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Abstract 

Supply chain is the integration of manufacturing process where raw materials are converted 

into final products, then delivered to customers. Supply chains consists of two basic integrated 

process that interact together: (1) production and inventory and (2) distribution and logistics. 

Maximizing competitiveness and profitability are of the main goals of a supply chain. 

Accounting only for economic impacts as variable and fixed costs does not serve the main goal 

of the supply chain. Therefore, considering customer satisfaction measures in distribution 

models is essential in supply chain management. This thesis focuses on the multi-objective 

Vehicle Routing Problem (VRP) in green environment. Models that addressed the three 

objectives simultaneously handled one of the objectives as a constraint with a certain threshold 

in the problem, while others used weighted utility functions to address the problem objective 

in deterministic environment. The proposed Green VRP (GVRP) deals with three different 

objectives simultaneously that considers economic, environmental, and social aspects. A new 

hybrid search algorithm to solve the capacitated VRP is presented and validated in Chapter 2. 

The developed algorithm combines the evolutionary genetic search with a new local search 

heuristic that considers both locations and demand quantities of the nodes to be visited in 

routing decisions, not just the distances travelled. The algorithm is then used to solve the multi-

objective GVRP in Chapter 3. The objectives of the developed GVRP model are minimizing 

the total transportation operations cost, minimizing the fuel consumption, and maximizing 

customer satisfaction. Moreover, a new overlap index is developed to measure the amount of 

overlap between customers’ time windows that provides an indication of how tight/constrained 

the problem is. The model is then adapted to consider the uncertainty in travel times, service 

times, and unpredictable demands of customers in Chapter 4. Pareto fronts were obtained and 

trade-offs between the three objectives are presented in both deterministic and 

stochastic forms. Furthermore, analysis of the effects of changing vehicle capacity and 

customer time windows relaxation are presented. 
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Summary for Lay Audience 

Supply chain is the combination of all manufacturing process where raw materials are 

converted into final products, then delivered to customers. Supply chains consists of two basic 

integrated process that interact together: (1) production and inventory and (2) distribution and 

logistics. Maximizing competitiveness and profitability are of the main goals of a supply chain. 

Best value supply chains are the chains most likely to prosper within this today’s competition 

and are the ones that use strategic supply chain management in an effort to excel in terms of 

speed, quality, cost, and flexibility. Accounting only for economic impacts as variable and 

fixed costs does not serve the main goal of the supply chain. Therefore, considering customer 

satisfaction measures in distribution models is important in supply chain management. Freight 

transportation is considered one of the most important parts of logistics that occupies one-third 

of the logistics cost. On the other hand, one of the side effects of vehicle transportation is the 

emission of Greenhouse Gases (GHGs). With a growing attention to environmental impact in 

logistics, a lack of multi objective models that considers the economic, environmental, and 

social aspects is found in literature. Moreover, in real life, uncertainty plays an important role 

in the process of routing and scheduling of logistics. Ignoring these sources, may lead to 

inaccurate modeling of the VRP. Sources of uncertainty can be travel times, service times and 

unpredictable demands of customers.  

The purpose of the thesis is to study the freight distribution problem considering the 

environmental impact and at the same time accounting for the total travel costs and customer 

satisfaction. The presented models deal with three different objectives simultaneously that 

considers economic, environmental, and social aspects and is adapted to consider the 

uncertainty in travel times, service times and unpredictable demands of customers. Trade-offs 

between the three objectives are presented in both deterministic and stochastic studies. 

Furthermore, analysis on the effect of changing the capacity of the vehicle and the effect of 

customer time windows relaxation is presented. 
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Chapter 1  

1 Introduction 

A supply chain consists of multiple firms, both upstream (supply) and downstream 

(distribution), and the ultimate consumer. It is the network of all organizations involved, 

in the different processes/ activities that are responsible of adding value in the form of 

products and services delivered to the ultimate consumer (Mentzer et al., 2001). Supply 

chain can be defined as the integration of manufacturing process where raw materials are 

converted into final products, then delivered to customers. A supply chain consists of two 

basic, integrated processes that interact together: (a) production planning and inventory 

control process, and (b) distribution and logistics process. The production planning and 

inventory control process includes all the manufacturing and storage processes. Production 

planning defines the design and management of the manufacturing process including raw 

material scheduling and purchase, manufacturing process design and scheduling, 

operations management, and material handling. Inventory control deals with managing the 

raw materials, Work in Process (WIP) as well as the final products, where the storage and 

purchase policies are determined. Inventory retrieval and transportation, whether it is a 

final product or raw material is defined in the transportation and logistics processes. 

Products might be delivered to customers directly or may be delivered to distribution 

centers first and then shipped to the customer (Beamon, 1998). 

1.1 Supply Chain Management 

Supply Chain Management (SCM) is the management of material and information flows 

through all the members of the chain, such as vendors, manufacturing, assembly, and 

distribution centers (Thomas and Griffin, 1996). The coordination of the traditional 

business functions and its tactics not only within a specific company but across businesses 

within the supply chain while considering the long-term performance of the chain as a 

whole is the definition of SCM (Li, 2014).  
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1.1.1 Supply Chain and Logistics 

In 1986, logistics management was stated by the Council of Logistics Management as “The 

process of planning, implementing, and controlling the efficient, cost – effective flow and 

storage of raw materials, in-process inventory, finished goods and related information flow 

from point of origin to point of consumption for the purpose of conforming to customer 

requirements” (Lambert and Cooper, 2000). SCM is a new term in literature. It appeared 

in early 1980s focusing on inventory reduction through the whole network involved 

(Cooper et al., 1997). Supply chain and logistics are usually related in academia. They both 

are related to the product movement during its whole life cycle, and both are considered 

the central unit of competitive analysis of model management science. Supply chain is a 

more broadened concept than logistics dealing with a wider range and perspective. as 

logistics has no relationship with organizations. Moreover, SCM does not aim at reducing 

costs and improving profits but the general aim is to increase the competitiveness of the 

whole chain. (Li, 2014). 

1.1.2 SCM Objectives 

The objective of SCM is to maximize competitiveness and profitability for the company as 

well as the whole supply chain network including the ultimate customer, aiming at 

increasing the total process efficiency and effectiveness across members of the supply 

chain (Lambert et al., 1998). Moreover, reducing the total amount of resources used to 

provide the necessary customer service level, reducing inventory investment in the whole 

chain, and increasing customer service (Cooper et al., 1997). 

1.1.3 SCM Components 

The supply chain involves the combination of three elements: the structure of the chain, its 

business processes, and SCM components shown in Figure 1-1. The supply chain structure 

is the network of members and the links between them. Business processes, second element 

in SCM, are the activities needed to produce a specific output to the ultimate customer. The 

management components, third element in the SCM, are the managerial variables by which 

the business processes are integrated and managed across the supply chain. The 

identification of the supply chain members is one of the important points in managing the 
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supply chain, then determining their links with each other and their link to the processes 

done in the chain (Lambert et al., 1998). According to Thomas and Griffin (1996), the 

following important elements should be considered in SCM:  

• The restructuring of value-added activities may offer great opportunities for 

improvement which can be done through co-ordinated modelling. 

• A key element is choosing performance measures that correspond with the supply 

chain goals and objectives.  

• Transportation cost accounts for more than the half of the total logistics cost, which 

is the largest component of the logistics costs.  

• Life cycle constraints and costs should be considered in long supply chains. Quick 

response to customers’ requirements can be constrained in long supply chains. With 

products of short life cycle, a high risk of inventory obsolescence can occur.  

• The coordination between stages of the supply chain in the design and modelling is 

important.  

• Decomposition methods fail to solve these problems as the models becomes too 

large/complicated to be solved.  

• A great attention should be taken to the supply chain activities environmental 

impact (Thomas and Griffin, 1996).  

 

Figure 1-1: Supply Chain Management Components 
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1.1.4 SCM Complexity and Performance Measures 

Figure 1-2 shows a four level Supply Chain consisting of suppliers, manufacturing plants, 

distribution, and customers. Each level of the supply chain may include several facilities. 

The complexity of the supply chain depends on the number of levels in the chain and the 

number of facilities in each level. The selection of the most suitable performance measures 

of the supply chain is a critical decision, due to the complexity of the supply chain 

(Beamon, 1999).  

 

Figure 1-2: Example of a Supply Chain 

Mentzer et al., (2001) defined three degrees of supply chain, as shown in Figure 1-3 

which illustrates the complexity of a supply chain system: 

• Direct Supply Chain: consists of a company, a supplier, and a customer (Figure 1-3 

(i)),  

• Extended Supply Chain: consists of all the suppliers and customers involved in flow 

of products, services, finances, and/or information (Figure 1-3 (ii)), and 

• Ultimate Supply Chain: includes all the organizations involved in the chain (Figure 

1-3 (iii)). A third-party financial provider and a Third-Party Logistics (3PL) exist. 

Traditional performance measures concentrate on using financial measures such as Return 

on Investment (ROI), Net Present Value (NPV), Internal Rate of Return (IRR), and 

PayBack Period (PBP). Financial measures could be used in evaluating noncomplex supply 

chains of small sizes although they will not give an overview of the whole chain 

performance. (Bhagwat and Sharma, 2007).   
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Beamon (1996) presented several characteristics that can aid in evaluating supply chains. 

These characteristics are:  

• Inclusiveness: measuring all aspects,  

• Measurability: data used could be measured, quantitative not qualitative data,  

• Universality: to allow for comparison under various operating conditions,  

• Consistency: measures meet the organization goals and objectives (Beamon, 1996).  

 

Figure 1-3: Degrees of Supply Chain Complexity 

Supply chain models have mainly used either cost, and or a combination of cost and 

customer responsiveness. Costs may include inventory costs and operating costs. Customer 

responsiveness includes lead time, stock out probability, and fill rate. Other performance 

measures have been identified to measure supply chains, yet they are not used in research 

due to their qualitative nature. These measures include customer satisfaction, information 

flow, supplier performance, and risk management.  

Beamon (1999) presented a framework for the selection of performance measurement 

systems for manufacturing supply chains that include measures for the use of resources, 

the desired output and flexibility. Each one of these three measures is important and affect 

each other. Beamon (1999) stated that the supply chain performance measurement system 

should contain at least one single measure from each of the three identified types that is 
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consistent with the organization's strategic goals and objectives. The three types of 

measures are listed below: 

1. Resources: which are the minimum requirements (quantity) or an efficiency 

measure, that measures the utilization of the resources in the system. The use of too 

few resources can affect the system in a negative way affecting the output and as a 

result affects the systems flexibility and ability to respond to customers’ requests. 

2. Output:  include measures for customer responsiveness, quality, and the quantity of 

final product produced. Output measures are mainly quantitative measures, 

however customer satisfaction; and Product quality are qualitative measures that 

need to be interpreted quantitatively. 

3. Flexibility: is a measure of the ability of the system to respond to customer requests 

by cooping with volume and schedules changes from suppliers, manufacturers, and 

customers. Flexibility is vital to the success of the supply chain as supply chains 

exist in uncertain environments (Beamon, 1999). 

Gunasekaran et al., (2001) stated that there is a great need to study the performance 

measures of SCM in the context of following reasons: 

• Lack of a balanced approach as most of the approaches in literature focused on 

financial measures (stakeholders’ measures), not giving enough attention to 

operational measures,  

• Lack of determining the suitable evaluation measures for SCM and the number of 

measures used. Good few metrics are better than many measures not related to the 

goals and objectives.  

• Lack of differentiation of the measures required at strategic, tactical, and 

operational levels (Gunasekaran et al., 2001). 

 

1.2 Modelling of Transportation Operations in SCM 

According to the 23rd annual Council of Supply Chain Management Professionals State of 

Logistics Report, the USA transportation costs represented 64 % of the total logistics costs 

in 2011, while inventory costs represented 33% and 4% for administrative costs. The use 
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of mathematical programming techniques in SCM is one of the most important techniques 

in latest decades. A review of historic modeling of the transportation function, from 1974 

to 2008, in supply chain optimization models and recent papers, from 2009 to 2012, done 

by Bravo and Vidal 2013 shows that: 

• Integrated models have been frequently used. However, those models did not deal 

with the stochastic nature of transportation time. As this may result in 

computational complications.  

• The number of vehicles used in the fleet and transportation times were considered 

as model parameters not as decision variables. 

• Most of the research used the cost function as the objective function in optimizing 

the problem. The objectives related to minimizing the travel time, minimizing the 

distance travelled and, minimizing the order delay were ignored, which means that 

cost minimization is preferred over customer satisfaction.  

• It was found that 10% of the variability in transportation costs is due to the travelled 

distance, which is calculated using cost per unit shipped or cost per unit distance. 

This shows that there is a gap in modeling the transportation operations and the 

modeling of the transportation cost function.  

• Recently, transportation models paid attention to service times and considered time 

windows for serving customers. Moreover, different types of transportation 

vehicles and modes are considered in the models. 

• The speed of the vehicles, its acceleration, the road’s topography, and CO2 

emissions were rarely considered. 

• Transportation fleet in most of the papers is not determined whether it is private or 

outsourced, and homogeneous or heterogeneous. 

• The use of trade-off considerations between transportation costs and other aspects 

has decreased rather than increased in research for the recent years (Bravo and 

Vidal, 2013). 
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1.3 Objectives of the Study 

The main objectives of this research are: 

1. Develop a transportation framework that integrates the performance measures and 

decision variables relevant to Green Supply Chain Management, 

2. Develop a new hybrid search algorithm for the Vehicle Routing Problem (VRP) 

that combines the evolutionary genetic search with a new local search heuristic to 

solve the Capacitated Vehicle Routing Problem (CVRP), 

3. Develop a multi-objective Green Vehicle Routing Problem (GVRP) model that 

considers the considers economic, environmental, and social aspects that offers the 

decision maker a set of solutions to trade-off between the total transportation 

operational costs, the environmental costs and customer satisfaction, 

4. Develop a stochastic multi-objective optimization model for routing decisions 

through the green supply chain under uncertainties of travel time, service time, and 

customer demands with the objective of minimizing the total travel cost, 

minimizing fuel consumption rate, and maximizing customer satisfaction. 

1.4 Methodology 

The study deals with the distribution and logistics operations of the green supply chain in 

uncertain environment. The green vehicle routing problem of study deals with a set of 

customers/retailors with variable demand, variable service times and variable travel time 

between any two locations. Moreover, the stochastic nature of travel times, service times 

and customer demands will be considered. A homogeneous fleet of vehicles will be used 

to initiate the routes serving the costumers. However, the utilization of vehicles and a cost-

effective route solutions will be studied as a decision will be made regarding the number 

of vehicles/routes used. The objectives of the GVRP proposed will be minimizing the fuel 

consumption rate, the total travel time (variable costs), minimizing the number of vehicles 

used (fixed costs) and maximizing the customer satisfaction. 
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The current study should achieve the main objectives mentioned in Section 1.4 by 

developing a transportation framework for the GVRP that adopt Beamon’s performance 

measures in supply chain. The framework uses customer satisfaction, fuel consumption 

rate and total travel costs as performance measures. The framework introduced in Chapter 

1. Then followed by the development of the supply chain transportation optimization 

model. The transportation optimization model will be divided into three parts. A diagram 

presenting the stream of the models developed in the study is presented in Figure 1-4. First, 

a new hybrid search algorithm will be introduced to the Capacitated Vehicle Routing 

Problem (CVRP). The new algorithm combines the evolutionary genetic search with a new 

local search heuristic that considers both locations and demand quantities of the nodes to 

be visited not just distances travelled which will be presented in Chapter 2. Second, a 

deterministic multi-objective transportation model in green environment will be developed 

where all the input variables will be considered deterministic, presented in chapter 3. The 

model considers the economic, environmental, and social aspects objectives. The third part 

will consider the randomness in the variables where a stochastic multi-objective Green 

transportation model will be developed in Chapter 4. 

 

Figure 1-4: Optimization models developed 

Chapter 2

1. CVRP Model

•Deterministic

•Single Objective

•New hybrid search 
algorithm

Chapter 3

2. Multi-Objective 
GVRP

•Deterministic

•3 objectives

Chapter 4

3. Multi-Objective 
GVRP with stochastic 
times

•Stochastic travel and 
service times

•3 objectives

4. Multi-Objective 
GVRP with stochastic 
Demands and times

a. Chance

Constrained Program

b. Stochastic Program

with Recourse
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1.5 Organization of the thesis 

This thesis is organized following the “Integrated Article” format. The current chapter 

introduces the studied topic, along with the key points targeted by the research as objectives 

of the study. The following chapters address the objectives mentioned as follows: 

Chapter 2: New Hybrid Search Algorithm for the Capacitated Vehicle Routing 

Problem 

This chapter aims to develop a new hybrid search algorithm that combines the evolutionary 

genetic search with a new local search heuristic to solve the CVRP. The proposed heuristic 

calculates a resultant objective function based on both the distance travelled and the 

demand associated with the given customer. A new set of genetic operators suited for the 

problem was employed. Several computational experiments were conducted. The 

algorithm was validated and was capable of converging to the optimum solution of the 

tested benchmark instance. 

Chapter 3: Multi-objective Green Vehicle Routing Model with Customer 

Satisfaction 

In this chapter the multi-objective vehicle routing problem in green environment is studied. 

The Green VRP (GVRP) presented deals with three different objectives simultaneously 

that considers economic, environmental, and social aspects. The model utilizes a new 

hybrid search algorithm to solve the GVRP. Pareto fronts were obtained and trade-offs 

between the three objectives are presented. Furthermore, an analysis of the effect of 

changing the capacity of the vehicles is presented. 

Chapter 4: Stochastic Multi-objective Vehicle Routing Model in Green 

Environment with Customer Satisfaction 

The purpose of this chapter is to study the stochastic multi-objective vehicle routing 

problem in green environment. The stochastic Green VRP (GVRP) presented deals with 

three different objectives simultaneously that consider economic, environmental, and 

social aspects. A new hybrid search algorithm to solve the VRP is presented and validated. 
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The algorithm is then employed to solve the stochastic multi-objective GVRP. Pareto fronts 

were obtained and trade-offs between the three objectives are presented. Additionally, an 

analysis on the effect of customers’ time window relaxation is presented. 

Finally, the last chapter of the thesis presents the conclusions obtained from the performed 

research, as well as recommendations for future work based on the results of this study. 

1.6 Proposed Framework 

In the past, manufacturers were considered the main drivers of the supply chain. They 

controlled the way at which products were manufactured and distributed. Today, customers 

are the main drivers, and manufacturers are competing to meet their demands by 

manufacturing products that are different in options, styles, features, quick order 

fulfillment, and fast delivery (Jain et al., 2010). Best value supply chains are the chains 

most likely to prosper within this today’s competition and are the ones that use strategic 

SCM in an effort to excel in terms of speed, quality, cost, and flexibility (Muysinaliyev 

and Aktamov, 2014).  As shown in the literature, supply chain models have mainly used 

two different quantitative performances, either cost; and or a combination of cost and 

customer responsiveness, ignoring important measures such as output measures. The 

selection of performance measures in supply chain is considered one of the critical steps in 

the SCM. A Framework that adopts Beamon’s performance measures in supply chain 

(Beamon, 1999) is proposed (Figure 1-5), emphasizing on the three different types of 

measures: resource, output, and flexibility measures. These three measures are all 

interrelated as the output of the supply chain is affected by the resources used and the 

flexibility of the system is determined by the output whether it is a product or service.  

 

Figure 1-5: Supply Chain Management Framework 
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The framework includes developing a transportation optimization model that takes into 

account not only the transportation cost per unit distance or cost per unit shipped, but also 

other transportation operations involved and trade-offs between transportation costs and 

other aspects done using a decision support system. The transportation model framework 

(Figure 1-6) includes routing decisions using private or outsourced fleet, Homogenous or 

nonhomogeneous fleet. Furthermore, supplier poor management, customer orders 

uncertainties, carrier delays, lack of updated/accurate data, and other external 

circumstances are considered sources of risk. Implementation of risk management is to 

minimize supply chain disruptions and uncertainties, where stochastic analytical models 

are considered. This is done by identifying the sources of risk in the model, their 

consequences, actions, and backup scenarios and finally monitoring risks to detect the them 

when they occur (Tuncel and Alpan, 2010). The proposed framework should be a valuable 

assessment tool for the newer generation of SCM applications. 

 

Figure 1-6: Transportation Model Framework 
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Chapter 2  

2 New Hybrid Search Algorithm for the Capacitated 
Vehicle Routing Problem 

The vehicle routing problem is one of the most studied combinatorial optimization 

problems in operations research. The problem deals with a homogenous fleet of capacitated 

vehicles that operates from a central depot serving a set of customers with known demands. 

The objective of the problem is to design a set of routes serving customers with minimum 

cost. The vehicle routing problem is classified as NP-hard problem. Exact and approximate 

algorithms have been developed in the literature to solve the Capacitated Vehicle Routing 

Problem (CVRP). However, exact methods can only solve relatively small size problems 

while approximate algorithms have been able to reach near-optimum solutions. The 

purpose of this chapter is to develop a new hybrid search algorithm that combines the 

evolutionary genetic search with a new local search heuristic to solve the CVRP. The 

proposed heuristic calculates a resultant objective function based on both the distance 

travelled and the demand associated with the given customer. A new set of genetic 

operators suited for the problem was employed. Several computational experiments were 

conducted. The algorithm was validated and was capable of converging to the optimum 

solution of the tested benchmark instance. 

2.1 Introduction 

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization 

problems in operations research (Uchoa, et al., 2017). The CVRP is an extension of the 

well-known Traveling Salesman Problem (TSP) where, a set of minimum distance routes 

are determined to visit a given set of customers with known demands without violating the 

capacity constraint of the vehicles used (Derigs and Reuter, 2009). The VRP is classified 

as NP-hard. Several exact and approximate solution methods have been used to solve the 

problem. Exact methods can only solve relatively small size problems while approximate 

algorithms have been able to reach near-optimum solutions (Baldacci et al., 2010). The 

aim of this chapter is to present a new hybrid search algorithm for the vehicle routing 

problem using a new local search heuristic and an evolutionary algorithm.  
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The chapter is divided as follows: Section 2.2 provides a brief literature review on the 

CVRP and the solutions approaches found. Section 2.3 describes the problem 

characteristics and the mathematical formulation of the problem of study. Section 2. 4 

illustrates the hybrid search algorithm proposed followed by the experimental results in 

Section 2.5. Finally, in Section 2.6, the conclusions drawn from this work are presented. 

2.2 Literature Review 

The vehicle routing problem was first introduced by Dantzig and Ramser (1959) as a 

variant of the travelling salesman problem. The problem was later refined by adding extra 

realistic constraints such as the capacitation of the vehicle routes (Laporte, 1992). 

Algorithms employed for solving the problem can be divided into algorithms seeking exact 

optimum solutions (exact algorithms) and those seeking near-optimal solutions 

(approximate algorithms). In further research both categories were hybridized. Table 2-1 

presents a summary of the characteristics of the reviewed methods, including reference, 

problem class, solution technique, problem characteristics, type of objective function, and 

objectives. The solution techniques are classified as exact, approximate, and hybrid. 

2.2.1 Exact algorithms 

Baldacci et al. (2004) briefly discussed the exact methods of solving the capacitated VRP. 

These methods included: branch-and-cut, branch-and-bound, dynamic programming, and 

set-partitioning methods. In exact methods, the optimal solution is found for relatively 

small sized problems if sufficient time and space is given to the problem.  

2.2.2 Approximate algorithms 

Later research utilized heuristics or pseudo random search algorithms to arrive at near-

optimal solutions of larger problem instances. Several heuristics (approximate algorithms) 

have been proposed for the VRP and are divided into two classes: classical heuristics and 

metaheuristics.
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Table 2-1: Summary of Capacitated vehicle Routing Problem Literature 
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Leeuwen and 
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1983 VRP 
Classical 
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 ● ● ● ●  ●   ● ●   ●  ●    

Haimovich et al. 1985 VRP 
Classical 
Heuristics 

 ● ● ● ●  ●    ●   ●  ●    

Kulkarni and 
Bhave 
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  ● ● ●  ●   ● ● ●  ●   ●   

Laporte 1989 MDVRP Exact ●  ● ● ●  ●   ●  ●  ●   ●   
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Mathematical 
Formulation 
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Laporte 1992 VRP Exact/ approx. ● ● ● ● ●  ●   ● ●   ●      
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Metaheuristics 
(GA) 

 ● ● ● ●  ●   ● ●   ●  ●    

Baldacci, et al. 2004 VRP Exact ●  ● ● ●  ●    ●   ●   ●   
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Koo, et al. 2004 VRP 
Metaheuristics 
(Tabu Search) 

 ●  ● ●  ● ●   ●   ●    ●  

Wassan 2006 VRP 
Metaheuristics 
(Tabu Search) 

 ● ● ● ●  ●    ●   ●   ●   

Baldacci, et al. 2007 VRP Exact ●  ● ● ●  ●    ●   ●   ●   

Faulin, et al. 2008 VRP 
Classical 
Heuristics/ 
Simulation 

 ● ● ● ●  ●    ●   ●  ●    

Montoya-Torres, 
et al. 

2009 VRP 
Classical 
Heuristics 

 ● ● ● ●  ●    ●   ●   ●   

Baldacci and 
Mingozzi 

2009 
HVRP/SDVR
P/ MDVRP 

Exact ●  ● ●  ● ●    ● ● ● ●   ●   

Hosny and 
Mumford 

2009 

Multi -
pickup and 
delivery 
VRPTW 

Metaheuristics 
(GA) 

 ●  ●   ●  ●  ●  ●  ●   ● ● 

Baldacci, et al. 2010 CVRP/ HVRP Exact ●  ● ● ● ● ●    ●    ●  ●  ● 

Baldacci, et al. 2010 
VRP/ 
VRPTW/ 
MDVRP/ 

Exact ●  ● ● ● ● ●  ●  ●  ● ●   ●   
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Vidal, et al. 2012 
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/ PVRP 

Hybrid  ● ● ● ●  ●   ● ● ● ● ●  ●    

Weyland, et al. 2013 VRP 
Classical 
Heuristics 

 ●     ●    ●   ●    ●  

Subramanian, et 
al. 

2013 
AVRP/ 
OVRP/ 
MDVRP 

Hybrid  ● ● ● ●  ●    ● ● ● ●   ●   

Vidal, et al. 2014 
VRP/ 
MDVRP/ 
PVRP 

Hybrid  ● ● ● ●  ●   ● ● ● ● ●  ●    

Karakatic and 
Podgorelec 

2015 MDVRP 
Metaheuristics 
(GA) 

 ● ● ● ●  ●   ●  ●   ●  ●  ● 

Wang et al. 2017 
Stochastic 
demand 
VRP 

Metaheuristics 
(GA) 

 ● ● ● ●  ●   ● ●   ●   ●   

Biesinger at al. 2018 
Stochastic 
demand 
VRP 

Metaheuristics 
(GA) 

 ● ● ● ●  ●   ● ●   ●   ●   
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Some of the classical heuristics related to the capacitated VRP as the sweep algorithm, the 

Clarke and Wright algorithm, and the Christofides-Mingozzi-Toth two-phase algorithm 

were addressed by Laporte (1992). Buxey (1970) adapted the classical Clarke and wright 

Heuristic and calculated a saving heuristic to find the best set of routes where a combination 

of the savings heuristic and Monte Carlo simulation is used to plan the routes of the fleet. 

Leeuwen and Volgenant (1983) introduced a heuristic algorithm that can be considered as 

the basis for an exact algorithm, where asymmetrical transformation of the symmetrical 

VRP is used. The proposed algorithm allows for violating capacity constraints and then 

adjust the solution to satisfy the constraint using subtour elimination. Haimovich, et al. 

(1985) implemented a regional partitioning heuristic that geometrically divide customers 

into subsets/regions that allow them to be served by a single vehicle. Montoya-Torres, et 

al. (2009) used random based heuristic algorithm to design vehicle routes. Faulin, et al. 

(2009) introduced the SR1 simulation-based heuristic algorithm that uses initial good 

solutions from the classical clarke and wright heuristic then a random oriented local search 

is used to find the list of best solution routes. Weyland et al. (2013) proposed a local search 

heuristic that assigns different collection points to vehicles to solve a real-world oil 

collection problem of the VRP. 

Metaheuristic approaches as Genetic Algorithms (GA), Tabu Search (TS), and Simulated 

Annealing (SA) are discussed in literature to solve several classes of the vehicle routing 

problem. Metaheuristics are general solution procedures that provides both a general 

structure and strategy guidelines for developing a specific heuristic method (Hillier and 

Lieberman, 2005). Metaheuristics explore the solution space, identify good solutions, and 

often embed some of the standard route construction and improvement heuristics. 

Metaheuristics allow deteriorating and even infeasible intermediate solutions during the 

search process (Bräysy and Gendreau, 2005). 

Baker and Ayechew (2003) applied a straightforward Genetic Algorithm to the VRP and 

showed that incorporating neighborhood search into the GA produces significant 

improvement to the solution. Koo et al. (2004) proposed a two-phase heuristic procedure. 

The first phase finds the lower bound of the fleet size, while the second phase applies a 
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tabu search to find the solution set of routes. Wassan (2006) introduced a Reactive Tabu 

Search (RTS) with a new escape mechanism to solve the CVRP. Hosny and Mumford 

(2009) applied Genetic algorithm to a special class of the vehicle routing problem, a multi 

pickup and delivery VRP with time windows. The GA handled both grouping and routing 

aspects simultaneously. A study by Karakatic and Podgorelec (2015) presented a survey of 

genetic algorithms that are designed for solving the multi depot vehicle routing problem 

and stated that GA is preferred for solving large NP-hard problems over exact and other 

heuristic methods due to their main advantage of the linear scaling with growing problem 

size. Wang et al. (2017) applied a genetic algorithm-based approach to solve a 2-echlon 

CVRP with stochastic demands with 4 satellites and 20 customers. Biesinger et al. (2018) 

introduced a GA that uses a solution archive to solve the VRP to store all generated 

solutions and avoid adding duplicates to the population. The main feature of this approach 

is the bounding extension that is similar to the branch and bound search. 

2.2.3 Hybrid Algorithms 

A limited number of hybrid search algorithms are proposed in literature. Subramanian et 

al. (2013) proposed ILS-SP hybrid algorithm that combines the Iterated Local Search 

heuristic with the Set Partitioning approach to find new solutions based on known routes 

from previous local optimums. Vidal et al. (2012 and 2014) proposed the Unified Hybrid 

Genetic Search (UHGS) that finds not only good but diverse solutions by applying a 

continuous diversification procedure to modify the objective function during parents and 

survivors’ selection (Uchoa et al., 2017). 

In this chapter a new hybrid search algorithm is proposed. The algorithm combines the 

evolutionary genetic search with a new local search heuristic. In routing decisions, the 

heuristic considers both locations and demand quantities of the nodes to be visited not just 

distances travelled as the proposed model will serve as a basis to subsequent multi-

objective green vehicle routing model that will be developed in the upcoming chapters. 

The objectives of these models will be minimizing the fuel consumption rate, the total 

travel time, minimizing the number of vehicles used and maximizing the customer 

satisfaction, where fuel consumption rate will be calculated as a cost function of the 

distance traveled and the vehicle’s load to determine fuel consumption cost. For this reason, 
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it was important to consider both the location and the demand associated with each 

node/customer in routing decisions as implemented in the new local search heuristic 

proposed. In addition, the GA operators will use the resultant local search heuristic as a 

tool to adjust the routes created in the process of applying the mutation and crossover 

operators to guarantee the feasibility of the routing decisions. The generation of infeasible 

solutions that goes through further processing to handle and repair the infeasibility during 

the search, increases the processing time and the complexity of the algorithm (Hosny,and 

Mumford, 2009). Therefore, the proposed hybrid algorithm utilizes the resultant local 

search heuristic in applying the GA operators so that the solution produced requires no 

repairing.  

2.3 Problem Description 

2.3.1 Characteristics of the Problem 

The CVRP of study consists of n+1 points, n customers and a depot. Distances (di,j) 

between each two points is known. The objective is to determine a set of minimum cost 

routes to be performed by a homogeneous fleet of vehicles (m) to serve a given set of 

customers (n) with known demands (q); where, each route starts and ends at a single depot. 

Each customer must be assigned to only one vehicle and the total demand of all customers 

assigned to a vehicle does not exceed its capacity (Q).  

Table 2-2: Problem Characteristics 

Element Characteristics 

Size of fleet Unbounded 

Type of fleet Homogenous 

Origin of vehicles Single depot 

Demand type Deterministic Demand (Known) 

Location of demand At the customer (node) 

Maximum time on route No constraint 

Objective Minimize total distance 

Constraints 1. Single visit at customers, 
2. Routes start and end at depot, 
3. Nodes served by single vehicle, 
4. Vehicle capacity cannot be exceeded 

The number of vehicles (routes) to be used is not fixed but to be determined by the solution 

approach. In some studies, the number of vehicles is fixed, while others define a minimum 
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possible number of vehicle routes (Kmin). According to Uchoa et al. (2017) there are two 

reasons for not fixing the number of vehicles used. The first reason is that fixing the number 

of routes is an indirect way of minimizing the fixed cost associated with the cost per 

vehicle, in other words ignoring the trade-off between variable and fixed costs associated 

with the suggested set of routes. The second reason is that in literature the original CVRP 

proposed by Dantzig and Ramser (1959) did not consider fixing the number of routes to 

the problem as it requires adding the cost of unused capacity to the model which in practice 

is of minor importance. According to the authors, minimization of the travel distance is 

independent on the number of vehicles used. Table 2-2 summarizes the characteristics of 

the CVRP of the study. 

2.3.2 Mathematical Modeling 

The formulation of the problem is presented in a previous publication where integer 

decision variables are used where the formulation has been validated using several tools 

(Elgharably et al., 2013). The VRP problem is a generalization of the Travelling salesman 

Problem (TSP) that introduces more than one salesman (m); hence, m number of tours can 

be done; each starting and ending at the depot. For formulating the VRP, the starting 

customer is considered node 1 (depot); where 𝑋𝑖 represents the current visited node and 𝑌𝑖 

represents the next node to be visited, where i varies from 1 to n, and n is the number of 

nodes to be visited by a given vehicle k. Now, m routes are introduced to the model; where, 

distance 𝑑𝑋𝑖,𝑌𝑗
 is associated with each arc and represents the distance travelled from node 

𝑋𝑖
𝑘 to node 𝑌𝑗

𝑘 on route k, as shown in Figure 2-1. 

The decision variable is 𝑌𝑖
𝑘; where, 𝑌𝑖

𝑘 determines the value of the next customer i to be 

visited on route k. The 𝑋𝑖
𝑘 variable represents the value of the start node of the arc on route 

k. The use of loop segments is not allowed (leaving a node then arriving to same node, 

𝑋𝑖
𝑘 ≠  𝑌𝑗

𝑘), as all nodes must be visited exactly once. The binary variable 𝑆𝑋𝑖,𝑌𝑗

𝑘  is the set 

of all possible arcs connecting any two nodes on route k. 𝑆𝑋𝑖,𝑌𝑗

𝑘  is given a value of 1 if arc 

(𝑋𝑖
𝑘,  𝑌𝑗

𝑘) belongs to route k; 0 otherwise. Both 𝑋𝑖
𝑘 and 𝑆𝑋𝑖,𝑌𝑗

𝑘  are considered uncontrollable 

variables. 
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Figure 2-1: Illustration of the VRP (Elgharably et al., 2013) 

The problem is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
 

 
(1) 

Subject to 
 

 

𝑋1
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (2) 

𝑌𝑛
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (3) 

𝑋𝑖
𝑘 =  𝑌𝑖−1

𝑘      ∀ 𝑖 = 2, … , 𝑛,  
                                                             ∀𝑘 = 1, . . . , 𝑚 

(4) 

𝑋𝑖
𝑘  ≤ 𝑛        ∀𝑘 = 1, . . . , 𝑚 (5) 

𝑌𝑖
𝑘  ≤ 𝑛       ∀𝑘 = 1, . . . , 𝑚 (6) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑚

𝑘=1

𝑛

𝑗=1

= 1     ∀ 𝑖 = 2, … , 𝑛 (7) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑚

𝑘=1

𝑛

𝑖=1

= 1     ∀ 𝑗 = 1, … , 𝑛 − 1 (8) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

∗ 𝑞𝑌𝑗
≤ 𝑄𝑘      ∀𝑘 = 1, … , 𝑚 (9) 

𝑋𝑖
𝑘 , 𝑌𝑗

𝑘 > 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (10) 

The objective function (1) minimizes the total travel distance on all k routes; where, m is 

the number of routes proposed. Constraints (2) and (3) ensure that each route starts and 

ends at the depot. Constraint (4) ensures that each route of the k routes is not segmented, 

that is, if a vehicle arrives at a customer, it eventually leaves the customer again. 

Constraints (5) and (6) state the range of values given, whereas constraints (7) and (8) state 

that every customer is visited exactly once. Knowing that at each customer, customer’s 
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demand (𝑞𝑌𝑗
) is present and that each vehicle has limited capacity 𝑄𝑘; constraint (9) 

ensures that the total demand of all customers assigned to a route k does not exceed the 

vehicle’s capacity. Finally, constraint (10) is the non-negativity constraint and guarantees 

that the variables can assume integer values only. 

2.4 New Hybrid Search for VRP 

The proposed hybrid search algorithm combines the evolutionary genetic search algorithm 

with a new local search heuristic that calculates a heuristic resultant based on both the 

distance travelled or the location of the nodes/customers and the demand associated with 

the given node/customer. Genetic algorithm is considered an approximate solution 

approach (metaheuristic) that is used to solve NP-hard class of problems to obtain not 

necessarily optimum but near-optimum solutions. GA’s performance and results on time 

constraints and limited computer power obtains competitive solutions compared to other 

metaheuristic approaches. GA is a stochastic adaptive optimization algorithm which a 

subset of evolutionary algorithms, that adopts Darwin’s theory of evolution, consisting of 

the reproduction, selection and diversity nature basic principles. It was first introduced in 

1960 by John Holland (Karakatic and Podgorelec, 2015). 

2.4.1 Resultant Local Search Heuristic (RLSH) 

In the implemented local search method, a heuristic resultant for each customer was used 

as follows: 

𝐻𝑅𝑖 = =  𝜆 𝑑𝑖,𝑗 + (1 − 𝜆) 𝐷𝑅𝑖                                                                      (11) 

where 𝐻𝑅𝑖 = Heuristic Resultant for customer i, 𝜆 and (1 – 𝜆) = weights of the distance and 

demand (used to achieve diversity and not to be caught in local optimum),  𝑑𝑖,𝑗 =  Euclidian 

distance to be travelled from the current node (i) to the expected following node (j) by 

customer i, and 𝐷𝑅𝑖 = Demand Remainder for customer i, which is the difference between 

the vehicle’s capacity and the demand (i), where demand (i) is the quantity of items to be 

delivered or picked up by the vehicle at the customer i. For example, at the beginning of 

constructing the route, the current location would be the depot, while in the middle of the 

route the current location would be the last visited node/customer as shown in Table 2-3.  
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The function identifies the nearest route (heuristic) based on the RLSH function between 

the remainder of the demand of each node compared to the vehicle capacity and the 

distance from the current location to the following node.  

Table 2-3: Resultant Local Search Heuristic Process 

Resultant Local Search Heuristic steps 

Step 1: Normalize X and Y coordinates for depot and nodes/customers, 
Step 2: Find the number of nodes in the problem, 
Step 3: Create a list with all nodes, 
Step 4: Initialize the Routes Matrix, 
Step 5: While number of nodes > 0 

Loop to find all routes, 
Step 6: Start with the Depot, current node = Depot, 

XCurrent = XDepot;  
YCurrent = YDepot; 

Step 7: Calculate Euclidean distance from current node to all nodes, 
Step 8: Calculate the Normalized remainder of the demand to all nodes, 

Remainder Demand Normalized = (VehicleCapacity – Node Demand) / VehicleCapacity; 
Step 9: Calculate the Heuristic resultant for each node, 

HeuristicResultant = alpha x DistancesCurrent + (1-alpha) x Remainder Normalized Demand. 
Step 10: Find the node with the minimum Heuristic Resultant, Node(i), 
Step 11: Update the total demand for the current route/vehicle, 
Step 12: If TotalRouteDemand <= VehicleCapacity 

Insert the selected node to the Route, 
Step 13: Update the location of the vehicle to the selected node, 

XCurrent = XNodesNormalized(i); 
YCurrent = YNodesNormalized(i); 

Step 14: Update the number of nodes and the nodes list, 
Delete the identified node from the node list, 

Step 15: Update the location of the vehicle to the selected node, 
Step 16: Repeat from step 7 to continue forming the route, 
 Step 17: Otherwise: (TotalRouteDemand >= VehicleCapacity) 

Do not insert the selected node to the Route, 
Insert the identified route to the Routes matrix, 

Step 18: Start a new route from depot, 
Repeat from step 5, 

Step 19: Return the Routes Matrix after all nodes are inserted. 

Routes are constructed using the nodes (i) of the nearest heuristic resultant until the vehicle 

capacity is reached then a new route is initiated. The developed resultant heuristic is used 

in the initialization process of the population generation and in deterministic operators 

described in the following subsections. As stated by Baker and Ayechew (2003) 

incorporating neighborhood searches to the GA resulted in more improvements to solution.  

Therefore, a portion of the evolutionary search population is filled heuristically using the 

RLSH heuristic, while the remaining portion is filled randomly. 
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2.4.2 Initial population and fitness function 

In GA, the first step is the initialization of population that consists of several solutions to 

the problem. Each solution is called a chromosome. A fitness function associated to each 

chromosome is calculated to evaluate the goodness of each solution. In case of CVRP, the 

lower scores of the fitness function are favored, since CVRP is a minimization problem of 

the total distance travelled by the vehicles. The chromosome representation is shown in 

Figure 2-2 for the problem described in Appendix A.  

  Number of nodes assigned to the given Route 

   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

N
u

m
b

er
 o

f 
R

o
u

te
s 

1 2 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 6 4 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 5 7 10 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 3 8 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 9 12 14 15 19 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

 
 

Route 1 2 11 13   

Route 2 6 4 16   

Route 3 5 7 10 17  

Route 4 3 8 18   

Route 5 9 12 14 15 19 
 

Figure 2-2: Chromosome representation 

Each chromosome is a matrix (n, n), n is the number of nodes/customers to be visited in 

the given problem of study that represents a feasible solution to the problem. Each row in 
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the chromosome matrix represents a route that starts and ends at the depot with no 

violations to the capacity constraints. A portion of the initial population is filled 

heuristically using the local search heuristic developed, the remaining portion is filled 

randomly to achieve diversity and not to be caught in a local optimum. The random part of 

the initial population is based only on the vehicle capacity ignoring any distance 

calculations. 

A set of operators are then performed to the initial population to mimic the nature of 

evolution. Operators as selection, mutation and crossover are used to widen the search 

space and inherit good solutions to the next generations. The flowchart in Figure 2-3 shows 

the process of the genetic algorithm. An elitist selection process is performed, where a 

portion of the existing population is used to breed the new generation. Individuals are 

selected based on their fitness function. 

 

 

Figure 2-3 Genetic Algorithm Process (Karakatic and Podgorelec, 2015) 



29 

 

2.4.3 Mutation Operators  

To achieve diversity and to widen the span of the search space, a set of one deterministic 

and four random mutation operators is applied. A deterministic Route Reduction Mutation 

(RRM) is performed that decreases the number of routes in a solution without violating 

any constraints. The aim is to lower the number of routes considering only capacity and 

demand calculations. The routes found in an individual solution are sorted based on the 

highest remaining demand compared to the vehicle capacity. Routes with maximum 

remaining capacity are combined with the ones with min demand Figure 2-4. While routes 

with remaining capacity less than the minimum demand in the route remain unchanged. 

The routes are then adjusted using the resultant local search heuristic illustrated in Section 

2.4.1. Comparably, Hosny, and Mumford (2009) applied a vehicle merge operator to a 

pickup and delivery VRP that merges two vehicles selected at random. The nodes of the 

selected vehicles are placed in a relocation pool and distributed on the existing vehicle 

routes before constructing new routes. 

 

Figure 2-4: Illustration of the Route Reduction Mutation (RRM) 

Random Node Exchange Mutation (RNEM) is a mutation operator that exchanges nodes 

from randomly selected routes without violating any capacity constraints. Two nodes are 

selected at random from the previously chosen routes and are then exchanged yielding to 

different routes with updated total demand for each route (Figure 2-5(a)). The routes are 

then adjusted using the resultant local search heuristic. The random node exchange 

mutation was used by Baker (2003), and Ayechew, and Biesinge (2018). 

Random Node Transfer Mutation (RNTM) is a mutation operator that transfers a randomly 

selected node from one route to another. The two selected routes are chosen randomly 
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(Figure 2-5(b)) where if a node is transferred from a one-node route the number of routes 

will decrease by one. The routes are then adjusted using the developed resultant heuristic 

with no capacity violation. Similarly, a mutation operator called relocation heuristic by 

Wang et al. (2017) and an insertion mutation by Pereira et al. (2002) and Ursani et al. 

(2011) were applied in literature. However, these operators remove one customer from its 

location and reinsert it in a different location whether in the same route or a different one 

with no demand and vehicle capacity considerations.  

 

Figure 2-5: Illustration of the Random Mutation Operators 

Random Arc Exchange Mutation (RAEM) illustrated in Figure 2-5(c) and Random Arc 

Transfer Mutation (RATM) illustrated in Figure 2-5(d) follows the same process of the 

Random Node Exchange Mutation (RNEM) and Random Node Transfer Mutation 

(RNTM) but instead of selecting nodes at random, arc within the route are selected at 

random. Taking into consideration if an arc is transferred from a two-node route the number 

of routes will decrease by one, in case of the RATM operator. A route insertion mutation 

by Garcia-Najera and Bullinaria (2011) applies the same concept of the arc transfer 

mutation. 
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2.4.4 Crossover operators 

Crossover is the process which two individual chromosomes act as two parents and are 

combined to produce two children where the children inherit characteristics from the 

parents. Two crossover operators are performed, one at random while the other is 

deterministic that inherits good characteristics from parents. 

 

Figure 2-6: Illustration of the Crossover Operators 

Hosny, and Mumford (2009) applied a vehicle copy crossover that copies a random number 

of good routes from each parent, where good routes are ranked according to the number of 

nodes served in each route. If the number of routes is similar, then routes are ranked based 

on the total distance travelled. Wang et al. (2017) modified the vehicle copy crossover to 

use a different insertion heuristic to construct routes for the remaining node in the 

relocation pool rather than the construction algorithm applied by Hosny and Mumford 

(2009). The Heuristic Inheritance Crossover (HIC) is a deterministic crossover operator 

that perform changes to the routes within a given solution inheriting good routes without 

violating any constraints. The HIC is used for intensification of good solutions in the 
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breeding generation rather than diversification. In each chromosome the heuristic resultant 

is calculated based on distances and demands for each route and is sorted. The number of 

good routes to be inherited by each child is predetermined. Then the best predetermined 

number of routes from Parents 1 and 2 are sent to each child correspondingly. From the 

other parent, the routes with no common nodes are inherited and sent to each child. The 

remaining set of nodes that are not present in any of the selected parent routes are 

considered floating nodes that are found in a relocation pool and are to be distributed 

among the routes or to form new routes in each child without violating capacity constraints 

(Figure 2-6). The new routes are then adjusted using the resultant local search heuristic in 

Section 2.4.1. 

Random Inheritance Crossover (RIC) follows the same process as the HIC operator, the 

only difference is that the routes to be inherited from parent 1 and 2 are chosen at random 

not based on good routes. The RIC operator acts as a diversification operator. 

2.5 Computational Study 

To evaluate the performance of the developed algorithm a computational study is 

conducted. Several benchmark data sets were proposed in literature. Uchoa et al. (2017) 

proposed a new benchmark dataset that provides a more comprehensive and balanced 

experimental setting to the classic CVRP.  

2.5.1 The benchmark problem instance 

In order to check the validity of the proposed solution algorithm, Problem instance: X-

n101-k25 is taken from Uchoa et al. (2017) new benchmark instances and is implemented 

in MATLAB.  

Instance: X-n101-k25 (Appendix B) consists of a depot and 100 customers, the number of 

vehicles to be used is not fixed but the minimum feasible number of vehicles is known 

(Kmin = 25). The vehicle capacity is 206 units. Demands of customers [0,100] are 

deterministic. Euclidian distances are calculated from the given X and Y co-ordinates. The 

depot and customer positioning of the X-n101-k25 instance is random and the optimal 
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solution of the instance is known (Total Distance = 27591). Figure 2-7 shows the location 

of both the depot and the customers for instance X-n101-k25. 

 

Figure 2-7: Location grid for instance X-n101-k25 (Uchoa et al., 2017) 

The validation of the proposed solution algorithm is a two-step process. First, the 

percentage of the heuristic local search used in the initial population of the hybrid algorithm 

is to be determined (Section 2.5.2). Then, the second step is to determine the best set of 

model parameters to be used in the evolutionary model (Section 2.5.3). 

2.5.2 Effect of usage of the local search Heuristic  

In the developed algorithm, a portion of the initial population is filled heuristically using 

the local search heuristic developed while the remaining portion is filled randomly to 

achieve diversity. To determine the portion of the initial population to be filled 

heuristically, a set of runs with different percentages of the local search Heuristic are 

performed. The algorithm is tested several times at different percentages ranging from 10 

to 90 percent of the population. Figure 2-8 shows a sample of the runs performed at the 

different levels of the heuristic H at 10%, 30% and 60 % of the initial population to be 

filled heuristically using the Local search Heuristic. H in the figure denotes the percentage 

of local search heuristic usage in the initial population of the hybrid algorithm. At thirty 

percent (H=0.3), the figure shows that the model converges to better solutions rather than 

the ten and sixty percent. 
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Figure 2-8: Sample runs to determine the Heuristic (H) portion of the initial 

population 

2.5.3 Evolutionary Model Parameters 

To determine the evolutionary model parameters, a second set of runs is performed. Five 

different trials of the paramaters configuration are performed to determine the number of 

times to perform the mutation and crossover operators. Each trial is experimented at 

different levels of lambda (λ) in Equation 11. 

Table 2-4 shows the configuration of each trial. The scenario assumed for each trial is as 

follows:  

• Trial 1: reduced crossovers and increased random node exchange and transfer 

mutations, 

• Trial 2: reduced crossovers and increased random arc exchange and transfer mutations, 

• Trial 3: reduced crossovers and route reduction mutation, and increased all other 

operators, 

• Trial 4: increased route reduction mutation and reduced all other operators, 
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• Trial 5: increased random crossover and reduced all other operators. 

Figure 2-9: Best solution reached at each trial 

  

a) Best Solution results for trial 1 b) Best Solution results for trial 2 

 
 

c) Best Solution results for trial 3 d) Best Solution results for trial 4 

 

e) Best Solution results for trial 5 
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Table 2-4: Mutation and crossover operator configuration of each trial 

Trial 
Number 

Number of times to apply the Operator 

Route 
Reduction 
Mutation 

Node 
Exchange 
Mutation 

Node 
Transfer 
Mutation 

Arc 
Exchange 
Mutation 

Arc 
Transfer 
Mutation 

Heuristic 
Inheritance 
Cross-over 

Random 
Inheritance 
Cross-over 

1 12 10 10 4 4 5 5 

2 10 5 5 10 10 5 5 

3 6 10 10 10 10 2 2 

4 20 5 5 5 5 5 5 

5 5 5 5 5 5 5 20 

The best results of the runs performed to each of the five trials are illustrated in Figure 2-9, 

where Figure 2-9 (c) shows that the configuration of Trial 3 achieved the best fitness value; 

shortest total distance compared to the other trials. More runs were performed on Trial 3 

configuration. More time and a greater number of generations were used to run the 

algorithm to test its capability of reaching the best-known solution.  

 

Figure 2-10: Validation of the proposed hybrid algorithm 

The introduced new hybrid search algorithm was capable of finding the best-known 

solution to the Uchoa et al. (2014) benchmark X-n101-k25 data instance as shown in Figure 

2-10. 
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2.6 Conclusion 

A new hybrid search algorithm that combines the evolutionary genetic search with a new 

local search heuristic is developed to solve the capacitated vehicle routing problem. The 

proposed heuristic calculates a heuristic resultant based on both the distance travelled and 

the demand associated with the given customer not only distances as previously considered 

in the literature. The developed algorithm will be a fundamental tool for the development 

of a multi-objective green VRP that considers demand quantities in the calculation of fuel 

consumption rates. For this reason, the demand quantity consideration was included as an 

aspect in the routing decisions. In addition, a new set of simple genetic operators that 

requires no further repairing after application were developed and implemented in the 

algorithm. Several computational experiments were conducted to define the best set of 

model parameters. The proposed algorithm was validated and found to be satisfactory. The 

developed algorithm was capable of converging to the optimum solution of the tested 

benchmark instance. The developed algorithm is considered the base model to be used in 

the subsequent chapters, where the hybrid algorithm will be implemented in solving multi-

objective green vehicle routing problems in both deterministic and stochastic 

environments. 
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Chapter 3  

3 Multi-Objective Green Vehicle Routing Model with 
Customer Satisfaction 

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization 

problems in operations research. The problem deals with a homogenous fleet of capacitated 

vehicles that operates from a central depot aiming at finding the minimum cost set of routes 

that serves a set of customers with known demands. The vehicle routing problem is 

classified as NP-hard problem. Exact and approximate algorithms have been developed in 

literature to solve the capacitated VRP. Exact methods can only solve relatively small size 

problems while approximate algorithms have been able to reach near-optimum solutions. 

In further research both categories were hybridized. Recently, the area of green logistics 

and the environmental issues associated received great attention. The concern of studying 

fuel consumption and greenhouse gases (GHG) grow to be essential. The purpose of this 

chapter is to study the multi-objective vehicle routing problem in green environment. The 

Green VRP (GVRP) presented deals with three different objectives simultaneously that 

considers economic, environmental, and social aspects. The model utilizes a new hybrid 

search algorithm to solve the GVRP. Pareto fronts were obtained and trade-offs between 

the three objectives are presented. Furthermore, an analysis of the effect of changing the 

capacity of the vehicles is presented. 

3.1 Introduction 

The vehicle routing problem is known to be one of the most studied combinatorial 

optimization problems. The study of the problem first emerged in the late 1950s, when 

Dantzig and Ramser introduced the truck dispatching problem. Different variants of the 

capacitated vehicle routing problem were introduced later in literature. The variants differ 

according to the characteristics of the problem  such as: Vehicle Routing Problem with 

Time Windows (VRPTW) where customers are to be supplied within a specific time frame, 

Multi-depot Vehicle Routing Problem (MDVRP) where supply is provided from different 

depots, Multi-Pickup and Delivery Vehicle Routing Problem (MPDVRP) when customers 

may require different services of pickup and delivery, and Heterogenous Vehicle Routing 
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Problem (HVRP), where different types of vehicles with different capacities are used. This 

chapter will focus on the vehicle routing problem with time windows in green environment. 

In addition to routing decisions, the aspect of scheduling will be added to the problem of 

study, where time windows will be introduced at each customer and service times will be 

considered. The aim of this chapter is to study the Green Vehicle Routing Problem (GVRP) 

and to present a multi-objective GVRP model. The proposed model handles three different 

objectives simultaneously. The model minimizes the total operational cost, minimizes the 

environmental cost, and maximizes customer satisfaction simultaneously, without 

converting one of the objectives to a constraint with a given threshold as previously 

handled in literature. The developed model utilizes the hybrid search algorithm developed 

in chapter 2. The study presented in this chapter is deterministic.  

The chapter is divided as follows: Section 3.2 provides a review on the green vehicle 

routing problem addressed in literature, and how customer satisfaction was tackled. Section 

3.3 describes the characteristics of the problem, followed by the mathematical formulation 

of the problem of study. Section 3.4 presents the development of the hybrid multi-objective 

optimization model. Section 3.5 presents the computational results of the developed model, 

followed by the numerical analysis in Section 3.6. The conclusions drawn from this study 

is then presented in Section 3.7. 

3.2 Literature review 

One of the primary activities of supply chain is logistics. Freight transportation is 

considered one of the most important parts of logistics that occupies one-third of the 

logistics cost. On the other hand, one of the side effects of vehicle transportation is the 

emission of Greenhouse Gases (GHGs). In 2014, the United States Environmental 

Protection Agency stated that transportation is responsible of 28% of the total emission in 

the US (Afshar-Bakeshloo et al., 2016). 

The concern of studying the environmental issues as fuel consumption and greenhouse 

gases (GHG) in the VRP research area began in the early 2000s (Park and Chae, 2014).  

Sbihi and Eglese (2007) surveyed the area of green logistics and the combinatorial 

optimization formulations related to it. In green logistics, environmental and social factors 
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of distributing goods such as environmental impact, usage of energy and waste, are taken 

into consideration not only economic factors. According to Sbihi and Eglese (2007) the 

area of green logistics is divided into three categories: Reverse Logistics, Waste 

Management, and Vehicle Routing and Scheduling. The authors stated that there is not 

much literature that links the Vehicle Routing and Scheduling Problem (VRSP) with 

environmental concerns. The article also highlighted the importance of directly measuring 

the environmental benefits in VRSP rather than assuming that the reduction of the total 

distance itself provides environmental benefits due to less travel time and fuel 

consumption. Yong and Xiaofeng (2009) presented a VRP based on reducing fuel 

consumption by solving a small-scale problem that includes one vehicle and seven 

customers by enumeration method. They showed that different routing decisions can be 

found when considering fuel consumption rather than considering distances only. Ubeda 

et al.  (2011) presented a case study conducted in Spain that aimed at reducing the 

environmental impact of transportation activities at Eroski Group by applying a distance-

based method to calculate CO2 emissions. Later, Xiao et al. (2012) stated that the amount 

of fuel consumed is of greater concern to transportation companies than the travel distance. 

Xiao et al. (2012) developed a mathematical optimization model to calculate fuel 

consumption as a load dependent function. Park and Chae (2014) reviewed the solution 

approaches of solving the of GVRP and discussed the several exact, heuristics and 

metaheuristics approaches developed to solve the GVRP. They indicated that metaheuristic 

were the major approaches used to solve the GVRP.  

According to the survey presented by Lin et al. (2014), Green Vehicle Routing problems 

can be classified into three problem scenarios: 

1. Energy consumption vehicle routing models, that deal with designing routes with 

minimum energy consumption, and analysis of AFV and facilities, 

2. Pollution and pollution reduction-based models, that focus mainly on the 

environmental impact and the reduction of CO2 emissions explicitly, 

3. Waste management and reverse logistics (Jabir et al., 2017). 

More efforts in the green Logistics were done. Harris et al. (2014) studied the Capacitated 

Facility Location Problem (CFLP) in green logistics that considered CO2 emissions. Tiwari 
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and Chang (2015) used a distance-based approach to calculate the CO2 emission in solving 

GVRP and considered the truck load and average distance travelled to calculate the CO2 

emission factor.  

Table 3-1: Summary of literature review on GVRP 

Author Year Problem Class 

Obj. Fn. Objective 
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Sbihi and Eglese 2007 Time-dependant VRP ●   ●   

Yong and Xiaofeng 2009 FCVRP ●     ● 

Ubeda et al. 2011 VRPB ●     ● 

Xiao et al. 2012 FCVRP ●   ● ● 

Erdogan and Hooks 2012 GVRP with AFVs ●   ●   

Harris et al. 2014 CFLP   ● ● ● 

Tiwari and Chang 2015 GVRP ●   ● ● 

Koc and Karaoglan 2016 GVRP with AFVs ●   ●   

Bruglieri et al. 2016 GVRP with AFVs ●   ●   

Andelmin and Bartolini 2017 GVRP with AFVs ●   ●   

Leggieri and Haouari 2017 GVRP with AFVs ●   ●   

Kadzinski et al. 2017 GVRP   ● ● ● 

Jabir et al. 2017 Multi depot GVRP ●   ● ● 

Saharidis 2017 PRP ●     ● 

Cimen and Soysal 2017 TDGVRP ●     ● 

Affi et al. 2018 GVRP with AFVs ●   ●   

Macrina et al. 2019 GVRP ●   ● ● 

A Green Vehicle Routing Problem (GVRP) that utilizes Alternate Fuel Vehicles (AFV) to 

reduce the environment impact was presented by Erdogan and Hooks (2012), Burugelieri 

et al. (2016), Koc and Karaoglan (2016), Leggieri and Haouarri (2017), Andelmin and 

Bartolini (2017) and Affi et al. (2018), all aiming at reducing fossil-fuel use to decrease 

GHG emissions. Green Vehicle Routing Problem with Alternative Fuel Vehicles (GVRP 

with AFV) is a variant of the GVRP that utilizes vehicles employing different fuel sources 

such as natural gas, electricity, and ethanol other than gasoline and diesel-powered vehicles 

(Andelmin and E. Bartolini, 2017). GVRP with AFV requires including refueling stops to 

be encountered in planning vehicle routes. Conventional vehicles have a long driving range 
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and are known for short fueling time. On the other hand, AFV have limited fuel autonomy 

and require stopping for refueling with relatively long fueling delays as Alternative Fuel 

Stations (AFS) are not widespread along the road networks (Burugelieri et al., 2016, and 

Koc and Karaoglan, 2016). 

Cimen and Soysal (2017) proposed an approximate dynamic GVRP with stochastic vehicle 

speeds to obtain environmentally friendly solutions by changing the objective function 

from cost minimization to emission minimization. The model first determines the routes 

that minimizes emissions exclusively. Secondly, the fuel and wage cost are calculated to 

determine the routes that minimize the total expected travel cost, where wage cost is 

computed by each driver's working time and fuel cost estimation depends on vehicle type, 

vehicle speed, and travel distance. Then the results are evaluated by four key performance 

indicators: travelled distance, travel duration, emissions, and travel cost. These key 

performance indicators consider the economic and environmental impact of the results, 

where CO2 emissions are estimated by assuming that each liter of fuel consumption 

generates 2:63 kg CO2, while customer satisfaction measures are not considered. 

In terms of Multi-objective GVRP, a multi-objective model by Kadzinski et al. (2017) 

analyzed a case study with the objectives of minimizing operational costs and lowering 

CO2 emissions, then approximated the Pareto front using scalarization methods. In an effort 

of modeling the emissions associated with the routing decisions, Saharidis (2017) 

introduced an emission factor called Environmental Emission Score (EES) which acts as a 

measure of transportation network factors to model the Pollution Routing Problem (PRP). 

Macrina et al. (2019) extended the model presented by Erdogan and Hooks (2012) and 

considered a mixed vehicle fleet with partial battery recharging and time windows to solve 

the GVRP. The literature review on GVRP in a deterministic aspect is summarized in Table 

3-1. 

A literature survey on VRPs that considered customer satisfaction in modeling is presented 

in Table 3-2. The table shows the way VRP is modeled in literature whether environmental 

impacts were considered or not and indicates if any of the objectives are converted to 

constraints. It also discusses the characteristics of the problem studied such as type of 



47 

 

vehicle fleet, number of vehicles modeled and whether they are considered as a decision 

variable or a fixed predetermined set of vehicles, type of time windows used and whether 

the problem is deterministic or stochastic.  

Studies that addressed the VRPTW as Tang et al. (2009), Zhang et al. (2013), and Goel et 

al. (2019) considered both the operational and customer satisfaction measures with no 

consideration of the environmental impact of the proposed solution routes, in which 

customer satisfaction was handled as a constraint in the problem rather than an objective. 

Both Zhang et al. (2013), and Goel et al. (2019) studied the problem with uncertainty 

considerations.  

Tang et al. (2009) proposed the VRP with fuzzy TW and solved the problem to minimize 

the cost and maximize the sum of service levels of all customers by modeling the service 

level as a constraint. Tang et al. (2009) determined the customer satisfaction level as the 

deviation of service time from the customer's TW, also referred to as supplier's service 

level. Zhang et al. (2013) proposed a Stochastic VRP with soft time windows to minimize 

total cost at a minimum service level probability at each customer.  Goel et al. (2019) 

studied the VRPTW with stochastic demands and service times to minimize transportation 

cost at a determined satisfaction preference index. Tas et al. (2014) introduced the concept 

of flexible time windows where customers accept services outside their original time 

windows concerning a given tolerance. 

Several studies used a utility function approach to model the objective function in VRPs 

as: Fan (2011), Barkaoui et al. (2015), and Yang et al. (2015). These studies solved the 

routing problem deterministically. Fan (2011) used a combined objective function to model 

the VRP with simultaneous Pickup and Delivery (VRPSPD) with customer satisfaction. 

Barkaoui et al. (2015) modeled a dynamic VRPTW with customer satisfaction, where 

customer requests are dynamically changing. The study deals with services as diagnosis or 

detection problems where customers may require more than one visit to reach a satisfactory 

level.   
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Table 3-2: Summary of literature on VRP with customer satisfaction 

Author Year 
Problem 

Class 

Obj. Fn. Objectives 
Problem Characteristics  
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Objectives 
handled as 
constraints 

Type of 
Vehicle fleet 

Number 
of 

vehicles 
Time 

Window Feature 

 

Tang et al. 2009 VRPTW ●  ●  ● 
Customer 

satisfaction 
Homogenous Fixed Fuzzy Deterministic  

Fan 2011 VRPSPD ●  ●  ●  Homogenous Fixed Hard Deterministic  

Zhang et al. 2013 VRPTW ●  ●  ● 
Customer 

satisfaction 
Homogenous 

Decision 
Variable 

Soft Stochastic  

Tas et al. 2014 VRPTW ●  ●    Homogenous 
Decision 
Variable 

Flexible Deterministic  

Yang et al. 2015 GVRP ●  ● ● ● Emission Heterogenous 
Decision 
Variable 

Soft Deterministic  

Barkaoui  
et al. 

2015 
Dynamic 
VRPTW 

●  ●  ●  Homogenous Fixed Soft Deterministic  

Afshar-
Bakeshloo 
 et al. 

2016 GVRP  ● ● ● ● 
Customer 

satisfaction 
Heterogenous 

Decision 
Variable 

Fuzzy Deterministic  

Goel et al. 2019 VRPTW ●  ●  ● 
Customer 

satisfaction 
Homogenous Fixed Hard Stochastic  



49 

 

Yang et al. (2015) proposed a multi-objective model that minimizes the total cost, 

minimizes carbon emission, and maximizes customer satisfaction using a weighted utility 

function to convert the problem to a single objective function and impose a limit on the 

carbon emissions as a constraint.  Weighted linear utility functions work well when a 

convex Pareto front is expected between the objective functions, which is not guaranteed.  

Afshar-Bakeshloo et al. (2016) studied a multi-objective GVRP that minimizes operational 

and environmental costs and maximizes customer satisfaction. The second objective was 

presented within the model's constraints with a predetermined lower amount of service 

level. The Pareto front is derived by frequently optimizing the model at different amounts 

of service level. Afshar-Bakeshloo et al. (2016) modeled the problem to solve a set of 10-

customers network and the three objectives were not modeled simultaneously. 

Based on the literature review conducted in the area of Green Vehicle Routing (GVRP) 

and the Vehicle Routing Problems (VRP) with customer satisfaction, the following 

comments are concluded: 

• There is a growing attention to green logistics in the Green Vehicle Routing area. 

• There is a lack of multi-objective models that considers the three objectives: 

economic, environmental, and social aspects simultaneously. 

• Models that addressed the three objectives simultaneously handled one of the 

objectives as a constraint in the problem when constructing routes, where a 

minimum level of service is determined in case of measuring customer satisfaction, 

or a maximum level of emission is considered a constraint in case of lowering the 

environmental impact. 

In this chapter, a multi-objective green vehicle routing model that handles economic, 

environmental, and social aspects is proposed. The proposed model takes into 

consideration; (1) operational costs that include both variable and fixed costs of travel, (2) 

Fuel Consumption Rate (FCR) based on the distance traveled and the load of the vehicle, 

(3) customer satisfaction measured as the deviation from the desired time window provided 

by the customer to accept the service, while all customer demands are fulfilled. The model 

will utilize the hybrid search algorithm developed in Chapter 2. Pareto fronts between costs 
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and customer satisfaction will be obtained and tradeoffs between the three objectives will 

be presented.  A numerical analysis of the effect of changing the capacity of the vehicles 

used on the total operational costs, environmental costs and customer satisfaction is 

examined.   

3.3 Problem Description 

There are several variants of the VRP in the literature. The problem variants differ 

according to the characteristics of the problem. The Vehicle Routing Problem with Time 

windows (VRPTW) of study considers customer satisfaction criteria along with the 

environmental aspect of reducing fuel consumption. In VRPTW, the special aspect of 

routing is blended with the temporal aspect of scheduling. The characteristics of the 

proposed multi-objective Green VRP is presented followed by the mathematical 

formulation of the problem.  

3.3.1 Characteristics of the Problem 

The Multi-Objective Green Vehicle Routing Problem (GVRP) of study consists of n+1 

points, n customers and a depot. The distances (di,j) between each two points is known. The 

objective is to determine the set of routes to be performed by a homogeneous fleet of 

vehicles (m) to serve a given set of customers (n) with known demands (q). Each 

customer(i) is associated with a Time Window, TW [𝛼𝑖,  𝛽𝑖] and a given service time (si). 

𝛼𝑖 is the earliest time a customer can accept a service, while 𝛽𝑖 is the latest time a customer 

can be serviced by vehicle k. The routes of the multi-objective GVRP are constructed to 

minimize total travel costs, minimize fuel consumption rate, and maximize customer 

satisfaction where, each route starts and ends at a single depot. Each customer must be 

assigned to only one vehicle and the total demand of all customers assigned to a vehicle 

does not exceed its capacity (Q). The number of vehicles (routes) to be used is not fixed 

but to be determined by the solution approach. In some studies, the number of vehicles is 

fixed, while others define a minimum possible number of vehicle routes (Kmin).  
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Table 3-3: Problem Characteristics of the GVRP 

Element Characteristic 

Size of fleet Unbounded 

Type of fleet Homogenous 

Origin of vehicles Single depot 

Demand type Deterministic Demand (Known) 

Location of demand At the customer (node) 

Maximum time on route Constrained  

Time windows Soft Time windows 

Objective 

1. Minimize Total Travel Cost 
2. Minimize Fuel Consumption Rate 
3. Maximize Customer satisfaction 

Constraints 1. Single visit at customers, 
2. Routes start and end at depot, 
3. Nodes served by single vehicle, 
4. Vehicle capacity cannot be exceeded 

Uchoa et al. (2017) discussed the reasons for considering the number of vehicles used in 

the problem as a decision variable rather than fixing it. One of the main reasons is that 

fixing the number of routes is an indirect way of minimizing the fixed cost associated with 

the cost per vehicle. In other words, this means ignoring the trade-off between variable and 

fixed costs associated with the suggested set of routes. Additionally, Uchoa et al. (2017) 

stated that the original Capacitated Vehicle Routing Problem (CVRP) proposed by Dantzig 

and Ramser (1959) did not consider fixing the number of routes to the problem as it requires 

adding the cost of unused capacity to the model which in practice is of minor importance. 

According to the authors, minimization of the travel distance is independent of the number 

of vehicles used. Table 3-3 summarizes the characteristics of the green vehicle routing 

problem of study. 

3.3.2 Mathematical Modeling 

The VRP problem is a generalization of the Travelling Salesman Problem (TSP) that 

introduces more than one salesman (m); hence, m number of tours can be done; each 

starting and ending at the depot. For formulating the VRP, the starting customer is 

considered node 1 (depot); where 𝑋𝑖 represents the current visited node and 𝑌𝑖 represents 

the next node to be visited, where i varies from 1 to n, and n is the number of nodes to be 

visited by a given vehicle k. Now, m routes are introduced to the model; where, distance 
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𝑑𝑋𝑖,𝑌𝑗
 is associated with each arc and represents the distance travelled from node 𝑋𝑖

𝑘 to 

node 𝑌𝑗
𝑘 on route k, as shown in Figure 3-1. 

B

A

C

X1
k = Depot

Yn
k = Depot

Y1
1 = B

Y1
1  = X2

1
dX2, Y2

DEPOT

E

D

 

Figure 3-1: Illustration of the VRP (Elgharably et al., 2013) 

The decision variable is 𝑌𝑖
𝑘; where, 𝑌𝑖

𝑘 determines the value of the next customer i to be 

visited on route k. The 𝑋𝑖
𝑘 variable represents the value of the start node of the arc on route 

k. The use of loop segments is not allowed (leaving a node then arriving to same node, 

𝑋𝑖
𝑘 ≠  𝑌𝑗

𝑘), as all nodes must be visited exactly once. The binary variable 𝑆𝑋𝑖,𝑌𝑗

𝑘  represents 

all possible arcs connecting any two nodes on route k. 𝑆𝑋𝑖,𝑌𝑗

𝑘  is given a value of 1 if arc (𝑋𝑖
𝑘,  

𝑌𝑗
𝑘) belongs to route k; 0 otherwise. Both 𝑋𝑖

𝑘 and 𝑆𝑋𝑖,𝑌𝑗

𝑘  are considered uncontrollable 

variables. The problem is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 =  ∑ ∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
∗ 𝐶𝑡 + ∑ 𝐹 ∗ 𝑆1,𝑌𝑗

𝑘

𝑚

𝑘=1

 
 

(1) 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 =  ∑ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙 ∗

𝑛

𝑗=1

𝑛

𝑖=1

 𝑆𝑋𝑖,𝑌𝑗

𝑘 ∗ 𝑑𝑋𝑖,𝑌𝑗
(𝑝𝑜 ∗ +𝛾 ∗ 𝑊𝑋𝑖,𝑌𝑗

 )

𝑚

𝐾=1

 
(2) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓3 =   ∑ 𝑆𝑉𝑖

𝑛

𝑖=1

 
(3) 

 

Subject to 
 

 

𝑋1
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (4) 

𝑌𝑛
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (5) 

𝑋𝑖
𝑘 =  𝑌𝑖−1

𝑘      ∀ 𝑖 = 2, … , 𝑛,  
                                                             ∀𝑘 = 1, . . . , 𝑚 

(6) 

𝑋𝑖
𝑘  ≤ 𝑛        ∀𝑘 = 1, . . . , 𝑚 (7) 
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𝑌𝑖
𝑘  ≤ 𝑛       ∀𝑘 = 1, . . . , 𝑚 (8) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑚

𝑘=1

𝑛

𝑗=1

= 1     ∀ 𝑖 = 2, … , 𝑛 (9) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑚

𝑘=1

𝑛

𝑖=1

= 1     ∀ 𝑗 = 1, … , 𝑛 − 1 (10) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

∗ 𝑞𝑌𝑗
≤ 𝑄𝑘      ∀𝑘 = 1, … , 𝑚 (11) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑡𝑌𝑗
≥ 𝛼𝑗     ∀ 𝑘 = 1, … , 𝑚      

(12) 
 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑡𝑌𝑗
≤ 𝛽𝑗     ∀ 𝑘 = 1, … , 𝑚     

(13) 
 

𝑋𝑖
𝑘 , 𝑌𝑗

𝑘 > 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (14) 

The total transportation operational cost function is minimized in the objective function 

(1). The first term in the objective function calculates the total travel cost calculated from 

the travel time on all k routes; where, m is the number of routes, 𝑡𝑋𝑖,𝑌𝑗
 is the time spent 

travelling from 𝑋𝑖
𝑘𝑡𝑜 𝑌𝑗

𝑘, 𝐶𝑡 cost per unit time. The second term represents the fixed cost 

of operating each vehicle, where F is the vehicle operating cost.  The second objective 

function (2) minimizes the cost of fuel consumption which was proposed by Xiao et al. 

(2012) where, 𝐶𝑓𝑢𝑒𝑙 is the unit fuel cost, 𝑑𝑋𝑖,𝑌𝑗
 is the distance travelled between two nodes, 

𝑝𝑜 no load fuel consumption rate, 𝛾 the coefficient obtained by linear regression between 

fuel consumption rate and the vehicle’s load, (𝛾 =  
(𝑝∗ −𝑝𝑜)

𝑄
 ) where 𝑝∗ is the full load fuel 

consumption rate and 𝑊𝑋𝑖,𝑌𝑗

𝐾  is the gross weight of the vehicle k on a route. The third 

objective function (3) maximizes the customer satisfaction. Customer Satisfaction Value 

(SVi) measures the deviation from TW for each customer, while all customer demands are 

fulfilled. Constraints (4) and (5) ensure that each route starts and ends at the depot. 

Constraint (6) ensures that each route of the k routes is not segmented, that is, if a vehicle 

arrives at a customer, it eventually leaves the customer again. Constraints (7) and (8) state 

the range of values given, whereas constraints (9) and (10) state that every customer is 

visited exactly once. Knowing that at each customer, customers’ demand (𝑞𝑌𝑗
) is present 

and that each vehicle has limited capacity 𝑄𝑘; constraint (11) ensures that the total demand 

of all customers assigned to a route k does not exceed the vehicle’s capacity. Constraints 
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as (12) and (13), represent the Time Window constraints, where each customer i has a time 

window [𝛼𝑖 , 𝛽𝑖]. 𝛼𝑖 is the earliest time a customer can accept a service, while 𝛽𝑖 is the latest 

time a customer can be serviced by vehicle k. The arrival time to next customer is 𝑡𝑌𝑗
. 

Finally, constraint (14) is guarantees that the variables are non-negative and integers. 

3.4 Hybrid Multi-Objective Optimization Model 

Multi-objective optimization involves several competing objectives that cannot be 

combined, making it hard for decision makers since there is no single decision that can be 

considered an optimum solution to solve the problem. However, there is a set of alternative 

solutions that are considered optimal known as the Pareto-optimal solutions. This solution 

set considers all objectives and provides the decision maker with the trade-offs between 

objectives making it easier for decision makers to choose from based on their own 

preference and considerations (Zitzler and Thiele, 1998, 1999). 

The hybrid multi-objective optimization model developed in this chapter combines both 

the Strength Pareto Evolutionary Algorithm (SPEA) developed by Zitzler and Thiele 

(1999) with the Resultant Local Search Heuristic (RLSH) developed earlier in Chapter 2.  

3.4.1 Resultant Local Search Heuristic (RLSH) 

The resultant local search heuristic calculates a heuristic resultant based on both the 

distance travelled or the location of the nodes/customers and the demand associated with 

the given node/customer. In the implemented local search method, a heuristic resultant for 

each customer was used as follows:  

𝐻𝑅𝑖 =  𝜆 𝑑𝑖,𝑗 + (1 − 𝜆) 𝐷𝑅𝑖                                                           (15) 

where 𝐻𝑅𝑖 = Heuristic Resultant for customer i, 𝜆 and (1 – 𝜆) = weights of the distance and 

demand (used to achieve diversity and not to be caught in local optimum),   𝑑𝑖,𝑗 =  Euclidian 

distance to be travelled from the current node (i) to the expected following node (j) by 

customer i, and 𝐷𝑅𝑖 = demand remainder for customer i, which is the difference between 

the vehicle’s capacity and the demand (i), where demand (i) is the quantity of items to be 

delivered or picked up by the vehicle at the customer (i). For example, at the beginning of 
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constructing the route, the current location would be the depot, while in the middle of the 

route the current location would be the last visited node/customer. The function identifies 

the nearest route (heuristic) based on the resultant heuristic function between the remainder 

of the demand of each node compared to the vehicle capacity and the distance from the 

current location to the following node. A detailed illustration of the resultant local search 

heuristic process is presented in Chapter 2. 

3.4.2 Strength Pareto Evolutionary Algorithm (SPEA) 

Evolutionary Algorithms (EA) are believed to be one of the best approaches to solve multi-

objective optimization problems due to the fact that solution sets are processed in parallel 

and at the same time utilize the similarity of the solutions by recombination (Zitzler and 

Thiele, 1998, 1999). 

The Strength Pareto Evolutionary Algorithm (SPEA) developed by Zitzler and Thiele 

(1999) is used for finding the Pareto-optimal set for multi-objective optimization problems. 

Similar to other EAs, the SPEA stores the nondominated solutions externally, and also uses 

the concept of Pareto dominance to evaluate fitness values and performs clustering to 

reduce nondominated solutions without affecting the trade-off front. In addition, SPEA is 

unique as it evaluates the fitness of an individual from the external nondominated set, 

where all solutions of the nondominated set participate in selection and uses a Pareto-based 

niching method to preserve diversity in the population (Zitzler and Thiele, 1999).   

A comparative study performed by Zitzler and Theile (1999) showed that the SPEA 

achieved the best assessment when compared to other four population-based multi-

objective EAs: Vector Evaluated Genetic Algorithm (VEGA), Aggregation by Variable 

Objective Weighting (AVOW), Niched Pareto Genetic Algorithm (NPGA), and 

Nondominated Sorting Genetic Algorithm (NSGA). The performance of the EAs was 

measured quantitatively by two performance measures: the size of the solution space 

covered and the coverage in how one algorithm dominates the solution of the other. The 

study was performed on a Knapsack problem. The experimental results showed that the 

SPEA is capable of finding global optimal trade-off solutions than the solutions found by 

using a single objective EA optimization that uses a linear combination of the objectives. 
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There are two major differences between the SPEA and the other existing multi-objective 

EAs. The SPEA uses a fitness assignment based on the coevolution where a two-stage 

process of fitness assignment is used, the individuals in the external nondominated set are 

ranked then the individuals in the population are evaluated. Moreover, the SPEA uses a 

pareto-based dominance niching technique that is not defined in terms of distance but 

pareto dominance to achieve diversity in the population and reduces the pareto set by 

clustering (Zitzler and Theile, 1999). 

In terms of computational complexity, the VRP is known to be a NP-hard problem. This 

means that the problem cannot be solved in polynomial time with a deterministic turning 

machine. The complexity of the SPEA is known to be O(𝑛𝑜𝑛𝑝
3) for advancing one 

generation, where 𝑛𝑜 is the number of objectives and 𝑛𝑝 is the population size. To calculate 

the actual computational complexity the number of generations used (𝑛𝑔) should be 

considered. Thus the complexity of the SPEA shall be O(𝑛𝑔𝑛𝑜𝑛𝑝
3), (Curry and Dagli, 

2014). 

3.4.3 Initial Population and Operators 

A portion of the initial population is filled heuristically using the local search heuristic 

developed, while the remaining portion is filled randomly to achieve diversity and not to 

be caught in a local optimum. The random portion of the initial population is based only 

on the vehicle capacity ignoring any distance calculations. A set of operators are then 

performed to the initial population to mimic the nature of evolution.  

To achieve diversity and to widen the span of the search space, a set of one deterministic 

and four random mutation operators is applied.  

1. A deterministic Route Reduction Mutation (RRM) is performed that decreases the 

number of vehicles used in a solution without violating any constraints. The aim is 

to lower the number of routes considering only capacity and demand calculations.  

2. Random Node Exchange Mutation (RNEM) is a mutation operator that exchanges 

nodes from randomly selected routes without violating any capacity constraints. 
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3. Random Node Transfer Mutation (RNTM) is a mutation operator that transfers a 

randomly selected node from one route to another, where routes are adjusted using 

the developed resultant heuristic with no capacity violation.  

4. Random Arc Exchange Mutation (RAEM) 

5. Random Arc Transfer Mutation (RATM)  

Two crossover operators are performed, one at random while the other is deterministic that 

inherits good characteristics from parents, as follows: 

1. The Heuristic Inheritance Crossover (HIC) is a deterministic crossover operator 

that performs changes to the routes within a given solution inheriting good routes 

without violating any constraints. The HIC is used for intensification of good 

solutions in the breeding generation rather than diversification.  

2. Random Inheritance Crossover (RIC) follows the same process as the HIC 

operator; the only difference is that the routes to be inherited from parent 1 are 

chosen at random not based on good routes. The RIC operator acts as a 

diversification operator. 

A detailed description of the operators mentioned above, their procedures and figures are 

presented in Chapter 2 (Section 2.4). 

3.4.4 Objective Functions  

The multi-objective GVRP model presented in this study deals with three different 

objectives: economic, environmental, and social aspects.  

The economic aspect can be reflected as minimizing the total transportation operations cost 

function as in Equation (1). While the environmental aspect is measured in terms of 

minimizing the fuel consumption as shown in Equation (2). Finally, maximizing customer 

satisfaction, Equation (3), reflects the social aspect, which is one of the main performance 

measures of the supply chain. 

3.4.4.1 Customer Satisfaction  

Customer Satisfaction Value (SVi) is calculated as the time deviation between the actual 

time of service and the customer’s time window [𝛼𝑖 , 𝛽𝑖], while all customer demands are 
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fulfilled. As mentioned earlier,  𝛼𝑖 is the earliest time a customer can accept a service, 

while 𝛽𝑖 is the latest time a customer can be serviced by the vehicle.  

Several types of Time Windows (TW) have been addressed in the literature. A traditional 

VRPTW would deal with customers’ time windows as a hard TW in which delivery service 

must fall within the customer’s specified TW. However, in real world transportation, TW 

may be violated for practical reasons as mentioned by Tang et al. (2009) such as: 

1. Relaxing the TW constraint can result in a better solution when considering the 

number of vehicles used, time and cost. 

2. Feasible solutions are hard to find if all TW have to be satisfied. Thus, a relaxed 

TW would result in an executable route plan. 

3. It is a fact that customers provide narrow TW, while a little deviation would be 

considered acceptable to them.  

Soft Time Windows accept violations of the customer’s specified TW with a penalty cost 

added once violation occurs. In soft TW, penalty costs are assumed to be linear with the 

degree of violation (Tang et al., 2009). Tas et al., (2014) introduced the VRP with flexible 

TWs, where vehicles are given a certain tolerance in which TW can be deviated. 

In the multi-objective GVRP with customer satisfaction model introduced in this chapter, 

Soft TW are used. If the vehicle arrives after the latest time a customer can accept the 

service, the customer is then unsatisfied. A satisfaction value will be calculated as shown 

in Equation (16), which is the time difference between the arrival time of the vehicle and 

the upper bound ( 𝛽𝑖) of the time window. 

𝑆𝑉𝑖 =  𝛽𝑖 −  𝑡𝑌𝑖
                        ∀ 𝑖 = 2, … , 𝑛, 

 
(16) 

 

Customer Satisfaction Value (SVi) is a variable which can be either zero or a negative 

integer, where the maximum value zero would reflect complete satisfaction. However, if 

the vehicle arrives early at the customer, the vehicle will wait till the earliest time a 

customer can accept the service (𝛼𝑖). This will incur an extra cost due to the increase of the 

travel time on the route that shall be reflected in the travel cost function. 
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3.4.4.2 Total Cost Function 

The total transportation operations cost function in Equation (1), in Section 3.3.2, consists 

of both variable and fixed costs. The first term calculates the total travel distance cost 

calculated from travelling on all routes, while the second term represents the fixed cost of 

operating each vehicle.  The second objective function presented in Equation (2) minimizes 

the cost of fuel consumption. These two objectives can be combined in the model as a 

minimization cost function (17) that aims at both minimizing travel costs and minimizing 

environmental impact by reducing fuel consumption measured in terms of fuel 

consumption cost as shown in the modified objective function (18). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  𝑓1 + 𝑓2 
 

(17) 
 

  
can be written as   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
∗ 𝐶𝑡 + ∑ 𝐹 ∗ 𝑆1,𝑌𝑗

𝑘

𝑚

𝑘=1

+ ∑ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙 ∗

𝑛

𝑗=1

𝑛

𝑖=1

 𝑆𝑋𝑖,𝑌𝑗

𝑘 ∗ 𝑑𝑋𝑖,𝑌𝑗
(𝑝𝑜 + 𝛾 ∗ 𝑊𝑋𝑖,𝑌𝑗

 )

𝑚

𝑘=1

 

(18) 
 

Due to the presence of time windows, an extra cost is calculated. Extra cost reflects cases 

where vehicles arrive early inducing working waiting cost at customers (Equation 19) and 

waiting cost at depot (Equation 20), reflecting cases of late vehicle arrival at the depot. 𝐶𝑒 

is the cost of early arrival at the customer, while 𝐶𝑑 is the cost of delay (late arrival at the 

depot). 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 =  ∑  𝐶𝑒 ∗ (𝛼𝑖 −  𝑡𝑌𝑖
)

𝑛

𝑖=1

 
  

(19) 
 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑎𝑡 𝐷𝑒𝑝𝑜𝑡 =  ∑  𝐶𝑑 ∗ (𝑡1
𝑘 −  𝛽1)

𝑚

𝑘=1

 
 (20) 

 

Then the total cost objective function is adjusted to 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
∗ 𝐶𝑡 + ∑ 𝐹 ∗ 𝑆1,𝑌𝑗

𝑘

𝑚

𝑘=1

+  ∑ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙 ∗

𝑛

𝑗=1

𝑛

𝑖=1

 𝑆𝑋𝑖,𝑌𝑗

𝑘 ∗ 𝑑𝑋𝑖,𝑌𝑗
(𝑝𝑜 + 𝛾 ∗ 𝑊𝑋𝑖,𝑌𝑗

 )

𝑚

𝑘=1

+   ∑  𝐶𝑒 ∗ (𝛼𝑖 − 𝑡𝑌𝑖
)

𝑛

𝑖=1

+     ∑  𝐶𝑑 ∗ (𝑡1
𝑘 −  𝛽1)

𝑚

𝑘=1

               (21) 
 

The developed multi-objective model solves the conventional VRP with time windows in 

green environment and considers customer satisfaction. The model is developed in a way 

that it can handle either delivery or pickup services. The service to be done is considered 

as an input to the model as fuel consumption calculations differ in each case while 

constructing the routes. Fuel consumption rate calculation depends on both the vehicle load 

and the distance travelled. For this reason, the type of service has to be determined upfront 

before running the model.  

3.5 Computational Study 

3.5.1 Dataset generation 

In order to study the proposed multi-objective model, two data sets were used: Solomon’s 

VRPTW benchmark data set and Uchoa et al. VRP benchmark data set. 

Solomon’s VRPTW benchmark problems are known to compare computational 

performance of many algorithms. The problems can be found at: 

http://web.cba.neu.edu/~msolomon/problems.htm. The larger problems are 100-customer 

Euclidean problems where travel times are equal to the corresponding distances. For each 

problem, smaller problems have been created by considering only the first 25 or 50 

customers (Solomon 1987, and Fisher et al., 1997). The problem consists of 100 customers 

and a depot, each with a defined X, Y co-ordinates, service time, demand, and time 

windows. A homogeneous fleet of vehicles with a capacity of 200 is used.  The depot has 

a zero-service time and is considered a customer with a zero demand and a time window 

of [0, 230]. This time window is considered the time horizon required for all routes to be 

http://web.cba.neu.edu/~msolomon/problems.htm


61 

 

fulfilled. The R101 and R102 dataset inputs are presented in Appendix C and Appendix D, 

respectively. 

Uchoa et al. (2017) proposed a new benchmark dataset that provides a more comprehensive 

and balanced experimental setting to the classic CVRP. Problem instance: X-n101-k25 is 

taken from Uchoa et al. new benchmark instances (Appendix B). The problem consists of 

a depot and 100 customers, the number of vehicles to be used is not fixed but the minimum 

feasible number of vehicles is known (Kmin = 25). The vehicle capacity is 206 units. The 

depot and customer positioning of the X-n101-k25 instance is random. 

For both benchmark sets, Euclidean distances are calculated from the given X and Y co-

ordinates, where travel times are equal to the corresponding distances and demands of 

customers [0,100] are deterministic. 

Table 3-4: GVRP Problem Sets 

Data Set 
Distance and Demands Time Windows 

Instance Reference Instance Reference 

Problem set 1 X-n101-k25 Uchoa et al., 2017 R101 Solomon 1987 

Problem set 2 R101 Solomon 1987 R101 Solomon 1987 

Problem set 3 R102 Solomon 1987 R102 Solomon 1987 

Problem set 4 X-n101-k25 Uchoa et al., 2017 R102 Solomon 1987 

Table 3-4 shows the four problem sets that are used to experiment on the multi-objective 

GVRP model developed. Sets 1 and 4 are a combination of Uchoa et al,.2017 and 

Solomon,1987 benchmark datasets. The TW of Solomon’s R101 and R102 are used with 

the X-n101-k25 instance from Uchoa et al.  (2017) to produce two new problem sets; 

problem set 1 and problem set 4, respectively. 

For Solomon’s R101 and R102 problems, the customer co-ordinates are identical for all 

problems within R type dataset. The problems differ with respect to the width of the time 

windows.  Some have very tight time windows, while others have time windows which are 

hardly constraining (Solomon, 1987). 

For this reason, the overlap index is developed to measure how tight are the time windows 

associated with the customers. The index value is calculated as follows: 



62 

 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐼𝑛𝑑𝑒𝑥 =  
∑ ∑ (𝛽𝑖 − 𝛼𝑖) ∩ (𝛽𝑗 − 𝛼𝑗)𝑚

𝑗=2
𝑛
𝑖=2

𝑛 − 1
 

 
(22) 

 

The higher the index, the tighter are the time windows, resulting in more constraining set 

to achieve customer satisfaction.   

Figure 3-2 shows the overlapping time windows of R101 and R102 problems by Solomon. 

The overlap index is a developed index to show the possibility of satisfying customers 

given conflicting demands. As shown in Figure 3-2 (a), the time windows are so tight, 

while Figure 3-2 (b) shows a less conflicting set of demands for customer satisfaction. 

 

 

a. Time Windows and Overlap index for Solomon’s R101 
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b. Time Windows and Overlap index for Solomon’s R102 

Figure 3-2: Time windows and Overlap Index representation 

3.5.2 Parameter Initialization 

The evolutionary model parameters used are shown in Table 3-5. The selection of the 

number of times each operator is applied is based on the study performed in Chapter 2 

(Section 2.5.3). The study explores different configuration settings.  

Table 3-5: Configuration of Evolutionary Operators  

Operator   Name Description Occurrence 

Mutation 

RRM Route Reduction Mutation  6 

RNEM Random Node Exchange Mutation 10 

RNTM Random Node Transfer Mutation  10 

RAEM Random Arc Exchange Mutation 10 

RATM Random Arc Transfer Mutation  10 

Crossover 
HIC Heuristic Inheritance Cross over 2 

RIC Random Inheritance Cross over 2 

Runs at different number of generations are done to determine the suitable number of 

generations to be used in the algorithm. Several runs are performed at different values over 
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an interval [2000, 6000] of the maximum number of generations, while the other 

parameters are unchanged. 

Figure 3-3 shows a sample of the experimental runs performed at different generations 

settings. The maximum number of generations to be used in the EA is 4000 as shown in 

Figure 3-3(c) which captures the trade-offs between the two conflicting objectives with a 

broader set of optimal solutions in the Pareto front. 

Table 3-6: Problem sets Characteristics 

Problem 
Set 

Distance and Demands Time Windows Overlap 
Index 

Vehicle 
Capacity 

(Q) 

Number of 
customers 

Instance Reference Instance Reference 

Problem 1 X-n101-k25 
Uchoa et al., 

2017 
R101 

Solomon, 
1987 

62.82 206 100 

Problem 2 R101 
Solomon, 

1987 
R101 

Solomon, 
1987 

62.82 200 100 

Problem 3 R102 
Solomon, 

1987 
R102 

Solomon, 
1987 

37.98 200 100 

Problem 4 X-n101-k25 
Uchoa et al., 

2017 
R102 

Solomon, 
1987 

37.98 206 100 

 

3.5.3 Results 

Computational experiments on the four problem data sets (Table 3-6) are performed. All 

data sets operate from a central depot and routes are constructed using a set of homogenous 

fleet of vehicles with a limited capacity (Q) to serve a delivery service to a given set of 

customers with deterministic demands. Euclidean distances are calculated from the given 

X and Y co-ordinates, where travel times are equal to the corresponding distances. The 

cost coefficients (𝐶𝑡 , 𝐹, 𝐶𝑓 , 𝐶𝑒 , 𝐶𝑑) are set to (2, 1000, 4, 0.5, 1). The fuel consumption 

coefficients (𝑝0, 𝑝∗) are set to (1, 2) as in Xiao et al. (2012). Using the EA parameters 

defined in Table 3-5, and a maximum number of generations of 4000, the problem is solved 

using MATLAB. 
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a. Experimental run with 3000 generations 

 

b. Experimental run with 3500 generations 

 

c. Experimental run with 4000 generations 

 

d. Experimental run with 4500 generations 

Figure 3-3: Sample runs to determine the number of generations in the EA 



66 

 

 

Figure 3-4: Pareto Fronts of the multi-objective GVRP 

The results of the model runs are presented in Figure 3-4. The figure shows the trade-offs 

between the two objectives, minimizing total costs and maximizing customer satisfaction. 

In Figure 3-4 (a) and Figure 3-4 (d), a wide set of Pareto-optimal solutions is found which 

presents the trade-off solutions between the two objectives. However, Figure 3-4 (b) and 

Figure 3-4 (c) show a constrained set of Pareto-optimal solutions. The reason for that is the 

difference in the grid scale, and locations of customer and their demands. As shown in 

Table 3-7, both problems 1 and 2 have lower customer satisfaction compared to problems 

3 and 4. This is due to the tightness of the time windows, which is analyzed using the 

overlap index values of each set. Both problems 1 and 2 have time windows that are 

constraining the solution with an overlap index equal to 62.82. On the other hand, problems 
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3 and 4 has time windows that are more relaxed and are hardly constraining the solution 

with an overlap index equal to 37.98. 

Table 3-7: Results of the Multi-Objective GVRP 

  
Problem 

Set 
Number 

of Routes 
Customer 

Satisfaction 

Total 
Travel 
cost 

Variable 
Cost 

Fixed 
Cost 

Cost of Fuel 
Consumption 

Extra 
Cost 

M
in

im
u

m
  

To
ta

l C
o

st
 Problem 1 24 -10602 114630 30423 24000 45913 14294 

Problem 2 8 -4160.9 12369 1077.7 8000 1512.7 1778.7 

Problem 3 8 -3754.1 12105 1060.3 8000 1440.2 1604.2 

Problem 4 23 -5158.8 108160 29366 23000 44639 11157 

C
o

m
p

ro
m

is
e

 

ca
se

 

Problem 1 27 -5426.1 121640 32323 27000 46659 15656 

Problem 2 8 -3735.5 12387 1045.2 8000 1404.9 1937.2 

Problem 3 8 -3269 12120 1070.6 8000 1470.3 1578.8 

Problem 4 26 -3299.1 113000 30370 26000 44325 12304 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 Problem 1 29 -2754.6 129210 35370 29000 49736 15106 

Problem 2 8 -3659.6 12471 1065.2 8000 1428.4 1977.7 

Problem 3 8 -3004.5 12200 1065.2 8000 1428.4 1706.6 

Problem 4 27 -1941.7 120140 32964 27000 47997 12183 

3.6 Numerical Analysis 

A study on the effect of changing the vehicle capacity (Q) on total travel cost, the total 

environmental cost and the customer satisfaction is conducted on problem 1 and 4. An 

interval of the vehicle capacity range is [160, 300] with increments of 20s, along with an 

increase of the vehicle fixed operating cost as in Table 3-8. 

Table 3-8: Changes in vehicle capacity and vehicle operating cost 

Cost per unit vehicle 800 900 1000 1100 1200 1300 1400 1500 

Vehicle Capacity 160 180 200 220 240 260 280 300 

For each problem 1 and 4, three points are taken from the Pareto fronts of each problem. 

These three points represent a midpoint and two extreme endpoints on the Pareto front. The 

selected points are as follows: 

1. Compromise point which is a Pareto-optimum point along the middle of the Pareto 

front. 

2. First extreme endpoint represents minimum total cost and the corresponding 

customer satisfaction, which is low in this case. 
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3. Second extreme endpoint represents the maximum customer satisfaction and the 

corresponding total cost, which is high in this case. 

 

Figure 3-5: Effect of Changing Q on both Total Cost and Customer satisfaction, 

Problem 1 

Figure 3-5 shows the effect of changing the vehicle capacity on both the total cost and the 

customer satisfaction for problem 1. The total cost of serving the customers decreases with 

the increase of vehicle capacity. The more the capacity, the less number of vehicles needed 

to fulfill customer demands. As the vehicles can carry more units, the number of vehicles 

decreases resulting in low customer satisfaction. On the other hand, the smaller the vehicle 

capacity, the better customer satisfaction is achieved. Similarly, for problem 4 shown in 

Figure 3-6, the vehicle capacity is inversely proportional with the total costs of constructing 

the routes, and the customer satisfaction objective.  
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Figure 3-6: Effect of Changing Q on both Total Cost and Customer satisfaction, 

Problem 4 

For the purpose of further investigation, the comprise case is selected from Problem 1 to 

examine the effect of changing the vehicle capacity (Q) on the economic, environmental, 

and social aspects considered in this study. Figure 3-7, shows the effect of changing the 

vehicle capacity on the travel costs and environmental costs separately and customer 

satisfaction. Tradeoffs between the three objectives are presented in Figure 3-7, and 

decisions can be taken based on the decision-maker’s perspective. 
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Figure 3-7: Effect of changing Q on economic, environmental, and social aspects 

3.7 Conclusion 

In this chapter, the multi-objective green vehicle routing problem is investigated. An 

extensive literature review on Green Vehicle Routing Problems (GVRP) is conducted. In 

addition, a literature review on VRPs with customer satisfaction in traditional VRPs and 

GVRPs is done. A model that handles the economic, environmental, and social aspects is 

developed. Previously in the literature, multi-objective VRPs handled one of the objectives 

as a constraint, and Pareto fronts were obtained by running the model several times at 

different levels of the constraint, while others handled the problem using weighted utility 

functions. Weighted linear utility function methods work well when a convex Pareto front 

is expected between the objective functions. In the case of nonconvex MOOP, evolutionary 

methods work better in finding the Pareto optimal solutions (Singh et al., 2013). As shown 

in Figure 3-4, the problem presented in this chapter is a nonconvex problem with disjoint 

solutions. Genetic Algorithms are known for their ability to search the different areas of 

the solution space simultaneously, finding a diverse solution set for multi-objective 
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optimization problems with non-convex, discontinuous, and multimodal search spaces 

(Singh et al., 2015). 

The developed model, handles the three objectives simultaneously and Pareto-optimum 

solutions are found, offering the decision maker a set of solutions to tradeoff between the 

total travel, environmental costs, and customer satisfaction. Travel costs considers both 

variable costs associated with the travelled distance and fixed costs for operating the 

vehicles. Environmental costs reflect the amount of fuel consumption that is measured in 

terms of travel distance and varies depending on the load of the vehicle. Customer 

satisfaction is measured as the deviation from the time window specified by the customers. 

Problem instances from both benchmark problems of Solomon and the new benchmarks 

by Uchoa et al. are used. A new overlap index is developed to measure the amount of 

overlap between customers’ time windows that provides an indication of how 

tight/constrained the problem is. The multi-objective GVRP studied is solved in MATLAB 

and evolutionary algorithms are used. The Strength Pareto Evolutionary Algorithm (SPEA) 

developed by Zitzler and Thiele is combined with the new resultant local search heuristic 

developed in Chapter 2 to obtain the Pareto fronts of the model. Furthermore, the effect of 

changing the vehicle capacity is investigated. The total cost of serving the customers 

decreases with the increase of vehicle capacity. The more the capacity, the less number of 

vehicles needed to fulfill customer demands, as the vehicles can carry more units. 

Therefore, the number of vehicles decreases resulting in low customer satisfaction. On the 

other hand, the smaller the vehicle capacity, the better customer satisfaction is achieved. 

The analysis shows how each of the three objectives is affected and provides an overall 

vision of the effect of choosing a different vehicle with a different load capacity. 
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Chapter 4  

4 Stochastic Multi-Objective Vehicle Routing Model in 
Green Environment with Customer Satisfaction 

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization 

problems in operations research and are classified as NP-hard. Introducing uncertainty to 

the problem increases the complexity of solving such problems. Sources of uncertainty in 

VRPs can be travel times, service times and unpredictable demands of customers. Ignoring 

these sources, may lead to inaccurate modeling of the VRP. Moreover, the area of green 

logistics and the environmental issues associated received great attention. The purpose of 

this chapter is to study the stochastic multi-objective vehicle routing problem in green 

environment. The stochastic Green VRP (GVRP) presented deals with three different 

objectives simultaneously that consider economic, environmental, and social aspects. A 

new hybrid search algorithm to solve the VRP is presented and validated. The algorithm is 

then employed to solve the stochastic multi-objective GVRP. Pareto fronts were obtained 

and trade-offs between the three objectives are presented. Furthermore, an analysis on the 

effect of customers’ time window relaxation is presented. 

4.1 Introduction 

One of the most challenging combinatorial optimization problems is the vehicle routing 

problem. The VRP was first proposed in the late 1950s by Dantzig and Ramser (Khaliigh 

and MirHassaani, 2016). Since then, the problem has been studied extensively.  Introducing 

different characteristics to the VRP led to the presence of several variants of the problem. 

The VRP aims at constructing a minimum cost set of vehicle routes serving a set of known 

customers. Routes are constructed starting from depots, serving customers, then returning 

back to the depot. The Capacitated Vehicle Routing Problem (CVRP) is a well-known class 

of the VRP, where capacity limits are introduced to the vehicles serving customers with 

known demands. Introducing time boundaries where customers can accept the service 

provided within those limits is known as the VRP with Time Windows (VRPTW). In 

VRPTW the aspect of routing is combined with scheduling. Several variants of the VRP 

are present in literature such as: Multi-depot Vehicle Routing Problem (MDVRP) where 
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supply is provided from different depots, Multi-Pickup and Delivery Vehicle Routing 

Problem (MPDVRP) when customers may require different services of pickup and 

delivery, and Heterogenous Vehicle Routing Problem, where different types of vehicles 

with different capacities are used. Toth and Vigo (2002) presented a comprehensive 

overview of the VRP along with its formulations, solution methods, and variants.  

In real life, uncertainty plays an important role in the process of routing and scheduling of 

VRPs. It is important for express and logistic industries to consider the uncertainty existing 

to reduce the costs associated with planning the routes and costs of failures of the planned 

schedules (Wang et al., 2017). Sources of uncertainty in a VRP can be travel times, service 

times and unpredictable demands of customers. Ignoring these sources, may lead to 

inaccurate modeling of the VRP. Applications of Stochastic VRPs (SVRP) are online retail 

businesses as Alibaba and Amazon (Wang et al., 2017), in-home delivery businesses, milk 

collection systems, waste collection services (Goel et al., 2019 and Biesinger et al., 2018), 

cash collection from banks, delivering products to cities under emergencies (Khaligh and 

Mirhassani, 2016), courier delivery, delivery of goods to supermarkets, routing of 

maintenance units, routing of sales units and dial-a-ride services (Gounaris et al., and 

Pandelis et al., 2013). 

This chapter studies the stochastic VRP in green environment with customer satisfaction 

criteria. The multi-objective models proposed take into consideration three main 

objectives: (1) minimizing the total operational cost, (2) minimizing the environmental 

cost, and (3) maximizing customer satisfaction, simultaneously, without converting one of 

the objectives to a constraint with a given threshold. Three models are proposed to address 

the multi-objective green vehicle routing problem with customer satisfaction and are 

presented in this chapter. The first model addresses the GVRP with uncertain travel times 

and service times taking into consideration customer satisfaction. The second and third 

models handles the GVRP with customer satisfaction under uncertain travel times, service 

times and customer demands. The uncertain demands are conducted in the second and third 

models with two different demand policies: chance constrained, and recourse, respectively. 
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This chapter is divided as follows: Section 4.2 provides a review on the stochastic vehicle 

routing problem addressed in literature, and how uncertainty was tackled in GVRP. Section 

4.3 describes the characteristics of the problem, followed by the mathematical formulation 

of the problem of study. Section 4.4 illustrates how the hybrid multi-objective optimization 

model is developed. Section 4.5 presents the multi-objective GVRP with uncertain travel 

and service times. Section 4.6 presents the multi-objective GVRP with uncertain demands 

and times followed by the numerical analysis in Section 4.7. Finally, the conclusions drawn 

from this work are presented in Section 4.8. 

4.2 Literature Review 

Vehicle Routing Problems are NP-hard. Introducing uncertainty to the problem increases 

the complexity of solving such problems, making classical optimization methods infeasible 

(Cimen and Soysal, 2017). Several sources of uncertainty are present in the real-world VRP 

such as: travel times, service times, and customer demands. Travelling on an arc is 

stochastic in nature as travel times can be affected by weather, congestion due to car 

accidents and/or construction, rush hours or any other factors that might affect the time of 

travel between two locations (Cimen and Soysal, 2017). Ignoring travel times' uncertainty 

leads to inaccurate estimation of the fuel consumption and scheduling of customers visits, 

which will lead to customer dissatisfaction. Service times can also be uncertain considering 

the human factor of performing a service (delivery/pickup of goods) and the correlation to 

the uncertain demand acquired by the customer. Uncertainty in demands means that the 

deterministic customer demands are unknown and only demands with known distributions 

are known. The actual demands are revealed only when the vehicle reaches the customer 

(Zhang et al., 2016).  In literature, two policies are considered when modeling the VRP 

with stochastic demands; Chance Constrained Program (CCP) and Stochastic Program 

with Recourse (SPR) (Gendreau et al., 1996). 

In an effort to review the VRP with uncertainty, Table 4-1is developed. The table presents 

a summary of the literature review conducted on VRPs with uncertainty. The table shows 

the problem class of study, the objectives addressed, whether the objective function is 

single or multi. The table also determines the elements of uncertainties in the problem.   
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Table 4-1: Summary of literature on the VRPs with uncertainties 

Author Year 
Problem 

Class 

Obj. 
Fn. 

Objectives 

Problem Characteristics 

Uncertainty 
Demand 

Policy 
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constraints  T

im
e

 

 S
er

vi
ce

 t
im

e
 

 D
em

an
d

 

 C
h

an
ce

 C
o

n
st

ra
in

ed
 

 R
ec

o
u

rs
e

 

Laporte et al. 2002 VRP ●   ●           ●   ● 

Ak and Erera 2007 VRP ●   ●           ●   ● 

Tan et al. 2007 VRP   ● ●           ●   ● 

Maden et al. 2010 VRP ●   ●       ●         

Juan et al. 2011 VRP ●  ●          ●   ● 

Lei et al. 2011 VRP ●   ●           ●   ● 

Pishvaee et al. 2012 GLND   ● ● ●     ●   ●     

Ahmmadi-Javid 
and Seddighi 

2013 VRP ●   ●           ● ●   

Gounaries et al. 2013 VRP ●   ●       ●   ● ●   

Pandelis et al. 2013 VRP ●   ●           ●   ● 

Zhang et al. 2013 VRPTW ●   ●   ● 
Customer 

satisfaction 
●         

Khaligh and 
Mirhassani 

2016 VRP ●   ●           ●   ● 

Zhang et al. 2016 VRP ●   ●   ● 
Customer 

satisfaction 
    ●   ● 

Cimen and 
Soysal 

2017 GVRP  ● ● ●    ●         

Wang et al. 2017 VRP ●   ●           ●   ● 

Biesinger at al. 2018 VRP ●   ●           ●   ● 

Goel et al. 2019 VRPTW ●   ●   ● 
Customer 

satisfaction 
  ● ●   ● 

One of the most popular stochastic routing problems is the SVRP with variable demand. 

Laporte et al. (2002), Ak and Erera (2007), Lei et al. (2011), Juan et al. (2011), Pandelis 

et al. (2013), Khaligh and Mirhassani (2016), Wang et al. (2017), and Biesinger et al. 

(2018) studied the single objective SVRP with uncertain demand and used the SPR policy 
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in case of route failures without considering the other objectives; the environmental impact 

or customer satisfaction considerations. 

Juan et al. (2011) introduced a SVRP with stochastic demands, intending to reduce costs 

by considering a vehicle capacity that is lower than the actual capacity in planning the 

routes and using the extra capacity as a safety stock to handle variations in demand aiming 

at reducing the probability of route failure.   

Ahmmadi-Javid and Seddighi (2013) studied a special variant of the VRP, where location-

allocation decisions of a set of potential producers-distributers and the routing decisions 

associated is to be made to minimize the total annual costs given a stochastic production 

capacity. A shortage of capacity is handled as a cost of delay, lost sales, or outsourcing 

without giving much attention to customer satisfaction nor environmental impact. 

Modeling the uncertainty in demands, travel times and service times is important in 

modeling VRPs with customer satisfaction in green environment. Ignoring uncertainty 

leads to in accurate modeling of transportation operations. Some efforts in modeling 

uncertainty as simplifying the problem were done as in Gounaris et al. (2013) where the 

problem was converted to a deterministic case by realizing the worst-case scenarios or by 

using constant average travel times as in Maden et al. (2010). A study on VRP with time 

varying data by Maden et al. (2010) showed that using constant average travel times leads 

to a significant inaccurate calculation of travel times resulting in missing the specified time 

windows. In the stochastic GVRP with customer satisfaction, three main objectives are 

optimized simultaneously, where economic, environmental, and social aspects are 

considered in the model. Simplifying the problem to the worst-case scenario considers the 

most serious or severe outcome that may happen in a given situation. Converting the 

uncertainty in demand to a deterministic maximum value means more number of vehicles 

used leading to less utilized vehicles and an increase in the operating cost. Moreover, 

modeling for the maximum deterministic value of travel times implies inaccurate 

calculation of the fuel consumption cost and arrival times at customers while modeling 

resulting in a decrease in customer satisfaction. Considering the worst-case scenario to 

simplify the presented model and ignoring the uncertainty in the model will lead to an 
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inaccurate calculation of operational costs, environmental costs and customer satisfaction 

and ignores the trade-off present among them. 

Zhang et al. (2013) applied a discrete approximation method to generate the arrival time 

distributions of vehicles in the presence of TW and adjusted customer service level to 

obtain trade-offs between costs and service levels. Later, Zhang et al. (2016) and Goel et 

al. (2019), both considered the SVRP with uncertain customer demands minimizing the 

total cost, while ensuring a given on-time delivery probability to each customer. Goel et 

al. (2019) added the factor of stochastic travel times to the model. All the previously cited 

research studied the SVRP without considering the environmental impact of the proposed 

solutions. 

As shown in Table 4-1, not much attention was given to GVRPs with uncertainty and multi-

objective models that can address the economic, environmental and customer satisfaction 

aspects at the same time. The multi-objective model by Tan et al. (2007) considered the 

SVRP with uncertain demand and minimized the travel distance, the driver wage and 

number of vehicles, all of which are considered economic aspects, ignoring the effect of 

the suggested routes on the environment, and ignoring customer satisfaction measures. 

Pishvaee et al. (2012) studied the Green Logistics Network Design (GLND) problem that 

aims at minimizing the environmental and economic impacts of the network under time 

and demand uncertainties. The GLND is a multi-echelon single product network that 

involves production, distribution, and customers and strategic decisions regarding 

locations, numbers, and capacities of required facilities in the logistics network as well as 

aggregate material flow between them. Cimen and Soysal (2017) proposed an approximate 

dynamic GVRP with stochastic vehicle speeds to obtain environmentally friendly solutions 

by changing the objective function from cost minimization to emission minimization. The 

model first determines the routes that minimizes emissions exclusively. Secondly, the fuel 

and wage cost are calculated to determine the routes that minimize the total expected travel 

cost, where wage cost is computed by each driver's working time and fuel cost estimation 

depends on vehicle type, vehicle speed, and travel distance. Then the results are evaluated 

by four key performance indicators: travelled distance, travel duration, emissions, and 

travel cost. These key performance indicators consider the economic and environmental 
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impact of the results, where CO2 emissions are estimated by assuming that each liter of fuel 

consumption generates 2:63 kg CO2, while customer satisfaction measures are not 

considered. 

One of the main goals of a Supply Chain (SC) is to maximize competitiveness in addition 

to maximizing profitability during both the production and distribution stages of the SC 

(Lambert at al., 1998). Accounting only for economic impacts as variable and fixed costs 

does not serve the main goal of the SC.  In the past, manufacturers were considered the 

main drivers of the supply chain. They controlled the way at which products were 

manufactured and distributed. Today, customers are the main drivers, and manufacturers 

are competing to meet their demands by manufacturing products that are different in 

options, styles, features, quick order fulfillment, and fast delivery (Jain et al., 2010). Best 

value supply chains are the chains most likely to prosper within this today’s competition 

and are the ones that use strategic SCM in an effort to excel in terms of speed, quality, cost, 

and flexibility (Muysinaliyev and Aktamov, 2014). Therefore, considering customer 

satisfaction measures in distribution models is essential in supply chain management.  

A literature survey on VRPs that considered customer satisfaction is presented in Table 

4-2. The table shows how the VRP was modeled in previous studies and state the problem 

class of study. The table also shows whether environmental impacts, and customer 

satisfaction were taken into consideration, and states the problem environment whether it 

is deterministic or stochastic. In case of multi-objective models, the table shows if the 

objectives were optimized simultaneously or one of the objectives was converted into 

constraints.  

Tang et al. (2009) studied the VRPTW to minimize costs and model customer satisfaction 

as a constraint in the model. Zhang et al. (2013 and 2016) and Goel et al. (2019), studied 

the stochastic VRPTW with the aim of minimizing costs at a minimum service level 

probability at each customer, ignoring environmental impact of the constructed routes. 
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Table 4-2: Summary of literature on VRPs with customer satisfaction 

Author Year 
Problem 

Class 

Obj. Fn. Objectives 
Problem 
Feature 
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Tang et al. 2009 VRPTW ●   ●   ● 
Customer 

satisfaction 
●    

Fan 2011 VRPSPD ●   ●   ●  ●    

Zhang et al. 2013 VRPTW ●   ●   ● 
Customer 

satisfaction 
  ●  

Yang et al. 2015 GVRP  ●  ● ● ● Emission ●    

Barkaoui et al. 2015 
Dynamic 
VRPTW 

●   ●   ●  ●    

Afshar-
Bakeshloo et al. 

2016 GVRP   ● ● ● ● 
Customer 

satisfaction 
●    

Zhang et al. 2016 VRP ●  ●   ● 
Customer 

satisfaction 
 ●  

Goel et al. 2019 VRPTW ●   ●   ● 
Customer 

satisfaction 
  ●  

Several studies used a utility function approach to model the objective function in VRPs 

such as: Fan (2011), Barkaoui et al. (2015), and Yang et al. (2015). These studies solved 

the routing problem deterministically.  Fan (2011) used a combined objective function to 

model the VRP with simultaneous Pickup and Delivery (VRPSPD) with customer 

satisfaction. Barkaoui et al. (2015) modeled a special variant of VRPTW, where customer 

requests are dynamically changing. The study dealt with services as diagnosis or detection 

problems not delivery or pickup of goods, where customers may require more than one 

visit to reach a satisfaction level. Yang et al.  (2015) proposed a model that minimizes the 

total cost, minimizes carbon emission, and maximizes customer satisfaction using a 

weighted utility function for the objectives and imposing a limit on the carbon emissions 

as a constraint. Weighted linear utility functions works well when a convex Pareto front is 

expected between the objective functions which is not guaranteed when solving the multi-

objective vehicle routing problem.  
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Afshar-Bakeshloo et al. (2016) studied a multi-objective GVRP that minimizes operational 

and environmental cost and maximizes customer satisfaction to solve a set of 10-customers 

network. The study represented the second objective within the model's constraints with a 

predetermined lower amount of service level, and by frequently optimizing the model at 

different amounts of service level, the Pareto front is derived. The study is deterministic 

and does not solve the three objectives simultaneously.  

Based on the literature review conducted in the areas of VRPs with uncertainties (Table 

4-1) and the VRP with customer satisfaction (Table 4-2), the following comments are 

concluded: 

1. Studying the stochastic VRP received attention in the last decade with more focus 

on the economic aspects associated with demand uncertainty and less attention to 

the environmental impact. 

2. The SPR policy is the most common way to handle uncertainties in demand.  

3. Few studies are conducted to examine the VRP with customer satisfaction under 

uncertainty. 

4. Research on GVRP with customer satisfaction is limited to the deterministic study 

as in Yang et al. (2015) and Afshar-Bakeshloo et al. (2016). 

5. Models that addressed the three objectives simultaneously handled one of the 

objectives as a constraint in the problem when constructing routes, where a 

minimum level of service is determined in case of measuring customer satisfaction 

(Afshar-Bakeshloo et al., 2016) or a maximum level of emission is considered a 

constraint in case of lowering the environmental impact (Yang et al., 2015). Both 

studies addressed the problem in a deterministic environment. 

6. There is a lack of multi-objective models that considers the three objectives: 

economic, environmental, and social aspects with uncertainty. 

This chapter proposes a stochastic multi-objective GVRP that handles economic, 

environmental, and social aspects simultaneously. Three different models are presented. 

The first model deals with uncertainties in travel and service time. The second and third 

models deal with uncertain times and demand, where CCP and SPR policies handle route 

failures, respectively. The models utilize the hybrid search algorithm developed in chapter 
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2. Pareto fronts between costs and customer satisfaction are obtained and trade-offs 

between the three objectives are presented.  A numerical analysis is conducted to study the 

effect of relaxation of time windows on the total operational costs, environmental costs and 

customer satisfaction is examined.   

4.3 Problem Description 

4.3.1 Characteristics of the Problem 

The stochastic multi-objective GVRP of study consists of n+1 points, n customers and a 

single depot. Distances (di,j) between each two points is known, although stochastic travel 

times between two locations are considered. The objective is to determine the set of routes 

to be performed by a homogeneous fleet of vehicles (m) to serve a given set of customers 

(n) with uncertain demands (q). Customer demands are independent and known only when 

the vehicle arrives at the customer. Each customer(i) is associated with a Time Window, 

TW [𝛼𝑖 ,  𝛽𝑖] and an uncertain service time (si). 𝛼𝑖 is the earliest time a customer can accept 

a service, while 𝛽𝑖 is the latest time a customer can be serviced by vehicle k. The routes of 

the multi-objective GVRP are constructed to minimize the expected total travel costs, 

minimize the expected fuel consumption rate, and maximize the expected customer 

satisfaction where each route starts and ends at a single depot. Each customer must be 

assigned to only one vehicle and the total demand of all customers assigned to a vehicle 

does not exceed its capacity (Q). The number of vehicles (routes) to be used is not fixed 

but to be determined by the solution approach. In some studies, the number of vehicles is 

fixed, while others define a minimum possible number of vehicle routes (Kmin). According 

to Uchoa et al. (2017), fixing the number of routes is an indirect way of minimizing the 

fixed cost associated with the cost per vehicle, ignoring the trade-off between variable and 

fixed costs associated with the suggested set of routes. Additionally, the original CVRP 

proposed by Dantzig and Ramser (1959) did not consider fixing the number of routes in 

the problem as it requires adding the cost of unused capacity to the model which in practice 

is of minor importance. According to the authors, minimization of the travel distance is 

independent of the number of vehicles used. In this problem, full-service policy is to be 

applied when servicing a customer for either pickup or delivery. Split deliveries are not 

allowed, where customer demand cannot be supplied with two vehicles nor split between 
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two visits of the same vehicle. Splitting service policy is considered a relaxation policy of 

the full delivery policy (Dror, et al., 1989).  Table 4-3 summarizes the characteristics of 

the stochastic green vehicle routing problem of study. 

Table 4-3: Problem Characteristics of the Stochastic GVRP 

Element Characteristic 

Size of fleet Unbounded 

Type of fleet Homogenous 

Origin of vehicles Single depot 

Demand type Stochastic Demand 

Service and travel times  Stochastic 

Location of demand At the customer (node) 

Maximum time on route Constrained 

Time windows Soft Time windows 

Demand Policy 
1. Chance Constrained Programing (CCP) 
2. Stochastic Program with Recourse (SPR) 

Objectives 

1. Minimize Total Travel Cost, 
2. Minimize Fuel Consumption Rate, 
3. Maximize Customer satisfaction. 

Constraints 1. Single visit at customers, 
2. Routes start and end at depot, 
3. Nodes served by single vehicle, 
4. Vehicle capacity cannot be exceeded, 
5. No split deliveries. 

4.3.2 Mathematical Modeling 

The VRP problem is a generalization of the Travelling Salesman Problem (TSP) that 

introduces more than one salesman (m); hence, m number of tours can be done; each 

starting and ending at the depot. For formulating the stochastic GVRP, the starting 

customer is considered node 1 (depot); where 𝑋𝑖represents the current visited node and 𝑌𝑖 

represents the next node to be visited, where i varies from 1 to n, and n is the number of 

nodes to be visited by a given vehicle k. Now, m routes are introduced to the model; where, 

distance 𝑑𝑋𝑖,𝑌𝑗
 is associated with each arc and represents the distance travelled from node 

𝑋𝑖
𝑘 to node 𝑌𝑗

𝑘 on route k, as shown in Figure 4-1. 
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Figure 4-1: Illustration of the VRP [Elgharably et al., 2013] 

The decision variable is 𝑌𝑖
𝑘; where, 𝑌𝑖

𝑘 determines the value of the next customer i to be 

visited on route k. The 𝑋𝑖
𝑘 variable represents the value of the start node of the arc on route 

k. The use of loop segments is not allowed (leaving a node then arriving to same node, 

𝑋𝑖
𝑘 ≠  𝑌𝑗

𝑘), as all nodes must be visited exactly once. The binary variable 𝑆𝑋𝑖,𝑌𝑗

𝑘  represents 

all possible arcs connecting any two nodes on route k. 𝑆𝑋𝑖,𝑌𝑗

𝑘  is given a value of 1 if arc (𝑋𝑖
𝑘,  

𝑌𝑗
𝑘) belongs to route k; 0 otherwise. Both 𝑋𝑖

𝑘 and 𝑆𝑋𝑖,𝑌𝑗

𝑘  are considered uncontrollable 

variables. The problem is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 =  ∑ ∑ ∑ 𝐸( 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
∗ 𝐶𝑡) + ∑ 𝐸 (𝐹 ∗ 𝑆1,𝑌𝑗

𝑘 )

𝑚

𝑘=1

+  ∑  𝐸 (𝐶𝑒 ∗ (𝛼𝑖 −  𝑡𝑌𝑖
))

𝑛

𝑖=1

+  ∑  𝐸 (𝐶𝑑 ∗ (𝑡1
𝑘 − 𝛽1))   

𝑚

𝑘=1

        

 
(1) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 =  ∑ ∑ ∑ 𝐸 [𝐶𝑓𝑢𝑒𝑙 ∗

𝑛

𝑗=1

𝑛

𝑖=1

 𝑆𝑋𝑖,𝑌𝑗 
𝑘 ∗ 𝑑𝑋𝑖,𝑌𝑗

(𝑝𝑜 + 𝛾 ∗ 𝑊𝑋𝑖,𝑌𝑗
 )]

𝑚

𝑘=1

 
(2) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓3 =   ∑ 𝐸(𝑆𝑉𝑖)

𝑛

𝑖=1

 
(3) 

 

Subject to 

 

 

𝑋1
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (4) 

𝑌𝑛
𝑘 = 1     ∀𝑘 = 1, . . . , 𝑚 (5) 

𝑋𝑖
𝑘 =  𝑌𝑖−1

𝑘      ∀ 𝑖 = 2, … , 𝑛,  
                                                                  ∀𝑘 = 1, . . . , 𝑚 

(6) 
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𝑋𝑖
𝑘  ≤ 𝑛        ∀𝑘 = 1, . . . , 𝑚 (7) 

𝑌𝑖
𝑘  ≤ 𝑛       ∀𝑘 = 1, . . . , 𝑚 (8) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑚

𝑘=1

𝑛

𝑗=1

= 1     ∀ 𝑖 = 2, … , 𝑛 (9) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑚

𝑘=1

𝑛

𝑖=1

= 1     ∀ 𝑗 = 1, … , 𝑛 − 1 (10) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

∗ 𝐸(𝑞𝑌𝑗
)  ≤ 𝑄𝑘      ∀𝑘 = 1, … , 𝑚 (11) 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑖=1

𝑛

𝑗=1

∗ 𝐸 (𝑡𝑌𝑗
) ≥ 𝛼𝑗      ∀ 𝑘 = 1, … , 𝑚      

(12) 
 

∑ ∑ 𝑆𝑋𝑖,𝑌𝑗 
𝑘

𝑛

𝑖=1

∗ 𝐸 (

𝑛

𝑗=1

𝑡𝑌𝑗
) ≤ 𝛽𝑗     ∀ 𝑘 = 1, … , 𝑚     

(13) 
 

𝑋𝑖
𝑘 , 𝑌𝑗

𝑘 > 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (14) 

The expected total transportation operations cost function is minimized in the objective 

function (1). The first term in the objective function calculates the expected total travel cost 

calculated from the expected travel time on all k routes; where, m is the number of routes, 

E (𝑡𝑋𝑖,𝑌𝑗
) is the expected time spent travelling from 𝑋𝑖

𝑘𝑡𝑜 𝑌𝑗
𝑘, 𝐶𝑡 cost per unit time. The 

second term represents the fixed cost of operating each vehicle, where F is the vehicle 

operating cost. Due to the presence of time windows, an extra cost is calculated to reflect 

cases where vehicles arrive early inducing working waiting cost at customers as in the third 

term of equation (1) and waiting cost at depot (fourth term in equation (1)) reflecting cases 

of late vehicle arrival at the depot. 𝐶𝑒 is the customer's cost of early arrival, while 𝐶𝑑 is the 

cost of delay (late arrival at the depot). The second objective function (2) minimizes the 

expected cost of fuel consumption. The Fuel Consumption Rate (FCR) proposed by Xiao 

et al. (2012) is applied; where, 𝐶𝑓𝑢𝑒𝑙 is the unit fuel cost, 𝑑𝑋𝑖,𝑌𝑗
 is the distance travelled 

between two nodes, 𝑝𝑜 no load fuel consumption rate, 𝛼 the coefficient obtained by linear 

regression between fuel consumption rate and the vehicle’s load, (𝛾 =  
(𝑝∗ −𝑝𝑜)

𝑄
 ) where 𝑝∗ 

is the full load fuel consumption rate and 𝑊𝑋𝑖,𝑌𝑗

𝐾  is the gross weight of the vehicle on a 

route. The third objective function (3) maximizes the expected customer satisfaction. The 

expected customer Satisfaction Value (E(SVi)) measures the deviation from TW for each 

customer, while all customer demands are fulfilled. Constraints (4) and (5) ensure that each 
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route starts and ends at the depot. Constraint (6) ensures that each route of the k routes is 

not segmented; that is, if a vehicle arrives at a customer, it eventually leaves the customer 

again. Constraints (7) and (8) state the range of values given, whereas constraints (9) and 

(10) state that every customer is visited exactly once. Knowing that at each customer, an 

expected customers’ demand (𝐸(𝑞𝑌𝑗
)) is present with a known distribution and that each 

vehicle has a limited capacity 𝑄𝑘; constraint (11) ensures that the expected total demand of 

all customers assigned to a route k does not exceed the vehicle’s capacity. Constraints as 

(12) and (13), represent the time window constraints, where each customer i has a time 

window [𝛼𝑖 , 𝛽𝑖]. 𝛼𝑖 is the earliest time a customer can accept a service, while 𝛽𝑖 is the latest 

time a customer can be serviced by vehicle k. The expected time of travel to the next 

customer is 𝐸(𝑡𝑌𝑗
). Finally, constraint (14) is the non-negativity constraint and guarantees 

that the variables can assume integer values only. The expected cost of the routes 

constructed is dependent on the direction in which the route is travelled, and the type of 

service performed, whether pickup or delivery. 

4.4 Hybrid Multi-Objective Optimization Model 

Multi-objective optimization involves several competing objectives that cannot be 

combined, making it hard for decision-makers since no single decision can be considered 

an optimum solution to solve the problem. However, there is a set of alternative solutions 

that are considered optimal known as the Pareto-optimal solutions. This solution set 

considers all objectives and provides the decision-maker with the trade-offs between 

objectives, making it easier for decision makers to choose from based on their own 

preference and considerations (Zitzler and Thiele, 1998, and 1999). 

The hybrid multi-objective optimization model presented in this chapter combines both the 

Strength Pareto Evolutionary Algorithm (SPEA) developed by Zitzler and Thiele (1999) 

with the resultant local search heuristic developed earlier in chapter 2. The new hybrid 

solution approach successfully solves the deterministic multi-objective GVRP model 

developed in Chapter 3. 
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4.4.1 Resultant Local Search Heuristic (RLSH) 

The resultant local search heuristic computes a heuristic resultant based on both the 

distance traveled calculated from the nodes/customers' location and the demand associated 

with the given node/customer. In the implemented local search method, a heuristic resultant 

for each customer is used as follows:  

𝐻𝑅𝑖 =  𝛼 𝑑𝑖 + (1 − 𝛼) 𝐷𝑅𝑖                                                           (15) 

where 𝐻𝑅𝑖 = Heuristic Resultant for customer i, α and (1 – α) = weights of the distance and 

demand (used to achieve diversity and not to be caught in local optimum),  𝑑𝑖 =  Euclidian 

distance to be travelled from the current node to the expected following node by customer 

i, and 𝐷𝑅𝑖 = demand remainder for customer i, which is the difference between the 

vehicle’s capacity and the demand (i), where demand (i) is the quantity of items to be 

delivered or picked up by the vehicle at the customer (i). For example, at the beginning of 

constructing the route, the current location would be the depot, while in the middle of the 

route the current location would be the last visited node/customer. The function identifies 

the nearest route (heuristic) based on the resultant heuristic function between the remainder 

of each node's demand compared to the vehicle capacity and the distance from the current 

location to the following node. A detailed illustration of the RLSH process is presented in 

Chapter 2. 

4.4.2 Strength Pareto Evolutionary Algorithm (SPEA) 

Evolutionary Algorithms (EA) are believed to be one of the best approaches to solve multi-

objective optimization problems because solution sets are processed in parallel and 

simultaneously utilize the similarity of the solutions by recombination (Zitzler and Thiele, 

1998, 1999). The Strength Pareto Evolutionary Algorithm (SPEA) developed by Zitzler 

and Thiele (1999) is used for finding the Pareto-optimal set for multi-objective 

optimization problems. Similar to other EAs, the SPEA stores the nondominated solutions 

externally. It also uses the concept of Pareto dominance to evaluate fitness values and 

performs clustering to reduce nondominated solutions without affecting the trade-off front. 

In addition, SPEA is unique as it evaluates the fitness of an individual from the external 

nondominated set. All solutions of the nondominated set participate in selection and a 
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Pareto-based niching method is used to preserve diversity in the population (Zitzler and 

Thiele, 1999).   

4.4.3 Initial Population and Operators 

A portion of the initial population is filled heuristically using the local search heuristic 

developed, while the remaining portion is filled randomly to achieve diversity and not to 

be caught in a local optimum. The random portion of the initial population is based only 

on the vehicle capacity ignoring any distance calculations. A set of operators are then 

performed to the initial population to mimic the nature of evolution.  

To achieve diversity and at the same time to widen the span of the search space, a set of 

one deterministic and four random mutation operators is applied.  

1. A deterministic Route Reduction Mutation (RRM) is performed that decreases 

the number of routes in a solution without violating any constraints. The RRM 

aims to lower the number of vehicles considering only capacity and demand 

calculations.  

2. Random Node Exchange Mutation (RNEM) is a mutation operator that 

exchanges nodes from randomly selected routes without violating any capacity 

constraints. 

3. Random Node Transfer Mutation (RNTM) is a mutation operator that transfers 

a randomly selected node from one route to another, where routes are adjusted 

using the developed Resultant Heuristic with no capacity violation.  

4. Random Arc Exchange Mutation (RAEM) follows the same approach as the 

RNEM operator; however, arcs are exchanged instead of nodes. 

5. Random Arc Transfer Mutation (RATM) follows the same approach as the 

RNTM operator; however, arcs are transferred instead of nodes. 

Two crossover operators are performed. One crossover operator is performed in a random 

way, while the other is deterministic that inherits good characteristics from parents. 

1. The Heuristic Inheritance Crossover (HIC) is a deterministic crossover operator 

that perform changes to the routes within a given solution inheriting good routes 
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without violating any constraints. The HIC is used for intensification of good 

solutions in the breeding generation rather than diversification.  

2. Random Inheritance Crossover (RIC) follows the same process as the HIC 

operator, the only difference is that the routes to be inherited from parent 1 are 

chosen at random not based on good routes. The RIC operator acts as a 

diversification operator. 

A detailed description of the operators mentioned above, their procedures and figures are 

presented in Chapter 2, Section 2.4. 

4.4.4 Objective Functions 

The stochastic multi-objective GVRP model represented in this study deals with three 

different objectives. The economic aspect can be reflected as minimizing the expected total 

transportation operations cost function as in Equation (1). While the environmental aspect 

is measured in terms of minimizing the expected fuel consumption as shown in Equation 

(2). Finally, maximizing the expected customer satisfaction, Equation (3), reflects the 

social aspect which is one of the main performance measures of the supply chain. 

4.4.4.1 Customer Satisfaction  

The expected customer Satisfaction Value (E(SVi)) is calculated as the time deviation 

between the actual time of service and the customer’s time window [𝛼𝑖, 𝛽𝑖], while all 

customer demands are fulfilled. As mentioned earlier,  𝛼𝑖 is the earliest time a customer 

can accept a service, while 𝛽𝑖 is the latest time a customer can be serviced by the vehicle.  

Several types of time windows have been addressed in the literature. A traditional VRPTW 

would deal with customers’ time windows as a hard TW in which delivery service must 

fall within the customer’s specified TW. However, in real world transportation, TW may 

be violated for practical reasons as discussed by Tang et al. (2009) such as: 

1. Relaxing the TW constraint can result in better solution when considering the 

number of vehicles used, time and cost. 

2. Feasible solutions are hard to find if all TW has to be satisfied. Thus, a relaxed 

TW would result in an executable route plan. 
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3. It is a fact that customers provide narrow TW while a little deviation would be 

considered acceptable to them.  

However, soft time windows accept violations of the customer’s specified TW with a 

penalty cost added once violation occurs. In soft TW, penalty costs are assumed to be linear 

with the degree of violation (Tang et al., 2009). Tas et al. (2014) introduced the VRP with 

flexible TW, where vehicles are given a certain tolerance in which TW can be deviated. 

In the multi-objective GVRP with customer satisfaction model introduced in this chapter, 

Soft TW are used. If the vehicle arrives after the latest time a customer can accept the 

service, the customer is then unsatisfied. A satisfaction value will be calculated as shown 

in Equation (16), which is the time difference between the vehicle's arrival time and the 

upper bound ( 𝛽𝑖) of the time window. 

𝑆𝑉𝑖 =  𝛽𝑖  - 𝑡𝑌𝑖
                       ∀ 𝑖 = 2, … , 𝑛, 

 
(16) 

 

Customer Satisfaction Value (SVi) is a variable which can be either zero or a negative 

integer, where the maximum value zero would reflect complete satisfaction. However, if 

the vehicle arrives early at the customer, the vehicle will wait till the earliest time a 

customer can accept the service (𝛼𝑖). This will incur an extra cost due to the increase of the 

travel time on the route that shall be reflected in the travel cost function. Finally, the 

expected number of satisfied customers is measured, which in this case is the number of 

customers who received their service within the specified time window. 

4.4.4.2 Total Cost Function 

The expected total transportation operations cost function in equation (1), in Section 4.3.2, 

consists of the expected variable travel costs, expected vehicle fixed costs, expected 

waiting cost at customer and at depot. The second objective function presented in equation 

(2) minimizes the expected cost of fuel consumption. These two objectives can be 

combined in the model as a minimization cost function (17) that aims to minimize the 

expected travel costs and minimize the expected environmental impact by reducing fuel 

consumption measured in terms of fuel consumption cost as shown in the modified 

objective function (18). 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  𝑓1 + 𝑓2 
 

(17) 
 

Then the total cost objective function is adjusted to: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ ∑ 𝐸(𝑆𝑋𝑖,𝑌𝑗

𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

∗ 𝑑𝑋𝑖,𝑌𝑗
∗ 𝐶𝑡) + ∑ 𝐸 (𝐹 ∗ 𝑆1,𝑌𝑗

𝑘 )

𝑚

𝑘=1

+  ∑  𝐸 (𝐶𝑒 ∗ (𝛼𝑖 −  𝑡𝑌𝑖
))

𝑛

𝑖=1

 

+ ∑  𝐸 (𝐶𝑑 ∗ (𝑡1
𝑘 − 𝛽1))   

𝑚

𝑘=1

 

+ ∑ ∑ ∑ 𝐸 [𝐶𝑓𝑢𝑒𝑙 ∗

𝑛

𝑗=1

𝑛

𝑖=1

𝑆𝑋𝑖,𝑌𝑗 
𝑘 ∗ 𝑑𝑋𝑖,𝑌𝑗

(𝑝𝑜 + 𝛾 ∗ 𝑊𝑋𝑖,𝑌𝑗
 )]

𝑚

𝑘=1

 

 

(18) 
 

The developed multi-objective model solves the conventional VRP with time windows in 

green environment and considers customer satisfaction under uncertainty. The model is 

developed in a way which it can handle either delivery or pickup services. The type of 

service to be done (pickup/delivery) is considered as an input to the model as fuel 

consumption calculations differ in each case while constructing the routes. Fuel 

consumption rate calculation depends on both the vehicle load and the distance travelled. 

For this reason, the type of service has to be determined upfront before running the model.  

4.4.5 Dataset generation 

Two data sets are used to study the proposed multi-objective model: Solomon’s VRPTW 

benchmark data set (1987) and Uchoa et al. (2017) VRP benchmark data set. 

Solomon’s VRPTW benchmark problems are known to compare computational 

performance of many algorithms. The problems can be found at: 

http://web.cba.neu.edu/~msolomon/problems.htm. The larger problems are 100-customer 

Euclidean problems where travel times are equal to the corresponding distances. For each 

problem, smaller problems have been created by considering only the first 25 or 50 

customers (Solomon,1987, and Fisher et al., 1997). The problem consists of 100 customers 

and a depot, each with a defined X, Y co-ordinates, service time, demand, and time 

windows. A homogeneous fleet of vehicles with a capacity of 200 is used.  The depot has 

http://web.cba.neu.edu/~msolomon/problems.htm
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a zero-service time as it is not considered a real customer with a zero demand and a time 

window of [0, 230]. This time window is considered the time horizon required for all routes 

to be fulfilled. The R101 and R102 dataset inputs are presented in Appendix C and 

Appendix D, respectively. 

Table 4-4: Problem sets characteristics. 

Problem 
Set 

Distance and Demands Time Windows Overlap 
Index 

Vehicle 
Capacity 

(Q) 

Number of 
customers 

Instance Reference Instance Reference 

Problem 1 X-n101-k25 
Uchoa et al., 

2017 
R101 

Solomon, 
1987 

62.82 206 100 

Problem 2 R101 
Solomon, 

1987 
R101 

Solomon, 
1987 

62.82 200 100 

Problem 3 R102 
Solomon, 

1987 
R102 

Solomon, 
1987 

37.98 200 100 

Problem 4 X-n101-k25 
Uchoa et al., 

2017 
R102 

Solomon, 
1987 

37.98 206 100 

Uchoa et al.  (2017) proposed a new benchmark dataset that provides a more 

comprehensive and balanced experimental setting to the classic CVRP. Problem instance: 

X-n101-k25 is taken from Uchoa et al. (2017) new benchmark instances (Appendix B) 

consisting of a depot and 100 customers. The number of vehicles to be used is not fixed 

but the minimum feasible number of vehicles is known (Kmin = 25). The vehicle capacity 

is 206 units. The depot and customer positioning of the X-n101-k25 instance is random. 

Euclidean distances are calculated for both benchmark sets from the given X and Y co-

ordinates, where travel times are equal to the corresponding distances. Table 4-4 shows the 

four problem sets used to experiment on the stochastic multi-objective GVRP model 

developed in this chapter. Sets 1 and 4 are a combination of Uchoa et al. (2017) and 

Solomon (1987) benchmark datasets. The TW of Solomon’s R101 and R102 are used with 

the X-n101-k25 instance from Uchoa et al., (2017) to produce two new problem sets: 

problem 1 and problem 4, respectively. 

For Solomon’s R101 and R102 problems, the customer co-ordinates are identical for all 

problems within R type dataset. The problems differ with respect to the width of the time 

windows.  Some have very tight time windows, while others have time windows which are 

hardly constraining [Solomon, 1987]. Thus, the overlap index is developed to measure how 
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tight the time windows are associated with the customers. The index value is calculated as 

follows: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐼𝑛𝑑𝑒𝑥 =  
∑ ∑ (𝛽𝑖 − 𝛼𝑖) ∩ (𝛽𝑗 − 𝛼𝑗)𝑚

𝑗=2
𝑛
𝑖=2

𝑛 − 1
 

 
(19) 

 

The higher the index, the tighter are the time windows, resulting in more constraining set 

to achieve customer satisfaction.   

4.4.6 Parameter Initialization 

The evolutionary model parameters used are shown in Table 4-5. The selection of the 

number of times each operator is applied is based on the study performed in Chapter 2 

(Section 2.5.3). The study explored different configuration settings. All data sets operate 

from a central depot and routes are constructed using a set of homogenous fleet of vehicles 

with a limited capacity (Q) to serve a delivery service to a given set of customers. The cost 

coefficients (𝐶𝑡 , 𝐹, 𝐶𝑓 , 𝐶𝑒 , 𝐶𝑑) are set to (2, 1000, 4, 0.5, 1). The fuel consumption 

coefficients (𝑝0, 𝑝∗) are set to (1, 2) as in Xiao et al. (2012). Using the EA parameters 

defined in Table 4-5, and a maximum number of generations of 4000, the problem is solved 

using MATLAB. 

Table 4-5: Configuration of Evolutionary Operators 

Operator   Name Description Occurrence 

Mutation 

RRM Route Reduction Mutation  6 

RNEM Random Node Exchange Mutation 10 

RNTM Random Node Transfer Mutation  10 

RAEM Random Arc Exchange Mutation 10 

RATM Random Arc Transfer Mutation  10 

Crossover 
HIC Heuristic Inheritance Cross over 2 

RIC Random Inheritance Cross over 2 

4.5 Multi-objective GVRP with stochastic service and 
travel times 

In this model, the demand is assumed to be deterministic. The only source of uncertainty 

introduced to the model is the variations in travel times between two customers and the 
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service time needed to deliver the service. As demand is assumed to be deterministic, all 

customers’ demands will be fulfilled with no probability of failure for the set of routes 

proposed.  

Table 4-6: Distributions of travel and service times 

Source of variability Distribution Distribution parameters 

Service Time Normal Distribution 
Mean= Deterministic Time 

COV=0.1 

Travel Time Normal Distribution 
Mean= Deterministic Time 

COV=0.1 

Table 4-6 shows the distributions of travel time and service time used in the stochastic 

GVRP model. The distributions are chosen based on the comprehensive survey by Oyola 

et al. (2018) on the stochastic VRP that shows that the most common way of modeling 

uncertainties in service time and travel times is the normal distribution. 

4.5.1 Model parameters 

 

Figure 4-2: Monte Carlo Simulations 

Monte Carlo simulation is used to simulate the variability in the travel time, service time 

and demands. Experimental runs are performed to determine the ideal number of Monte 
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Carlo simulations so that the model reaches a stable solution.  Figure 4-2 shows the number 

of simulations needed to reach a stable solution.  

4.5.2 Results of multi-objective GVRP with uncertain travel and 
service times 

Computational experiments on the four problem data sets (Table 4-4) are performed. Using 

the EA parameters defined in Table 4-5, a maximum number of generations of 4000, and 

the number of Monte Carlo simulations of 1000, the problem is coded in MATLAB and 

solved for a delivery service. 

 

Figure 4-3: Pareto fronts of stochastic GVRP with uncertain times 
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Pareto fronts are obtained and presented in Figure 4-3. In case of stochastic service times 

and travel times, note the difference in Pareto fronts of problems 1 and 2. Even though both 

use the same time windows of instance R101 by Solomon (1987) but the expected number 

of customers to be fully satisfied in problem 1 is more than the expected number of 

customers to be fully satisfied in problem 2 due to the difference in the locations of 

customers in each data set. 

Similarly, for problems 3 and 4, the expected number of customers to be fully satisfied in 

problem 4 is more than the expected number of customers to be fully satisfied in problem 

3. This is because the grid/scale for problems 1 and 4 is larger than that of problem 2 and 

3. Furthermore, the number of satisfied customers in problems 1 and 2 is less than that of 

problems 3 and 4. The reason for that is the tighter time windows of problems 1 and 2 

(higher overlap index) as shown in Table 4-4. 

Table 4-7: Results of the Multi-objective stochastic GNRP with uncertain times 

  

Problem 
Set 

Number 
of 

Routes 

Expected 
Customer 

Satisfaction 

Expected 
Total cost 

Expected 
Variable 

Cost 

Expecte
d Fixed 

Cost 

Expected 
Cost of Fuel 

consumption 

Expected 
Extra 
Cost 

M
in

im
u

m
  

To
ta

l C
o

st
 Problem 1 26 12 119150 31394 26000 45654 16107 

Problem 2 8 5 12480 1067.7 8000 1431.6 1981 

Problem 3 8 29 12214 1152.8 8000 1582.9 1478 

Problem 4 24 36 110400 30225 24000 45171 11003 

C
o

m
p

ro
m

is
e

  

ca
se

 

Problem 1 26 19 124420 34025 26000 49883 14511 

Problem 2 8 14 13302 1372.5 8000 1876.8 2052.4 

Problem 3 8 32 12762 1341.6 8000 1868.2 1551.9 

Problem 4 27 41 122320 34452 27000 49640 11227 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 

Problem 1 27 25 136710 38278 27000 55533 15903 

Problem 2 8 18 15048 1790.2 8000 2488.5 2769.2 

Problem 3 8 34 13969 1586.9 8000 2256.5 2125.4 

Problem 4 29 45 144220 42482 29000 59736 13006 

As shown in Table 4-7, the customer satisfaction for problems 1 and 2 is always lower than 

problems 3 and 4. The reason for that is the presence of time windows with different levels 

of tightness. For both problems 1 and 2 (overlap index= 62.82), the time windows are 

tighter than that given for problems 3 and 4 (overlap index= 37.98). In addition, extra costs 

for problems 2 and 3 are lower than that for problems 1 and 4. This is due to the difference 
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in the locations and the larger grid of problems 1 and 4. Expected extra incurred costs are 

due to either early arrival at customer or late arrival at depot. 

4.6 Multi-objective GVRP with stochastic service time, 
travel time, and customer demands 

In this model, the uncertainty in demand is added to the uncertainties of travel and service 

times handled in the previous model discussed in Section 4.5. Uncertainty in demands 

means that the deterministic customer demands are unknown and only demands with 

known distributions are known. The actual demands are revealed only when the vehicle 

reaches the customer (Zhang et al., 2016).  In real life situation, demand distribution is 

calculated from historical data to assume the anticipated customer demand. The forecast 

for future demand depends on both the application of the problem and the type of customer. 

Modeling demand uncertainties is important to capture the variability in customers’ 

demand. Ignoring such variability may result in vehicle routes that are less utilized or 

overloaded with demands, resulting in more costs and less satisfaction.  

There is a difference between the deterministic VRP and the VRP with stochastic demand, 

in the SVRP, the decision-maker has to interfere at least partially with the solution before 

the exact values are revealed. The decision-maker has complete information when planning 

routes in the deterministic problem. However, in the stochastic VRP there is a probability 

of route failure and violation of constraints (Oyola et al., 2018). Route failure occurs when 

the demand of customers on a route exceeds the capacity of the vehicle. 

In literature, two ways of modeling the route failure in VRPs with stochastic demands are 

known: Chance Constrained Program (CCP), and Stochastic Program with Recourse 

(SPR). In the CCP, route failure is accepted with a probability of failure and no corrective 

action is taken to satisfy customer demands. While in SPR, a corrective action is considered 

to account for the failure of routes (Gendreau et al., 1996; and Oyola et al., 2018). 

4.6.1 Model parameters 

The distributions of travel time, service time, and demands used in the model are shown in  

Table 4-8. A literature review paper on stochastic VRPs by Oyola et al. (2018) presented 
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a summary on the research papers dealing with stochastic demands. It was found that most 

studies used normal distribution in modeling continuous demand. While in case of 

modeling discrete demands, Poisson and uniform distributions are the most common 

distributions. 

Table 4-8: Distributions of travel time, service times, and demands 

Source of variability Distribution Distribution parameters 

Service Time Normal Distribution 
Mean= Deterministic Time 

COV=0.1 

Travel Time Normal Distribution 
Mean= Deterministic Time 

COV=0.1 

Demand 

a. Discrete: Poisson Lambda= Deterministic Demand 

b. Continuous: Normal 
Mean= Deterministic Demand 

COV=0.25 

4.6.2 Chance Constrained Stochastic Multi-Objective Green 
Vehicle Routing Problem  

One approach to deal with demand uncertainty is the chance constrained programming of 

the VRP. A CCP model's objective is to design a set of routes with minimum costs with an 

acceptable level of route failure. No corrective action is done to account for route failures 

and costs of those failures are ignored (Tan et al., 2007). The chance constrained stochastic 

multi-objective GVRP model presented in this section deals with demand uncertainties 

where no course of action is taken in case of shortage or excess of quantities compared to 

the customer's required demand. 

A change in the customer satisfaction objective function is performed as two aspects of 

customer satisfaction criteria are considered in chance-constrained programing presented 

in this study: (1) fulfillment of demand, and (2) time window satisfaction. The first aspect 

that measures the fulfillment of demand checks for whether the customer demand is 

fulfilled or not, while the second aspect measures the deviation from TW at the customer 

in case of being serviced. The expected number of satisfied customers is then calculated. 

Those are the customers who received their demand and at the same time were serviced 

within the specified time window. The total cost objective function remains unchanged. In 
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the CCP, the route is terminated in case of failure (demand exceeds capacity) then the 

vehicle returns to the depot and no corrective action occurs. 

4.6.2.1 Results of the stochastic GVRP with CCP 

The demand distributions are assumed to be continuous and Pareto fronts of the four 

problem sets are obtained as shown in Figure 4-4.  

 

Figure 4-4: Pareto fronts of the CCP-GVRP with Normally distributed demands 

A second set of runs of the chance constrained multi-objective GVRP is performed 

assuming discrete demands (Figure 4-5). The results of both the normally distributed and 

the Poisson distributed demands for the CCP-GVRP models are shown in Table 4-9 and 

Table 4-10. 
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Table 4-9: Results of the CCP-GVRP with Normally distributed demands 

  

Problem 
Set 

Number 
of 

Routes 

Expected 
Customer 

Satisfaction 

Expected 
Total  
cost 

Expected 
Variable 

Cost 

Expected 
Fixed  
Cost 

Expected 
Cost of Fuel 

consumption 

Expected 
Extra 
Cost 

M
in

im
u

m
 

To
ta

l C
o

st
 Problem 1 25 12 119290 31123 25000 48406 14758 

Problem 2 8 6 12398 1076.1 8000 1527.8 1794.3 

Problem 3 8 26 12141 1077.2 8000 1529.1 1534.2 

Problem 4 25 31 115820 30831 25000 47434 12554 

C
o

m
p

ro
m

is
e

 

ca
se

 

Problem 1 25 16 123290 32662 25000 50829 14795 

Problem 2 8 13 13321 1411.9 8000 2029.4 1880.1 

Problem 3 8 30 12644 1325 8000 1854.1 1465.4 

Problem 4 25 35 121790 34394 25000 53109 9291 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 Problem 1 25 12 119290 31123 25000 48406 14758 

Problem 2 8 6 12398 1076.1 8000 1527.8 1794.3 

Problem 3 8 26 12141 1077.2 8000 1529.1 1534.2 

Problem 4 25 31 115820 30831 25000 47434 12554 

Table 4-10: Results of the CCP-GVRP with Poisson distributed demands 

 Problem 
Set 

Number 
of 

Routes 

Expected 
Customer 

Satisfaction 

Expected 
Total 
cost 

Expected 
Variable 

Cost 

Expected 
Fixed 
Cost 

Expected 
Cost of Fuel 

consumption 

Expected 
Extra 
Cost 

M
in

im
u

m
 

To
ta

l C
o

st
 Problem 1 25 8.69 120440 31305 25000 48522 15610 

Problem 2 8 3.72 12516 1079.4 8000 1467.8 1968.6 

Problem 3 8 26.3 12135 1073.2 8000 1524.1 1538.1 

Problem 4 25 31.4 115110 30579 25000 47767 11763 

C
o

m
p

ro
m

is
e

 

ca
se

 

Problem 1 26 16.32 124220 33219 26000 50594 14407 

Problem 2 8 13.13 13445 1436.1 8000 2014.1 1995.1 

Problem 3 8 31.4 12708 1336.8 8000 1918.8 1452.1 

Problem 4 28 35.67 127360 35324 28000 53755 10282 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 

Problem 1 26 17.63 133030 36701 26000 56073 14260 

Problem 2 8 17.27 15511 1946.9 8000 2679.7 2884.7 

Problem 3 8 34.72 13708 1573.8 8000 2253.1 1881 

Problem 4 26 40.67 145530 43022 26000 64442 12065 

In Figure 4-4 and Figure 4-5, the trade-offs between the expected total costs and the 

customer satisfaction measure are demonstrated. Moreover, the effect of different 

customers’ locations is present. When comparing the results of problem 1 with the results 

of problem 2, even though they have the same TW, but due to the difference in the locations 

and grid scale, the expected total costs are higher for problem 1. Similarly for comparing 

problem 3 with 4. The effect of TW overlapping is clearly present when comparing 
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problems 1 and 2 with problems 3 and 4, as the tighter is the TW, the less expected 

satisfaction is achieved, and more is the total expected costs. 

 

Figure 4-5: Pareto fronts of the CCP-GVRP with Poisson distributed demands 

4.6.3 Recourse Stochastic Multi-Objective Green Vehicle Routing 
Problem with stochastic Demands  

In contrast, SPR routing problem considers a corrective action in modeling demand 

uncertainty. Three common recourse policies are used in the literature: 

1. Simple recourse policy is known as Detour to Depot (DTD), in which the vehicle 

returns to the depot in case of route failure to restock or unload,  

2. Preventive restocking of vehicle capacity can be done before a route failure, 
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3. The remaining portion of the route is optimized after each customer visit or after 

each failure where a decision is taken after each stop (Tan et al., 2007; and Oyola 

et al., 2018).  

VRPs with recourse policy are modeled as a two-stage solution. In stage one, the vehicle 

routes are planned in advance, while stage two takes place when a recourse action is 

implemented to account for route failures (Juan et al., 2011). In stochastic programming 

with Recourse (SPR), the goal is to determine a first stage solution that minimizes the 

expected cost of the second stage solution: this cost is made up of the cost of the first stage 

solution, plus the expected net cost of recourse. SPRs are typically more difficult to solve 

than CCPs, but their objective function is more meaningful (Gendreau et al., 1996). 

The model presented in this section considers a multi-objective stochastic GVRP with 

recourse policy to handle any route failures. The model takes into consideration the 

operational cost, environmental impact, and customer satisfaction simultaneously. The 

detour to depot recourse policy is adapted in the model. The recourse model is adjusted to 

consider extreme cases of demand due to uncertainty. In deterministic modeling, customer 

demands are known in advance and are known to not exceed the capacity of the vehicle. 

However, in stochastic modeling, an extreme case of demand might occur, where the 

demand could exceed the vehicle capacity. Only at that case, split services are considered 

where the vehicle would detour to depot and return to the same customer to fulfill the 

required demand. 

4.6.3.1 Objective Functions 

The goal of the SVRP with recourse programming is to generate a set of routes that 

minimizes the expected costs of both the cost of constructing the routes (stage 1) and costs 

incurred due to recourse action (stage 2) in case of route failure. Meanwhile, the expected 

number of satisfied customers is measured in terms of the number of customers who 

received their service within the specified time window. 
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4.6.3.2 Results of the stochastic GVRP with DTD policy 

 

Figure 4-6: Pareto fronts of the DTD-GVRP with Normally distributed demands 

Trade-offs between the expected customer satisfaction and the expected total cost including 

recourse cost are presented in Figure 4-6 and Figure 4-7, where demands are modeled 

assuming continuous and discrete distributions, respectively. The effect of the customer 

locations and the TW overlapping are clearly present.  
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Table 4-11: Results of the DTD-GVRP with Normally distributed demands 

  

Problem Set 
Number 

of Routes 

Expected 
Customer 

Satisfaction 

Expected 
Total cost 

Expected 
Variable 

Cost 

Expected 
Fixed Cost 

Expected Cost 
of Fuel 

consumption 

Expected 
Extra 
Cost 

M
in

im
u

m
 

To
ta

l C
o

st
 Problem 1 26 12.89 159390 45292 26000 67101 20995 

Problem 2 8 5.06 13497 1342.8 8000 1742.1 2412.1 

Problem 3 8 26.35 13342 1391.4 8000 1862.3 2088.6 

Problem 4 27 35.6 161250 46511 27000 66332 21402 

C
o

m
p

ro
m

is
e

 

ca
se

 

Problem 1 26 17.38 175820 50330 26000 74115 25375 

Problem 2 8 16.89 14260 1643.7 8000 2252.5 2363.6 

Problem 3 8 33.48 14259 1709.8 8000 2351.4 2197.6 

Problem 4 27 36.31 163350 46965 27000 66498 22885 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 Problem 1 27 20.33 196230 56970 27000 82908 29349 

Problem 2 8 19.19 16097 2118.3 8000 2881.3 3096.9 

Problem 3 8 36.24 14765 1832.6 8000 2523.8 2408.3 

Problem 4 27 36.47 167060 48048 27000 67992 24019 

When comparing problem set 1 and 2 with problem sets 3 and 4, as the tighter is the TW, 

the less expected satisfaction achieved, and more is the total expected costs as presented in 

Table 4-11 and Table 4-12. 

Table 4-12: Results of the DTD-GVRP with Poisson distributed demands 

  

Problem Set 
Number 

of Routes 

Expected 
Customer 

Satisfaction 

Expected 
Total cost 

Expected 
Variable 

Cost 

Expected 
Fixed Cost 

Expected Cost 
of Fuel 

consumption 

Expected 
Extra 
Cost 

M
in

im
u

m
 

To
ta

l C
o

st
 Problem 1 25 15.91 153010 43874 25000 62870 21261 

Problem 2 8 6.5 13485 1366.8 8000 1836.6 2281.3 

Problem 3 8 24.31 13198 1352.5 8000 1785.4 2059.6 

Problem 4 26 34.21 150900 43220 26000 61874 19810 

C
o

m
p

ro
m

is
e

 

ca
se

 

Problem 1 26 17.76 158500 45308 26000 64210 22981 

Problem 2 8 12.6 14534 1672.6 8000 2247 2614.4 

Problem 3 8 33.5 14148 1664.7 8000 2343.2 2140 

Problem 4 25 36 155730 45275 25000 65301 20155 

M
ax

im
u

m
 

sa
ti

sf
ac

ti
o

n
 Problem 1 27 18.96 167140 47957 27000 68143 24043 

Problem 2 8 16.29 15992 2013.4 8000 2736.4 3242.4 

Problem 3 8 36 16350 2185.7 8000 3011.1 3152.9 

Problem 4 27 36.68 164240 47501 27000 68484 21260 
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Figure 4-7: Pareto fronts of the DTD-GVRP with Poisson distributed demands  

4.7 Numerical Analysis 

A study of the effect of TW flexibility on the performance of the supply chain is performed. 

Flexible TW allows vehicles a certain tolerance in which TW can be deviated (Tas et al., 

2014). The analysis is done on the recourse multi-objective GVRP with stochastic 

demands, where demands are discrete following Poisson distribution. 

Relaxation of the upper bound of the time windows is considered (Equation 20), where TW 

are adjusted from soft to flexible TW. Relaxation with increments of 10% of the upper 

bound (𝛽𝑖) is conducted on problem 2 and problem 3, studying the effect on the expected 
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total travel cost, the expected total environmental cost, and the expected customer 

satisfaction.  

𝑈𝐵∗ = 𝑈𝐵 +  𝛿 (𝑈𝐵 − 𝐿𝐵)  
 

(20) 
 

𝛽𝑖
∗ = 𝛽𝑖 +  𝛿 (𝛽𝑖 − 𝛼𝑖) 

(21) 
 

In equation 21, 𝛽𝑖
∗ is the relaxed time window’s upper bound, where 𝛿 is the percentage 

of time window relaxation and 𝛽𝑖 and 𝛼𝑖 are the upper and lower bounds of the time 

window at which a customer can accept a service. 

Three Pareto-optimal points are taken from problem 2 and problem 3 representing a 

midpoint and two extreme endpoints on the Pareto front. The selected points are as follows: 

1. Compromise point, which is a Pareto-optimum point along the middle of the Pareto 

front, 

2. First extreme endpoint, which represents the expected minimum total cost and the 

corresponding customer satisfaction that is low in this case, 

3. Second extreme endpoint, which represents the expected maximum customer 

satisfaction and the corresponding total cost that is high in this case. 

Figure 4-8 shows the effect of TW relaxation on both the expected total cost and expected 

customer satisfaction. In the case of extreme optimal points of maximum expected 

customer satisfaction, with the change in the relaxation of TW, both the expected total costs 

and expected customer satisfaction are affected. However, in the case of the minimum 

expected total costs, the expected customer satisfaction is affected and increases 

significantly at 30% and 40% relaxation, with no significant change in the expected total 

cost. 
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Figure 4-8: Effect of TW relaxation on the total cost and customer satisfaction, 

Problem 2 

For the purpose of further investigation, the comprise case is selected from problem 2 to 

examine the effect TW relaxation on the economic, environmental, and social aspects 

considered in this study as shown in  Figure 4-9, where trade-offs between the three 

objectives are presented and decisions can be taken. The minimum expected total travel 

cost and total environmental cost is achieved at 40% relaxation of the time window, with 

an increased expected customer satisfaction compared to the case with no TW relaxation 

(0%) of the upper bound. On the other hand, the maximum expected customer satisfaction 

is achieved at 50% relaxation of the TW, resulting in an increase in both the expected travel 

and environmental costs. 
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Figure 4-9: Effect of TW relaxation on economic, environmental, and social aspects, 

Problem 2 

Similarly, the effect of TW relaxation on both the expected total cost and the expected 

customer satisfaction is investigated for problem 3, and the results are shown in Figure 

4-10. In case of extreme optimal points of maximum customer satisfaction, an increase in 

the TW relaxation, decreases the expected total costs at 20%, 30% and 50% TW relaxation, 

with a slight increase at 40% TW relaxation and increases the expected customer 

satisfaction at 30%, 40%, and 50%. On the other hand, considering the case of minimum 

total cost Pareto-optimal points, the expected customer satisfaction increases at 20% and 

40% relaxation with no significant change in the expected total cost.  
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Figure 4-10: Effect of TW relaxation on the total cost and customer satisfaction, 

Problem 3 

Figure 4-11 shows the effect of TW relaxation for the comprise case of problem 3 on the 

economic, environmental, and social aspects considered in this study. The expected total 

costs decrease with TW relaxation when compared to the hard TW case with 0% relaxation. 

The minimum expected total travel and environmental costs are achieved at 10% TW 

relaxation. On the other hand, TW relaxation does not achieve a significant improvement 

in terms of the expected customer satisfaction except for 50% TW relaxation. 
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Figure 4-11: Effect of TW relaxation on economic, environmental, and social 

aspects, Problem 3 

4.8 Conclusions 

This chapter addresses the stochastic VRP in green environment with customer 

satisfaction. The developed models consider uncertainties in travel time, service time, and 

demands. Three models are developed. The first model addresses the green vehicle routing 

problem with uncertain travel times and service times, considering customer satisfaction. 

The second and third models handle the green vehicle routing problem with customer 

satisfaction under uncertain demands. The uncertain demands are conducted in the second 

and third models with two different demand policies; chance constrained, and recourse, 

respectively. The models incorporate the new hybrid algorithm developed in chapter 2. The 

hybrid search algorithm combines the evolutionary genetic search with a resultant search 
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that calculates a heuristic resultant based on both the distance traveled or the 

nodes/customers' location and the demand associated with the given node/customer. A 

complete set of runs has been performed to illustrate the Pareto fronts of each problem set 

and to show the effect of TW tightness measured by the overlap index developed and the 

effect of customer location and dispersion over the grid. Trade-offs between the three 

objectives are presented allowing the Decision-Maker (DM) to make choices based on the 

current situation and the DM’s own preferences. 

The proposed stochastic multi-objective GVRP with customer satisfaction is the first model 

that tackles the economic, environmental, and social aspects with uncertainty. As a result, 

there is no comparative data available for comparison. The developed model optimizes 

three different objectives simultaneously which are: (1) minimizing the expected 

operational costs that includes both variable and fixed costs of travel, (2) minimizing the 

expected fuel consumption based on the distance traveled and the load of the vehicle, and 

(3) maximizing customer satisfaction. The model developed can be adjusted to consider 

(1) different distributions for demands, service times and travel times, (2) different type of 

service (pickup or delivery), and (3) flexibility of TW with different percentage of TW 

relaxation. Finally, a numerical analysis showing the effect of relaxation in time windows 

is conducted. The analysis shows how each of the three objectives is affected and provides 

an overall vision of the effect of introducing flexibility to the TW. In problem 2, the change 

in TW relaxation increases the expected customer satisfaction and decreases the expected 

costs at 30 and 40% when compared to the case with no relaxation of the TW.  On the other 

hand, the change of TW relaxation in problem 3 affects both the expected total travel and 

environmental costs with no improvement in the expected customer satisfaction with the 

exception of 50% TW relaxation, where a slight improvement is achieved in customer 

satisfaction. 
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Chapter 5  

5 Summary, Conclusions, and Future Research 

5.1 Summary 

The research conducted in this thesis consists of four parts. In the first part, a transportation 

framework that integrates the performance measures and decision variables relevant to 

green supply chain management is developed. The framework adopts Beamon’s 

performance measures (resources, output, and flexibility) and incorporates a transportation 

optimization module and a supply chain module for routing decisions. The optimization 

module includes not only transportation cost, but also other relevant performance 

measures. It integrates various performance measures and the trade-offs among them using 

a decision support system.  

In the second part of the thesis, a new hybrid search algorithm that combines the 

evolutionary genetic search with a new local search heuristic is developed to solve the 

capacitated vehicle routing problem. The algorithm calculates a heuristic resultant based 

on both the distance travelled and the demand associated with the given customer, not only 

distances as previously considered in the literature. The developed algorithm is considered 

a fundamental tool for the development of a multi-objective Green VRP that considers 

demand quantities in the calculation of fuel consumption rates. The proposed algorithm 

was validated, and the results are found to be satisfactory as the algorithm was capable of 

converging to the optimum solution of the tested benchmark instance. 

In the third part of the thesis, a multi-objective green vehicle routing model that handles 

economic, environmental, and social aspects is developed. The model takes into 

consideration: (1) operational costs that includes both variable and fixed costs of travel, (2) 

fuel consumption rate based on the distance traveled and the load of the vehicle, and (3) 

customer satisfaction measured as the deviation from the desired time window provided by 

the customer to accept the service, while all customer demands are fulfilled. Problem 

instances from both benchmark problems of Solomon (1987) and the new benchmarks by 

Uchoa et al. (2017) are used. A new overlap index is developed to measure the amount of 
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overlap between customers’ time windows that provides an indication of how 

tight/constrained the problem is. The multi-objective GVRP studied is solved in MATLAB 

and evolutionary algorithms are used. The Strength Pareto Evolutionary Algorithm (SPEA) 

developed by Zitzler and Thiele is combined with the new resultant local search heuristic 

developed in Chapter 2 to obtain the Pareto fronts of the model. Furthermore, the effect of 

changing the vehicle capacity is investigated. The analysis shows how each of the three 

objectives is affected and provides an overall vision of the effect of choosing a different 

vehicle with a different load capacity.  

In the fourth part of the thesis, the stochastic VRP in green environment with customer 

satisfaction criteria is studied. The multi-objective models proposed take into consideration 

three main objectives: (1) minimizing the total operational cost, (2) minimizing the 

environmental cost, and (3) maximizing customer satisfaction, simultaneously, without 

converting one of the objectives to a constraint with a given threshold. The developed 

models consider uncertainties in travel time, service time, and demands. Three models are 

developed. The first model addresses the GVRP with uncertain travel times and service 

times taking into consideration customer satisfaction. The second and third models handle 

the green vehicle routing problem with customer satisfaction under uncertain demands. 

The uncertain demands are conducted in the second and third models with two different 

demand policies; chance constrained, and recourse, respectively. Pareto fronts between 

costs and customer satisfaction are obtained and tradeoffs between the three objectives are 

presented. In addition, the effect of TW tightness measured by the developed overlap index 

and the effect of customer location and dispersion over the grid are presented. Moreover, 

a numerical analysis showing the effect of relaxation in time windows is conducted. The 

analysis shows how each of the three objectives are affected and provides an overall vision 

of the effect of introducing flexibility to the TW. The study was performed on problem 2 

and problem 3 as both problems have the same customers’ locations but different overlap 

index of the time windows. In problem 2, the change in TW relaxation increased the 

expected customer satisfaction and decreased the expected costs (30% and 40% TW 

relaxation) when compared to the hard TW case with zero relaxation of the TW.  On the 

other hand, the change of TW relaxation in problem 3, affected both the expected total 

travel and environmental costs with no improvement in the expected customer satisfaction 
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with the exception of 50% TW relaxation, where a slight improvement was achieved in 

customer satisfaction. 

In the multi-objective optimization models developed, the customer satisfaction value (𝑆𝑉𝑖) 

is measured in terms of the deviation from the customers’ time windows in which a 

customer can accept a service. A negative value of customer satisfaction indicates that a 

deviation from the time windows has occurred. While a zero value means there was no 

deviation from the time windows indicating a complete customer satisfaction. However, 

for each of the developed models, the satisfaction criteria is modified to account for the 

model objectives. For the deterministic multi-objective GVRP model, the customer 

satisfaction value (𝑆𝑉𝑖) is used as the satisfaction objective function to be maximized 

(Chapter 3). In the Stochastic multi-objective GVRP model, the satisfaction objective 

function is modified to measure the expected number of satisfied customers, showing the 

number of customers that has been serviced within their given time windows with no 

deviation reflecting complete satisfaction. In cases of route failure as in the chance 

constrained stochastic multi-objective GVRP model (Section 4.6.2), two aspects of 

customer satisfaction criteria are considered: (1) fulfillment of demand, and (2) time 

window satisfaction. The first aspect measures the fulfillment of demand determining 

whether the customer demand is fulfilled or not, while the second aspect measures the 

deviation from the customers’ time windows in case of being serviced. The expected 

number of satisfied customers reflects the number of customers who received their demand 

and at the same time were serviced within the specified time window.  

The developed stochastic multi-objective GVRP with customer satisfaction is the first 

model that tackles the economic, environmental, and social aspects with uncertainty. As a 

result, there is no comparative data available for comparison. The stochastic multi-

objective GVRP model presented in this thesis adopted Beamon’s performance measure 

framework for supply chains that includes measures for the resources, desired output, and 

flexibility. In the model, the utilization of resources is measured through the number of 

vehicles used and the fuel consumption rate. In terms of output measures, customer 

satisfaction is considered. Finally, accounting for uncertainty and recourse action 
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considered measuring the flexibility of the system to respond to customer requests in 

uncertain environment. 

5.2 Conclusions 

The main conclusions drawn from this work are: 

1. The developed new hybrid search algorithm is considered a fundamental tool for 

the development of a multi-objective green VRP that considers demand quantities 

in the calculation of fuel consumption rates. 

2. The green vehicle routing problem developed in chapter three is the first model that 

takes into consideration: (1) operational costs that includes both variable and fixed 

costs of travel, (2) fuel consumption rate, and (3) customer satisfaction. It solves 

them simultaneously without using utility functions or converting one of the 

objectives to a constraint by setting a threshold while solving the problem. 

3. The developed stochastic multi-objective GVRP with customer satisfaction is the 

first model that tackles the economic, environmental, and social aspects 

simultaneously under uncertainty. 

4. The study of the effect of changing the capacity of the vehicles shows that the 

vehicle capacity is inversely proportional with the total costs of constructing the 

routes and the customer satisfaction objectives. The total cost of serving customers 

decreases with the increase of vehicle capacity, while the decrease in vehicle 

capacity results in an increase in customer satisfaction. 

5. The study of Time Window relaxation shows that: 

• Customer satisfaction increases with the change in TW relaxation for 

problems with high overlap index, while no significant improvement is 

shown in problems with low overlap index. 
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• The expected total operational and environmental costs can be decreased 

with the change of the TW relaxation for problems with either high or low 

overlap index. 

6. The developed new overlap index shows how tight or relaxed the time windows of 

customers are and is found to be a great indicator for explaining the performance 

of the supply chain and its trade-offs. 

5.3 Future Work 

The current study discussed the stochastic multi-objective GVRP with customer 

satisfaction that handles economic, environmental, and social aspects. For future research, 

the following investigations are suggested: 

1. Implementation of risk management to minimize supply chain disruptions and 

uncertainties and propose risk mitigation strategies. Both operational and disruption 

risks to be considered. Operational risks only influence the operational factors of the 

supply chain that are known to be uncertain, while disruption risks affect the 

functionality of the elements of the supply chain such as nature/disaster risks, economic 

risks, or even events of machine breakdown. 

2. Develop a decision support system interface that integrates the various elements of the 

model. The decision support system will use the multi-objective transportation 

optimization model of the GVRP taking risks into account and present the set of Pareto 

optimal solutions that will enable the user to make decisions and trade-offs between 

the total transportation operations costs, total environmental impact and customer 

satisfaction level achieved. 
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Appendices 

Appendix A: Sample Vehicle Routing Problem 

A problem is created for the purpose of illustration of applying the genetic algorithm 

operators. The problem consists of a depot and (n) number of customers which is 18, then 

the number of nodes (n+1) in the problem is 19. The vehicle capacity is assumed to be 25 

units.  

 

 

  

Node  Demand 

1 Depot 

2 7 

3 7 

4 6 

5 3 

6 4 

7 2 

8 6 

9 6 

10 5 

11 5 

12 5 

13 8 

14 3 

15 2 

16 12 

17 6 

18 2 

19 3 
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Appendix B: Uchoa et al. (2017) Benchmark Problem: Instance X-n101-k25 

  

Customer 
No. 

Co-ordinates 
Demand  Customer 

No. 

Co-ordinates 
Demand  Customer 

No. 

Co-ordinates 
Demand 

X Y  X Y  X Y 

1 365 689 0  35 584 572 5  69 254 135 52 

2 146 180 38  36 134 554 53  70 346 29 28 

3 792 5 51  37 912 173 97  71 75 79 96 

4 658 510 73  38 827 233 70  72 893 987 18 

5 461 270 70  39 851 677 32  73 729 372 16 

6 299 531 58  40 598 322 27  74 29 910 7 

7 812 228 54  41 627 472 42  75 356 39 73 

8 643 90 1  42 94 442 67  76 274 943 76 

9 615 630 98  43 688 274 76  77 322 96 6 

10 258 42 62  44 977 176 15  78 664 396 64 

11 616 299 98  45 597 461 39  79 704 236 39 

12 475 957 25  46 931 23 14  80 415 837 86 

13 425 473 86  47 170 640 43  81 576 587 70 

14 406 64 46  48 941 601 11  82 750 977 14 

15 656 369 27  49 873 487 93  83 726 363 83 

16 202 467 17  50 797 95 53  84 861 948 96 

17 318 21 97  51 451 816 44  85 302 129 43 

18 579 587 74  52 866 970 80  86 415 989 12 

19 458 354 81  53 833 912 87  87 199 135 73 

20 575 871 62  54 106 913 97  88 801 405 2 

21 47 512 59  55 260 107 67  89 679 426 21 

22 568 742 23  56 332 45 72  90 994 804 18 

23 128 436 62  57 685 613 50  91 311 116 55 

24 546 806 66  58 728 372 8  92 739 898 75 

25 197 696 35  59 487 497 58  93 268 97 68 

26 615 300 53  60 702 440 55  94 176 991 100 

27 852 563 18  61 717 412 67  95 688 588 61 

28 772 803 87  62 635 794 89  96 107 836 24 

29 678 342 32  63 927 972 38  97 708 522 40 

30 916 176 4  64 635 356 65  98 679 864 48 

31 390 949 61  65 634 540 3  99 985 877 51 

32 113 782 95  66 658 261 5  100 954 950 78 

33 226 736 23  67 303 168 46  101 615 750 35 

34 119 923 15  68 707 410 100      



128 

 

Appendix C: Solomon Benchmark Problems: Problem R101 

Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

1 35.00 35.00 0.00 0.00 230.00 0 

2 41.00 49.00 10.00 161.00 171.00 10 

3 35.00 17.00 7.00 50.00 60.00 10 

4 55.00 45.00 13.00 116.00 126.00 10 

5 55.00 20.00 19.00 149.00 159.00 10 

6 15.00 30.00 26.00 34.00 44.00 10 

7 25.00 30.00 3.00 99.00 109.00 10 

8 20.00 50.00 5.00 81.00 91.00 10 

9 10.00 43.00 9.00 95.00 105.00 10 

10 55.00 60.00 16.00 97.00 107.00 10 

11 30.00 60.00 16.00 124.00 134.00 10 

12 20.00 65.00 12.00 67.00 77.00 10 

13 50.00 35.00 19.00 63.00 73.00 10 

14 30.00 25.00 23.00 159.00 169.00 10 

15 15.00 10.00 20.00 32.00 42.00 10 

16 30.00 5.00 8.00 61.00 71.00 10 

17 10.00 20.00 19.00 75.00 85.00 10 

18 5.00 30.00 2.00 157.00 167.00 10 

19 20.00 40.00 12.00 87.00 97.00 10 

20 15.00 60.00 17.00 76.00 86.00 10 

21 45.00 65.00 9.00 126.00 136.00 10 

22 45.00 20.00 11.00 62.00 72.00 10 

23 45.00 10.00 18.00 97.00 107.00 10 

24 55.00 5.00 29.00 68.00 78.00 10 

25 65.00 35.00 3.00 153.00 163.00 10 

26 65.00 20.00 6.00 172.00 182.00 10 

27 45.00 30.00 17.00 132.00 142.00 10 

28 35.00 40.00 16.00 37.00 47.00 10 

29 41.00 37.00 16.00 39.00 49.00 10 

30 64.00 42.00 9.00 63.00 73.00 10 

31 40.00 60.00 21.00 71.00 81.00 10 

32 31.00 52.00 27.00 50.00 60.00 10 

33 35.00 69.00 23.00 141.00 151.00 10 

34 53.00 52.00 11.00 37.00 47.00 10 

35 65.00 55.00 14.00 117.00 127.00 10 

36 63.00 65.00 8.00 143.00 153.00 10 

37 2.00 60.00 5.00 41.00 51.00 10 

38 20.00 20.00 8.00 134.00 144.00 10 

39 5.00 5.00 16.00 83.00 93.00 10 
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Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

40 60.00 12.00 31.00 44.00 54.00 10 

41 40.00 25.00 9.00 85.00 95.00 10 

42 42.00 7.00 5.00 97.00 107.00 10 

43 24.00 12.00 5.00 31.00 41.00 10 

44 23.00 3.00 7.00 132.00 142.00 10 

45 11.00 14.00 18.00 69.00 79.00 10 

46 6.00 38.00 16.00 32.00 42.00 10 

47 2.00 48.00 1.00 117.00 127.00 10 

48 8.00 56.00 27.00 51.00 61.00 10 

49 13.00 52.00 36.00 165.00 175.00 10 

50 6.00 68.00 30.00 108.00 118.00 10 

51 47.00 47.00 13.00 124.00 134.00 10 

52 49.00 58.00 10.00 88.00 98.00 10 

53 27.00 43.00 9.00 52.00 62.00 10 

54 37.00 31.00 14.00 95.00 105.00 10 

55 57.00 29.00 18.00 140.00 150.00 10 

56 63.00 23.00 2.00 136.00 146.00 10 

57 53.00 12.00 6.00 130.00 140.00 10 

58 32.00 12.00 7.00 101.00 111.00 10 

59 36.00 26.00 18.00 200.00 210.00 10 

60 21.00 24.00 28.00 18.00 28.00 10 

61 17.00 34.00 3.00 162.00 172.00 10 

62 12.00 24.00 13.00 76.00 86.00 10 

63 24.00 58.00 19.00 58.00 68.00 10 

64 27.00 69.00 10.00 34.00 44.00 10 

65 15.00 77.00 9.00 73.00 83.00 10 

66 62.00 77.00 20.00 51.00 61.00 10 

67 49.00 73.00 25.00 127.00 137.00 10 

68 67.00 5.00 25.00 83.00 93.00 10 

69 56.00 39.00 36.00 142.00 152.00 10 

70 37.00 47.00 6.00 50.00 60.00 10 

71 37.00 56.00 5.00 182.00 192.00 10 

72 57.00 68.00 15.00 77.00 87.00 10 

73 47.00 16.00 25.00 35.00 45.00 10 

74 44.00 17.00 9.00 78.00 88.00 10 

75 46.00 13.00 8.00 149.00 159.00 10 

76 49.00 11.00 18.00 69.00 79.00 10 

77 49.00 42.00 13.00 73.00 83.00 10 

78 53.00 43.00 14.00 179.00 189.00 10 

79 61.00 52.00 3.00 96.00 106.00 10 

80 57.00 48.00 23.00 92.00 102.00 10 
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Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

81 56.00 37.00 6.00 182.00 192.00 10 

82 55.00 54.00 26.00 94.00 104.00 10 

83 15.00 47.00 16.00 55.00 65.00 10 

84 14.00 37.00 11.00 44.00 54.00 10 

85 11.00 31.00 7.00 101.00 111.00 10 

86 16.00 22.00 41.00 91.00 101.00 10 

87 4.00 18.00 35.00 94.00 104.00 10 

88 28.00 18.00 26.00 93.00 103.00 10 

89 26.00 52.00 9.00 74.00 84.00 10 

90 26.00 35.00 15.00 176.00 186.00 10 

91 31.00 67.00 3.00 95.00 105.00 10 

92 15.00 19.00 1.00 160.00 170.00 10 

93 22.00 22.00 2.00 18.00 28.00 10 

94 18.00 24.00 22.00 188.00 198.00 10 

95 26.00 27.00 27.00 100.00 110.00 10 

96 25.00 24.00 20.00 39.00 49.00 10 

97 22.00 27.00 11.00 135.00 145.00 10 

98 25.00 21.00 12.00 133.00 143.00 10 

99 19.00 21.00 10.00 58.00 68.00 10 

100 20.00 26.00 9.00 83.00 93.00 10 

101 18.00 18.00 17.00 185.00 195.00 10 
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Appendix D: Solomon Benchmark Problems: Problem R102 

Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

1 35.00 35.00 0.00 0.00 230.00 0.00 

2 41.00 49.00 10.00 0.00 204.00 10.00 

3 35.00 17.00 7.00 0.00 202.00 10.00 

4 55.00 45.00 13.00 0.00 197.00 10.00 

5 55.00 20.00 19.00 149.00 159.00 10.00 

6 15.00 30.00 26.00 0.00 199.00 10.00 

7 25.00 30.00 3.00 99.00 109.00 10.00 

8 20.00 50.00 5.00 0.00 198.00 10.00 

9 10.00 43.00 9.00 95.00 105.00 10.00 

10 55.00 60.00 16.00 97.00 107.00 10.00 

11 30.00 60.00 16.00 124.00 134.00 10.00 

12 20.00 65.00 12.00 67.00 77.00 10.00 

13 50.00 35.00 19.00 0.00 205.00 10.00 

14 30.00 25.00 23.00 159.00 169.00 10.00 

15 15.00 10.00 20.00 32.00 42.00 10.00 

16 30.00 5.00 8.00 61.00 71.00 10.00 

17 10.00 20.00 19.00 75.00 85.00 10.00 

18 5.00 30.00 2.00 157.00 167.00 10.00 

19 20.00 40.00 12.00 87.00 97.00 10.00 

20 15.00 60.00 17.00 76.00 86.00 10.00 

21 45.00 65.00 9.00 126.00 136.00 10.00 

22 45.00 20.00 11.00 0.00 201.00 10.00 

23 45.00 10.00 18.00 97.00 107.00 10.00 

24 55.00 5.00 29.00 68.00 78.00 10.00 

25 65.00 35.00 3.00 153.00 163.00 10.00 

26 65.00 20.00 6.00 172.00 182.00 10.00 

27 45.00 30.00 17.00 0.00 208.00 10.00 

28 35.00 40.00 16.00 37.00 47.00 10.00 

29 41.00 37.00 16.00 39.00 49.00 10.00 

30 64.00 42.00 9.00 63.00 73.00 10.00 

31 40.00 60.00 21.00 71.00 81.00 10.00 

32 31.00 52.00 27.00 0.00 202.00 10.00 

33 35.00 69.00 23.00 141.00 151.00 10.00 

34 53.00 52.00 11.00 37.00 47.00 10.00 

35 65.00 55.00 14.00 0.00 183.00 10.00 

36 63.00 65.00 8.00 143.00 153.00 10.00 

37 2.00 60.00 5.00 41.00 51.00 10.00 

38 20.00 20.00 8.00 0.00 198.00 10.00 

39 5.00 5.00 16.00 83.00 93.00 10.00 
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Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

40 60.00 12.00 31.00 44.00 54.00 10.00 

41 40.00 25.00 9.00 85.00 95.00 10.00 

42 42.00 7.00 5.00 97.00 107.00 10.00 

43 24.00 12.00 5.00 31.00 41.00 10.00 

44 23.00 3.00 7.00 132.00 142.00 10.00 

45 11.00 14.00 18.00 69.00 79.00 10.00 

46 6.00 38.00 16.00 32.00 42.00 10.00 

47 2.00 48.00 1.00 117.00 127.00 10.00 

48 8.00 56.00 27.00 51.00 61.00 10.00 

49 13.00 52.00 36.00 0.00 192.00 10.00 

50 6.00 68.00 30.00 108.00 118.00 10.00 

51 47.00 47.00 13.00 0.00 203.00 10.00 

52 49.00 58.00 10.00 88.00 98.00 10.00 

53 27.00 43.00 9.00 0.00 208.00 10.00 

54 37.00 31.00 14.00 95.00 105.00 10.00 

55 57.00 29.00 18.00 140.00 150.00 10.00 

56 63.00 23.00 2.00 136.00 146.00 10.00 

57 53.00 12.00 6.00 130.00 140.00 10.00 

58 32.00 12.00 7.00 101.00 111.00 10.00 

59 36.00 26.00 18.00 200.00 210.00 10.00 

60 21.00 24.00 28.00 0.00 202.00 10.00 

61 17.00 34.00 3.00 162.00 172.00 10.00 

62 12.00 24.00 13.00 76.00 86.00 10.00 

63 24.00 58.00 19.00 58.00 68.00 10.00 

64 27.00 69.00 10.00 34.00 44.00 10.00 

65 15.00 77.00 9.00 73.00 83.00 10.00 

66 62.00 77.00 20.00 51.00 61.00 10.00 

67 49.00 73.00 25.00 127.00 137.00 10.00 

68 67.00 5.00 25.00 83.00 93.00 10.00 

69 56.00 39.00 36.00 142.00 152.00 10.00 

70 37.00 47.00 6.00 50.00 60.00 10.00 

71 37.00 56.00 5.00 182.00 192.00 10.00 

72 57.00 68.00 15.00 77.00 87.00 10.00 

73 47.00 16.00 25.00 0.00 197.00 10.00 

74 44.00 17.00 9.00 78.00 88.00 10.00 

75 46.00 13.00 8.00 149.00 159.00 10.00 

76 49.00 11.00 18.00 0.00 192.00 10.00 

77 49.00 42.00 13.00 73.00 83.00 10.00 

78 53.00 43.00 14.00 179.00 189.00 10.00 

79 61.00 52.00 3.00 96.00 106.00 10.00 

80 57.00 48.00 23.00 92.00 102.00 10.00 
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Customer No. 

Co-ordinates 

Demand 

Time Windows 
Service 

time X Y 
Ready 
Time 

Due 
time 

81 56.00 37.00 6.00 182.00 192.00 10.00 

82 55.00 54.00 26.00 94.00 104.00 10.00 

83 15.00 47.00 16.00 0.00 196.00 10.00 

84 14.00 37.00 11.00 0.00 198.00 10.00 

85 11.00 31.00 7.00 101.00 111.00 10.00 

86 16.00 22.00 41.00 0.00 196.00 10.00 

87 4.00 18.00 35.00 94.00 104.00 10.00 

88 28.00 18.00 26.00 93.00 103.00 10.00 

89 26.00 52.00 9.00 74.00 84.00 10.00 

90 26.00 35.00 15.00 176.00 186.00 10.00 

91 31.00 67.00 3.00 95.00 105.00 10.00 

92 15.00 19.00 1.00 0.00 194.00 10.00 

93 22.00 22.00 2.00 18.00 28.00 10.00 

94 18.00 24.00 22.00 188.00 198.00 10.00 

95 26.00 27.00 27.00 0.00 207.00 10.00 

96 25.00 24.00 20.00 0.00 205.00 10.00 

97 22.00 27.00 11.00 0.00 204.00 10.00 

98 25.00 21.00 12.00 133.00 143.00 10.00 

99 19.00 21.00 10.00 0.00 198.00 10.00 

100 20.00 26.00 9.00 83.00 93.00 10.00 

101 18.00 18.00 17.00 185.00 195.00 10.00 
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