because it solves for the ECL thickness as part of the algorithm. As will be 

discussed in Section 4.4, conducting in vivo validations will address this limitation.   

A final potential limitation is that the simulations used only one octant of the full head 

due to GPU memory limitations. To assess the potential impact of this limitation on the 

validation, we sampled the photon trajectories of 20 simulations and found that no 

detected photons reached the volume boundaries (where the head was truncated). This 

showed that the head is sufficiently large that it is reasonable to treat the volume as a 

semi-infinite medium, and thus this should not impact the validity of the results.  

 Future Work 

The results of this work are promising but require further validation before these 

techniques can be deployed in the clinic for patient bedside monitoring. The next step in 

the validation process will be to test the chromophore recovery capabilities of the 

methods presented in Chapter 2 and 3 on a tissue mimicking phantom. The phantom will 

likely be a two-layer box with a top layer thickness comparable to that of an adult ECL32. 

Both layers will contain intralipid, to mimic the scattering properties of tissue, and blood 

of various oxygen saturations.  

Following the successful completion of the phantom study, both methods will be further 

validated using an animal model. A juvenile pig will be used because at that stage of 

development it will have an ECL thickness comparable to that of an adult human33. The 

methods from Chapters 2 and 3 will be compared to measurements acquired with a NIRS 

device whose probes will be placed directly on the pig’s brain. Should these ScO2 

recovery methods continue to perform as well as they have in silico, they will be 

deployed in the operating room to monitor patient ScO2 and total hemoglobin.  

 Conclusion 

The high prevalence of patients who undergo cardiac surgery suffering a perioperative 

neurological complication shows the clear need for intraoperative neuromonitoring1–5,34. 

The methods presented in this thesis show great promise for the quick and accurate 

estimation of ScO2 and total hemoglobin concentrations in adult patients from TR-NIRS 
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data. The methods presented have been validated in silico, revealing that they are robust 

and capable of accurately recovering cerebral concentrations of oxy- and 

deoxyhemoglobin in adults. While the two methods show comparable accuracy, the more 

advanced method in Chapter 3 has the added benefit of not requiring the exact ECL 

thickness to be known a priori, which provides greater flexibility. With further 

development we believe these methods could be utilized during cardiac surgeries to 

inform physicians of neurological injuries as they occur, allowing doctors to administer 

treatment as soon as possible and improve patient outcomes8,35–37.  
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