
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2004

Extending UML-RT for Control System Modelling
Qimin Gao
Dematic Corp, gaoqimin@hotmail.com

Lyndon Brown
University of Western Ontario, lbrown@uwo.ca

Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Gao, Qimin; Brown, Lyndon; and Capretz, Luiz Fernando, "Extending UML-RT for Control System Modelling" (2004). Electrical and
Computer Engineering Publications. 135.
https://ir.lib.uwo.ca/electricalpub/135

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/135?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages

American Journal of Applied Sciences 1 (4): 338-347, 2004
ISSN 1546-9239
© Asian Network for Scientific Information, 2004

3381

Extending UML-RT for Control System Modeling

Qimin Gao, L.J. Brown and L .F. Capretz

Department of Electrical and Computer Engineering,
The University of Western Ontario London, Ontario, Canada N6A 5B9

Abstract: There is a growing interest in adopting object technologies for the development of real-time
control systems. Several commercial tools, currently available, provide object-oriented modeling and
design support for real-time control systems. While these products provide many useful facilities, such
as visualization tools and automatic code generation, they are all weak in addressing the central
characteristic of real-time control systems design, i.e., providing support for a designer to reason about
timeliness properties. We believe an approach that integrates the advancements in both object
modeling and design methods and real-time scheduling theory is the key to successful use of object
technology for real-time software. Surprisingly several past approaches to integrate the two either
restrict the object models, or do not allow sophisticated schedulability analysis techniques. This study
shows how schedulability analysis can be integrated with UML for Real-Time (UML-RT) to deal with
timing properties in real time control systems. More specifically, we develop the schedulability and
feasibility analysis modeling for the external messages that may suffer release jitter due to being
dispatched by a tick driven scheduler in real-time control system and we also develop the
scheduliablity modeling for sporadic activities, where messages arrive sporadically then execute
periodically for some bounded time. This method can be used to cope with timing constraints in
realistic and complex real-time control systems. Using this method, a designer can quickly evaluate the
impact of various implementation decisions on schedulability. In conjunction with automatic code-
generation, we believe that this will greatly streamline the design and development of real-time control
systems software.

Key words: UML-RT, Real-Time Control Systems, Object-Oriented Design, Real-Time Scheduling Theory

INTRODUCTION

Real-time control systems are concurrent systems with
timing constraints. They have widespread use in
industrial, commercial and military applications. They
require both logical correctness and timing correctness,
the logical correctness can be expressed in terms of
correct input and output, the timing correctness can be
expressed that the system must meet the time-critical
deadlines to prevent a catastrophic system failure. Real-
time control systems are one kind of hard real-time
systems. They are differentiated from other types of
systems by the timing requirements associated with
some or all of their computations. As a result,
validating such systems requires that these additional
timing constraints also be satisfied. This verification is
especially necessary for the real-time control systems,
where fatal situations may occurs if any timing
constraints are not met. Typically, the designer of real-
time control systems has dealt with these timeliness
properties by using their intuitive engineering skills to
design such systems and then by substantiating their
design through systems simulation. While this method
produces the desired effect after possibly several
iterations, it greatly relies on the abilities of the

designer and unnecessarily consumes an elaborate
amount of time and effort.
To eliminate these shortcomings, there have been many
attempts to make use of object-oriented technology for
real-time software. Some of them have come from the
industrial area [1-4], while others have come from
academia [5-7]. Many of these claims are mostly based
on assumption that real-time scheduling theory can be
used to perform schedulability analysis. But, traditional
real-time scheduling theory results can be directly used
only when the object models are restricted to look like
the tasking models employed in real-time scheduling
theory, as it has been done in [6]. In other cases, either
the claims are unsupported [3] or based on less
sophisticated analysis [5]. [8] provides the first attempt
to apply real-time scheduling theory to the object-
oriented design by use of the state-of the art in the both
fields. In their study, they show how to integrate
traditional scheduliability analysis techniques with
object-oriented design models based on the assumptions
that the entire external message arrives perfectly on
periodic or aperiodic time interval. [9] provides the first
attempts to commercially implement scheduling theory
for UML model design by using the technologies in [8],
these integrated tools allow issues on timeliness to be

American J. Appl. Sci., 1 (4): 338-347, 2004

 339

addressed much earlier on in the development process.
However, some critical issues regarding real-time
control systems are not well addressed by the current
approaches, especially because schedulability analysis
for real-time control systems has not been effectively
incorporated. Although some researchers [8, 9] have
addressed this problems by providing code synthesis of
scheduling aspects and functionality aspects models,
they have mainly focused on the assumptions that all
external events arrives perfectly on periodic or
aperiodic without release jitter and sporadic effects. In
general the real–time control systems are not the case, a
message may be delayed by the polling of a tick
scheduler, or perhaps awaiting the arrival of a message
and some real-time control systems have messages that
behave as so-called sporadically periodic; a message
arrival at some time, executes periodically for a
bounded number of periods and then re-arrives
periodically for a number of times and then does not re-
arrive for a larger time. Examples of such messages are
interrupt handlers for burst interrupts or certain
monitoring messages in real-time control systems. Until
now there is no extended method of the object-oriented
design methodologies to deal with these timing
constraints for real-time control systems. Thus the
above analysis methods need to be improved.
In this study, we will present an approach to
incorporating schedulability analysis in a UML for
Real-Time (UML-RT) model-based development
process [10]. Using this approach, satisfaction of the
end-to-end timing constraints of real-time control
systems can be verified and the schedulability analysis
results will be used for aspect-oriented code generation
in the model transformation and automatic code
generation.

UML-RT and Real-Time Scheduling Theory: The
Unified Modeling Language (UML) is a graphical
modeling language for visualizing, specifying,
constructing and documenting the artifacts of software
systems. The UML is a widely accepted language and it
is becoming a de-facto standard for object-oriented
modeling. UML has a strong set of general purpose
modeling language concepts and has been designed as
an open-ended language applicable across different
domains. The tool, named UML-RT for real-time,
developed by the Rational Corporation, uses UML to
express the original ROOM (Real-Time Object-
Oriented Modeling) concepts and their extensions.
UML-RT uses the notion of capsules to describe
concurrent, active objects. Capsules are objects that
communicate with other capsules through interfaces
called ports and have each their own thread of
execution. Capsules differ from other classes in that
capsules can call operations on classes. Sending
messages through public ports is the only method that
capsules can communicate with other capsules. In

addition to that, capsules have their behavior defined by
UML hierarchical state machines (whereas classes have
their behavior defined by methods). The collaborative
behavior of the collection of sub-capsules can be
described in a number of ways. Sequence diagrams
illustrate capsule interactions through message
exchanges in a time sequence. Every capsule in the
sequence diagram has a lifeline. Time progresses from
top to bottom along a lifeline. Sequence diagrams use
directed message arrows to describe messages sent
from one capsule to another. The horizontal dimension
represents the different objects in the interaction.
Scheduling theory for real-time systems has received a
great deal of attention. The first contribution to real-
time scheduling theory was made by [11]. They
developed optimal static and dynamic priority
scheduling algorithm for hard real-time systems. In
general, real-time scheduling theory models are
centered on end-to-end system behavior, which are
modeled using the notion of tasks. A task represents an
entity requiring execution in some specified
environment and it has several characteristics affiliated
with it. Basically, scheduling theory modeling
expresses a real-time control system as a collection of
tasks. Since then, significant progress has been made on
generalizing and improving the schedulability analysis.
The authors developed exact schedulability analysis to
determine worst-case timing behavior for tasks with
hard real-time constraints in the RMA model
considered in their initial work [11], as well as extended
models, such as arbitrary deadlines, release jitter,
sporadic and periodic tasks [12-18].
Most of the deterministic schedulability analysis
techniques follow the same approach. First, the notion
of the critical instant of a task is defined to be an instant
at which a request for that task will have the largest
response time. Then, the notion of busy period at level ‘
i ’ is defined to be a continuous interval of time during
which events of priority ‘ i ’ or higher are being
processed [11]. With these concepts, the calculation of
the worst-case response time of an action involves the
computation of the response time for successive arrivals
of the action, starting from a critical instant until the
end of the busy period, also the response time of a
particular instant of action can be calculated by
considering the effects of the blocking factor from
lower priority actions and the interference factor from
higher or equal priority actions, including the previous
instance of the same action. If the worst-case response
time of the action is less than or equal to it’s deadline,
the action can be said to be schedulable and feasible.
Otherwise, the action is not schedulable or feasible.

An Example of Control System: For instance, Fig.
1 depicts a typical reverse rolling mill in the
steel rolling mill. It has a payoff reel, a rolling
mill and a tension reel. A hot coil strip is

American J. Appl. Sci., 1 (4): 338-347, 2004

 340

Fig. 1: The Reverse Rolling Mill

Fig. 2: Structure Model of Automatic Gauge Control System

uncoiled by the payoff reel. The strip is rolled to
the specified thickness and coiled by the tension reel.
The aim of the rolling process is to reduce the thickness
of a strip to a desired thickness gauge. This is done by
applying a force to the strip while moving through the
roll gap. In order to meet increasing demand for the
high precision of strip thickness. a new automatic gauge
control system was developed with containing Roll Gap
Control, Roll Speed Control and Roll Eccentricity
Compensation. The Roll Gap Control System attempts
to adjust the force from the hydraulic cylinder and
hence the roll gap, to ensure the output thickness of the
rolled strip. The Roll Speed Control System
automatically adjusts the roll speed according to the
mass flow theory and the tension of the steel strip to
reduce the influence of thickness fluctuation and satisfy
the high quality requirements. The roll eccentricity
compensation system is applied to adjust the roll gap
according the right compensation amplitude. If the
eccentricity compensation is not done as the right value,
it cannot cancel the effect of eccentricity in the rolling
process; it can make the strip thickness become worse.
The eccentricity compensation must be done in the right

time or right phase. Even if it is done in the right
amplitude, but it is not done at the right time, it can also
make the strip thickness worse. All the control systems
must guarantee their functional requirements and timing
requirements. In order to design such systems, we will
use the object–oriented analysis and design
methodologies to analysis the functional requirements
and timing requirements in such real-time control
systems.

Control System Modeling in UML-RT: The basic
architecture entity in UML-RT is an active object; these
active objects are called capsules. These capsules
interact with each other only through sending and
receiving messages via interface objects called ports
that are specialized attributes of capsules. A capsule
may have an internal structure that can be specified
using an object diagram or collaboration diagram. The
nodes of internal structure are also capsules, which may
have an internal structure of their own and so on. This
hierarchical decomposition allows the modeling of
complex system structures. Fig. 2 shows the structure
models of the automatic gauge control system

Speed Sensor

Eccentricity Sensor

Deflection Roll

Tension Reel

Payoff Reel

Thickness Sensor

Tension Sensor

Load Cell

Deflection Roll

Hydraulic Cylinder

Back Up Roll

Work Roll

Thickness Sensor

Tension Sensor

Speed Sensor

Work Roll

Back Up Roll

Tension_AGC_Contro
l

Roll_Gap_Control

 Control_Strategic_Database

Operator_Console

Thickness_Sensor

Speed_Sensor

Tension_Sensor

Eccentricity_Senso
r

Automatic_Gauge_
Control_System

Speed_Contro
l

Eccentricity_Compensation

American J. Appl. Sci., 1 (4): 338-347, 2004

 341

Fig. 3: Sequence Diagram of Automatic Gauge Control System

Fig. 4: Method Description of Automatic Gauge Control System

Thickness_
Setup_Event Thickness_

Control
Eccentricity_
Compensation

Tension_AGC_
Control

Roll_Gap_
Control

Speed_
Control

Thickness_
Sensor

Eccentrici
Sensor

Get_Thickness_h()

Speed_
Sensor

Tension_
Sensor

Return_Thickness_h()
Set_Roll_Gap_s()

Send_h_Tension()

Send_h_Tension()
Get_Speed_Val()

Return_Speed_Val()

Get_Tension_Val()

Return_Tension_Val()

Get_Eccentricity_Sensor_val()

Return_Eccentricity_Val()

Get_Speed_Val_Ecc()

Set_Roll_Gap_Ecc()

Return_Speed_Val_Ecc()

Store_h_Parameters()

Adjust_Roll_Gap_s()

Adjust_Roll_Gap_Eccentricity()

Thickness-Setup()

Tension_AGC_
Triggered_Event

Eccentricity_
Triggered_Event

Tension_AGC_Trigger()

 Eccentricity_Trigger() Adjust_Speed_Val()

Method_A1

a1,1: Get_Thickness_h()
a1,2: Set_Roll_Gap_s()
a1,3: Send_h_Tension_AGC_Cont()

Thickness_Control

Method_A3

a3,1: Get_Eccentricity_Sensor_Val()
a3,2: Store_Eccentricity_Val()
a3,3: Get_Speed_Sensor_Val()
a3,4: Cal_Ecc_Phase_Val_Adjust_Gap()
a3,5: Store_Ecc_Paramters()

Eccentricity_Compensation

Method_A6

a6,1: Store_Thickness_Parameters()

Tension_AGC-Control

Method_A2

a2,1: Read-Parameter_Val()
a2,2: Send_Parameter_Speed_Control()
a2,3: Store_Parameters()

Method_A4

a4,1: Detect_Steel_Thickness_h()
a4,2: Return()

Thickness_Sensor

Method_A9

a9,1: Detect_Speed_Val()
a9,2: Return()

Tension_Sensor

Method_A10

a10,1: Detect_Ecc_Sensor_Val()
a10,2: Return()

Eccentricity_Sensor

Method_A5

a5,1: Adjust_Roll_Gap_s()

Roll_Gap_Control

Method_A12

a12,1: Adjust_Roll_Gap_Eccentricity()

Speed_Sensor

Method_A8

a8,1: Detect_Speed_Val_Tension()
a8,2: Return()

Method_A11

a11,1: Detect_Speed_Val_Ecc()
a11,2: Return()

Method_A7

a7,1: Get_Thickness_Val()
a7,2: Get_Tension_Val()
a7,3: Cal_Speed_Adjust_Val()
a7,4: Adjust_Roll_Speed_Val()

Speed_Control

American J. Appl. Sci., 1 (4): 338-347, 2004

 342

Fig. 5: The General Description of Automatic Gauge Control System

Table 1: Time Characteristics of Automatic Gauge Control System

Trans

τi

Out.P.

Ti

Inn.P.

ti

Num.

ni

Jitter

Ji

Event(Type)

Ei

Action

Ai

Priority

π(Ai)

Deadline

D(Ai)

Sub-action

a i,j

Comp.Time

C i,j

Events Generated

Ei (a i,j)

τ1 60 60 1 3 E1 External)

E4 (call)

E5 (Signal)

E6 (Call)

A1

A4

A5

A6

10

10

10

10

60

60

60

60

{a1,1, a1,2 , a 1,3}

{ a4,1, a4,2}

{a5,1,}

{a6,1}

{5, 1, 1}

{5, 1}

{5}

{3}

E4 (a 1,1), E5 (a 1,2), E6 (a 1,3),

- - -

- - -

τ2 200 200 1 5 E3 External)

E7 (Signal)

E8 (Call)

E9 (Call)

A2

A7

A8

A9

9

9

9

9

125

125

125

125

{a2,1, a2,2 , a 2,3}

{a7,1, a7,2 , a 7,3, a 7,4}

{a8,1 , a8,2}

{a9,1 , a9,2}

{4,1,5}

{4,1,5,1}

{6, 1}

{8,1}

E7 (a 2,2)

E8(a 7,1), E9(a 7,2)

τ3 900 300 3 E3(External)

E10 (Call)

E11 (Call)

E12 (Signal)

A3

A10

A11

A12

8

8

8

7

250

250

250

250

{a3,1, a3,2 , a 3,3, a 3,4, a2,5}

{a10,1, a 10,2}

{a11,1 a 11,2}

{a12,1}

{1,3,1,1,4}

{7,1}

{6, 1}

{30}

E10 (a 3,1), E11 (a 3,3), E12 (a 3,4)

- - -

Active

External_E1/Method_A1 (void)
 Internal_a1,1/Method_A4 (void)
Internal_a1,2/Method_A5 (void)
Internal_a1,3/Method_A6 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Thickness_Control

Active

Internal_a3,1/Method_A10 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Eccentricity_Sensor

Active

External_E2 /Method_A2(void)
Internal_a2,2/Method_A7 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Tension_AGC_Control

Active

External_E3/Method_A3(void)
Internal_a3,1/Method_A10(void)
Internal_a3,3/Method_A11 (void)
Internal_a3,4/Method_A12 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Eccentricity_Compensation

Active

Internal_a7,1/Method_A8 (void)
Internal_a7,2/Method_A9(void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Speed_Control

Active

Internal_a1,1/Method_A4 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Thichness_Sensor

External_E1
(Thickness Setup Event)
Periodic
With jitter 3 time unit
First arrival at 0
Period 60 time units

External_E2
(Tension_AGC Triggered Event)
Aperiodic
With jitter 5 time units
First arrival at 0
Period 200 time units

External_E3
(Eccentricity Control Triggered Event)
Sporadical
First arrival at 0
Outer period 900 time units
Inner period 300 time units

Active

Internal_a1,2/Method_A5 (void)
Internal_a3,4/Method_A12(void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Roll_Gap_Control

Active

Internal_a7,1/Method_A8 (void)
Internal_a3,3/Method_A11 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Speed_Sensor

Active

Internal_a7,2/Method_A9 (void)

RTInitSignal/
SpecialInitialization(void)

RTDestroySignal/
SpeicalDestruction(void)

Tension_Sensor

American J. Appl. Sci., 1 (4): 338-347, 2004

 343

Fig. 6: Extended Sequence Diagram of Automatic Gauge Control System

consisting of several active object and interconnection
between objects through ports. In UML-RT, The
sequence diagram represents the behavior of a capsule.
It shows the sequence of messages between objects.
The graphical syntax for sequence diagram in automatic
gauge control system is shown in Fig. 3. This figure
shows all the elements used in most sequence diagrams.
The vertical instance lines represent objects
participating in the scenario. The horizontal arrows are
messages. Each message line starts at the originator
object and ends at the target objects and has a message
name on the line, such as the Thickness_Control object
sends the Get_Steel_Thickness_h() message to the
Thickness_Sensor object. In the sequence diagram, the
time flows from the top to bottom and the time axis
only shows sequence.

Extended Analysis Model for Real-time Control
Systems: Based UML-RT and automatic code
generation methodologies and tools, we can
automatically produce a feasible real-time control
system and executable codes. But for the real-time
control systems with release jitter and sporadic effects,
we must improve these methodologies, especially in
schedulability analysis models and schedulability
analysis methods. We developed a schedulability
analysis model for real-time control systems based on

UML-RT and automatic code generation
methodologies. Our schedulability analysis model is
restricted to uni-processor single thread implementation
environment and it is applicable to the design models
and implementation models presented in UML-RT. To
facilitate schedulability analysis, our schedulability
analysis model can be systematically derived from the
application models and implementation models. The
analysis gives a view of the real-time control system
that focuses on end-to-end behaviors, instead of object
behaviors. This is useful since timing constraints in the
real-time control systems are often “end-to-end” in
nature, i.e., from the system inputs to system outputs
and thus, span a computation that may involve the
collaboration of multiple objects.
In our study, we assume that real-time control systems
are implemented in a uni-processor single thread
environment and it is made up of a set of transactions,
where transaction denotes a single end-to-end
computation within the system. Specifically, it refers to
the entire causal set of actions executed as a result of
the arrival of an external event that originated from an
external source. External event sources are typically
input devices (such as sensors) that interrupt the CPU-
running embedded software. These external events can
be periodic or aperiodic and also have jitter and
sporadically periodic characteristics. We express the

Thickness
Control

Eccentricity
Compensation

Tension_AGC
Control

Roll_Gap
Control

Speed
Control

Thickness
Sensor

Eccentricity
Sensor

E1

E3

E2

 a1,1

a1,2
 a1,3

E4

E5 A1

A2

τ1

τ3

τ2

A4
a4,1

a5,1 E6

A6

a2,1
a2,2
a2,3

a3,4

a3,5

E7

A9

A8
A7

A3 A10

a7,3

a11,1

a7,1
a8,1

a7,2

a3,1

a3,2
a3,3

a9,1

a10,1

E8

E10

A5

a10,2

Speed
Sensor

a4,2
 a6,1

a7,4

a8,2 E9

a9,2

A11

A12
a11,2

a12,1

E11

E12

Tension
Sensor

American J. Appl. Sci., 1 (4): 338-347, 2004

 344

real-time control system as a collection of transactions
that capture all computation in the design model. We
also use the term action to capture the processing
information associated with an external or internal
event. In our model, an action captures this entire run-
to-completion processing of an event. The execution of
an action may generate internal events that trigger the
execution of other actions. Thus, each transaction can
be expressed as a collection of actions and events. Each
action is a composite action and composed from
primitive sub-actions, these primitive sub-actions
include send, call and return actions [8], which generate
internal events through sending messages to other
objects.

Notation: In our study, we use event and message as
synonymous. Let ε = {E 1 , E 2 ,…, E n , E 1+n , …,
E N } represent the set of all event-streams in the
system, where E 1 , E2, …, E n denote external event
streams and the remaining are internal ones. All
external events are assumed to be asynchronous,
periodic, aperiodic events and sporadic events with
release jitter. We use J i to represent the jitter time of
external event E i . T i and t i represents the outer
period and inner period for sporadically periodic
external events E i . If the external event is without
sporadic effects, then inner period of such event is
equal to its outer period. Each external event stream
E i corresponds to a transaction iτ . We also use A i to
represent an action that is associated with each event
E i . An action may be decomposed into a sequence of
sub-actions A i = {a 1,i , a 2,i , a 3,i , …, a

ini, }, where each
a ji , denotes a primitive action, such as sending a
message, calling a message and returning a message.
We use q to represent the instance ‘q’ of action A i .

Within this model, each action A i represents the entire
“run-to-completion” processing associated with an
event E i and it is characterized as either
asynchronously triggered or synchronously triggered,
depending on whether the triggering event is
asynchronous or synchronous. Each action A i executes
within the context of an active object (capsule) Õ(A i)
and it is also characterized by a priority (π (A i)),
which is the same as the priority of its triggering event
Ei. Each action A i is also characterized by the
computation time (C (A i)) and the deadline (D (A i)).
Each sub-action a ji , of A i is characterized by a
computation time C (a ji ,) (abbreviated as C ji ,); the
computation time of an action is simply the sum of its
component sub-actions, i.e.,

i.e., �=
j

jii CAC ,)(, also

the computation time of any sequential sub-group of
sub-actions a pi , to a qi , where p ≤ q is

 �
≤

=

=
qj

pj
jiqpi CC ,..., .

Each event and action is part of a transaction. For the
rest of this study, we use superscript to denote
transactions. For example, τ

iA represents an action and
τ
iE represents an event, both of which belong to

transaction τ. Adding the superscript for external events
{E k : k=1, 2, …, n} is unnecessary since there is
exactly one external event associated with each
transaction, i.e., external event E k belongs to
transaction k and would be denoted as k

kE . In this case,
the superscript will be omitted.

Communication Relationships: We assumed that
there are two types of communication relationships
between actions, asynchronous and synchronous. We
use symbol “�” to denote asynchronous relationship.
An asynchronous relationship A i � A j indicates that
action A i generates an asynchronous signal event Ej

(using a send sub-action) that triggers the execution of
action A j . Likewise, we use symbol “�” to denote
synchronous relationship. A synchronous relationship
A i � A k indicates that action Ai generates a
synchronous call event E k (using a call sub-action) that
triggers the execution of action A k . We assume that if
the events have a synchronous relationship, the actions
have the same priority. We also use a “causes”
relationship and use the symbol ∝∝∝∝ for that purpose.
Both asynchronous and synchronous relationships are
also causes relationships, i.e., A i → A j => (A i ∝
A j) and A i ⇔ A j => (A i ∝ A j), Moreover, the
causes relationship is transitive, thus (A i ∝ A j) ∧ (A j

∝ A k) => A i ∝ A k . When A i ∝ A j . We say that A j

is a successor of A i since A i must execute (at least
partially) for A j to be triggered.

Synchronous Set: For the purpose of analysis, we
define the term “synchronous set of A i ”. The
synchronous set of A i is a set of actions that can be
built starting from action A i and adding all actions that
are called synchronously from it. The process is
repeated recursively until no more actions can be added
to the list. We use ϒ (A i) to denote the synchronous set
of A i and C (ϒ (A i)) to denote the cumulative
execution time of all the actions in this synchronous set.
We also call A i as the root action of this synchronous
set.

American J. Appl. Sci., 1 (4): 338-347, 2004

 345

Release Jitter: The release jitter time is the maximum
time that a message may be delayed between the arrival
of the message that awakes the transaction and the time
the message is put in the run-queue (release). In real-
time control systems, the external messages or events
may suffer release jitter due to being dispatched by tick
driven scheduler. The external events arrivals are not
perfect periodic and aperiodic. In our analysis model,
we assume that only the external events has release
jitter problem and the internal events do not have jitter
problem, because the internal event arrival is only
decided by the action that represents the entire “run-to-
completion” processing associated with the internal
event.
Sporadically Periodic Event: Sporadically periodic
event is a message that arrives at some time and
executes periodically for a bounded number of periods
(called inner periods) and then re-arrives periodically
for a number of times and then does not re-arrive for a
larger time (called outer periods). Some real-time
control systems have messages that behave as so-called
Sporadically periodic messages, example of such
messages are interrupt handlers for burst interrupts,
packet arrivals from a communication device, or some
certain monitoring tasks.

Extended UML-RT for Control System Modeling:
We know that there are a lot of advantages of UML,
UML-RT and automatic code generation methodologies
for real-time control system development, such as
consistency of model views, problem abstraction,
improvement of problem abstract, stability and
reusability, automatic code generation. Although these
methodologies have a lot of advantages for real-time
control systems, the explicit timing requirements in
real-time system are not graphically expressed and the
release jitter and sporadic effects in real-time control
system are not addressed. In this chapter, we use the
automatic gauge control system to illustrate our
extensions of UML for real-time control systems. This
real-time control system has release jitter and sporadic
effects.

General Description of Automatic Gauge Control
System: Figure 4 and 5 give the general description of
the automatic gauge control system. This system is
made up of nine objects, where each object’s finite state
machine is shown. We can observe that each objects
has only one “real” state associated with it. We also
notice that each object calls its SpecialInitization action
during initialization, through the system event
RTInitSignal and SpecialDestruction action during
system shutdown, through the system event
RTDestroySignal. In addition, there are three external
events interacting with the system just described above.

The first external is thickness setup event. This event is
a periodic event with period 60 time unit and 3 time
unit release jitter in the system. The second external
event is Tension_AGC triggered event, which is an
aperiodic event with period 200 time units and 5 time
unit release jitter. The third external is Eccentricity
Control triggered event; this event is a sporadical event,
with outer period 900 time units and inner period 300
time units. The entire external events arrive into the
system at time 0.

Timing Characteristics of Automatic Gauge Control
System: We have described the automatic gauge
control system functional requirements. Now, we will
consider the timing characteristics of the system, Table
1 shows the timing characteristics in the automatic
gauge control system. All the timing properties can be
derived from the real-time control system timing
requirements. From the table we can see that events
have unique priorities, can arrive at any time, but have
variable bounded delay before being placed in a
priority-order run-queue. Periodic and aperiodic events
are given worst-case inter-arrival time and sporadically
periodic events are given the outer period and inner
period. Each event cannot re-arrive sooner than its
inner-arrival time, each event may execute a bounded
amount of computation and it is associated with the
action, each action is given the worst-case execution
time and deadline. This worst-case execution time value
is deemed to contain the overhead due to context
switching. The cost of pre-emption, within the model, is
thus assumed to be zero.

Extensions of UML-RT for Real-time Control
Systems: From UML and UML-RT, we know that the
finite state machine behavior models of objects are
useful for code-generation; they are not very conducive
for reasoning about end-to-end behaviors, or scenarios.
UML-RT uses sequence diagrams to model end-to-end
system behaviors, or scenarios. However, sequence
diagrams are weak in expressing a detailed
specification of end-to-end behaviors, which is
necessary for schedulability analysis. To express our
ideas, we extend the sequence diagram notation to
capture detailed end-to-end behaviors.
In the extended sequence diagram of UML-RT, we
capture the details of the processing associated with an
event. In the rest of the thesis, we will use the term
action to refer to the entire run-to-completion
processing for an event. Each action is, in general, a
composite action and composed from primitive sub-
actions. These primitive sub-actions include the send,
call and return actions described above, which generate
internal events through sending messages to other
objects. For the purpose of this thesis, we will restrict

American J. Appl. Sci., 1 (4): 338-347, 2004

 346

our attention to a single sequence of sub-actions,
although we note that conditional behavior (as may
happen with guard conditions associated with
transitions) can easily be incorporated. We will also
assume that if an action is triggered by a synchronous
message (generated from a call action), then that action
must have a single reply action and that this action must
be the last sub-action. In the extended sequence
diagram of UML-RT, we also use the follows notations
to represent the different event types.

* We use “ → ” to represent the asynchronous

messages (events).
* We use “ ” to represent the synchronous

messages (events).
* We use “ ” to represent the periodic

messages (events).
* We use “ ” to represent the aperiodic

messages (events).
* We use “ ” to represent the sporadically

periodic messages (events).
* We use “ ” to represent the release jitter time

of messages (events).

Figure 6 describes the automatic gauge control system
for rolling mill as discussed. The transaction in the
system is driven by different external events. As it can
be seen, the Thickness_Control object obtains the steel
strip thickness from the Thickness_Sensor object using
a synchronous call action. It then does the control law
calculations and generates a roll gap value, which is
sent asynchronously to the Roll_Gap_Control object,
the Roll_Gap_Control object is responsible to adjust
the gap of roll in the No.1 Stand, then using this method
to adjust the thickness of steel strip.
The extended sequence diagram can easily be extended
to include sub-actions associated with code executed by
the real-time execution framework. In this extended
sequence diagram, we can see the external events,
internal event, actions and sub-actions. We can also to
express the externals event arrival pattern, such as
periodic external event with release jitter, aperiodic
event with release jitter, sporadic external event with
outer period and inner period. The extended sequence
diagram is useful to capture timing constraints. Such as
arrival rates of external events; periodic, aperiodic and
sporadically periodic external messages (events);
release jitter time of external messages (events); and
end-to-end deadlines. This extended sequence diagram
can be integrated with our proposed real-time
scheduling algorithms [19] to analysis the
schedulability and feasibility of control systems. This
extended UML-RT can also be integrated with
automatic code generation methodologies to produce
code for the feasible control systems. Using this

extended UML-RT, designers can quickly evaluate the
impact of various implementation decisions on
schedulability. In conjunction with automatic code-
generation, we believe that this will greatly streamline
the design and development of real-time control system
software.

CONCLUSION

Software design has become more and more important
within the real-time control system design process since
functionality implementation gradually migrated from
hardware to software. Consequently, several
commercial tools have become available that provide
an integrated development environment for real-time
control systems with object-oriented techniques to
facilitate the design phase, e. g., Artisan Real-Time
Studio (http://www.artisansw.com) and Rational Rose
Real-Time (http://ibm.com). However, these tools lack
the ‘real-time” support required by many of these
systems, especially those with stringent timing
constraints.
This work put forward a formal model for specifying
timeliness properties. The application of the model is
shown within a realistic case study. We have extended
UML sequence diagrams to visually describe the timing
properties for real-time control systems. The proposed
notation is generally applicable to any modeling
language using active objects and explicit
communication between objects through message
passing. This method can be used to cope with timing
constraints in realistic and complex real-time control
systems.

REFERENCES

1. Booch, G., J. Rumbaugh and I. Jacobson, 1999.

The Unified Modeling Language User Guide.
Addison-Wesley.

2. Selic, B., G. Gullekson and P.T. Ward, 1994.
Real-Time Object-Oriented Modeling. John
Wiley.

3. Awad, M., J. Kuusela and J. Ziegler, 1996.
Object-Oriented Technology for Real-Time
Systems: A Practical Approach using OMT and
Fusion. Prentice-Hall.

4. Douglass, B.P., 1993. Doing Hard Time:
Developing Real-Time Systems with Objects,
Frameworks and Patterns. Addison-Wesley.

5. Gomaa, H., 1993. Software Design Methods for
Concurrent and Real-Time Systems. Addison-
Wesley.

6. Burns, A. and A.J. Wellings, 1994. HRT-HOOD:
A design method for hard real-time. J. Real-Time
Systems, 6: 73-114.

7. Yau, S.S. and X. Zhou, 2002. Schedulability in
model-based software development for

American J. Appl. Sci., 1 (4): 338-347, 2004

 347

distributed real-time systems. Proceedings of 7th
International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2002),
pp: 45-52.

8. Saksena, M. and P. Karvelas, 2000. Designing
for schedulability: integrating schedulability
analysis with object-oriented design. Proceedings
of the 12th Euromicro-Real-Time Systems, pp:
101-108.

9. Martins, P., 2003. Integrating real-time UML
models with schedulability analysis.
http://www.tripac.com/html/whitepapers/umlsche
d.pdf.

10. Selic, B. and J. Rumbaugh, 1998. Using UML for
modeling complex real-time systems.
http://www.objectime.com.

11. Liu, C. and J. Layland, 1973. Scheduling
algorithm for multiprogramming in a hard real-
time environment. J. The ACM, 20: 46-61.

12. Lehoczky, J., L. Sha and Y. Ding, 1989. The rate
monotonic scheduling algorithm: Exact
characterization and aver-age case behavior.
Proceedings of IEEE Real-Time Systems
Symposium, pp: 166-171.

13. Harbour, M., M. Klein and J. Lehoczky, 1991.
Fixed priority scheduling of periodic tasks with

varying execution priority. Proceedings of IEEE
Real-Time Systems Symposium, pp: 116-128.

14. Tindell, K., A. Burns and A. Wellings, 1994. An
extendible approach for analysing fixed priority
hard real-time tasks. J. Real-Time Systems, 6:
133-152.

15. Leung, J.Y.T. and J. Whitehead, 1982. On the
complexity of fixed-priority scheduling of
periodic, real-times tasks. Performance
Evaluation, 2: 237-250.

16. Joseph, M. and P. Pandya, 1986. Finding
response times in a real-time systems. Computer
J., 29: 390-395.

17. Sha, L., R. Rajkumar and J. Lehocaky, 1990.
Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on
Computers, 39: 1175-1185.

18. Lehoczky, J.P., 1990. Fixed priority scheduling
of periodic task sets with arbitrary deadlines.
Proceedings of the IEEE Real-Time Systems
Symposium, pp: 201-209.

19. Gao, Q., L.J. Brown and L.F. Capretz, 2003.
UML extensions for real-time control systems.
Proceeding of the 42nd IEEE Conference on
Decision and Control (CDC2003), pp: 5932-8.

	Western University
	Scholarship@Western
	2004

	Extending UML-RT for Control System Modelling
	Qimin Gao
	Lyndon Brown
	Luiz Fernando Capretz
	Citation of this paper:

	Microsoft Word - 137b-ajas.doc

