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Basal forebrain cholinergic neurons, which innervate the hippo-
campus and cortex, have been implicated in many forms of cognitive
function. Immunolesion-based methods in animal models have been
widely used to study the role of acetylcholine (ACh) neurotransmis-
sion in these processes, with variable results. Cholinergic neurons
have been shown to release both glutamate and ACh, making it
difficult to deduce the specific contribution of each neurotrans-
mitter on cognition when neurons are eliminated. Understanding
the precise roles of ACh in learning and memory is critical because
drugs that preserve ACh are used as treatment for cognitive deficits.
It is therefore important to define which cholinergic-dependent
behaviors could be improved pharmacologically. Here we investi-
gate the contributions of forebrain ACh on hippocampal synaptic
plasticity and cognitive behavior by selective elimination of the
vesicular ACh transporter, which interferes with synaptic storage
and release of ACh. We show that elimination of vesicular ACh
transporter in the hippocampus results in deficits in long-term
potentiation and causes selective deficits in spatial memory. More-
over, decreased cholinergic tone in the forebrain is linked to hy-
peractivity, without changes in anxiety or depression-related
behavior. These data uncover the specific contribution of forebrain
cholinergic tone for synaptic plasticity and behavior. Moreover,
these experiments define specific cognitive functions that could
be targeted by cholinergic replacement therapy.

Alzheimer’s disease | Morris water maze | synaptic vesicle | Barnes maze

The mechanisms that underlie the formation of hippocampal-
dependent spatial memory have been broadly explored (1).

However, the neurochemical basis underlying changes in the
strength of synaptic connections necessary for memories to persist
is still not precisely understood. In the case of the hippocampus,
mechanisms for memory processing include mRNA-dependent
(2) and mammalian target of rapamycin (mTOR)-mediated
protein synthesis (3) as well as a sequence of biochemical events
shared with or closely similar to that of long-term potentiation
(LTP) (2). Indeed, the consolidation of two different aversive
tasks (4) and of spatial recognition memory (5) is accompanied by
LTP of the CA3-CA1 synapse and can be occluded by a pre-
ceding LTP.
The basal forebrain cholinergic system, which innervates the

hippocampus and cortex, has been suggested to modulate LTP in
the hippocampus (6–9) and has been implicated in many forms
of behavior (10). In addition, spatial memory has also been sug-
gested to depend on cholinergic activity (10), although there are
numerous controversies surrounding which behaviors acetylcho-
line (ACh) regulates (11, 12). Moreover, in few studies cholinergic
denervation did not affect expression of LTP (13). Understanding
the precise roles of ACh in learning and memory is of impor-
tance because in different types of dementia cholinergic function

is decreased (14), and manipulations that boost ACh levels at
synapses are used as treatment for cognitive deficits.
Animal models of cholinergic dysfunction have been gener-

ated by elimination of basal forebrain cholinergic neurons using
electrolytic or excitotoxic methods, as well by the more selective
strategy of cholinergic immunolesion (14). These studies have
given inconsistent results concerning the cognitive and behav-
ioral processes that are affected by altering cholinergic trans-
mission (12, 15, 16). This is likely related to the fact that in many
cases both noncholinergic and cholinergic projection neurons are
destroyed, or that the lesions produced do not fully deplete
cholinergic neurons. Moreover, most immunolesion experiments
were performed initially in rats (15, 16), and only recently immu-
notoxins have been developed for mice (11), a species in which
genetic tools are available. In mice these toxins show poor se-
lectivity depending on the dose used (11). In addition to these
technical problems, cholinergic neurons usually release gluta-
mate as a neurotransmitter with ACh (17, 18), which complicates
the interpretation of dysfunction using toxin-based methodolo-
gies that eliminate secretion of both neurotransmitters simulta-
neously. This is relevant in the striatum, where there are remarkable
differences in behavior between ablation of cholinergic neurons
and elimination of the vesicular acetylcholine transporter (VAChT)
used to selectively impair the release of ACh (19).
In the present study, we used genetic manipulation of VAChT

(20) to investigate the specific contribution of forebrain cholin-
ergic neurotransmission to behavioral manifestations and cellular
mechanisms thought to be associated with learning and memory.
We report that hippocampal cholinergic deficits caused LTP im-
pairment in the CA1-CA3 pathway. Moreover, VAChT mutant
mice were hyperactive and had deficits in spatial memory ac-
quisition assessed using the Morris water maze (MWM). Finally,
mutants showed impaired ability to relearn a spatial memory task,
suggesting that they lack behavioral flexibility. Our data
demonstrate an important role for forebrain ACh in controlling
locomotion as well as in modulating hippocampal memory
processing.
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Results and Discussion
Synaptic Plasticity Is Impaired in VAChT KDHOM Mice. Although
cholinergic denervation has been shown in some studies to affect
LTP (6–9), in others decreased cholinergic tone did not affect
synaptic plasticity (13). We attribute these differences to variability
of lesion-based strategies. Therefore, to investigate the specific
roles of ACh in synaptic plasticity, we initially tested whether
LTP was affected in VAChT KDHOM mice. For these experi-
ments, we recorded fEPSP in the CA1 region of WT and VAChT
KDHOM mice, which have 70% decrease in VAChT expression
and similar deficit in ACh release (20, 21). These mice present
social memory deficits and also object recognition memory im-
pairment (20, 21). We induced LTP in hippocampal slices using
high frequency stimulation (100 Hz, 1 s) delivered to the Schaffer-
collaterals. Recordings from WT mice showed a robust potentia-
tion of fEPSPs indicative of synaptic plasticity (Fig. 1A; 134.7 ±
3.8, n = 7). In contrast, slices obtained from VAChT KDHOM

mice did not show any potentiation (Fig. 1A; 105.6 ± 3.1, n =
5, P < 0.001 in a Student t test).
Interestingly, not all forms of synaptic plasticity were blocked

in VAChT-deficient mice. Long-term depression (LTD) elicited
by low-frequency stimulation (1 Hz, 600 s) was similar between
WT and VAChT KDHOM mice (Fig. 1B; WT (n = 7), 83.9 ± 3.1;
VAChT KDHOM (n = 6), 77.3 ± 5.8; P = 0.32 in a Student t test).
Analysis of synaptic transmission using input-output relationship
(I/O) indicated a small, but significant, decrease in I/O slope for
VAChT KDHOM mice compared with WT mice (Fig. S1).

VAChT KDHOM Mice Display Hyperactivity and Impaired Spatial
Acquisition. Genetic and pharmacological manipulation of ACh
receptors change locomotor activity (22). Additionally, using other
VAChT-deficient strains of mice with global reduction of the
transporter in the brain, we have reported that ACh regulates
locomotion (22). In agreement with these previous observations
(22), we found that VAChT KDHOM mice were hyperactive com-
pared with WT controls (Fig. 2A, P < 0.001 in a two-tailed t test).
Cholinergic tone has been associated with several memory-

related functions (20, 21), but depending on the approach and
investigator, lesion of the medial septum cholinergic system
caused varying degrees of spatial navigation impairment (11, 12,
16). Indeed, for some investigators cholinergic lesions did not
cause impairment in spatial memory (15, 23). Spatial memory,
determined by the MWM, has been associated with LTP in mice
in vivo (5). However, because VAChT KDHOM mice cannot swim
(24), we tested spatial memory in these mice using the Barnes maze
(25). Latency to find the target hole was significantly longer for
VAChT KDHOM mice compared with WT controls over the 4-d training phase of the task (Fig. 2B, F(18,90) = 5.280, P < 0.001),

although no differences were observed in the number of primary
errors made or path length taken to find the target hole (Fig. 2B).
Furthermore, latency to find the target hole in the day-5 probe
trial was no different between genotypes and time spent inves-
tigating the target quadrant was significantly longer compared
with the other quadrants for both VAChT KDHOM and control
mice [Fig. 2B, F(3,72) = 12.903, P < 0.01]. Together, these data
suggest that spatial acquisition in the Barnes maze may be slightly
impaired in this VAChT-deficient mouse line, but spatial memory
retrieval is normal.

Selective Elimination of VAChT in the Mouse Forebrain. Deficits in
synaptic plasticity in the hippocampus have been linked to spatial
memory impairments in the MWM (5). To avoid the muscular
dysfunction deficit in VAChT KDHOM mice (20) we produced a
forebrain-specific knockout mouse line using our recently gen-
erated floxed VAChT mouse line [VAChTflox/flox (22)] and a
Six3-Cre mouse line, which expresses the Cre recombinase en-
zyme (Cre) under the control of the Six3 promoter, broadly ac-
tive in the ventral forebrain (26). We crossed the Six3-Cre line

Fig. 1. Plasticity of glutamatergic synaptic transmission in the hippocampus
of VAChT KDHOM mice. Field EPSPs, recorded in slices derived from VAChT
KDHOM (black square) and WT (white circle) mice. (A) 100 stimuli delivered at
100 Hz (timing indicated by arrow) or (B) 600 stimuli delivered at 1 Hz (timing
indicated by bar). (Insets) Representative traces.

Fig. 2. VAChT KDHOM mice show hyperactivity and deficit in spatial memory
acquisition. (A) Locomotor activity of VAChT KDHOM mice. Horizontal activity
in an open-field for WT (white, n = 12) and VAChT KDHOM (black, n = 11)
mice was measured over time (Left) and cumulatively over 2 h (bar graph).
(B) WT (white, n = 9) and VAChT KDHOM (black, n = 11) mice were subject to
the Barnes maze. Latency to find the target hole (primary latency), distance
traveled to find the target hole (primary distance), and number of errors
made before finding the target hole (primary errors) are presented. The
average of four 3-min trials per day is plotted. Primary latency and the
percentage of nose pokes per quadrant were measured on day 5 in a 90-s
probe trial. All data are plotted with SEM. *P < 0.001 in a two-tailed t test;
**P < 0.010 in a two-way ANOVA post hoc test; ***P < 0.001 in a two-way
repeated measures ANOVA. L, left; O, opposite; R, right; T, target.
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with a reporter mouse line (Rosa26-YFP) and determined that
Cre is expressed in forebrain cholinergic neurons in this line.
Although Cre was expressed in noncholinergic neurons, this
would not affect these neurons, because VAChT expression
would be only relevant in cholinergic neurons in the brain. About
85% of all basal forebrain cholinergic neurons and ∼58% of
striatal interneurons expressed Cre (Fig. S2 and Table S1).
We intercrossed Six3-Cre mice to VAChTflox/flox to selectively

eliminate VAChT from the forebrain (VAChTSix3-Cre-flox/flox).
VAChTSix3-Cre-flox/flox mice were born in expected Mendelian
ratios and appeared normal. Biochemical analysis of VAChT
expression revealed that VAChT mRNA and protein were elim-
inated in the forebrain of these mice. In contrast, high-affinity
choline transporter (CHT1) and choline acetyltransferase (ChAT)
were unaffected (Fig. S3).

Synaptic Plasticity Is Impaired in VAChTSix3-Cre-flox/flox Mice. To fur-
ther determine that elimination of VAChT, and therefore ACh
release (19, 20), affects synaptic plasticity, we studied LTP in
VAChTSix3-Cre-flox/flox mice. Recordings from VAChTflox/flox sli-
ces showed a robust potentiation of fEPSPs indicative of synaptic
plasticity (Fig. 3A; 176.2 ± 16.1, n = 7). Consistent with results
obtained with VAChT KDHOM slices, slices obtained from
VAChTSix3-Cre-flox/flox mice did not show any potentiation (Fig.
3A; 109.9 ± 11.1, n = 10, P = 0.0032 in a Student t test). Analysis
of synaptic transmission using input-output relationship (I/O)
and paired-pulse facilitation indicated no change between
VAChTSix3-Cre-flox/flox and control mice (Fig. S4). Hence, in two
lines of mice with VAChT deficiency LTP is impaired.

Forebrain Cholinergic Tone Is Involved in Spontaneous Locomotion.
We have previously reported the importance of VAChT in loco-
motor activity (22). Hyperactivity is not a consequence of decreased
cholinergic tone in the striatum, because selective removal of striatal
VAChT does not cause hyperactivity (19). Other brain regions that
influence locomotor activity are the basal forebrain and cholinergic
neurons projecting from the brainstem. Importantly, whereas
basal forebrain VAChT is eliminated in VAChTSix3-Cre-flox/flox

mice, brainstem VAChT is preserved (Fig. S3), affording a way to
test for the role of the basal forebrain in regulating locomotion.We
found that VAChTSix3-Cre-flox/flox mice were also hyperactive com-
pared with controls (Fig. 4, P = 0.0092 in a two-tailed t test). These
results suggest that forebrain cholinergic neurons regulate loco-
motor activity in mice.

In individuals with dementia, hyperactive behavior is often
associated with changes in anxiety and depressive behaviors (27).
Moreover, patients undergoing cholinergic drug treatments have
shown changes in mood (28). We therefore examined psychiat-
ric-like behaviors in VAChTSix3-Cre-flox/flox mice. Depressive-like
behavior was not observed in VAChTSix3-Cre-flox/flox mice; they
performed similar to controls in both the forced swim and tail
suspension tests (Fig. S5 A and B). Similarly, these mutant mice
showed no evidence of anxiety in the dark–light transition test
and elevated plus maze compared with controls (Fig. S5 C and
D). Consistent with locomotion data, an increase in general ac-
tivity was observed in VAChTSix3-Cre-flox/flox mice in the dark–
light transition test (Fig. S5C). Hence, despite hyperactivity, we
did not observe behavioral manifestations related to psychiatric
dysfunction in mice with reduced cholinergic tone.

VAChTSix3-Cre-flox/floxMiceShow Impairment in SpatialMemoryAcquisition.
Because VAChTSix3-Cre-flox/flox mice showed impaired synaptic
plasticity similar to that of VAChT KDHOM mice, we tested
their spatial memory in the Barnes maze (Fig. 5A). Although la-
tency to find the target hole was not significantly different for
VAChTSix3-Cre-flox/flox mice compared with VAChTflox/flox

controls over the 4-d training phase of the task, mutant mice walked
for longer distances and made significantly more errors before
finding the target hole [Fig. 5A, F(3,90) = 0.309, P = 0.05 and F(3,39) =
0.517, P = 0.015, respectively]. Similar to VAChT KDHOM mice,
investigation of the target quadrant in the day 5 probe trial was
significantly longer compared with the other quadrants for both
control and mutant mice [Fig. 5A, F(3,120) = 6.703, P < 0.01]. Ad-
ditionally, the latency to find the target hole on the probe trial was
no different between groups, suggesting that VAChTSix3-Cre-flox/flox

mice are capable of learning and remembering locations in this
spatial memory task. Together, these data support the notion that
mice with decreased VAChT have an impairment of acquisition in
the Barnes maze but are still able to learn a spatial memory task.
To further examine the importance of ACh in spatial memory,

VAChTSix3-Cre-flox/flox and controls were tested in the more widely
used MWM, a demanding paradigm that challenges spatial
memory (1). VAChTSix3-Cre-flox/flox mice showed no neuromuscular
dysfunction; both grip strength and motor performance in the
rotarod test were normal compared with controls (Fig. S5 E and
F). This suggests that VAChTSix3-Cre-flox/flox mice are physically fit
and could be used in the more physically challenging MWM task.
In the hidden platform (spatial) version of the MWM, no

differences were observed between genotypes in the latency to
find the escape platform in the 4-d training period, and both
mutant and control mice improved in the time it took to find the
platform over training (Fig. 5B). However, the distance required
for VAChTSix3-Cre-flox/flox mice to find the platform was signifi-
cantly longer compared with controls [Fig. 5B, F(3,77) = 1.824,
P < 0.001]. Closer examination of path traces in the MWM

Fig. 3. Plasticity of glutamatergic synaptic transmission in the hippocampus
of VAChTSix3-Cre-flox/flox mice. (A) Field EPSPs recorded in slices derived from
VAChTSix3-Cre-flox/flox (black, n = 10) and VAChTflox/flox (white, n = 7) mice. LTP
was induced by four 500-ms, 100-Hz trains of stimuli delivered 20 s apart
(timing indicated by arrow). Insets show representative traces taken from
the time points indicated in the graphs. (B) Increased fEPSP slope after po-
tentiation (60 min). *P = 0.0032 in a Student t test.

Fig. 4. Locomotor activity of VAChTSix3-Cre-flox/flox mice. (A) Horizontal activity
in an open field for VAChTflox/flox (white, n = 14) and VAChTSix3-Cre-flox/flox

(black, n = 14) mice was measured over time and (B) cumulatively over 2 h.
All data are plotted with SEM. *P = 0.0092 in a two-tailed t test.
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revealed that VAChTflox/flox controls learned the location of the
platform as early as the second day of training. However, even
after 4 d of training VAChTSix3-Cre-flox/flox mutants showed no
improvement in efficiency to find the escape platform (Fig. 5C).
VAChTSix3-Cre-flox/flox were significantly faster swimmers during
several of the trials [Fig. 5B, F(3,77) = 6.607, P < 0.05], which may
explain the discrepancy between latency and path length over the
training period. Hence, by swimming fast in several directions
VAChT-mutant mice could compensate for the longer distance
taken in finding the platform. When spatial memory retrieval was
investigated on the day-5 probe trial, time spent investigating the
target quadrant was significantly longer compared with the other
quadrants for both control and mutant mice [Fig. 5B, F(3,108) =
12.882, P < 0.001 compared with the opposite quadrant].
To further investigate the participation of ACh in acquisi-

tion and retrieval of spatial memory, we tested the ability of
VAChT-mutant mice to extinguish their initial acquisition of
the platform position and to learn a new goal position. To test
this memory flexibility we used the spatial reversal protocol in
the MWM (29). Similar to the results in the initial MWM ex-
periments, VAChTSix3-Cre-flox/flox mice demonstrated significantly
longer path length and increased swim speed compared with
controls [Fig. 5D, F(3,81) = 3.613, P < 0.001 and F(3,69) = 1.546,
P < 0.001, respectively]. VAChTflox/flox controls showed re-
markable memory flexibility when challenged to learn a new po-
sition of the escape platform. In contrast, VAChTSix3-Cre-flox/flox

mice were significantly impaired in this task [Fig. 5D, F(3,81) =
2.893, P < 0.05] and were not able to find the platform by using
the alternative strategy to swim around the pool. Importantly,
on the day-5 probe trial, control mice retained their ability to
remember the new position of the platform [Fig. 5D, F(3,108) =
1.706, P < 0.001], whereas VAChTSix3-Cre-flox/flox mutants could
not (Fig. 5D). Together, these data suggest that forebrain cho-
linergic tone is important for spatial acquisition as well as for

extinction and relearning of a task, suggesting that forebrain ACh
contributes to behavioral flexibility.
A role for cholinergic neurons in spatial memory has previously

been suggested (11, 12, 15, 16), but the precise role of ACh in
this process has yet to be revealed. Using two distinct lines of
genetically modified mice, we provide strong evidence that de-
creased cholinergic tone affects LTP. The molecular mechanisms
related to the deficit in LTP in VAChT-deficient mice are not
understood but might be related to modification of downstream
signaling cascades that contribute to the induction of NMDAR-
dependent synaptic plasticity. Although some studies showed no
alteration in LTP after cholinergic degeneration (13), the results
presented here agree with other experiments showing regulation
of LTP by cholinergic neurotransmission in vivo (7) and in slices
(6, 8). These findings support the importance of using gene-
targeting based strategies in studying cholinergic neurotransmis-
sion and avoid the inconsistency seen when using immunolesion
methods. Indeed, activation of ACh receptors, including mus-
carinic (30) and nicotinic receptors (9) can facilitate LTP, and
this seems to be related to temporal activation of these inputs
before activation of glutamatergic transmission (9). Specifically,
activation of cholinergic input before hippocampal stimulation
results in LTP facilitated by the α7-nicotinic receptor, whereas
muscarinic receptors are responsible for facilitating LTP when
cholinergic input occurs poststimulation (9). It is likely that these
two mechanisms are impaired in VAChTSix3-Cre-flox/flox mice.
Additionally, M1- and M2-muscarinic receptor–deficient mice
present a deficit in synaptic plasticity (31, 32). Hence, we con-
clude that cholinergic input to the hippocampus regulates glu-
tamatergic synaptic plasticity. Future experiments are needed to
dissect the exact mechanism involved in this process.
Our experiments showed that VAChT-deficient mice have a

learning deficit; spatial acquisition during training was disturbed
and they had difficulties using spatial cues to find the platform.

Fig. 5. VAChTSix3-Cre-flox/flox mice have impaired
spatial memory. (A) VAChTflox/flox (white, n = 9) and
VAChTSix3-Cre-flox/flox (black, n = 11) mice were sub-
ject to the Barnes maze paradigm. The average of
four 3-min trials per day is plotted. Primary latency
and the percentage of nose pokes per quadrant
were measured on day 5 in a 90-s probe trial. (B)
VAChTflox/flox (white, n = 14) and VAChTSix3-Cre-flox/flox

(black, n = 15) mice were subject to the MWM
paradigm. The average of four 90-s trials per day
is plotted. The percentage of time spent in each
quadrant was measured on day 5 in a 60-s probe
trial with the platform removed. (C) Representative
path traces for four VAChTflox/flox mice (Left) and
four VAChTSix3-Cre-flox/flox mice (Right) in the MWM.
Trial 3 for days 2 (Upper) and 4 (Lower) in the
training period are shown. The target quadrant for
each trace is in the upper left. (D) VAChTflox/flox

(white, n = 14) and VAChTSix3-Cre-flox/flox (black, n =
15) mice were subject to reversal training in the
MWM. The average of four 90-s trials per day is plot-
ted. The percentage of time spent in each quadrant
was measured on day 5 in a 60-s probe trial with the
platform removed. All data were plotted with SEM.
*P = 0.05; **P < 0.05; ***P < 0.01; φP < 0.001. L, left;
O, opposite; R, right; T, target.
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Additionally, VAChT deficiency affected the ability of mice to
extinguish a previous location and learn a new platform location.
Accompanying the learning impairment was a deficit in the in-
duction of LTP; this further supports the hypothesis that deficits
in LTP contribute to the impairment in spatial memory (33). Im-
portantly, knockout mice for the M2 muscarinic receptor also show
reduced hippocampal LTP, a similar pattern of learning deficit in
the Barnes maze, and impaired reversal learning (32). These data
strengthen our finding that basal forebrain cholinergic input is
essential for the generation of robust LTP at the Schaffer–CA1
synapse and is also necessary for learning and behavior flexibility.
Furthermore, they suggest that ACh regulation of hippocampal
LTP and spatial learning relies heavily on M2 receptor activity
(32). Therefore, we conclude that forebrain cholinergic deficiency
can affect spatial learning, but this depends on the task and on
the demand.
Intriguingly, despite deficits in spatial learning, spatial memory

retrieval was preserved in VAChT-deficient mice. This may seem
paradoxical given the extent to which early phase LTP was re-
duced in these mice. However, it is important to recall that al-
though LTP was reduced, LTD was preserved in VAChT-deficient
mice. Indeed, accumulating evidence suggests that LTD also
plays an important role in learning and memory (34). LTD seems
to be particularly important in tasks requiring the learning of a
new context, in conjunction with the rapid extinction of informa-
tion that is no longer relevant (33). Importantly, efficient learning
seems to require proper balance between LTP and LTD (33,
34). VAChT-deficient mice show preserved LTD but impaired
reversal learning. Although this finding might seem contradictory
with the potential role of LTD in learning and memory, the
consequences of interfering with synaptic plasticity on cognition
are not straightforward. Further experiments using a broader
range of plasticity-inducing stimulation frequencies to determine
whether there is any shift in the threshold for eliciting LTD/LTP
may help us to better understand this process.
It should be pointed out that behavioral and cognitive out-

comes show a high degree of complexity involving a multitude of
molecular, neuroendocrine, and gene–environment interactions.
Although our data suggest that impaired synaptic plasticity contrib-
utes to the deficit in spatial memory observed in VAChT-deficient
mice, they do not exclude the possibility that decreased cholin-
ergic tone also interferes with other processes that affect cogni-
tion and behavior. To note, it is possible that the hyperactivity
observed in VAChT-KDHOM and VAChTSix3-Cre-flox/flox mice is
not related to impaired hippocampal LTP, because this behavior
has been described in mice presenting normal LTP as well as
impaired or enhanced LTP (33, 35, 36). However, based on the
discussion above, we cannot discard a role for impaired synaptic
plasticity in hyperactivity. Increased locomotor activity was ob-
served in different behavioral tasks including the locomotor box,
dark–light test and theMWM. In all these tasks VAChT-deficient
mutants were tested in a novel environment. These data are
consistent with previous findings showing that ACh release in the
cortex and hippocampus is dramatically increased upon explo-
ration of a novel environment (37). Moreover, these results
support the hypothesis that release of ACh in the brain is nor-
mally required to ‘‘turn down’’ neuronal circuits controlling lo-
comotion (22). Interestingly, deficiency in cholinergic signaling has
recently been shown to decrease cortical expression of the het-
erogeneous nuclear ribonucleoproteins hnRNP A/B family.
Reduced expression of these hnRNA splicing factors induces
alternative splicing impairments, dendrite loss in primary neu-
rons, and cognitive impairments in mice (38). Further studies will
be necessary to investigate whether expression of hnRNA
splicing factors is affected in VAChT-deficient mice and contrib-
utes to cognitive dysfunction.
Adaptive changes in brain neurochemistry during development

in response to the decreased VAChT expression might also

contribute to the observed cognitive and behavioral deficits ob-
served in VAChT mutant mice. However, recovery of memory
deficits in VAChT KDHOM mice by cholinesterase inhibitors (20)
suggests that the cognitive deficits are mainly due to decreased
cholinergic tone. There is also a possibility that VAChT-de-
ficient mice are more susceptible to inflammation and some of
the behavioral changes are disease-related. Recent studies show
that the cholinergic system has an important role in regulating
cytokine production to prevent damaging inflammation (39, 40).
In fact, VAChT KDHOM mice have been shown to develop in-
creased inflammatory immune response when infected with
parasites (41), indicating that the cholinergic anti-inflammatory
reflex in these mutants is affected. However, prompt rescue of
different cognitive and muscular deficits of VAChT KDHOM mice
by cholinesterase inhibitors (20) strongly suggests that in-
flammation does not play any important role in these behav-
ioral and cognitive deficits. Moreover, VAChTSix3-Cre-flox/flox

mice reproduce the cognitive deficits observed in VAChT
KDHOM mice. Because VAChT ablation in VAChTSix3-Cre-flox/flox

mice is restricted to the forebrain, they may not present deficits in
the cholinergic anti-inflammatory reflex. Furthermore, the
mRNA expression level for the proinflammatory cytokines TNF-
α, IL-1, and IL-6 in the cortex, hippocampus, brainstem, and
striatum of VAChTSix3-Cre-flox/flox mice and littermate controls is
very similar (Fig. S6), suggesting that elimination of VAChT
expression in the forebrain does not lead to brain inflammation.
In summary, by using VAChT-deficient mouse lines we de-

termined that selective elimination of hippocampal cholinergic
tone regulates LTP. We also found that these mice are hyper-
active and show deficits in spatial memory. By defining the
specific roles of ACh in learning and memory through targeting
of VAChT, our experiments provide unique insights on cog-
nitive functions that can be targeted to compensate cholinergic
deficiency.

Materials and Methods
Animals.Generation of homozygous VAChT knockdownmice (VAChT KDHOM)
was previously described (20). VAChTflox/flox mice (Fig. S1) were also pre-
viously reported (22) and are kept in a mixed C57BL/6J x 129/SvEv x NMRI
background (predominantly C57BL/6J background). Note that VAChT KDHOM

and VAChTflox/flox mice were generated from independent constructs (20).
Six3-Cre mice (Six3) were a gift from Guillermo Oliver, St. Jude Children’s

Research Hospital, Memphis, TN. VAChTSix3-Cre-flox/flox mice were generated
by crossing VAChTflox/flox (mixed C57BL/6J x 129/SvEv background, back-
crossed to C57BL/6J for five generations) with the Six3-Cre mouse line (NMRI
background, backcrossed to C57BL/6J for 5 generations). We then inter-
crossed VAChTSix3-Cre-flox/wt mice to obtain VAChTSix3-Cre-flox/flox and subse-
quently bred VAChTSix3-Cre-flox/flox and VAChTflox/flox to obtain all of the mice
used in the present study. Unless otherwise stated, all control mice used
were VAChTflox/flox littermates without the Cre transgene. Rosa26-YFP mice
(B6.129 × 1-Gt(ROSA)26Sortm1(EYFP)Cos/J, stock number 006148) were obtained
from Jackson Laboratories.

Animals were housed in groups of three or four per cage without envi-
ronmental enrichment in a temperature-controlled room with 14:10 light–
dark cycles, and food and water were provided for ad libitum consumption.
All procedures were conducted in accordance with the National Institutes of
Health (NIH) guidelines and the Canadian Council of Animal Care (CCAC)
guidelines at the University of Western Ontario with an approved in-
stitutional animal protocol (2008–127). Male mice older than 12 wk were
used for behavioral studies.

Immunofluorescence, qPCR, and Western Blotting. Immunofluorescence experi-
ments were performed as previously described (22). For RNA analysis, sample
processing and quantitative real-time PCR (qPCR) was performed as previously
described (19). Primer sequences are available upon request. Protein extraction
and Western blotting was performed as previously described (20).

Electrophysiology. Field excitatory postsynaptic potential fEPSPs were recor-
ded in hippocampal slices from 21- to 40-d-old mice. Brains were isolated and
processed as described in ref. 34. For VAChT KDHOM and control mice, slices
were stimulated with one train of 100 Hz (1-s duration) to produce LTP or
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one train of 1 Hz (600-s duration) to produce LTD. For VAChTSix3-Cre-flox/flox

and control mice, LTP was induced with four trains of 100 Hz (500-ms duration
each) delivered 20 s apart. This “plasticity-inducing” phase was followed by
1 h of baseline stimulation. All field data are expressed as mean ± SEM.
Statistical difference between means was determined by a Student t test.

Locomotor Activity. All behavioral experiments were performed between
0900 and 1600 hours in the light cycle, as previously described (21).

Barnes Maze. The Barnes maze consists of a white, circular platform (92 cm in
diameter) with 20 equally spaced holes (5 cm in diameter; 7.5 cm between
holes), elevated 105 cm above the floor (San Diego Instruments). All tests
were performed between 0900 and 1600 hours in the light cycle, as previously
described (25).

Morris Water Maze. The MWM was performed as previously described (29).
Briefly, mice received four consecutive training trials, during which the
hidden platform was kept in a constant location with a 15-min intertest in-
terval.Micewere placed at a different starting locationwithin the pool for each
trial, which consisted of a swim followed by a 10-s platform sit. Spatial reversal
was tested by relocating the platform to the opposite quadrant and adminis-
tering another set of four trials per day for four consecutive days followed by
a 1-min probe trial on the fifth day (29). All data were recorded using a video
camera and analyzed using ANY-Maze video tracking software (Stoelting Co.).
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