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 Abstract 

Food scarce periods pose serious challenges for birds, particularly when those 

periods coincide with demanding life history stages such as overwintering. For resident 

birds in the Northern hemisphere, resource scarcity typically occurs simultaneously with 

winter conditions. In order to combat these compounded stressors, some species cache 

food to ensure a reliable supply of resources. Food caching is the storing of food items 

for subsequent retrieval and consumption after some delay. Canada Jays (Perisoreus 

canadensis) are year-round residents of the North American boreal forest and some high 

elevation areas in the United States, and cache food to combat resource scarcity. 

Additionally, Canada Jays use cached food to supplement their offspring, making food 

caching essential for both adult and offspring survival. This thesis explores the decisions 

Canada Jays make during both the resource acquisition, what food to cache, and cache 

deposition, where to cache that food, stages of caching. I addressed four specific 

questions: 1) Do Canada Jays demonstrate cache-site preferences and if so, what 

information is used to assess site quality, 2) Do Canada Jays employ context-specific 

cache defense strategies based on risk of cache pilferage, 3) Can Canada Jays anticipate 

predictable food shortages and alter their behaviour to account for them, and 4) Do 

Canada Jays attend to the macronutrient contents of their caches, and do they manipulate 

these nutrients to improve their current or future state. To answer these questions, I 

maintained a population of captive Canada Jays, and developed specific foraging 

paradigms to assess their behaviour. I found that Canada Jays make decisions at both the 

resource acquisition and cache deposition phases of caching. I provide evidence that 

Canada Jays identify and exploit conifers as cache locations and suggest an empirical 

explanation for observed distribution trends. I also show that birds successfully employ 

context-specific cache defense strategies, and that Canada Jays modulate the 

macronutrient contents of their caches to meet specific macronutrient targets. Canada 

Jays did fail, however, to plan for food restriction on a short time scale. Overall, I suggest 

that Canada Jays employ a variety of behavioural tactics to ensure the security of their 

cached food. 



 

 iii 

Keywords 

food caching, foraging, cache-rot, cache-preservation, cache-defense, cache-pilferage, 

future planning, macronutrients, Canada Jay, corvid, cache-site selection, cache-item 

selection, resource acquisition 

  



 

 iv 

Summary for Lay Audience 

Many birds that spend the winter months in North America are faced with long 

periods of limited environmental food availability. For many of these species, ensuring a 

consistent supply of food during these times begins long before the winter. Food caching, 

or food storing, is the process of storing food throughout the environment so that it can be 

retrieved at a later time. For species that face food scarce winter conditions, food caching 

typically occurs in the fall when food is abundant. One species that relies of food caching 

to endure the winter months is the Canada Jay. Canada Jays live in North America year-

round, and thus have to endure food scarce winters. Because cached food is essential to 

their survival, Canada Jays have likely developed behaviours in order to increase their 

caching success. That is, Canada Jays should make decisions that favour the future 

availability of their caches. In this thesis, I examined these decisions at two stages: 1) 

resource acquisition, or what food to cache, and 2) cache-deposition, or where to cache it. 

I examined the ability of Canada Jays to select cache sites that have known preservative 

properties, their ability to hide caches from potential cache-robbers, and their ability to 

predict future food restriction and to plan for it. I also examined their attentiveness to the 

nutrient contents of their caches and compared that to the nutrient contents of the food 

they chose to eat. In general, Canada Jays made decisions that benefited their survival. 

They readily identified and selected cache-sites known to preserve caches, and 

successfully hid cached food from potential cache-robbers. They also demonstrated an 

attentiveness to the nutrients they were both caching and consuming, and demonstrated 

an ability to ensure appropriate nutrients were being cached for later consumption. 

Canada Jays failed to plan for food restriction on a short time scale, however. Overall, 

these decisions and behaviours are a positive indication that Canada Jays are well suited 

to combat the challenging conditions associated with North American winters. 
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Chapter 1 

1. General Introduction: Food caching decisions by Canada Jays 

(Perisoreus canadensis) 

1.1 Introduction 

The overarching objective of this thesis is to better understand the decisions that 

individuals make during food caching. For the purposes of this thesis, a decision will be 

the action an individual takes as a result of some mechanism when faced with two or 

more simultaneous options (described in McFarland, 1977). Another way, the decision 

will be the behavioural output of an individual when faces with a choice, regardless of the 

underlying machanism. In particular, questions regarding the cache-site selection, the 

where (Chapters 2-4), and cache-item selection, the what (Chapter 5), phases of caching 

behaviour are considered (Figure 1.1). 

In Chapter 2 I empirically test the hypothesis that Canada Jays’ (Perisoreus 

canadensis) distributional overlap with spruce trees (Strickland et al., 2011) is the result 

of an active cache-site preference for these trees. Further, I explore potential 

environmental cues that may aid individuals in making these decisions. Chapter 3 

assesses Canada Jays’ behavioural responses to the presence of a potential cache-robber. 

This chapter explicitly examines the cache-protection strategies employed by Canada 

Jays, focusing particularly on cache-site selection. In Chapter 4 I explore the ability of 

Canada Jays to plan ahead and anticipate restricted food availability.  I directly evaluate 
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the ability of Canada Jays to select caching locations with predictable future food 

restriction and test the conclusions reached for a notable result, apparent future planning,  

found in Western Scrub-Jays (Aphelocoma californica; Raby et al., 2007). Chapter 5 

evaluates the macronutrient content of items that Canada Jays choose to cache. I assess 

the macronutrient contents of food both consumed and cached, and compare the nutrients 

consumed to those that were cached. 

 

Figure 1.1 Schematic of thesis organization. The four topics in the right-most 

column represent Chapters 2-5 and are categorized by which caching phase they 

explore. Anticipation of food restriction explores the intersection of cache deposition 

and resource acquisition. 

1.2 Food Caching 

Food caching is a behavioural strategy employed by a wide variety of animals, 

particularly birds and mammals (reviewed in Smith & Reichman, 1984; Sutton et al., 
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2016). It involves the acquisition and storage of food for later retrieval and consumption. 

Food caching serves a multitude of purposes, though all are related to food security 

(Andersson & Krebs, 1978; Smith & Reichman, 1984; Vander Wall, 1990; Sutton et al., 

2016). 

1.2.1 Food Caching as an Adaptive Behaviour 

For a behaviour to be adaptive, the fitness benefit of that behaviour must be 

greater than the benefit of competing behaviours. For food caching to be adaptive then, 

individuals of caching species must obtain a greater fitness benefit by caching than not. 

This has been modelled as follows (adapted from Andersson & Krebs, 1978): 

𝐹𝐻 > 𝐹𝑁  

where: 

𝐹𝐻 =  𝐺𝑝 − 𝑐  

𝑎𝑛𝑑 

𝐹𝑁 =  𝑝𝑟𝑚𝐺 

where F is the fitness benefit conferred to either the caching individual (H) or the non-

caching individual (N), G is the benefit obtained by consuming one item (cached or 

otherwise), p is the probability that a cached item remains viable when retrieved, pr is the 

probability that non-cached food is available and recovered, m is the multiplication factor 

for non-hoarded food (the difference in food availability between caching and recovery 

periods) and c is the cost incurred when caching the item. 
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The net fitness benefit can be affected by any number of parameters, either by 

modulating those parameters in the model directly or by modulating factors that influence 

these parameters. These variations and alternatives have been modelled extensively (e.g. 

Andersson & Krebs, 1978; Jorge et al., 2011; Sutton et al., 2016; and reviewed in Brodin, 

2010), however caching remains a viable and adaptive strategy as long as caching 

continues to offer greater fitness benefits than not caching. 

1.2.2 A Caching Timeline 

Caching behaviour can be subdivided into six temporally distinct components: 1) 

resource acquisition, selecting and obtaining resources for caching; 2) food handling, the 

manipulation of acquired resources in preparation for caching; 3) cache deposition, the 

selection of a cache site and deposition of the acquired resource; 4) caching interval, the 

time between cache deposition and cache retrieval; 5) cache retrieval, the recovery of 

cached items; and 6) consumption, consuming the recovered item (Figure 1.2). While the 

simplest of caching timelines is linear – a resource is acquired, handled, deposited, left 

for a period of time, recovered and consumed – other sequences occur. In particular, 

many species are known to cache and re-cache food, forgoing consumption after cache 

retrieval and returning instead to cache deposition (e.g. Emery & Clayton, 2001; Seiwa et 

al., 2002; Burns & Van Horik, 2007). 
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Figure 1.2 A schematic flow chart illustrating the timeline of caching. The typical 

caching timeline is shown with filled black arrows, while alternative pathways are 

shown with labeled open arrows. 

1.2.2.1 Resource acquisition 

Resource acquisition is the process of selecting and obtaining resources for 

caching. Though seeds, probably selected for their dense energy contents and low 

perishability, are the most commonly cached items, a wide variety of foods are cached, 
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encompassing all the major categories of terrestrial food (Smith & Reichmann, 1984). 

The variety of food items cached reflects the diverse nutritional requirements of caching 

species. For example, large carnivores cache their kills (e.g. Elgmork, 1982; Balme et al., 

2017) while some insects cache pollen and nectar (Strassman, 1979). In addition to food 

type, food availability plays a role in resource acquisition variation when individuals 

have access to two or more food sources (e.g. Hadj-Chikh et al., 1996; Waite, 2001). 

1.2.2.2 Food handling 

Food handling in the context of caching behaviour only deals with the 

manipulation of food in preparation for cache deposition. Handling time can vary greatly 

between species.  Some animals store items as they are acquired, for example seeds 

stored unaltered and able to germinate if not consumed (e.g. Vander Wall, 1997). Other 

animals dedicate substantial amounts of time to manipulating their resources prior to 

caching (e.g. Dow, 1956). In addition to simply making food appropriate for caching 

(resizing, transporting) food handling is employed to increase the longevity of cached 

food items (e.g. Jansen et al., 2006), or to deter cache-pilferage (e.g. Jenkins & 

Devenport, 2014). 

1.2.2.3 Cache deposition 

Cache deposition is the process of first selecting a cache-site and subsequently 

depositing acquired resources in that location. Variation in cache deposition, particularly 

in selecting a cache site, can be influenced by a multitude of factors. For example, 

American Martens (Martes americana) are known to cache in close proximity to their 
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resting sites (Henry et al., 1990), presumably for easy future access to food, while 

Leopards (Panthera pardus) are known to cache food arboreally in order to avoid cache 

losses to non-climbing competitors (Balme et al., 2017). Other species have been shown 

to select for a variety of environmental conditions and microclimates (e.g. Florida Scrub-

Jay, Aphelocoma coerulescens, Fuirst et al., 2020). 

1.2.2.4 Caching interval 

The caching interval is the period of time between cache deposition and cache 

retrieval. Caching intervals vary greatly depending on the types of food cached, the 

requirements of the caching animal, and the ability of the caching animal to retrieve 

cached items. For example, highly perishable food items like animal carcasses are 

typically cached for relatively short durations, hours to days, while more stable foods like 

seeds and nuts are frequently cached for much longer durations, months to years (Vander 

Wall, 1990; Sutton et al., 2016). Additionally, the caching interval is the time of most 

risk for cached food items. Caches are frequently left unprotected (Vander Wall, 1990), 

subjected to environmental conditions that can negatively impact cache quality (Sutton et 

al., 2016), and are subject to potential cache-pilferage (Smith & Reichmann, 1984; Dally 

et al., 2006). 

1.2.2.5 Cache retrieval 

Cache retrieval refers to the recovery of previously cached items. Because of the 

variation in caching behaviour generally, variation in cache retrieval also exists. For 

example, animals that make few, large caches, like Red Squirrels (Tamiasciurus 
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hudsonicus), often centrally locate their hoards (Vander Wall, 1990) making them 

relatively easy to relocate and retrieve food from. Animals, however, that make hundreds 

of individual caches, like Black-capped Chickadees (Poecile atricapillus), depend on 

enhanced spatial memory to retrieve their caches (e.g. Sherry, 1984). 

1.2.2.6 Consumption 

Consumption ends the caching cycle. Once an item is consumed, it can no longer 

be cached, or re-cached, and the individual gains the benefit of having stored that 

resource. In instances where animals are not caching discrete items like surplus killings 

by large carnivores or when larder hoarders remove only a portion of their caches upon 

retrieval, consumption only refers to the portion eaten. Any remaining resources remain 

not yet retrieved and are therefore not consumed. In species where offspring are 

provisioned from cached food, this provisioning is also an example of consumption. The 

resource has been consumed, and the caching individual should gain the benefit of that 

consumption, albeit indirectly. 

1.2.3 Variation in Caching Behaviour 

Although caching behaviour follows a relatively uniform timeline (described 

above), variation both within and between species can, and does, occur in all 

components. Largely however, caching species are categorized dependent on their cache-

deposition behaviours, and the duration of their caching interval. 
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1.2.3.1 Larder vs scatter hoarding 

Caching species are often dichotomously classified as either larder hoarders, 

animals that cache many food items in one or few locations, or scatter hoarders, animals 

that cache individual food items in many locations. Examples of larder and scatter 

hoarders occur in both birds and mammals, while virtually all other caching taxa 

(arthropods mainly) are solely larder hoarders (Vander Wall, 1990). Though often 

dichotomized, many caching species utilize some combination of larder and scatter 

hoarding behaviour (e.g. Eastern Chipmunk, Tamias striatus, Clarke & Kramer, 1994), 

leading some to argue that this dichotomy best describes particular behaviours, and 

should not be used to categorize species (Vander Wall, 1990). 

Both larder and scatter hoarding provide cache protection benefits, albeit 

differently. Larder hoarders benefit from having few, large groups of resources to protect 

and can engage in defending these resources (Vander Wall, 1990). Alternatively, scatter 

hoarders benefit from the reduced likelihood that large scale cache loss can occur in a 

single event. Hypothetically, if a potential cache-pilferer locates the hoard of a larder 

hoarding species and successfully evades the defending individual, the cache-pilferer 

gains access to the entire hoard. The pilferer in this case has the potential to do significant 

damage to the overall food reserves of the caching individual. In the same scenario, 

where a potential pilferer encounters a scatter hoarding individual’s resources, the pilferer 

is virtually guaranteed access to the cache as it is likely undefended, but that cache 

represents much less of the caching individual’s food supply, thus a lesser detriment 

overall. Scatter hoarding, however, is not without risk. The distribution of caches across a 
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territory increases the likelihood that a potential pilferer will encounter some by chance 

unbeknownst to the caching individual (Vander Wall et al., 2005; Cao et al., 2018), who 

may then expend energy attempting to retrieve a pilfered cache. Additionally, though 

enhanced spatial memory has evolved in many scatter hoarding species (Sherry, 1984, 

1985; Sherry et al., 1992; Pravosudov & Roth, 2013), some percentage of caches still are 

forgotten, or overlooked and are never recovered (Vander Wall & Balda, 1977; Price & 

Jenkins, 1986; Hitchcock & Sherry, 1990; Tomback & Linhart, 1990). 

1.2.3.2 Long vs short term caching 

The duration of the caching interval is another behavioural indicator, typically 

used to categorize caching species. While often dichotomized into long-term and short-

term caching species, caching intervals more accurately reflect a spectrum, the ends of 

which are the extreme long and short durations seen in nature. A variety of factors 

influence the duration of the caching interval, including the type of food security strategy 

(preventing seasonal food scarcity vs avoiding competition), the types of food cached 

(perishable vs non-perishable) and the location of caching (reviewed in Sutton et al., 

2016). 

Although notable exceptions exist, species that cache highly perishable food, such 

as animal remains or fleshy fruits and berries, typically fall on the short-term end of the 

caching spectrum, while species that cache less-perishable items like seeds and nuts 

typically exhibit longer caching intervals (Sutton et al., 2016). Species caching to avoid 

future seasonal food scarcity also tend to exhibit longer caching intervals than species 

caching to either avoid competition for resources in the present, or to gain reliable food 
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access in close proximity to their nesting sites (Vander Wall, 1990), though exceptions to 

this pattern exist (e.g. some parids; Cowie et al., 1981; Hitchcock & Sherry, 1990). 

1.2.3.3 Other notable variation 

As previously mentioned most variation used for categorizing species relates to 

either the deposition or duration of caching behaviours. Variation, however, occurs in 

each of the 6 temporal components. Animals vary the resources they acquire based on 

nutritional requirements, the location of caches – particularly for scatter hoarders, the 

mechanism of retrieval (search strategy) and the method and degree of consumption 

(reviewed in Vander Wall, 1990). Much of this variation is the result of individuals 

actively making decisions regarding individual caching bouts and will be discussed in 

future sections. 

1.2.4 Food Caching and Climate Change 

Climate change is affecting food caching species in a variety of ways. In large 

part this stems from the variation observed in caching behaviour across taxa. Sutton and 

colleagues (2016) developed a framework to be used in evaluating these impacts on 

populations, with the goal of predicting which caching behaviours exposed caching 

species to the greatest risk. Unsurprisingly, the two most influential factors seem to be the 

perishability of the food cached, and the caching interval. Additionally, Sutton and 

colleagues (2016) identified cache location as an important contributor, with caches made 

at arboreal sites prone to greater cache degradation than those on the ground. 
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A variety of other factors can also influence caching species and can also be 

influenced by climate change. For example, range shifts can force species out of familiar 

territory, a potentially important factor in caching propensity for some rodents (Miller & 

Viek, 1944; Vander Wall, 1990; but see Jenkins & Peters, 1992), or can introduce new 

competitors into the caching species’ existing range (e.g. Hitch & Leberg, 2007). Climate 

changes can also impact the effectiveness of strategies employed to stunt cache 

degradation. For example, some species rely on deep freezes to preserve caches (e.g. 

Canada Jay, Sutton et al., 2019), while others utilize snow in hunting and disguising 

cached prey (e.g. Canada lynx, Lynx canadensis; Nellis & Keith, 1968). 

1.3 Cognition in Non-human Animals 

Cognition, as defined by Shettleworth (1998), refers to the mechanisms involved 

in collecting, processing, storing and acting on information. In other words, cognition can 

broadly be thought of as the processing of information. Animal cognition (or animal 

intelligence historically) has long been of interest (e.g. Romanes, 1883), but is suggested 

to have arisen as a distinct field of study in the 1970s (Wasserman, 1993; Shettleworth, 

1998). Since then, scientists have dedicated significant resources to understanding 

various aspects of animal cognition exploring basic cognitive functions like associative 

learning (e.g. Dickinson, 2012), more complex functions like episodic memory (e.g. 

Crystal, 2010), or future planning (e.g. Raby et al., 2007) and many other processes 

including learning and memory, discrimination, perception, social cognition and decision 

making (see Shettleworth, 1998). 
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1.3.1 Decision Making 

Decisions are made constantly by animals. These decisions include choices 

regarding feeding, nesting, reproduction and vigilance. As these decisions are often 

between mutually exclusive behaviours (e.g. resting and feeding), they shape the daily 

activities of individuals and in turn, the general behavioural patterns that we attribute to 

species. Underlying these observable decisions are cognitive and physiological processes, 

representing decision making. Decision making in animals has been broadly studied by 

behavioural ecologists. Empirical studies of decision making, and the resulting decisions, 

began in the 1960s (Logan, 1965a, 1965b), and researchers have continued asking 

questions about animal decision making using both experimental (e.g. Jaramillo & Zador, 

2014; Rojas-Ferrer & Morrand-Ferron, 2020) and theoretical (e.g. Conradt & Roper, 

2003, 2005) methods. It has been suggested that decision making in animals adheres to 

the rules of decision theory and is heavily influenced by the environmental constraints of 

natural selection (McFarland, 1977). In other words, decision making in animals is 

essentially a series of cost-benefit analyses, where the variables and outcomes are 

influenced by the fitness consequences of each choice.  

1.3.2 Foraging Decisions 

Foraging is a context in which decision making has been thoroughly explored. 

Like decision making in general, foraging decisions have been explored by researchers 

using both experimental (Zimmerman, 1983; Shochat et al., 2004) and theoretical 

(McNamara & Houston, 1985; Houston et al., 2011) techniques. The rise, and subsequent 
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exploration, of optimal foraging theory (see Stephens & Krebs, 1986; Kamil et al., 2012) 

is one example of the breadth to which foraging decisions have been studied. 

Optimal foraging theory, at its core, suggests that decision makers should choose 

the most profitable outcome (MacArthur & Pianka, 1966; see also Kamil et al., 2012). 

While a variety of factors can influence the complexity of these decisions, they can be 

simplified by considering an example. A squirrel nests halfway between two patches of 

food. One patch offers large nuts and the second offers small nuts. If we assume that the 

squirrel is equally capable of opening and consuming both sizes of nut and that the larger 

the nut the greater the energy reward, then we can intuitively see that the squirrel should 

forage at the patch offering large nuts when faced with a choice. This can be modelled 

using the following equation: 

𝐸1

ℎ1
>

𝐸2

ℎ2
 

where E is the energy gained by consuming the nut, h is the time spent travelling to and 

consuming the nut and the numerals denote which patch is being foraged at. In this 

example, patch one’s rate of return (E/h) is greater than that of patch two. In this 

example, E1 > E2, and H1 =  H2 creating a simple and intuitive scenario, but all four 

variables can be adjusted to reflect the realities of the scenario we are trying to model. 

Like most models, this equation can be altered to generate predictions about 

particular contexts. If we modify the example above so large nuts are not continuously 

available but small nuts are, we might wonder if foraging on small nuts would become 

more profitable. We could modify the equation as follows: 
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𝑝1𝐸1

ℎ1
>

𝑝2𝐸2

ℎ2
 

where p is the probability that nuts will be available. By modulating p, we can make 

predictions about what animals faced with similar situations should do. These predictions 

are then testable. 

Optimal foraging theory can be applied to any number of foraging scenarios, so 

long as there is a decision that must be made. Of particular interest in this thesis is the 

application of optimal foraging to decisions that are made by caching individuals. 

Although not always explicitly discussed, optimal foraging underpins decisions made at 

various points throughout the caching timeline illustrated above. That is, animals make 

caching decisions based largely on the fitness benefits that those decisions confer. 

1.3.3 Caching Specific Decisions 

Decisions must be made during each component of the caching timeline. At some 

stages the decisions are obvious, while at other stages decisions may be more subtle. For 

example, most species consume more than a single type of food so which type to 

consume is a choice that must be made in the resource acquisition phase. Conversely, 

during the food handling phase, animals may be forced to make decisions about the 

degree to which they manipulate food items, taking into account things like 

environmental conditions and increased predation risks, as well as potentially deferring 

handling time to the consumption phase. Caching decisions and the variety of factors 

affecting decision making while caching have been well documented (see Vander Wall, 
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1990) in all phases of caching, however, for this thesis I will focus on two particular 

components of the caching timeline: resource acquisition, and cache deposition. 

1.3.3.1 Decisions during resource acquisition 

Deciding what food to consume is a decision all animals must make regularly. For 

caching species, this decision is complex in that animals must decide not only what to 

consume, but also what to cache. Existing research surrounding decisions made during 

resource acquisition is plentiful. Researchers have shown that animals make acquisition 

decisions based on food perishability (e.g. Hadj-Chikh et al., 1996), abundance (e.g. 

Solheim, 1984), energy content (e.g. Kostrzewa & Krauze-Gryz, 2020), and a host of 

other factors (see Vander Wall, 1990), however, decisions based on the nutrient 

requirements of individuals remains largely unexplored.  

Research in non-caching, migratory birds suggests that species make consumption 

decisions based on nutrient content, especially prior to migration, a physiologically 

challenging event (Parrish, 1997; Marshall et al., 2016). This feeding pattern, known as 

dietary shifting, is an example of animals making foraging decisions in the present that 

potentially affect their future states. While this phenomenon has not been observed in 

caching species, it raises interesting questions because caching species could utilize 

dietary shifting to mitigate the effects of their own physiological challenges. For 

example, similar trends to those seen in non-caching species could exist where caching 

species alter their dietary preference in order to gain some future advantage, surviving 

winter for example. Alternatively, caching species could demonstrate similar shifting 
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patterns in their cached food resources, acting now in order to improve their future 

outcomes through caches, either directly, or indirectly.  

As mentioned previously, evidence exists that animals make decisions about what 

to consume and what to cache, but those decisions have been historically attributed to 

differences in perishability (Reichman, 1988) or handing time (e.g. Jacobs, 1992). In this 

thesis I examine these resource acquisition decisions in the context of nutrient preference 

and nutrient requirements in caching species (Chapter 5). 

1.3.3.2 Decisions during cache deposition 

Once an individual has acquired resources, it must then decide where to put them. 

The primary goal of these decisions is food security; assuring a reliable source of food 

through periods of scarcity (investigated in Chapter 4). This obviously varies greatly 

across species, particularly between larder and scatter hoarders. While larder hoarders 

make limited decisions about where to cache food (stemming from the limited number of 

individual caches they make), scatter hoarders make hundreds, if not thousands of 

deposition decisions each season (Vander Wall, 1990).  

These decisions can be influenced by a wide variety of factors and can play an 

important role in the long-term viability of caching behaviour. Mounting evidence 

suggests that many species use particular characteristics of caching locations in order to 

combat cache perishability and cache degradation. For example, caching birds have 

recently been shown to exploit arid or shaded microclimates in order to limit the 

degradation of caches over time (Fleck & Woolfenden, 1997; Kulahci & Bowman, 2011; 
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Neuschulz et al., 2015), and some studies have gone further, demonstrating that these site 

preferences are learned (Fuirst et al., 2020) implying that active decision making is 

involved. Additionally, many studies have shown that other aspects of cache sites (e.g., 

substrate, Kelley & Clayton, 2017), can be important in mitigating threats from potential 

pilferers (reviewed in Dally et al., 2006), and can play an important role in cache 

deposition (explored in Chapter 3). 

1.4 Canada Jays 

The subject of this dissertation is the caching behaviour of the Canada Jay 

(formerly Gray Jay). Canada Jays are an ideal species in which to test hypotheses and ask 

questions about caching decisions. They are highly motivated to cache, even in captivity. 

This is likely due to their high dependence on cached food to survive winter (Strickland 

& Ouellet, 2020). Additionally, Canada Jays are corvids, and related species have been 

the subjects of much recent research regarding decision making, and cognition in caching 

species (e.g. Kelley & Clayton, 2017; Fuirst et al., 2020; Vernouillet et al., 2021). 

1.4.1 Diet and Foraging 

Canada Jays are omnivorous, long-term scatter-hoarders. They consume a wide 

variety of food items including berries and plant matter, arthropods, carrion, eggs and 

nestlings, and fungi (Strickland & Ouellet, 2020). Canada Jays will also consume human 

food including bread, meat, cheese and dried fruit (Dow, 1965; Derbyshire et al., 2019; 

Strickland & Ouellet, 2020). Similarly, Canada Jays cache an equally wide variety of 

foods, including those that are perishable. Additionally, unlike many scatter hoarding 
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species that cache predominantly in the ground, Canada Jays cache arboreally (reviewed 

in Sutton et al., 2016). 

Canada Jays cache tens-of-thousands of food items per season (Strickland & 

Ouellet, 2020), and have been reported caching over 1000 food items in a single 17 h day 

(Waite, 1991), a rate of over 1 cache per minute. While food caching is employed by all 

Canada Jays, the behaviour appears to vary geographically. Populations in Alaska and the 

Yukon have been observed caching throughout the summer, while populations at the 

southern edges of the range in Manitoba and Ontario are typically not observed caching 

until late summer or early autumn. All populations seem to continue food caching until 

food is no longer abundant, and caching behaviour appears to peak in autumn, when 

temperatures cool and humidity drops (Strickland & Ouellet, 2020). 

1.4.2 Distribution and Habitat 

Canada Jays maintain stable year-round territories. Canada Jays inhabit every 

province and territory in Canada, Alaska and parts of New England and the Western 

United States, though typically at higher altitudes in warmer regions (Figure 1.3; 

Strickland & Ouellet, 2020). Canada Jay territories vary in size depending on resource 

and habitat quality but can range from approximately 27 – 146 ha (Strickland & Norris, 

2015). The species has a close distributional relationship to spruce trees (Picea spp.) but 

can also be found among other conifer species (Strickland & Ouellet, 2020). At the 

southern edge of the Canada Jay range in Ontario, populations are most abundant when 

Black Spruce (P. mariana) and White Spruce (P. glauca) are present (Strickland et al., 

2011; Strickland & Ouellet, 2020). At higher elevations, populations tend to coincide 
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with clusters of Engelmann Spruce (P. engelmannii; Strickland & Ouellet, 2020). This 

distributional overlap is thought to be the result of the postulated preservative properties 

of spruce resins aiding in cache preservation (Sechley et al., 2015), however, no 

empirical evidence for this assumption exists. I explore this relationship and show how 

Canada Jays could impact this overlap through their caching decisions (Chapter 2). 
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Figure 1.3 Canada Jay range map. Shaded area indicates the year-round range of 

the Canada Jay. Reproduced with permission from Birds of the World (see 

Appendix I). 
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1.4.3 Reproductive Timing and Breeding 

Canada Jays reproduce atypically early in the year.  Pairs initiate nest building 

between mid-February and mid-March, though initiation in early February has been 

reported (Strickland & Ouellet, 2020). First eggs are laid from mid-March to mid-April, 

and hatch roughly 20 days post-laying (Strickland & Ouellet, 2020). Notably, this 

phenology means the offspring are hatched and need provisioning significantly before 

lakes and waterways have thawed, before most migratory birds have returned, and before 

the vast majority of food is available (Strickland & Ouellet, 2020). 

1.4.4 Canada Jay Caching 

Canada Jays cache a wide variety of items, including foods that are perishable 

(Strickland & Ouellet, 2020), and to accommodate this engage in extensive food handling 

prior to caching. Canada Jays manipulate food items into boluses, saliva covered balls of 

prepared food (Dow, 1965). As previously mentioned, Canada Jays cache arboreally, thus 

these boluses are then deposited discreetly in trees throughout an individual’s territory, 

hidden by bark, foliage or other substrates (Dow, 1965; Waite, 1991; Strickland and 

Ouellet, 2020).  

Canada Jays, like many northern boreal birds, are reliant on their caches for 

winter survival (Strickland & Ouellet, 2020). Cached food provides birds with the 

resources required to survive the otherwise food scarce winter. Additionally, Canada Jays 

also provision their offspring using cached food (Derbyshire et al., 2019), though the 
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extent to which cached food is used for provisioning is not known (Derbyshire et al., 

2019; Strickland & Ouellet, 2020). 

Despite Canada Jays having been studied for decades – the Algonquin Provincial 

Park population has been studied continuously since the 1960s (Derbyshire et al., 2015; 

Sutton, 2020) – caching specific research remains limited. Most existing research is 

dedicated to population level understanding of habitat use and population trends 

(Strickland et al., 2001; Derbyshire et al., 2015; Waite & Strickland, 2006, Sutton et al., 

2019, 2020a, 2020b).  

There are two notable exceptions in which Canada Jay caching has been the 

explicit focus of research. First, captive Canada Jays were used to confirm expectations 

that, similar to other food caching passerines (e.g. Black-capped Chickadees, Sherry, 

1984), Canada Jays retrieved their caches using memory (Bunch & Tomback, 1986). 

Second, a group of Canada Jays in Alaska were used to study the economics of Canada 

Jay caching in the late 1980s and early 1990s (Waite, 1991) regarding cache distribution 

and rate maximization. Experimental manipulations of caching scenarios showed that 

Canada Jays behaved in a manner consistent with optimal theoretical models.  

1.4.5 Impact of Climate Change 

Canada Jays are extremely susceptible to the negative population level effects of 

climate warming (Waite & Strickland, 2006; Greenlee, 2012; Sutton et al., 2019, 2020a; 

and reviewed in Sutton, 2016). This risk seems to be heightened by multiple 

compounding factors. For example, Canada Jays cache a wide variety of perishable food 
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items. As a long-term caching species, Canada Jay caches are subjected to varying 

environmental conditions (e.g. moisture, temperature) that lead to cache degradation 

(Sechley et al., 2015; Sutton et al., 2019). Weather and climatic factors can also cause 

range shifts (Greenlee, 2012), range contractions (Waite & Strickland, 2006), and a 

decrease in habitat quality (Strickland et al., 2011) and/or reproductive success (Sutton et 

al., 2020a). These negative trends independently have the potential to drive population 

level effects on Canada Jays, but when experienced simultaneously, it becomes evident 

that Canada Jay populations, particularly those at the Southern edge of the range, are 

becoming increasingly vulnerable. 

1.5 Dissertation Objectives and Structure 

In this thesis I address four distinct questions, each corresponding to one of four 

data chapters (Chapters 2-5), and each with the goal of better understanding the caching 

decisions of Canada Jays. More specifically, questions regarding cache-site and cache-

item selection were explored. 

In Chapter 2 I empirically test the assumption that Canada Jay’s distributional 

overlap with spruce trees (Strickland et al., 2011) is the result of an active cache-site 

preference for spruce trees. Evidence suggests that for birds, some conifers may aid in 

cache preservation through protective properties in resin. However, due to the challenges 

involved with following birds to their caching locations, cache-site preferences are not 

easily studied. I investigated eight captive Canada Jays’ ability to both identify and 

exploit conifer tree species. Further, I examined potential cues that birds may use in order 

to identify and select these potentially beneficial sites. I found strong evidence to suggest 
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that birds can quickly identify conifer tree species, and subsequently exploit those cache 

locations preferentially. Furthermore, I found evidence that birds use structural but not 

olfactory cues when making caching decisions, suggesting that visual information is 

essential to both the identification of conifer trees and to cache-site selection decisions. 

These findings indicate that jays make rapid, fine scale assessments of their 

environments, discriminating among trees of different species, and use this information to 

select cache sites. 

In Chapter 3 I assess Canada Jays’ behavioural responses to the presence of a 

potential cache-robber, a model Blue Jay. Cache-robbers present a unique threat to food-

caching individuals, including Canada Jays (Burnell & Tomback, 1985; Rutter, 1972). 

Accordingly, caching species are predicted to have evolved a variety of cache protection 

strategies in order to limit the potential risk of cache-robbery. I assessed the cache 

protection strategies, caching behaviour and movement patterns of captive Canada Jays in 

a variety of caching contexts that varied in potential risk of cache-robbing. I found that 

depending on perceived risk, Canada Jays flexibly employed a variety of non-mutually 

exclusive cache protection strategies including cache depression, caching out-of-sight, 

and spacing their caches. These cache protection strategies likely reduce the risk of 

cache-robbing and increase the probability of caches remaining available for recovery 

and consumption. 

In Chapter 4 I explore the ability of Canada Jays to plan ahead and anticipate 

restricted food availability. In the past 20 years, research in animal cognition has 

challenged the belief that complex cognitive processes are uniquely human. At the 
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forefront of these challenges has been research on mental-time-travel and future planning 

in jays. I tested whether Canada Jays were capable of future planning, using a procedure 

which had previously produced evidence of future planning in Western Scrub-Jays (Raby 

et al., 2007). “Future planning” in this procedure consists of birds distributing food 

caches in a way that makes food subsequently available in locations where the birds have 

experienced periods of predictable food restriction. Canada Jays showed no evidence of 

future planning in this sense and instead placed caches in a location where food was 

usually available, the opposite of the behaviour described for Western Scrub-Jays. I 

suggest potential explanations for these differing results and a re-evaluation of “complex 

cognition” as an explanation of caching behaviour in jays. 

In Chapter 5 I evaluate the macronutrient content of items that Canada Jays 

choose to cache and consume. Food scarce periods pose serious physiological challenges 

for birds, especially in energetically demanding conditions. For Canada Jays, a decrease 

in available resources during winter adds further physiological stress to the energetic 

demands of life at low temperatures. Canada Jays also rear their young prior to spring 

green up, making food caching not only essential for adult winter survival, but also 

potentially important for meeting the requirements of growing offspring in late winter 

and early spring (Derbyshire et al., 2019; Strickland & Ouellet, 2020). In this study I 

examined the diet choices of Canada Jays immediately prior to winter, and the 

macronutrient composition of the foods Canada Jay consumed and cached at this time. I 

found that birds made no changes to their macronutrient intake prior to winter and that 

the ratio of macronutrients in food Canada Jays cache is the same as in the food they 

consume. These similarities in macronutrient ratios between cached and consumed foods 
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suggest that the birds are foraging to simultaneous, but distinct, minimum energy and 

protein targets. It also suggests that these simultaneous targets define the foraging 

decisions of individuals when presented with dietary choices and should be important for 

diet generalist species. 

In Chapter 6 I summarize and synthesize the results of the preceding four 

chapters, as well as previous research on these topics. I address the overall significance of 

my results and discuss the applications of my findings to future research and to the 

conservation of boreal caching species. 
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Chapter 2 

2. Canada Jays (Perisoreus canadensis) identify and exploit 

coniferous cache locations using visual cues 

2.1 Introduction 

Food caching, the process of storing and subsequently recovering food for later 

consumption, is a strategy widely used by birds and mammals to survive periods of low 

food availability (Smith and Reichman, 1984; Sherry, 1985; Vander Wall, 1990). Food 

caching species can be broadly divided into two groups; short-term and long-term food-

cachers (Vander Wall, 1990). Short-term food caching species typically cache and 

recover items to cope with immediate uncertainty or threats of pilferage and retrieve 

caches within hours to days of caching. Long-term food caching species, however, 

typically store for future needs, frequently leaving caches for periods of months before 

retrieval. The latter strategy is often employed in highly seasonal environments that 

experience long stretches of limited resources. These long-term caches are subjected to 

potentially harsh environmental conditions, putting them at a greater risk of degrading.  

While most species cache non-perishable food items like acorns or seeds, this is 

not the case for all species (Vander Wall, 1990). Many vertebrates cache perishable food 

items such as fungi, fruits, arthropods, and vertebrate flesh (e.g. Chesemore, 1975; 

McCord and Cardoza, 1982; Strickland and Ouellet, 2020). A recent review by Sutton et 

al. (2016) discusses the susceptibility of caching species to climate change. As one might 
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predict, long-term caching species which store perishable food items are among those 

most vulnerable.  

Caching species use behavioural strategies which maximize cache preservation, 

including microhabitat preference, prey incapacitation, and physical manipulation of the 

environment (reviewed in Sutton et al., 2016). Previous studies have demonstrated that 

caching species have the ability to actively utilize aspects of their environment to aid in 

preserving caches. For example, Florida Scrub-Jays (Aphelocoma coerulescens) select for 

high-tannin acorns and will cache in and re-locate acorns to drier sites less vulnerable to 

degradation and germination (Fleck and Woolfenden 1997; Kulahci and Bowman 2011; 

Fuirst et al, 2020). Additionally, Spotted Nutcrackers (Nucifraga caryocatactes) also 

select cache-sites with similar favourable microclimatic conditions (Neuschulz et al, 

2015). While these studies demonstrate that food-caching species exploit certain 

environmental characteristics, particularly lack of moisture, for food preservation, little 

information exists about species exploiting other aspects of the environment. In addition, 

many corvid species cache predominantly in the ground; food-caching animals that prefer 

arboreal sites likely select for different cache site characteristics. 

Many migratory birds demonstrate preferences for particular plant species, often 

exploiting the resources these plants provide for foraging (e.g. Wood et al., 2012; Kirsch 

and Wellik, 2017; Morgan et al., 2018) or for breeding sites (e.g. Anderson and Shugart, 

1974; Squires et al., 2018). The same is true of resident species (e.g. Narango et al., 2017; 

2018), however, evidence of active environmental exploitation in a non-migratory 

caching species is more limited. Willow tits (Poecile montanus) prefer caching in conifer 
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trees compared to deciduous trees, but these preferences are likely due to the physical 

characteristics of conifers in the winter (Lahti et al., 1998), and given the short-term 

caching nature of Willow tits, this preference likely has little to do with cache 

preservation and more to do with reducing risk of pilferage. 

Canada Jays (Perisoreus canadensis) are resident species of the boreal and 

subalpine forests in North America and maintain year-round territories (Strickland and 

Ouellet, 2020). Canada Jays are a long-term food caching species which store perishable 

food items including berries, mushrooms, invertebrates, and carrion for overwinter 

survival and late-winter reproduction (Sutton et al., 2016; Strickland and Ouellet, 2020). 

Thus, cache perishability and preservation are vital factors that influence the viability of 

cached food for future consumption.  

Evidence suggests that the breeding territories of Canada Jays are largely 

determined by habitat quality, particularly forest composition (Strickland et al., 2011). 

More specifically, habitat quality of Canada Jay territories has previously been defined 

by the proportion of conifers such as Black Spruce (Picea mariana), White Spruce (Picea 

glauca), and Balsam Fir (Abies balsamea (Strickland et al., 2011; Strickland and Ouellet, 

2020). It has been suggested that the mechanism for this association is the ability of 

conifer species to preserve perishable food items better than deciduous trees do 

(Strickland et al., 2011; Sechley et al., 2015). This natural preservation, however, is only 

beneficial if jays can identify and exploit these locations’ cache-sites when available. 

Unfortunately, because Canada Jay territories are large with a variety of geological 

features like lakes and rivers, it is extremely difficult to actively track jays to their 
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caching locations, and so cache-site preferences have not been empirically examined in 

Canada Jays.  

Here I used captive birds to experimentally test whether Canada Jays actively 

discriminate among tree species in their placement of caches in the laboratory. 

Additionally, I assessed the cues that individuals might use to make such assessments. 

My experiment tested Canada Jays’ ability to identify and exploit conifer trees, which are 

proposed to be beneficial for the preservation of caches. Birds were allowed to freely 

cache perishable food items in a variety of experimental set-ups. I predicted that 

individuals would be able to identify and preferentially cache in conifers, particularly 

spruce, and avoid caching in deciduous trees. I also expected that Canada Jays would 

demonstrate the ability to identify preferred trees based on isolated olfactory and 

structural cues. 

2.2 General Methods 

2.2.1 Subjects 

Eight adult Canada Jays were captured by Potter trap near Sudbury, Ontario, 

Canada (46.3946, -80.7982) during December 2018 and transported to the Advanced 

Facility for Avian Research, Western University, London, Ontario, Canada. Birds were 

housed individually or in pairs from capture until one week before the experiment in 

large, outdoor, free-flight rooftop aviaries. Aviaries ranged in size from 2.5 x 3.0 m to 3.0 

x 3.5 m, all were 2.5 m in height. One bird was removed from Experiments Two and 

Three due to health concerns. 
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One week prior to the start of each experiment, I moved the birds indoors to 

individual cages (0.75 x 0.4 x 0.4 m) and set the light cycle to 10:14 h light:dark cycle 

(light onset 0700 h). Birds were physically, but not visually or acoustically, isolated from 

one another. Food and water were available ad libitum except as required by each 

experiment (described below). Food was a mixture of Mazuri Exotic Gamebird Starter 

(PMI Nutrition International, Brentwood, MO, U.S.A.), Mazuri Parrot Pellets (PMI 

Nutrition International), shell-less peanuts and sunflower chips, and was supplemented 

with a HARI PRiME vitamin, mineral and amino acid supplement (Rolf C. Hagen 

Incorperated, Baie d’Urfé, QC, Canada). 

2.2.1.1 Ethical Note 

All birds were handled and tested in accordance with the guidelines set out by the 

Canadian Council on Animal Care. Canada Jays were collected and housed under Ontario 

Ministry of Natural Resources Wildlife Scientific Collector’s Authorization 1091668. 

This research was conducted under protocol number 2015-065 approved by the Western 

University Animal Care Committee. 

2.2.2 Behavioural Observations 

I tested birds in a free-flight observation room (2.7 x 2.7 m; Figure 2.1) which 

could be observed through a one-way mirror to allow live behavioural scoring. Remote 

doors on the opposite wall to the mirror allowed birds to enter and exit the room without 

being handled. During all trials cache sites were available in each of the four corners of 

the room. In Experiment One these cache sites were 4 sections of different tree species. 
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In Experiment Two, each corner contained a custom caching board with a different odour 

cue. In Experiment Three, the four corners contained artificial trees with different 

structural configurations. In all experiments the location of a particular cache site and its 

associated cues in a given trial was counterbalanced across all possible locations. 

Additionally, a table with food and water was always present in the center of the room. 

Food for all testing sessions was shredded cheddar cheese, which is a highly perishable 

food previously used in behavioural studies on Canada Jays (Sechley et al, 2014). 

 

Figure 2.1 A scaled schematic of the experimental set up. Trials were run in a series 

of three conjoined rooms. Birds held in the Housing Room could be released into the 

Flight Room by an observer in the Observation Room operating the remote doors. 

Observers viewed trials through the one-way glass observation window. The 

symbols A, B, C, and D mark the locations of the stimuli, and a table with water and 

food were present in each trial. All doors remained closed during testing. 
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2.2.3 Training 

Five days prior to the start of each experiment, the birds were allowed into the 

flight room in order to habituate. Four artificial trees were present in the room, one in 

each corner, along with the table containing food and water. Artificial trees consisted of a 

vertical 0.05 x 0.05 m wooden ‘trunk’ with 0.02 m diameter dowels protruding 

horizontally at varying heights. Each flight lasted 20 minutes, after which time the lights 

were turned off and birds were coaxed to return to their holding cages. 

2.2.4 Behavioural Testing 

All testing occurred between 0930 h and 1300 h (Figure 2.2). Birds were tested 

individually in two cohorts, each consisting of either three or four birds. At 0830 h, I 

transferred cohort 1 from their home cages into holding cages (0.4 x 0.3 x 0.3 m) where 

they were deprived of food for 1-2 h. Immediately prior to testing cohort 1 (0930 h), I 

transferred cohort 2 to holding cages and deprived them of food (resulting in 1.5-3 h of 

food deprivation). I tested cohort 2 immediately following the testing of cohort 1. Water 

remained available ad libitum in the holding cages. Because birds were tested one at a 

time, there were eight potential time slots each bird could be tested in. I changed the 

order of testing each day such that each bird tested in each of the possible time slots once. 

For Experiment One, there were eight possible slots, resulting in 8 trials per bird. For 

Experiments Two and Three, the slot originally occupied by the bird removed from the 

experiment was skipped, resulting in 7 trials per bird. The change in the order of testing 

was done to control for motivational differences, and so that food availability and length 

of deprivation was unpredictable to the birds. 
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Figure 2.2 A schematic of the experimental design for all three experiments in this 

chapter. A) the daily order birds were tested in, and B) a flow chart showing how 

birds progressed through the procedure. 

For each trial, a bird accessed the testing rooms through remote doors, controlled 

by the observer. While birds were in the flight room, an observer scored the location of 

the bird and any caching events. A caching event was defined as any time the bird 

deposited food in bolus form on any part of a tree and subsequently moved to a different 

location. Boluses deposited and immediately retrieved (without the bird moving) were 

not scored as caches. In addition, cheese left on flat surfaces, not in bolus form, were not 

scored as caches. Trials lasted 20 minutes, unless a bird remained stationary for five 

consecutive minutes at which point the trial was terminated. At the conclusion of a trial, 

the lights in the flight room were turned off, and the birds returned through the remote 

door to their holding cage unassisted. I returned the birds to their home cages after the 

completion of trials for their cohort. 

Day Time Slot

Cohort One Cohort Two

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 6 7 8 5 2 3 4 1

3 3 4 1 2 7 8 5 6

4 8 5 6 7 4 1 2 3

5 5 6 7 8 1 2 3 4

6 2 3 4 1 6 7 8 5

7 7 8 5 6 3 4 1 2

8 4 1 2 3 8 5 6 7

Cohort One
To holding cages

Cohort One
Individual Testing

Cohort Two
To holding cages

1.5-3 h food restriction

Test flights Cohort One
To home cages

Cohort Two
Individual Testing

8:30 am 9:30 am 11:45 am

Test flights

1:00 pm

Cohort Two
To home cages

Cohort Two
In home cages

Cohort One
In home cages

1-2 h food restriction

A)

B)
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2.2.5 Statistical Analysis 

Alpha was set at 0.05 threshold for all analyses, and all analyses were performed 

using R Studio v1.1.456 (R Core Team, 2018). Linear mixed effects models were 

performed using the ‘nlme’ package (Pinheiro et al., 2018), Poisson regressions were 

performed using the ‘lme4’ package (Bates et al., 2015), multiple comparisons were 

performed using the ‘multcomp’ package (Hothorn et al., 2008) and all data was 

manipulated using the ‘dplyr’ package (Wickham and François, 2018). All proportion 

data were arcsine transformed to correct for non-normality but for visual clarity 

untransformed proportion scores are presented in figures. Trials in which an individual 

did not interact with any of the stimuli are excluded from analysis for all exploration 

related measures (e.g., time spent, visits). For caching measures (e.g., total caches, cache 

proportion) only trials in which at least one cache was deposited were analyzed. 

2.3 Experiment One: Site Identification and Exploitation 

In this experiment I assessed jays’ abilities to first identify and subsequently 

exploit beneficial cache locations. Birds were allowed to cache freely in any of four tree 

species available. 

2.3.1 Methods 

2.3.1.1 Observation room 

Stimuli for Experiment One were sections of trees with distributions that overlap 

with the geographic range of Canada Jays in Ontario. I selected four sections from each 
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of two coniferous species, Red Pine (Pinus resinosa), White Spruce (Picea glauca), and 

two deciduous species, Red Maple (Acer rubrum), and White Birch (Betula papyrifera; 

also referred to as paper birch) from Elginfield, Ontario (16 tree sections total). Tree 

sections were approximately 0.25 m in diameter and ranged in height from 1.7 to 2.7 m. 

Sections included intact portions of trees including the truck, branches and foliage, and 

were placed vertically with cut ends on the ground. For each testing day, a new spatial 

configuration of tree sections and new tree sections were used to control for both spatial 

preferences and possible preferences for particular tree sections. 

2.3.1.2 Statistical Analysis 

I used linear mixed effects models to analyze the number of visits to each tree 

species, the time birds spent in each tree species and location of birds’ caches. For the 

time spent model, the proportion of time spent in a given tree species per trial was the 

response variable while for the cache location model, the proportion of caches per tree 

species in a given trial was the response variable.  Trial number per bird was included as 

a within subjects factor, and individual was included as a random intercept. 

To assess the exploitation of cache sites, I compared the caching rate per tree. 

Because caching rate was calculated as the number of caches made per ten minutes I used 

a Poisson regression. Tree type was included as a factor and individual was included as a 

random effect. I also assessed how likely an individual was to make a cache each visit to 

a particular tree using a second Poisson regression. The number of caches an individual 

made per 20 visits to a tree species was used as the dependent variable. 
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I used a one-way ANOVA to quantify differences in which tree species birds 

interacted with first on each trial. Data was collapsed across trials, as I had no reason to 

expect learning to occur due to the randomization of tree location and characteristics. The 

proportion of trials in which a bird interacted first with each species was included as the 

response variable. 

2.3.2 Results 

Birds interacted with at least one tree in all trials (n = 64) and deposited at least 

one cache during  81% of trials (n = 52). 

2.3.2.1 First Tree Interaction 

Canada Jays demonstrated a strong preference for which tree species they 

interacted with first (F3,31 = 13.5, p < 0.0001; Figure 2.3A). The random effects 

accounted for almost no variation, as both the marginal and conditional coefficients of 

determination were 0.57. Jays preferred the White Spruce over the Red Pine (Tukey’s: p 

= 0.0011), Red Maple (p < 0.0001) and White Birch (p = 0.0001). All other comparisons 

were non-significant (Tukey’s: p > 0.05 for all). 
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Figure 2.3 Top row: proportion of A) first visits, B) time spent and C) caches in 

branches of each tree species.  Bottom row: mean number of D) caches deposited 

per 10 min block and E) caches deposited per 20 visits in branches of each tree 

species. Points represent group means ( SEM). Dashed lines represent the 0.25, 

chance level. Tree species are identified by two-letter abbreviations: RP, Red Pine; 

WS, White Spruce; RM, Red Maple; WB, White Birch. Lower-case letters that are 

not shared indicate a significant difference at p < 0.05. 

2.3.2.2 Time Spent 

Canada Jays also demonstrated a strong preference for the tree species in which 

they spent the most amount of time in (F3,1 = 38.3, p < 0.0001; Figure 2.3B). The 

marginal and conditional coefficients of determination were both 0.31. Jays spent the 
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most time in the White Spruce (51.63% of all time) compared to Red Pine (20.01%; 

Tukey’s: p < 0.0001), Red Maple (10.70%; p < 0.0001), or White Birch (17.66%; p < 

0.0001) but showed no preferences between the other three trees (Tukey’s: p > 0.05 for 

all remaining comparisons). 

2.3.2.3 Cache Location 

Canada Jays demonstrated a strong preference for tree species when caching 

(F1,153 = 50.6, p < 0.0001; Figure 2.3C). The marginal and conditional coefficients of 

determination were both 0.42. As with time spent, jays preferred to cache in White 

Spruce (63.08% of all caches) over Red Pine (17.64%; Tukey’s: p < 0.0001), Red Maple 

(10.74%; p < 0.0001), and White Birch (8.54%; p < 0.0001) but showed no preferences 

between the other three trees (Tukey’s: p > 0.05 for all remaining comparisons). 

2.3.2.4 Caching rate and frequency 

Tree species had a significant effect on the rate at which Canada Jays chose to 

cache in them (2
3 = 9.56, p = 0.023; Figure 2.3D). Canada Jays cached more frequently 

in the spruce tree over the White Birch (Tukey’s: p = 0.027), however all other 

comparisons were not statistically significant. 

Canada Jays’ propensity to deposit a cache on a given visit also varied by tree 

species (2
3 = 19.96, p < 0.0001; Figure 2.3E). Canada Jays were more likely to make a 

cache on a given visit to the spruce tree rather than to either the maple (Tukey’s: p = 

0.001) or the White Birch (p = 0.006). Individuals were equally likely to deposit a cache 

when visiting either the spruce or pine trees. 
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2.3.2.5 Location of Inactivity 

A total of twenty-five trials (39%) were ended due to inactivity, with each bird 

becoming inactive at least once. For 24 of these trials the inactivity occurred with the bird 

perched in a tree, while 1 ended with the bird on the ground. Of the 24 trials in which 

birds became inactive while perched, 18 (75%) occurred while the bird was in the White 

Spruce tree. The remaining trials were ended with birds perched in: Red Pine, 3; Red 

Maple, 1; White Birch, 2. 

2.3.3 Discussion 

Canada Jays were able to both identify and subsequently exploit beneficial conifer 

caching locations. Birds quickly identified and spent a disproportionate amount of time in 

the White Spruce tree, followed by the Red Pine. Additionally, Canada Jays cached at 

higher rates, and more frequently in the conifer species than the deciduous species. 

The next step was to determine how birds are able to identify these locations. I 

tested whether the cue differentiating the preferred conifer species was olfactory. 

2.4 Experiment Two: Olfactory Identification of Cache Sites 

In this experiment I assessed birds’ abilities to identify, and subsequently exploit 

cache sites based on olfactory cues. Because Canada Jays demonstrated a preference for 

conifer species in Experiment One, I used only conifer odours in this experiment. 
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2.4.1 Methods 

2.4.1.1 Observation room 

Stimuli for Experiment Two were custom made caching boards. Each board was 

1.6 m x 0.25 m and contained 12, 0.5 cm diameter holes for caching. Caching holes were 

arranged in three columns, with holes in each column spaced 0.25 m apart. The lowest 

hole in the outer two columns was 0.80 m from the ground. Each hole had a perch 0.05 m 

below them. The lowest hole in the center column was at 0.68 m and holes in this column 

did not have perches. All caching locations were accessible to all birds. 

Olfactory cues were provided by spraying one of four scented mixtures of water 

and commercially available essential oils (1% oil; Aliksir Essential Oils, Quebec, 

Canada) on each of four caching boards daily. Scented mixtures were shaken 

immediately before being sprayed and were sprayed until the caching board was visibly 

wet. Olfactory cues were easily detected by human researchers. Each scented mixture 

was applied to an individual board, resulting in four distinct scent caching boards. 

I selected oils from four coniferous species as these species give off strong 

olfactory cues, and as a result of birds’ demonstrated preferences for caching in conifer 

species (Experiment One). Scents selected for this experiment were white pine (Pinus 

strobus), White Spruce (Picea glauca), balsam fir (Abies balsamea), and Eastern 

Hemlock (Picea glauca). For each testing day, a new spatial configuration of caching 

boards was used to control for spatial preferences. 
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2.4.1.2 Statistical Analysis 

I used linear mixed effects models to analyze birds’ tree species preferences for 

number of visits, time spent at each caching board and for cache location. In all models, 

trial number per bird was included as a within subjects factor, and bird id was included as 

a random intercept. I did not analyze the exploitation of site due to the low number of 

trials in which caches were deposited. 

2.4.2 Results 

Birds interacted with at least one caching board in 67% of trials (n = 32) and 

deposited at least one cache in 34% of those trials (n = 11). Canada Jays did not differ in 

the number of visits they made to a location (F3,93 = 0.86, p = 0.47; Figure 2.4A), the time 

they spent interacting with each of the scented caching boards (F3,93 = 0.95, p = 0.42; 

Figure 2.4B). Additionally, Canada Jays did not preferentially cache in any of the scented 

boards (F3,30 = 0.88, p = 0.46; Figure 2.4C). Random effects accounted for very little of 

the variation in any of the models. The marginal coefficients of determination were 0.01 

for the number of visits, 0.02 for the time spent, and 0.06 for the proportion of caches. 

The conditional coefficients of determination were 0.30, 0.02, and 0.06 respectively. 
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Figure 2.4 A) number of visits, B)  proportion of time spent and C) proportion of 

caches deposited by birds in each of the four scented caching boards. The dashed 

line indicates chance, 0.25. Olfactory cues are identified by two-letter abbreviations: 
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RP, Red Pine; WS, White Spruce; BF, Balsam fir; EH, Eastern Hemlock. Alpha for 

all tests was set at 0.05, ‘n.s.’ indicates non-significant differences. 

2.4.3 Discussion 

I found no evidence to suggest that Canada Jays use olfactory cues alone to 

discriminate between potential caching sites. It is possible that olfaction still plays a role 

in the discrimination process but in the absence of additional cues, olfactory cues are not 

sufficient to elicit a behavioural response. A second apparent difference between the 

preferred conifer species in Experiment One was the structural properties of the trees. 

2.5 Experiment 3 Three: Structural Identification of Cache Sites 

In this experiment I assessed birds’ abilities to identify, and subsequently exploit 

cache sites based on structural cues, independent of any potential species specific 

information. There were no olfactory cues presented, and the only cues available were 

visual. 

2.5.1 Methods 

2.5.1.1 Observation room 

Stimuli for Experiment Three were custom made artificial trees. Trees were 

composed of a 0.05 x 0.05 x 2.0 m trunk and 0.02 m diameter dowel branches of varying 

lengths at various heights. In total, all trees had a total branch length of 1.22 m, and mean 

branch height of 1.37 m. Trees were constructed to have either 2, 4, 6, or 8 evenly spaced 

branches in order to give the trees different structural configurations. Equal numbers of 
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branches protruded in all directions for the 4- and 8-branch trees. Branches were 

perpendicular to one another on the 2-branch tree. The 6-branch tree had one branch 

protruding in each direction, with two additional branches that were perpendicular to one 

another as the lowest two branches. No branch protruded in the same direction as the 

branch either immediately above or below it. For each testing day, a new spatial 

configuration of trees was used to control for spatial preferences. 

2.5.1.2 Statistical Analysis 

I used linear mixed effects models to analyze birds’ preferences for individual 

artificial trees for time spent, number of visits and caches deposited. 

2.5.2 Results 

Birds interacted with at least one artificial tree in all trials (n = 49) and deposited 

at least one cache in 98% of those trials (n = 48). 

Birds demonstrated no preferences in the number of times they visited a particular 

tree (F3,144 = 1.61, p = 0.19; Figure 2.5A). The marginal coefficient of determination was 

0.01, while the conditional coefficient of determination was 0.48. There was a main 

effect of structure on time spent (F3,144 = 2.89, p = 0.04; Figure 2.5B), but post-hoc tests 

revealed no significant pairwise differences (Tukey’s: all comparisons > 0.05). Random 

effects contributed to almost none of the variation as the marginal and conditional 

coefficients of determination were both 0.04. Birds did, however, demonstrate a 

preference for the proportion of caches they deposited in each location (F3,141 = 3.86, p = 

0.01; Figure 2.5C). The marginal and conditional coefficients of determination were both 
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0.06. Individuals cached significantly more items in the eight-branch tree than any of the 

other trees (Tukey’s: all  0.05), but had no preference between the six-, four- and two-

branch trees (all > 0.05). 
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Figure 2.5 The A) number of visits, and mean proportions of B) time spent and C) 

caches deposited by birds in each of the four artificial trees. The dashed line 

indicates chance, 0.25. Structural cues are the number of branches on each tree (e.g. 
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2, two-branch). Lower-case letters that are not shared indicate a significant 

difference at p < 0.05, ‘n.s.’ indicates a non-significant difference. 

2.5.3 Discussion 

I found evidence that Canada Jays preferentially cached in the eight-branch tree. 

Because there were no differences in the time spent in each tree, I take this as evidence 

that Canada Jays are responding to the structural cues, and actively selecting the 

branchiest tree. I believe the main effect of location on time spent was driven by the 

increased time spent in the two-branch tree compared to the grouping of the other tree 

trees, but because there are no significant pairwise comparisons, I do not believe this 

effect is informative. 

2.6 General Discussion 

The aim of my study was two-fold. First, I assessed Canada Jays’ ability to 

identify and exploit potentially beneficial cache locations, specifically spruce species. 

Second, I aimed to evaluate two potential cues that individuals could be using to carry 

discriminate among tree species. I found that Canada Jays quickly identify White Spruce 

and Red Pine, and preferentially cache in these species compared to deciduous trees, with 

a stronger preference for spruce trees. Further, I found evidence to suggest that Canada 

Jays use structural features of trees when making caching decisions, however, these same 

cues do not seem to play a role in Canada Jays’ ability to initially identify conifer trees. 

Conifer species, specifically spruce trees, have been proposed to preserve 

perishable food caches better than do other tree species (Strickland et al., 2011; Sechley 
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et al., 2015). While the forest composition of territories jays inhabit has long been 

assumed to be related to food-caching preferences, my results provide a key empirical 

link to support that Canada Jays do indeed prefer to cache in tree species most suitable 

for long-term cache preservation. The active exploitation of conifers for caching helps 

explain the link between conifer density and Canada Jay territory occupancy described by 

Strickland et al. (2011). That is, territories with a higher proportion of spruce provide 

higher quality caching locations for long-term food storage and if individuals are 

exploiting these locations, then spruce-dominated territories are more likely to be 

occupied than other habitat types. 

Additionally, I have shown that Canada Jays process and use structural cues when 

assessing potential cache locations. There are a variety of potential explanations for this 

preference. Perhaps the most obvious is that the trees with the most branches reflect most 

closely the physical characteristics of many conifer species, including spruce. The series 

of branches extending out from the trunk allows Canada Jays to move through the 

artificial tree most similarly to how individuals move through conifers. Additionally, it is 

possible that because there are more intersections with the trunk, there were more caching 

sites available. Birds cached along the entire length (including on the end) of branches, 

and although not explicitly measured, anecdotally the intersection of the branch and the 

trunk was a common caching location.  

It is also possible that birds are selecting for these branchier physical features due 

to some benefit afforded to their caches when cached in such locations. For example, 

increased branchiness could provide more shade, similar to related species selecting for 
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increased canopy cover (Neuschulz et al., 2015) Also, this shade could aid in decreasing 

temperatures around the cache, an essential component of cache preservation (reviewed 

in Sutton et al., 2016). It is also possible that caching in sites with increased branchiness 

serves to reduce cache-pilfering. Canada Jays’ caches are most at risk from acute 

pilferage at the time of caching (Burnell & Tomback, 1985; Rutter, 1972), and caching 

amongst an abundance of branches may help to disguise the location of caches (broadly 

reviewed in Dally et al., 2006). Regardless of the benefits, it seems unlikely that Canada 

Jays are evaluating only structural cues to assess caching locations. Realistically, Canada 

Jays likely use some combination of cues, however, I have demonstrated that in absence 

of other cues, Canada Jays prefer cache locations that are structurally branchier. 

Importantly, Canada Jays only used this structural information to inform their 

caching preferences. In Experiment Three, the effects seen in Experiment One regarding 

rapid identification and a preference for spending time in conifer trees, disappeared. I 

suspect this is because while the structural characteristics of the tree appear important for 

caching, they are less important or useful for discriminating tree species. Interestingly, 

olfactory cues had no impact on individuals’ ability to discriminate potential locations. 

As noted above, Canada Jays are typically found in areas of dense conifer growth 

(Strickland & Ouellet, 2020). This suggests that Canada Jays may be reliant on habitat 

imprinting to identify particular species. Habitat imprinting (summarized in Immelmann, 

1975), the preference for a habitat as an adult that was experienced early in life, could 

explain both birds’ ability to identify conifer trees and their tendency to spend more time 

among them when all cues were available. If habitat imprinting is the mechanism of this 

behaviour, I suggest that habitat imprinting, at least in Canada Jays is primarily visual. In 
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both Experiments Two and Three, when birds did not identify conifer trees, and had no 

preference for location, all the typical visual information was removed, leaving only 

olfactory (Exp Two) or structural (Exp Three) cues. 

In general, food caching behaviour allows animals to cope with periods of 

resource scarcity. This behaviour, however, is only sustainable if species manage to avoid 

cache degradation. Caching species have developed many tactics to aid in cache-

preservation, but active cache site exploitation has only been documented in a few 

instances (Fleck & Woolfenden, 1997; Kulahci & Bowman, 2011, Neuschulz et al., 2015, 

Fuirst et al., 2020). In these cases, ground-caching individuals attempted to mitigate the 

effects of soil moisture by caching items in drier locations. Canada Jays seemingly 

employ a similar strategy, but it is unlikely that these jays are attempting to manipulate 

cache microclimate moisture. More likely, Canada Jays are attempting to capitalize on 

and exploit the large percentage of volatiles in conifer resins (Langenheim, 2003; 

Strickland et al., 2011). Assuming caches made on spruce trees become covered in these 

antimicrobial and unpalatable resins, these stores would be less susceptible to degradation 

and more readily available for retrieval when required. This could become increasingly 

important as the climate in the boreal forest continues to change, and average 

temperatures continue to rise (Sutton et al., 2016). 

Successful food caching is essential to long-term Canada Jay survival. Canada 

Jays rely on their caches for provisioning their offspring and are food limited during the 

breeding season (Derbyshire et al., 2015). Unexpected or increased degradation of caches 

can lead to population wide effects (Sutton et al., 2019, 2020), could have devastating 
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long-term effects on populations of food-caching birds. Examples of such effects exist in 

other food-caching corvids and mammals, as well. For example, Clark’s Nutcrackers 

(Nucifraga columbiana) have failed to breed on a population-wide scale when the pine-

seed crop fails (Schaming, 2015), and wolverines (Gulo gulo) rely on cached food for 

successful early season breeding (Inman et al., 2012).  

Canada Jays have a propensity to disperse caches evenly, or at least to avoid 

clustering caches by avoiding previously used locations (Waite and Reeve, 1994). While 

even distribution of caches may be beneficial where cache site quality is relatively even 

across the available home range, my results suggest when potential high-quality cache 

sites are limited, jays will cluster their caches in beneficial locations such as conifers, 

rather than cache in unfavorable locations such as deciduous trees.  

Food-caching birds remember various details about their caches including 

location, contents, and even the relative time when the cache was made (Sherry, 1984; 

Clayton & Dickinson, 1998; and reviewed in Sherry, 2017). My results suggest food-

caching species can actively evaluate and process information about cache sites prior to 

caching, in addition to retaining information about caches that have already been made. 

They also support the idea that Canada Jay breeding success, abundance, and distribution 

is closely associated with the availability of high-quality habitat, specifically a high 

density of spruce, because these trees may best preserve caches (Strickland et al., 2011; 

Sechley et al., 2015).   
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Chapter 3 

3. Canada Jays (Perisoreus canadensis) employ multiple context-

dependent cache protection strategies 

3.1 Introduction 

Food caching, the storing of food for subsequent retrieval and consumption, is a 

behavioural strategy employed by a wide variety of species. While many taxonomic 

groups include food caching species, most caching species are birds and mammals (Smith 

& Reichman, 1984). Food caching is employed to alleviate predictable, future food-

scarce conditions caused by environmental variation (Smith & Reichman, 1984). Food-

scarce conditions often coincide with winter, making caching species (particularly those 

at high latitudes) dependent on stored food for extended periods. 

Though caching behaviour varies greatly between species (e.g. cache dispersal, 

time to retrieval), some commonalities do exist. In particular, regardless of caching 

behaviour, caches are exposed to a variety of potential threats. Environmental threats 

such as exposure to weather (Sutton et al., 2016), environmental variables (e.g. moisture) 

or climatic conditions (Sutton et al., 2019), may be unavoidable but others, such as 

threats from cache-robbers, can be more actively mitigated. 

Cache-robbers, or cache-pilferers, are conspecific or heterospecific individuals 

that retrieve and consume the caches of another individual. This can reduce the original 

cacher’s available food reserve by as much as 30% (reviewed in Vander Wall & Jenkins, 
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2003). Cache robbers may use external cues (e.g. olfaction: Buitron & Nuechterlein, 

1985), or encounter stored food by chance (e.g. Kamil & Balda, 1985). While larder 

hoarding species that make few large caches have the opportunity to defend these caches 

against potential robbers (e.g. Clarke & Kramer, 1994), scatter-hoarding species that 

cache each item in a separate location typically do not (reviewed in Dally et al., 2006). 

Nonetheless, scatter hoarding species must employ some measures to deter cache-

robbers, to ensure that their caches are available at retrieval. 

Researchers have attempted to understand and categorize the strategies used by 

scatter hoarding species to minimize cache robbery (reviewed in Dally et al., 2006). 

These include out-of-sight, hiding food out of sight of potential cache-robbers (e.g. Dally 

et al., 2005), hard-to-see, disguising or camouflaging cached items (e.g. Kelley & 

Clayton, 2017), spacing, distributing items widely or ‘optimally’, (e.g. Sherry et al., 

1982; Waite & Reeve, 1995), and re-caching, re-caching the same food item repeatedly 

to prevent its location being known (e.g. Emery & Clayton, 2001; Clary & Kelly, 2001). 

More broad strategies include up-regulation, increasing the overall number of caches 

(Bossema, 1979), down-regulation, decreasing the overall number of caches (Stone & 

Baker, 1989; Clary & Kelly, 2011) or cessation, (Burnell & Tomback, 1985) of caching 

behaviour. 

Canada Jays (Perisoreus canadensis) are year-round residents of the Canadian 

boreal forest and parts of the Western United States. They are long-term scatter-hoarders 

that rely on their cached food stores to both survive winter and to provision their 

offspring (Derbyshire et al., 2019; Strickland & Ouellet, 2020), though the extent to 
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which they provision their offspring remains unclear. The importance of food caching to 

Canada Jays makes the consequences of cache robbery particularly acute. Steller’s Jays 

(Cyanocitta stelleri), and Blue Jays (Cyanocitta cristata) pose a particular threat to the 

caches of Canada Jays (Burnell & Tomback, 1985; Rutter, 1972). Previous research on 

caching in the presence of potential cache-robbers yielded mixed results: free-living 

Canada Jays continued to cache with cache-robbers in the area but captive individuals did 

not (Burnell & Tomback, 1985). These conclusions, however, were based on small 

sample sizes. Other species of jays also show context dependent caching in the presence 

of potential cache robbers (Bossema, 1979; Goodwin, 1956; Emery & Clayton, 2001; 

Emery et al, 2005, Vernouillet et al., 2021). 

My goal was to characterize more completely the strategies used by Canada Jays 

to mitigate the risk of cache-robbing. Specifically, I evaluated 1) broad scale strategies 

affecting overall caching frequency, and 2) secondary strategies that could further 

mitigate risk of cache loss. I recorded Canada Jay caching behaviour in captivity in the 

presence versus absence of a potential cache-robber (a mounted model Blue Jay, 

hereafter ‘model jay’), in an environment that allowed caching in sight of versus out of 

sight of the model robber. I hypothesised that Canada Jays would employ a combination 

of cache protection strategies to mitigate the risk of cache-robbery in the presence of a 

potential cache-robber. 
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3.2 Methods 

3.2.1 Subjects 

Study subjects were seven adult Canada Jays, caught using Potter traps near 

Sudbury, Ontario, Canada (46.3946, -80.7982) in December 2018 and 2019 and housed 

at the Advanced Facility for Avian Research in London, Ontario, Canada. Some birds had 

participated in previous experiments, and all birds had previous experiences caching in a 

laboratory setting. Prior to the experiment, birds were individually housed in large, 

covered, outdoor, free flight aviaries (3.5 x 3.0 x 2.5 m). For the duration of the 

experiment (5 Oct – 8 Nov, 2020) birds were housed indoors in individual home cages 

(0.75 x 0.4 x 0.4 m) and were held on a 10:14 h light:dark cycle (light onset 0730 hours). 

Birds were physically but not visually or acoustically isolated during this time.  

Except as described below, birds were provided with ad libitum food and water, 

and birds were free to cache in their indoor home cages or outdoor aviary. Food was a 

mixture of Mazuri Exotic Gamebird Starter (PMI Nutrition International, Brentwood, 

MO, U.S.A.), Mazuri Parrot Pellets (PMI Nutrition International), shell-less peanuts and 

sunflower chips, and was supplemented with a HARI PRiME vitamin, mineral and amino 

acid supplement (Rolf C. Hagen Incorporated, Baie d’Urfé, QC, Canada). 

3.2.2 Ethical Note 

All birds were captured, handled and tested in accordance with the guidelines set 

out by the Canadian Council on Animal Care. Canada Jays were collected and housed 
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under Ontario Ministry of Natural Resources Wildlife Scientific Collector’s 

Authorization 1091668. This research was conducted under protocol number 2019-065 

approved by the Western University Animal Care Committee. 

3.2.3 Testing Apparatus 

I used a three-part observation suite (Figure 3.1) to observe caching behaviour in 

a free flight room (2.6 x 2.6 x 2.7 m). Birds were allowed to enter though doors 

controlled by researchers in an adjacent room, who observed birds through a one-way 

mirror. During all trials the observation room contained two White Spruce (Picea glauca) 

trees, a food and water table, and a stand (0.6 x 0.6 x 1.6 m) on which to present the 

model jay. Depending on the caching context, a black screen (1.7 x 2.5 m) and a recorded 

Blue Jay call were also present. The call always accompanied the model jay, played at 

semi-random intervals (13 calls/minute, smallest interval 1s, largest 6s) and was audible 

in all parts of the room. Shredded cheese was provided on the food table for Canada Jays 

to cache. 
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Figure 3.1 The captive testing set-up. Canada Jays were housed in individual home 

cages in the housing room and were transferred daily to holding cages. Birds’ access 

to the flight room via trap doors was controlled from the observation room. 

Observers scored behaviour through a one-way glass observation window. 

3.2.4 Caching Contexts 

Birds cached in each of four distinct caching contexts; 1. Control (no screen, no 

model jay), 2. Model-Unobstructed (no screen, model jay), 3. Model-Obstructed (screen, 

model jay), and 4. Screen-Control; (screen, no model jay). These caching contexts were 

created by adding or removing the black screen and model jay from the testing room. 

When the screen was present, it was positioned so that the model jay was not visible from 

any part of the tree behind the screen. 

3.2.5 Testing Procedure 

Testing occurred over a five-week period, with each week consisting of five 

consecutive testing days, and two consecutive rest days. All birds were tested 
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sequentially on each testing day, with no more than one bird in the free flight room at a 

time. This resulted in 5 trials per bird, per context. For all rest days, birds had access to 

ad libitum food and water, and were not removed from their home cages.  

The first week was used for habituation and training. On each of the five testing 

days, birds were transferred from their home cages to small holding cages (0.4 x 0.3 x 0.3 

m), and immediately entered the free flight room one at a time through remote doors 

connected to their holding cages. For all habituation flights both trees, the food and water 

tables and the model jay stand were present in the room. The model jay was not present. 

Birds were free to explore and interact with all items and trees. No food was available on 

the table, but the food dish was presented empty. Water was freely available throughout 

all sessions. At the conclusion of 20 minutes, the lights were turned off and the remote 

doors were opened. An observer entered the free flight room, and coaxed birds to return 

to their holding cages using a mesh net. Observers stopped entering the room once birds 

returned on their own. These sessions were not scored. 

For all subsequent weeks, birds were exposed to one of the four caching contexts. 

All birds experienced the contexts in the following order: Control, Model-Unobstructed, 

Model-Obstructed, Screen-Control, and all contexts were consistent for the full testing 

week (5 testing days and two rest days). Birds were transferred to their holding cages one 

hour after light onset (0830) and were food deprived until their testing began. Birds were 

provided access to water during food deprivation. Birds entered the free flight room, one 

at a time, beginning at 0930 (minimum 1h food deprivation). Birds were tested in a 

different order each day, such that no bird was tested in the same sequential order twice 
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in the same week. After the first four birds were tested, these birds were returned to their 

home cages to reduce unnecessary food deprivation. Each trial lasted 15 minutes. 

Birds accessed the free flight room through remote-controlled doors connected 

directly to their holding cages, as they did during the habituation sessions. Birds were 

free to explore the room and interact with any of the objects in the room. An observer 

scored birds’ position in the room, which included all visits to trees, food table, screen, 

mounted jay, and all caching events. At the conclusion of the trial, the lights were turned 

off, the remote door opened, and birds returned to their holding cages unassisted. 

3.2.6 Behavioural Data 

Three locations in the flight cage were defined: Tree One (out of view of the 

model in the Model-Obstructed context), Tree Two (in view of the model), and the model 

jay with its stand.  A visit was defined as any occasion the bird landed in a location after 

having previously been in another location. Instances in which a bird was in one location, 

left, and returned without landing in a different location were not scored as a different 

visit. For each trial, I scored visits (number of visits to each location in the trial); total 

duration (total time the individual spent in each of the three locations, time spent at the 

food table or elsewhere in the room was excluded); mean duration (mean duration of all 

visits the bird made to a location in a trial). I also noted total caches as the total number 

of caches made by a bird in a trial. A caching event was defined as any event where a 

Canada Jay deposited food in bolus form, a manipulated, saliva covered piece of food, 

and subsequently moved away. Leaving cheese on branches in its original shredded form, 

leaving cheese on the table or the ground, or depositing then immediately eating a bolus 



 

 72 

without first leaving and returning, were not scored as caching events. For each tree I also 

calculated caching preference as the number of caches made in the tree as a proportion of 

the total caches made in both trees combined. 

3.2.7 Statistical Analysis 

To evaluate the effect of context I used a series of linear mixed effects model 

(LMM) using the ‘nlme’ package (Pinheiro et al., 2018) in R Studio v1.1.456 (R Core 

Team, 2018). For overall caching propensity, the initial model included total caches as 

the dependent variable and included only caching context as the independent variable. 

The models used to assess caching preference, mean duration, total duration and visits 

all initially included both context and location as within subject factors. Non-significant 

terms were removed from the models using backwards stepwise elimination (excluding 

the total caches model as it only had one variable initially). For the caching preference 

model, location included Tree One and Tree Two. For the mean duration, total duration 

and visits models, location included Tree One, Tree Two and the model jay with its stand. 

In all models, individual was included as a random factor contributing one score to each 

context. Significant main effects and interactions were further explored with Tukey’s 

HSD tests, using the ‘multcomp’ package (Hothorn et al, 2008), t-tests and one-way 

ANOVAs. All proportion data used to evaluate caching preference were arcsine 

transformed prior to analysis. Untransformed values are shown in figures for clarity. 
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3.3 Results 

3.3.1 Caching Behaviour 

Context had a significant effect on the total number of caches (F3, 18 = 3.50, p = 

0.04; Figure 3.2A). The marginal coefficient of determination was 0.20 and the 

conditional coefficient of determination was 0.93. Jays made significantly fewer caches 

in the Model-Unobstructed condition than in either the Model-Obstructed condition 

(Tukey’s HSD: p = 0.04) or the Control condition (p = 0.02). No other differences 

between contexts were significant.  Notably, the Model-Obstructed context, with the 

model jay and the screen present, did not differ from either of the control conditions.  

Overall, birds made a greater proportion of caches in Tree One, the tree with an 

obstructed view of the model, than Tree Two (F1, 24 = 6.30, p = 0.02), with a significant 

interaction between tree preference and context (F3, 24 = 5.58, p = 0.005; Figure 3.2B). 

The marginal and conditional coefficients of determination were both 0.30. Post hoc tests 

showed jays made a significantly greater proportion of caches in Tree One than in Tree 

Two in the Model-Obstructed context (t-test: t6 = 5.59, p = 0.001) but in none of the other 

contexts. 
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Figure 3.2 A. Caches per trial in the four experimental contexts. B. Proportion of 

caches made in Trees One and Two. Tree One was out of view of the model cache 

robber in the Model-Obstructed context. Bars that do not share a lowercase letter 
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differ significantly. The * represents a significant difference p = 0.001, and ‘ns’ 

represents no significant difference (p > 0.05).  Error bars denote ± SEM in both 

panels. 

3.3.2 Movement Behaviour 

Total duration did not vary by context, but did vary with location (F2, 48 = 11.90, p 

< 0.001; Figure 3.3A). The interaction between context and location was not significant 

(F6, 48 = 0.86, p = 0.53). The marginal coefficient of determination was 0.24, and the 

conditional coefficient of determination was 0.36. Birds spent significantly more time in 

Tree One than in Tree Two (Tukey’s HSD: p = 0.03) and more time in Tree One than at 

the model jay and its stand (p < 0.001). In no context did total duration differ between 

Trees One and Two (all comparisons: p > 0.05). 

Mean duration did not differ among contexts, but did differ among locations (F2, 

48 = 7.15, p < 0.001; Figure 3.3B). The interaction between location and context was not 

significant (F6, 48 = 0.96, p = 0.46). The marginal coefficient of determination was 0.18, 

and the conditional coefficient of determination was 0.41. For both trees, the mean 

duration of visits was longer than the mean duration of visits to the model jay and stand 

(Tree One p = 0.02; Tree Two p < 0.001). The mean duration of visits did not differ 

between trees (Tukey’s HSD: p = 0.96)  

Visits did not differ among contexts, but did differ among locations (F2, 48 = 11.16, 

p < 0.001; Figure 3.3C). There was no interaction between context and location (F6, 48 = 

1.29, p = 0.28). The marginal coefficient of determination was 0.22, and the conditional 

coefficient of determination was 0.49. Birds visited Tree One significantly more than 
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either Tree Two (Tukey’s HSD: p < 0.001) or the model jay (p = 0.002). Visits to Tree 

Two and the model jay did not differ (p = 0.94). In the Model-Obstructed context, birds 

visited Tree One significantly more than Tree Two (Tukey’s HSD: p = 0.02). In all other 

contexts, visits to the two trees did not differ (all comparisons, p > 0.05).  
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Figure 3.3 Movement behaviour of Canada Jays by context and location (left 

column) and pooled across context (right column). A. Total duration, B. Mean 

duration, C. Visits. Bars that do not share a lowercase letter differ significantly, and 

‘ns’ represents no significant differences.   Error bars denote ± SEM in all panels. 
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3.4 Discussion 

The objective of this research was two-fold, 1) to assess the broad scale strategies 

affecting overall caching frequency used by Canada Jays, and 2) to assess the use of 

secondary strategies potentially employed by Canada Jays within the confines of these 

broad scale strategies. I found evidence for both a broad scale strategy, cache-depression, 

and for multiple secondary strategies, the out-of-sight and spacing defence strategies. 

Additionally, I found that Canada Jays may use their location in the room to reduce cache 

robbery. 

Canada Jays down-regulated but did not cease caching when all potential cache 

sites were in view of the model cache-robber in the Model-Unobstructed context. In this 

context and the Control and Screen-Control contexts, the proportion of caches placed in 

Trees One and Two did not differ significantly, suggesting they used a spacing strategy 

to protect their caches. Such cache dispersal has been reported in Canada Jays in the wild 

(Waite and Reeve, 1992; 1994; 1995), indicating that captivity did not influence the jays’ 

strategy of cache defence by spacing.  

When jays had the opportunity to cache out of view of the model cache-robber in 

the Model-Obstructed context, the number of caches made did not differ significantly 

from the Control and Screen-Control contexts. However, jays placed over 80% of their 

caches in the tree that was out of view of the model cache-robber, consistent with the out-

of-sight cache defence strategy. This preference for the tree out of view of the model 

cache-robber did not occur in any other context and suggests that this is an active 

behavioural choice.  
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While it is possible that because all birds experienced the contexts in the same 

order, context order had an effect on caching behaviour, this seems unlikely. Birds 

demonstrated the same overall caching levels and lack of tree preferences in the first 

context, Control, as they did in the final context, Screen-Control. It is also unlikely that 

the birds’ return to original caching levels in the Model-Obstructed context was the result 

of habituation to the model. While habituation may explain the increased caching in 

isolation, it fails to explain the strong caching preference birds exhibited in this context. 

Although jays demonstrated a caching preference in the Model-Obstructed 

context, they did not spend significantly more time in the tree out of view of the model. 

On the contrary, the mean duration of visits to the tree that was in view of the model were 

actually longer than the mean duration of visits to the tree that was out of view (50s vs. 

20s; Figure 3.3B,), though not significantly so. This may indicate a preference to 

minimize time spent in the location where caches are made in the Model-Obstructed 

context. 

The ability to flexibly employ context-dependant cache defence strategies 

suggests that Canada Jays are well equipped to minimize cache loss due to robbery, 

particularly that resulting from being observed by potential cache-robbers. Canada Jays’ 

tendency to spend more time in view of the model cache-robber suggests that the birds 

were not bothered by the robber’s general presence, but instead used visual information 

(presence of a potential cache robber) to inform their caching decisions (use of the out-of-

sight defence in the robber-screen context) and also prioritized it when making caching 

decisions. By contrast, research on other corvids suggests that just the presence of a 
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potential threat is enough to cause changes in caching behaviour (Clary & Kelly, 2011, 

Vernouillet et al., 2021). This is possibly due to the acute nature of cache robbery risk 

that Canada Jays experience from Blue Jays (Rutter, 1972) and Steller’s Jays (Burnell & 

Tomback, 1985). Both species have been documented stealing Canada Jay caches soon 

after deposition, and actively following Canada Jays in order to steal caches (Burnell & 

Tomback, 1985; Rutter, 1972). 

Canada Jays also appear to have evolved a behavioural pattern of cache dispersal 

that protects against cache loss due to random encounter or external cues. The wide 

dispersal of Canada Jay caches, both in the wild and demonstrated by the use of spacing 

in the laboratory, decreases the likelihood that the location of one cache by a cache-

robber increases the chance that subsequent caches will also be discovered. This pattern 

appears to be consistent both in the laboratory, as I have shown, and in the wild when no 

threats are present (e.g. Waite & Reeve, 1994). Such consistency suggests that this 

strategy, spacing, is likely the most frequently employed, serving as a default to ensure a 

minimum level of cache protection, but that this behaviour can be superseded by an acute 

threat. 

Reducing cache losses is essential to Canada Jays, as to any species that relies on 

stored food to survive food scarce periods. Because some sources of cache loss, like 

degradation due to environmental factors, are outside the reasonable control of caching 

individuals, mitigating those that are within an individual’s control becomes more 

important. Context dependent usage of cache protection strategies, such as cache-

depression, caching out-of-sight, optimally spacing caches and avoiding the locations of 
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already deposited caches, allow Canada Jays to mitigate the overall cache losses they 

might otherwise suffer, and allow for a reliable food source through food scarce winters.  
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Chapter 4 

4. Canada Jays (Perisoreus canadensis) do not “plan for the 

future” 

4.1 Introduction 

Intentional future planning is a complex learned cognitive ability (reviewed in 

Schacter et al., 2012), historically thought to be unique to humans (Suddendorf & 

Corballis, 1997; Roberts, 1998). The Bischof-Köhler hypothesis (Suddendorf & 

Corballis, 1997) states that humans are the only species able to act in the present in 

anticipation of future needs, and that behaviour in other species that appears to meet this 

requirement is either innate or the result of the animal’s current state. Numerous studies 

have challenged this idea and attempted to show various aspects of future planning in 

animals (e.g. Clayton & Dickinson, 1998, Babb & Crystal, 2005; and reviewed in 

Clayton et al., 2003, Roberts, 2012).  

Because they cache food in the present and consume it days to months later, and 

because they rely on memory to find their caches, food-caching birds, especially corvids, 

have been the subjects of many of these studies (e.g. Clayton & Dickinson, 1998; Clayton 

& Dickinson, 1999; Feeney et al., 2009; Zinkivskay et al., 2009). There have been 

critiques of these claims of future planning ability, however (e.g. Suddendorf & 

Corballis, 1997, 2007; Roberts, 1998), with one of the most common criticisms being that 
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there are explanations for the results that do not involve future planning  (e.g. Suddendorf 

& Corballis, 2007, 2008, 2010).  

One well-known study of future planning by corvids (see Roberts, 2007; 

Shettleworth, 2007) assessed the ability of Western Scrub-Jays (Aphelocoma californica) 

to anticipate their future access to food and plan for it accordingly (Raby et al., 2007). 

Birds were found to anticipate their future needs by caching more food in the location in 

which food was not usually available. When food of a particular type was only available 

in one location, and food of a different type only available in another location, birds 

distributed their caches so that both food types were available in both locations. The 

researchers concluded that the birds anticipated their future state, and, motivated by 

anticipated future need for food, acted in advance to provide food for the future. These 

findings directly challenge the Bischof-Köhler hypothesis.  

The purpose of my study was to test whether Canada Jays (Perisoreus 

canadensis) would exhibit future planning, in this case planning for predictable food 

restriction, using methods adapted from Raby et al.’s (2007) original study of future 

planning in Western Scrub-Jays.  Canada Jays are year-round residents of the Nearctic 

boreal forest and can be found throughout Canada and parts of the northern United States. 

Canada Jays rely on cached food, in the form of saliva covered boluses (Dow, 1965), to 

survive periods of food scarcity in winter (Strickland & Ouellet, 2020) and use memory 

to recover their caches (Bunch & Tomback, 1986).  
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4.2 Methods and Materials 

4.2.1 Subjects and Husbandry 

Six wild-caught Canada Jays housed at the Advanced Facility for Avian Research 

at Western University, London, Ontario, Canada were used for this study. Individuals had 

been in captivity for between 8 and 18 months prior to the start of the experiment. All 

individuals had captive caching experience prior to the beginning of this experiment. 

Birds were caught under Ontario Ministry of Natural Resources Wildlife Scientific 

Collector’s Authorization Permit 1091668. All activities, including housing and testing, 

were completed in accordance with all local, provincial and federal regulations and laws, 

and all procedures were approved and conducted under Western University Animal Care 

Committee permit 2019-065. 

Birds were held on a 10 L:14 D h photoperiod and housed individually in free 

flight home cages (1.0 x 1.5 x 2.0 m) or experimental cages (0.6 x 1.8 x 0.6 m). Birds 

were physically, but not visually or acoustically isolated regardless of cage. Home cages 

and experimental cages were in separate rooms. Home cages contained perches of 

varying sizes, and, while in their home cages, birds had access to ad libitum food and 

water. Experimental cages were divided into three adjacent compartments; A, B and C, 

which could be either connected or separated using removable barriers (Figure 4.1). Each 

of the three compartments (0.6 x 0.6 x 0.6 m) was furnished according to its purpose. 

Compartments A and C had two standard 12-cube ice cube trays to provide potential 

caching locations, while compartment B was left empty. One tray was mounted to the 
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side wall of the cage vertically, while the second tray was left on the ground. Food was 

available in the appropriate compartment (as described below), and water was available 

ad libitum. 

 

Figure 4.1 The experimental cage, to scale. Each compartment measured 0.6 x 0.6 

m; compartments A and C each contained 2 caching trays, one mounted vertically 

to the cage wall and one placed flat on the ground. Dashed lines indicate removable 

dividers, while solid lines indicate non-removable barriers.  

4.2.2 General Procedure 

I conducted the experiments during four consecutive weeks. During the first week 

I conducted the Preparing for Breakfast experiment (Figure 4.2A), followed by the 

Breakfast Choice experiment (Figure 4.2B) in the second week. I then repeated the 

Preparing for Breakfast experiment two additional times during weeks three and four. 

All food introduced was novel at the time of first introduction, and no obvious 

preferences were observed between foods. 

Compartment A Compartment B Compartment C

Removable divider

Food
Dish

Caching
trays

Caching
trays

10 cm
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4.2.3 Preparing for Breakfast Procedure 

Between 15:30 and 16:00 daily birds were transported from their home cages and 

confined to Compartment B of the experimental cage, where they were food deprived for 

1.5 h. At 17:30 I provided birds with 10 g of powdered cat food (IAMS Proactive Health 

Adult Hairball Care, Mars Incorporated, USA) that could not be cached and removed the 

dividers giving birds access to explore all three compartments. Birds were allowed access 

to the cat food for 0.5 h, at which time (18:00) the food was removed, the lights were shut 

off, and the birds were re-confined to Compartment B, where they remained overnight. 

The following morning at 08:00, birds were confined to either Compartment A or 

Compartment C, and either provided with an additional 10g of cat food (Feeding 

Condition), or no food at all (Fasting Condition). Food availability by compartment was 

consistent throughout training and was counterbalanced between birds such that three 

birds experienced the Fasting Condition in Compartment A, and three experienced the 

Fasting Condition in Compartment B. Birds were confined to their designated 

compartments for 2.0 h, after which time individuals were transported back to their home 

cages. Each bird completed 6 training trials, on consecutive days. Birds alternated 

between the Feeding Condition and the Fasting Condition such that each bird experienced 

each condition on three training trials, and no bird experienced the same condition on two 

consecutive days. 

Test trials took place on the first day following the training trials. The test trials 

followed the procedure for the training trials beginning at 15:30; however, at 17:30 birds 

were given 15g of cacheable, whole cat food in place of the powdered cat food.  
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Additionally, at 18:00 the birds were transported back to their home cages. Birds were 

not given the opportunity to recover their caches. I repeated the experiment three times, 

in weeks one, three and four.  Procedures and conditions were identical in all three 

repetitions. 

 

Figure 4.2 A flow chart for both the Preparing for Breakfast and Breakfast Choice 

experiments showing the progression of a single bird through a single trial. Black 

birds indicate the compartment in which the bird is confined. White, outlined birds 

illustrate the alternate condition. Powdered food was provided for training trials, 

and whole food was provided during test trials. The Confinement phase was not 

completed during test trials. 

A B C
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A) Preparing for Breakfast

A B C

Food
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B

Food
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Food
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4.2.4 Breakfast Choice Procedure 

Breakfast Choice followed the same procedure as the Preparing for Breakfast 

experiment, except that the Fasting Condition was replaced with a second Feeding 

Condition in which a different food item, powdered Cheerios (Cheerios, General Mills, 

USA), was available. On training days, birds were offered 10 g of both powdered cat 

food and powdered Cheerios in separate dishes placed equidistant from compartments A 

and C. The following morning birds were confined to either Compartment A or 

Compartment C and provided with either 10 g of powdered cat food, or 10 g of powdered 

Cheerios, depending on which compartment they were confined to. The food type offered 

in each compartment was again consistent throughout training, and counterbalanced 

between birds, such that three birds experienced cat food in Compartment A and Cheerios 

in Compartment B, and three birds experienced the opposite. On test day, birds were 

provided with 15 g each of whole cat food and whole cheerios to cache. Birds were free 

to cache either food type in either chamber.  

4.2.5 Statistical Analysis 

For the initial Preparing for Breakfast (week 1) experiment, I used a paired t-test 

to compare food items cached in the Food and No Food compartments. For the combined 

Preparing for Breakfast experiments (weeks 1,3,4) and for the Breakfast Choice 

experiment, I used a repeated measures ANOVA to compare the distribution of cached 

items. For all tests, n = 6, alpha =  0.05, and all analyses were carried out using R Studio 

v1.1.456 (R Core Team, 2018). 
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4.3 Results 

4.3.1 Preparing for Breakfast 

Over three iterations of the Preparing for Breakfast experiment, individuals 

cached more food items in the Feeding compartment than the Fasting compartment (F1,16 

= 12.18, p = 0.003; Figure 2A). The total number of caches made did not vary between 

iterations (F1,11 = 0.04, p = 0.85), with mean values of 8, 7.5, and 8.5 caches per bird per 

iteration. Additionally, there was no interaction between compartment and iteration (F1,16 

= 0.19, p = 0.67). 

4.3.2 Breakfast Choice 

Birds showed no caching preferences for food items or chambers. The total 

number cached of each food item did not differ significantly (F1,15 = 3.07, p = 0.10), nor 

did the total number of food items cached in each chamber (F1,15 = 2.50, p = 0.13). Most 

importantly, the jays showed no preference for which food items were cached in which 

chamber (F1,15 = 0, p = 1, Figure 4.3B). Three birds cached a total of 0 items, while the 

other three birds averaged 6 total caches.  
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Figure 4.3 The mean number of items cached in each compartment. A) The number 

of cached items in the Feeding and Fasting compartments across the three iterations 

of the Preparing for Breakfast experiment, with values for all iterations combined at 

right. Asterisk indicates a significant difference, p = 0.003. B) The number of items 

cached in the compartment initially containing food of the Same or  Different type 

in the Breakfast Choice experiment. 
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4.4 Discussion 

I did not observe the behaviour described by Raby et al. (2007) and found, 

moreover, that, when given three iterations of the experiment, Canada Jays cached 

significantly more food where they had previously found food, the opposite of the result 

obtained with Western Scrub-Jays. These results indicate that Canada Jays do not plan for 

the future in the context of caching food preferentially in locations where food is 

otherwise not available. There are two broad reasons my results may differ from those of 

Raby et al (2007), 1) species differences between Canada Jays and Western Scrub-Jays, 

and 2) differences in experimental procedures or conditions. 

The Western Scrub Jay genus Aphelocoma belongs to the monophyletic clade of 

New World jays while Perisoreus, the Canada Jay genus, is a Holarctic genus in a corvid 

group that includes the genera Corvus and Garrulus (Bonaccorso & Peterson, 2007; 

Huang & Ruan, 2018).  Western Scrub-Jays are found in oak and oak-pine woodlands 

(Curry et al., 2020), and Canada Jays in boreal forest dominated by White and Black 

Spruce (Strickland & Ouellet, 2020). Despite these differences, similarities between the 

species are also plentiful. Both species are non-migratory and omnivorous. Both species 

recover some stored food soon after caching it but leave much of their cached food in 

place for months (Curry et al., 2020; Strickland & Ouellet, 2020). Both retrieve stored 

food by remembering the spatial locations of caches (Bunch & Tomback, 1986; Balda & 

Kamil, 1989; Clayton et al., 2001).  It is not obvious that one species would be more 

predisposed to future planning than the other. The ecological cost of being denied access 

to cached resources would undoubtedly be high for Western Scrub-Jays, but the potential 



 

 95 

cost for Canada Jays would be as high, or higher, given their direct reliance on cached 

food for survival. Assuming that continuous access to cached resources is motivating the 

future planning observed in the Raby et al. (2007) conclusions, I would expect Canada 

Jays to be equally, or perhaps more, motived to ensure this access. It is of course possible 

that Western Scrub-Jays have evolved this ability to ‘plan for the future’ in response to 

some ecological constraint that Canada Jays do not encounter, or that Canada Jays have 

found some alternative mechanism of coping with a similar constraint. I find this 

unlikely, however, given Canada Jays increased reliance on cached food items for 

survival. 

Furthermore, the hypothesis tested by Raby et al. (2007) was not explicitly that 

Western Scrub-Jays are adaptively specialized for future planning but instead that scrub-

jays possess episodic-like memory for caching episodes and “To the extent that episodic 

memory and future planning depend on common processes, the caching behaviour of 

these birds should reflect an ability to anticipate future need states” (Raby et al., 2007, 

p.919).  In addition, it is argued that prospection and other forms of complex cognition 

are traits of the corvids in general and not restricted to the New World jays (Clayton & 

Emery, 2004; Correia et al., 2007).  

It is possible that unknown confounding factors influenced either the results of my 

study or the Raby et al. (2007) results. For example, it is possible that extra-apparatus 

cues were present in either experimental set up, or that researchers were in some way 

biasing individuals’ responses during experiment set up. These unintentional, and 

unforeseeable factors could explain my failure to replicate. I again, however, find this 
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explanation unlikely. I was able to follow the elegantly simple design of the Raby et al. 

(2007) experiment closely, including the arrangement of compartments A, B, and C, the 

use of cacheable and non-cacheable foods, the timing of events in the procedure, and 

statistical treatment of the results.   Raby et al. (2007) observed 8 birds in the Preparing 

for Breakfast experiment and 9 in the Breakfast Choice experiment; I observed 6 birds in 

both. Raby et al. (2007) tested scrub-jays’ preference to cache in the Food and No Food 

compartments once; I tested Canada Jays’ preference three times with no obvious 

differences among iterations of the experiment (Figure 4.3C). 

Other experiments, with both Western Scrub-Jays and, notably, with Eurasian 

Jays (Garrulus glandarius), have suggested evidence of future planning as well (Correia 

et al., 2007; Cheke & Clayton, 2012), exploiting ‘specific satiety’, the lessened 

satisfaction gained from a particular food item, to discriminate current and future 

motivations. These studies, however, have faced similar criticisms to the Raby et al. 

(2007) study I examined here (Suddendorf & Corballis, 2008; Cheke & Clayton, 2012). 

Essentially, while the behaviours observed are convincing, the attribution of these 

behaviours to ‘future planning’ might be premature. Both studies required either pre-

training, or the assumption that birds learned ‘the rules’ of rather complex tasks very 

quickly – within 1-2 trials. Additionally, it is possible that associative mechanisms could 

produce the same results, or that birds are not ‘future planning’ but instead relying on 

some episodic-like what-where-when memory as in the Raby et al. (2007) result. Birds 

could be remembering a sequence of past events, rather than planning for their imminent 

future – a “yesterday I needed access to Food A, so I should cache that now” strategy 

motivated by past events, as opposed to future ones. 
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I suggest that the most likely reason for my observed contrasting result is that the 

Canada Jays formed a simple association between the chamber with food and access to 

that food. Thus, when Canada Jays were allowed to freely explore the apparatus, they 

simply spent more time in the chamber previously containing food, and as a result they 

deposited more caches in that chamber. This explanation, however, leaves us with 

numerous questions. Because future planning is hypothesized to share common processes 

with episodic memory, do Canada Jays and other Perisoreus jays possess episodic, or 

episodic-like, memory?  Does future planning in corvids in fact share common processes 

with episodic memory and episodic-like what-where-when memory (Zinkivskay et al., 

2009)? How do other New World jays, and corvids in general, behave in the Preparing 

for Breakfast and Breakfast Choice experiment?  Are there features of the scrub-jays’ and 

Canada Jays’ previous experience in the wild or in captivity that affect their behaviour in 

the future planning experiment?   

Overall, my results suggest that Canada Jays fail to ‘plan for the future’ in the 

context of this experiment and using the criteria laid out by Raby et al. (2007). Further, I 

attribute Canada Jays’ behaviour to a simple cognitive mechanism, raising a number of 

important questions that are worthy of exploration. Answering these questions will help 

identify the reasons for differing outcomes of an important experiment in animal 

cognition.   
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Chapter 5 

5. Canada Jays (Perisoreus canadensis) balance protein and 

energy targets simultaneously in both food consumed and 

cached 

5.1 Introduction 

Food caching is a behavioural strategy exhibited by a wide variety of taxa (Smith 

& Reichman, 1984; Sherry, 1985; Vander Wall, 1990; Sutton et al., 2016). While food 

caching takes many different forms, its function is to ensure food availability in the future 

(Smith & Reichman, 1984; Sherry, 1985). This outcome is particularly important when 

that future is a period of food scarcity, as is the case for many caching species 

overwintering at northern latitudes (e.g. Vander Wall & Balda, 1981; Wrazen & Wrazen, 

1982). For these species, food caching is essential to survive resource-poor 

environmental conditions. Because periods of food scarcity are often seasonal, for 

example during winter or a dry season, they are accompanied by reliable environmental 

cues which animals use to prepare for the upcoming challenges (reviewed in Ball, 1993; 

Dawson et al., 2001; Gorman et al., 2001). 

There is an abundance of previous research that investigates how animals use 

environmental cues to optimize seasonal timing. Much of this research examines 

reproductive timing (e.g. Elliot, 1976; McAllan & Dickman, 1986; Goldman, 1999; 

Schaper et al., 2012; Martin et al., 2020) and migration (e.g. Gwinner, 1990; Dawson, 
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2008; Tøttrup et al., 2010; Monteith et al., 2011), particularly in birds. Some migratory 

birds employ dietary shifting, the changing of their primary food source, as a means of 

optimizing fat stores that fuel migration and increasing their motivation to fly (Parrish, 

1997; Marshall et al., 2016; Guglielmo et al, 2017). For example, some species shift from 

heavily insectivorous diets to more frugivorous diets immediately preceding fall 

migration to rapidly improve body condition and accumulate fat (Parrish, 1997; Smith 

and McWilliams, 2009). These dietary shifts are the result of diet preference, rather than 

food availability (Wheelwright, 1988), and birds actively modulate both their energy and 

macronutrient intake to maximize fat accumulation and meet protein requirements 

(Wheelwright, 1988; Bairlein, 1990; Bairlein, 2002; Marshall et al., 2016). 

When switching from an insectivorous diet to a frugivorous diet, birds are 

changing from consuming a low-carbohydrate, high-protein diet to a high-carbohydrate, 

low-protein diet. High protein diets promote lean-mass growth leading to increased 

muscle mass (Bairlein, 2002).  Protein is a metabolically costly precursor to use for 

lipogenesis, however, with approximately 31% of energy lost in the process (Millward et 

al., 1976). Alternatively, high carbohydrate diets are more energetically efficient 

precursors for fatty acid synthesis, incurring only approximately 15% energy loss 

(Millward et al., 1976). This efficiency may enable high carbohydrate diets to better 

promote fat deposition and accumulation compared to protein-rich diets (Smith & 

McWilliams, 2009). These macronutrient modulating behaviours are not restricted to 

birds. Comparable modulation of dietary macronutrient composition to overcome social 

or environmental challenges have been observed in many taxa, ranging from 

invertebrates (Cook et al., 2010) to primates (Guo et al., 2018). 
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Given the widespread occurrence of macronutrient modulation, it seems possible 

that non-migratory food-caching birds would also benefit from dietary shifting. However, 

far less is known about nutrient intake in non-migratory species. American robins 

(Turdus migratorius), a partial migrant, held in captivity over winter demonstrated 

similar shifting, consuming more fruit during the winter months than the summer 

(Wheelwright, 1988). Like migratory species, resident birds that face varying seasonal 

environments could take advantage of dietary shifting to increase season-specific 

performance, as many of these birds almost entirely replenish depleted fat stores on a 

daily basis (Blem, 1976). Resident birds at northern latitudes that experience food-scarce 

winters could use dietary shifting immediately preceding and throughout the winter in 

order to maintain energy during the food-scarce winter. This would involve a shift from 

high protein diets through the summer when large fat stores are not required, to high 

carbohydrate diets in the fall when the accumulation and maintenance of fat stores 

becomes essential (reviewed in Blem, 1976). If food storing species are optimizing 

macronutrient intake, this should also be evident in their caches, as replenishing and 

rebuilding fat stores is essential for survival during food scarcity (Chaplin, 1974; Blem, 

1976). This would suggest that caches should contain a greater ratio of carbohydrates to 

proteins than foods birds are consuming in warmer weather.  

Some food-caching birds, however, provision young on cached food. While 

maintaining fat stores is essential for adults to survive the winter, high-protein diets are 

essential for offspring growth and development (Johnson, 1971; Boag, 1987, Sales & 

Janssens, 2003). In these cases, some combination of high protein and high carbohydrate 
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foods should be cached to ensure adequate resources for both the caching adult and the 

future offspring. 

Canada Jays (Perisoreus canadensis) are a food-storing, non-migratory, year-

round resident of North American boreal and sub-alpine forests (Strickland & Ouellet, 

2020). They are a generalist species that caches a wide variety of food items ranging from 

high protein carrion to high carbohydrate berries in heavily manipulated, saliva covered 

boluses, and then subsequently rely on these caches to survive harsh winters (Dow, 1965; 

Sutton et al., 2016; Strickland & Ouellet, 2020). It has been suggested that Canada Jays 

provision their offspring from their cached food (Derbyshire et al., 2019), as Canada Jays 

breed prior to spring green-up (Strickland & Ouellet, 2020). Because Canada Jay caches 

are used to both survive the food-scarce winter and provision offspring, Canada Jays 

would benefit from modulating not only their own food intake prior to winter, but also 

the food they are caching. They would be expected to benefit from caching both high 

carbohydrate and high protein food items. 

Our study had two objectives. The first was to assess the ability of a non-

migratory species to modulate dietary intake.  If individuals modulate their dietary intake 

to improve their condition prior to winter we would expect individuals to consume a high 

carbohydrate, low protein diet immediately preceding winter to accumulate fat. We 

would also expect this elevated carbohydrate intake to be maintained through the winter 

months to maintain and rebuild fat stores as birds face energetic and thermogenic 

challenges. 
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Our second objective was to assess the ability of a non-migratory food-caching 

bird to ensure adequate nutrients are cached both to survive the food-scarce winter period 

and to provision offspring.  If birds do not cache to anticipate future requirements, their 

caches should reflect the food available. They should not demonstrate any preference for 

caching particular diets or nutrients.  If individuals do cache in anticipation of future 

requirements, there are a few possible forms this could take. They could show a 

preference for either carbohydrates - evidence that they cache to anticipate their own 

future needs, or protein - evidence that they cache to anticipate their offspring’s future 

needs. It is also possible that individuals could show temporal change in preference. For 

example, birds might cache carbohydrates early in the fall and protein later in the season. 

 To investigate whether Canada Jays modulate their nutrient intake and food 

caching, we offered birds three diets in captivity: 1) high carbohydrate diet, 2) high 

protein diet, and 3) an intermediate carbohydrate/protein diet. We measured nutrient 

intake and the nutrient composition of caches from September to January, the time of 

year when we expect modulation to occur. 

5.2 Materials and Methods 

5.2.1 Subjects 

Six wild-caught Canada Jays housed at the Advanced Facility for Avian Research 

at Western University, London, Ontario, Canada, were used in this study. Individuals had 

been in captivity for 1 year prior to the start of feeding trials and had participated in 

previous caching experiments. Birds were caught under Ontario Ministry of Natural 
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Resources Wildlife Scientific Collector’s Authorization 1091668, and housed and tested 

in accordance with all local, provincial and federal laws and Western University Animal 

Care Committee protocol 2019-065. 

For the duration of feeding trials birds were housed in individual cages (0.75 x 0.4 

x 0.4 m), and had ad libitum access to food and water, except as described below. The 

maintenance diet was a mixture of Mazuri Exotic Gamebird Starter (PMI Nutrition 

International, Brentwood, MO, U.S.A.), Mazuri Parrot Maintenance Pellets (PMI 

Nutrition International), shell-less peanuts and sunflower chips, and was supplemented 

with a HARI PRiME vitamin, mineral and amino acid supplement (Rolf C. Hagen 

Incorporated, Baie d’Urfé, QC, Canada). 

One individual was removed from the study following the September feeding 

period because of unrelated illness and not replaced. 

5.2.2 Diets and Feeding Trials 

The foraging preference trials were conducted over 15 consecutive days per 

month in each month from September to January inclusive. The photoperiod was changed 

5 days prior to the start of each month’s foraging trials and reflected the local 

photoperiod on the first day of the upcoming month.  Duration of the light phase for each 

month (hh:mm) was:  Sept 13:10; Oct 11:44; Nov 10:18; Dec 9:15; Jan 9:04. To increase 

motivation to eat and to cache, birds were transferred to feeding cages and food deprived 

starting 1 h before the lights went off. Formulated high carbohydrate, high protein and 

intermediate diets were offered 1 h after lights on the following morning and left for 3 h. 
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These three hours constituted the daily feeding period. Following each daily feeding 

period, birds were returned to their home cages where the maintenance diet was available 

ad libitum. 

We used three previously formulated isocaloric diets for this study (Marshall et 

al., 2016): a High Carbohydrate diet (HC), a High Protein diet (HP), and an Intermediate 

diet (I). This resulted in three possible diet pairs that could be offered to birds: HPI, IHC, 

and HPHC. These diets were made by altering the amount of casein (protein source), 

dextrose (carbohydrate source), and canola oil (fat source), while keeping the remaining 

ingredients consistent (for full details and ingredients see Marshall et al., 2016). Diets 

were coloured with food-dye to allow birds to easily discriminate them, and for us to 

discriminate them when cached. Three colours, red, blue and yellow, were counter-

balanced across birds and colour combination of diets was consistent across the entire 

experiment. For example, if a bird received the blue HC diet in the first trial, then all 

future presentations of the HC diet for that bird were blue. No bird received two diets in 

the same colour, and no more than two birds received a particular diet/colour 

combination. To control for neophobia, birds were offered 100 g of all three diets 

simultaneously for 3 days prior to each 15-day set of choice trials and in all cases, birds 

consumed some of each diet.  

During feeding periods, birds were offered 50 g of each diet in a diet pair daily 

and were allowed to freely cache and consume the diets for 3 h. Presentation of diet pairs 

was balanced and rotated sequentially across the birds, with two birds receiving each pair 

each day. For example, if on a given day birds 1 and 4 received HPI, birds 2 and 5 
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received HCI, and birds 3 and 6 received HCHP; on the following day, birds 1 and 4 

received HCI, birds 2 and 5 received HCHP and birds 3 and 6 received HPI. In total, each 

bird received each diet pair 5 times during each 15-day feeding period. 

5.2.3 Dietary Measurements 

Following each daily feeding period, the amount of diet consumed, and the 

amount cached was determined by recovering the remaining uneaten food and all caches 

from the feeding cages. All values are reported as dry matter. Dry matter (DM) was 

determined by drying all recovered diets, along with a reference sample of each diet at 60 

°C for 23 h. DM consumption was calculated as the difference between the total DM 

offered and the sum of the DM remaining and cached (DMconsumed = DMoffered – 

(DMremaining + DMcached)). Proportions of each diet consumed and cached were calculated 

by dividing the DM of each diet by the total DM of both diets combined.  

Macronutrient allocation between consumption and caches was calculated using 

the known diet compositions. Each day, we calculated the total energy (TE; kJ), crude 

protein (CP; g), and non-protein energy (NPE; kJ) consumed and cached for each bird by 

combining the TE, CP, and NPE, of the individual diet items that were offered. NPE is 

the energy derived from carbohydrates and lipids and can be treated as the proportion of 

the diet used for energy. While CP can be used for energy, it is primarily and critically 

used for growth and maintenance. To control for differences in amounts consumed and 

cached, all values for nutrient allocation were standardized per gram of diet either 

consumed or cached.  
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We used a geometric framework of nutrition (GFN; Simpson & Raubenheimer, 

1995; Raubenheimer & Simpson, 1997) to compare the macronutrient content of food 

consumed and food cached, and to determine whether macronutrient targets could be 

identified in the jays’ choices among the diets offered.  This approach hypothesizes that 

there exist optimal combinations of macronutrient intake in a state space defined by the 

amount of each macronutrient consumed. The diets that are available determine whether 

an animal can meet these macronutrient targets by varying the amount of each diet it 

consumes, or caches in this case. (for details see Raubenheimer & Simpson, 1997; 

Raubenheimer et al., 2009; Rothman et al., 2011). We used CP and NPE as the axes of 

the macronutrient state space and HPI, IHC, and HPHC were the diets available to 

Canada Jays. We evaluated both the total amount of the diets consumed and cached, as 

well as the macronutrient ratios per gram of diets consumed and cached. 

5.2.4 Statistical Analysis 

 All statistical analyses were linear mixed effects models performed using the 

‘nlme’ package (Pinheiro et al., 2018) in R Studio v1.1.456 (R Core Team, 2018).  Diet 

preference data were normalized using an arcsine transformation. If interactions were not 

significant, they were removed from the analysis. P-values less than 0.05 were considered 

significant and any significant results which warranted further analysis were explored 

with Tukey’s HSD tests using the ‘multcomp’ package (Hothorn et al., 2008). Except 

where directly compared, consumption and caching data were analysed separately. In 

addition, except where directly compared each diet pair was analysed independently. 
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Month was included as a repeated measure and individual was included as a random 

effect in all models. 

The initial model for total amount consumed or cached included diet pair and 

month as independent variables. To compare the total amount cached and consumed, the 

model included diet utilization (consumed or cached), diet pair, and month.  The analysis 

to assess diet preferences included proportion of diet consumed or cached as the 

dependant variable, with diet and month included as independent variables. To assess 

macronutrient allocation the model included amount of crude protein as the dependent 

variable, with utilization and month included as independent factors. 

5.3 Results 

5.3.1 Total Food Consumed and Cached 

Birds consumed the same total amount of food daily regardless of month (F4,16 = 

2.09, p = 0.13) or which diet pair they were offered (F2,50 = 2.44, p = 0.10; Figure 5.1A). 

The marginal and conditional coefficients of determination were 0.15 and 0.88 

respectively. They also cached the same total amount of food daily, regardless of month 

(F4,16 = 2.08, p = 0.13; Figure 5.1B). However, individuals cached more when presented 

with IHC diet pair than either of the other two diet pairs (Diet Pair: F2,50 = 5.59, p = 

0.006; Tukey’s HSD: HPI vs HPHC, p = 1.0; IHC vs HPHC, p = 0.008; IHC vs HPI, p = 

0.02; Figure 5.1B). The marginal and conditional coefficients of determination were 0.10 

and 0.90 respectively. In addition, birds consumed significantly more than they cached 

(F1,127 = 51.41, p < 0.0001; Figure 5.1C), regardless of diet pair (F2,127 = 2.77, p = 0.07) or 
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month (F4,16 = 2.39, p = 0.09). The marginal coefficient of determination was 0.17 and the 

conditional coefficient of determination was 0.80. 

 

Figure 5.1 The mean (± SE) total food consumed (A) and total food cached (B) per 

day as a function of diet pair offered. Panel C shows the mean (± SE) total food 

cached and consumed per day regardless of diet pair. The graphs in the left column 

show monthly diet utilization, while the graphs in the right column show utilization 
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across the entire study. Asterisks indicate a significant difference p < 0.05, n.s. 

indicate non-significant comparisons. 

5.3.2 Diet Preferences 

For all three diet pairs, month had no effect on preference for which diet was 

consumed within the diet pair (IHC: F4,16 = 0.01, p = 0.99; HPI: F4,16 = 0.06, p = 0.99; 

HPHC: F4,16 = 0.01, p = 0.97). Individuals did, however, significantly prefer consuming 

the Intermediate diet both to the High Carbohydrate diet when offered IHC diet pair (F1,25 

= 4.57, p = 0.04) and to the High Protein diet when offered HPI diet pair (F1,25 = 28.84, p 

< 0.0001; Figure 5.2A). They showed no preference between the High Carbohydrate and 

High Protein diets when offered HPHC (F1,25 = 0.58, p = 0.45). 

Birds also preferred to cache the Intermediate diet over the High Protein diet 

when offered HPI diet pair (F1,25 = 30.6, p < 0.0001; Figure 5.2B), but did not prefer 

caching the Intermediate diet over the High Carbohydrate diet when offered the HCI diet 

pair (F1,25 = 1.69, p = 0.21). A slight but not significant, preference for caching HC over 

HP can be observed in Figure 5.2B when the birds were offered HPHC diet pair (F1,25 = 

3.02, p = 0.09). Month had no effect on which diet birds preferred to cache within any of 

the three diet pairs (IHC: F4,16 = 0.04, p = 0.99; HPI: F4,16 = 0.01, p = 0.99; HPHC: F4,16 = 

0.02, p = 0.99). 
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Figure 5.2 The proportion (± SE) of each diet consumed (A; left column) and cached 

(B; right column) for each diet pair offered. Upper row IHC, middle row HPI diet 

pair, lower row HPHC. The inset graphs in the upper right of each panel show 

mean proportions across the entire study. Asterisks indicate a significant difference 

p < 0.05, n.s. indicates non-significant comparisons. 
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5.3.3 Macronutrient Allocation 

Because the total amount of food consumed was greater than that cached (Figure 

5.1), the total macronutrients consumed were greater than those cached as well (Figure 

5.3A). However, the amount of crude protein per gram cached and NPE per gram cached 

did not differ from the crude protein per gram consumed and NPE per gram consumed, 

respectively, regardless of the diet pair offered (crude protein: IHC: F1,25 = 1.06, p = 0.31; 

HPI: F1,25 = 0.03, p = 0.85; HPHC: F1,25 = 1.13, p = 0.30; NPE: IHC: F1,25 = 1.07, p = 

0.31; HPI: F1,25 = 0.03, p = 0.86; HPHC: F1,25 = 1.12, p = 0.30; Figure 5.3B). As the diets 

were isocaloric, the TE per gram also did not differ between food cached and consumed, 

regardless of diet pair (IHC: F1,25 = 1.07, p = 0.31; HPI: F1,25 = 0.04, p = 0.85; HPHC: 

F1,25 = 1.14, p = 0.30). Month had no effect on birds’ macronutrient allocation regardless 

of diet pair offered (p > 0.1 for all). 
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Figure 5.3 In panel A, the total (± SE) crude protein (CP) and non-protein energy 

(NPE) cached or consumed by Canada Jays are shown for each diet pair in a 

standard Geometric Framework of Nutrition plot. Solid black lines represent the 

possible values achieved by consuming or caching only one of the available diets in a 
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diet pair. Dashed lines represent the possible values achieved by consuming (or 

caching) equal amounts of each diet in a diet pair. Thick coloured lines represent 

the possible values achieved by caching and consuming the observed proportions of 

macronutrients. Panel B shows the same data, standardized to CP and NPE per 

gram of diet consumed or cached (± SE). Error bars not visible are covered by the 

data points. Birds cached the same relative amounts of each macronutrient as they 

consumed, illustrated by coloured lines in A, and the grouping of points in B. 

5.4 Discussion 

We evaluated the ability of Canada Jays to modulate macronutrient intake, and to 

secure the future availability of non-protein energy (NPE) such as carbohydrates through 

caching behaviour. We found strong evidence that Canada Jays consume and cache non-

randomly, but no evidence that caching behaviour disproportionately increased future 

NPE availability. We also found no evidence that Canada Jays employed dietary shifting 

over the period from September to January, and that month was not significant in any of 

our models.  

Although the birds cached and consumed different amounts of food (Figures 1 & 

3A), the macronutrient profile of food cached matched that of the food consumed on a 

per gram basis (Figure 3B). The difference in overall food consumed and cached is likely 

because caching species typically eat to satiation prior to caching (Vander Wall, 1990), 

and so birds prioritized eating before caching in the three-hour foraging window. The 

similarities in macronutrient profiles, however, suggest that Canada Jays forage non-

randomly to meet target amounts for each macronutrient. In Figure 3B, it appears the 

birds have a minimum NPE target of approximately 11.7 kJ/gram, shown by the position 
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on the NPE axis of the intakes of birds when offered the HPI and HPHC diet pairs. This 

is further shown by the preference birds had for the Intermediate diet when offered HPI. 

This preference for the Intermediate diet increases the NPE content of the food consumed 

and cached and meets the minimum NPE target with less total consumption or caching 

than would occur with a preference for HP or equal preference for HP and I. Birds also 

appear to be simultaneously meeting a minimum protein target. When offered IHC birds 

showed a preference for consuming the Intermediate diet. Birds also cached a higher 

proportion of the Intermediate diet than the High Carbohydrate when offered IHC 

although this effect was not statistically significant. These preferences for the 

Intermediate diet enabled birds to achieve higher NPE and CP levels than caching the 

diets randomly.  

The diet pair offered likely dictated which macronutrient target was actively 

selected. The crude protein target was likely easily met in either diet pair containing HP, 

and thus the NPE target had a greater effect on the total amount of food consumed or 

cached, as noted earlier in connection with the minimum NPE target. Similarly, the NPE 

target was likely easily met when offered IHC. Further evidence for simultaneous 

macronutrient targets is illustrated by the lack of diet preference when birds were offered 

HPHC. With no Intermediate diet available to acquire both carbohydrates and protein in 

relatively high amounts, birds needed to combine the High Carbohydrate diet to meet the 

NPE minimum with the High Protein diet to meet the protein target in their caching and 

consumption. These observations suggest that while Canada Jays do not 

disproportionately increase the future availability of protein or carbohydrates in caches, 

they are ensuring the minimum requirements will be available in caches. These results 
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also suggest that birds work towards long term energy and protein targets, even when 

they are not nutrient deprived. Birds had their food limited for only 3 hours per day, but 

this short duration was enough to elicit behaviours allowing us to detect their nutrient 

goals. This suggests that birds are actively regulating macronutrients on a fine scale, 

perhaps daily or even hourly. 

A minimum NPE level for caches allows Canada Jays to accumulate fat more 

easily and efficiently (Smith & McWilliams, 2009, Marshall et al., 2016), which is an 

essential aspect of winter survival (Chaplin, 1974; Blem, 1976).  Simultaneously ensuring 

the availability of protein means that muscle mass will be maintained (Bairlein, 2002), 

and protein will be available for offspring growth. Canada Jays consume and cache a 

wide variety of foods (Strickland & Ouellet, 2020), and the ability to modulate the 

macronutrient contents of both their current and future diets is an important prerequisite 

for being a diet generalist. 

The mechanistic causes of these results remain unclear. Selection of diets to 

maintain the protein and NPE content of caches could be the result of cognitive processes 

by which birds anticipate and respond to their future needs. A number of corvid species 

have been suggested to have some prospective or future planning ability (but see Chapter 

4). Western Scrub-Jays (Aphelocoma californica), for example, have the ability to use 

caches to ensure food availability the following day when trained to expect a period 

without food (Raby et al., 2007) and Eurasian jays (Garrulus glandarius) are reported to 

cache for multiple states of future need (Cheke & Clayton, 2012). There is, however,  no 

evidence of more long-term anticipatory abilities in any corvid, and anticipatory caching 
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based on experiencing and remembering previous winter conditions would not be 

possible for first year Canada Jays. 

Alternatively, it is possible that through previous caching experience, birds have 

formed associations between the quality and viability of food at retrieval and the nutrient 

content of a cache when it is made. These associations could be made throughout the year 

and would lead to consistency between current consumption and caches. Similarly, birds 

could have formed associations from previous experience based on their physiological 

responses to consuming or recovering caches, even if all caches remained viable. Both 

these strategies would utilize a less complex cognitive process than future planning and 

would be potentially available to first year birds, though first year birds would still be at a 

disadvantage having less time for these associations to form.  

A third, and possibly most likely explanation, is that the consistency between 

items cached and consumed is not learned. Birds could be responding to metabolic 

signals driving their food preferences to meet both protein and NPE targets. Such 

metabolic signals would assume birds required the same macronutrients to survive year-

round and could have shortcomings in the winter if conditions became unusually 

energetically demanding, or if the birds were forced to provision their offspring from 

cached food to an unusual level. 

We found no evidence that Canada Jays employ dietary shifting to increase fat 

accumulation prior to winter. Regardless of which diet combination individuals were 

offered, birds were able to distinguish the diets based on their macronutrient profile and 

preferentially consumed an intermediate diet containing both protein and carbohydrates. 
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Birds also consumed roughly the same total amount of food each month. There are, 

however, factors that may affect dietary shifting that we did not examine. Temperature 

could play a role in dietary shifting for resident species because temperature provides a 

specific and localized environmental cue. Many overwintering birds replenish fat stores 

daily and subsequently utilize that fat to survive the night (Blem, 1976), and it is likely 

that Canada Jays also exhibit this pattern of fat utilization. Canada Jays may respond to 

more immediate cues like temperature to modulate daily nutrient intake and respond to 

reliable long-term cues like photoperiod to make decisions about nutrient composition of 

caches. 

We found no evidence that Canada Jays specifically prepare to provision their 

offspring from cached foods. Although every individual’s caches did contain protein, the 

observation that birds were prioritizing carbohydrates suggests that caching an abundance 

of protein relative to energy is not the primary objective. While there are many potential 

explanations for this, the most likely is that self-survival takes priority over reproduction. 

If an individual does not survive the winter, the amount of food stored to provision 

offspring is unimportant. It is also possible that high protein food in the form of insects, 

spiders and carrion is available during the Canada Jay breeding season and cached food is 

supplementary. While evidence indicates Canada Jays do feed their offspring cached food 

(Derbyshire et al., 2019) it has been proposed that this serves more as a failsafe than the 

primary provisioning source (Strickland & Ouellet, 2020). 

The goal of this study was to investigate how a non-migratory resident that 

overwinters at high latitudes utilizes macronutrients as winter approaches. We found that 
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birds ensure the macronutrient composition of their caches meets their minimum targets 

and found that the food cached does not differ in relative macronutrient content to the 

food they consume.  
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Chapter 6 

6. General Discussion: Food caching decisions by Canada Jays 

(Perisoreus canadensis) 

6.1 Thesis Overview 

The purpose of the research in this thesis was to explore the decisions made by 

Canada Jays (Perisoreus canadensis), a boreal caching species, during the resource 

acquisition and cache deposition phases of caching. While some aspects of caching 

behaviour are generally well studied, such as cache recovery (e.g. Sherry, 1984; Balda & 

Kamil, 1989; Clayton & Dickinson, 1998: Molina-Morales et al., 2020), gaps in our 

knowledge surrounding the factors influencing decisions during other phases remain 

prominent. 

 6.1.1 Summary of Results 

Chapter 2 assessed the long-standing assumption that the overlap between Canada 

Jays’ distribution and the distribution of spruce trees were the result of Canada Jays 

exploiting beneficial cache locations in these spruce trees. This chapter further explored 

potential cues, olfaction and structure, that could allow Canada Jays to make these 

decisions and affect the degree to which Canada Jays are able to exploit spruce caching 

locations. In a series of three experiments, Canada Jays were allowed to cache freely in 

an open flight room with a variety of stimuli serving as potential cache locations. First, 

Canada Jays had access to sectioned trees, providing a variety of caching locations as 



 

 127 

available in the wild (Exp 1: Species specific preference). In the subsequent experiments, 

Canada Jays were allowed to cache in either scented artificial caching boards (Exp 2: 

Evaluation of olfactory cues) or in custom built artificial trees (Exp 3: Evaluation of 

structural cues). I found evidence to support Canada Jay’s ability to identify and exploit 

conifer trees, particularly spruce trees. I also found evidence that Canada Jays use the 

structural properties of trees to evaluate cache locations. I found no evidence that they 

use olfactory cues when evaluating potential cache sites. 

In Chapter 3 I catalogued and categorized the cache-protection strategies 

employed by Canada Jays under a variety of caching contexts. Contexts were a 

combination of cache-robbing threats (a model blue jay) and respite from such threats 

(locations out of sight of the model), and Canada Jays were allowed to cache freely in 

two available White Spruce (Picea glauca) trees. I found that Canada Jays employed 

context dependent cache-protection strategies at multiple scales. Canada Jays employed a 

spacing strategy – equal distribution of caches across available cache-sites – when there 

was either no perceived risk of cache-pilferage, or the perceived risk was equal between 

potential cache sites. When a threat was present and there was no respite, Canada Jays 

down-regulated overall caching behaviour. When visual escape was presented, Canada 

Jays employed the out-of-sight strategy, caching food preferentially in the cache locations 

that could not be observed by the model robber. 

Chapter 4 assessed Canada Jay’s ability to anticipate food availability and to 

combat food restriction through two distinct caching experiments. In the first, Canada 

Jays were allowed to learn a predictable schedule of food access and food restriction. 
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Subsequently, individuals were allowed the opportunity to cache food in preparation for 

said predictable food restriction. In the second, Canada Jays were put on a similar 

schedule, but the food restriction was replaced with access to a second food type, such 

that birds had access to one type or the other, but not both. Birds learned this schedule of 

predictable access to distinct food types and were then allowed an opportunity to cache 

food in preparation for restriction to one food type. This project was, in part, a replication 

of a similar, high impact, study performed with Western Scrub-Jays (Aphelocoma 

californica; Raby et al., 2007). Not only did I fail to replicate previous results – scrub-

jays correctly anticipated food restriction in both experiments and prepared for it through 

caching behaviour – but with repeated trials Canada Jays actually demonstrated the 

opposite of the scrub-jays’ behaviour – a preference for cache sites where food was 

expected to be found. 

Chapter 5 explored the macronutrient preferences of Canada Jays both when 

eating and caching. I offered birds a series of paired diets and recorded both the amounts 

of diets they consumed, and the amounts of diets they cached. I then compared the diets 

that were chosen for consumption and for caching and evaluated changes in these 

preferences over time. I also compared the macronutrients selected for consumption and 

for caching to each other, to assess how Canada Jays prioritized their macronutrient 

allocation. Birds did exhibit some dietary preferences when making a dichotomous 

choice, but I found no evidence that Canada Jays utilize dietary shifting akin to that seen 

in migratory birds. I also did not find any evidence suggesting that Canada Jays 

manipulate the contents of their caches to account for future needs. There were 

similarities in the macronutrients cached and consumed, however, suggesting non-
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random macronutrient selections and an active regulation of macronutrient ratios in both 

food consumed and cached. 

6.2 Caching Decisions Revisited 

In addition to the specific objectives set out in this thesis, the research presented 

also aimed to more broadly assess the decision-making behaviours of Canada Jays 

through a variety of foraging tasks. In each chapter of this thesis, Canada Jays made at 

least one foraging decision which was subsequently recorded and analyzed and can be 

evaluated in terms of predicted benefit. As mentioned previously, optimal foraging theory 

predicts that individuals will make choices that result in the greatest net benefit to their 

fitness (Andersson & Krebs, 1978). For example, Canada Jays disproportionally cache in 

spruce and other conifer trees (Chapter 2). Considering evidence that suggests these trees 

provide some preservative value to cached food (Strickland et al., 2011; Sechley et al., 

2015), it is easy to understand why this behaviour would confer some fitness benefit to 

Canada Jays, and thus why Canada Jays might exhibit this behaviour. 

By combining the results of Chapters 2, tree species preferences, and 3, cache-

protection strategies, we get further evidence that Canada Jays are assessing their 

environment and making active decisions when caching. I found evidence that Canada 

Jays employ a spacing strategy almost by default (Chapter 3). That is, when all potential 

cache sites had the same perceived level of risk, Canada Jays distribute their caches 

uniformly to limit cache-pilferage. This pattern has been previously documented in field 

studies of Canada Jays as well (Waite & Reeve, 1994). Importantly, this observed 

uniform spacing distribution occurred only when available caching locations were of 
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similar quality. When the cache sites varied in quality, Canada Jays ignored this rule and 

cached disproportionally in spruce and other conifer trees, even though the threat of 

pilferage was uniform (Chapter 3). Seemingly, Canada Jays assessed their environment 

and available cache locations, and decided to prioritize the benefits conferred by the 

preservative qualities of the spruce tree at the cost of employing their typical spacing 

strategy. A similar argument can be made about combining the results from Chapters 3 

and 4. Canada Jays again violated their spacing strategy in order to cache 

disproportionate amounts of food in the chamber they previously associated with food 

(Chapter 4). These violations of Canada Jays’ apparent default cache-protection strategy 

lend credence to the idea that Canada Jays are constantly performing the cost/benefit 

analyses that optimal foraging models assume. The benefits gained from the preservative 

qualities of spruce trees or the consistency of a reliable food source must outweigh the 

potential costs of not spacing their caches uniformly. 

This research has also helped to elucidate the prioritization of information Canada 

Jays use when assessing their environment. In two separate experiments (Chapter 2: 

Experiment 3, and Chapter 3) Canada Jays prioritized visual information over alternative 

sources of information. In Chapter 2 Canada Jays demonstrated a preference when 

presented with visually distinct trees, while failing to respond to olfactory cues, while in 

Chapter 3 visual information was enough to increase perceived risk but auditory cues 

were not. This prioritization of visual information is likely tied directly to their foraging 

ecology. While spruce and other conifers have potentially distinct scents, these scents are 

likely diluted or not distinguishable in a forest making visual information essential. 

Similarly, Canada Jays’ most direct threats to their caches come at the time of cache-
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deposition (Burnell & Tomback, 1985; Rutter, 1972). Birds in the area, but with no line 

of sight to the caching individual are likely not a threat to Canada Jay caches, and thus do 

not illicit any behavioural response. 

Another useful context for examining the caching decisions of Canada Jays is 

through comparisons to both related species and to species that inhabit similar 

environments. Other corvids have demonstrated a variety of cache-site preferences (e.g. 

Kulahci & Bowman 2011; Neuschulz et al, 2015; Fuirst et al., 2020) though few 

preferences, if any, seem to be for a particular species. They do, however, seem to be 

related to cache preservation, the postulated reason for Canada Jays’ spruce preference 

(Strickland et al., 2011; Sechley et al., 2015). Conversely, caching species such as 

nuthatches and chickadees, inhabit the same broad habitats as Canada Jays, however, 

cache-site selection in these species seems to reflect preferences for areas on chosen trees 

(e.g. branches, trunk) as opposed to preferences for tree species themselves (Petit et al., 

1989). Interestingly, evidence in Willow tits (Poecile montanus) suggests a preference for 

conifers, particularly pine (Lahti et al., 1998), however, this preference has been 

previously attributed to lowering the costs of foraging for forgotten seeds (Brodin, 1994). 

Essentially, a ‘cache where you most like to forage, increasing the chance you can 

relocate a cache by chance’ strategy. Both these cache-site preferences are ecologically 

intuitive. Because the duration of caching varies so greatly, it makes sense that the long-

term storing corvids are more concerned with cache degradation and cache preservation, 

while the shorter duration storing parids may show more concern for other factors such as 

cache-pilferage, or low-cost cache recovery. These logical differences in cache-site 

preference between related and geographically similar species add support to the idea that 
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caching behaviour is refined and species specific. These observations suggest that 

caching behaviour should be examined in a wide variety of species in order to better 

understand and catalogue the extent of the benefits conferred to these caching species. 

Understanding behaviour requires some speculation regarding the mechanisms 

that underpin it. For example, I presented evidence that Canada Jays use structural 

aspects of trees to assess caching location (Chapter 2). I speculate that this is due to some 

association between the structural properties chosen and those of spruce trees, however, 

without further study that claim remains purely speculation. Assessing the mechanisms of 

complex behaviours should begin with the simplest of interpretations (“Morgan’s canon”, 

Morgan, 1894). Fundamentally, complex behaviours can be the result of simple cognitive 

processes, and complex cognition should only be attributed under circumstances where 

simpler explanations are inadequate. This interpretation of Morgan’s canon is, however, 

not always applied in practice. Some researchers have argued that this interpretation of 

Morgan’s canon has serious issues, was not the original intent, and that it should be 

ignored altogether (Costall, 1993; Fitzpatrick, 2008). These objections, however, create a 

scenario in which researchers may attribute complex cognitive functions to behaviours 

that are the product of simpler processes. This sequence of events typically begins with 

researchers observing an unexpected, seemingly spontaneous, behaviour and attributing 

the behaviour to a complex cognitive process, only for the behaviour later to be shown as 

the result of simpler cognitive processes. For example, Betty the crow famously bent a 

piece of garden wire creating a novel tool, which was then used to retrieve food (Weir et 

al., 2002). This became a classic example of animal intelligence and has been used since 

as evidence of ‘how smart animals are’. Even though the authors acknowledged at the 
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time that these crows performed similar behaviours in the wild, they argued that the 

behaviour observed implied a causal understanding of the feeding task (Weir et al., 

2002). In 2016 however, researchers demonstrated that the behaviour Betty engaged in 

was not novel. Instead, researchers found the behaviour was part of the species’ natural 

behavioural repertoire and that Betty was likely engaging in a learned manipulation 

behaviour (Rutz et al., 2016). They argue that Betty likely did not have a casual 

understanding of the task, but instead employed a pre-existing behaviour in order to 

acquire food in a novel context. While the later study cannot rule out a casual 

understanding of the task, Morgan’s canon would suggest that the application of a pre-

existing strategy in far more likely.  

Abiding by foundational principles like Morgan’s canon is important when 

assessing behaviour because, as mentioned, assessing behaviour typically requires some 

speculation as to the mechanism. The explanations offered in Chapters 2-5 are the 

simplest explanations that could reasonably cause the results. Although flashier headlines 

could likely have been achieved by attributing complex cognition to Canada Jays, the 

data suggest, and therefore I have argued for, relatively simple cognitive processes as 

causes of seemingly complex behaviours. 

6.3 Future Research and Next Steps 

This thesis and much of the existing research on caching species is focused on the 

behavioural components of caching, many examples of which have been previously 

discussed. Because of this focus on behaviour, the mechanisms underlying these 

behaviours are less well explored. That is not to say that attempts at characterizing the 
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mechanisms do not exist (e.g. Sherry, 1984; Bunch & Tomback, 1986; Clayton & 

Dickinson, 1998), however, better understanding these mechanisms is a place where 

future research is warranted. For example, I provided evidence that Canada Jays use 

context dependent cache protection strategies, and evidence that visual information is 

important in making these assessments (Chapter 3). However, in other corvid species it 

has been suggested that visual inputs are not the only important source of information 

used to assess potential cache-pilfering threats. In Clark’s Nutcrackers (Nucifraga 

columbiana), for example, birds have been shown to still perceive an elevated risk to 

caches even when potential pilferers are out of site (Clary & Kelly, 2011). These 

perceived risks are potentially due to acoustic or olfactory cues. While some explanations 

for these differences exist – Canada Jays and Clark’s Nutcrackers differ in their general 

foraging ecology and what constitutes a risk to caches – further exploration of these 

mechanisms, in additional species, would allow researchers to more completely 

categorize these essential behaviours. 

The replication of high impact studies should also be a priority for future research. 

Chapter 4 in this thesis represented a replication of a high impact study that found 

evidence of complex cognitive function in a corvid (Raby et al., 2007). I failed to 

replicate these results, suggesting that the generalizability of the initial findings may not 

be as great as originally argued. Alternatively, it is possible that unknown or unaccounted 

for variables influenced my replication attempt. The only way to ascertain the correct 

interpretation is to collect more data. Further replications, especially of high impact 

studies, should be given attention and not disregarded due to a lack of novelty. 
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6.4 Implications for Conservation 

Canada Jays are listed by the International Union for Conservation of Nature 

(IUCN) as a species of least-concern (Birdlife International, 2018). Despite this 

assessment, population decline in Canada Jays is well documented (Waite & Strickland, 

2006; Birdlife International, 2018; Strickland & Ouellet, 2020). Evidence also exists to 

suggest that climate change poses a particular strong risk to Canada Jays due to the nature 

of their caching behaviour (Sutton et al., 2016). In addition to Canada Jays, other boreal 

caching species face similar risks. At the extreme, climatic changes have created no-

analog communities – past communities unlike anything found today – and it is predicted 

that as global climate change continues, some of the earth’s current communities could 

become no-analog communities in the future (Williams & Jackson, 2007). Evidence for 

these large-scale changes is plentiful, and climate change is altering plant and animal 

community composition in forests (Dieleman et al., 2015; Ralston et al., 2019; Lyons et 

al., 2020), driving range shifts (Ralston & Kirchman, 2013; Elmhagen et al., 2015; 

Kirchma & Van Keuren, 2017), altering reproductive timing (Visser et al., 2006; Martin 

et al., 2020) and generally disrupting centuries long ecological equilibria. These 

disruptions could potentially alter the availability of resources for higher level consumers 

to the point where consumers, such as Canada Jays, cannot sustain themselves. Better 

understanding caching behaviour can help in identifying the extent of the risk animals 

might be facing. Canada Jays demonstrated a variety of behaviours that could aid in 

mitigating the effects of climate change. Their close relationship with spruce trees is 

important in cache-preservation, and the data in Chapter 2 show convincingly that this 



 

 136 

relationship is the result of active exploitation. Additionally, in Chapter 3 Canada Jays 

showed flexible cache protection strategies that might aid them in hoarding resources, if 

those resources become more restricted. 

Alternatively, Canada Jays’ behaviours in Chapters 2 and 3 are only as useful as 

the climate potentially allows them to be. Canada Jays rely on long, deep freeze events to 

preserve their caches for extended durations, and multiple freeze-thaw events can depress 

reproductive success (Sutton et al., 2019). Without these deep freezes, Canada Jays’ 

behaviours might not be adequate in combating current or future environmental 

challenges. This appears to be the case, at least to date, as Canada Jay populations along 

the southern edge of the range appear to be disappearing or moving north (Waite & 

Strickland, 2006; Strickland & Ouellet, 2020). 

Understanding Canada Jay caching behaviour may also be transferable to the 

conservation of other caching species. While exploring other species for behaviours that 

resemble the cache degradation combating behaviours of Canada Jays is a start, it is 

important to remember that these behaviours may not be required. The Black-capped 

Chickadee, for example, inhabits much of the same habitat as the Canada Jay and is also 

listed as an IUCN species of least-concern.  The Black-capped Chickadee population is 

increasing (Birdlife International, 2017), however, and has shown behavioural resistance 

to climate factors (Martin & Sherry, 2019). 
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6.4.1 Cultural Significance 

It is also worth noting the importance of conservation due to the cultural 

significance the Canada Jay holds. The Canada Jay is commonly known as the whiskey 

jack, an anglicized pronunciation of the Cree-Ojibway name for a mythical prankster and 

teacher, wisikejack (Mas, 2016).  Wisikejack has analogous characters in many 

indigenous communities. For example, to the Anishinaabe, she is Gwiingwiishi. The 

stories teach that bravery, resilience and commitments to one another are the ways to find 

growth (Sinclair, 2016). Additionally, many Canadians have latched on to the Canada Jay 

after it was named Canadian Geographic’s choice for national bird following a public 

survey (Lagerquist & Dunham, 2016). Though this request has not been acted on by the 

federal government, the adoration of the Canada Jay by Canadians increases the need for 

conservation efforts to be successful and well informed. 

6.5 Conclusions 

E. O. Wilson said, “Nature holds the key to our aesthetic, intellectual, cognitive 

and even spiritual satisfaction” (McCrum, 2017). I believe that is, in part, evidenced by 

the way that animal behaviour and decision making has captivated researchers for more 

than 100 years (Romanes, 1883). As better and more refined methodologies are 

developed and these long-standing mysteries become clearer, the fascination still 

remains. The study of animal behaviour, cognition and decision making remains an active 

and rapidly advancing field at the intersection of biology and psychology. Caching 

behaviour specifically has long been under investigation by researchers, and various 
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aspects of caching behaviour have been explored and explained over time. In this thesis, I 

presented data to build on this existing exploration of caching behaviour. I have provided 

evidence that Canada Jays, a boreal caching species dependent on cache resources for 

survival, are engaged in decision making during both resource acquisition and cache 

deposition. I suggest that a multitude of factors can influence these decisions and that 

behaviours resulting from these decisions can aid in cache preservation, risk avoidance 

and surviving climate change. I also suggest that future research better explore the fitness 

impacts of caching decisions and the mechanisms that underpin them. Importantly, 

appropriate thought should be given to the study of these mechanisms before attributing 

these apparently complex behaviours to complex cognitive processes. 

In all, this research has advanced our understanding of Canada Jay caching 

behaviour, and in doing so, advanced our understanding of caching behaviour in general. 

I have provided avenues and ideas for future research, both at the behavioural and the 

mechanistic scale. For example, while I have provided some evidence of a causal link 

between Canada Jay range and spruce species overlap, further research into the true 

benefits of caching in conifers is required. Additionally, the mechanisms underlying the 

observed macronutrient preferences deserves the full attention of the scientific 

community in order to better understand how these birds are responding to their 

energetically demanding environments. Regardless of what next steps are taken, they 

should be taken with the intent to better understand important behaviours and their 

mechanisms, and with the goal of preserving Canada Jays and other boreal caching 

species for centuries to come.  
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