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Abstract 

The ability to anticipate complex sounds, like words in speech or the beat in music, is an 

important aspect of human perception. However, the changes of excitability in the motor 

system during auditory anticipation have not been characterized. Here, we applied single-

pulse Transcranial Magnetic Stimulation (TMS) to the primary motor cortex to elicit 

motor evoked potentials (MEPs) from the first dorsal interosseous muscle, the amplitude 

of which indexes motor system excitability. Healthy right-handed participants (N = 20) 

underwent TMS stimulation during listening to regular (periodic) tone sequences at three 

rates (200ms, 550ms, and 900ms) and irregular tone sequences. We assessed MEP 

amplitudes over time, to test fluctuations in excitability during auditory anticipation 

(listening to regular sequences), and in the absence of auditory anticipation (listening to 

irregular sequences). We hypothesize that motor system excitability fluctuates at the rate 

of auditory stimulation, and peaks in anticipation of regular sounds. Results do not show 

evidence that motor system excitability fluctuates at the rate of regular or irregular 

auditory tones. Also, the results do not show evidence of an increase in excitability in 

anticipation of regular or irregular sounds. These results do not suggest synchronization 

of motor system excitability to regular sounds, informing our understanding of auditory-

motor integration. 
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Fluctuations of Motor Excitability by Isochronous Tone Sequences 

 Listening to music is an activity most people partake in on a daily basis. There are also 

many situations where we are required to integrate auditory information into a motor response 

such as in dance or when playing a musical instrument. Auditory-motor integration is also 

involved in conversation, where music is thought to share some underlying mechanisms with 

language such as perception of temporal patterns (Fedorenko, Patel, Casasanto, Winawer, & 

Gibson, 2009). Some of the more evident mechanisms involved with auditory-motor integration 

are the perception of temporal patterns, and then the anticipation of future tones to coordinate 

synchronized movement. Perception of temporal patterns and anticipation are fundamental to 

normal hearing, speech, motor control, and music. This study aims to learn more about the 

underlying neural correlates behind the auditory-motor integration processes of perception and 

anticipation. 

Auditory-Motor Interactions 

We often see interactions between the auditory system and the motor system, such as 

when we listen to music, and are then able to tap along to it. There is a noticeable difference 

between tapping to an irregular beat, and tapping along to a beat with regular intervals 

(isochronous). Tapping to an irregular beat is often reactive, meaning that the movement is 

initiated after the stimulus. With isochronous tones, tones allow for anticipatory movements to 

tap at the same time as the stimulus. Brain areas found to be involved in movement initiation 

such as the basal ganglia and supplementary motor areas (SMAs) are also involved in motor 

prediction (Rao et al., 1997). Previous studies have looked at motor system activation with 

movement to tempos (length of temporal interval), such as the study by Keiichiro et al. (2002), 

which found greater motor activation for faster movements and tempos. As tempos increased 
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from slow to fast, the relationship between movement and tone switched from synchronized to 

syncopated. This shows that anticipation effects are more likely in faster tempos, than very slow 

tempos.  

Imaging studies have shown that the motor system is activated while listening to rhythms, 

even when there is no action being performed, in particular the supplementary motor area 

(SMA), basal ganglia, cerebellum, and the premotor cortex (Grahn & Brett, 2007). The fMRI 

study by Grahn and Brett (2007) used rhythms to investigate which specific motor regions 

respond to the beat (regular, underlying pulse) in music. They demonstrated that motor areas are 

not only active in the production of music by movement, but also in the perception of music. 

These activations were found to be different in response to different stimuli, such as stronger 

activation for rhythms with strong regular accents. The strong regular accents can be compared 

to isochronous tones in their property of a constant interval between stimuli.  

         Other imaging studies have looked at neural representations of temporal patterns in 

performing movement. A study by Fujioka et al. (2012) found that activity in auditory cortices 

and motor-related areas increases in anticipation to isochronous tones, and synchronizes to tone 

rates. Using human magnetoencephalography (MEG) in a task of listening to tones with no 

movement, the study found modulation of beta amplitude in synchronization with the tempo of 

sound stimulation in brain areas such as the sensorimotor cortex, inferior-frontal gyrus, SMAs, 

and cerebellum. These changes in beta amplitude represent periodic waves where the periods 

match the tempo; as the temporal intervals increased from 390ms, 585ms, to 780ms, a pattern is 

seen. There is a decrease in the excitability wave directly after a stimulus, and a subsequent 

rebound where excitability increases until the next stimulus in anticipation. The rebound slope in 

excitability depended on stimulus rate, suggesting anticipatory effects from an internalized 
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temporal interval. The beta waves are made up of beta bands which are waves of electrical 

activity constant in the brain at a frequency of 25-30 Hz. Normally they are desynchronized, but 

it was found that they synchronize to auditory rhythms and create the characteristic beta waves. 

Beta waves were found to play a role in functional auditory-motor communication. The patterns 

of brain activity shown in the study by Fujioka et al. (2012) show synchronization of neuronal 

activity primarily in auditory systems. Due to auditory-motor interactions, there is strong 

evidence for a possibility for patterns of synchronization in motor systems, which may provide 

more insight into the mechanism for being able to synchronize movements with auditory stimuli. 

Transcranial Magnetic Stimulation 

Transcranial Magnetic Stimulation (TMS) is a method for inferring causal relationships 

between brain structures and their functions. TMS consists of non-invasive stimulation of the 

brain using a transient magnetic field generated by triggering an electrical current through the 

coil. When the TMS coil is placed over the primary motor cortex, it can produce motor evoked 

potentials (MEPs), which when large enough, can be seen as a muscle twitch. MEPs are 

measured used an electromyogram (EMG) machine. A methodological basis for using TMS-

elicited MEPs as a measure of motor excitability to auditory stimuli is the study by Watkins and 

Paus (2004). This study measured the increase in the excitability of the orofacial motor system 

during speech perception. They combined positron emission tomography (PET) with TMS to 

investigate motor areas activated during speech perception. They found increased excitability in 

the motor areas underlying speech production in response to speech perception with no speech 

output required. This proposed that there are motor areas which prime the motor system to 

respond to auditory stimuli. The study also showed a larger MEP to M1 stimulation of the face 

area which correlated with cerebral blood flow in the language area. This provides support for 
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TMS not only being able to infer causal relationships between brain areas and their function, but 

also measuring changes in excitability as a function of differences in MEP amplitude, where the 

amplitude of MEPS is able to index real-time excitability in the motor system. 

         Studies have shown that several motor areas respond to the presence of a regular beat. 

Since the premotor cortex and the SMA feed into the primary motor cortex (M1), we expect 

subthreshold excitability changes in M1. The changes in amplitude of an MEP can be used as a 

measure of changes in motor cortex excitability. Greater excitability of M1, due to greater 

activation in premotor cortex and SMA, results in larger MEPs.  

         A study by Cameron, Stewart, Pearce, and Grube (2012) used metrically strong music, 

metrically weak music, or tone sequences. While listening to these sounds, TMS pulses were 

timed to fire either on the beat or before the beat. MEPs were measured in two leg muscles, the 

lateral gastrocnemius (LG) and the tibialis anterior (TA). They found that the amplitudes of the 

MEPs elicited by TMS stimulation depended on the metrically of the auditory stimuli and the 

position of the stimulus sequence at which the TMS was fired. Motor excitability showed 

temporal specificity, with a larger MEP on the beat and a smaller MEP off the beat in metrically 

strong tone sequences. The study also found larger MEPS for metrically strong than metrically 

weak music when TMS was fired on the beat. It is expected that there will be larger MEPS 

elicited on and before the beat or tone stimulus, compared to MEPs in positions further from the 

beat.  

         There is evidence that TMS can been used to look at motor excitability in an on/off 

fashion, where there is a larger amplitude MEP on the beat than off the beat. There has been no 

past research in the time course of these changes in MEP amplitudes, or how motor excitability 

is changing over time. As mentioned earlier in the paper by Fujioka et al. (2012), activity over 

http://research.gold.ac.uk/view/goldsmiths/Stewart=3ALauren=3A=3A.html
http://research.gold.ac.uk/view/goldsmiths/Stewart=3ALauren=3A=3A.html
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time was measured using fMRI, where there is evident synchronization to isochronous tones in 

the auditory system. Like the Fujioka paper, we will also be using isochronous tones as the 

auditory stimuli. The piece of information which is missing, is whether the motor system is also 

synchronizing in a similar way as the auditory system in response to isochronous tones. Using a 

similar approach to the paper by Cameron et al. (2012), we will be stimulating M1 with TMS, 

except at more time points, to observe the changes in motor excitability over time. 

The aim of the current research is to investigate motor excitability to regular 

(isochronous) and irregular (jittered) tone sequences in the primary motor cortex (M1) over time. 

The method of investigation uses transcranial magnetic stimulation (TMS) over the primary 

motor cortex (M1) while listening to auditory stimuli and measuring elicited muscle twitches, or 

motor evoked potentials (MEPs). The project will measure the differences in amplitudes of 

resultant MEPs in the first dorsal interosseous (FDI) muscle of the dominant hand. MEPs will be 

measured at different rates of isochronous sequences (200ms, 550ms, and 900ms), and during a 

jittered, control condition. There are certain characteristics of excitability of the motor cortex 

which we are looking for. We hypothesize that excitability will increase in anticipation of each 

tone for the isochronous sequences, as a neural correlate of behavioural motor anticipation. We 

also hypothesize that excitability in the moot cortex will synchronize to fluctuate at the tone rate. 

         This study will improve our understanding of auditory motor integration, and show 

insight to the time course of motor system excitability while listening to isochronous tones. The 

present study will also improve our understanding of how and why people synchronize their 

movements to repetitive regular sounds, and hold applications in understanding motor and 

speech disorders where there is impairment in discriminating temporal intervals such as 

Parkinson’s disease, dyslexia, and stutters. 
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Method 

Participants 

Final analysis included 20 self-reported right-handed, healthy participants aged 18-38 (M 

= 21.42, SD = 4.35; 13 females and 6 males). All participants were recruited through posters 

displayed across campus at Western University (Appendix A). Everyone passed the initial pre-

screening form (Appendix B) for possible project exclusion criteria, i.e. hearing problems, 

epilepsy, pregnancy, or a history of migraines. All participants provided informed consent for a 

protocol approved by the Western University Institutional Review Board (Appendix C). 

Participants also filled out a TMS/fMRI form (Appendix D), and filled out a handedness 

questionnaire (Oldfield, 1971). For the handedness questionnaire, a score 70 or more out of 100 

confirmed right-handedness. Testing lasted approximately three hours and participants were 

compensated 25 dollars per hour for their time, upon successful completion. 

A subsequent demographics questionnaire collected information about years and type of 

music and dance experience to determine amount of formal music training. A study by Stupacher 

et al. (2013) found differences in motor excitability between musicians and non-musicians, 

which this study also aims to observe. 

Auditory Stimuli 

Stimuli consisted of 120 trials of four different sequences (200ms, 550ms, 900ms, 

jittered). The sequences with even tone intervals are considered isochronous and represent an 

anticipation condition. The jittered condition was composed of interstimulus intervals the length 

of 200ms, 550ms, or 900ms, in a random order and a jittered sequence was always presented 

after a 550ms condition. The jittered sequences represent a no anticipation condition. Sequence 

length ranged from 30 seconds to 40 seconds, depending on condition. The tone used in all the 
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sequences was a 6ms clip of a generic snare drum sound sample (GarageBand). Stimuli were 

presented in a random order to prevent any potential order effects, and through in-ear noise-

reduction earphones (ear tips, Etymotic Research) to reduce external noise and experimenter 

bias. 

Electromyography (EMG) 

EMG equipment (AC Amplifier EMG system, amplification; Micro1401-3 data 

acquisition unit, reading transmission; Signal software, display and recording) was used to record 

motor evoked potentials (MEPs) the first dorsal interosseous (FDI) muscle on the right hand. The 

G1 and G2 (positive and negative) electrodes were placed at either end of the FDI muscle, while 

the ground (reference) electrode was placed on the styloid process of the ulna. 

Transcranial Magnetic Stimulation (TMS) 

TMS was delivered using a Magstim Single Pulse Super Rapid TMS machine (Magstim 

Company Ltd, Carmarthenshire, UK) and a figure-eight TMS coil. The head was first measured 

to find the point of stimulation in the primary motor cortex (M1). The midpoint of nasion-inion 

distance, and of the inter-auricular distance was marked. Application of stimulations was started 

at the point 2 cm rostral and 5 cm left from the midpoint mark, at M1. The motor hotspot for the 

right FDI muscle was found by adjusting the intensity, location, and angle of the TMS coil, and 

examining the resulting MEP measurements. Testing was conducted at 110% of motor threshold, 

where motor threshold is defined as the intensity at which 50% of MEPs are greater than 50mV. 

TMS pulses were delivered randomly throughout the tone windows (time between tonal 

stimuli), so that at the end of the experimental session, there were two data points collected from 

each of 100 evenly spaced positions throughout the tone to tone window in each condition. 200 

data points were collected from each condition. TMS pulses were delivered 6 (n=8 sequences at 
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each tempo), 7 (n=8), or 8 (n=12) times throughout each isochronous sequence, and 5 (n=16) or 

6 (n=20) times in each jittered sequence. 

Procedure 

Subjects were informed that they would be sitting in a chair listening to auditory stimuli 

while having their motor cortex stimulated with a coil. They were instructed to passively listen to 

the tone sequences, while resting their hand on the arm rest or on their lap. Participants were also 

told that their participation was completely voluntary and that they could choose to end the 

experiment at any point if they feel uncomfortable. Once the participant had inserted their 

headphones, the sequences of auditory stimuli and TMS stimulation triggers started by running 

the appropriate MATLAB script. The order of auditory conditions was randomly selected by 

MATLAB, with each condition being presented no more than two times in a row. The duration 

of one 30s condition sequence was referred to as one trial. Every six trials there was a 

programmed break which the participant could choose to take or to continue. There was a total of 

180 trials, or 20 blocks. 

Isochronous tapping task. Behavioural tasks were administered using E-Prime® 2.0 

(Psychology Software Tools Inc, Sharpsburg, PA) software. In the tone tapping task, participants 

were instructed to tap along to tones, that they heard over headphones, with the index finger of 

their right hand. Participants tapped using the ‘m’ key of the keyboard. Tone sequences were the 

same ones used in the main experiment (200ms, 550ms, 900ms, jittered). There were two trials 

for each isochronous condition and four trials of the jittered condition, totaling 10 trials, and 

trials were randomized. Tapping was assessed in terms of accuracy (stimulus-tap asynchrony as a 

proportion of mean inter-tap interval) and variability (coefficient of variation of inter-tap 

intervals). To find the coefficient of variation the standard deviation of the inter-tap interval was 
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divided by the mean. This task was used to measure individual differences in motor tone 

anticipation. 

Data Analysis 

The peak to peak amplitude value was measured for collected MEPs in the 10-80 ms window 

after the onset after the visible TMS artifact. MEP amplitude data was excluded if the amplitude 

was less than 50 mV/ms or if it was more than 3 standard deviations away from the mean 

amplitude of the individual participant. This was to remove outlier data, or very small 

amplitudes.  

For each condition for each participant, the two sets of 100 data points were separated into 

two inter-tone windows, and MEP amplitude values were averaged across in a sliding window 

technique, to smooth the data. 

The first analysis was that of linear fit where a linear equation was fitted to the data of one of 

the inter tone windows and the slope was calculated for each condition. This represents the 

increase in excitability of the motor system over time between two stimuli. A one sample t-test 

was performed to determine the significance of the difference of the slope from 0. 

The next step was to detrend the data so that the slope was back to 0. This allowed us to fit 

cossinusoidal waves to the inter-tone window to see whether excitability fluctuates in relation to 

the tone rate. The three cosine frequencies used were 200ms, 550ms, and 900ms. These 

frequencies matched the stimulus frequencies and allowed each tone rate to act as a control for 

the other conditions. The cosine fits allowed for the observation of whether excitability fluctuates 

at the stimulus rate. The values obtained in this analysis were the amplitude and goodness of fit 

of the data. The amplitude of the fitted cosine curves was defined as the depth from 0 of the 

curve which closest fit the data points. The goodness of fit (r2) was defined as how well the 
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cosine wave fit the data by calculating the difference between the collected data points and the 

expected value based on the fitted wave. Both the amplitude of the fitted cosine and the goodness 

of fit were analyzed using a sequence rate (200ms, 550ms, 900ms, jittered) x fitted rate (200ms, 

550ms, 900ms) repeated measures analysis of variance (ANOVA). Greenhouse-Geisser 

corrections were applied to reduce type 1 error and significant ANOVAs were followed up with 

Tukey Post-hoc analysis. Results were also analyzed between participants who received less or 

more formal training than the median. A p value of 0.05 was used for all tests of significance. 

IBM SPSS software was used for all statistical analysis. 

Results 

Beat Tapping Data 

 Two measures were collected from the beat tapping task; the coefficient of variation of 

the inter-tap interval (CV ITI), and the stimulus-tap asynchrony as a proportion of mean inter-tap 

interval (proportionate asynchrony). A one-way repeated measures ANOVA on the CV ITI and 

condition (200ms, 550ms, 900ms, jittered) revealed a main effect of condition, F(2,41) = 341.56, 

p < .001. Following up on the coefficient of variation with post hoc comparisons using one-tailed 

paired t-tests, the inter-tap interval of the jittered condition (M = 0.23, SEM = 0.01) was more 

variable than the 200ms (M = 0.08, SEM = 0.01; t(19) = 25.24, p < 0.01), 550ms (M = 0.07, 

SEM = .005; t(19) = 29.70, p < 0.01), and 900ms (M = 0.23, SEM = 0.006); t(19) = 19.01, p < 

0.01) isochronous conditions, as seen in figure 1. A one-way repeated measures ANOVA on the 

proportionate asynchrony and condition (200ms, 550ms, 90ms, jittered) also revealed a main 

effect of condition, F(2,35) = 40.52, p < .001. Following up on the proportionate asynchrony 

with post hoc comparisons using one-tailed paired t-tests, the inter-tap interval of the jittered  
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Figure 1. Coefficient of variation of inter-tap intervals (SD/mean), while listening to isochronous 

rhythms (200ms, 550ms, 900ms) and a jittered condition. One-tailed paired samples t-test, *p < 

0.05. 
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condition (M = 0.25, SEM = 0.002) was less accurate than the 550ms (M = 0.14, SEM = .02; 

t(19) = 5.64, p < 0.01) and 900ms (M = 0.11, SEM = 0.01); t(19) = 9.04, p < 0.01) isochronous 

conditions, but not more accurate than the 200ms condition (M = 0.25, SEM = 0.01; t(19) = 0.27, 

p = 0.40), as seen in figure 2. 

MEP Amplitudes of TMS Data 

 Slope. The slope of the linear fit represents an increase or a decrease in excitability over 

the inter-tone interval. A one-way repeated measured ANOVA with slope and condition (200ms, 

550ms, 90ms, jittered) did not reveal a main effect of condition; the slopes of each of the linear 

fits were not significantly different between conditions, F(2,47) = 1.22, p = .309. A two-tailed 

paired two sample t-test comparing each condition to 0 found a significantly negative slope for 

550ms (M = -0.06, SEM = 0.02; t(19) = 2.48, p = 0.02), but not for 200ms (M = 0.007, SEM = 

0.04; t(19) = -0.19, p = 0.85), 900ms (M = 0.01, SEM = 0.03; t(19) = -0.40, p = 0.69), or the 

jittered conditions (M = -0.04, SEM = 0.03; t(19) = 1.23, p = 0.24), as seen in figure 3. 

Best fit. The best fit or R2 of the cosine waves to the stimulus conditions indicates their 

amount of matching, and how well each of the cosine waves represents the condition. A high 

degree of matching between a particular wave rate and condition rate indicates synchronization. 

A two-by-two repeated measures ANOVA on R2 data, with fitted rate (200ms, 550, 900ms) and 

stimulus rate (200ms, 550ms, 900ms, jittered) did not reveal main effects of stimulus rate, 

(F(2,62) = 1.49, p = .234), but did reveal main effects of fitted rate (F(1,62) = 4.50, p = .044), as 

well as an interaction effect between stimulus rate and fitted rate (F(3,62) = 3.53, p = .017). Due 

to the interaction effect, main effects should be interpreted with caution. The significant 

interaction effect indicates that at least one fitted rate showed better fit for at least one stimulus 

rate, as seen in figure 4. Following up on the best fit data with post hoc comparisons using one- 
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Figure 2. Proportion of asynchrony of the inter-tap interval while listening to isochronous 

rhythms (200ms, 550ms, 900ms) and a jittered condition. One-tailed paired samples t-test, *p < 

0.05. 
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Figure 3. Slopes from linear fits to smoothed MEPs as a function of time within inter-tone 

interval. No slopes are significantly greater than zero. p < 0.05. 
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Figure 4. Goodness of fit (R2) for cosine fits to smoothed MEPs as a function of time within 

inter-tone interval. The 3 (Fitted rate) x 4 (Sequence rate) interaction, F(3,62) = 3.52, p = .017, 

indicated that the 200ms fitted rate matched the corresponding sequence rate best, however, the 

predicted correspondence between stimulus and fitted rates was not seen for the rest of the MEP 

data. 
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tailed paired t-tests, in the 200ms condition, the 200ms fitted rate (M = 0.07, SEM = 0.01) fits 

better than the 550ms (M = 0.04, SEM = 0.01; t(19) = 3.13, p < .001) and the 900 ms conditions 

(M = 0.04, SEM = 0.01; t(19) = 3.08, p < .001). For the 550ms condition, the 200ms fitted rate 

(M = 0.11, SEM = 0.02) fits better than the 550ms (M = 0.07, SEM = 0.01; t(19) = 1.76, p = 

.047), and the 550ms fits better than the 900ms condition (M = 0.05, SEM = 0.01; t(19) = 4.28, p 

< .001). In the 900ms condition, the 900ms fitted rate (M = 0.09, SEM = 0.02) does not fit better 

than the 200ms (M = 0.07, SEM = 0.01; t(19) = 0.57, p = .289) or the 550ms conditions (M = 

0.11, SEM = 0.03; t(19) = -1.55, p = .068). In the jittered condition, the 200ms fitted rate (M = 

0.12, SEM = 0.02) fits better than the 550ms (M = 0.05, SEM = 0.01; t(19) = 2.56, p = .010) and 

the 900ms conditions (M = 0.04, SEM = 0.01; t(19) = 2.91, p = .004), and the 550ms fitted rate 

fits better than the 900ms fitted rate (t(19) = 2.15, p = .022). The results demonstrate an 

interaction effect between stimulus rate and fitted rate, with selective fluctuation of 200ms in the 

200ms condition, and no other corresponding selective fluctuation at the other stimulus rates. 

The 550ms and jittered stimulus rates selectively fluctuate at a 200ms fitted rate, while the 

900ms stimulus rate selectively fluctuated at a 550ms fitted rate. Best fit values were not found 

to selectively synchronize to corresponding fitted rates. 

 Amplitude. Amplitude indicates how deep the cosine waves are when they best 

fit the data. Amplitude is another indication of synchronization. A two-by-two repeated measures 

ANOVA on amplitude, with fitted rate (200ms, 550, 900ms) and stimulus rate (200ms, 550ms, 

900ms, jittered) revealed main effects of stimulus rate, (F(1,24) = 14.88, p < .001), main effects 

of fitted rate (F(1,26) = 25.92, p < .001), as well as an interaction effect between stimulus rate 

and fitted rate (F(1,623) = 19.09, p < .001). Due to the interaction effect, main effects should be 

interpreted with caution. The significant interaction effect revealed that at least one fitted rate 
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showed a larger amplitude for at least one stimulus rate, as seen in figure 5. Following up on the 

amplitudes with post hoc comparisons using one-tailed paired t-tests, in the 200ms condition, the 

200ms fitted rate (M = 0.07, SEM = 0.01) has a significantly smaller amplitude than 550ms (M = 

0.04, SEM = 0.01; t(19) = -4.26, p < .001) and the 900ms conditions (M = 0.04, SEM = 0.01; 

t(19) = -4.91, p < .001). For the 550ms condition, the 550ms fitted rate (M = 0.07, SEM = 0.01) 

has a significantly smaller amplitude than the 900ms (M = 0.05, SEM = 0.01; t(19) = -1.93, p = 

.034), but not the 200ms condition (M = 0.11, SEM = 0.02; t(19) = -1.27, p = .110). In the 900ms 

condition, the 900ms fitted rate (M = 0.09, SEM = 0.02) does not have a higher amplitude than 

the 200ms (M = 0.07, SEM = 0.01; t(19) = 0.10, p = .461) or the 550ms conditions (M = 0.11, 

SEM = 0.03; t(19) = -0.48, p = .319). In the jittered condition, the 200ms fitted rate (M = 0.12, 

SEM = 0.02) has a larger amplitude than the 550ms (M = 0.05, SEM = 0.01; t(19) = 2.30, p = 

.016), but not the 900ms conditions (M = 0.04, SEM = 0.01; t(19) = 0.75, p = .232), and the 

550ms amplitude is smaller than the amplitude of the 900ms fitted rate (t(19) = -2.83, p = .005). 

The results demonstrate an interaction effect between stimulus rate and fitted rate, with no 

corresponding selective amplitudes between stimulus rate and fitted rate. There is selective 

amplitude of 900ms in the 200ms condition, however none of the other stimulus rate have a 

selectively significant amplitude of fitted rate. Amplitudes of fitted rates were not found to 

selectively synchronize to corresponding stimulus rates. 

 Musician status. When years of musical training was used as a covariate variable for R2, 

there was no main effect of R2 for stimulus rate (F(2,38) = .51, p = .634), fitted rate (F(1,17) = 

.01, p = .989), and no interaction effect (F(3,51) = .42, p = .752). Years of musical training was 

not found to influence synchronization to auditory tone rates. 

Discussion 
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Figure 5. Mean amplitude parameter values (±SEM) from cosine fits to smoothed MEPs as a 

function of time within inter-tone interval. The 3 (Fitted rate) x 4 (Sequence rate) interaction, 

F(1,23) = 19.09, p < .001, indicated that MEPs fluctuated to different extents depending on the 

frequency of the stimulus rate (or whether the rhythm was jittered) and the rate of the fitted 

cosine, however the differences between fits did not match the predicted correspondence 

between stimulus and fitted rates. 
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 The purpose of this study was to examine changes in excitability of the motor system in 

anticipation of isochronous tones, and to determine if excitability increased over the inter-tone 

interval, and if excitability synchronized to fluctuate at stimulus rates. This was done by 

measuring MEPs elicited by TMS at 100 time points across the inter-tone interval while listening 

to isochronous sequences of varying rates. The results show patterns of changes in motor system 

excitability over the inter-tone interval and when listening to the different tone sequences 

(200ms, 550ms, 900ms, and jittered). However, the patterns of changes are not in the predicted 

directions, and we did not find evidence of an increase of motor system excitability in 

anticipation of the tone, or evidence of selective fluctuation between corresponding stimulus and 

fitted rates. 

We did not find evidence of an increase in motor system excitability in anticipation of the 

tone onset as predicted, although there was a marginally significant decrease in excitability in 

anticipation of tone onset in the 550ms stimulus rate condition. The anticipatory pattern is 

predicted based on MEG studies which show that activity in the auditory system increases as in 

approaches tone onset when listening to isochronous tones (Fujioka et al., 2012). One of the 

possible reasons we did not see this pattern could be because the passive listening task the 

participants were engaged in did not provide any attention cues, therefore participants could have 

not been paying attention to the sounds. One way of increasing attention during the experiment is 

to provide random tones of a different pitch, which the participant must listen for and indicate 

when they occur. These different tones motivate participants to listen attentively even during 

long testing sessions. Evidence that some participants were not paying attention was when they 

would fall asleep during the testing session. We did control for any medication with drowsiness-

related effects, did not test very early or very late, provided frequent participant-controlled 
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breaks, and controlled for alcohol intake in the past 24 hours. Even with all of these preventative 

measures, the monotonous and prolonged nature of the experiment can also cause drowsiness. 

Another possible reason why we did not see an increase in excitability could be due to the 

passive nature of the experiment. The motor cortex has been found to be more excitable in 

anticipation of strong beats rather than weak beats in rhythmic sequences, as well as for sound 

patterns which require more effort for perception (Grahn & Brett, 2007). Isochronous sequences 

do not require much effort to perceive temporal rates, compared to rhythms of varying inter-

stimulus intervals. While many studies have measured motor during passive listening of sounds, 

using more novel stimuli such as rhythms rather than isochronous sounds, may induce more 

motor system excitability. 

We did not find evidence of synchronization of motor system excitability to the rates of 

regular tone sequences. Based on the findings in the Fujioka et al. (2012) study, we were 

expecting selective fluctuation at the tone rate. Evidence of this in our study would have been a 

significant interaction between stimulus rate and fitted rate, as well as selective fluctuation 

between corresponding stimulus and fitted rates, which we did not find. As before, this lack of 

significance may be due to lack of attention to the listening task, as well as insufficient difficulty 

in perception to induce large enough excitability to be measurable. Another possible explanation 

for this lack of evidence is that activity of the motor system does not correlate with temporal 

properties of regular tones. Perhaps there is another neural mechanism which allows for the ease 

with which we are able to perceive musical tempos and anticipate sounds to coordinate our 

movements with what we hear. 

TMS is beneficial because it provides a causational relationship between stimulus and 

response compared to imaging methods which only provide correlational results between 
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stimulus and response. However, TMS is a very sensitive technique, and may have produced a 

variability of MEPS which were not due to auditory perception. TMS can be influenced by 

changes in the environment which affect the electric field generated by the coil, such as the shoes 

of the experimenter and their ability to ground the electric field. TMS also has a very specific 

depolarization field, 1cm by 1cm, and the exact location of TMS stimulation depends on coil 

location, angle, and rotation relative to participants’ brain/skull structure (Laakso, Hirata, & 

Ugawa, 2013). There are some ways to improve the reliability of TMS testing. One of these 

ways is to image the brain to locate the specific location of the area of interest. Unfortunately, 

this method is very expensive and time consuming. Another way to improve TMS reliability and 

reduce participant movement is to use a chin rest and a TMS coil stand. Unfortunately, a chin 

rest is not very comfortable for very long protocol such as the one used in this study, and by 

fixing the coil in one location, it is more difficult to make adjustments. Fortunately, this 

experiment allowed us to see when the TMS was applied in the correct location by a motor 

evoked potential in the FDI muscle, and holding the coil in place manually allowed for constant 

adjustment. Another drawback of using TMS to measure motor excitability, is that we are not 

directly testing our areas of interest. According to fMRI data (Grahn & Brett, 2007), the areas 

which are most active while listening to sounds are the SMA, basal ganglia, cerebellum, and the 

premotor cortex. The amplitudes of the MEPS elicited by TMS are measuring the excitability of 

the primary motor cortex (M1) at the time of stimulation. Without movement influencing 

excitability of M1, the changes in excitability are due to sub-threshold neuronal excitabilities, 

based on activity in premotor areas connected to the primary motor cortex such as the SMA and 

premotor cortex. An indirect method of measurement such as the one displayed in the present 

experiment leaves the results open to influence by many other factors. A more direct method of 
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measurement or motor system excitability would leave the results less susceptible to influence by 

confounding factors. 

The behavioural tapping data allowed us to show a difference in tapping variability and 

accuracy for regular tone interval sequences which use anticipation, and irregular tone interval 

sequences where anticipation is not present. In the tapping data, the jittered condition showed 

more variability and lower accuracy than the isochronous conditions, indicating an effect of 

anticipation. The tapping results provide evidence for the use of anticipation in the isochronous 

tones, but not for the jittered sequences, providing support for the sequences used. 

Limitations and Conclusion 

 As mentioned above, some of the limits of our study included a deficit in attention to the 

experimental stimuli. While this seemed to be the most significant deficit there was also lack of 

effort required to perceive the temporal rates of the stimulus sequences. Future studies can 

modify the current methodology to include attention cues dispersed in the testing protocol, where 

participants must pay attention and indicate the presence of a tone of a different pitch. This is one 

way to keep participants more focused on the passive listening task rather than fall asleep. 

Another change to make in future studies would be to use different stimulus sequences, such as 

rhythm sequences or popular songs. The present isochronous sequences do isolate timing, and 

separate the perception and anticipation of rates from all other properties of music. One of the 

drawbacks of using these simple regular tones is that they are not very representative of what 

people normally listen to. The music people listen to involves rhythm, beat (underlying pulse of 

music), and varying pitch. These characteristics of music which people commonly listen to have 

more groove (emotionally communicative rhythmic quality of music). Sequences with more 

groove evoke more motor system activation (cite). Since the stimulus sequences used in this 
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study did not have much groove, excitability of the motor system may not have been large 

enough to be able to measure fluctuations. Therefore, future studies should investigate motor 

system excitability while listening to rhythms sequences or popular songs, which are more 

representative of what people normally listen to. 

As mentioned previously, TMS testing has many flaws and small alterations can result in 

large variability in results. Future studies can consider a different way of measuring motor 

system excitability. One alternative to TMS is using a “Go/no-go” task, which is used in other 

studies to measure motor excitability (Draper, Jude, Jackson, & Jackson, 2015). Reaction times 

in “Go” trials can be used as a measure of how excitable the motor cortex was at the time of 

stimulus presentation. If there are sounds playing while performing this task, fluctuations in 

excitability of the motor system due to the properties of the auditory stimuli can influence 

reaction time of motor responses, which can be measured as the delay time between stimulus 

onset and movement. 

 During listening to regular sounds, we did not observe that excitability in the neural 

motor system increases in anticipation of regular sounds or selectively fluctuates with regularity 

in correspondence to the perceived rate. This study informs our understanding of auditory-motor 

integration, of the role of the motor system in auditory timing. Future studies with improved 

methodology are required to learn more about the dynamics of motor system excitability to 

sounds. 
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