5-12-2010

Serum Lipids and Suicidality in Early Psychosis: Is There a Connection? A Preliminary Study

Amresh Srivastava
The University of Western Ontario, amresh.srivastava@sjhc.london.on.ca

Megan Johnston
University of Toronto

Lenore Purde
The University of Western Ontario

Robbie Campbell
The University of Western Ontario, rcampbe2@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/psychiatrypres
Part of the Psychiatry and Psychology Commons

Citation of this paper:
https://ir.lib.uwo.ca/psychiatrypres/37
Serum Lipids and Suicidality in Early Psychosis: Is there a connection? A preliminary study

Amresh Shrivastava ¹, Megan Johnston²
Lenore Purde³, Robbie Campbell ⁴
Suicide is an international mental health problem

Canada: 3200 per year \(^1\)

10% of all suicide patients - Schizophrenia

1. Statistics Canada, 2009
50% of persons who have committed suicide sought professional help within 1 month of the act (Lester 1993)

>90% people who attempt suicide have a mental disorder:

World Health Organization

Schizophrenia

- 10-13% die, in follow up\(^1\)
- 4.9% in recent meta-analysis
- Life time risk of 4%
- The annual rate of 0.4% to 0.8%
- Has remained constant \(^2\)

First episode or early phase of psychosis: High risk phase

- Died (06)
- Attempted prior to entry (93)
- Attempted during treatment (57)

FES, N=661

Predicting suicidal behavior is a complex and difficult task.\(^1\)

Predictive models generally have not proven accurate or sensitive enough to have practical clinical value (Mann, 2001).

Several factors have some predictability.

Serotonin – Biology

- Central Serotonin: central modulator.
- Low 5-HT/ 5-HIAA hostile aggression.
- Serotonin transporters
- DST: Non suppression
- Prolactin
- PFC and cingulate gyrus
- Both: Attempted and completed suicide

Can we easily measure it?
Can it help in prediction?

Cholesterol

- plays an important role in distinguishing suicidal from non-suicidal patients\(^1\)
- Lower level of cholesterol is associated with
 - suicide behavior
 - violent suicide
- Studies of postmortem brain of suicide completers in psychosis \(^2,^3\)

Serum cholesterol

- Central cholesterol - key player in serotonin metabolism
 - It plays a fundamental role in maintaining the soundness of neuron membranes
 - Especially in the transport of serotonin vesicles into the synaptic cleft
- The relationships among suicidality, psychosis and cholesterol remain undetermined and complex

Synthesis

Cholesterol

Metabolism

TGL

Lipoproteins

Food

Internal Phosphates etc

Synthesis

Cholesterol

Metabolism

TGL

Lipoproteins

Slow movement of vesicles

Low serotonin in synaptic cleft

• Depression
• Impulse dyscontrol
• Violence
• Aggression
• Suicide

Hypothesis

- High SIS-MAP, Current suicidality
- Cholesterol

Suicide attempt

Study
Objective

(a) To determine relationship of cholesterol with clinical parameters and level of suicidality
(b) correlation of suicide potential of SIS-MAP scale

Two phase study:
1. Pilot, cross-sectional cohort design to test the correlations of two parameters
2. Longitudinal follow up study, to test the predictability
Methods:

Preliminary, Naturalistic, cohort

- Subjects (patients) must be 18+ years of age.
- DSM IV criterion of ‘Non-affective schizophrenia spectrum’
- First episode psychosis can be continuous or exacerbating
- Excluded: OMD, Withdrawal states, Physical illness, chronic pain with opiates
Assessment

- Clinical data
- Psychopathology: PANSS & HDRS
- Suicidality by SIS-MAP scale
- Serum cholesterol: From database
- All assessment with 7 days of admission or consult
- Semi-structured
- Analyzed: SPSS
SIS-MAP

Clinical Cut-Offs for Level of Care Needed

Scores 13-23 = outpatient follow-up highly recommended

Scores >33 = admit highly recommended

Scores 23-33 = consider psychosis, previous suicide attempts, and protective factors
Results

Sample
- 41 males (68.3%), 19 females (31.7%)
- age mean (years) = 26.5 (SD = 4.61); range = 17 – 38
- duration of illness mean (months) = 14.6 (SD = 9.71); range = 3 – 38
Range of Suicidality
SIS-MAP scores (frequency/percent of participants in each category of Suicidality)

- Low suicidality, SISMAP (0-18)
- Moderate Suicidality, SISMAP (19-29)
- High Suicidality (>30)
Cholesterol: Comparison across suicidality

Tendency for lower cholesterol levels to be associated with higher suicidality $F(2,1) = 2.86, p = 0.066$

<table>
<thead>
<tr>
<th>SISMAP</th>
<th>Cholesterol Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>4.120</td>
<td>20</td>
<td>1.3217</td>
</tr>
<tr>
<td>moderate</td>
<td>3.319</td>
<td>14</td>
<td>1.6396</td>
</tr>
<tr>
<td>high</td>
<td>3.488</td>
<td>26</td>
<td>1.3860</td>
</tr>
<tr>
<td>Total</td>
<td>3.660</td>
<td>60</td>
<td>1.4426</td>
</tr>
</tbody>
</table>
Results: Cholesterol

- **range** = 0.3 to 6.7; **mean** = 3.66 (SD = 1.44)
- Cholesterol means value for each category of suicidality

Mean Cholesterol

Lower cholesterol levels related to higher suicidality $F(2,1) = 2.86, p = 0.066$

<table>
<thead>
<tr>
<th>SISMAP</th>
<th>Low</th>
<th>Moderate</th>
<th>High SISMAP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>14</td>
<td>26</td>
<td>60</td>
</tr>
</tbody>
</table>
Associations of Suicidality and Gender with Cholesterol Levels

Analysis of Variance (ANOVA) with cholesterol scores as outcome

Suicidality approaches significance in the prediction of cholesterol scores

Also, there is a significant gender difference by suicidality interaction

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>19.223^a</td>
<td>5</td>
<td>3.845</td>
<td>2.005</td>
<td>.093</td>
</tr>
<tr>
<td>Intercept</td>
<td>523.535</td>
<td>1</td>
<td>523.535</td>
<td>272.981</td>
<td>.000</td>
</tr>
<tr>
<td>Sex</td>
<td>2.852</td>
<td>1</td>
<td>2.852</td>
<td>1.487</td>
<td>.228</td>
</tr>
<tr>
<td>SISMAP</td>
<td>10.970</td>
<td>2</td>
<td>5.485</td>
<td>2.860</td>
<td>.066</td>
</tr>
<tr>
<td>Sex * SISMAP</td>
<td>12.448</td>
<td>2</td>
<td>6.224</td>
<td>3.245</td>
<td>.047</td>
</tr>
<tr>
<td>Error</td>
<td>103.563</td>
<td>54</td>
<td>1.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>926.303</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>122.786</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gender Difference in Suicidality and Cholesterol

Higher suicidality in males related to lower cholesterol, whereas moderate suicidality in females is related to the lowest cholesterol levels

\((F (2,1) = 3.245, p = 0.047) \)
Conclusion:

- The study shows that serum cholesterol does not show any abnormality in early psychosis admitted patients as a group.

- However, lower levels are observed in patients of psychosis with severe suicidality.

- More research is required in this field to determine the neurochemistry of suicide behavior in psychosis.
Thank you

‘Care needs to reach where people live, where problems arise’