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Figure 3.26. An SEM image taken at a 79° tilt highlighting the gap between the solder mask and Cu pads for a G3 I3 PCB. (A) 

represents the distance between the Cu and the bottom of the solder mask. (B) represents the distance between the Cu and the top 

of the solder mask. The range of measured values for A and B have been listed near the top of the image 
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4. Galvanostatically Charging Copper and Its Effect on the Corrosion Damage Pattern 

4.1 The Rationale for Galvanostatically Charging Copper 

4.1.1 DGR Conditions versus Experimental Conditions 

In the deep geologic repository (DGR), the conditions the used fuel containers (UFCs) will 

be exposed to will change gradually over time. Despite the constant evolution of the repository 

conditions, they are bound by natural limitations. It is extremely unlikely that the repository redox 

condition will be able to support corrosion potentials (Ecorr) > -0.1 V(SCE) which could lead to 

rapid dissolution of Cu.1 The change in conditions is a relatively slow process since it will occur 

over many thousands of years.2  

 

Figure 4.1. Schematic illustration of the evolution of conditions anticipated within a Canadian DGR2 

As seen in Figure 4.1 the repository conditions are not yet fully defined. The evolution of 

redox conditions and the surface radiation dose rate are illustrative with the rate of consumption 

of O2 likely to be much faster than shown.3,4,5,6  This plot also shows that containers in the middle 

of the repository will remain at a higher temperature for longer than those on the edges due to the 
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heat from neighboring containers. The experiments described in this chapter use conditions that 

approach or exceed the natural limitations of the DGR, to ensure conservative results. 

4.1.2 What Information Can be Obtained by Performing Galvanostatic Charging 

Galvanostatic experiments are useful to accelerate Cu corrosion to produce measurable 

damage on a laboratory time scale. In a galvanostatic experiment a constant current (CC) is applied 

and the potential response measured. Over the course of an experiment it is expected, based on the 

active dissolution scans in Chapter 2, that the potential response of Cu will tend towards 0 

mV(SCE). However, unlike the experiments in Chapter 2, there is no limiting current value and 

therefore it is possible that a steady-state can be achieved or a film will form on the surface with 

enough time or high enough applied current. These experiments can be used to determine the 

steady-state potential that can be achieved during Cu charging in simulated groundwater solutions 

as well as the effect of constant current (CC) on the damage morphology. 

 Galvanostatic experiments can be conducted by varying the total experimental time or the 

total charge applied. The experiments in this chapter were designed by varying the CC to achieve 

a designated total charge, given by the CC multiplied by the duration of the experiment. The total 

charge consumed can be considered as simulating the consumption of a known amount of O2 under 

DGR conditions. Since the electrochemical reactions for the Cu-Cl system were known, a mass 

loss calculation was performed using Faraday’s law to determine the total amount of material 

consumed.7 This calculation was performed because it was more accurate than measuring the mass 

loss due to dissolution using an analytical balance. After the mass loss was calculated, the volume 

of Cu dissolved was calculated using the density of the material. The main goal of this work was 

to determine the influence of applied current and how the consumption of a specific amount of O2, 

simulated by the injection of an equivalent amount of electrochemical charge influenced the Cu 

corrosion pattern and whether the CC used changes the corrosion morphology. 

4.2 Materials 

All galvanostatic charging experiments were conducted with a 1 cm x 1 cm x 1 cm 

electrode (referred to as a coupon) cut from a bulk block of wrought Cu supplied by Svensk 

Kärnbränslehantering AB (SKB). The Cu contained >99.99% Cu, <5 ppm O and 30-100 ppm P, 

designated as O2-free and P-doped Cu.8 


