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Abstract

This thesis consists of two parts: In the first part (Chapters 1 and 2) we study some

spaces of holomorphic k−differentials on open Riemann surfaces, and make some

observations about these spaces, then we obtain two main theorems about the kernel

of Poincaré series map.

In the second part (Chapters 3 and 4), we study holomorphic and meromor-

phic approximation on closed subsets of non-compact Riemann surfaces. We add a

condition to the Extension Theorem and correct its proof. The Extension Theorem

was first stated and proved by G. Schmieder, but there are a few examples where the

theorem as stated by Schmieder fails. That added condition is slightly affecting the

definition of a class of closed sets (which is called “weakly of infinite genus”) where

approximation is possible.

Keywords: Riemann surface, k−differential, approximation
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Chapter 1

Holomorphic k−differentials and Poincaré

series

In this chapter we review the definition of k−differentials and some other related

concepts, which we will use in the next chapter.

1.1 k−differentials and related definitions

Throughout Chapters 1 and 2, we shall assume that k is a fixed positive integer,

k ≥ 2, and we shall omit k from the notation of the required function spaces, norms,

inner products, Bergman kernel.

A Riemann surface R is a Hausdorff connected topological space with a collec-

tion of pairs {(ϕj , Uj) : j ∈ J} such that:

• The sets Uj form an open cover of R, and

• ϕj is a homeomorphism of Uj onto ϕj(Uj), where ϕj(Uj) is an open subset of

the complex plane C,

and ϕiϕ
−1
j : ϕj(Ui ∩ Uj) → C is a holomorphic function whenever Ui ∩ Uj 6= ∅.

The collection {(ϕj , Uj)}j∈J is referred to as a complex structure of R. For p ∈ Uj ,

z = ϕj(p) is called a local complex coordinate of R.

Definition 1.1.1. Let R be a Riemann surface and let k be a positive integer. A

k−differential on R is a section of the holomorphic line bundle (T ∗
′
R)⊗k, where

T ∗
′
R is the holomorphic cotangent bundle on R.

1
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Another equivalent definition for a k−differential is as follows:

Definition 1.1.2. A k−differential on R is a collection of C-valued functions {φα(zα)}α∈I

where zα is a local complex coordinate on an open set Uα (for an open cover {Uα}α∈I

of R, where I is an index set), and for all α, β ∈ I such that Uα ∩ Uβ 6= ∅, over

Uα ∩ Uβ

φα(zα) = φβ(zβ)

(
dzβ
dzα

)k

. (1.1)

A k−differential is usually written as φ(z)dzk, which is understood as follows: For

any ζ ∈ R, letting α ∈ I such that ζ ∈ Uα, then near ζ, z = zα, φ = φα; this is well

defined because of (1.1). Note that dzk is a conventional notation for dz⊗k.

Remark 1.1.3. Clearly it does not make sense to speak of the value of a k−differential

ϕ at a point ζ ∈ R (since it depends on the local parameter near ζ), but it does make

sense to speak of the zeroes and poles of ϕ (see [44, p. 18] for example).

Definition 1.1.4. A k-differential is called holomorphic (resp. meromorphic) if it is

a holomorphic (resp. meromorphic) section of (T ∗
′
R)⊗k, or, equivalently, if all φα,

α ∈ I are holomorphic (resp. meromorphic).

Example 1.1.5. The k-differential φ ≡ 0 exists on any Riemann surface R.

Example 1.1.6. Let R be a domain of the complex plane C. The complex structure

is defined by one open set, and the identity mapping. Any function φ(z) defined on

R can be considered as a k−differential on R.

Example 1.1.7. Let R be the Riemann sphere. It can be covered by two open sets,

U1 = C and U2 = C ∪ {∞} \ {0}. As parameters we introduce z and w = 1
z

respectively. Given an arbitrary function φ1(z) which is defined in the whole plane,

we can compute the function element φ2(w) by the transformation rule (1.1), to get

φ2(w) = φ1(
1
w )(− 1

w2 )k.
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1.1.1 Uniformization Theorem and hyperbolic Riemann

surfaces

One way to construct a Riemann surface is as the quotient of a suitable group action.

For example if G is the group generated by z 7→ z + 1, then G\C is the punctured

plane C \ {0}, and G\H is the punctured disc {z | 0 < |z| < 1}, and in each case the

quotient map is z 7→ exp(2πiz). These two examples give Riemann surfaces which

are the quotient of the Euclidean plane C, and the hyperbolic plane H, respectively.

For further discussion we shall need the definition of a discrete group acting properly

discontinuously. Let Γ be a discrete subgroup of SU(1, 1), we say that Γ acts properly

discontinuously on the unit disc ∆ = {z ∈ C||z| < 1} if any z ∈ ∆ has a neighborhood

Uz such that g(Uz) ∩ Uz = ∅ for any g ∈ Γ, g 6= e, where e is the identity element.

It is a general fact that if G is any discrete group acting properly discontinuously,

freely and biholomorphically on C or H then the quotient by G is a Riemann surface

(see for example [9]). The Uniformization Theorem (see below) is the converse of

this statement (except for the sphere). The Uniformization Theorem is a very well

known theorem, which is a consequence of Koebe planarity theorem, which classifies

the planar Riemann surfaces (a Riemann surface is planar if any simple closed curve

contained in R divides R into two components).

Two Riemann surfaces R and R1 are conformally equivalent if there is a confor-

mal homeomorphism from R onto R1. The Uniformization Theorem (see [16]) states

that any Riemann surface is conformally equivalent to one of the following Riemann

surfaces:

(1) The complex plane: R = C, with the usual complex structure.

(2) The cylinder: which is the quotient of C by the group G, where G is the cyclic

group of translations, z 7→ z + n.

(3) Tori: The quotient of C by the group G, where, G is the group of translations,
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which acts on C by z 7→ z+ nω1 +mω2, where n,m are integers and ω1, ω2 are

a basis for C over R.

(4) The Riemann sphere: C = C∪{∞}, which is the one point compactification of

C.

(5) Hyperbolic surfaces: Let R be the quotient of H factored by a discrete and

torsion free group G, which is a subgroup of PSL(2,R) = {

 a b

c d

 | a, b ∈

R, ad− bc = 1}. The group G is called a Fuchsian group, (see [16]).

Equivalently, a hyperbolic Riemann surface Σ can be represented as Γ\∆, where

Γ is a discrete subgroup of SU(1, 1), acting properly discontinuously on the unit disc

∆.

Remark 1.1.8. If R is a Riemann surface, and p1, p2, p3 are three distinct points

on R, then R − {p1, p2, p3} is a hyperbolic Riemann surface. This follows from the

uniformization theorem.

Remark 1.1.9. Let Σ = Γ\∆ be a hyperbolic Riemann surface, and π : ∆ → Σ be a

covering map.

The pull-back of a holomorphic (resp., meromorphic) k−differential on Σ to ∆

under π is a Γ-invariant holomorphic (resp. meromorphic) k−differential on ∆. The

Γ-invariance of ϕ(z)dzk is equivalent to the automorphy law

ϕ(gz)J(g, z)k = ϕ(z) (1.2)

for all g ∈ Γ, z ∈ ∆, (here J(g, z) =
d(gz)
dz ). Conversely any Γ−invariant holomorphic

(resp., meromorphic) k−differential on ∆ defines a holomorphic (resp., meromorphic)

k−differential on Σ. The space of holomorphic (resp., meromorphic) k−differential

on Σ is isomorphic, as a complex vector space, to the space of holomorphic (resp.,

meromorphic) Γ−invariant k−differentials on ∆.
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1.1.2 The Poincaré metric

Let U be an arbitrary open set in the extended complex plane, C ∪ {∞}, whose

boundary consists of more than two points. First we set

ω∆(z) = 1− |z|2, z ∈ ∆. (1.3)

The Poincaré metric is ds =
|dz|

1−|z|2 . A simple calculation shows that for every con-

formal self-mapping A of ∆ we have

ω∆(Az)|A′(z)| = ω∆(z), z ∈ ∆.

(Recall: A(z) = az+b
b̄z+ā

, |a|2 − |b|2 = 1.) If U is connected, the domain U has the

unit disc as its universal covering space, since the boundary of U contains more than

two points. Let π : ∆ → U be the universal holomorphic covering map. We define

ωU by

ωU (π(z))|π′(z)| = ω∆(z), z ∈ ∆. (1.4)

We must verify that ωU is well defined. If ρ is another covering map and if π(z) = ρ(ζ)

for two points z and ζ, then there exists a conformal self-mapping A of ∆ such that

A(ζ) = z and π ◦ A = ρ.

Thus

ωU (ρ(ζ)) = ωU (ζ)|ρ′(ζ)|−1 = ω∆(Aζ)|A′(ζ)||π′(Aζ)|−1|A′(ζ)|−1 =

ω∆(z)|π′(z)|−1 = ωU (π(z)).

If z ∈ U is arbitrary and if we choose π such that π(0) = z, then we see that

ωU (z) = |π′(0)|−1. For more information about the Poincaré metric, see [24].
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1.1.3 Fundamental domain

Definition 1.1.10. A group of holomorphic homeomorphisms of the unit disc ∆

which acts properly discontinuously on ∆ is called a Fuchsian group.

Definition 1.1.11. A fundamental domain for a Fuchsian group Γ acting on ∆ is

an open subset D of ∆ such that:

1) Every point of ∆ is Γ−equivalent to at least one point of the closure of ω.

2) No two points of D are identified by an element A of Γ.

3) The boundary ∂D of D in ∆ can be written as a countable union of piecewise

analytic arcs γj .

4) For every arc γj in 3), there is another arc γk and an element A of Γ such that

A(γj) = γk.

We will not need to use all of the properties of a fundamental domain. For

our purpose it will suffice to know the existence of a measurable fundamental set.

It is obvious that if B is a Möbius transformation and ω is a fundamental domain

for Γ acting on ∆ , then B(ω) is a fundamental domain for B ◦ Γ ◦ B−1 acting on

B(∆). Here we give without proof the method for constructing the so-called Dirichlet

fundamental domain. For more information on fundamental domains the reader is

referred to Beardon ([5]), Ford ([12]), or Lehner ([29]).

Definition 1.1.12. Select a point z0 in ∆. For each A in Γ− {id}, let

h(A) = {z ∈ ∆ : d(z, z0) < d(z, A(z0))}

where d is the Poincaré metric. The Dirichlet fundamental domain is

Dd(z0) =
⋂

h(A)

where the intersection is over all elements A in Γ− {id}.
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1.1.4 Some function spaces of k−differentials

Let Σ be a hyperbolic Riemann surface, and π : ∆ → Σ be defined as in Remark 1.1.9.

Let Λ ⊂ Σ be a closed set such that π−1(Σ − Λ) is connected. Let V = Σ − Λ, and

U = π−1(V ). Clearly V = Γ\U . Using the Uniformization Theorem, we conclude

that U is a hyperbolic Riemann surface, and so U = Γ0\∆, where Γ0 is a discrete

subgroup of Γ. Denote by π0 : ∆ → U the universal covering map. Let dµ be

the Lebesgue measure on ∆. For a fixed positive integer k ≥ 2, we shall define the

following spaces of k−differentials. All of them are Banach spaces, isomorphic to

function spaces on U , as explained below.

Definition 1.1.13. Let A(1)(V ) be the (normed) space of holomorphic k−differentials

Φ on V such that

∫
Γ\U

|ϕ(z)|w(z)k−2dµ <∞ (1.5)

where z ∈ U , ϕ(z)dzk = (π|U )∗Φ, and the norm ‖Φ‖1 is given by (1.5). The integral

(1.5) can also be written as
∫
F |ϕ(z)|w(z)k−2dµ, where F = D ∩ U and D is a

fundamental domain for Γ.

Remark 1.1.14. Let A
(1)
Γ (U) be the space of Γ-invariant holomorphic k−differentials

ϕ(z)dzk on U satisfying (1.5). A(1)(V ) is isomorphic to A
(1)
Γ (U) and isomorphic to

the space A(1)
Γ (U) of holomorphic functions ϕ(z) on U satisfying (1.2) (for g ∈ Γ,

z ∈ U) and (1.5).

Definition 1.1.15. Let A(2)(V ) be the space of holomorphic k−differentials Φ on V

such that ∫
Γ\U

|ϕ(z)|2w(z)2k−2dµ <∞ (1.6)
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where z ∈ U , ϕ(z)dzk = (π|U )∗Φ. The integral (1.6) can also be written as
∫
F |ϕ(z)|2w(z)2k−2dµ.

A(2)(V ) is a normed space, with the norm

‖Φ‖2 = (

∫
Γ\U

|ϕ|2w(z)2k−2dµ)1/2

Remark 1.1.16. Let A
(2)
Γ (U) be the space of Γ-invariant holomorphic k−differentials

ϕ(z)dzk on U that satisfy (1.6). A(2)(V ) is isomorphic to A
(2)
Γ (U) and is isomorphic

to the space A(2)
Γ (U) of holomorphic functions ϕ(z) on U satisfying (1.2) (for g ∈ Γ,

z ∈ U) and (1.6).

Definition 1.1.17. Let B(V ) be the (normed) space of holomorphic k−differentials

Φ on V such that

sup
z∈F

|ϕ(z)|w(z)k <∞ (1.7)

where z ∈ U , ϕ(z)dzk = (π|U )∗Φ, and the norm ‖Φ‖∞ is given by (1.7).

Remark 1.1.18. Let BΓ(U) be the space of Γ-invariant holomorphic k−differentials

ϕ(z)dzk on U that satisfy (1.7). B(V ) is isomorphic to BΓ(U) and satisfies (1.2)

(for g ∈ Γ, z ∈ U) and (1.7).

Definition 1.1.19. The spaces A(1)(Σ), A(2)(Σ), B(Σ) are defined by setting Λ = ∅

(i.e. V = Σ) in the definition above.

Definition 1.1.20. The space A(1)(U) (respectively A(2)(U) and B(U)) is defined as

the normed space of holomorphic k−differentials ϕ(z)dzk on U such that

‖ϕ(z)dzk‖1 =

∫
U

|ϕ(z)w(z)k−2|dµ <∞ (1.8)

(respectively

‖ϕ(z)dzk‖2 = (

∫
U

|ϕ(z)|2w(z)2k−2dµ)1/2 <∞ (1.9)
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and

‖ϕ(z)dzk‖∞ = sup
z∈U

|ϕ(z)|w(z)k <∞). (1.10)

Remark 1.1.21. The space A(1)(U) (respectively A(2)(U) and B(U)) is isomorphic

to the space A(1)(U) (respectively A(2)(U) and B(U)) of holomorphic functions ϕ(z)

on U satisfying (1.8) (respectively (1.9) and (1.10)). The isomorphism is given by

the map ϕ(z) 7→ ϕ(z)dzk.

Definition 1.1.22. The space A(1)(∆) is defined as the normed space of holomorphic

k−differentials ϕ(z)dzk on ∆ such that

‖ϕ(z)dzk‖1 =

∫
∆

|ϕ(z)|w(z)k−2dµ <∞. (1.11)

It is isomorphic (via ϕ(z)dzk 7→ ϕ(z)) to the space A(1)(∆) of holomorphic

functions ϕ(z) on ∆ satisfying (1.11).

Remark 1.1.23. Spaces A(1)(·), A(2)(·), B(·), defined above, are Banach spaces.

The Petersson inner product

〈Φ,Ψ〉 =

∫
Γ\U

ϕ(z)ψ(z)w(z)2k−2dµ,

where (π|U )∗Φ and (π|U )∗Ψ are ϕ(z)dzk and ψ(z)dzk, Φ ∈ A(1)(V ), ψ ∈ B(V ),

establishes an antilinear isomorphism between B(V ) and A(1)(V )∗.

Remark 1.1.24. The Petersson inner product

〈ϕ(z)dzk, ψ(z)dzk〉 =

∫
U

ϕ(z)ψ(z)w(z)2k−2dµ,

where ϕ(z)dzk ∈ A(1)(U) and ψ(z)dzk ∈ B(U) establishes an antilinear isomorphism

between B(U) and A(1)(U)∗.
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Remark 1.1.25. A(2)(V ) is a Hilbert space, with the inner product

〈Φ,Ψ〉 =

∫
Γ\U

ϕ(z)ψ(z)w(z)2k−2dµ (1.12)

where Φ,Ψ ∈ A(2)(V ), ϕ(z)dzk = (π|U )∗Φ , ψ(z)dzk = (π|U )∗Ψ.

A(2)(U) is a Hilbert space, with the inner product

〈ϕ(z)dzk, ϕ(z)dzk〉 =

∫
U

ϕ(z)ψ(z)w(z)2k−2dµ.

Remark 1.1.26. The space A(2)(U) admits a reproducing kernel K : U × U 7→ C.

It has, in particular, the following properties: [24, Theorem III.3.1]:

• K(z, ξ) is holomorphic in z and antiholomorphic in ξ,

• K(z, ξ) = K(ξ, z),

• as a function of z (with fixed ξ) it belongs to A(1)(U) and to A(2)(U),

• for any automorphism τ of U and z, ξ ∈ U, K(τ(z), τ(ξ))J(τ, z)kJ(τ, ξ)
k

=

K(z, ξ),

• for any function f in A(1)(U) or in A(2)(U) or in B(U) we have:

f(z) =

∫
U

K(z, ξ)f(ξ)w(ξ)2k−2dµ

for any z ∈ U .

Also the operator β defined for any z ∈ U formally by

(βf)(z) =

∫
U

K(z, ξ)f(ξ)w(ξ)2k−2dµ
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is a bounded linear projection from L1(U,w(z)k−2dµ) (respectively L2(U,w(z)2k−2dµ),

L∞(U, supz∈U | · |w(z)k) onto A(1)(U) (respectively A(2)(U), B(U)).

We shall denote by L1
Γ(U,w(z)k−2dµ) the subspace of L1(U,w(z)k−2dµ) that consists

of functions satisfying (1.2) for g ∈ Γ, z ∈ U .

1.2 Poincaré series

The Poincaré series for a function f : U 7→ C is formally defined as
∑

g∈Γ f(gz)J(g, z)k.

We shall need the following statement about the Poincaré series of k−differentials.

Theorem 1.2.1. Suppose k is a positive integer, k ≥ 2.

(i) For any ϕ(z)dzk ∈ A(1)(U) the Poincaré series

θ(ϕ)(z) =
∑
g∈Γ

ϕ(gz)J(g, z)k,

converges absolutely and uniformly on compact sets.

(ii) (Theorem 3.3 [24]) The Poincaré series map

Θ : A(1)(U) → A
(1)
Γ (U)

ϕ(z)dzk 7→ Θ(ϕ(z)dzk) = θ(ϕ)(z)dzk,

is a surjective, bounded and linear operator with norm ‖Θ‖ ≤ 1

Proof. (i) Let z0 ∈ U , let r > 0 be sufficiently small so that the closed disc B(z0; r) =

{z ∈ C||z − z0| ≤ r} is in F . Let us show that the series θ(ϕ) converges absolutely

at z0. By the Mean Value Theorem for a function f holomorphic on an open set

containing B(z0; r)

f(z0) =
1

2π

2π∫
0

f(z0 + reit)dt,
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and so ∫
B̄(z0;r)

f(z)dxdy =

r∫
0

2π∫
0

f(z0 + ρeit)ρdtdρ =

2π

r∫
0

f(z0)ρdρ = f(z0)πr
2,

hence f(z0) = 1
πr2

∫
B̄(z0;r) f(z)dxdy. Let m = minz∈B̄(z0;r)w(z)k−2. Note that

m > 0. We have: for γ ∈ Γ

|ϕ(γz0)J(γ, z0)
k| =

∣∣∣∣ 1

πr2

∫
B̄(z0;r)

ϕ(γz)J(γ, z)kdxdy

∣∣∣∣

≤ 1

πr2

∫
B̄(z0;r)

|ϕ(γz)J(γ, z)k|dxdy

≤ 1

mπr2

∫
B̄(z0;r)

|ϕ(γz)J(γ, z)k|w(z)k−2dxdy,

and then:

∑
γ∈Γ

|ϕ(γz0)J(γ, z0)
k| ≤ 1

mπr2

∑
γ∈Γ

∫
B̄(z0;r)

|ϕ(γz)J(γ, z)k|w(z)k−2dxdy

=
1

mπr2

∑
γ∈Γ

∫
γ(B̄(z0;r))

|ϕ(η)|w(η)k−2dRe(η)dIm(η)

≤ 1

mπr2

∫
U

|ϕ(η)|w(η)k−2dRe(η)dIm(η) <∞.

Now let us choose a compact set K ⊂ U and show that the series converges

uniformly on K.

Let r > 0 be sufficiently small, so that the disc of radius r centered at any point

of K is contained in a compact set K ′ and K ′ ⊂ U . Let q be the number of elements
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of Γ such that γK ′ ∩K ′ 6= ∅. For 0 < ε < 1 denote by Cε the closed disc centered at

0 of radius 1− ε. There are at most finitely many γ ∈ Γ such that γK ′ ∩Cε 6= ∅ [43,

p. 219]. Write Σ′ε to denote the sum over all other γ ∈ Γ. As above, for z ∈ K, we

obtain:

Σ′ε|ϕ(γz)J(γ, z)k| ≤ q

mKπr
2

∫
U−Cε

|ϕ(z)|w(z)k−2dxdy,

where mK = minξ∈K′ w(ξ)k−2. As ε → 1, the right hand side goes to zero. This

proves uniform convergence.



Chapter 2

Main results on k−differentials and

Poincaré series

Construction of automorphic forms via Poincaré series is a classical technique, and

there is a significant amount of literature on this subject. For example, it is well-

known that any holomorphic k-differential (k is an integer, k ≥ 2) on a compact

Riemann surface of genus g ≥ 2 is obtained from the Poincaré series of a polynomial

in z of degree not higher than k(2g− 2). There are various descriptions of the kernel

of the Poincaré series operator: See, in particular, [25], [26], [30], [31], [33].

The case k = 2 (quadratic differentials) is of special importance in Teichmüller

theory and has connections to Thurston’s program. The large variety of references

on this subject includes, in particular, [3], [4], [15], [27], and several of McMullen’s

papers including [32]. This chapter contains our main results about holomorphic

k−differentials and Poincaré series.

The results in this chapter was inspired, partially, by the questions discussed in

[28], although we do not present results similar to the results of [28].

2.1 Holomorphic k−differentials

Let Θ0 : A(1)(∆) −→ A(1)(U) be the Poincaré series map corresponding to π0.

14
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Proposition 2.1.1. If Λ is a finite set, then A(2)(V ) is isomorphic to A(2)(Σ), B(V )

is isomorphic to B(Σ), A(1)(V ) is isomorphic to the subspace of A(1)(Σ) that consists

of meromorphic k-differentials on Σ with at most simple poles, all in Λ.

Proof. Let Φ be a holomorphic k-differential on V . Then (π|U )∗Φ = φ(z)dzk is a

holomorphic k-differential on U . Let z0 be a point in π−1(Λ). Note that φ(z) has an

isolated singularity at z0. If Φ ∈ B(V ) then φ(z) is bounded in a small neighborhood

of z0, hence φ(z) has a removable singularity at z0. If Φ ∈ A(2)(V ) then φ(z) has a

removable singularity at z0 (the proof is similar to the proof of 8(b) in [20, p.146]).

If Φ ∈ A(1)(V ) then φ(z) has a removable singularity or a simple pole at z0.

Proposition 2.1.2. A(1)(U) and A(1)(V ) are separable.

Proof. The proof is analogous to the proof of Corollary 1 [16, §3-2] (see also the proof

of [22, Proposition 1.3]. Since Θ and Θ0 are continuous surjective maps, it is sufficient

to show that A(1)(∆) is separable. Let f be a function in A(1)(∆). For each r such

that 0 < r < 1 let fr be the function defined by fr(z) = f(rz), z ∈ ∆. We have:

∫
∆

|fr(z)− f(z)|(1− |z|2)k−2dµ→ 0

as r → 1− (to see this use that for 0 < δ < 1

∫
∆

|fr(z)− f(z)|w(z)k−2dµ

≤
∫

|z|≤δ

|fr(z)− f(z)|(1− |z|2)k−2dµ+

∫
δ<|z|<1

(|fr(z)|+ |f(z)|)(1− |z|2)k−2dµ).

The function fr can be approximated by its Taylor polynomials, and, moreover,

by polynomials with rational coefficients. Thus, for any ε > 0, there is a polynomial
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p(z) with rational coefficients such that

∫
∆

|f(z)− p(z)|(1− |z|2)k−2dµ < ε.

Proposition 2.1.3. Let P be the set of polynomials in z. The set Θ0({p(z)dzk | p ∈

P}) is dense in A(1)(U). The set Θ(Θ0({p(z)dzk | p ∈ P})) is dense in A(1)(V ).

A(1)(U) and A(1)(V ) are separable.

Proof. By Theorem 1.2.1, Θ and Θ0 are continuous surjective maps.

For any f ∈ A(1)(∆) and for any ε > 0 there is a polynomial p(z) with rational

coefficients such that

∫
∆

|f(z)− p(z)|(1− |z|2)k−2dµ < ε

(the proof is analogous to the proof of [15, §3-2, Cor.1], see also the proof of Proposi-

tion 1.3 [22]). Thus A(1)(∆) is separable and P is dense in A(1)(∆). The statement

follows.

2.2 Kernel of the Poincaré series map

One of the best partial result in this direction was obtained by I. Ljan [30]. In his work

Θ is viewed as an operator from A(1)(∆) onto A(1)(Σ). In the following theorem, we

generalize Ljan’s result to the case when Θ is an operator from A(1)(U) onto A(1)(V ).

Theorem 2.2.1. The set

W = {β(χgFφ− χγFφ)(z)dzk | g, γ ∈ Γ, φ(z) ∈ L1
Γ(U,wk−2dµ)},
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is dense in ker Θ.

Proof. We shall follow the idea of the proof of the main theorem in [30].

Let l be a continuous linear functional on ker Θ. It will suffice to show that if

l(f) = 0 for all f ∈ W then l(f) = 0 for all f ∈ ker Θ.

By the Hahn-Banach theorem, l can be extended to l̃ ∈ (A(1)(U))∗ such that

||l̃|| = ||l||. By [24, Theorem 3.2.1] there exists a ψ ∈ B(U) such that

l̃(f) =

∫
U

f(z)ψ(z)w(z)2k−2dµ

for all f ∈ A(1)(U).

Now let us prove two lemmas.

Lemma 2.2.2. If g, γ ∈ Γ, φ ∈ L1
Γ(U,wk−2dµ), then

β(χgFφ− χγFφ)(z)dzk ∈ ker Θ.

Proof. φ ∈ L1
Γ(U,wk−2dµ), therefore β(χgFφ), β(χγFφ) ∈ A(1)(U), so β(χgFφ −

χγFφ)(z)dzk ∈ A(1)(U). We have:

β(χgFφ)(z) =

∫
gF

φ(ξ)K(z, ξ)w(ξ)2k−2dµ(ξ),

β(χγFφ)(z) =

∫
γF

φ(η)K(z, η)w(η)2k−2dµ(η)

=

∫
gF

φ(γg−1ξ)K(z, γg−1ξ)w(γg−1ξ)2k−2dµ(γg−1ξ)

=

∫
gF

φ(ξ)J(γg−1, ξ)−kK(z, γg−1ξ)w(ξ)2k−2|J(γg−1, ξ)|2kdµ(ξ)
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=

∫
gF

φ(ξ)K(z, γg−1ξ)w(ξ)2k−2J(γg−1, ξ)
k
dµ(ξ),

so that

θ(β(χgFφ− χγFφ))(z)

=
∑
h∈Γ

∫
gF

φ(ξ)(K(hz, ξ)−K(hz, γg−1ξ)J(γg−1, ξ)
k
)w(ξ)2k−2dµ(ξ)J(h, z)k,

which is equal to zero as

∑
h∈Γ

K(hz, γg−1ξ)J(γg−1, ξ)
k
J(h, z)k

=
∑
h∈Γ

K(gγ−1hz, ξ)J(gγ−1, hz)kJ(h, z)k

=
∑
h∈Γ

K(gγ−1hz, ξ)J(gγ−1h, z)k =
∑
α∈Γ

K(αz, ξ)J(α, z)k

where α = gγ−1h.

Lemma 2.2.3. If ψ ∈ B(U) and for all φ ∈ L1
Γ(U,wk−2dµ)

∫
F

φ(z)ψ(z)w(z)2k−2dµ = 0

then ψ(z) is identically zero.

Proof. Define ψ1 ∈ L∞Γ (U, supz∈F | · |w(z)k) by setting ψ1 = ψ on F and ψ1(hz) =

ψ1(z)J(h, z)−k for all z ∈ F , h ∈ Γ. Then ψ1 is zero (because L∞Γ (U, supz∈F |·|w(z)k)

is the dual of L1
Γ(U,wk−2dµ) [24]). Therefore ψ|F = 0 and, since ψ is holomorphic,

it must be identically zero.
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Lemma 2.2.2 shows that W ⊂ ker Θ. Suppose that l̃(f) = 0 for all f ∈ W . We

have that for all g, γ ∈ Γ, φ ∈ L1
Γ(U,wk−2dµ)

0 =

∫
U

β(χgFφ− χγFφ)(z)ψ(z)w(z)2k−2dµ

=

∫
U

∫
U

(χgFφ(ξ)− χγFφ(ξ))K(z, ξ)w(ξ)2k−2dµ(ξ)ψ(z)w(z)2k−2dµ(z)

=

∫
U

∫
U

ψ(z)K(ξ, z)w(z)2k−2dµ(z)(χgFφ(ξ)− χγFφ(ξ))w(ξ)2k−2dµ(ξ)

=

∫
U

(χgFφ(ξ)− χγFφ(ξ))ψ(ξ)w(ξ)2k−2dµ(ξ)

=

∫
gF

φ(ξ)ψ(ξ)w(ξ)2k−2dµ(ξ)−
∫

γF

φ(η)ψ(η)w(η)2k−2dµ(η)

=

∫
F

(φ(gz)ψ(gz)|J(g, z)|2k − φ(γz)ψ(γz)|J(γ, z)|2k)w(z)2k−2dµ(z)

=

∫
F

φ(z)(ψ(gz)J(g, z)k − ψ(γz)J(γ, z)k)w(z)2k−2dµ(z).

Hence, by Lemma 2.2.3, with ξ = gz,

ψ(ξ) = ψ(γg−1ξ)J(γg−1, ξ)k

for all ξ ∈ U , γ, g ∈ Γ, thus ψ ∈ BΓ(U). For any φ(z)dzk ∈ A(1)(U)

∫
F

θφ(z)ψ(z)w(z)2k−2dµ =

∫
F

∑
h∈Γ

φ(hz)J(h, z)kψ(z)w(z)2k−2dµ

=
∑
h∈Γ

∫
hF

φ(ξ)ψ(ξ)w(ξ)2k−2dµ(ξ) =

∫
U

φ(ξ)ψ(ξ)w(ξ)2k−2dµ(ξ) = l̃(φ).

Thus l̃ = 0, and so l = 0 on all of ker Θ, as required.
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In the following Theorem, we obtain another description of the kernel of Poincaré

series map, and as a consequence we show that there exist a subset of KerΘ which

is dense in A(2)(U) (if Γ is infinite). This is a new result even for the case k = 2.

Theorem 2.2.4. Suppose Γ is infinite. Let P be a subset of F that has a limit point

in F . Let P be the linear span of the set

{(K(z, p)− J(g, p)
k
K(z, gp))dzk | p ∈ P, g ∈ Γ}.

Then P ⊂ ker Θ ∩ A(2)(U) and P is dense in A(2)(U).

Proof. First, we note that K(z, p) − J(g, p)
k
K(z, gp), as a function of z (with fixed

g ∈ G, p ∈ P ), is in A(1)(U) and A(2)(U).

The following calculation shows that it belongs to ker Θ:

∑
γ∈Γ

(K(γz, p)− J(g, p)
k
K(γz, gp))J(γ, z)k

=
∑
γ∈Γ

K(γz, p)J(γ, z)k −
∑
γ∈Γ

J(g, p)
k
K(g−1γz, p)J(g−1, γz)kJ(g−1, gp)

k
J(γ, z)k

=
∑
γ∈Γ

K(γz, p)J(γ, z)k −
∑
γ∈Γ

K(g−1γz, p)J(g−1γ, z)k = 0.

Finally, let us assume that f(z)dzk ∈ A(2)(U) and

∫
U

f(z)(K(z, p)− J(g, p)
k
K(z, gp))w(z)2k−2dµ = 0

for all p ∈ P , g ∈ Γ. We need to show that f is identically zero. We have:

f(p) =

∫
U

f(z)K(p, z)w(z)2k−2dµ =
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U

f(z)J(g, p)kK(gp, z))w(z)2k−2dµ(z) = f(gp)J(g, p)k

for all p ∈ P , g ∈ Γ. Therefore the holomorphic function f(p)− f(gp)J(g, p)k is zero

on P ; hence it is identically zero, and so f ∈ A(2)
Γ (U) ∩ A(2)(U) which is {0} [24,

§3.2].

Corollary 2.2.5. If Γ is infinite then ker Θ ∩ A(2)(U) is dense in A(2)(U).

Remark 2.2.6. P is non-trivial. Indeed, suppose that P = {0}. Then for all p ∈ P

and g ∈ Γ we have:

0 = K(z, p)− J(g, p)
k
K(z, gp) = K(z, p)−K(g−1z, p)J(g−1, z)k.

Hence K(z, p) as a function of z (with fixed p) belongs to A(1)
Γ (U). But K(z, p) ∈

A(1)(U) and A(1)
Γ (U) ∩ A(1)(U) = {0} unless Γ is finite [24, §3.2].



Chapter 3

An Extension Theorem

3.1 Introduction

Let E be a closed subset of a non-compact Riemann surface R. In [37], I. Richards

has shown that every Riemann surface can be represented (topologically) as a sphere

with handles attached and points removed on the equator. For a precise statement,

see [37]. From this representation, it follows easily that we can find G, D0, D1, D2, · · ·

and W1,W2, · · · which are subsets of R with the following properties:

1) The domain G is an open and connected subset (that is, a domain) of R which

contains E, and whose boundary consists of at most a countable number of

Jordan arcs and Jordan curves.

2) Each compact subset of R meets at most a finite number of components of ∂G.

3) All the handles of G are also in E, i.e. no handle in R that starts in E but ends

outside of E is contained in G.

4) The Dn’s are pre-compact Jordan domains D0 ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ · · · ,⋃
nDn = R (that is, {Dn} is an exhaustion of R) and each Dn is homeo-

morphic to a sphere with a finite number of circular holes, and a finite number

of handles attached to them [42, p.141]. Each handle which starts in Dn also

ends in Dn, and we assume that D0 is planar. (Recall that a set M is planar if

each simple closed curve that locally separates M also separates it).

5) For any Dn, G \Dn has only a finite number of components.

22
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6) The Wj ’s are open neighborhoods around each handle in G ∩ Dn, for each n.

The closure of the Wj ’s are disjoint. It thus follows that G \ ∪Wj is planar.

Without loss of generality we can also assume that for n > 0, each Dn \Dn−1

contains just one of these neighborhoods, and so for each n, Wn ⊂⊂ Dn\Dn−1.

Note that this implies that we are thus assuming G to be of infinite genus. For

more on that, see Remark 4.2.4.

7) We also assume that the boundary of eachDn does not intersect with the“holes”

of G, (by hole of G, we mean a component of R \ G whose closure is compact

in R).

3.2 Stitching up

Definition 3.2.1. Circular domain : A domain Ω contained in the Riemann sphere

C is called a circular domain if its boundary consists of a finite number of disjoint

non-degenerate circles.

Let r be a planar Riemann surface which is n−connected, and assume n ≥ 1.

Then r can be represented by a circular domain Ω = C \ {K1, · · · , Kn+1} under

a bijective meromorphic map f, where each closed disc Ki is contained in C, i =

1, · · · , n+ 1 (see [10, §15.7]).

Let K1 = {z | |z − z1| ≤ ρ1}. Set r1 to be r ∪ K1, and define charts on r1

as follows. Let p0 ∈ r1. If p0 ∈ r ∩ r1, we use the charts in r containing p0. If

p0 ∈ K◦
1 ∩ r1, we use a small neighborhood of p0 in C (small enough to be contained

in K◦
1) and the identity map. If p0 ∈ ∂K1 ∩ r1, let U be a neighborhood of p0 in C,

and define U ′ := f−1((U \K1) ∩ Ω) ∪ (U ∩K1) to be a neighborhood of p0 in r1. A

chart is then defined as follows:

F : U ′ −→ C
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p 7−→


f(p) if p ∈ f−1(U \K1 ∩ Ω)

p if p ∈ U ∩K1.

Following [41, §6.1], we now show that these charts are compatible with each

other and with the original structure.

Suppose p0, p1 ∈ ∂K1, let Up0 and Up1 be neighborhoods of p0 and p1 in r1,

and F0 and F1 be the related charts, as defined above.

Suppose p ∈ Up0 ∩ Up1 . We then have either p ∈ (Up0 ∩ Up1) ∩ K1 or p ∈

(Up0 ∩ Up1) ∩K
c
1.

If p ∈ (Up0∩Up1)∩K1, then F1F
−1
0 (p) = F1(p) = p, and if p ∈ (Up0∩Up1)∩K

c
1,

then F1F0(p) = F1(f
−1(p)) = f(f−1(p)) = p.

So, in either case, F1F0
−1(p) = p, and the new charts are compatible with the original

charts of r and of K1 (as a subset of C). Thus r1 preserve the analytic structure of

r and K1.

The same process can be repeated for K2, · · · , Kn+1, to obtain a simply connected

Riemann surface r̃. We have thus obtained the following, which is a special case of

Koebe’s Theorem (see for example [15, §2.2]).

Lemma 3.2.2. (see [41, §6.1]) Let r be a planar Riemann surface which is n−connected,

then there exists a simply connected Riemann surface r̃ which contains r and r̃ pre-

serves the analytic structure of r.

3.3 Constructing planar Riemann surfaces and

simply connected domains

Definition 3.3.1. (see [41]) The analytic structure of a sequence of Riemann surfaces

Rn is said to encompass the analytic structure of R if, for each compact K ⊂ R, there

exists n0 ∈ N such that K ⊂ Rn, for every n ≥ n0. The inclusion indicates not only
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the inclusion of sets, but also that the analytic structure of K as a subset of R and

K as a subset of Rn is the same. We will use the notation Rn}n→∞R.

Note that the limit R is not unique in the above definition. For example if

Rn := C \ [n,∞), then Rn}n→∞B, for any domain B ⊂ C.

The following was stated and used in [41] without proof.

Proposition 3.3.2. Suppose Rn,k}k→∞R
n and Rn}n→∞R, then there exists a se-

quence k(n) such that Rn,k(n)}n→∞R.

Proof. We can write R = ∪∞n=0Dn, where {Dn} is an exhaustion of R by precompact

domains.

Since Rn}n→∞R there exists N0 ∈ N such that D0 ⊂ Rn whenever n ≥ N0 .

Now let n be fixed with n ≥ N0. Because D0 ⊂ Rn and Rn,k}k→∞R
n, there exists

k0(n) ∈ N such that, D0 ⊂ Rn,k whenever k ≥ k0(n). It follows that for every n ≥ N0,

D0 ⊂ Rn,k0(n), and so we can find a sequence RN0,k0(N0), RN0+1,k0(N0+1), · · · , such

that D0 is subset of all the elements in that sequence. By choosing k0(n) ≥ k0(n−1),

we can and will assume that the sequence k0(n) is non-decreasing. In the same way,

it is possible to find a sequence RN1,k1(N1), RN1+1,k1(N1+1), · · · all of its elements

contains D1, and such that N1 ≥ N0, k1(N1) ≥ k0(N1) and k1(n) is a non-decreasing

sequence. For any Dj we can find a sequence RNj ,kj(Nj), RNj+1,kj(Nj+1), · · · such

that the elements of that sequence all contains Dj , and we can suppose Nj ≥

max(N1, · · · , Nj−1), kj(Nj) ≥ max(k0(Nj), · · · , kj−1(Nj)) and {kj(n)} is non-decrea-

sing. Let rj := RNj+j,kj(Nj+j). For any compact set K there exists Dn such that

K ⊂ Dn and by the way rn is defined Dn ⊂ RNn+n,kn(Nn+n), so rn}n→∞R.

Lemma 3.3.3. Let R be a non-compact Riemann surface, E be a closed subset of R,

and let G and {Dn} (n ≥ 0) be respectively an open domain and an exhaustion of R

having the properties described above. Then:
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1) There exists a sequence of Riemann surfaces Rn, and a sequence of domains

Gn ⊂ Rn such that Gn \Dn is planar and Gn}n→∞G.

2) If it is possible to find the domain G containing E in such a way that R \ G

contains an unbounded Jordan arc, then the sequence Gn can be chosen such

that Gn \Dn is simply connected for any n ≥ n0, for n0 large enough.

Proof. Let Rn := R \ (
⋃

j>nWj) and Gn = G \ (
⋃

j>nWj) ⊂ Rn.

Fix n > 0. Let Cn := Dn∩Gn and Ĉn := Dn+1∩Gn. It follows that Ĉn \Cn is

planar, and consists of a finite number of components, O1, · · · ,ON , each component

having finite connectivity (this follows from the the way G and Dn’s were selected).

Each Oj can be represented under a bijective meromorphic map θj by a circular

domain C \ (K
j
1 ,∪ · · · ∪K

j
mj

) where each K
j
i is a closed disc in C. Fix j, 1 ≤ j ≤ N .

Some of the holes of Oj may correspond precisely with a hole of Gn. Using the

stitching technique of Section 3.2, we fill all those holes (and only those holes) of Oj .

Denote by Õj the open set obtained this way. Let

d̃n := (∪N
j=1Õj) ∪ ((Dn+1 \Dn) \ (Ĉn \ Cn)),

with the obvious identification of the corresponding boundaries of Õj and (Dn+1 \

Dn) \ (Ĉn \Cn). Now let Rn := Dn ∪ (∪∞i=nd̃i), again with the obvious identification

of the boundaries. It follows easily that Rn}n→∞R.

Let Gn := (G∩Dn)∪(
⋃∞

i=n(
⋃Ni

j=1 Õj)), which is Gn with the holes filled outside

of Dn. Obviously Gn}n→∞G and Gn \ Dn is planar for any n, and this proves the

first part.

Now we prove that if R \ G contains an unbounded Jordan arc, then Gn \Dn

is simply connected for n ∈ N large enough: Suppose B is a bounded component of

(Gn \Dn)c. First note that (Gn \Dn)c = (Gn ∩Dc
n)c = (Gn)c ∪Dn and recall that

the boundary of Dn does not intersect with the holes of G. Now assume B ∩Dn = ∅,

and note that B ∩ Gn = ∅. If B is contained in a hole of Gn, then by the way Gn
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is defined, this B must be contained in an unbounded component of Gc
n, and thus it

will be unbounded, which is contrary to our hypothesis.

If B∩Dn 6= ∅, then Dn ⊂ B since Dn is connected. Under the extra assumption

that it is possible to find a connected and unbounded Jordan arc Γ in the complement

of G, we have that for large enough n, say n ≥ n0, Dn ∩ Γ 6= ∅ and so Γ should be

contained in B, and so B is unbounded, which is again contrary to our hypothesis.

Thus no such B exists and Gn \Dn is simply connected if n ≥ n0.

Definition 3.3.4. Ideal and real boundary points: Let A be a closed, unbounded

subset of a non-compact Riemann surface R and let R′ be another Riemann surface

containing A such that the analytic structure of R and R′ are compatible on R ∩ R′

and such that A is bounded in R′. The non-empty set A \ A with respect to R′ is

called the ideal boundary of A with respect to R′. The boundary points of A which are

in R are called real boundary points.

Lemma 3.3.5. As before assume R is a non-compact Riemann surface, let D be

a pre-compact domain in R (bounded by a finite number of Jordan curves) and G

be a domain in R such that G \ D (D is a compact set in R) is planar and its

complement does not have any compact component, then there exists a sequence of

Riemann surfaces Rk, such that:

1) G is finitely connected in Rk.

2) The real boundary of Rk consists of finite number of Jordan curves and Jordan

arcs.

3) Rk}k→∞R.

Proof. Let Γ1,Γ2, · · · be the unbounded components of R, let Rk be the component

of R\(∪{Γj ; k < j}) which contains G. Obviously G is finitely connected in Rk, G \D
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does not contains any “hole”, and the boundary of Dn consists of a finite number of

Jordan curves, so it cannot contain more than a finite number of holes.

Only a finite number of Γj ’s intersect with K, so for k0 large enough, K is

contained in the component of R\ (∪Γj , j > k0) that contains G, i.e. Rk, so K ⊂ Rk,

for k > k0 and Rk}k→∞R.

Lemma 3.3.6. Suppose B is an unbounded simply connected domain with a finite

number of boundary components in R, each of which is either a Jordan arc or a

Jordan curve, and suppose E is a closed subset of R. Then there exists a sequence Rν

such that Rν}ν→∞R and all the points of ideal boundary of E ∩ B form a bounded

subset of each Riemann surface Rν .

Proof. The domainB can be represented by a conformal map f , according to Riemann

mapping theorem. Because the boundary of B is composed of Jordan arcs or curves, it

follows from Carathéodory Theorem that f has a continuous extension to the ∂B (see

[35, §2.1]). Note that M := f(∂B) is an open subset of the boundary of the unit disc,

consisting of a finite number of arcs of the circle. The complement of M with respect

to {|z| = 1} is a finite number of points a1, · · · , aµ. LetAν
j := {eit|aj−1

ν ≤ t ≤ aj+
1
ν }

for ν ≥ ν0. We assume ν0 to be large enough so that for i 6= j, we have A
ν0
j ∩Aν0

i = ∅.

Now, let R′ be R \ (∪µ
j=1f

−1(Aν
j \ {aj})). Take µ copies Cj of C and stitch up

R′ to circular domains Cj \ {z ∈ Cj | |z| < 1} along arcs {eit | aj − 1
ν < t < aj + 1

ν },

using the technique described in Section 3.1. Denote the new surface by Rν .

From the way the conformal structure has been selected for Rν , R and Rν are

compatible on R ∩ Rν , and from the way Rν is defined it contains all the boundary

of E ∩ B. So the ideal boundary points of E ∩ B in R become real boundary points

in Rν , and E ∩ B becomes a compact subset of Rν . If K is compact in R then for

any ν we have K ⊂ Rν , so Rν}ν→∞R.
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3.4 Extension Theorem, statement and proof

Let E be a closed subset of a non-compact Riemann surface R, and assume that

there exists a neighborhood G of E, such that G is of infinite genus and that R \ G

contains a neighborhood of a connected unbounded Jordan arc. Recall that then

there always exists an exhaustion of R by Jordan domains Dn, and that there exists

Jordan domains Wn, with the following properties:

a) Wn ⊂⊂ Dn \Dn−1 for any n ∈ N and D0 = ∅

b) Each non-empty Wn is of finite and positive genus (we can assume of genus

one).

c) G \ ∪n∈NWn is planar.

Theorem 3.4.1. Let Dn, Wn and G satisfy the above properties, then:

1) For all n ∈ N, there exists a non-compact Riemann surface rn on which En :=

E \ ∪n<jWj is relatively compact.

2) For all n ∈ N, Dn ⊂ rn.

Proof. Suppose R is a non-compact Riemann surface, and E is a closed, unbounded

subset of R. Let G be a neighborhood of E, and Dn, n ≥ 1 an exhaustion with the

properties mentioned above.

By Lemma 3.3.3, there exist sequences Rn and Gn such that Rn}n→∞R ,

Gn}n→∞G and Gn \Dn is simply connected.

Fix n. Then by Lemma 3.3.5 there exist sequences Rn,k such that Rn,k}k→∞R

and Gn \ Dn has a finite number of simply connected components B1, · · · , BN and

the boundary of each Bi consists of finite number of Jordan arcs and Jordan curves.

Fix n and k, By Lemma 3.3.6 we can make E ∩Bi closed in a non-compact Riemann

surface Rν
n,k and Rν

n,k}ν→∞R. We can repeat the same process N times, so that for



30

any i = 1, · · · , N , E ∩Bi become closed in Rν
n,k. Note that ∪N

i=1(E ∩Bi) = E ∩ Gn.

Let En := E \ ∪i>nWi so En = E ∩ Gn and it is closed in Rν
n,k. We have:

Rν
n,k}ν→∞Rn,k, Rn,k}k→∞Rn and Rn}n→∞R.

By Proposition 3.3.2, there exist sequences ν(n) and k(n) such thatR
ν(n)
n,k(n)}n→∞R.

Letting rn := R
ν(n)
n,k(n), rn is the Riemann surface with the described property.

Note that for rn = Rν
n,k(n), all the discs which were attached and all the changes

to R were outside ofDn so the analytic structure of R insideDn has not been changed,

and Dn ⊂ rn.



Chapter 4

Holomorphic approximation on

non-compact Riemann surfaces

4.1 Fusion Lemma

The Fusion Lemma of Alice Roth [8] allows for the simultaneous approximation of

two meromorphic functions in the complex plane. This Lemma says the following:

Let K1 and K2 be disjoint compact sets in C and let m1 and m2 be meromorphic

functions on C whose values are close to each other on a compact set K. Then one

can find a third meromorphic function which is close to m1 on K1 ∪K and close to

m2 on K2 ∪K; how close depends (surprisingly) neither on the functions m1 and m2

nor on K, but only on K1, K2 and the maximum of |m1 −m2| on K.

This phenomenon has assumed a central position in complex approximation theory

(see [18]). In particular P.M. Gauthier has shown that the proof of A. Roth can also

be carried over to non-compact Riemann surfaces [17, p.143]. In these earlier works,

one always only found the uniform estimate |mj −m| < aα on Kj ∪K with a > 2. It

can be shown that |m2(z) −m(z)| → 0 as |z| → ∞, z ∈ K2. In these earlier works,

one always only found the uniform estimate |mj −m| < aα on Kj ∪K with a > 2.

But in the planar case, it can be shown that |m2(z)−m(z)| → 0 as |z| → ∞, z ∈ K2.

Here, without loss of generality, we assume that ∞ belongs to K2, as in the proof of

A. Roth.

In Section 4.1.2, we shall give a proof (due to G. Schmieder [41]) of a stronger

version of the Fusion Lemma on Riemann surfaces, where the question of how well the

31
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function m approximate (or can approximate) the function m1 on K1, respectively

m2 on K2 is considered. However, the basic idea remains the proof of A. Roth for

the planar case.

A further question in this connection is whether one can omit the assumption

that K1 ∩K2 = ∅ and instead suppose that m1 and m2 are close on K1 ∩K2 thus

dropping K completely. This is in general not possible, in fact not even when K1 and

K2 are rectangles as D. Gaier has shown [3]. From this fact, it is not hard to see that

for numbers a = a(K1, K2) having the above properties, it is not possible to give a

common estimate valid for all disjoint K1 and K2.

4.1.1 Preliminaries

For a closed subset T of a Riemann surfaceR, we denote byM(T ) ( respectivelyH(T ))

the family of functions meromorphic (respectively holomorphic) in a neighborhood

of T . Let MR(T ) be the class of (continuous) functions f : T → C for which there

exists a sequence fn ∈ M(R) such that all fn have the same set Pf of poles on

T and |fn − f | converges uniformly to zero on T \ Pf . Let HR(T ) be the class of

(continuous) functions f : T → C for which there exists a sequence fn ∈ H(R) such

that |fn−f | converges uniformly to zero on T. Now let R be a non-compact Riemann

surface. According to Behnke and Stein [7], there exists a Cauchy kernel ω on R (see

for example [7], [17], [38]); let one such kernel be fixed.

Lemma 4.1.1. (Pompeiu-Formula)

If σ : R −→ C is a C1-function with compact support, then

σ(Q) =
1

2πi

∫
R

∫
ω(P,Q) ∧ ∂σ

for all Q ∈ R, where ∂σ is the 1-form given in the local parameters by ∂σ
∂ζ

and ∧

denotes the exterior product.
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This follows from a more general theorem obtained by S. Scheinberg [39, Prop.7].

4.1.2 Formulation and proof of the Fusion Lemma

Theorem 4.1.2. (Fusion Lemma) Let K1 and K be compact subsets and K2 a

closed subset of an open Riemann surface R with K1 ∩K2 = ∅ , and suppose

M(K1 ∪K2 ∪K) ⊂MR(K1 ∪K2 ∪K).

Then, there exists a continuous function

C : R→ R+

such that for each pair m1,m2 ∈M(R) with

‖m1 −m2‖K < ε,

there exists a function m ∈M(R) which satisfies the inequality

|m(p)−mj(p)| < C(p) · ε (p ∈ Kj ∪K, j = 1, 2)

The function C depends only on K1 and K2.

Remark 4.1.3. If K2 is also compact then M(K1 ∪ K2 ∪ K) ⊂ MR(K1 ∪ K2 ∪

K) always by [7, Thm.13]. Note that in [7], the holomorphy which is assumed in

a neighborhood of K1 ∪ K2 ∪ K can be circumvented. Indeed we first subtract a

meromorphic function on R having the same poles and principal parts on K1∪K2∪K

and after approximation we add it again. If for a compact set K2, we replace the

function C(p) by the constant c = ‖C‖K1∪K2∪K , then we obtain the weaker form of

the Fusion Lemma (see [13], [17] and [36]).
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Remark 4.1.4. M(X) ⊂ MC(X) holds for every closed set X ⊂ C. This follows

from the approximation theorem of Roth [13, p.120], taking Remark 4.1.3 into con-

sideration.

In order to prove the Fusion Lemma (see [41]), we choose pairwise smoothly

bounded neighborhoods U1 and U2 of K1 and K2 on R with U1 ∩ U2 = ∅, and we

may choose U2 so large that R \ U2 is compact. Further, let E = R \ (U1 ∪ U2),

and χ : R → [0, 1] be a C1 function with χ|U1
= 1 and χ|U2

= 0 (see e.g. [34,

Cor. 2.2.15]). Let ω be some Cauchy-kernel on R (see [7, Thm.12]). The function

B(Q) =
1

2π

∫
E

∫
|ω(P,Q) ∧ ∂χ(P )| (4.1)

is well-defined and continuous on R as can be seen by passing to a local coordinate z

and then changing to polar coordinate ζ − z = ρeit.

Now let q = m1 −m2 be fixed. By assumption there is a neighborhood U3 of

K with ‖q‖U3
< ε.

Now we define the function q1 on U1∪U2∪U3. We set q1 = q on U3 and extend

it continuously by Tietze’s Theorem (see e.g. [23, p.242]) to E \ U3 (with respect to

the relative topology of E) so that ‖q1‖ < ε (q1 need not be continuous on R). By

passing to local coordinates we see that

g(Q) = − 1

2πi

∫
E

∫
q1(P )ω(P,Q) ∧ ∂χ(P ) (4.2)

represents a function that is holomorphic on R \ E.

From our choice of χ it follows that the function f = χq1 + g is holomorphic

on U2 and meromorphic on U1 with the same poles as q. From the Pompeiu Formula

(4.1.1), we have

f(Q) =
1

2πi

∫
E

∫
(q1(Q)− q1(P ))ω(P,Q) ∧ ∂χ(P ) (4.3)
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for all Q ∈ R with q1 6= ∞.

From the properties of the Cauchy kernel (see [7]), it follows that f is holomor-

phic on U3. Thus, f is meromorphic on U1 ∪ U2 ∪ U3. Now set X = K1 ∪K2 ∪K

and let h ∈ H(X) be bounded (h may be constant). From the hypothesis that

M(X) ⊂M(X), it follows that there exists a function m3 ∈M(R) such that

|m3 − f | ≤ ε|h| on X. (4.4)

Since |q1| < ε on E , we have |g(Q)| < ε.B(Q), for all Q ∈ R. With m = m2 + m3

we have the following estimates:

On K1:

|m−m1| ≤ |f − (m1 −m2)|+ |m3 − f | = |f − q|+ |m2 − f | ≤ (4.5)

|χ− 1||q|+ |g|+ |m3 − f | < ε ·B + ε · |h| = (B + |h|)ε.

On K2:

|m−m2| ≤ |m3 − f |+ |f | ≤ |m3 − f |+ |χ||q|+ |g| < (4.6)

ε · |h|+ ε ·B = (B + |h|)ε.

Taking into considration that 0 ≤ χ ≤ 1, we have on K:

|m−mj | ≤ |q|+ |g|+ |m3 − f | < ε+ ε ·B + ε · |h| (4.7)

for j=1,2. Now let C : R→ R+ be any continuous function with

C(P ) > B(P ) + |h(P )|, for P ∈ K1 ∪K2, and (4.8)

C(P ) > B(P ) + 1 + |h(P )|, for P ∈ K \ (K1 ∪K2) (4.9)
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This function satisfies the conclusion of the Fusion Lemma. 2

Suppose Y (P,Q) is a meromorphic function on R × R and Ω = Y (P,Q)dP

represents a Cauchy-kernel except on a set of the form

P =
M⋃

j=1

(
Pj ×R

)
∪

L⋃
i=1

(R×Qi)

for finitly many points P1, · · · , PM , Q1, · · · , QL ∈ R. Then Ω is called a pseudo-

Cauchy kernel.

Remark 4.1.5. If Ω is a Pseudo-Cauchy Kernel with exceptional set P as above

where P1, · · · , PM , Q1, · · · , QL 6∈ K1 ∪ K2 ∪ K, then the above proof goes through

with ω replaced by Ω. The function f can then have additional poles. However, these

lie outside of K1 ∪K2 ∪K. Since Ω has an influence in the function C(P ), such a

choice could be advantageous.

4.1.3 The Newtonian Potential of an Annulus

It will now be shown (following [41]) that the function C(P ), in the Fusion Lemma

can be chosen near 1 on K1 and K2 and can be smaller in the special case where,

R = C and E = C \ (U1 ∪ U2) can be chosen to be on annulus.

The Newtonian (surface) potential of the disc |ζ| ≤ ι is the function

Fι(Z) = F (ι, z) =

∫
|ζ|≤ι

∫
1

|ζ − z|
dζdη

where ι = ζ + iη. If we set, as usual,

K(k) =

π/2∫
0

(1− k2 sin2 t)−1/2dt
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E(k) =

π/2∫
0

(1− k2 sin2 t)1/2dt,

then, using ([21],233,5e), we obtain by an elementary calculation

F (ι, z) =


4ιE(

|z|
z ) for |z| ≤ ι

4|z|(E( ι
|z|)− (1− z2

|z|2 )K( ι
|z|)) for |z| > ι.

(4.10)

Now let U1 = {|ξ| < ι} and U2 = {|ξ| > ι+ ∆ι}, so that E = {ι ≤ |ξ| ≤ ι+ ∆ι} . Let

ω be the usual Cauchy kernel.

For every α > 0, there exists a C1-function σ : R>0 −→ [0, 1] with σ|[0,1] = 1,

σ|[ι+∆ι,∞)=0 and |σ′| ≤ ι
∆ι + α on R>0. Then χ(ζ) = σ(|ζ|) has the properties in

the Fusion Lemma, and for B(z) (see (1)) we have:

B(z) ≤ 1

2π
(

1

∆ι
+ α)(F (ι+ ∆ι, z)− F (ι, z)), z ∈ C. (4.11)

ForB(ι,∆ι, z) = (2π∆ι)−1(F (ι+∆ι, z)−F (ι, z)), we have the estimateB(ι,∆ι, z) ≤
ι

∆ι + 1, where for |z| ≤ ι + ∆ι follows from (4.10), and otherwise from elementary

geometry after writing F in polar coordinates.

The number α was chosen arbitrarily. Hence from the Fusion Lemma together

with Remark 4.1.4, we have the following:

Corollary 4.1.6. If K1 is a compact subset of the disc |ζ| < ι+∆ι, K2 closed subset

of |z| > ι+ ∆ι (ι,∆ι > 0), and δ > 0, and K a compact set, then we have:

If m1,m2 ∈ M(C) with ‖m1 −m2‖K < ε. Then there exists a function m ∈

M(C) such that,

‖m−mj‖Kj
≤ (

ι

∆ι
+ 1 + δ)ε, (4.12)

‖m−mj‖K ≤ (
ι

∆ι
+ 2 + δ)ε, j = 1, 2. (4.13)
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4.2 The Localization Theorem

The localization theorem has been proved by A. Roth [36, Thm.1] for planar surfaces.

It allows to give a positive answer to the question: Is it possible to approximate

uniformly a function f on a closed set E by global meromorphic functions when

approximable on each compact subset of E.

The generalization of the theorem of A. Roth to non-compact Riemann surface

was given by P.M. Gauthier [18, Thm.1], for the case when E is contained in a

neighborhood which consist of disjoint components, each of finite genus. As in [41],

we will now show that this localization theorem is valid for a larger class of closed sets

E. Since the proof requires the Extension Theorem, we will need to impose the extra

condition introduced in Chapter 3. The definition of the larger class uses Cauchy

kernels which are themselves determined by the analytic structure of the Riemann

surface R; to determine if a given set E belongs to this class is not as easy as in the

case of Gauthier, as it is the analytic structure that manifests itself deeply through the

Cauchy kernels, and not any more simply some topological conditions. Furthermore,

we must take into consideration the analytic structure if we want to improve on the

result of Gauthier, as many examples show ([17], [39]).

4.2.1 Special Localization on the Surfaces rn ∩R

Let E ⊂ R be a closed set which satisfies the hypothesis of the Extension Theorem

in Chapter 3. Let D0 ⊂⊂ D1 ⊂⊂ ... be an exhaustion of R with Dn ⊂ rn, as in

the Extension Theorem, and let us choose the Jordan domains Wn as before. For

each Wn 6= ∅, we fix a domain Vn with Wn ⊂⊂ Vn, such that the V n’s are mutually

disjoint and

1) V n ⊂ Dn\Dn−1 from which it follows that

2) V n ⊂ rn

As before, let En := E\
⋃

n<j Wj . We now prove the following:
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Proposition 4.2.1. (see [41]) For a function h ∈M(Dn−1 ∪ En), the following are

equivalent:

(i) h ∈MR(Dn−1 ∪ En) with respect to the surface rn ∩R.

(ii) h|K∩(Dn−1∪En) ∈MR(K ∩ (Dn−1 ∪ En)) for each compact K ⊂ rn ∩R

Proof. It is trivial that (i) 7→ (ii).

To prove (ii) 7→ (i), let n be fixed, h ∈ M(Dn−1 ∪ En), assume that (ii) holds and

let δ be a positive number.

The argument follows closely that of A. Roth ([36]). The goal is to approach h on

Dn−1 ∪ En. Let dj be an exhaustion of rn ∩R. For the three sets bounded on rn

K
j
1 = dj , K

j
2 = (Dn−1 ∪ En)\dj , Kj = (Dn−1 ∪ En) ∩ dj+1

we choose aj ∈ R+ replacing C(P ) in the Fusion Lemma ( that is aj ≥ ‖C‖
K

j
1∪K

j
2∪Kj ).

Let δ1, δ2, ... a sequence of positive numbers such that
∑∞

1 δj = δ/2. From the

hypothesis on h, there exist functions qj ∈ M(rn ∩ R) such that |qj − h| < δj
2aj

on

Kj . From which it follows that

|qj+1 − qj | <
δj
aj

on Kj for all j. (4.14)

Using the Theorem of Behnke and Stein (see [7]) we can approximate qj uni-

formly on Kj by functions in M(rn); in the case where qj has poles on Kj , we first

subtract a function in M(rn) which has the same poles on Kj and we add this func-

tion after having done the approximation. We can thus suppose in what follows that

qj ∈M(rn).

By the Fusion Lemma (4.1.2), there exist functions ϕj ∈M(rn) such that

|ϕj − qj | < δj on dj ∪Kj
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and

|ϕj − qj+1| < δj on Dn−1 ∪ En = K
j
2 ∪K

j .

This implies
∞∑

ν=j

|ϕν − qν | <
∞∑

ν=j

δν < δ/2 on dj

Consequently, the function

H := q1 +
∞∑

ν=1
(ϕν − qν)

is meromorphic on
⋃
dj = rn ∩R.

On K1, we have

|H − h| ≤ |q1 − h|+
∞∑

ν=1
|ϕν − qν | ≤

δ1
2a1

+
∞∑

ν=1
δν < δ.

and on Kj −Kj−1, (j > 1), we get

|H−h| = |q1+

j−1∑
ν=1

(ϕν−qν)+h+
∞∑

ν=j

(ϕν−qν)| = |
j−1∑
ν=1

(ϕν−qν+1+qj−h+
∞∑

ν=j

(ϕν−qν)|

≤
j−1∑
ν=1

δν +
δj
2aj

+
∞∑

ν=j

< δj/2 +
∞∑

ν=1
δν < δ

We thus obtain |H − h| < δ on Dn−1 ∪ En which is what we needed to prove.

Proposition 4.2.2. Each function g meromorphic in a neighborhood U of Dn−1∪En

with respect to rn ∩ R can be uniformly approximated on Dn−1 ∪ En by functions in

M(rn ∩R).

This follows from Proposition 4.2.1 and the theorem of Behnke and Stein [7,

Thm. 13]. The eventual poles of g in Dn−1 ∪En are treated as in the previous proof.
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4.2.2 Definition of the sets “weakly of infinite genus” (wig)

(=sug in German)

Let R,E,Dn,Wn, Vn, En, rn be defined as before. For each of the Riemann surfaces

rn ∩ R, let wn be a (given) Cauchy kernel (or only a pseudo Cauchy kernel (see [41,

§7.2] and Section 4.1.1). For each n, let

K1 = Wn ∩ E , K2 = Dn−1 ∪ (En\Vn) , K = (V n\Wn) ∩ E.

For these sets, we now choose open neighborhoods U1 and U2 of K1 and K2 respec-

tively with U1 ∩ U2 = ∅ , and a C1-function with compact support

χn : rn ∩R −→ [0, 1] with χn |U1
= 1 , χn |U2

= 0. Set Dn = (rn ∩R)\(U1 ∪ U2) and

Bn(Q) =
1

2π

∫ ∫
Dn

|wn(P,Q) ∧ ∂χn(P )| , Q ∈ rn ∩R

where ∂χn denote the 1-form which in the local coordinate ζ is given by
∂χ(ζ)

∂ζ
.

We have that K1 ∩K2 ∩K = Dn−1 ∪ En. From Proposition 4.2.2, we obtain

M(K1 ∪K2 ∪K) ⊂MR(K1 ∪K2 ∪K).

We can thus apply the Fusion Lemma with K1, K2 and K on the Riemann

surface rn ∩R with a function Cn(P ) satisfying

Cn(P ) ≥ Bn(P ) + |δ(P )| for P ∈ K1 ∪K2

Cn(P ) ≥ Bn(P ) + 1 + |δ(P )| for P ∈ K \ (K1 ∪K2)

where δ is an arbitrary function in H(K1 ∪K2 ∪K) (see [41]). Fix such a function

Cn. Moreover, let h0 be a non-vanishing holomorphic function bounded by λ1(> 0)
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on a neighborhood (with respect to R) of the closed planar set E0. Now set

ε0(P ) := |h0(P )| and e0 := ‖ε0‖(V1\W1)∩E .

We define inductively the sequence of functions εn and a sequence of numbers

en as follows:

εn(P ) = en−1(2Cn(P ) + 1) for P ∈ Wn ∩ E (4.15)

εn(P ) = 2en−1Cn(P ) + εn−1(P ) for P ∈ En−1 (4.16)

en = ‖εn‖(V n+1\Wn+1)∩E . (4.17)

We note that each εn is defined on En respectively.

Definition 4.2.3. (see [41])

a) A closed subset E of a non-compact Riemann surface R is said to be weakly of

infinite genus-1 (wig-1) if it is of finite genus or if it is possible to carry the

above construction in such a way that the following inequalities are satisfied for

all n = 0, 1, 2, · · ·

(i) en ≤
λn+2

2‖Cn+1‖En∪Dn

(4.18)

(ii) en ≤
∑n+2

j=1 λj

‖2Cn+1 + 1‖Wn+1∩E
(4.19)

where λn are arbitrary positive numbers satisfying
∑
λn <∞.

b) A closed subset E ⊂ R is said to be weakly of infinite genus-2 (wig-2) if there

exists a decomposition of E by mutually disjoint closed sets Aj such that each

compact subset of R intersect with only a finite number of Aj and each set

∪n
j=1Aj is a wig-1 set n ∈ N.
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c) E ⊂ R is said to be weakly of infinite genus (wig) if E is a wig-1 set or a wig-2

set.

Remark 4.2.4. Note that, this definition was given by G. Schmieder. It depends on

R, E, Dn, Wn, Vn, En, and rn as obtained in the Extension Theorem. The statement

and the proof of this theorem needed to be fixed. This was done in Chapter 3. By doing

so, a requirement was added to the set E and additional conditions were imposed on

the Dn’s. This in turn, has changed the class of wig sets.

Remark 4.2.5. The original definition of G. Schmieder for wig-1 sets, did not need

a separate clause for sets of finite genus, because (based on his faulty Extension Theo-

rem) it already contained that class. Close sets of finite genus are known to be sets of

approximation (see [18]) and thus should be included in the class of wig-sets without

additional hypotheses. But if we take for example R = C and let E be a complement

of a compact set, then E is of finite genus (in fact, of genus zero) and is a set of

(meromorphic) approximation. Notice that there exists no open neighborhood G for

E such that R \G contains an unbounded and connected Jordan arc. So a definition

solely based on an Extension Theorem would miss this set.

In the case when there exist a covering of E by mutually disjoint open sets,

each of finite genus, then following Gauthier, E is said to be of “essentially of finite

genus”, which we denote by the abbreviation efg. If E can be covered by one open

set of finite genus, E will be called a set of finite genus, or in short, a fg set.

Remark 4.2.6. Each efg set is a wig-2 set.

Proof. If E is an efg-set, then E can be decomposed in a sequence Aj of mutually

disjoint fg sets, such that each compact intersect with only a finite number of sets Aj

as it follows from the definition of efg sets. (see [41, §3.2])

Proposition 4.2.7. Let E ⊂ R be a wig-1 set and A ⊂ R be compact. Then E ∪ A

is a wig-1 set. (see [41, §3.2])
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Proof. Let Dn, Wn, Vn, En, and rn be as in Chapter 3, and assume A ⊂ Dn for

n ≥ n0.

For E′ = E ∪ A, choose W ′
n, D′

n with the properties given in Chapter 3. This

can and will be done in such a way that there is an n1 ∈ N such that D′
n1+k = Dn0+k,

W ′
n1+k = Wn0+k holds for all k ∈ N ∪ {0}. Moreover for n ≥ n1, we also assume

that all other quantities determining en as well as λn remain the same up to indexing.

Then all necessary inequalities hold for the “new” numbers e′n, at least if e′0, · · · , e
′
n−1

are sufficiently small. But this can be achieved by choosing suitable start function

h′0.

We will give a short heuristic interpretation of wig-sets. The reader is referred

to [41, §7] for more precise statements.

If one thinks of the Riemann surface as the result of gluing handles (caps with

handles) onto planar domains (suitably punctured), then we can think of Dj as the

gluing areas (common to the domain and the lid).

Let E be a closed subset of the surface, and assume for simplicity that all Dj

are contained in E◦ (in any case, the Dj ’s contained in the complement of E are

irrelevant for the following discussion).

If ωj is the usual Cauchy kernel (see [41, §7.2]), then Bj denotes the electric

potential obtained by assigning the charge density |∂χj

∂ζ
| to Dj (Newton potential); the

charge density depends only on Dj (χ) and so Cj is an upper bound for the potential;

εn majorize the potential of a weighted superposition of simultaneous charge on the

first n sets Dj , so εn becomes arbitrary small if one gets “far away” from those already

charged Dj (i.e. when one approach the ideal boundary).

So the inequalities (i) and (ii) in the Definition 4.2.3 of wig-sets can be inter-

preted as follows: The numbers λj are given; for (4.18) to be satisfied, the larger Cn+1

is on En ∪ Dn the smaller εn must be in a neighborhood of (n+1)th handle. The

(n+1)th handle must therefore be at a sufficiently large distance of its predecessors

for E to be a wig1-set.
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4.2.3 Statement and proof of the Localization Theorem

Using the Localization Theorem, Schmieder [41] has obtained nice approximation

theorems for wig-sets. Recalling that there was problem with his definition of wig-

sets, we now state and prove these Theorems for the new class of wig-sets introduced

in Section 4.2 the in the proofs follow the proofs found in [41].

Theorem 4.2.8. (Localization Theorem) Let E be wig-set on a given Riemann

surface. Given a function f : E → C, the following are equivalent

(i) f ∈MR(E)

(ii) f |K∩E ∈MR(K ∩ E) for all compact sets K ⊂ R.

Proof. (see [41, §3.3]) From (i) to (ii) is trivial. To prove (ii) to (i), assume first that

E is a wig1-set of infinite genus (see [18] for the proof when E is of finite genus).

Let Dn,Wn, Vn, rn, en, Cn and εn be as defined in Chapter 3. The proof will be

established by constructing a sequence of functions gn with the following properties:

1) gn ∈M(rn ∩R)

2) ‖gn − gn−1‖ ≤ λn+1

3) |gn−F | ≤ εn pointwise on En, where F = f
ε

∑n+1
j=1 λj for an arbitrary but fixed

ε and λn are the positive numbers whose sum converges given in the definition

of wig1-sets. We thus also have,

4) εn ≤
∑n+1

j=1 λj on En.

As given in the definition of a wig-set, let h0 be holomorphic on a neighborhood

of E0, without zeroes and such that ‖h0‖ < λ1. According to Proposition 4.2.2 (with

D−1 = ∅), there exists g̃0 ∈M(r0 ∩R) with the property:

‖g̃0 −
F

h0
‖E0

< 1. (4.20)
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Also according to Proposition 4.2.2, the function h0 can be approximated uniformly

on E0 by functions from M(r0 ∩ R). For the function g0 := hog̃0 ∈ M(r0 ∩ R), we

then have,

|g0 − F | < ‖h0‖ = ε0 pointwise on E0. (4.21)

Assuming now that we have already constructed g0, ..., gn−1, gn can be con-

structed as follows:

Because of our assumption, there exists a meromorphic function h on R satis-

fying

‖h− F‖Vn∩E < en−1. (4.22)

Because h can be approximated uniformly on Vn ∩ E by functions in M(rn ∩R), by

the Theorem of Behnke and Stein, we can again assume that h ∈ M(rn ∩ R). We

now get:

‖h− gn−1‖(V̄n\Wn)∩E ≤ ‖h− F‖+ ‖gn−1 − F‖ (4.23)

≤ en−1 + ‖εn−1‖(V̄n\Wn)∩E = 2en−1.

We now apply the Fusion Lemma with sets K1, K2 and K as given in the

previous section; this yields a function gn ∈M(rn ∩R) with the properties,

|gn − gn−1| < 2εn−1Cn pointwise on Dn−1 ⊂ K2 (4.24)

and hence because of the assumption on the en, we have

‖gn − gn−1‖ < λn+1. (4.25)
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On En−1 ⊂ K2 ∩K, we also have

|gn − F | ≤ |gn − gn−1|+ |gn−1 − F | ≤ 2en−1Cn + εn−1 = εn (4.26)

≤ λn+1 +
n∑

j=1
λj =

n+1∑
j=1

λj .

On Wn ∩ E = K1, we have:

|gn − F | ≤ |gn − h|+ |h− F | ≤ 2en−1Cn + en−1 = en−1(2Cn + 1) = εn (4.27)

≤
n+1∑
j=1

λj .

Therefore we have shown that |gn − F | ≤ εn ≤
∑n+1

j=1 λj on all of En, and the

induction is complete.

Because (4.25) holds, the sequence {gn} is uniformly convergent to a function g

which is meromorphic (at least) on ∪Dn = R. From (3) and (4), we get ‖g− F‖E ≤∑∞
j=1 λj . Moreover for h := ε(

∑∞
1 λj)

−1g ∈M(R), because F = f
ε

∑∞
1 λj , we have

‖h− F‖E < ε0.

Since ε was an arbitrary positive number, it follows that f ∈ MR(E). This

proves the Localization Theorem for wig1-sets.

Now let E be a wig2-set, and E = A1 ∪A2 ∪ ... a decomposition of E as in the

definition of a wig2-set. Let G1 ⊂ G2 ⊂ ... ⊂ R be an exhaustion of R by relatively

compact sets Gj . Because of the local finiteness of the Aj ’s, we may assume that Gj

meets the sets A1, ..., Aj and has empty intersections with the remaining Ak’s. Now

let f be a function on E satisfying (ii) and let δ be a positive number.

A1 is a wig1-set; let f1 ∈ M(R) such that, ‖f − f1‖A1
< δ/2. Assume that

f1, ...fn−1 ∈M(R) have already been constructed with the properties

‖fj − fj−1‖Gj−1
≤ δ2−j (4.28)



48

and

‖fj − f‖A1∪...∪Aj
≤ δ(2−1 + ...+ 2−j) for j = 2, ..., n− 1. (4.29)

Thus gn|Gn−1∪A1∪...∪An
= fn−1 and gn|An = f defines a function gn on the wig1-set.

Xn = Gn−1 ∪ A1 ∪ ... ∪ An and this function satisfies (ii) with E replaced by Xn.

Moreover, there exists fn ∈M(R) satisfying ‖fn−gn‖Xn ≤ δ2−n. This implies

‖fn − fn−1‖Gn−1
≤ δ2−n (4.30)

‖fn − f‖A1∪...∪An−1
≤ δ(2−1 + ...+ 2−n) (4.31)

and

‖fn − f‖An ≤ δ2−n ≤ δ(2−1 + ...+ 2−n). (4.32)

Because (4.28) holds, the sequence of functions fn constructed in this manner con-

verges to a function F ∈ M(R) that satisfies ‖F − f‖E < δ, in light of (4.29). This

completes the proof of the theorem for wig-sets.

4.3 Approximation by meromorphic function

Using the Localization Theorem, G. Schmieder [41] has obtained nice approximation

results for wig-sets. Recalling that there was a problem with his definition of wig-set,

we now state and prove these theorems for the class of wig-sets as defined in Section

4.2. The proofs follow verbatim the proofs found in [41].

Theorem 4.3.1. (see [41, §4]) If E is a wig subset of a non-compact Riemann surface

R, then M(E) ⊂MR(E).

Proof. This follows from the Localization Theorem in an analogous way that Propo-

sition 4.2.2 follows from Proposition 4.2.1.
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Corollary 4.3.2. (see [41, §4]) If E ⊂ R is a wig-set, f ∈ M(E) and g ∈ M(R),

then there exist a function F ∈M(R) such that

|f(p)− F (p)| ≤ |g(p)| for p ∈ E.

Proof. It is suffices to approximate uniformly on E the function f/g.

Corollary 4.3.3. See [41, §4] Let E ⊂ R be a wig set, f ∈ M(E), g ∈ M(E) non

constant and bounded on E and Z = {p ∈ E|g(p) = 0}. Then for each δ > 0, there

exist a function F ∈M(R) such that

(i) ‖f − F‖E < δ.

(ii) f(p) = F (p) for p ∈ Z.

Proof. It suffices to approximate the function f
g ‖g‖E uniformly on E within the

constant δ.

4.4 Approximation by holomorphic functions

The first result about holomorphic approximation on unbounded subset of non-

compact Riemann surface was proved by Tietz (see [45]) for disjoint union of bounded

sets in C. For closed subsets E of the complex plane, we have the well-known the-

orem of Arakelyan (see [13, p.129]): A(E) ⊂ HR(E) is equivalent to C∗ \ E being

connected and locally connected at the point ∗, where C∗ = C∪ {∗} is the one-point

compactification of C. This topological condition is still necessary for A(E) ⊂ HR(E)

if E is a closed subset of a non-compact Riemann surface R, as it was observed by

Gauthier and Hengartner [19] (with the one-point compactification R ∪ {∗} instead

of C∗). Following [41], we will show that for a wig-set the topological condition is

also sufficient to have A(E) ⊂ HR(E).
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4.4.1 Special approximation with fixed poles

We first observe the following.

Proposition 4.4.1. (see [41, §5.1]) Let E be a closed subset of a non-compact Rie-

mann surface R. The following statements are equivalent:

1) (R ∪ {∗}) \ E is connected and locally connected at ∞.

2) There exists an exhaustion of R by Jordan domains Dn (n=-1, 0, 1, · · · ;D−1 =

∅) such that for all n=0, 1, · · · we have that R \ (Dn−1 ∪ E) has no bounded

components.

Proposition 4.4.2. Let E be a closed subset with the property that (R ∪ {∗}) \ E

is connected and locally connected at point ∗. Assume morover that we are given

finitely many points Pk ∈ Dn \ (Dn−1 ∪ En) and for each point Pk, a principal part

Hk consisting of finitly many terms. Then there exists for each δ > 0, a function

ϕ ∈M(rn) with the properties:

(i) ‖ϕ‖Dn−1∪En
< δ.

(ii) ϕ has poles exactly at the points Pk and the principal part of ϕ at Pk is Hk.

The principal parts are to be taken with respect to a fixed local parameter around the

points Pk.

Proof. According to Corollary 4.1.2 there is a set ∆ ⊂ rn such that rn\(Dn−1∪En∪∆)

has no bounded components with respect to rn, and ∆ ⊂ rn contains none of the

points Pk. Since Dn ⊂ rn, the points Pk lie on rn. Now there exists a function

ϕ̃ ∈ M(rn), whose poles are exactly at Pk with principal parts Hk (see [6, p.591]).

According to the same Corollary, each compact set K = Dn−1 ∪ En ∪∆ (closure in

rn) has the property that its complement on rn has no bounded components. Since

ϕ̃ ∈ H(K), the theorem of Bishop (see [8] for example) implies the existence of a
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function σ ∈ H(rn) such that ‖ϕ̃ − σ‖K < δ. The function ϕ = ϕ̃ − σ satisfies the

conclusion of Proposition 4.4.2.

4.4.2 Holomorphic approximation

Theorem 4.4.3. (see [41, §5.2]) Let E be a wig-set on a non-compact Riemann

surface R. The following statements are equivalent:

(i) (R ∪ {∗}) \ E is connected and locally connected at {∗}.

(ii) A(E) ⊂ HR(E).

For the direction (ii) 7→ (i), we refer to Gauthier and Hengartner ([19]). So we

only have to show the other direction.

Proof. Let K ⊂ R be compact and f ∈ A(E). If the complement of the set K ∩ E

has a bounded component, then this component must be contained in E, since R \E

has no bounded components. Extend K to the set K̂ by taking the union of K with

such components. Since f ∈ A(K̂ ∩ E), the approximation theorem of Bishop gives

f ∈ HR(K̂∩E) and hence, at fortiori, f ∈MR(K∩E). Therefore f satisfies condition

(ii) of the Localization Theorem. Using Proposition 4.4.2, we can choose the function

gn in the proof of the Localization Theorem to be holomorphic on Dn−1 ∪ En. This

implies that the limit g of the sequence {gn} is holomorphic on ∪Dn−1 = R. Because

the other properties of the functions gn still holds, the claim f ∈ HR(E) follows.
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