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Abstract 
Intrauterine growth restriction (IUGR) affects 10-15% of births and is associated with 

placental insufficiency (PI), resulting in fetal oxidative stress (OS). This OS is a factor in the 

predisposition to postnatal noncommunicable disease (NCD) of which muscle mitochondrial 

dysfunctional is a key aspect. Pyrroloquinoline quinone (PQQ), an antioxidant-like 

compound, is capable of OS reduction and promotes mitochondrial function, though limited 

research has focused on its effects in in utero skeletal muscle. This study sought to 

investigate the impact of in vitro H2O2, a model of OS, and an in vivo model of OS associated 

IUGR, with PQQ administration, on fetal myogenesis and muscle mitochondrial function. 

H2O2, IUGR, and unexpectedly PQQ, reduced expression of myogenic and mitochondrial 

genes. Therefore, PQQ does not appear to attenuate OS-induced myogenic and mitochondrial 

dysfunction and instead negatively altered associated genes. These changes have unknown 

long-term consequences for altered muscle metabolism and its contribution to NCD.  

 

Summary for Lay Audience 
Babies grow quickly in the womb before birth, and when oxygen and nutrients are not 

properly received, these babies have been shown to have an increased risk of later life 

metabolic disease, such as diabetes or heart disease. This risk is specifically associated with 

those who experience the hypoxia-associated pregnancy complication “placental 

insufficiency” and endure intrauterine growth restriction (IUGR). A key reason for 

development of these diseases after IUGR is the characteristic reduction in skeletal muscle 

mass, as the organ plays an important role in whole body metabolism. The reduction is the 

result of diminished blood delivery, as flow is shunted to more important organs to promote 

survival after birth. It is predicted that early muscle mitochondrial dysfunction is the 

underlying pathology that leads to development of metabolic deficits and oxidative stress due 

to the hypoxic growth environment may be responsible for the organelle’s deterioration. This 

study aimed to investigate the muscle mitochondrial impairments associated with exposure to 

oxidative stress. Furthermore, it set out to determine if the antioxidant-like compound, 

pyrroloquinoline quinone (PQQ), could prevent oxidative stress from damaging mitochondria 

and instead promote function. A muscle cell culture model was utilized to isolate the effects 
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of oxidative stress and PQQ on skeletal muscle development and mitochondrial function. A 

second study utilized an IUGR fetal guinea pig model to determine the effects of IUGR and 

PQQ on skeletal muscle development, including but not limited to, muscle mitochondrial 

effects. Cells exposed to oxidative stress had reduced expression of genes associated with 

muscle development and mitochondrial function, however, the addition of PQQ did not 

lessen this decrease. Instead, PQQ itself decreased expression of the same genes. Similarly, 

IUGR animals had reduced gene expression of muscle development, mitochondrial, and 

metabolism markers, none of which showed increase after PQQ exposure but instead were 

negatively affected by exposure to the compound. Previous research has shown PQQ to have 

a positive effect on mitochondrial function in the liver, though this finding was not replicated 

within the skeletal muscle. Therefore, this study highlights the compound’s opposing effects 

in different organ systems and underlines the need for further research.  
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1 Introduction 

1.1 Fetal Reprogramming During Placental Insufficiency 
and IUGR 

Fetal reprogramming is defined as the physiological, structural, and metabolic changes 

that occur in utero after exposure to certain adverse stimuli (Kwon & Kim, 2017). 

Though the possible mechanisms of action behind such reprogramming remain unclear, it 

is evident the changes that occur remain stable after birth and influence the life-long 

health trajectories of the offspring (C. N. Hales et al., 1991; Marciniak et al., 2017). 

Central to these mechanisms is the fact that during development, the fetus is especially 

vulnerable to changes in placental function, including modifications to the relative rate of 

oxygen delivery through the organ (Longtine & Nelson, 2011).   

 

First trimester embryogenesis is characterized by a low-oxygen environment. Maternal 

spiral arteries of the uterine tissue are blocked by a subpopulation of fetal endovascular 

trophoblasts, limiting oxygen delivery to the placenta and creating a hypoxic in utero 

growth environment (Weiss, Sundl, Glasner, Huppertz, & Moser, 2016) . This continues 

until the 11-14 week of pregnancy, at which time maternal blood begins to flow through 

the spiral arteries due to the invasion of cytotrophoblasts into the space around and inside 

the spiral arteries to expand the vessels and supply the placenta with an increased blood 

volume to support the growing demands of the fetus (Pijnenborg, Vercruysse, & 

Hanssens, 2006; Whitley & Cartwright, 2009). Failure of the spiral arteries to remodel in 

the second trimester as outlined results in an ischemic placenta (Roth et al., 2017; 

Trudinger & Giles, 1996) otherwise referred to as “placental insufficiency” (PI) 

(Chaddha, Viero, Huppertz, & Kingdom, 2004). PI is an idiopathic pregnancy 

complication in which the placenta fails to obtain adequate maternal blood , restricting 

fetal access to oxygen and nutrients. This often leads to a hypoxic growth environment 

and reduction in nutrient delivery, and subsequent development of fetal growth restriction 

(Hutter, Kingdom, & Jaeggi, 2010; Malhotra et al., 2019). Hence, PI is a known etiology 

of intrauterine growth restriction (IUGR) (Burton & Jauniaux, 2018), or PI-IUGR for 

short.  



2 

 

IUGR is defined as growth below the 10th percentile (Faraci et al., 2011; Peleg, Kennedy, 

& Hunter, 1998) and occurs within 10-15% of births worldwide (Suhag & Berghella, 

2013). Compared to small-for-gestational age (SGA) infants, IUGR is pathological, in 

that there is an increase in incidence for both perinatal morbidity and mortality (Garite, 

Clark, & Thorp, 2004). Of the IUGR cases that develop due to PI, the majority are 

categorized as “asymmetrical” growth restriction, which make up 70-80% of all IUGR 

cases overall (Sharma, Shastri, & Sharma, 2016). The remaining percentage of cases are 

defined as symmetrical, typically the result of early pregnancy insults that result in 

proportional growth restriction due to sustained insult throughout gestation (Peleg et al., 

1998; Sharma et al., 2016).  

 

Compared to symmetrical IUGR, asymmetrical growth restriction occurs as a result of 

preferential distribution of blood flow during PI to organs vital for survival in 

approaching postnatal life, including the brain and heart, at the expense of other organs 

(Cohen, Baerts, & van Bel, 2015; Veille, Hanson, Sivakoff, Hoen, & Ben-Ami, 1993) 

IUGR infants are observed as having proper measuring head circumferences and femur 

length, compared to decreased abdominal circumference (Sharma et al., 2016). Organs 

such as the skeletal muscle have inhibited growth, as a result of developing under 

hypoxic conditions due to diminished blood flow (Rueda-Clausen et al., 2011). It is now 

evident this hypoxia contributes to a predisposition in IUGR offspring to developing 

noncommunicable diseases, such as cardiovascular disease (CVD) and type 2 diabetes 

mellitus (T2DM) in adulthood (Rueda-Clausen et al., 2011), in part due to fetal 

programming that occurs within the skeletal muscle (D T Yates et al., 2012). This 

correlation was first observed by David Barker, and later coined the “developmental 

origins of health and disease (DOHaD) hypothesis (Barker, 1998; C. N. Hales et al., 

1991).  
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1.2 IUGR and DOHaD 
In 1977, Dr. Forsdahl first documented an epidemiological correlation between early-life 

poverty and adulthood coronary heart disease. He speculated that a form of permanent 

damage occurred due to nutritional deficits that resulted in the predisposition to CVD 

observed (Forsdahl, 1977). Further building of Forsdahl’s original findings, David Barker 

specifically postulated fetal adaption to a low nutrient supply programs changes to fetal 

organs that predispose the individual to adult-onset NCD (Barker, 1998). It was made 

evident by the “Barker’s hypothesis” that sufficient maternal blood flow to the 

developing fetus was not only important for immediate fetal development but had long-

term effects implications as well. Similar to low nutritional supply insult originally 

documented by Barker (1998), insufficient oxygen delivery to and across the placenta 

(I.e., hypoxia) has also been shown to elicit the same harm, like that seen in PI-IUGR 

specifically (Chu et al., 2019; Su, Lv, Xie, Wang, & Lin, 2013).  

 

The role the in-utero environment plays in life-long metabolic health developmental 

trajectories is now increasingly relevant, as the prevalence of NCDs throughout the world 

continues to rise (Moore, Chaudhary, & Akinyemiju, 2017; Ranasinghe, 

Mathangasinghe, Jayawardena, Hills, & Misra, 2017). It appears restricted fetal growth is 

associated with increased incidence of insulin resistance (IR) development, the precursor 

for several metabolic diseases (C. Nicholas Hales & Barker, 2001). Skeletal muscle is an 

essential endocrine organ and the reduction in muscle mass seen in IUGR is specifically 

associated with said decreased insulin sensitivity (Phillips, Barker, Hales, Hirst, & 

Osmond, 1994; Xing et al., 2019). In utero, total muscle mass of an individual is 

determined by relative rates of myogenesis and there is a rate reduction in this process 

seen during IUGR (Chang et al., 2020). Importantly, this mass reduction appears to 

persist into adulthood (Năstase, Cretoiu, & Stoicescu, 2018). An understanding of the 

specific cellular physiological programming that result in and from reduced myogenesis 

during IUGR would therefore aid in understanding the role skeletal muscle plays in later-

life risk of NCDs in IUGR offspring. More recently, IUGR diagnostic criteria has widen 

to include those infants who are born above the 10th percentile, 2,500g threshold but may 

have still been unable to reach their regular developmental milestones at a molecular 
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level independent of birth weight (Sharma et al., 2016), highlighting that an adverse in 

utero environment that does not result in a decreased birth weight may still program 

metabolic disease risk at the molecular level (Morris, Say, Robson, Kleijnen, & Khan, 

2012).  

1.3 Hypoxia and Associated Oxidative Stress 
The exact mechanisms of programming that occur during IUGR are not well defined, 

however it has been postulated that the oxidative stress (OS) that develops as a 

consequence of hypoxia is responsible (Aljunaidy, Morton, Cooke, & Davidge, 2017; 

Thompson & Al-Hasan, 2012). OS is defined as the imbalance between reactive oxygen 

species (ROS) and endogenous antioxidant defense mechanisms, primarily superoxide 

(SOD), catalase (CAT), and glutathione (GSH) (Birben, Sahiner, Sackesen, Erzurum, & 

Kalayci, 2012). Collectively, SOD and CAT aim to eliminate two potent ROS, 

superoxide (O-) and hydrogen peroxide (H2O2), respectively (Birben et al., 2012). 

Similarly, GSH aids in the elimination of H2O2 alongside CAT (Antunes, Han, & 

Cadenas, 2002). Three major cellular systems appear to produce the majority of ROS 

including mitochondrial metabolism, NADPH oxidase (NOX), and xanthine oxidase 

(XO). Under physiological conditions, complex I (NADH:ubiquinone oxidoreductase) 

and complex III (ubiquinol:cytochrome c oxidoreductase) of the mitochondrial electron 

transport chain (ETC) produce endogenous oxygen free radicals due to electron leakage 

during energy production. Further modifications to these free radicals result in superoxide 

and H2O2 formation. Likewise, NOX produces superoxide and H2O2 as a by-product of its 

transfer of electrons across the cell membrane. Lastly, XO is a potent source of 

superoxide; production accompanies one of xanthine oxidase primary functions, 

oxidation of hypoxanthine to xanthine.  In short, ROS production is inevitable under 

normal physiological conditions and its production alone does not definitively lead OS. It 

is the degree to which ROS outcompetes antioxidant activity that is fundamental to 

understanding OS establishment during pregnancy.  

 

Physiological concentrations of ROS serve a critical role in pregnancy, as modulated 

levels are essential for effective cellular signalling during placentation and beyond 
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(Soares, Iqbal, & Kozai, 2017). For example, the initial hypoxic growth environment is 

intended to protect the placenta and early embryo against damage due to oxidative stress 

(OS), as neither have developed sufficient antioxidant abilities to reduce ROS 

concentrations. In other words, a premature influx of oxygen through the placenta, and 

subsequent increase in cellular metabolism in early pregnancy results in elevated 

production of ROS that the ill-developed SOD and CAT within the placenta and embryo 

cannot combat, ultimately resulting in OS (Jauniaux et al., 2000; Takehara, Yoshioka, & 

Sasaki, 1990). Hence, the hypoxic growth environment throughout the first ten weeks of 

pregnancy is critical to reach the stage of fetal development.  

 

As fetal development progresses, the relatively hypoxic environment is meant to 

diminish. However, under conditions in which the placenta fails to thrive including PI-

IUGR, adverse, chronic placental and fetal hypoxia develops. Unlike the beneficial 

effects seen during embryonic development, hypoxia due to PI is associated with OS 

production within the placenta and fetus (Schoots, Gordijn, Scherjon, van Goor, & 

Hillebrands, 2018). As previously described, blood flow is redistributed to vital organs 

and shunted away from the skeletal muscle as a result of the hypoxic environment of PI-

IUGR. This process is conducive of OS development within the skeletal muscle itself as a 

result of the direct decrease in partial pressure of oxygen within the organ (Clanton, 

2007). The effects of OS on myogenesis are well established and it is a known 

contributor to the decrease in skeletal muscle evident during IUGR. In addition to the 

negative effects of decreased nutritional intake of the skeletal muscle mass during IUGR 

(Bhasin et al., 2009; Năstase et al., 2018), OS appears to reprogram regulator factors of 

myogenesis to inhibit fiber development directly (Chang et al., 2020).  

 

1.4 Myogenesis  
To understand how OS affects myogenesis, physiological myogenic processes must first 

be described. Much of the muscle growth precedes birth, highlighting the importance of 

the fetal environment for adequate skeletal muscle development and growth (Yan, Zhu, 

Dodson, & Du, 2013). Myogenesis commences during the embryonic stages of 
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development, termed primary myogenesis. Early muscle cells are collected within the 

primitive dermomyotome and have marked expression of pair boxed transcription factors 

PAX3 and PAX7 (Goulding, Chalepakis, Deutsch, Erselius, & Gruss, 1991; Jostes, 

Walther, & Gruss, 1990). Both transcription factors regulate specification of cells to 

myogenic commitment, while also activating downstream myogenic regulatory genes 

such as myoblast determination protein 1 (MYOD1) and myogenic factor 5 (MYF5). 

After disintegration of the dermomyotome, PAX3+/PAX7+ committed cells align within 

the new myotome in which future limbs are derived and evolve to express terminal 

skeletal muscle specification markers, including Myod1 and Myf5 (Rudnicki et al., 

1993).  

 

The myogenic regulatory factors are highly conserved genes consistently expressed at 

one time during skeletal muscle development and include MYOD1, MYF5, in addition to 

Myogenin (MYOG), and MRF4 (Weintraub et al., 1991). MYF5 is the initial factor to be 

expressed, but then decreases in line with myotube fusion (Ott, Bober, Lyons, Arnold, & 

Buckingham, 1991; Zanou & Gailly, 2013). Confirmation of the importance of MYF5 to 

primary myogenesis came when mice devoid of MYF5 displayed delayed skeletal muscle 

development. Of note, induced gene expression of Myod1 then rescued muscle 

development, highlighting the importance but also redundancy of MYF5 in the presence 

of MYOD1 (Braun, Rudnicki, Arnold, & Jaenisch, 1992). The redundancy of both factors 

was further highlighted, when skeletal muscle developed adequately in MYOD1-null 

mice, as a result of compensatory Myf5 gene expression (Rudnicki, Braun, Hinuma, & 

Jaenisch, 1992), while knockout of both resulted in failure of skeletal muscle to grow 

(Rudnicki et al., 1993; M. Yamamoto et al., 2018), exemplifying that at least one of the 

two factors must stay conserved. Downstream factor MYOG is skeletal muscle specific, 

with early expression in primary myogenesis and continued activation until mature 

muscle fibers develop during secondary fetal myogenesis, which fail to form in Myog-

knockout experiments, accentuating the factor’s necessity (Venuti, Morris, Vivian, Olson, 

& Klein, 1995). MRF4 expression similarly spans embryonic and fetal myogenesis, 

serving as a myogenesis determination gene like Myf5 and Myod1, and continuing to be 

expressed throughout fetal myofiber development. Though once hypothesized that 
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differentiation was solely controlled my Myf5 and Myod, recent research has shown that 

Mrf4 expression is additionally necessary for adequate myogenesis.  Knockout of either 

Myf5 or Myod1 in combination with Mrf4 expression, supports sufficient muscle 

development for postnatal survival and it is now believed MRF4 works upstream of 

MYOD1, similar to MYF5 (Kassar-Duchossoy et al., 2004). Of note is the importance of 

MRF4 in adult skeletal muscle, serving as the predominant expressed factor 

(Hinterberger, Sassoon, Rhodes, & Konieczny, 1991) (Figure 1.4-1).  

 

 

Figure 1.4.1-1 Regulation of embryonic and fetal myogenesis. 

Transcription factor/gene expression is shown by a solid line and declining expression is 

represented by dotted lines. Figure modified from the “The Basis of Muscle 

Regeneration” article (Musarò, 2014).  
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The type of fiber that develops from primary and secondary myotubes is determined by 

the myosin protein composition within each. The fibers are then further classified in 

accordance with their relevant physiological capabilities. Simply, fibers are classified as 

type I (slow) or type II (fast), based on at which speed in which sarcomeres shorten 

(Bárány, 1967; Huxley & Niedergerke, 1954; Talbot & Maves, 2016). Myosin heavy 

chain isoform genes corresponding to type I fibers, including Myh7, are expressed 

beginning in embryonic myogenesis. Comparatively, expression of type II fiber myosin 

heavy chain isoform genes Myh4, Myh2, and Myh1 does not occur until the fetal stages 

of muscle development (Glaser & Suzuki, 2018). Fiber type is additionally influenced by 

myogenic regulatory factor, MYOD1, in that Myod gene expression is important for type 

II fiber specification and maintenance (Hughes, Koishi, Rudnicki, & Maggs, 1997; 

Talbot & Maves, 2016).  

 

Lastly, the regenerative capacity of skeletal muscle, otherwise described as adulthood 

myogenesis, is attributed to a select population of reserved PAX3+/PAX7+ satellite cells 

maintained throughout primary and secondary myogenesis. PAX3 and PAX7 are 

redundant in that PAX7 can replace PAX3 in most functions, and PAX7 appears to be 

necessary for postnatal myogenesis specifically (Olguin & Olwin, 2004; Relaix, 

Rocancourt, Mansouri, & Buckingham, 2005; Seale et al., 2000). PAX7 expression in 

turn inhibits MYOD expression to arrest cells in a proliferative state by inhibiting further 

myogenesis induction (Olguin & Olwin, 2004). Upon skeletal muscle injury, mentioned 

PAX7+/MYOD- cells regain myogenic properties and fuse to injured myofibers to allow 

regeneration (Moss & Leblond, 1971; Snow, 1977; Von Maltzahn, Jones, Parks, & 

Rudnicki, 2013). Early damage to described satellite cell pool could therefore be 

postulated to inhibit future regenerative capacity.  

1.4.1 Hypoxia/OS and Myogenesis 
As stated previously, myogenesis is altered under hypoxic growth conditions. 

Phenotypically, muscle mass, and subsequent myofiber area and diameter is reduced 

under conditions of low oxygen (Howald & Hoppeler, 2003; Scholz, Thomas, Sass, & 

Podzuweit, 2003). Expression of MYOD1 and subsequently MYOG, is significantly 
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decreased, suggesting slowed myogenesis, providing a molecular explanation for 

decreased skeletal muscle size under pathological hypoxic conditions (Yun, Lin, & 

Giaccia, 2005). It is important to note that it is under extended hypoxic conditions that 

such adverse effects are observed, in part due to chronic activation of HIF-1𝛼. Acute 

exposure induces HIF-1𝛼, though this short-term activation is said to be beneficial, in 

that studies have documented stimulation of myogenesis under these conditions (Cirillo 

et al., 2017). Inversely, recurrent activation of HIF-1𝛼 inhibits MYOD1 expression, 

therefore disrupting myogenesis (Di Carlo et al., 2004). IUGR is similarly associated 

with decreased MYOD1 and MYOG (Chang et al., 2020), and a reduction in the 

proliferative capacity of myoblasts (Dustin T Yates et al., 2014). Overexpression of HIF-

1𝛼 to mimic a hypoxic growth environment is also associated with IUGR mice offspring 

with decreased skeletal muscle mass (Tal et al., 2010). These results together highlight 

that reduction of skeletal muscle mass in IUGR occurs in association hypoxia and could 

be explained by molecular dysregulation of myogenesis in utero, possibly due to OS 

during P-IUGR. Though PI- IUGR occurs later in pregnancy, the secondary (fetal) 

myogenesis occurring during this time has a larger impact on muscle size than early 

embryonic myogenesis. Fetal myogenesis is the process in which secondary muscle fibers 

form through the fusion of myoblasts to primary myotubes, and these secondary fibers 

account for the majority of skeletal muscle mass (Weimer & DiMario, 2016). This could 

explain why PI-IUGR and resulting OS has such a marked effect on the organ’s size 

although the condition develops relatively late in gestation (Chang et al., 2020).  

1.4.2 IUGR’s Effects on Muscle Fiber Type and Mitochondrial 
Metabolism 

Skeletal muscle fibers vary in energy production and oxidative capacity, dependant in 

part by their relative mitochondrial content (Crupi et al., 2018). Slow fibers are 

characterized by their high myoglobin and capillary content, associated with relatively 

increased oxidative capacity, and slow contractions allow for increased mitochondrial 

oxidative phosphorylation and subsequent ATP production (Glaser & Suzuki, 2018). In 

comparison, type II fibers are associated with anaerobic metabolism, in that they possess 

fewer mitochondria and rely on glycolysis for contractile ATP energy (Glaser & Suzuki, 

2018). Type II fibers can be further defined as being type IIa, IIb, or IIx. Type IIx and IIb 



10 

 

fibers are considered glycolytic fibers, in comparison to Type IIa, commonly referred to 

as the “intermediate fiber”, with both glycolytic and oxidative capacity. It is important to 

note that Type IIb muscle fibers are only present in small mammals, and not humans 

(Tellis, Rosen, Thekdi, & Sciote, 2004). 

 

Interestingly, this specification is considered plastic and fiber type “switching” is a well-

documented mechanism that can occur during development and into adulthood (Buller, 

Eccles, & Eccles, 1960). Fiber type switching in utero results from changes in the 

metabolic environment (Bourdeau Julien, Sephton, & Dutchak, 2018), while in adulthood 

exercise commonly results in fiber type switches resulting in increased accumulation of 

fibers with relatively high oxidative capacity, like type I (S. H. Lee, Kim, Park, & Kim, 

2018).  

 

Muscle fiber type switching during IUGR has been documented, though the multiple 

studies conducted are contradicting to one another. Early studies reported an increased 

proportion of type I fibers in lower limb muscle of IUGR piglets (Bauer, Gedrange, 

Bauer, & Walter, 2006; Wank et al., 2000). Similarly, maternal diet restriction alone has 

been shown to promote a decrease in type II fiber concentration, accompanied by an 

increase in type I fibers within hind limb muscle of sheep (Fahey, Brameld, Parr, & 

Buttery, 2005). Conversely, more recent experimentation showed IUGR resulted in an 

increased proportion of type II fibers in sheep hind limb muscle and subsequent decrease 

in type I (Dustin T Yates et al., 2016). Of importance is long-term studies showing 

documented increases of type I fibers in IUGR sheep after 2 weeks of age, replaced by 

higher proportion of type II muscle fibers at 25 weeks (Daniel, Brameld, Craigon, 

Scollan, & Buttery, 2007). It could be postulated that early data showing type I fiber 

density increases is only a short-term rescuing effect (Brown, 2014). Overall, there is still 

speculation of the type of muscle fiber production that is favored in IUGR fetuses and 

offspring. In considering all the above studies, it could be theorized that in utero 

reprogramming during IUGR insult initially favors the mitochondrial-dense type I fibers 

to compensate for decreases in mitochondrial function, but then type I fiber 

concentrations are eventually decreased to reduce mitochondrial metabolism and 
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subsequent ROS production, in hopes of limiting the subsequent oxidative damage that 

occurs in association with IUGR. 

 

The life-long effects of such switches are relatively unknown. Healthy adult humans have 

approximately the same number of satellite cells within type I and type II muscle fibers 

within the body (Kadi, Charifi, & Henriksson, 2006). Though, type II fibers do diminish 

faster with age (compared to type I), and therefore have diminished regenerative capacity 

later in life (Verdijk et al., 2014). When exposed to in utero stress, like IUGR, satellite 

cell populations are diminished (Stange, Miersch, Sponder, & Röntgen, 2020), providing 

the basis for the hypothesis that IUGR could inhibit previously described muscle 

regeneration in adulthood.  

1.4.3 Relationship between mitochondrial function and 
myogenesis 

Of note, is the role the mitochondria play in myogenesis, and vice versa. Differentiation 

of myoblasts is associated with an increase in oxidative phosphorylation and therefore, 

mitochondrial biogenesis (Wagatsuma & Sakuma, 2013). Comparably, MYOD1 was 

found to bind with PPAR-𝛾 coactivator-1-𝛽	(PGC-1𝛽), alongside other metabolically 

related genes and positively modulate oxidative metabolism (Shintaku et al., 2016). 

Similarly, muscle metabolism is highly regulated by the peroxisome proliferator-

activated receptor (PPAR) family of transcription factors, in part by their regulation of 

fiber type distinction, in concert with PGC-1𝛼 (Schuler et al., 2006). PGC-1𝛼- induced 

skeletal muscle remodelling is associated with conversion of glycolytic fibers types to 

those that favour oxidative metabolism (Mortensen, Frandsen, Schjerling, Nishimura, & 

Grunnet, 2006). Hence, adequate myogenesis is responsible for proportion of 

mitochondrial metabolism and subsequent function, while mitochondrial function is also 

important for the growth of skeletal muscle. Interestingly, skeletal muscle mitochondrial 

dysfunction specifically is evident in IUGR offspring, in both fetal and postnatal studies 

(K. Cheng et al., 2020; Pendleton et al., 2020), and it is postulated that both findings are 

the result of OS (J. A. Kim, Wei, & Sowers, 2008; Rodríguez-Rodríguez et al., 2018). It 

is important to note that mitochondrial dysfunction has been investigated as a key 

contributor to the susceptibility of metabolic disease observed within IUGR offspring 
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(Liu et al., 2012; Pendleton et al., 2020). Therefore, it appears OS programs both 

inhibitions and myogenesis and downstream mitochondrial function directly, that likely 

contribute to NCD risk.  

1.4.4 Muscle Mitochondrial Dysfunction  
Increased ROS production in part due to mitochondrial electron leakage during OS can 

damage the organelle’s proteins, enzymes, and lipids directly resulting in increased 

electron leakage and further free radical production. Hence, mitochondrial dysfunction 

ultimately facilitates more ROS generation and sustains OS through a positive feedback 

loop of damage. Additionally, continued OS exposure to the organelle results in 

mitochondrial DNA damage, leading to mutations in the mitochondrial genome that 

compound existing dysfunction as a result of previously mentioned OS damage 

(Hollensworth et al., 2000). Of note is the specific decrease in expression of Pgc-1𝛼 in  

IUGR offspring, that both contributes to OS and to further mitochondrial dysfunction 

(Pendleton et al., 2020; Zeng, Gu, Liu, & Huang, 2013).  

 

Though commonly referred to in the context of mitochondrial biogenesis, the increase of 

mitochondrial mass, protein peroxisome proliferator-activated receptor-gamma 

coactivator (PGC)-1𝛼 is also a regulator of the mitochondrial antioxidant defense system 

that works to mitigate OS and prevent the described mitochondrial damage. In 

environments of elevated hypoxia and OS, induction of PGC-1𝛼 is evident (Zhu et al., 

2010) and overexpression of the coactivator is associated with decreased ROS 

accumulation and relative reduction of mitochondrial apoptosis (Valle, Álvarez-

Barrientos, Arza, Lamas, & Monsalve, 2005). Additionally, mitochondrial SOD 

(MnSOD/SOD2) levels are increased upon similar overexpression (St-Pierre et al., 2003). 

Overall, PGC-1𝛼’s protective effects within the mitochondria appear to mediated in-part 

due to a PGC-1𝛼 – MnSOD dependent pathway through an interaction with the 

mitochondrial deacetylase, Sirtuin 3 (SIRT3) (Kong et al., 2010; Wang et al., 2015). 

SIRT3 is a known regulator of mitochondrial function and energy homeostasis (Ahn et 

al., 2008), as a downstream target of PGC-1𝛼 (Kong et al., 2010). It is through activation 

of SIRT3 that increased PGC-1𝛼 expression elicits increased MnSOD levels. SIRT3 can 
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additionally feedback to PGC-1𝛼 itself to promote mitochondrial biogenesis and overall 

function when expressed to aid in prevention of the organelle’s demise due to OS 

(Jornayvaz & Shulman, 2010; J. Zheng et al., 2018). Under physiological stress, like OS, 

PGC-1𝛼 interacts with transcriptional factors involved in mitochondrial biogenesis, 

including nuclear receptor factors (NRF) 1 and 2, and transcription factor A, 

mitochondrial (TFAM). Increased expression of PGC-1𝛼 induces the transcription of 

NRF-1 and 2, which in turn increase expression of TFAM (Taherzadeh-Fard et al., 2011). 

TFAM is essential for oxidative phosphorylation, encoding 13 components of the ETC 

(Bonawitz, Clayton, & Shadel, 2006; Falkenberg, Larsson, & Gustafsson, 2007), in 

addition to driving mitochondrial biogenesis through regulation of gene transcription and 

replication of mitochondrial DNA (Ngo, Lovely, Phillips, & Chan, 2014). In short, the 

decrease in PGC-1𝛼 evident during IUGR is likely a large contributing factor to the 

mitochondrial dysfunction evident in IUGR due to decreases in mitochondrial biogenesis 

but may also contribute to further mitochondrial damage by OS because of reduced 

expression of downstream MnSOD.  

1.5 Antioxidant Therapy  
As a result of the host of diseases that have been attributed in some part to OS, the 

potential for exogenous antioxidant therapies to prevent and treat said disorders is 

notable. Exogenous antioxidant consumption within our regular diets complements 

existing endogenous antioxidant defense mechanisms. These groups of dietary 

antioxidants include ascorbic acid (vitamin C) and tocopherol (vitamin E), carotenoids, 

and polyphenols, and can be classified as “bioactive”. A bioactive compound is one in 

which, after consumption, can elicit an effect on the body. This effect can be positive or 

negative, and effective dosing of said compounds is critical in preventing negative 

consequences.  

1.5.1 Early Studies of Antioxidant Treatment Options 
The emergence of OS as a contributing factor to preeclampsia in early research prompted 

studies utilizing vitamin C and E supplementation to attempt to reduce occurrence of the 

disorder. Similarly, early studies on pregnancy loss found an association between 

miscarriage as well as IUGR and decreased maternal vitamin C and E serum 
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concentrations. Vitamin C acts a scavenger for ROS, eliminating them to minimize OS. 

Vitamin E is similar in function, as it scavenges lipid peroxyl radicals of lipid 

peroxidation to prevent ROS-mediated cellular damage and more recently has been 

documented to be an inhibitor of NADPH oxidase activity, a previously mentioned 

contributor to OS. Initial studies found vitamin C and E supplementation decreased 

expression of markers of preeclampsia, specifically the ratio of PAI-1 to PAI-2, which is 

a common clinical measure for the disorder. Incidence of preeclampsia was also 

significantly reduced in those who were diagnosed with predisposition to preeclampsia 

after taking both vitamins. These findings encouraged further research, with several 

others trying to replicate the positive results, including in models of IUGR. 

Unfortunately, reproducibility of the positive effects on preeclampsia occurrence was 

low, and high doses of each vitamin were needed to elicit positive effects in pregnancy. 

Concerningly, the high dosages experimented with in animals would pose health risks to 

humans (D.-H. Lee, Folsom, Harnack, Halliwell, & Jacobs, 2004). Lastly, several studies 

showed vitamin C and E supplementation during pregnancy increased the risk of 

premature rupture of membranes (PROM) (Spinnato et al., 2008). In 2019, the World 

Health Organization (WHO) concluded vitamin C and E is not recommended to improve 

maternal and perinatal outcomes during pregnancy (WHO, n.d.).  

1.5.2 Mitochondria-Targeted Therapies 
Mitochondrial dysfunction is evident during several other adverse pregnancy conditions 

linked to OS like PI-IUGR, in addition to the role it plays in metabolic disease (Bhatti, 

Bhatti, & Reddy, 2017). As such, recent research into treatments for such disorders has 

focused on those that target the organelle and promote functioning.  

 

Resveratrol (RSV) is a bioactive polyphenol compound found in plants synthesized to 

protect the organism against injury. It is found in a variety of food and drink products but 

is most widely recognized for its existence in wine. It initially became popular as a 

potential beneficial supplement when studies showed cardiovascular health benefits after 

regular and moderate wine drinking as a result of RSV consumption. Several studies have 

shown the compound to act as an antioxidant, though it is not a strong free radical 
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scavenger itself. RSV primarily elicits its antioxidant effects by activating transcription 

factors important for redox balance within the body, including the activation of 

mitochondrial-bound antioxidant pathways through increased Sirt1 expression to 

diminish ROS production by the organelle (Ungvari, Sonntag, De Cabo, Baur, & Csiszar, 

2011). RSV additionally directly promotes proper mitochondrial biogenesis through this 

same pathway (Ungvari et al., 2011). Compared to vitamins C and E, RSV’s effects on 

pregnancy have not been thoroughly studied in humans It has however been shown to 

cross the placenta in several animal studies and increase uterine blood flow, thereby 

increasing oxygen delivery and indirectly decreasing hypoxia-induced ROS in the fetus. 

In a rodent model of preeclampsia, antioxidant enzyme SOD was upregulated in placental 

trophoblasts following maternal consumption of RSV, and oxidative stress, defined as 

relative malondialdehyde (MDA) content, was reduced to a level that prevented apoptosis 

of in the same placental cells during pregnancy (Zou et al., 2014). It is important to note 

that RSV bioavailability appears to be low due to rapid metabolism within the body 

(Sergides, Chirilă, Silvestro, Pitta, & Pittas, 2016). It is therefore likely that continued 

supplementation throughout pregnancy would be needed to elicit an effect on the mother 

and fetus during pregnancy (S. Zheng, Feng, Cheng, & Zheng, 2018) and overall, the 

safety and efficacy of such treatment is not yet well understood, though preliminary data 

shows RSV exposure throughout gestation may inhibit fetal pancreas development 

(Roberts et al., 2014).  

 

MitoQ is an antioxidant compound specifically designed to mimic the endogenous 

mitochondrial antioxidant coenzyme Q10 (CoQ10) (Tauskela, 2007). CoQ10 serves as a 

cofactor to the ETC to promote energy production and is a significant lipid antioxidant 

that simply reduces production of ROS (Saini, 2011). MitoQ was designed to specifically 

accumulate within the mitochondria and augment the action of existing CoQ10 (Gottwald 

et al., 2018). Human studies of MitoQ’s effects in pregnancy are limited and the 

manufacturer currently recommends it not be taken while pregnant. Early research 

showed that in rodent models of placental insufficiency, MitoQ does protect against 

placental hypoxia and subsequent OS by increasing placental maternal blood space 

volume and surface area (Nuzzo et al., 2018). Unfortunately, MitoQ uptake within the 
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developing fetus was low, and it was concluded the beneficial effects of MitoQ will 

likely only be seen at the placental level (Nuzzo et al., 2018), inferring that 

administration of MitoQ after onset of placental dysfunction would not help prevent 

negative fetal changes that may have already occured.  The compound's specific effects in 

incidences of preeclampsia and IUGR are relatively unknown. Though, one recent study 

using a mouse model of reduced placental perfusion concernedly found that early 

pregnancy MitoQ supplementation exacerbated placental dysfunction by inhibiting 

placenta development and that it can also increase the risk of preeclampsia development 

(Yang et al., 2021). It has been concluded since that with early pregnancy administration 

of antioxidants, and the role ROS play as signaling molecules that promote placental 

development needs to be considered in future research (Yang et al., 2021).  

 

Of particular interest is the novel bioactive antioxidant-like compound pyrroloquinoline 

quinone (PQQ), found in commonly consumed food items, especially kiwi, parsley, and 

soybeans (Kumazawa, Sato, Seno, Ishii, & Suzuki, 1995). It is also found in breast milk, 

highlighting the plausible importance of the compound in early postnatal life (Mitchell, 

Jones, Mercer, & Rucker, 1999). Like both MitoQ and RSV, it has positive effects on 

mitochondrial function, including in vitro stimulation of biogenesis within the liver 

through activation of PGC-1𝛼 (Chowanadisai et al., 2009). As previously described, 

increased PGC-1𝛼 expression is associated with increased activity of mitochondrial 

antioxidants (Kong et al., 2010; Wang et al., 2015), which is in part how PQQ 

additionally reduces ROS production and OS. PQQ also directly acts as a ROS scavenger 

itself (Misra et al., 2004). Overall, PQQ has been shown to be 100-1000 times more 

effective than other antioxidants at reducing concentrations of ROS within the body (T. 

E. Stites, Mitchell, & Rucker, 2000). Lastly, it is effective at microgram quantities 

(Harris et al., 2013) unlike vitamin C and RSV, and therefore diminishing the risk that it 

will elicit harmful effects in pregnancy like those seen with high-dose vitamin C and E 

supplementation.   

  

PQQ’s effects during pregnancy are not well studied; many of its known positive effects 

were studied in a postnatal or adult environment. It has however known to increase 
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placental surface area and weight (Jonscher, Stewart, Alfonso-Garcia, DeFelice, Wang, 

Luo, Levi, Heerwagen, Janssen, De La Houssaye, et al., 2017), as well as significantly 

increase the number of viable offspring and expression of antioxidant genes within the 

placenta when given throughout pregnancy in sows (B. Zhang et al., 2019). Similarly, 

Jonscher et al. (2017) additionally found prenatal PQQ treatment decreased indices of 

liver OS, induced by maternal obesity and a high fat diet, in offspring of mice fed PQQ 

throughout gestation. In regard to IUGR, PQQ shows promise in that it positively acts on 

PGC-1𝛼  (Chowanadisai et al., 2010) which was previously stated to be downregulated in 

IUGR (Zeng et al., 2013) and other adverse metabolic conditions (Riehle & Abel, 2012; 

Son et al., 2020). Overall, direct studies of the effects of PQQ supplementation during PI-

IUGR are lacking, and its effects on skeletal muscle development in utero are unknown.  

 

1.6 Thesis Rationale and Objectives 

1.6.1 Rationale 

The prevalence of noncommunicable diseases continues to increase throughout the world 

(Moore et al., 2017; Ranasinghe et al., 2017). An adverse in utero environment during 

development increases the risk of developing these disorders in adulthood (Dunlop, 

Cedrone, Staples, & Regnault, 2015) including the relatively hypoxic environment 

associated with PI-IUGR (Rueda-Clausen et al., 2011). As blood flow is diverted to the 

brain and heart, which are more critical for long-term survival, diminished concentrations 

of oxygen and nutrients reach the developing skeletal muscle and growth is impeded. The 

reduction in growth is associated with changes to mitochondrial gene and protein 

expression and subsequent alterations in mitochondrial function. This phenomenon 

results in increased incidences of IR, a key precursor to NCD (J. A. Kim et al., 2008; 

Simmons, Suponitsky-Kroyter, & Selak, 2005; H. Zhang, Li, Hou, Zhang, & Wang, 

2016). Skeletal muscle is the principal organ responsible for glucose uptake, and 

alterations to mitochondrial gene expression impede this process, contributing to the 

generation of IR and subsequent NCD. In short, the adverse in utero environment is 
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proposed to reprogram key muscle mitochondrial genes, contributing to the 

predisposition to metabolic disease observed in IUGR offspring.  

 

PI-IUGR is a form of placental failure that results in the development of fetal OS 

(Guvendag Guven, Karcaaltincaba, Kandemir, Kiykac, & Mentese, 2013). As blood 

oxygen concentrations decrease during IUGR progression, an increased concentration of 

ROS is produced (Rashid, Bansal, & Simmons, 2018). This increase in ROS cannot be 

subdued by endogenous antioxidant mechanisms, and hence forth, there is development 

of OS. Mitochondrial dysfunction is often defined as a reduction in ETC complex 

abilities and overall energy production. It is widely observed that OS and mitochondrial 

function have an inverse relationship, in that increased OS can damage the organelle 

(Hollensworth et al., 2000) and the mitochondria themselves can contribute to OS 

production under adverse conditions (Taddei et al., 2012). Gene and associated protein 

expression related to mitochondrial function such as those of the ETC have been reported 

to be significantly decreased in in vivo and in vitro models of OS (Guitart-Mampel et al., 

2019; Pendleton et al., 2020). Of note, OS is associated with epigenetic modulating 

effects (Campos et al., 2007), and it has been postulated that this the mechanism behind 

decreased expression of key mitochondrial function genes observed in IUGR.  

 

Given that OS is associated with several adverse pregnancy conditions in addition to PI– 

IUGR, exogenous antioxidant therapies to treat these conditions has and continues to be 

explored. Initial research examined the use of vitamin C and E as treatment options for 

the OS-associated pregnancy conditions such as preeclampsia (Shennan & Duckworth, 

2010). Data showed no benefit, and in some cases, more harm including increased 

incidence of premature rupture of membranes (PROM), as a result of vitamin C and E 

exposure together during pregnancy (Spinnato et al., 2008). Acknowledging the 

importance of mitochondrial dysfunction in OS progression and furthermore the 

association between disease states and mitochondrial dysfunction, recent research has 

focused on compounds specifically targeting the organelle. Resveratrol, a bioactive 

polyphenol, has been shown to increase mitochondrial function, including ETC complex 

activity (Gueguen et al., 2015), but its low bioavailability suggests the need for continued 
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maternal consumption through pregnancy to elicit effects, which may harm development 

of the fetus (Roberts et al., 2014). MitoQ, a compound designed to mimic an endogenous 

mitochondrial antioxidant, but early gestation supplementation was shown to inhibit 

placental development (Yang et al., 2021).  

 

A possibly more effective supplement is the compound pyrroloquinoline quinone (PQQ). 

PQQ is a bioactive, antioxidant-like compound shown to promote mitochondrial 

biogenesis alongside decreasing OS (Chowanadisai et al., 2010; Nunome, Miyazaki, 

Nakano, Iguchi-Ariga, & Ariga, 2008). PQQ is active at only milligram quantities (T. 

Stites et al., 2006) and participates in redox cycling to recycle its antioxidant abilities 

(He, Nukada, Urakami, & Murphy, 2003).  The ability for it to function at small 

quantities in comparison to other conventional antioxidant suggests PQQ can act without 

the adverse effects reported in other studies, like those observed with Vitamin C (D.-H. 

Lee et al., 2004). For reference, humans consume an average of 0.1-1.0 mg per day in 

their diet (Harris et al., 2013). 

 

Harris et al. (2013) found that at consumption of 0.2 - 0.3 mg PQQ/kg/day for 2-3 days 

resulted in a significant increase to antioxidant activity, and a reduction in indices of 

inflammation within collected plasma. PQQ with the same scaled doses, accounting for 

heightened metabolism in mice, found similar results, in that postnatal offspring were 

protected from hepatic lipotoxicity and inflammation if exposed to PQQ in utero and in 

early life (Jonscher, Stewart, Alfonso-Garcia, DeFelice, Wang, Luo, Levi, Heerwagen, 

Janssen, de la Houssaye, et al., 2017). Overall, though the positive effects of PQQ are 

evident in postnatal studies, its effects in a in utero setting are relatively unknown. 

Additionally, limited studies have investigated the effects of PQQ on skeletal muscle 

development.  

 

1.6.2 Objectives and Hypotheses 

The first objective was to determine the effects of short and long-term PQQ treatment on 

muscle cell differentiation and markers of mitochondrial function in a cell culture model 



20 

 

of fetal skeletal muscle development, when challenged with H2O2 mimicking an OS 

environment. It was postulated that H2O2 would negatively alter skeletal myogenesis 

pathways, and that PQQ treatments would mitigate OS and rescue myogenesis and 

markers of mitochondrial function.  

 

The second objective was to study the effects of maternal PQQ administration during 

pregnancy on normal growth and IUGR fetal skeletal muscle myogenesis and markers of 

mitochondrial function. It was postulated that IUGR would be associated with altered 

myogenesis and markers of decreased mitochondrial function while PQQ consumption 

during pregnancy would reduce measures of OS, in conjunction with the promotion of 

myogenesis and muscle mitochondrial function in both normal and IUGR fetuses.  
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2 Methods and Materials 

2.1 C2C12 Cells: H2O2 and PQQ Supplementation 
 

The C2C12 immortalized Mus muculus (i.e. mouse) myoblast cell line was utilized for in 

vitro experimentation. The cell line is a subclone of myoblasts originating from the thigh 

muscle of an adult female C3H mouse (Yaffe & Saxel, 1977), which is capable of rapid 

differentiation and has contractile abilities similar to that of developing skeletal muscle 

(Nedachi, Fujita, & Kanzaki, 2008). It is commonly utilized to mimic developing in utero 

skeletal muscle due to similarities in gene expression and regulation of myogenic 

processes between the cells and in vivo muscle (Burattini et al., 2004; Rajan et al., 2012).  

 

C2C12 myoblasts (Group A), from passage 2 to 20, were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin until ~70-80% confluency was reached. Cells where then 

induced to differentiate for 7 days into myotubes by supplementing media with 2% horse 

serum (HS) and 1% penicillin/streptomycin instead of FBS. An additional subset of cells 

was cultured with the addition of 110 mg/L sodium pyruvate in both the FBS and HS 

DMEM media (Group B). All cells were incubated at 21% O2 and 5% CO2 (with N2 

balance) at 37℃. After seven days of differentiation, cells were serum starved for five 

hours to induce cell cycle synchronization (M. Chen et al., 2012). Cells and culture media 

were then collected for mRNA, protein, and activity analysis.  

 

A subset of cells was incubated with either 1uM or 10uM of PQQ (Sigma-Aldrich; CAS 

number 72909-34-3) for the total seven days, final 48 hours, or final 5 hours of 

differentiation. A further subset was exposed to 750uM or 1mM H2O2 (to simulate in 

utero oxidative stress) (Figure 2.1-1)  
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Figure 1.6.2-1 Cell Culture Model.  

C2C12 myoblasts were differentiated for seven days to form myotubes. 1uM or 10uM of 

PQQ was administered for all 7 days of differentiation, or the final 5H or 48H of 

differentiation. 750uM or 1mM H2O2 was administered for the final 24H of 

differentiation to induce oxidative stress.  

2.2 Guinea Pig Model of Spontaneous IUGR 
All animal procedures were conducted in accordance with the Canadian Council of 

Animal Care guidelines. The Animal Use Protocol (AUP #2018-110) was approved by 

the Western University Animal Care Committee. Time-mated pregnant Dunkin-Hartley 

guinea pigs (Charles River Laboratories, Wilmington, MA) were housed on-site in 

separate enclosures. Guinea pigs are an adequate model for human pregnancy due to 

several anatomical and physiological similarities present throughout gestation. These 

similarities including comparable progesterone levels, as well as sharing a 

hemomonochorial placental structure which except the same mechanisms of spiral artery 

remodeling. Finally, guinea pigs have longer pregnancies compared to other rodent 

species, resulting in more mature neonates like humans (Harrell et al., 2017) 

The animals were housed in a temperature and humidity-controlled environment, with a 

12:12-hour light-dark cycle. Food (Guinea Pig Diet 5025; Lab Diet, St. Louis, MO) and 

water were provided ad libitum. Food consumption, water consumption, and body weight 

were measured daily, in addition to measuring litter size (Table 1).  
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At mid-gestation (37 days; term ~69 days), dams were randomly assigned to either the 

PQQ or control groups. For dams in the PQQ group, PQQ was administered in drinking 

water a concentration of 1.5 mg/L. Given an average water consumption of 125 

mL/kg/day, this concentration corresponds with an average dose of 0.18 mg 

PQQ/day/kg/, a scaled equivalent of doses administered in other studies in mice and 

humans (Harris et al., 2013; Jonscher, Stewart, Alfonso-Garcia, DeFelice, Wang, Luo, 

Levi, Heerwagen, Janssen, de la Houssaye, et al., 2017). As stated, initial human studies 

utilizing doses ranging from 0.2 – 0.3 mg PQQ/kg/day found that consumption of the 

compound had a positive effect on reducing markers of inflammation and positively 

promoting mitochondrial metabolism (Harris et al., 2013). Maternal PQQ consumption 

did not significantly affect fetal or maternal parameters measured (Table 1 and 2).  

Dams were euthanized by CO2 inhalation on gestational day 65. Following euthanasia, 

fetuses were dissected from damns, weighed, and sex was determined. Brain-to-liver 

weight ratio (BtL) was calculated to determine if a fetus was growth restricted or not. 

Guinea pig pregnancies demonstrate spontaneous IUGR as a result of large litter sizes 

and therefore no in utero manipulation was needed to induce said pregnancy 

complication. Fetuses were classified as IUGR if BtL was >0.65 and fetal weight was 

<80g, with fetuses outside both thresholds classified as normal growth (NG) (Table 2). 

Placental weight and ratio to fetal weight was also measured (Table 2). Fetal male 

gastrocnemius tissue was flash frozen in liquid N2 and stored at -80℃ for future analyses. 

Gastrocnemius muscle was selected as it has both type I oxidative and type II glycolytic 

fibers versus the relatively more oxidative muscle, the soleus.  
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Table 1 Maternal Guinea Pig Characteristics 

Group Litter Size Weight (g) Food 
Consumption 

Water 
Consumption 

Control Water 4.667 ± 0.8819 1158 ± 198.7 51.73 ± 4.901 121.3 ± 25.47 

PQQ Water 5.500 ± 0.2887 1350 ± 54.51 48.28 ±	3.054 107.6 ± 26.54 

Data presented as mean ± SEM. Significance determined by two-way ANOVA; no 

significant changes were observed. 

Table 2 Fetal Guinea Pig Characteristics 

Group Fetal Weight (g) Brain-to-Liver 
Ratio 

Placental 
Weight (g) 

Placental – to 
– Fetal 
Weight 

Normal Growth 
(NG) 

102.641 ± 3.373  0.490 ± 0.040 4.991 ± 0.298 0.049 ± 0.002 

Intrauterine Growth 
Restriction (IUGR) 

67.479 ± 4.288 

*** 

0.848 ± 0.117 

*** 

4.240 ± 0.636 

* 

0.062 ± 0.004 

** 

Normal Growth + 
Maternal PQQ 
Consumption 
(NG/PQQ) 

 

93.227 ± 4.987 

 

0.535 ± 0.023 4.697 ± 0.339 0.049 ± 0.002 

Intrauterine Growth 
Restriction/Maternal 
PQQ Consumption 

(IUGR/PQQ) 

 

71.883 ± 7.820 

*** 

0.778 ± 0.068 

*** 

3.813 ± 0.228 

* 

0.053 ± 0.003 

** 

Data presented as mean ± SEM. Significance determined by two-way ANOVA, *p<0.05, 

**p<0.01, ***p<0.001.  
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2.3 Rt-qPCR 
Adherent C2C12 cells (Group A) were collected in Trizol reagent and stored at -80℃ 

before RNA isolation. Guinea pig gastrocnemius muscle was powered using a mortar and 

pestle in liquid N2 and stored in Trizol reagent (Invitrogen) at -80℃. Both cell and 

muscle samples were thawed, and 200 microliters of chloroform was added for every 

1mL used during initial collection. Samples were briefly gently shaken by hand to 

combine contents and then centrifuged for 15 minutes at 12000 x rcf at 4℃.	The mixture 

separated into a lower red phenol-chloroform phase, a middle interphase, and a colourless 

upper aqueous phase. 400uL of the upper phase was removed and put into a new tube, 

and then 500uL of isopropanol was additional added for every 1mL of Trizol used 

initially. This new mixture was briefly vortexed prior to centrifugation at 12000 x rcf at 

4℃	for 15 minutes. The supernatant was removed, leaving only the RNA pellet. The 

pellet was washed by adding 1mL of 75% ethanol per 1mL of initial Trizol, then 

centrifuged at 7500 x rcf for 10 minutes at 4℃.	Samples were then stored at -20℃ 

overnight. The next day, the ethanol was removed, being careful not to disrupt the pellet, 

and 1mL of new ethanol was added before centrifugation at 7500 x rcf for 10 minutes at 

4℃. This step was repeated once more before removing all ethanol. The pellet was then 

air-dried and dissolved in PCR-grade water. Samples were stored at -20℃ until further 

analysis.  

The quality and quantity of RNA yield was determined by the NanoDrop 2000 

spectrophotometer (Thermo-Scientific). Quality was specifically measured using the 

A260/280 ratio (≥1.8). To further ensure RNA quality, samples were separated on a 

1.5% agarose gel stained with RedSafe in a formaldehyde buffer at 100V for 30 minutes. 

Samples were screened for degradation by visualization using the Bio-Rad ChemiDoc 

Imager of the 28S and 18S bands. Only samples without degradation (i.e., clear 28S and 

18S bands) were used for future experiments.  

Three micrograms of total RNA were used for reverse transcription using M-MLV 

Reverse Transciptase (200U/uL) (ThermoFisher #28025013) in a 20-uL reaction volume. 

In a nuclease-free microcentrifuge tube, 1uL of Oligo (dT)21 (40uM), 0.5uL of random 
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primers (100uM), 1uL dNTP mix (10mM each dATP, dGTP, dCTP, and dTTP at neutral 

pH) and 3 ug of total RNA were combined. Mixture was adjusted to a final volume of 

13uL with RNase-free water and heated at 65℃ for 5 minutes before being chilled on ice. 

Contents from tube were collected by brief centrifugation and 4uL of 5X First-Strand 

Buffer and 2uL of DTT (0.1M) was added. Contents were gently mixed before incubation 

at 37℃ for 2 minutes, after which 1uL of M-MLV RT (200 units) was added. A final 

incubation at for 100 minutes at 37℃ occurred, and then the reaction was inactivated by 

heating at 70℃ for a final 15 minutes.  

 

Primer sets were designed using the NCBI Primer-Blast tool based on published Mus 

musculus and Cavia porcellus sequences (Table 1 and 2). Primer fidelity was assessed by 

performing a quantitative PCR (qPCR) reaction on a pooled cDNA sample using 

SensiFastTM SYBR® No-ROX kit (FroggaBio) with Bio-Rad CFX384 detection system, 

at 60℃ (primers were designed for a Tm of 60℃. DNA products were electrophoresed on 

a 2% agarose gel stained with RedSafe dye in a TAE running buffer at 100V for 30 

minutes. DNA products were visualized using Bio-Rad ChemiDoc Imager and only 

primers with products of the predicted size were used. Primer efficiencies were measured 

and only those with efficiency >90% were used for qPCR analysis.  

 

qPCR was performed using the SensiFastTM SYBR® No-ROX kit (FroggaBio) on the 

CFX 384 real-time PCR detection system (Bio-Rad) at a denaturing temperature of 95℃, 

annealing temperature of 60℃, and elongation temperature of 75℃ for 40 cycles. A total 

volume of 12uL in each well contained 2uL of diluted cDNA, 0.048uL of primer mix, 

6uL of SYBR Green, and the remaining volume was filled with PCR-grade water. The 

data was analyzed using the 2!∆∆#$ method (Livak and Schmittgen, 2001) using Hrpt, 

Rsp12, Tubb, or Rpl13 as housekeeping genes (Masilamani, Loiselle, & Sutherland, 

2014).  
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Table 3 Mouse (Mus musculus) Primer Pairs 

 

 

 

 

 

 

Gene NCBI Accession # Strand Sequence (5’ à 3’) 

Cox7a1 NM_009944.3 
Forward 

Reverse 
TCTTCCAGGCCGACAATGAC 

GCCCAGCCCAAGCAGTATAA 

Hprt NM_013556.2 
Forward  

Reverse 

ATGGACTGATTATGGACAGGACTG 

TCCAGCAGGTCAGCAAAGAAC 

Myod1 NM_010866.2 
Forward 

Reverse 

TGCTCTGATGGCATGATGGATTA 

AGATGCGCTCCACTATGCTG 

Myog NM_031189.2 
Forward 

Reverse 

GAAGCGCAGGCTCAAGAAAG 

CGCGAGCAAATGATCTCCTG 

Ndufb6 NM_001033305.3 
Forward 

Reverse 

CGTACCGCTCCAGTCTCTTC 

CCCTTAAGAGGGATGCTGCC 

Pax7 NM_011039.2 
Forward 

Reverse 

CGATTAGCCGAGTGTCTCAGA 

TCCAGACGGTTCCCTTTGTC 

Pgc-1𝛼 NM_008904.2 
Forward 

Reverse 

AAGGATGCGCTCTCGTTCAA 

CATAGCTGTCGTACCTGGGC 

Rps12 NM_011295.6 
Forward 

Reverse 

AAGGCATAGCTGCTGGAGGTGTAA 

AGTTGATGCGAGCACACACAGAT 

Tfam NM_009360.4 
Forward 

Reverse 

TAGGCACCGTATTGCGTGAG 

GACAAGACTGATAGACGAGGGG 
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Table 4 Guinea Pig (Cavia porcellus) Primer Pairs 

 
Gene NCBI Accession # Strand Sequence (5’ à 3’) 

Atp5a1 XM_003474067.4 
Forward 

Reverse 
GCTGCCCAAACTAGGGCTAT 

GAGTGGCAGCATCGAGATCA 

 

Atp5pb 

 

XM_003479227.4 

 

 

Forward 

Reverse 

 

ACCCTACATGCTTGGAACTGG 

CGCTTCTGAACAAGTGCCTG 

𝛽-Tubulin/ 

Tubb 
XM_003460999.4 

Forward 

Reverse 

TGGTCGGCCTCTCAGAATCTT 

TTATCACCTCCCAGAACTTGGC 

Cox4i2 
XM_003476668.3 

 

Forward 

Reverse 

 

CCACCAAATCAGCAAAGCCG 

CATGCCGGATGAGCCTTTCT 

Cox7a1 XM_003467228.4 
Forward 

Reverse 

 

CAGTGTGTGTCCTTGTCCGA 

GGAGGTCATTGTTCTCCTTGGAA 

CS XM_003475969.4 
Forward 

Reverse 

 

GGCATATGCAGAGGGTGTCA 

CCGATACTACTGCCCTCACG 

Mhy1 

 

XM_003466219.2 

 

Forward 

Reverse 

 

GTGGACAAACTGCAAGCCAA 

ATGTCTTTGGTCACTTTCCTGCAT 

Mhy2 

 

XM_003466220.3 

 

Forward 

Reverse 

 

GGAGGAGGCTGAGGAACAAT 

GTCTTGCTCTGGTCATTCCACA 

Myh4 

 

XM_013148710.1 

 

Forward 

Reverse 

 

GTAATTGCCTGCTTTGAGCCTG 

TAGCTCCGCCTTCTGTCTTG 

Myh7 

 

XM_003474485.3 

 

Forward 

Reverse 

 

TTCCGAAAGGTGCAGCATGA 

TTCCTCCCAAGGGGCTGTTA 
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Myod1 XM_003465725.2 

 

Forward 

Reverse 

TCCGACGGCATGATGGACTA 

GCTGTAATAGGCACCGTCGT 

Myog 

 

XM_003474821.2 

 

Forward 

Reverse  

CCCAAGGTAGAGATCCTGCG 

TACATTCACTGGGCACCGTAG 

Ndufb6 

 

XM_003470823.4 

 

Forward  

Reverse 

GCCCCCGAATATTCCCAGGTG 

CATGGCTTAAAAGCCTTTGACATTT 

Pax7 

 

XM_003471164.2 

 

Forward  

Reverse 

GTGCCCTCAGTGAGTTCGAT 

GTCCAGTCGGTTCCCTTTGT 

Pgc-1𝛼 

 

XM_003467408.4 

 

Forward 

Reverse 

CCCAAGGGTTCCCCATTTGA 

CCCAAGGGTTCCCCATTTGA 

Ppar-	𝛼 
 

NM_001173004.1 
 

Forward 

Reverse 

AAGGCCTCAGGCTACCACTA 

CAGGTGAGGACTTCGGCTTT 
 

Ppar-𝛿 XM_013156813.2 
Forward 

Reverse 
CCAGCAGTTACACAGACCTCC 

CCGTAGTGGAAGCCAGACG 
 

Ppar-𝛾 XM_003462736.4 
 

Forward 

Reverse 
CAATAGGCCTCACGAGGAGC 
ATCCGCCCAAACCTGATGG 

 

Rpl13 XM_003461190.4 
Forward 

Reverse 
TCAATCAGCCAGCTCGGAAG 

GTGAATACCAGCCACCCGAA 

Sirt1 XM_013156679.2 
 

Forward 

Reverse 
TTGCAACTGCATCTTGCCTG 
TCATGGGGTATGGAACTTG 

 

Sirt3 XM_004999545.3 
 

Forward 

Reverse 
TCCCCTGGAGGTGGAACCTTTT 

CCAGCTGGAACAGAGAAGA 
 

Tfam XM_003473570.4 
 

Forward 

Reverse 
TGCGCTCACCTTTCAGTTTTG 
TGTGCCAAAACTGCTCTCTCA 

 

Ucp2 XM_013145311.2 
 

Forward 

Reverse 
CGACGTGGTCAAGACGAG 

AGGAGGGCATGAACCCTTTG 
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2.4 Western Blots  

2.4.1 Total Protein Extraction and Immunoblotting 

Adherent C2C12 cells (Group A) were washed with cold PBS in the dish. Cold 

radioimmunoprecipitation assay (RIPA) buffer, supplemented with protease and 

phosphatase (1ug/mL leupeptin and aprotinin, 1mM PMSF, 1mM sodium orthovanadate, 

2mM sodium fluoride) inhibitors, was utilized to extract total proteins from the cells; 

cells were left in the buffer for 5 minutes before being scraped off plates with a plastic 

policeman and collected. Cells were mixed by vortexing for 5 seconds and incubated on 

ice for 5 minutes. Cells were further mixed by pipetting up and down 10 times then 

sonicated at an amplitude of 30 for 5 seconds. Samples were lastly centrifuged at 16000 x 

rcf at 4℃ for 10 minutes and supernatants were collected and stored at -20℃ for future 

experiments.  

Protein quantity was measured using the PierceTM BCA Protein Assay Reagent Kit 

(ThermoFisher) and a microplate reader. 30ug of total protein was mixed with 5x 

Laemmli sample buffer with 100uL beta-mercaptoethanol (BME), boiled for 5 minutes, 

and loaded onto a hand-cast SDS-PAGE gel (4% stacking layer, 10-15% separating 

layer). Gel electrophoresis was conducted at 70-75V until samples migrated through the 

wells, then ran at 120-30V for 60-90 minutes in 1X running buffer. After proteins were 

sufficiently separated, they were transferred from the SDS-PAGE gradient gels onto 

polyvinylidene fluoride (PVDF) membranes (AmershamTM HybondTm P 0.2 um PVDF) 

for 90-120 minutes at 100V using 1X transfer buffer. The membranes were Ponceau 

stained, followed by a methanol rinse, then imaged with the Bio-Rad ChemiDoc Imager 

to show efficient transfer, equal loading of protein, and allow for total protein 

normalization (Figure 2.4.1-1). 
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Figure 2.4.1-1 Representative Ponceau S Image  

Ponceau S staining binds to protein transferred to PVDF membranes. Staining allows for 

the determination the extent and success of the protein transfer that occurred, and visible 

protein lanes can then be utilized for total protein normalization (Goldman, Harper, & 

Speicher, 2016).  

Following several washes in Tris-buffered saline with Tween 20 (TBS-T) to remove 

Ponceau S stain, membranes were blocked in 5% milk or bovine serum albumin (BSA) in 

TBS-T for 1 hour at room temperature. They were then incubated with primary 

antibodies of 1:500-1:1000 dilutions in 5% milk or BSA at least overnight at 4℃ (Table 

3). Following this incubation, the membranes were washed for 10 minutes, 3 separate 

times, in TBS-T before incubation with secondary antibodies (mouse or rabbit; Table 3) 

for one hour at room temperature 

Following secondary antibody incubation, membranes were again washed in TBS-T three 

times for 10 minutes. Using the electrochemiluminescent substrate Clarity MaxTM 

(BioRad), total protein abundance was then visualized using the ChemiDoc Imaging 

System (BioRad). Image Lab Software (BioRad) was employed to quantify protein 

bands.  
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Table 4 Western Blot Antibody List 

Antibody Brand and Catalog # Dilution 

LDHA (C4B5) Cell Signaling; #3582 1:1000 

OXPHOS 

 (ETC Complexes) 
Abcam; ab110413 1:1000 

PGC-1𝛼 ThermoFisher; PA5-38021 1:500 

SIRT3 (D22A3) Cell Signaling; #5490 1:1000 

SOD2 (D9V9C) Cell Signaling; #13194 1:1000 

VDAC1/Porin [20B12AF2] Abcam; ab14734 1:5000 

Rabbit Secondary 

(Anti-rabbit IgG, HRP-
linked) 

Cell Signaling; #7074 1:10000 

Mouse Secondary 

(Anti-mouse IgG, HRP-
linked) 

Cell Signaling; #7076 1:10000 

 

2.5 Activity Assays 

2.5.1 Lactate Dehydrogenase Activity 

Cell culture media was collected from PQQ and H2O2 treated cells from Group B after 19 

hours of 1mM H2O2 exposure. Media samples were frozen at -80℃ until utilized. Lactate 

dehydrogenase (LDH) activity within the samples was then measured using the 

colorimetric LDH Assay Kit (Abcam; CAT ab102526). In brief, 40uL of media was 

mixed with 10uL of assay buffer and plated in duplicate. A 1.25mM reduced 

nicotinamide adenine dinucleotide (NADH) standard curve dilution was also prepared 

according to the manufacturer’s instructions to generate a curve composed of 0, 2.5, 5, 



33 

 

7.5, 10, and 12.5 nmol/well, plated in duplicate. 50uL of reaction mix (48uL of LDH 

Assay Buffer, 2uL LDH substrate mix) was added to each well with sample and standard, 

then the plate was mixed well. Using a microplate reader, the OD at 450nm was 

measured kinetically every 2-3 minutes for 60 minutes at 37℃, protected from light. 

Total protein concentration within the media was also measured and used to normalize 

the LDH concentration within each sample. Total LDH activity was expressed in mU/mL 

relative to total protein.  

2.5.2 Superoxide Dismutase Activity 

Adherent C2C12 (Group B) were washed with cold PBS before being scraped off the 

plate using a plastic policeman. Collected cells were centrifuged at 1000 x g for 10 

minutes at 4°C. The cell pellet was then homogenized in a cold 20mM HEPES buffer, pH 

7.2 (containing 1mM EGTA, 210mM mannitol, 70mM sucrose) before being centrifuged 

at 1500 x g for 5 minutes at 4°C. The supernatant containing total SOD (cytosolic and 

mitochondrial) was collected and stored at -80°C or centrifuged at 10000 x g for 15 

minutes at 4°C to separate cytosolic SOD from mitochondrial SOD. The supernatant 

containing cytosolic SOD was then removed and stored at -80°C for future analysis. The 

remaining mitochondrial SOD pellet was homogenized in the cold buffer (20mM HEPES 

buffer, pH 7.2, containing 1mM EGTA, 210mM mannitol, 70mM sucrose) and stored at -

80°C for future analysis.  

 

SOD activity within the samples was then measured using the colorimetric SOD Assay 

Kit (Cayman Chemical; Item No. 706002) and protocol. In brief, 10uL of sample, plated 

in triplicate, was mixed with 200uL of diluted Radical Detector (Cayman Chemical; Item 

No. 706004) in 96-well plate. 20uL of SOD Standard (Cayman Chemical; Item No. 

706005) with 1.98mL of dilute Sample Buffer (Cayman Chemical; Item No. 706003) was 

mixed to produce a 0 to 0.050 U/mL final SOD activity standard curve. Reaction was 

initiated by adding 20uL of diluted Xanthine Oxidase to all wells in use. The addition of 

potassium cyanide to a final concentration of 1-3mM to wells containing mitochondrial 

SOD samples to inhibit any residual cytosolic SOD. After mixing, the plate was 

incubated for 30 minutes at room temperature then the absorbance was read at 440-
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460nm using a plate reader. Protein concentration of the samples was tested and used as 

an internal control to normalize the SOD concentration in the samples. Total SOD 

activity was expressed as U/mL relative to total protein.  

2.5.3 Catalase Activity 

Adherent C2C12 (Group B) were washed with cold PBS before being scraped off the 

plate using a plastic policeman. Collected cells were centrifuged at 1000 x g for 10 

minutes at 4°C. The cell pellet was then homogenized in a cold 50mM potassium 

phosphate buffer, pH 7.0 (containing 1mM EDTA) before being centrifuged at 10000 x g 

for 15 minutes at 4°C. The supernatant was collected and stored at -80°C for future 

analysis. 

 

CAT activity within the sample was then measured using the colorimetric Catalase Assay 

Kit (Cayman Chemical; Item No. 707002) and protocol. In brief, 10uL of Catalase 

Formaldehyde Standard (Cayman Chemical; Item No. 707014) with 9.99 mL of diluted 

Sample Buffer (Cayman Chemical; Item No. 707012) to obtain a 4.25 formaldehyde 

stock solution. This solution was further diluted to produce a standard curve with final 

concentration ranging from 0-75uM formaldehyde, plated in duplicate. Each standard 

well contained 100uL of diluted Assay Buffer (Cayman Chemical; Item No. 707010), 

30uL of methanol, and 20uL of standard. Sample wells contained 100uL of the same 

diluted Assay Buffer, 30uL of methanol, and 20uL of sample, plated in duplicate. To 

initiate the reaction, 20uL of diluted hydrogen peroxide was added to all utilized wells, 

and then the plate was covered and shaken for 20 minutes at room temperature. 30uL of 

potassium hydroxide was then added to each well to terminate the reaction, followed by 

30uL of Catalase Purpald (Cayman Chemical; Item No. 707017). The plate was again 

covered and shaken for 10 minutes at room temperature before addition of 10uL of 

potassium periodate (Cayman Chemical; Item No. 707018). The plate was covered and 

shaken one final time for 5 minutes at room temperature before the absorbance was read 

at 540 nm. Protein concentration of the samples was tested and used as an internal control 

to normalize the CAT concentration in the samples. Total CAT activity was expressed as 

nmol/min/mL relative to total protein.  
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2.6 Statistics 

GraphPad Prism 9 was used for all statistical analyses. All data is presented in box-

whisker plots, representing the median 25th and 75th quartiles, and minimum/maximum 

values. In vitro (I.e., in C2C12 myoblasts) enzyme activity, as well protein and gene 

expression were analyzed using a one-way ANOVA with a Dunnett’s multiple 

comparisons test. In vivo (I.e., in fetal guinea pig muscle) gene expression was analyzed 

by two-way ANOVA and Tukey’s multiple comparisons test. A p value of less than 0.05 

was considered significant. Values were determined to be outliers if they were more than 

two standard deviations away from the mean.   
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3 Results 
 

3.1 Effects of H2O2 and PQQ on LDH, CAT, and SOD 
activity and total protein abundance 

3.1.1 LDH Activity and Total Protein Abundance 

LDH activity within the cell culture media of developing in vitro myotubes was not 

significantly affected by acute 1mM H2O2 exposure. Similarly, 1uM and 10uM PQQ 

exposure alone did not significantly affect LDH activity within the media (Figure 3.1.1-

1). Lastly, 1um and 10uM PQQ alone did not affect total LDHA protein abundance at 

any time point (Figure 3.1.1-2).   

 

 

Figure 3.1.1-1 LDH Activity with the cell media of developing in vitro myotubes.  

LDH activity is a measure of the relative cytotoxicity that has occurred within the cells. 

Relative to control, 19H 1mM H2O2 exposure before collection did not affect LDH 

activity. Similarly, short-term, and long-term exposure of either low dose 1uM or high 

dose 10uM PQQ alone did not affect LDH activity relative to control. N=3-4. Data 

presented as means ± SEM (significance determined by one-way ANOVA and Dunnett’s 

multiple comparisons test, no significant differences were observed).   
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Figure 3.1.1-2 Relative total protein abundance of LDHA in developing in vitro 
myotubes.  

LDHA is an enzyme involved in anaerobic metabolism. 1uM and 10uM PQQ for a short-

term or long-term exposure time in developing myotubes did not affect total protein 

abundance of LDHA. N=3-4. Data presented as means ± SEM (significance determined 

by one-way ANOVA and Dunnett’s multiple comparisons test, no significant differences 

were observed).   
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3.1.2 SOD Activity  

Total SOD activity within developing in vitro myotubes was not significantly affected by 

acute 1mM H2O2 exposure nor 1mM H2O2 in combination with PQQ (Figure 3.1.2-1A). 

PQQ alone did not result in a change in activity relative to control (Figure 3.1.2-1B).  

 

 

Figure 3.1.2-1 Relative total SOD activity in developing in vitro myotubes.  

SOD activity is associated with dismutation of superoxide. (A) Relative to control, 24H 

1mM H2O2 exposure did not significantly affect SOD activity, including PQQ + H2O2 

exposure (B) Short term and long-term exposure of either 1uM or 10uM PQQ alone did 

not affect activity relative to control. N=3-4. Data presented as means ± SEM 

(significance determined by one-way ANOVA and Dunnett’s multiple comparisons test, 

no significant differences were observed).   

Contro
l

H 2O
2 

H 2O
2 
+ 5

H 1u
M

H 2O
2 
+ 5

H 10
uM

H 2O
2 
 + 

48
H 1u

M

H 2O
2 
 + 

48
H 10

uM

H 2O
2 
+ 7

D 1u
M

H 2O
2 
+ 7

D 10
uM

0.000

0.002

0.004

0.006

0.008

Treatment Groups

SO
D

 A
ct

iv
ity

  (
U

/m
L)

 
R

el
at

iv
e 

to
 T

ot
al

 P
ro

te
in

A.

Contro
l

5H
 1u

M

5H
 10

uM

48
H 1u

M

48
H 10

uM

7D
 1u

M

7D
 10

uM
0.000

0.002

0.004

0.006

0.008

Treatment Groups

SO
D 

Ac
tiv

ity
  (

U/
m

L)
 

Re
la

tiv
e 

to
 T

ot
al

 P
ro

te
in

B.



39 

 

 

 

 

Figure 3.1.2-2 Relative total protein abundance of SOD2 in developing in vitro 

myotubes.  

SOD2 is the mitochondrial SOD (also referred to as MnSOD) antioxidant responsible for 

the dismutation of H2O2. 1uM and 10uM PQQ for short-term or long-term exposure in 

developing myotubes did not affect total protein abundance of SOD2. N=3-4. Data 

presented as means ± SEM (significance determined by one-way ANOVA and Dunnett’s 

multiple comparisons test, no significant differences were observed).   
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3.1.3 CAT Activity  

Total CAT activity within developing in vitro myotubes was not significantly affected by 

acute 1mM H2O2 exposure nor by 1mM H2O2 in combination with any exposure length 

or dose of PQQ (Figure 3.1.3-1A). Similarly, 1uM and 10uM PQQ exposure alone did 

not significantly affect total CAT activity relative to control (Figure 3.1.3-1B).  

 

 

Figure 3.1.3-1 Relative CAT activity in developing in vitro myotubes.  

CAT activity is associated with the breakdown of H2O2. (A) Relative to control, 24H 

1mM H2O2 exposure did not significantly affect SOD activity, including PQQ + H2O2 

exposure. (B) Short term and long-term exposure of either 1uM or 10uM PQQ alone did 

not affect CAT activity relative to control. N=3-4. Data presented as means ± SEM 

(significance determined by one-way ANOVA and Dunnett’s multiple comparisons test, 

no significant differences were observed).   
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3.2 Choosing an Effective Dose of H2O2 in Group A Cells 

Concentrations ranging from 200uM to 1mM of H2O2 have been shown to induce OS 

within C2C12 cells (Li et al., 2020). After exposure of Group A cultured myoblasts to 

H2O2 concentrations ranging from 250uM to 1mM for 24 hours, qualitative analysis of 

cell morphology was conducted. 1mM H2O2 significantly altered the number of living 

cells, compared to control and other concentrations of H2O2, so the concentration was 

deemed too cytotoxic to be utilized in future experiments. The next highest concentration 

750uM was therefore chosen to induce OS in subsequent experiments with Group A cells 

(Figure 3.1.3-1).  

 

Figure 3.1.3-1 Relative cytotoxicity of varying concentrations of H2O2 in 
differentiating in vitro myoblasts.  

Within cultured C2C12 cells, concentrations ranging from 200uM to 1mM of H2O2 have 

been shown to induce OS within the developing myotubes. After 24H exposure to 1mM 

H2O2, 1mM was determined qualitatively to be too cytotoxic and resulted in significant 

cell death. The next highest concentration, 750uM, which did not appear to be 

significantly cytotoxic to the cells, was chosen to induce OS in differentiating myotubes 

in subsequent experiments.  
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3.3 H2O2 and PQQ negatively affected gene expression of 
markers of mitochondrial function and myogenesis but 
not total protein abundance 

3.3.1 Mitochondrial Function  

Ndufb6, Cox7a1, and Tfam expression within in vitro developing myotubes was 

significantly decreased (p<0.05) as a result of 24H 750uM H2O2 exposure (Figure 3.3.1-

1A, Figure 3.3.1-2A, and Figure 3.3.1-4A), while relative Pgc-1𝛼 was not affected, 

compared to control (Figure 3.3.1-3A). Next, both 1uM and 10uM PQQ supplementation 

at all timepoints (5H, 48H, 7D) did not rescue expression when paired with H2O2 

exposure, as a significant decrease (p<0.001) in Ndufb6 and Cox7a1 expression 

continued to be evident (Figure 3.3.1-1A and Figure 3.3.1-2A), whereas no combination 

of exposure length and PQQ doses with H2O2 significantly changed PGC-1𝛼 or Tfam 

expression (Figure 3.3.1-3A and Figure 3.3.1-4A). Similar to the effects of H2O2 

exposure, 1uM and 10uM PQQ alone at the 5H, and 48H timepoints significantly 

decreased (p<0.01) expression of Ndufb6 (Figure 3.3.1-1B), and both concentrations at 

the 7D timepoint significantly decreased (p<0.01) expression of both Ndufb6 and Cox7a1 

(Figure 3.3.1-1B and Figure 3.3.1-2B), while overall PQQ alone did not affect Pgc-1𝛼 or 

Tfam expression (Figure 3.3.1-3B and Figure 3.3.1-4B). Finally, no dose or length of 

exposure of PQQ or H2O2, nor the combination of the two, affected the total protein 

abundance of complexes I, II, III, and V (Figure 3.3.1-5A-H), and PQQ alone did not 

affect VDAC1 (Figure 3.3.1-6), PGC-1𝛼 (Figure 3.3.1-7A) or SIRT3 (Figure 3.3.1-7B) 

total protein abundance within the myotubes.  
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Figure 3.3.1-1 Relative mRNA expression of Ndufb6 in developing in vitro myotubes. 

NADH:ubiquinone oxidoreductase (complex I) of the ETC expresses Ndufb6. (A) 

Relative to control, 24H 750uM H2O2 exposure significantly decreased Ndufb6 

expression and neither 1uM nor 10uM PQQ exposure rescued expression at any 

timepoint. (B) Short-term and long-term exposure of either 1uM or 10uM PQQ alone 

significantly decreased expression of Ndufb6, relative to control. N=3-4. Data presented 

as means ± SEM (significance determined by one-way ANOVA and Dunnett’s multiple 

comparisons test, ***p<0.001).   
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Figure 3.3.1-2 Relative mRNA expression of Cox7a1 in developing in vitro myotubes. 

Cytochrome c oxidase (complex IV) of the ETC expresses Cox7a1. (A) Relative to 

control, 24H 750uM H2O2 significantly decreased Cox7a1 expression and neither 1uM or 

10uM PQQ exposure rescued expression at any timepoint. (B) Long-term exposure of 

either 1uM or 10uM PQQ alone significantly decreased expression of Cox7a1, relative to 

control. N=3-4. Data presented as means ± SEM (significance determined by one-way 

ANOVA and Dunnett’s multiple comparisons test, **** p<0.0001).  
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Figure 3.3.1-3 Relative mRNA expression of Pgc-1𝜶 in developing in vitro myotubes. 

Pgc-1𝛼 expression is associated with mitochondrial biogenesis. (A) H2O2 alone nor in 

combination with PQQ at any timepoint or dose affected expression of Pgc-1𝛼, relative to 

control. (B) No dose or time-point of PQQ exposure alone resulted in a significant effect 

to Pgc-1𝛼 expression, relative to control. N=3-4. Data presented as means ± SEM 

(significance determined by one-way ANOVA and Dunnett’s multiple comparisons test; 

no significant changes were observed).  
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Figure 3.3.1-4 Relative mRNA expression of Tfam in developing in vitro myotubes. 

Tfam expression induces mitochondrial DNA transcription. (A) Relative to control, 24H 

750uM H2O2 exposure significantly decreased Tfam expression and neither 1uM nor 

10uM PQQ exposure rescued expression at any timepoint. (B) No concentration or time-

point of PQQ exposure alone resulted in a significant effect to Tfam expression, relative 

to control. N=3-4. Data presented as means ± SEM (significance determined by one-way 

ANOVA and Dunnett’s multiple comparisons test; *p<0.05).  

 

Contro
l

H 2O
2 

H 2O
2 
+ 5

H 1u
M

H 2O
2 
+ 5

H 10
uM

H 2O
2 
 + 

48
H 1u

M

H 2O
2 
 + 

48
H 10

uM

H 2O
2 
+ 7

D 1u
M

H 2O
2 
+ 7

D 10
uM

0.0

0.5

1.0

1.5

2.0

2.5

Treatment Groups

R
el

at
iv

e 
Ex

pr
es

si
on

✱

A.

Contro
l

5H
 1u

M

5H
 10

uM

48
H 1u

M

48
H 10

uM

7D
 1u

M

7D
 10

uM

0.0

0.5

1.0

1.5

2.0

2.5

Treatment Groups

R
el

at
iv

e 
Ex

pr
es

si
on

B. 



47 

 

  

 

Figure 3.3.1-5 Total protein abundance of ETC complexes (I, II, III, V) in 
developing in vitro myotubes.  

NADH: ubiquinone oxidoreductase (complex I) expresses NDUFB8, succinate 

dehydrogenase (complex II) expresses SDHB, coenzyme Q: cytochrome c reductase 

ATP5A 
~ 55 kDa 

ATP5A 
~ 55 kDa 

UQCRC2 
~ 48 kDa 

UQCRC2 
~ 48 kDa 

SDHB 
~ 30 kDa 

SDHB 
~ 30 kDa 

NDUFB8 
~ 20 kDa 

NDUFB8 
~ 20 kDa 
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(complex III) expresses UQCRC2, and ATP Synthase (complex V) expresses ATP5A. 

(A-D) Neither 24H 750UM H2O2 or 1uM/10uM PQQ exposure alone, nor H2O2 in 

combination with PQQ, at any timepoint or concentration, affected total protein 

abundance of (A,B) NDUFB8, (C,D) SDHB, (E,F) UQCRC2, or (G,H) ATP5A, relative 

to control. N=3-6. Data presented as means ± SEM (significance determined by one-way 

ANOVA and Dunnett’s multiple comparisons test, no significant changes were 

observed).  

 

 

 

Figure 3.3.1-6 Total protein abundance of VDAC1 in developing in vitro myotubes. 

VDAC1 expression is associated with apoptosis regulation within the mitochondria and is 

commonly utilized as a marker of mitochondria number. Neither 24H 750uM H2O2 nor 

H2O2 in combination with PQQ, at any timepoint or concentration, affected total protein 

abundance of VDAC1	relative to control. PQQ alone did not affect VDAC1 compared to 

control. N=3-4. Data presented as means ± SEM (significance determined by one-way 

ANOVA and Dunnett’s multiple comparisons test, no significant changes were 

observed). 
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Figure 3.3.1-7 Total protein abundance of PGC-1𝜶 and SIRT3 in developing in vitro 

myotubes.  

PGC-1𝛼 and SIRT3 expression are associated with mitochondrial biogenesis. (A) PQQ 

alone did not affect PGC-1𝛼 compared to control. (B) PQQ alone did not affect SIRT3 

compared to control.   N=3-4. Data presented as means ± SEM (significance determined 

by one-way ANOVA and Dunnett’s multiple comparisons test, no significant changes 

were observed). 

 
 

Contro
l

5H
 1u

M

5H
 10

uM

48
H 1u

M

48
H 10

uM

7D
 1u

M

7D
 10

uM

0.0

0.5

1.0

1.5

2.0

2.5

Treatment Groups

R
el

at
iv

e 
Pr

ot
ei

n 
A

bu
nd

an
ce

A.

Contro
l

5H
 1u

M

5H
 10

uM

48
H 1u

M

48
H 10

uM

7D
 1u

M

7D
 10

uM

0

1

2

3

4

Treatment Groups

R
el

at
iv

e 
Pr

ot
ei

n 
A

bu
nd

an
ce

B.

PGC-1𝜶 
~ 90 kDa 

SIRT3 
~ 28 kDa 



50 

 

3.3.2 Myogenesis 

In vitro myotube Pax7 expression was not significantly affected by 24H 750uM H2O2 

exposure, nor any combination of H2O2 and PQQ during differentiation, relative to 

control (Figure 3.3.2-1A and Figure 3.3.2-1B). In comparison, myotube expression of 

Myod1 and Myog was significantly decreased (p< 0.001) as a result of H2O2 exposure, 

and all combinations of PQQ and H2O2, relative to control (Figure 3.3.2-2A and Figure 

3.3.2-3A). Pax7 expression was significantly affected by PQQ, in that all doses and 

exposure timepoints (except 5H 1uM and 7D 1uM) significantly decreased (p<0.05) 

expression relative to control (Figure 3.3.2-1B). Lastly, 1uM and 10uM PQQ alone for 

7D significantly decreased (p<0.05) expression of Myod1 (Figure 3.3.2-2B), while all 

timepoints and doses studied did not significantly affect Myog expression within the 

myotubes (Figure 3.3.2-3B).  
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Figure 3.3.2-1 Relative mRNA expression of Pax7 in developing in vitro myotubes. 

Pax7 expression is associated with proliferation during myogenesis and overall 

regenerative capacity of the skeletal muscle. (A) 24H 750uM H2O2 alone nor in 

combination with low and high dose PQQ at any timepoint affected expression of Pax7, 

relative to control. (B) Exposure to 1uM and 10uM PQQ alone, for short-term and long-

term durations, significantly decreased expression, relative to control. N=3-4. Data 

presented as means ± SEM (significance determined by one-way ANOVA and Dunnett’s 

multiple comparisons test; *p<0.05, **p<0.01).  
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Figure 3.3.2-2 Relative mRNA expression of Myod1 in developing in vitro myotubes.  

Myod1 expression is associated with differentiation of myofibers during myogenesis. (A) 

Relative to control, 24H 750uM H2O2 significantly decreased Myod1 expression and 

neither 1uM nor 10uM PQQ exposure rescued expression at any timepoint. (B) Long-

term 1uM and 10uM exposure to PQQ alone significantly decreased expression of 

Myod1 relative to control in the developing myotubes. N=3-4. Data presented as means 

± SEM (significance determined by one-way ANOVA and Dunnett’s multiple 

comparisons test; *p<0.05, ****p<0.0001).  
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Figure 3.3.2-3 Relative mRNA expression of Myog in developing in vitro myotubes.  

Myog expression is associated with differentiation during myogenesis. (A) Relative to 

control, 24H 750uM H2O2 significantly decreased myotube Myog expression and neither 

1uM nor 10uM PQQ exposure significantly rescued expression at any timepoint. (B) 

Exposure to PQQ alone did not affect expression of Myog, relative to control. N=3-4. 

Data presented as means ± SEM (significance determined by one-way ANOVA and 

Dunnett’s multiple comparisons test; ***p<0.001).  
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3.4 IUGR and Maternal PQQ Exposure Significantly 
Impacted Gastrocnemius mRNA Expression 

 

3.4.1 Myogenesis 

Expression of fetal gastrocnemius muscle Pax7 mRNA was significantly decreased in 

association with IUGR (F1,13 = 6.799, p<0.05) and maternal PQQ consumption (F1,13 = 

36.03, p<0.01); expression was significantly decreased in NG/PQQ and IUGR/PQQ 

animals, compared to NG water control animals. Myod1 expression was significantly 

decreased in association with IUGR (F1,13 = 45.27, p<0.0001) and maternal PQQ 

consumption (F1,13 = 17.50, p<0.01). A significant interaction between variables was also 

observed (F1,13 = 6.722, p<0.05) and IUGR (p<0.001), NG/PQQ (p<0.01), and 

IUGR/PQQ animals (p<0.0001) had variable decreases in expression compared to NG 

water control animals. IUGR/PQQ (p<0.05) was also associated with a significant 

decrease in Myod1 expression, compared to NG/PQQ animals. Lastly, Myog expression 

within the muscle was decreased in association with IUGR (F1,13 = 16.37, p<0.01) and 

maternal PQQ consumption (F1,13 = 25.34, p<0.001), with IUGR, NG/PQQ, and 

IUGR/PQQ animals having lower expression compared to NG water control animals as 

well (Figure 3.4.2-1).  

3.4.2 Fiber Type Composition  
 
Expression of Myh7 (type 1a; slow oxidative) was significantly decreased in association 

with IUGR (F1,13 = 4.880, p <0.05) and maternal PQQ consumption (F1,13 = 7.267, 

p<0.05); expression was lower in IUGR/PQQ animals compared to NG water control 

animals. Expression of Myh2 (type 2a; fast oxidative)was significantly decreased in 

association with only maternal PQQ consumption (F1,13 = 12.89, p<0.01) with expression 

being lower in IUGR/PQQ animals compared to NG water control animals. Expression of 

Myh4 (type 2b; fast glycolytic) was significantly decreased in association with both 

IUGR (F1,13 = 22.67, p<0.001) and maternal PQQ consumption (F1,13 = 7.755, p<0.05), 

with IUGR, NG/PQQ, and IUGR/PQQ animals having decreased expression compared to 

NG water control animals. Lastly, expression of Myh1 (type 2x; fast oxidative) was 
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significantly decreased in conjunction with IUGR (F1,13 = 20.44, p<0.001), as expression 

was lower in IUGR and IUGR/PQQ animals compared NG water control animals (Figure 

3.4.2-2).  

 

 

3Figure 3.4.2-1 Relative mRNA expression of Pax7, Myod1, and Myog in fetal 
gastrocnemius tissue.  

Relative mRNA expression of myogenesis markers in NG or IUGR fetal guinea pig 

gastrocnemius muscle exposed to control or PQQ-addition maternal water consumption. 

Proliferating myoblasts express Pax7, while differentiated myofibers express Myod1 and 

Myog. IUGR alone negatively affected Pax7, Myod1 and Myog expression, relative to 

control. PQQ negatively affected Pax7, Myod1, and Myog expression as well. An 

interaction effect on Myod1 was also observed. N=4-5. Data presented as means ± SEM 

(significance determined by two-way ANOVA and Tukey’s multiple comparisons test, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  

 
 
 

Pax7 Myod1 Myog
0.0

0.5

1.0

1.5

Genes

R
el

at
iv

e 
E

xp
re

ss
io

n

NG

IUGR
NG/PQQ

IUGR/PQQ

PQQ ****

IUGR *

Interaction *

PQQ **

IUGR ****

PQQ ***

IUGR **



56 

 

 

Figure 3.4.2-2 Relative mRNA expression of Myh7, Myh2, Myh4, and Myh1 in fetal 
gastrocnemius tissue.  

Relative mRNA expression of myosin heavy chain genes (MHC) in NG or IUGR fetal 

guinea pigs exposed to control or PQQ-addition maternal water consumption is shown. 

Slow oxidative fibers express Myh7, while fast oxidative fibers, types IIa and IIx, express 

Myh2 and Myh1, respectively. Fast glycolytic fibers, type IIb express Myh4. IUGR 

negatively affected Myf7, Myf4, and Myf1 expression. PQQ negatively affect Myf7, 

Myf2, and Myf4 expression. N=4-5. Data presented as means ± SEM (significance 

determined by two-way ANOVA and Tukey’s multiple comparisons test, *p<0.05, 

**p<0.01, ***p<0.001).  
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Figure 3.4.2-3 Summary of the relative mRNA expression of myogenic genes in 
developing in vitro myotubes and fetal gastrocnemius muscle.  
 
Based on treatment group, the downward arrows represent a significant decrease in 

relative mRNA expression, while the circles represents that no significant change in 

expression was observed for each corresponding myogenic gene.   
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3.4.3 Electron Transport Chain  
 

Ndufb6 expression was significantly decreased in association with IUGR (F1,13 = 38.87, 

p≤0.0001), as expression in IUGR and IUGR/PQQ animals was decreased relative to NG 

water control animals. Similarly, Cox7a1 and Cox4i2 (complex IV subunits) expression 

was significantly decreased in association with IUGR (F1,13 = 68.92, p<0.0001; F1,13 = 

49.34, p<0.0001); IUGR/CTRL and IUGR/PQQ animals had lower expression of both 

genes, compared to NG water control animals. As well, Atp5a1 (complex V subunit) 

expression and Atp5pb (complex V subunit) expression had significantly decreased 

expression in conjunction with both IUGR ((F1,13 = 63.95, p<0.0001; F1,13 = 45.33, 

p<0.0001), with decreased expression in IUGR and IUGR/PQQ animals relative to NG 

water control animals too. Lastly, CS expression was significantly decreased in 

association with IUGR (F1,13 = 39.73, p<0.0001) and maternal consumption of PQQ 

((F1,13 = 5.453, p<0.05), with decreased expression observed in IUGR, NG/PQQ, and 

IUGR/PQQ animals, compared to NG water control animals (Figure 3.4.4-1).  

3.4.4 Mitochondrial Biogenesis and Fatty Acid Oxidation 

Pgc-1𝛼 expression was significantly decreased in association with IUGR (F1,13 = 25.20, 

p<0.001), and maternal PQQ consumption (F1,13 = 12.46, p<0.01), in addition to an 

observed significant interaction effect (F1,13 =5.616, p<0.05), with IUGR (p<0.01), 

NG/PQQ (p<0.01), and IUGR/PQQ (0.001) animals exhibited varying decreases in 

expression, relative to NG water control animals. Sirt1 expression was significantly 

decreased in association with both IUGR (F1,13 = 12.21, p<0.01) and maternal PQQ 

consumption (F1,13 = 8.489, p<0.05); IUGR and IUGR/PQQ animals had lower 

expression compared to NG water control animals. Related Sirt3 was also significantly 

decreased in association with IUGR (F1,13 = 68.11, p<0.0001), and PQQ (F1,13 = 20.57, 

p<0.001), in addition to an observed significant interaction (F1,13 = 4.689, p<0.05), with 

IUGR (p<0.001), NG/PQQ (p<0.01), and IUGR/PQQ (p<0.0001) animals demonstrating 

varying decreases in expression relative to NG water control animals. A significant 

decrease was also observed in Sirt3 expression IUGR/PQQ animals (p<0.01), compared 

to NG/PQQ animals. Tfam expression was significantly decreased by IUGR (F1,13 = 
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54.80, p<0.0001) only; expression was decreased in IUGR and IUGR/PQQ animals, 

compared to NG water control animals and NG/PQQ animals. Cpt-1𝛽 expression was 

significantly decreased in conjunction with IUGR (F1,13 = 24.29, p<0.001) and maternal 

PQQ consumption (F1,13 = 4.849, p<0.05), with IUGR and IUGR /PQQ animals showing 

lower expression relative to NG water control animals (Figure 3.3.4-1). Lastly, Ucp2 

expression was significantly decreased in association with IUGR (F1,13 = 30.06, p<0.001) 

and maternal PQQ consumption (F1,13 = 6.122, p<0.05); only IUGR and IUGR/PQQ 

animals show decreased expression compared to NG water control animals, and 

IUGR/PQQ was decreased relative to NG/PQQ animals too (Figure 3.4.4-2).  

 

Figure 3.4.4-1 Relative mRNA expression of ETC complexes and citrate synthase in 
fetal gastrocnemius muscle.  

Relative mRNA expression of electron transport chain (ETC) complexes and citrate 

synthase in NG or IUGR fetal guinea pigs exposed to control or PQQ-addition maternal 

water consumption is shown. NADH: ubiquinone oxidoreductase (complex I) expresses 

Ndufb6, cytochrome c oxidase (complex IV) expresses Cox7a1 and Cox4i2, and ATP 

Synthase (complex V) expresses Atp5a1 and Atp5pb. Citrate synthases expresses CS. 

IUGR negatively affected all genes studied, while CS expression was also affected by 

PQQ. N=4-5. Data presented as means ± SEM (significance determined by two-way 

ANOVA and Tukey’s multiple comparisons test, *p<0.05, ****p<0.0001).  
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Figure 3.4.4-2 Relative mRNA expression of markers of mitochondrial metabolism 
and fatty acid oxidation in fetal gastrocnemius muscle.  

Relative mRNA expression of mitochondrial metabolism and fatty acid oxidation 

markers in NG or IUGR fetal guinea pigs exposed to control or PQQ-addition maternal 

water consumption are shown. Pgc-1𝛼, Sirt1, and Sirt3 are expressed during regulation of 

cellular metabolism involving the mitochondria. Tfam expression induces mitochondrial 

DNA transcription. Cpt-1𝛽 expression increases during fatty-acid oxidation in skeletal 

muscle. IUGR and PQQ negatively affected all genes studied, compared to control, 

except for Tfam expression, which was only negatively affected in association with 

IUGR.  N=4-5. Data presented as means ± SEM (significance determined by two-way 

ANOVA and Tukey’s multiple comparisons test, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001).  
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Figure 3.4.4-3 Relative mRNA expression of Ucp2 in fetal gastrocnemius muscle. 

Relative mRNA expression of Ucp2 in NG or IUGR fetal guinea pigs exposed to control 

or PQQ-addition maternal water consumption is shown. Ucp2 uncouples oxygen from 

mitochondrial ATP synthesis and is associated with the reduction of OS in the 

mitochondria. IUGR and PQQ negatively affected expression. N=4-5. Data presented as 

means ± SEM (significance determined by two-way ANOVA and Tukey’s multiple 

comparisons test, *p<0.05, ***p<0.001).  
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3.4.5 Peroxisome Proliferator-Activated Receptors  
Ppar-𝛼 was significantly decreased by IUGR (F1,13 = 58.26, p<0.0001), maternal PQQ 

intake (F1,13 = 23.64, p<0.001), and a significant interaction was evident (F1,13 = 8.448, 

p<0.05), as decreased expression was evident in IUGR (p<0.0001), NG/PQQ (p<0.001), 

and IUGR/PQQ animals (p<0.0001), compared to NG water control animals. 

Additionally, a significant decrease in IUGR/PQQ (p<0.05) animals compared to 

NG/PQQ animals was observed too. Ppar-𝛿 expression was significantly decreased in 

association IUGR (F1,13 = 16.45, p<0.01) and maternal PQQ consumption (F1,13 = 13.22, 

p<0.01) too; IUGR, NG/PQQ, and IUGR/PQQ animals all demonstrating decreased 

expression, relative to NG water control animals. Finally, Ppar-𝛾 expression was 

significantly decreased in association with IUGR (F1,13 = 14.98, p<0.01) and maternal 

PQQ consumption (F1,13 = 8.671, p<0.05), and only IUGR/CTRL and IUGR/PQQ 

animals show decreased expression compared to NG water control animals (Figure 3.4.5-

1).  

 

 

Figure 3.4.5-1 Relative mRNA expression of Ppar-𝒂,𝜹, and	𝜸 in fetal gastrocnemius 
muscle.  
Relative mRNA expression of PPARs in NG or IUGR fetal guinea pigs exposed to 

control or PQQ-addition maternal water consumption is shown. Ppar-𝑎 expression 

regulates overall energy homeostasis, while Ppar-𝛾	expression is involved in glucose 

metabolism. Ppar-𝛿 expression is important for fatty acid metabolism. IUGR and PQQ as 

negatively affected all 3 genes, compared to control. N=4-5. Data presented as means ± 

SEM (significance determined by two-way ANOVA and Tukey’s multiple comparisons 

test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  
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Figure 3.4.5-2 Summary of the relative mRNA expression of genes involved in 
cellular metabolism in developing in vitro myotubes and fetal gastrocnemius muscle.  
 
Based on treatment group, the downward arrows represent a significant decrease in 

relative mRNA expression, while the circles represents that no significant change in 

expression was observed for each corresponding metabolic gene.  
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4 Discussion 

4.1 Impact of Hydrogen Peroxide and PQQ on Antioxidant 
Enzymes’ Total Protein Abundance and Activity  

4.1.1 Studying OS and PQQ using H2O2 and LDH Activity/Total 
Protein Abundance 

 

Exogenous H2O2 is utilized to induce OS within cell culture systems to study the insult’s 

negative effects, as well as possible preventative treatments (Bosutti & Degens, 2015; 

Konyalioglu, Armagan, Yalcin, Atalayin, & Dagci, 2013). OS promotes the degradation 

of cellular membranes, resulting in the release of lactate dehydrogenase (LDH) in the 

extracellular space (Jovanović et al., 2010). Measuring the LDH activity within cell 

culture media, including that of C2C12 cells (Lin Tan, Shavlakadze, Grounds, & Arthur, 

2015), can therefore can be utilized to determine the relative level of cytotoxicity induced 

by models of OS, as a proxy measurement of membrane damage (Kaja, Payne, 

Naumchuk, & Koulen, 2017).  

 

Acute H2O2 exposure at concentrations as little as 100 uM has been shown to increase 

LDH activity within cell culture media (Hong & Liu, 2004; Wijeratne, Cuppett, & 

Schlegel, 2005), but this result was not replicated in the present study. Instead, 19H 

exposure to 1mM of H2O2 did not significantly affect LDH within the media of the 

differentiated myotubes. More recent research provides a possible explanation for this 

finding, as it was shown that 1mM H2O2 can actually inhibit the activity of LDH isolated 

from rabbit muscle (suspended in PBS) after only 1H of direct exposure (Kendig & 

Tarloff, 2007). It could therefore be postulated that even if OS was present within the 

cells and LDH was released into the media, that enzyme activity would not be increased 

due to presence of H2O2 within the media as well.  

 

Secondly, PQQ at concentrations below 30uM has been shown to function as an 

antioxidant, while concentrations above 30uM have been associated with pro-oxidant 

effects in several cell types including those derived from the liver and adrenal glands (He 
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et al., 2003; J. Kim, Harada, Kobayashi, Kobayashi, & Sode, 2010; Wu, Pan, Shen, & 

Xing, 2018). In support of these studies, neither 1uM nor 10uM PQQ at any timepoint 

studied (5H, 48H, 7D) resulted in a significant change in LDH activity within collected 

media, similar to control and H2O2 treatments. Though, it is again important to consider 

the possible inhibition of LDH by H2O2 when interpreting these results, as PQQ has been 

shown to interact with culture media and produce H2O2, though the production 

mechanisms are unclear (He et al., 2003). It has been suggested that oxidation of reduced 

PQQ is the mechanisms associated with downstream H2O2 production (Mukai, Ouchi, 

Nagaoka, Nakano, & Ikemoto, 2016).  

 

Furthermore, more recent research has suggested PQQ itself can inhibit LDH activity by 

directly binding to the enzyme, specifically LDHA of the skeletal muscle, and catalyzing 

the oxidation of NADH to NAD+ to promote the formation of pyruvate instead 

(Akagawa et al., 2016). Akagawa et al. (2016) suggest PQQ does not impact LDHA 

protein abundance, which this current study’s data supports. However, activity studies 

would be needed to further confirm Akagawa et al.’s (2016) findings. Increased pyruvate 

production facilitated by PQQ-bound LDH implies increased energy production, though 

no functional test was conducted during this study to confirm.  

4.1.2 CAT Activity 

Though extracellular LDH activity proved to be an ineffective method to measure OS, the 

relative abundance and activity of relevant endogenous antioxidants is can also be used as 

proxy measurement, as decreased activity abundance and activity infers increased ROS 

accumulation (Ighodaro & Akinloye, 2018). Catalase (CAT) is among the most important 

antioxidant mechanisms when it comes to decreasing H2O2 directly, as its activity is 

increased during cellular ROS production to decompose H2O2 into water and oxygen to 

prevent damage (Ighodaro & Akinloye, 2018). Several contradicting studies have been 

published regarding the activity of CAT during incidences of OS specifically, including 

in skeletal muscle directly. Many of muscle-focused studies examined the activity of 

CAT in response to exercise or aging, both known promoters of ROS production and OS, 

and CAT has been shown to be both increased and decreased, as well as not effected 
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under such conditions (Berzosa et al., 2011; Ji, Dillon, & Wu, 1990; Lauer et al., 2005; 

Sullivan-Gunn & Lewandowski, 2013). Of note however, a recent postnatal IUGR pig 

model showed growth restriction to be associated with a significant decrease in CAT 

activity within the skeletal muscle, alongside decreased mRNA expression (L. Zhang et 

al., 2020). Overall, it has been concluded that OS is associated with decreased CAT 

activity, contributing to the pathological concentrations of OS (Ahmed Amar, Eryilmaz, 

Demir, Aykan, & Demir, 2019), while exercise is more commonly associated with 

increased CAT activity, as ROS remains at physiological concentrations (Dao et al., 

2011).  

It was hypothesized that a decrease in CAT activity would be evident after acute H2O2 

exposure in the developing myotubes in line with the past OS research; it appears 

relatively high levels of H2O2 can outcompete cellular mechanisms that promote CAT 

production, and subsequently prevent the antioxidant’s induction in in vitro settings 

(Martins & English, 2014). . Conversely, lower doses of H2O2 have been shown to induce 

CAT activity and protect against oxidative damage (Martins & English, 2014). In the 

current setting, there was no change in CAT activity observed in this study. In support of 

this finding though, one hour exposure of 1mM of H2O2 to in vitro yeast cells, in which 

CAT is highly abundant, surprisingly resulted in weak CAT activity stimulation and a 

significant decrease in cell viability (Martins & English, 2014). In short, this could be 

why an increase in CAT activity was not observed in this study, but further supports the 

study’s assumption that 1mM H2O2 could model OS within the developing myotubes.  

In addition to studies showing supplementation of other antioxidant-like compounds has 

the same positive effect in several organs, including postnatal IUGR skeletal muscle 

(Santos, Freitas, Xavier, Saldanha, & Freitas, 2008; L. Zhang et al., 2020), two recent 

studies have shown PQQ alone to increase in vitro neuronal and in vivo adult renal CAT 

activity in the presence of OS (Guan et al., 2015; Kumar & Kar, 2014). Interestingly, the 

present study did not observe the same increase. It is important to note that the increases 

in CAT activity observed in the Guan et al. (2015) and Kumar and Kar (2014) studies 

were only significantly increased compared to samples with decreased CAT activity as a 

result of cellular damage associated with OS, not compared to control samples. As this 
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study did not observe elevated LDH release from cells after H2O2 exposure, it can be 

concluded severe OS and associated damage was not present, unlike the previous studies 

in which a change in CAT was observed after PQQ exposure. Therefore, it is not 

surprising a significant increase in CAT activity after PQQ supplementation did not 

occur.  

 

4.1.3 SOD Activity and Total Protein Abundance 
 

There is an observed correlation between increased total SOD activity and elevated H2O2 

concentrations, as the enzyme aids in the dismutation of superoxide into H2O2, which is 

observed under physiological conditions to prevent cellular damage (Younus, 2018). 

Conversely, exogenous H2O2 exposure directly has been shown to inhibit SOD3 (I.e., 

extracellular SOD) activity specifically (Casano ’, Gomez, Lascano, Gonzalez, & Trippi, 

1997; Wedgwood et al., 2011), through peroxidase activity (Jewett, Rocklin, Ghanevati, 

Abel, & Marach, 1999; Wedgwood et al., 2011). IUGR is also associated with a 

significant decrease in total SOD activity (H. Zhang, Li, & Wang, 2015). In contrast to 

these observations, 12H 500uM/L H2O2 exposure to developing C2C12 myoblasts 

resulted in decrease of total SOD activity that was nonsignificant (Li et al., 2020). 

Similarly, the response the cells had to H2O2 exposure in this study regarding total SOD 

activity, was decreased but not significantly in comparison to control. Therefore, the 

current study supports the findings of Li et al. (2020). 

 

Not unlike CAT, PQQ, has been shown to increase SOD activity during insult (Kumar & 

Kar, 2014). Interestingly, however other studies have shown the opposite, in which the 

enzyme’s activity is decreased due to PQQ supplementation after a maternal high-fat diet 

insult (Jonscher, Stewart, Alfonso-Garcia, DeFelice, Wang, Luo, Levi, Heerwagen, 

Janssen, De La Houssaye, et al., 2017). Of note, the study in which PQQ upregulated 

SOD activity were conducted in adult mice (Guan et al., 2015), while PQQ exposure in 

utero resulted in the significant decrease to SOD1 activity within developing fetal mouse 

liver in the Jonscher et al. (2017) study after insult. It is important to note the same study 
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showed that relative to control, SOD activity was unaltered by PQQ exposure alone. In 

alignment with the Jonscher et al. (2017) study, in the current study, PQQ exposure alone 

did not increase total SOD activity within the developing myotubes compared to control, 

nor was total protein abundance of SOD2 affected. Conversely, the same significant 

decrease observed in SOD activity after insult in the Jonscher et al. (2017) study was not 

observed, in samples exposed to PQQ and H2O2 in combination. Though, as stated 

regarding CAT activity above too, LDH activity in culture media in this study was not 

elevated after H2O2 exposure, and therefore it can be concluded severe OS and 

associated damage was not present. Thus, a significant insult was likely not present in 

this study’s in vitro model, unlike the insult present in Jonscher et al. (2017) experiments, 

so PQQ was unlikely then to decrease SOD experience when paired with the H2O2 

exposure.  

4.1.4 H2O2 and Sodium Pyruvate 

It is important to note the activity assays conducted during this study were completed 

with cells cultured with media supplemented with sodium pyruvate. The addition of 

sodium pyruvate to cell culture media has been shown to promote cell survival, hence 

why it was initially added to the study’s culture system as per many established culture 

protocols (Alvarez-Elizondo, Barenholz-Cohen, & Weihs, 2019; Bergemann, Rebl, Otto, 

Matschke, & Nebe, 2019). Unfortunately, it has also been shown to suppress pathways in 

which PQQ is known to act on, including PGC-1𝛼 and its downstream mitochondrial 

targets within the same cell type (Philp, Perez-Schindler, Green, Hamilton, & Baar, 

2010). More importantly, it has been shown itself to quench H2O2 within cell culture 

media, thereby inhibiting the ability of H2O2 to induce OS within the cells (Kelts, Cali, 

Duellman, & Shultz, 2015). It is therefore likely that the addition of sodium pyruvate to 

the cell culture media before the conduction of the studies’ activity assays likely affected 

the results, in that OS was likely not fully induced in the cells, compared to other studies 

utilizing H2O2 to induce oxidative damage.  
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4.2 Expression of myogenesis regulators is negatively 
impacted by H2O2, IUGR, and PQQ 

The mechanisms by which IUGR specifically effects myogenesis are well-defined 

(Chang et al., 2020), except for the specific role OS plays in said pathology, which 

remains unclear. Similarly, the effects of PQQ on fetal skeletal muscle development are 

relatively unknown, as its effects on the organ have been primarily studied in adult 

muscle samples (Kuo, Shih, Kao, Yeh, & Lee, 2015; Ma et al., 2019), or have focused on 

mitochondrial function in fetal skeletal muscle (Pendleton et al., 2020). Studies 

conducted using in vitro models of myotubes have additionally not measured markers of 

myogenesis directly, and instead have focused on the compound’s antioxidant and 

metabolic effects (Supruniuk, Miklosz, & Chabowski, 2020; Xu et al., 2018). Hence, this 

study aimed to fill these gaps in research.  

 

First, it was observed that acute in vitro H2O2 exposure significant decreased the 

expression of Myod and its downstream target, Myog. As stated previously, both these 

genes promote muscle differentiation, and the decreased expression seen as a result of 

H2O2 would infer decreased development of myotubes. Furthermore, IUGR was also 

associated with decreased expression of both genes (Chang et al., 2020). Studies have 

shown an association between IUGR and OS (Rashid et al., 2018), and so it could be 

inferred by these results that the OS the occurs during IUGR is at least partly responsible 

for the decreased myogenesis and subsequent diminished skeletal muscle mass. The fact 

that in this study’s culture system, OS negatively impacted myogenesis markers, is strong 

evidence that this system may be in operation in developing fetal skeletal muscle as well. 

Additionally, this conclusion is supported by previous research aimed at understanding 

the mechanism underlying the actions of OS on myogenesis, in which OS has been 

shown to increase Nf-𝜅B acitivity, which in turn inhibits myogenesis and decreases 

expression of Myod (Kozakowska, Pietraszek-Gremplewicz, Jozkowicz, & Dulak, 2015). 

In another model of IUGR, fetal gene expression of Pax7 did not change within 

semitendinosus muscle, but IUGR was still associated with impaired proliferation of 

Pax7+ myoblasts (Dustin T Yates et al., 2014), demonstrated by reduced incorporation of 

5-Bromo-2’-deoxyuridine (BrdU) in cells isolated from IUGR fetuses (Dustin T Yates et 
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al., 2014).  In support of this study, Pax7 expression was not affected by H2O2, though 

expression was decreased in association with IUGR.  

 

It was initially hypothesized that PQQ would reduce OS, and subsequently, protect 

myogenic regulator factors from the downregulation seen in IUGR (Dustin T Yates et al., 

2014). Surprisingly, low and high dose PQQ exposure throughout the 7 days of myotube 

differentiation in vitro resulted in a significant decrease in Myod1, and the compound did 

significantly decreased expression of Pax7 at all time-points explored. Similarly, the in 

vivo PQQ and IUGR/PQQ muscle tissue, had decreased Pax7, Myod1, and Myog mRNA 

expression. The negative effects of PQQ alone on Myod1 were only evident specifically 

after long-term PQQ exposure in vivo and in vitro during early development, hence the 

inferred long-term reduction in ROS production by PQQ in early development appeared 

to be detrimental to myogenesis progression. As referenced earlier, this phenomenon has 

been seen in placental development, in that early supplementation of mitochondrial 

antioxidant, MitoQ, inhibited growth of the organ (Yang et al., 2021).  

 

Though proliferation is supported by a relative decrease in ROS production, 

physiological concentrations of ROS are important for skeletal muscle differentiation, 

and there is a documented decrease in expression of endogenous antioxidant enzymes in 

line with increases in Myod and Myog expression (Kozakowska et al., 2015). In 

developing C2C12 myoblasts specifically, an artificial increase in antioxidant 

mechanisms was shown inhibit Pax7 and Myod expression, shown to be the result of 

reductive stress (RS) (Rajasekaran, Shelar, Jones, & Hoidal, 2020). RS can be considered 

the opposite of OS, though still pathological, in which cells become more reduced 

relative to a normal state. This overexpression reduces physiological ROS levels, in turn 

inhibiting ROS cell signaling that would otherwise promote muscle development (Pérez-

Torres, Guarner-Lans, & Rubio-Ruiz, 2017), which is further supported by the decreased 

of Pax7 and Myod1 observed by Rajasekaran et al. (2020). It could therefore be inferred 

that PQQ exposure induced RS within the developing in vitro myotubes and in vivo 

muscle, resulted in inhibited myogenesis, represented by the observed decrease in 

expression of Pax7, Myod1, and Myog in both models.  



71 

 

4.3 IUGR and PQQ Independently Altered Gastrocnemius 
Fiber Type 

The observed changes in expression of myosin heavy chain isoforms indicates that IUGR 

and maternal PQQ consumption both influenced fetal skeletal muscle fiber type. The 

gastrocnemius of the fetal and adult guinea pig is composed of both slow oxidative type I 

and fast oxidative or glycolytic type II fibers (Aquin, Sillau, Lechner, & Banchero, 1980). 

Myh7 is expressed in type I fibers (Stuart et al., 2016), while fast oxidative fibers, types 

IIa and IIx, express Myh2 and Myh1 respectively (Tonge, Jones, Bardsley, & Parr, 2010). 

Type 2b fast glycolytic fibers express Myh4 (Tonge et al., 2010), though this fiber type is 

absent in humans (Harridge, 2007). IUGR was associated with a higher proportion of 

type I oxidative fibers, seen in early life piglets, in which there was a significant increase 

in type I fibers compared to type II (Bauer et al., 2006). In partial support of this study, 

the observed decrease in Myh4 and Myh1 in control diet IUGR animals suggests the 

adverse IUGR environment alone promotes processed associated with oxidative 

metabolism and increased type I fiber numbers, though Myh7 expression was also 

decreased, and IUGR alone did not affect Myh2 expression. It is important to note that 

the results of this study are limited in that the concentration of each fiber type was not 

directly measured, as done by Bauer et al. (2006), and further research examining the 

developmental consequences of the observed mRNA expression changes on fiber type 

composition need to be conducted.  

This decreased expression of myosin heavy chain isoforms associated with type II fibers, 

seen in association with IUGR, could also be the result of increased oxidative damage to 

the more susceptible fiber type. Increased ROS production is associated with IUGR 

(Rashid et al., 2018), but the impact of ROS on muscle fiber composition in IUGR are ill-

defined. Though, exercise does result in an increased production of ROS too within the 

skeletal muscle and the body appears to favor the switch to type I fibers due to their 

better ROS scavenging abilities (Powers, Ji, Kavazis, & Jackson, 2011; Schantz & Dhoot, 

1987). Compared to type I fibers , type II fibers are more prone to oxidative damage 

(Schantz & Dhoot, 1987), which has also been specifically observed within the chosen 

muscle type of this study, the gastrocnemius muscle (Koutakis et al., 2014).  
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Similarly, maternal PQQ consumption alone specifically decreased Myh4, again 

suggesting a shift towards more oxidative metabolism. This result along with the 

decreased Myf4 expression observed due to IUGR, highlight a potential adverse effect of 

maternal PQQ supplementation and IUGR on early muscle development. Studies have 

shown that in regard to later life metabolic insults, sufficient type II fibers are important 

for adequate energy production using fatty acid oxidation (Izumiya et al., 2008). In short, 

the reduction in Myh4 observed in this study could indicate IUGR and surprisingly PQQ 

predisposes individuals to diminishing capacity to combat metabolic disease. In addition, 

decreased Myod1 expression is associated with inhibited type II fiber development, as 

Myod1 expression is relatively higher in type II fibers, compared to type I (Talbot & 

Maves, 2016). The results of this study further support this finding, as both Myod1 and 

Myf4 gene expression were both decreased in IUGR and PQQ exposed fetal muscle.  

Again, the current study was conducted at the mRNA expression level, and further 

studies are needed to confirm if the reduction in Myh4 expression translates to 

diminished type II fiber growth.  

Similar to the prediction that increased ROS resulted in diminished expression of type II 

fiber myosin heavy chain isoforms in IUGR, early PQQ exposure itself could be 

promoting oxidative damage within developing skeletal muscle. The potential 

cytotoxicity of PQQ within the organ should therefore be studied more thoroughly. In 

vivo fibroblast growth studies in the context of cancer progression have shown that PQQ 

promotes apoptosis and increases intracellular ROS concentrations under conditions of 

high concentration PQQ exposure (Min et al., 2014). Our maternal PQQ dose was 

equivalent to supplement doses available on the market (I.e., 10-20 mg), though 

compared to the average daily consumption of PQQ through food human’s intake, 0.1-1.0 

mg per day (Harris et al., 2013), it was relatively high and was administered for an 

extended period of time during fetal development. In comparison, previous human 

studies that saw a positive effect only administered equivalent doses of PQQ for 48-76 

hours (Harris et al., 2013). These factors combined could have resulted in the same 

negative effects accumulating over time within the fetal muscle before sample collection, 

as seen with the previously mentioned repeated fetal exposure to similar compound, 

MitoQ, in which development of the pancreas was inhibited (Roberts et al., 2014).  
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When IUGR occurred in conjunction with maternal PQQ intake, fiber type changes as 

identified above as occurring in IUGR or PQQ alone cohorts appeared to be more 

apparent, in that IUGR/PQQ animals displayed significantly decreased expression of all 

studied MHCs, though the mechanisms behind this finding are unknown. These results 

suggest inhibited development of all fiber types, though the physiological implications of 

this are not well defined. As this data is too at the mRNA level, further examination is 

needed for a more sufficient idea of IUGR and PQQ’s combined effects on fiber type 

proportions and function.  

Lastly, the Pgc-1𝛼-Nrf-Tfam pathway, is considered the main regulatory pathway 

associated with  fiber type adaptions to ROS associated with exercise (Wright et al., 

2007), as the scavenging ability of skeletal muscle is partly dictated by its relative 

function and mitochondrial number (A. Cheng et al., 2016). Increased expression of Pgc-

1𝛼 and Tfam is often associated as with increased mitochondrial biogenesis and 

concentration respectively, specifically in regard to skeletal muscle mitochondria (Baar et 

al., 2002; Gordon, Rungi, Inagaki, & Hood, 2001), and expression of both is increased as 

a result of exercise to combat potential oxidative stress (Jung & Kim, 2014; Theilen, 

Kunkel, & Tyagi, 2017). In regard to fiber type specifically, increased expression of 

PGC-1𝛼 is associated with a higher proportion of oxidative muscle fiber types in adult 

mice (Lin et al., 2002), which as stated previously help protect the organ from oxidative 

damage. Interestingly, in this current study, IUGR and PQQ exposed gastrocnemius 

muscle had decreased relative Pgc-1a mRNA expression, as well as Tfam expression that 

was decreased. This would primarily suggest a decrease in type I fiber production, but as 

mentioned, no decrease in Myh7 was observed. Compellingly, more recent studies found 

Pgc-1𝛼 to be dispensable in fiber type switching, in that knockout of the mitochondrial 

gene did not or only moderately decreased the number of type I fibers present (Handschin 

et al., 2007; Zechner et al., 2010). Overall, though the decreases in Pgc-1𝛼 and 

downstream Tfam may mean decreases in muscle mitochondrial function, the role these 

changes play in muscle fiber determination appear to be limited in the current study and 

others.  
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4.4 The impact of H2O2, IUGR, and PQQ on Markers of 
Mitochondrial Metabolism  

As previously stated, IUGR is associated with muscle mitochondrial dysfunction (Rashid 

et al., 2018), though the specific genes affected during said dysfunction is not clear. For 

one, contradicting studies have been published in regard to Pgc-1𝛼 mRNA expression in 

relation to IUGR, with some showing an increase while others have documented a 

significant decrease dependent on the organ studied (Jones et al., 2019; Liu et al., 2012). 

Of interest, however is the significant decrease in Pgc-1𝛼 gene expression evident in 

adult skeletal muscle after IUGR specifically (Liu et al., 2012; Zeng et al., 2013), as the 

current study also identified the same decreased in fetal IUGR muscle. PQQ has been 

shown to significantly increase Pgc-1𝛼 expression directly to promote mitochondrial 

biogenesis with the liver (Chowanadisai et al., 2009), and therefore was proposed to be a 

plausible treatment for IUGR-associated mitochondrial dysfunction in this muscle study. 

PQQ did not have the same effect in both in vitro myotubes, in which expression was 

unaffected, and in vivo skeletal muscle, as PQQ significantly decreased expression of 

Pgc-1𝛼 alone. Similarly, total protein abundance of PGC-1𝛼 was unaffected in 

developing myotubes exposed to PQQ. It is important to acknowledge that myotubes 

were only allowed to differentiate for 7 days in culture, and hence the in vitro experiment 

could be considered “short-term” in comparison to the in vivo studies in which fetal 

muscle was exposed to PQQ for weeks. This could explain discrepancies between Pgc-

1𝛼’s lack of change in total protein abundance, in comparison to the significant decrease 

observed in fetal tissue. PGC-1𝛼 protein has a longer half-life then other mitochondrial 

proteins (Wright et al., 2007), and therefore the expression decrease seen in IUGR fetal 

tissue may have been evident in the cells if culture experiments were able to be carried 

out for an extended period of time.  

Several up and downstream genes of Pgc-1𝛼 were also studied. Sirt1 and Sirt3 both 

increasing expression of the gene,	in addition to Pgc-1𝛼 also increasing Sirt3 expression 

in a positive feedback loop style, and therefore are both Sirt1 and 3 are critical 

components cellular metabolism (H. Yamamoto, Schoonjans, & Auwerx, 2007). A 

previous study had shown PQQ to increase the expression of both Sirt1 and 3 in in vitro 
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liver (Jian Zhang et al., 2015), though like the previously mentioned effects on Pgc-1𝛼, 

PQQ supplementation in fetal skeletal muscle resulted in significantly decreased 

expression of Sirt3 and Sirt1 expression was decreased though not significantly. PQQ 

supplementation also did not affect total protein abundance of SIRT3 in the in vitro 

myotubes, which was surprising due to SIRT3’s relatively short-half (Iwahara, Bonasio, 

Narendra, & Reinberg, 2012). It is evident that PQQ likely has organ-specific effects on 

mitochondrial gene expression, and likely subsequent function, though protein studies do 

not correlate with mRNA effects and activity assay was not conducted to test for 

functional changes. The same significant decreases were seen in fetal IUGR samples, 

those this was in support of recent research in which SIRT3 protein expression was 

downregulated in placental samples (Naha et al., 2020), and research showing Sirt1 

mRNA expression to be significantly decreased in the brains of IUGR offspring (Caprau 

et al., 2007). Tfam, a regulator of mitochondrial DNA transcription, is also downstream 

of Pgc-1𝛼, and is associated with decreased expression during IUGR, specifically evident 

in skeletal muscle (Liu et al., 2012); the results of the current study support this finding. 

It is important to note that though early research implied that decreased Tfam expression 

coincided with decreased mitochondrial biogenesis and subsequent organelle 

dysfunction, this is not always the case. Functional tests should be conducted to 

determine the significance of changes in Tfam expression specifically within the IUGR 

model to confirm mitochondrial dysfunction (Kozhukhar & Alexeyev, 2019). PQQ has 

been shown to have the opposite effect, in that short-term exposure induced Tfam 

expression in developing liver cells (Chowanadisai et al., 2010). In this study, PQQ alone 

did not affect Tfam expression in fetal skeletal muscle, though this is supported by 

another study in which continuous administration of PQQ to hindlimb skeletal muscle did 

not increase TFAM protein expression significantly (Kuo et al., 2015).  

Another mitochondrial gene known to be negatively affected in IUGR is that of the 

enzyme carnitine palmitoyltransferase-1 (CPT-1), which is associated with fatty acid 

oxidation within skeletal muscle (Sebastián et al., 2009); mRNA expression of Cpt-1 has 

been shown to be significantly reduced in postnatal brains of IUGR rat offspring 

(Puglianiello, Germani, Antignani, Tomba, & Cianfarani, 2007). In support of this earlier 

study, Cpt-1𝛽 (I.e., the skeletal muscle isoform of Cpt-1) was documented in this study to 
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be significantly decreased as a result of IUGR. The effects of PQQ alone on Cpt-1𝛽 are 

unknown, and therefore this study presents a novel finding that the compound 

significantly decreases expression. It is however known the Pgc-1𝛼 regulates the 

functionality of Cpt-1𝛽 within the skeletal muscle (Lane et al., 2003), and therefore, the 

observed decreased in Pgc-1𝛼 mRNA expression could be the cause. Again, the 

functional effects of this decrease, along with the other identified, were not studied. 

Therefore, the consequences of the relative decreases in mRNA are unknown at this time, 

though it is inferred that these findings imply mitochondrial dysfunction.  

Lastly, relative uncoupling protein 2 (Ucp2) expression was measured as a marker of 

mitochondrial function, as the protein serves to regulate oxidative phosphorylation (Tian, 

Ma, Tse, Wong, & Huang, 2018). Importantly, Ucp2 also serves to attenuate ROS 

production and protect the mitochondria from oxidative damage (Brand & Esteves, 

2005). Though Ucp2 mRNA expression has been shown to be decreased in fetal IUGR 

sheep islets (Kelly et al., 2017), it has also been shown to be increased in the postnatal 

IUGR skeletal muscle (Lane et al., 2003) and  unaffected in postnatal IUGR piglet liver 

(Ferenc et al., 2018). This study observed a significant decrease in Ucp2 in IUGR and 

even more so IUGR/PQQ in the fetal skeletal muscle. It is evident that Ucp2 mRNA 

expression during IUGR is largely dependent on the organ studied and the relative stage 

of development in which sample collection occurs; gene expression in utero and postnatal 

within the same organ appears to able to vary greatly, prompting the need for longitudinal 

studies. Even so, the decrease in Ucp2 gene expression in this current study implies 

increased OS stress within the two sample groups. It is also important to note that 

postnatal OS has been shown to induce Pgc-1𝛼 expression for downstream induction of 

endogenous antioxidant mechanisms, including Ucp2, in the response to ischemic brains 

to prevent damage (S. Der Chen et al., 2011), but this protective mechanism appears to be 

lost in this study’s IUGR and PQQ exposed muscle, denoted by the decreased Pgc-1𝛼 

and Ucp2 observed.  
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4.5 Negative Impact of IUGR and PQQ on PPAR 
expression 

PPAR expression in muscle, including during in utero muscle growth, has not been well 

studied.  The majority of studies have focused on the importance of PPARs within the 

liver and adipose tissue, due to their relatively high expression within these organs 

(Kersten, Desvergne, & Wahli, 2000). Past research highlighted a plausible relationship 

between decreased PPAR-𝛾 and enhanced growth restriction under hypoxic conditions 

(Julian et al., 2014), as IUGR development is associated with a hypoxic growth 

environment as previously described (Ream, Ray, Chandra, & Chikaraishi, 2008). In 

support of this, a significant decrease of relative mRNA expression of PPAR-𝛼, 𝛿, and 𝛾 

in all IUGR animals was found in this study. 

Independent of IUGR, PQQ administration alone was also associated with significant 

decreases in muscle PPAR-	𝛼,	and 𝛿 mRNA in normal growth animals. Within the 

postnatal liver, prolonged PQQ exposure has little effect on relative PPAR-𝛼 mRNA 

expression (Bauerly et al., 2011). In comparison, there was a significant decrease 

observed in this study. Of note, a decrease in PPAR-	𝛾 mRNA in the same animals was 

trending towards significance. These results suggest both fetal growth restriction and 

exposure to PQQ during development negatively affect key regulators of energy 

homeostasis within the skeletal muscle. It is important to highlight that Bauerly and 

colleagues (2011) study was conducted with adult rats, versus the fetal tissue employed in 

this study; fetal and adult tissue have been shown to have varying expression of each of 

the PPARs (Abbott, Wood, Watkins, Das, & Lau, 2010). Though, it is now evident that 

PQQ likely has organ-specific effects on PPAR expression. These studies together 

highlight possible variabilities in gene expression regulation during versus after the 

critical in utero developmental window that are important to consider when interpreting 

results. In more detail, PPAR expression in utero appears to be more susceptible to 

epigenetic alteration. The expression of each is easily affected by many early life insults 

including adaptions to changes in maternal diet in an attempt to adapt to the insult and 

promote organ function postnatally. In utero epigenetic changes to PPAR-𝛼 specifically 

have been shown to occur and be stable long-term (Lillycrop, Phillips, Jackson, Hanson, 
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& Burdge, 2005). These stable adaptions of PPARs as a result of in utero exposures 

could predispose the developing fetus to metabolic irregularities later in life, when 

ultimately, their diet and environment is likely more sufficient (Lian, Deng, Chen, & 

Deng, 2018; Rees, McNeil, & Maloney, 2008). Therefore, IUGR and PQQ’s independent 

effects on PPAR expression warrant further, long-term investigation.  

Modifications to PPAR expression in turn can lead to changes to the mitochondria. 

Reduction in PPAR-𝛽/𝛿 expression in the skeletal muscle of adult mice results in 

decreased mitochondrial oxidative capacity, and related fiber type switching to increased 

type II fiber concentrations (Schuler et al., 2006). Interestingly, the data of this study does 

not support the Schuler et al. (2006), as both a decrease in all PPARs and Myf4 was 

observed. Conversely, activation of PPAR-𝛾 promoted mitochondrial biogenesis in part 

to due to downstream upregulation of Pgc-1a and Tfam, though this effect was not 

studied in skeletal muscle (Miglio et al., 2009). It could then be inferred from presented 

data that the IUGR and PQQ fetal animals independently will have associated 

mitochondrial dysfunction due to changes in PPAR expression, as result of the presented 

decreased expression of each PPAR, in addition to the decreases observed in Pgc-1𝛼, and 

Tfam expression described. This appears to be the first study of this nature.  

4.6 The ETC of skeletal muscle is negatively affected by 
H2O2, IUGR, and PQQ 

Hypermethylation of ETC complex I subunit Ndufb6 and complex IV subunit Cox7a1 

has been observed in the muscle of those with T2DM phenotypes (Zhou, Sun, Li, & Zhu, 

2018), and since IUGR is associated with increased incident of said metabolic disorder, it 

is therefore likely changes to these genes contributed to the mitochondrial dysfunction 

evident in these offspring too (Mandò et al., 2014; Pendleton et al., 2020). Though the 

mechanisms of said hypermethylation are not well known, oxidative stress induced 

epigenetic regulation has been proposed (Strakovsky & Pan, 2012). In support of these 

hypotheses, it was observed in this study that acute hydrogen peroxide exposure to 

developing myotubes resulted in significantly decreased Ndufb6 and Cox7a1 mRNA 

expression. Similarly, relative expression of both markers was significantly decreased in 

the gastrocnemius of fetal IUGR animals. However, it cannot be confirmed that oxidative 
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stress was present and responsible, as no markers of said stress were examined in the 

guinea pig model. Though, Complex I and Complex IV dysregulation is associated with 

wide-scale mitochondrial dysfunction resulting in increased oxidative stress and it can 

therefore be inferred that oxidative stress is present within our IUGR model due to 

diminished Ndufb6 and Cox7a1 expression. Relative mRNA expression of Atp5a1 and 

Atp5pb, both subunits of complex V, was also significantly decreased in IUGR animals, 

suggesting further impairment to oxidative phosphorylation and long-term mitochondrial 

defects, including further oxidative damage (Jonckheere et al., 2013; Lebiedzinska et al., 

2013).  

Oxygen consumption is significantly decreased in the skeletal muscle, associated with 

reduced complex I activity in IUGR fetal sheep skeletal muscle, which is postulated to 

lower potential oxidative damage to the organ (Pendleton et al., 2020). The data from the 

described study supports this finding, as the decrease in Ndufb6 in fetal IUGR animals 

could be associated with decreased complex I activity. It is important to note that another 

study found complex I activity to be unaffected in skeletal muscle of older IUGR 

neonatal piglets with no change in expression of complex I subunits (K. Cheng et al., 

2020), highlighting a need for further research of the stability of changes in fetal gene 

expression. Similarly, preliminary unpublished data in continuation of the present study 

found Ndufb6 expression to be unchanged in IUGR guinea pig offspring at 4 months of 

age, supporting the Cheng et al. (2020) study. It could be inferred the decrease in 

complex I seen in fetal skeletal muscle is a compensatory change that is no longer needed 

to prevent oxidative damage in a relative normoxic postnatal environment and hence is 

reversed. Comparatively, there were no observed protein abundance changes of the 

complexes within this study as a result of acute hydrogen peroxide exposure, though this 

is supported by other literature which suggests posttranscriptional regulatory events are 

present in IUGR that result in discrepancies between mRNA expression and protein 

concentration, specifically in regard to the complexes (Mandò et al., 2014; Pendleton et 

al., 2020).  

Lastly, limited data has been published that suggests PQQ can induce complex I activity 

in livers in vitro (T. Stites et al., 2006). Likewise, low dose RSV has also been shown to 
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directly bind to complex I and increase its activity within the brain (Gueguen et al., 

2015). As a result of these described studies, it was predicted PQQ would increase 

mitochondrial function by affecting complex I as well. The opposite was observed in this 

study’s cell culture model, as PQQ resulted in significantly decreased Ndufb6 expression, 

though functional tests were not conducted to confirm changes in activity. The same gene 

was unaffected by maternal PQQ intake in the in vivo model. Comparatively, long-term 

PQQ exposure decreased Cox7a1 expression in developing myotubes, while expression 

was unchanged in maternal PQQ exposed fetal animals. In comparison to other studies, 

developing liver exposed to PQQ has been shown to exhibit increased Complex IV 

activity (Chowanadisai et al., 2010). Lastly, PQQ did not affect protein abundance of the 

complexes in vitro. In short, the effects of PQQ on the ETC complexes in skeletal muscle 

are still unclear. It is important to note that all described studies focused on the effects off 

PQQ and RSV in in vitro and postnatal liver and brain, while this study examined PQQ’s 

effects in fetal skeletal muscle development. The organ differences between studies could 

possibly explaining the discrepancies seen.   

4.7 Limitations 
Firstly, the cell culture model utilized has several limitations to acknowledge. As 

previously referenced, the C2C12 cell line is commonly utilized to mimic in utero 

skeletal muscle growth (Jing Zhang et al., 2019), but it is important to recognize that it is 

transformed adult mouse cells and hence may have altered processes related to 

myogenesis and mitochondrial function (Abdelmoez et al., 2020). Secondly, the 

utilization of H2O2 to mimic oxidative stress within the cells did not allow for 

longitudinal studies, as H2O2 is quite detrimental to C2C12 survival after 24H exposure 

and is not commonly utilized past this time point (Gülden, Jess, Kammann, Maser, & 

Seibert, 2010; Siu, Wang, & Alway, 2009). Since oxidative stress present in IUGR occurs 

for an extended period of time (Potdar et al., 2009), the acute H2O2 exposure utilized is 

hence limited in how effectively it can be compared to any adverse pregnancy condition. 

Media with a high glucose concentration (25mM) is also utilized to proliferate and 

differentiate the cells and it could therefore be said that the cells were not grown in a 

physiologically relevant environment. Similarly, cells were grown in 21% O2, whereas 
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fetal development occurs in relative hypoxia at 5% O2. Lastly, the sex of the C2C12 cells 

is female, while in vivo studies were conducted in male tissue, and therefore comparisons 

between models may be flawed, as IUGR has been shown to have sex-specific effects, in 

that males are more greatly affected (Lane et al., 2003). Despite these limitations, the 

study did replicate findings of other similar fetal IUGR experiments. It also appears this 

is the first study of its kind utilizing C2C12 to study PQQ’s effects on skeletal muscle 

development these in vitro studies allowed specific mechanistic pathways to be 

examined. Regarding the guinea pig model utilized, the presented data only included 

male animals; subsequent research should include female data as sex-specific changes are 

prevalent in other studies of IUGR. Positively, this IUGR model is comparable to 

idiopathic PI-IUGR in humans, as guinea pigs IUGR is spontaneous, and studies required 

no in utero manipulation, as described in the methods. 

Interpretation of the studies’ results is also limited by the prevalent use of qPCR, and 

subsequent lack of protein data collected from fetal guinea pig muscle, though many 

genes were examined, investigating multiple pathways of interest, which assisted in 

determining future directions. As reported in this study’s cell culture experiments and 

confirmed by other studies, changes in mRNA expression and protein abundance are not 

always correlated. Hence, by not examining protein data in the fetal samples, the study 

missed collection of relevant information to make further conclusions. In addition, 

protein data presented from cell culture studies was limited in its own way, as minimal 

post-translational modifications were studied, and activity assays are lacking that would 

give the best overall picture of functional effects of changes in gene expression.  

4.8 Future Directions  

The presented data provides evidence which supports that both a H2O2 insult and an 

adverse in utero environment negatively affect skeletal muscle development and key 

readouts of muscle mitochondrial metabolism. Additionally, evidence is presented that 

PQQ supplementation during in vitro myotube development inhibits myogenesis and key 

readouts of mitochondrial function, and the same results were observed after maternal 

PQQ supplementation during the key fetal muscle developmental (I.e., myogenic) 



82 

 

windows. A logical progression would then be to identify if gene expression changes 

found, result in relevant functional consequences. With functional in situ experiments 

such as glucose uptake assays for example, the relative mitochondrial and metabolic 

consequences of the changes in gene expression could be observed.  

 

Regarding mitochondrial function specifically, H2O2, and PQQ in vitro each 

independently decreased gene expression of complex I and IV subunits of the 

mitochondrial ETC. Conversely, protein abundance of both complexes was unaffected, 

highlighting a potential compensatory increased translational ability that may or may not 

result in maintenance of ETC function. To confirm PQQ does in fact negatively affect the 

ETC, activity assays for each complex should be undertaken and total mitochondrial 

respiration could be measured as a representation of overall mitochondrial function after 

supplementation of the compound. Similarly, protein abundance nor activity of the ETC 

complexes was measured in fetal gastrocnemius muscle and should be conducted to 

further substantiate relative mRNA data presented.  

 

Furthermore, evidence is presented that OS is present in fetal IUGR development, 

represented by relevant decreases in expression of key mitochondrial genes shown to be 

negatively affected by the stressor in previous studies and by the relative decrease in 

Ucp2 gene expression observed. Though, more direct markers of OS were not measured 

within the gastrocnemius, thus should be to validate its presence. Of interest is the p53-

p66shc-Pin1 pathway, including the role the genes play in ROS regulation during 

oxidative stress. PQQ’s effects on this pathway are also relatively unknown, and it 

remains speculative if these genes play a relevant role in IUGR mitochondrial 

dysfunction. On the other hand, to protect against oxidative stress three major 

endogenous antioxidants exist to diminish ROS concentrations: SOD, catalase, and 

glutathione (Birben et al., 2012). Relative activity of each is commonly used as a measure 

of oxidative stress, with decreased activity corresponding with increased oxidative stress 

(Ighodaro & Akinloye, 2018; Michiels, Raes, Toussaint, & Remacle, 1994).  In vivo 

muscle studies studying these antioxidants remains incomplete, and unfortunately, in 

vitro activity assays showed no decrease in SOD or CAT activity after H2O2 exposure 
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suggesting OS was not induced. Though, mitigating factors such as sodium pyruvate 

addition to cell culture media and PQQ inhibitory effects of LDH activity should also be 

considered when interpreting these in vitro results.  

 

Lastly, several gene expression changes previously shown to be associated with 

mitochondrial dysfunction during IUGR have been proposed to be the result of epigenetic 

down-regulation of gene expression including increased DNA methylation as a result of 

hypoxia-induced OS (Campos et al., 2007; Roifman et al., 2016). In short, it is postulated 

that OS-induced DNA methylation is the mechanism responsible for the observed 

mitochondrial gene expression changes in IUGR offspring and further studies should be 

conducted to confirm. In support of this proposition, several genes previously associated 

with mitochondrial dysfunction, including Ndufb6, Cox7a1, Cpt-1, and Pgc-1𝛼	had 

decreased expression within both our model of OS, and IUGR. Overall, understanding 

the epigenetic effects induced by OS would be a useful further study to understand 

upstream regulators of gene expression changes that result in later life NCD in IUGR 

offspring.  

4.9 Conclusion 

In conclusion, the initial hypothesis proved to be true, in that H2O2 and IUGR did 

negatively affect markers of muscle development and mitochondrial function. Firstly, 

both H2O2 and IUGR resulted in the reduction of Ndufb6 and Cox7a1 expression 

(Figures 3.3.1-1,2; Figure 3.4.4-1), and the observed decreases in Pgc-1𝛼 and its 

downstream counterpart’s mRNA expression in IUGR fetuses provides further context 

for this finding (Figure 3.4.4-2). Though, it is of note that total protein abundance of 

NDUFB8 was unaffected by acute H2O2 exposure (Figure 3.3.1-5), nor was Pgc-1𝛼 gene 

or protein expression significantly (Figures 3.3.1-3,7). Even so, together these results 

support the theory that in utero OS exposure as a response to a hypoxic growth 

environment results in the mitochondrial dysfunction evident in IUGR. This muscle 

mitochondria dysfunction is contributing factor to the increased risk of metabolic disease 

in adulthood observed in IUGR offspring, including but not limited to dysfunction 

associated with decreased expression of Ndufb6, Cox7a1, Pgc-1𝛼,	and Cpt-1. In 
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summary, the findings of this study provide evidence that OS is a likely contributor to the 

observed association between IUGR and adulthood metabolic disease, including CVD 

and T2DM (Zhou et al., 2018).  

 

Secondly, in reference to myogenesis, Myod, and Myog expression were decreased as a 

result of IUGR (Figure 3.4.2-1), and H2O2 (Figure 3.3.2-2,3). Not unlike the 

mitochondrial function markers previously discussed, these results suggest the OS 

present in utero during IUGR contributes to the reduction seen in skeletal muscle mass by 

downregulating myogenesis. Furthermore, IUGR was associated with a significant 

decrease in fetal muscle expression of Myf4 and Myf1 (Figure 3.4.2-2), the myosin heavy 

chain isoform genes associated with type 2b and type 2x fibers, respectively. Evidently, 

all type 2 fibers are the most susceptible to oxidative damage (Schantz & Dhoot, 1987) 

and hence this study again suggests in utero OS plays a role changes to fiber development 

seen during IUGR. Whether these changes to Myf4 and Myf1 gene expression translate 

to switches in fiber type directly is unknown. Overall, these results are supported by 

previous studies in which IUGR skeletal muscle growth reduction was associated with 

decreased rates of myogenesis, but not increased muscle apoptosis as a result of the 

hypoxic growth environment (Chang et al., 2020). Though Pax7 expression was not 

affected by either H2O2 (Figure 3.3.2-1) nor IUGR (Figure 3.4.2-1), other studies have 

shown that intact expression Pax7 does not necessarily infer functional proliferation and 

myogenesis was still ultimately diminished in IUGR groups (D. T. Yates et al., 2012).  

 

In contrast to the original hypothesis, PQQ did not increase expression of key markers of 

mitochondrial function. For example, previous studies have shown PQQ to increase 

expression of Pgc-1𝛼, but this study observed no increase within in vitro muscle cells 

(Figure 3.3.1-3) while in vivo muscle had decreased expression (Figure 3.4.4-2). 

Similarly, markers downstream of Pgc-1𝛼, including Sirt3 and Cpt-1𝛽, showed decreased 

expression in PQQ-exposed fetal muscle (Figure 3.4.4-2) Lastly, Ndufb6 and Cox7a1 

expression was also decreased by PQQ exposure in cell culture (Figure 3.3.1-1,2), though 

fetal muscle samples did not show the same negative effect.  Simply put, these results do 

suggest that though PQQ has been shown to be beneficial to mitochondrial function in 
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postnatal liver and brain, its effect in utero skeletal muscle differ and the long-term 

effects of PQQ administration during gestation on mitochondrial function should be 

explored. It is important to consider that PQQ administration did not affect total protein 

abundance of any mitochondrial marker in culture, suggesting the observed decreases in 

gene expression may take time to manifest in protein abundance or may not translate to 

changes in protein abundance at all. Thus, the relative functional effects of documented 

changes in mitochondrial gene expression as a result of PQQ should be examined.  

 

Secondly, PQQ did not protect against damage to myogenesis regulation and instead 

appeared to negatively affect genes involved in the process, in opposition to the original 

hypothesis again. PQQ alone decreased expression of both in vitro and in vivo muscle 

Myod and Myog expression (Figures 3.2.2-2,3; Figure 3.4.2-1). Furthermore, PQQ alone 

significant decreased Pax7 expression in fetal muscle, unlike IUGR (Figure 3.4.2-1). 

Overall, these results provide evidence that in utero PQQ exposure may dysregulate 

myogenesis, and this could be the result of its antioxidant properties. It is known that 

physiological levels of ROS promote differentiation of skeletal muscle, and similar 

placental research showed in utero exposure to antioxidants in can inhibit said signalling 

and inhibit development. 

 

Finally, PQQ had varying effects on the expression of genes associated with skeletal 

muscle fiber type. Similar to IUGR, PQQ exposure alone was associated with decreased 

expression of Myf4 (Figure 3.4.2-2), though the functional significance and mechanisms 

behind this decrease are relatively unknown. Additionally, the combination of IUGR and 

PQQ exposure in fetal muscle appeared to augment the negative effects of IUGR on 

myogenesis, in that the reductions seen in Pax7, Myod, and Myog were all greater in 

IUGR/PQQ fetal tissue than the decreases seen as a result of PQQ and/or IUGR alone 

(Figure 3.4.2-1). IUGR/PQQ fetal samples also had decreased expression of all fiber type 

genes examined (Figure 3.4.2-2). The mechanisms behind these elevated negative 

changes and the physiological relevance of these decreases in gene expression are 

unknown, though the results do suggest widespread inhibition of the development all 

fiber types in IUGR/PQQ fetuses and likely a greater decrease skeletal muscle mass than 
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that associated with IUGR alone. The same augmentation was observed in genes 

associated with mitochondrial function, including Pgc-1𝛼, Sirt1, and Tfam. Again, the 

mechanisms behind this combined negative effect on gene expression have yet to be 

explored, nor have their functional effects.   

 

All together the results of this study suggest the OS during IUGR is a potential 

mechanism for the muscle mitochondrial dysfunction observed in IUGR offspring. This 

study additionally identified that PQQ exposure during skeletal muscle development may 

be detrimental to mitochondrial function and myogenesis progression and amplify to the 

adverse effects of IUGR.  
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Appendix 
Animal Use Protocol:  

AUP Number: 2018-110 

AUP Title: Modulating the in utero environment to prevent later life insulin 

resistance   

Yearly Renewal Date: 10/01/2021  

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2018-110 has been 

approved by the Animal Care Committee (ACC), and will be approved through to 

the above review date. 

Please at this time review your AUP with your research team to ensure full understanding 

by everyone listed within this AUP. 

As per your declaration within this approved AUP, you are obligated to ensure that: 

 1) Animals used in this research project will be cared for in alignment with: 

a) Western's Senate MAPPs 7.12, 7.10, and 7.15 

http://www.uwo.ca/univsec/policies_procedures/research.html  

b) University Council on Animal Care Policies and related Animal Care Committee 

procedures 

http://uwo.ca/research/services/animalethics/animal_care_and_use_policies.html  

2) As per UCAC's Animal Use Protocols Policy, 

a) this AUP accurately represents intended animal use; 

b) external approvals associated with this AUP, including permits and 

scientific/departmental peer approvals, are complete and accurate; 
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c) any divergence from this AUP will not be undertaken until the related Protocol 

Modification is approved by the ACC; and 

d) AUP form submissions - Annual Protocol Renewals and Full AUP Renewals - will be 

submitted and attended to within timeframes outlined by the ACC.    

http://uwo.ca/research/services/animalethics/animal_use_protocols.html  

3) As per MAPP 7.10 all individuals listed within this AUP as having any hands-on 

animal contact will 

a) be made familiar with and have direct access to this AUP; 

b) complete all required CCAC mandatory training (training@uwo.ca); and 

c) be overseen by me to ensure appropriate care and use of animals. 

4) As per MAPP 7.15, 

a) Practice will align with approved AUP elements; 

b) Unrestricted access to all animal areas will be given to ACVS Veterinarians and ACC 

Leaders; 

c) UCAC policies and related ACC procedures will be followed, including but not limited 

to: 

i) Research Animal Procurement 

ii) Animal Care and Use Records 

iii) Sick Animal Response 

iv) Continuing Care Visits 

5) As per institutional OH&S policies, all individuals listed within this AUP who will be 

using or potentially exposed to hazardous materials will have completed in advance the 
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appropriate institutional OH&S training, facility-level training, and reviewed related 

(M)SDS Sheets,  http://www.uwo.ca/hr/learning/required/index.html  

Submitted by: Copeman, Laura 

on behalf of the Animal Care Committee 

University Council on Animal Care 
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