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Stable isotopes are powerful tools for elucidating ecological trends

in extant vertebrate communities, though their application to

Mesozoic ecosystems is complicated by a lack of extant isotope

data from comparable environments/ecosystems (e.g. coastal

floodplain forest environments, lacking significant C4 plant

components). We sampled 20 taxa across a broad phylogenetic,

body size, and physiological scope from the Atchafalaya River

Basin of Louisiana as an environmental analogue to the Late

Cretaceous coastal floodplains of North America. Samples were

analysed for stable carbon, oxygen and nitrogen isotope

compositions from bioapatite and keratin tissues to test the

degree of ecological resolution that can be determined in a

system with similar environmental conditions, and using similar

constraints, as those in many Mesozoic assemblages. Isotopic

results suggest a broad overlap in resource use among taxa and

considerable terrestrial–aquatic interchange, highlighting the

challenges of ecological interpretation in C3 systems, particularly

when lacking observational data for comparison. We also

propose a modified oxygen isotope-temperature equation that

uses mean endotherm and mean ectotherm isotope data to more
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precisely predict temperature when compared with measured Atchafalaya River water data. These

results provide a critical isotopic baseline for coastal floodplain forests, and act as a framework for

future studies of Mesozoic palaeoecology.

1. Introduction
Naturally existing stable isotopes in the environment are taken up by organisms through their feeding and

drinking behaviour, and incorporated into their tissues in ways that reflect their diet, habitat, physiology

and food web structure [1–10]. Stable carbon, nitrogen and oxygen isotopes, in particular, can be analysed

to provide critical information about diet, habitat preference, trophic structure, physiology and temperature.

Soft tissues (e.g. blood, muscle, collagen, keratin) are frequently used in stable isotope studies of living

organisms, as they record ecologically meaningful signals over small periods of time (typically days or

months), can be harvested from live specimens with minimal undue harm, and typically have small trophic

enrichment factors relative to diet [1,4,8,11–14]. Additionally, because these tissues are more easily and

repeatedly harvested, they are also well suited to controlled diet experiments to determine trophic

enrichment factors (TEFs) (differences between the isotopic composition of diet and resulting tissues once

incorporated into an organism). By contrast, most palaeobiological applications of stable isotope analysis

rely on the use of hard tissues (e.g. bone, teeth or scales) as soft tissues are generally not thought to be

preserved in ways that are conducive to deep-time stable isotope studies [4,15–35]. As a result, stable

isotope studies of most fossils older than the Pleistocene, and particularly fossils from Mesozoic or older

systems, are typically focused on bioapatite (i.e. hydroxyapatite, [Ca5(PO4,CO3)3(OH,CO3)]) in hard tissues

such as bones and teeth [4,20,21,34,35]. Given the relative paucity of available comparative stable isotope

ecological and experimental diet fractionation data from these hard tissues for many taxa in modern

systems, and the lack of more trophically informative stable isotopes such as nitrogen when analysing

inorganic tissue components, formulating and testing predictions about ancient ecological communities

using stable isotope analysis can be particularly challenging [4,5,20,33,34,36–39].

The most significant obstacle when using stable isotope methods in deep time contexts is that the extant

ecosystems are not necessarily reflective of those that most commonly existed during much of Earth history,

such as in Mesozoic systems [5,20,34,40]. These ancient systems existed during periods that were typically

warmer and wetter than many contemporary environments [25,35,41–44], their vertebrate communities

were typically reptile-dominated [45–47], there was little to no C4 component [21,34,42], and many often

had some degree of marine input [43,45–47]. As many community-level isotopic analyses today focus

on mammal-dominated systems [1,3,7,17,48–54], and/or temperate [15,16,50–53,55,56] or arid

environments [1,3,5,57–63], direct comparisons to ancient coastal floodplain communities require careful

consideration. Furthermore, non-mammalian taxa themselves are studied less frequently and are often

the subject of more specific investigations such as migration (e.g. birds) or environmental toxins (e.g.

amphibians) rather than more general analyses of isotopic variation, diet, habit use and/or community

ecology that would be of great interest to evolutionary ecologists and palaeobiologists [4,8,26,64–69].

There is a growing interest in applying isotopic approaches to ecological questions in deep time contexts

[21,23,24,28,34,35,70]; however, these studies suffer from the lack of comparative data on C3 fluviodeltaic

and coastal ecosystems on which to base their ecological interpretations. Here, we provide the first

comprehensive framework for assessing isotope variation in terrestrial and aquatic vertebrate

communities within a C3-dominated subtropical coastal floodplain forest system with considerable

terrestrial–aquatic interchange. We address the issues stated above through an intensive sampling of

multiple tissues from a wide array of vertebrate taxa (including mammals, reptiles and fish) from a

single community, the Atchafalaya River Basin (ARB) in Louisiana [71,72], and by assessing tissue and

taxon level variability in carbon, oxygen and nitrogen isotopes in these samples. Since these ecosystems

are common in the fossil record, this study will not only enhances our understanding of isotopic variation

in extant vertebrate food webs, but will facilitate ecological comparisons using isotopes in deep time.

2. Material and methods
2.1. Experimental scope and specific objectives
By sampling both soft and hard tissues of taxa with a wide phylogenetic scope, range of body sizes, and

physiological range (ectotherms and endotherms), and comparing the resultant isotopic data with both
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observational natural history data and previously collected isotopic discrimination and environmental data, we

intend to fill in gaps in existing knowledge, and facilitate greater connectivity between stable isotope analyses in

modern and ancient settings. The specific objectives of this research are to: (i) analyse the community ecology

and isotopic resource use of various taxa in the Atchafalaya system using stable carbon, oxygen and nitrogen

isotopes; (ii) test the hypotheses that individual species isotopic ranges are distinct and will not show

considerable overlap, thereby allowing relative determination of trophic niches; (iii) demonstrate that

temperature estimates from species oxygen isotope concentrations will correspond with local measured

water temperature data; and (iv) determine if relative positions of species in isotopic space reflect

partitioning of resources and micro-habitat preferences that can used for inference in future studies of

Mesozoic ecosystems.

2.2. Specimen collection
Specimens were collected from the Atchafalaya River Basin (ARB), a region in southern Louisiana

containing a range of environments, including bottomland hardwood forests of the lower Mississippi

Alluvial Valley, vast wetland areas dominated by bald cypress (Taxodium distichum) and water tupelo

(Nyssa aquatica), and coastal marshes [71]. Recent surveys have indicated that the ARB habitats are

approximately 70% forest, with the remaining 30% wetland and open water settings, and that the ARB

represents the largest contiguous expanse of coastal floodplain forest in the continental USA [71].

Samples were collected opportunistically by roadside survey by TMC and DCE over an approximately

70 km transect of the ARB in February and October 2015 (figure 1), in collaboration with the Louisiana

Department of Wildlife and Fisheries (LDWF). For each specimen, multiple tissues were sampled when

possible, with the goal of obtaining multiple keratin (hair and claw) and bioapatite (bone and tooth)

tissues per specimen. Samples obtained during inspections and other monitoring programmes were

provided by the LDWF. Additional samples were provided by University of Louisiana at Lafayette

researcher Dr Jim Delahoussaye (various, but in particular fish and crocodilians), and Louisiana State

University Museum of Natural Science (LSU-MNS) curator Dr Jacob Esselstyn (large carnivorous

mammals). These are included with the sample locations/data noted in figure 1.

2.3. Sample selection
Specimens were selected from the total sample (electronic supplementary material, table S1) in order to

represent as broad a range of taxa, tissues and ecological factors (i.e. body size, diet, physiology, habitat

preference) as possible. Natural history data for sampled taxa were collected from the literature and

compiled in electronic supplementary material, table S2. Owing to time and budgetary constraints, not

all samples could be analysed. A total of 105 specimens in total were selected from 20 species, including

fish such as Amia calva (bowfin, N ¼ 4), Lepisosteus sp. (gar, N ¼ 4) and Atractosteus spatula (alligator gar,

N ¼ 5), reptiles such as Alligator mississippiensis (American alligator, N ¼ 6), a metatherian mammal

Didelphis virginiana (Virginia opossum, N ¼ 9) and eutherian mammals including Sylvilagus aquaticus
(swamp rabbit, N ¼ 4), Odocoileus virginianus (white-tailed deer, N ¼ 30), Sciurus niger (fox squirrel, N ¼
6), Peromyscus gossypinus (cotton mouse, N ¼ 1), Neotoma floridana (eastern woodrat, N ¼ 1), Myocastor
coypus (nutria, N ¼ 2), Dasypus novemcinctus (nine-banded armadillo, N ¼ 5), Sus scrofa (feral pig, N ¼ 2),

Procyon lotor (raccoon, N ¼ 5), Mephitis mephitis (striped skunk, N ¼ 3), Neovison vison (American mink,

N ¼ 2), Lontra canadensis (North American river otter, N ¼ 3), Canis latrans (coyote, N ¼ 6), Lynx rufus
(bobcat, N ¼ 3) and Ursus americanus (black bear, N ¼ 4). Lepisosteus specimens could not be determined

to species level at all times due to the nature of some of the collected material, and may represent either

L. osseus (longnose gar) or L. oculatus (spotted gar), and are thus treated together.

2.4. Sample pre-treatment
Sample pre-treatments were performed on teeth and bones prior to stable isotope analyses. The purpose of

these treatments was to reduce or eliminate contributions from organic matter and secondary carbonate to

the carbon dioxide released by laser heating. For most samples, surfaces were manually cleaned, then

sonicated in Millipore water for 15 min. Surfaces were coated in 2% NaOCl, and allowed to react for

24 h. Samples were then rinsed five times in Millipore water and dried for 24 h under vacuum at

approximately 808C and approximately 20–25 mmHg to remove remaining water and other sorbed

volatiles, and kept under vacuum until laser ablation. A subset of teeth and bones used for laser

isotopic analyses, as well as all samples powdered for bioapatite structural carbonate isotopic analyses,
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were given additional pre-treatment. This sample pre-treatment was adapted from Larsen & Longstaffe

[73], with further secondary-carbonate removal modifications based on Snoeck & Pelligrini [74] and

Pelligrini & Snoeck [75]. Samples were sonicated for 1 h in vials containing an excess of 2% NaOCl,

then rinsed in Millipore water. An excess of 2% NaOCl was then added, with samples covered and left

to react for 24 h. Samples were then rinsed five times in Millipore water, before an excess of 1 M acetic

acid buffered with Na-acetate (or Ca-acetate, depending on availability) was added for 1 h, with

sonication for the last 10 min. The samples were then rinsed five times in Millipore water, including

10 min sonication during the last rinse. The specimens were then lyophilized for 24 h.

Keratin pre-treatment methods were modified from O’Connell & Hedges [76] and O’Connell et al.
[77]. Hair samples were cleaned to remove surface contaminants via soaking for 1 h in a 2 : 1 mixture

of methanol and chloroform. Treated samples were then rinsed twice in deionized water and dried for

24 h. For claw keratin, manual surface cleaning was performed, followed by a 10 min rinse and
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Figure 1. Sampling map of Atchafalaya River Basin, Louisiana. Stars represent locations of collected samples. Although some
localities only correspond to a single specimen, many correspond to multiple specimens (see electronic supplementary material,
table S1 for detailed specimen collection data).
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sonication, and overnight drying at 608C. Following this, claw keratin samples were cleaned following

the hair keratin procedure described above.

2.5. Isotopic analysis
The ratio of heavy to light isotope is typically reported as parts per thousand (per mil, ‰) relative to a

known standard (denoted using d, where d ¼ [[Rsample/Rstandard]21]) [1,4,8,20,78,79]. Certain stable

isotopes, such as carbon (indicated as the ratio 13C/12C or as d13C, reported hereafter relative to Vienna

Pee-Dee Belemnite or VPDB), nitrogen (indicated as the ratio 15N/14N or as d15N, reported hereafter

relative to atmospheric N2 or AIR) and oxygen (indicated as the ratio 18O/16O or d18O, reported

hereafter relative to Vienna Standard Mean Ocean Water or VSMOW), have been extensively used to

study the ecology of a wide variety of taxa [1,3,9,14,15,26,50–54,56,58–60,64–69,73,80–105] from a

range of different habitats [1,17,18,49,52,54,57,106–110]. Which isotope is used depends on the study

questions, as different isotopic ratios relate to different aspects of the ecology, physiology and

environment of an organism [1,3,4,20,78,111].

Given the nature of the material and isotopes analysed for this project, several different analytical

techniques were employed.

The laser-ablation gas-chromatography isotope-ratio-mass-spectrometry (LA-GC-IRMS) system used

in this study is the same as that reported in Larson & Longstaffe [73], and is modified from the system

described by Cerling & Sharp [112]. The system uses a 25 W New-Wave MIR10 CO2 gas source IR-laser

with a wavelength of 10.66 mm, and the laser was set to produce 60 ms pulses, 180 mm diameter spots,

and to fire using 15–20% power (dependent somewhat on sample material and reflectivity). Samples

were loaded into a 3.8 cm diameter sample chamber with 20 cm3 volume designed for rapid sample

switching, kept under a constant flow of approximately 40 ml min21 of ultra-high purity helium, with

CO2 gas liberated through ablation travelling to a Thermo ScientificTD GasBench II, being

cryogenically focused in a liquid nitrogen trap for 3 min, then heated to 258C, passed through a

Nafion water trap and then moved into a Thermo ScientificTD DeltaplusXL mass spectrometer for

measurement. The sample chamber was heated and kept at approximately 508C at all times, and

background CO2 and H2O blanks were measured prior to each sample ablation session to ensure

proper pre-analysis chamber and sample degassing. Calibrations were performed based on repeated

measurements of NBS-18 and NBS-19, along with repeated analyses of a polished slab of an internal

laboratory standard calcite (WS-1) to monitor/correct for analytical drift between sessions, as per [73].

Carbon and oxygen isotope compositions of bone bioapatite structural carbonate were analysed using

a continuous-flow isotope-ratio-mass spectrometry system (CF-IRMS), beginning with weighed powders

(approx. 1000 mg) being reacted with orthophosphoric acid to produce CO2 at 708C for 60 min, then

sampled through a Thermo ScientificTD Gasbench II at a column temperature of 608C, and then

measured in continuous-flow mode, along with a CO2 reference gas, using a Thermo ScientificTD

MAT253 IRMS. Values of d13C and d18O were calculated based on calibrations performed on repeated

measurements of IAEA-CO-8, NBS 19 and IAEA-CO-1 standards.

Carbon and nitrogen isotope compositions of hair and claw keratin were analysed using a

continuous-flow isotope-ratio-mass-spectrometer system (CF-IRMS) via an automated Eurovector

elemental analyser (EA) coupled to a Thermo Scientific MAT253 IRMS. Clipped keratin samples were

weighed (approx. 200 mg) and placed into tin cups, and then dropped individually to the EA, where

the keratin is converted to CO2 and NOx (later reduced to N2) through flash combustion at

approximately 17008C under oxygen atmosphere conditions. d13C and d15N calibrations were

determined through repeated measurements of IAEA-CH-3, IAEA-CO-1, USGS-34, IAEA-NO-3 and

IAEA-N-2 standards.

For oxygen isotope analysis of claw and hair keratin samples, weighed keratin clippings (approx.

180 mg) were added to silver cups, then pyrolysed using an automated HEKAtech HT-EA oxygen

analyser at approximately 14008C using helium as a carrier gas. The CO gas produced through this

process was passed through an Ascarite trap, separated on a 5 Å Molsieve, and then measured using

a Thermo ScientificTD MAT253 IRMS in continuous-flow mode using Conflo III open split interface.

Calibrations for d18O were based on repeated measurements of USGS-42 and USGS-43 keratin standards.

2.6. Trophic enrichment factors and oxygen isotope water calculations
Differences often exist between stable isotope compositions of carbon, nitrogen and oxygen as recorded in

a sampled tissue, and the compositions of those same isotopes in the original diet or other intake for an
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organism [1,2,4,8]. This difference between the tissue signal and diet signal is controlled by a number of

factors, including physiology, environment, dietary composition and/or the particular tissue being

analysed. This is commonly referred to as the TEF (the trophic enrichment factor, trophic discrimination

factor, diet fractionation factor, diet isotope offsets, fractionation factor, discrimination factor, isotopic

separation, isotopic spacing, summed vital effects etc.) [1,2,4,8,12,15,29,49,81,86,89,94,110,111,113]. For

simplicity, we denote TEFs and tissue–tissue isotopic differences as D, and calculated as D ¼ dtissue 2

ddiet (or ddiet ¼ dtissue 2 D) or D ¼ dtissue 2 dtissue [1,2,4,8,15,29,86,111]. These factors are commonly

specific to a given species, taxonomic group and/or dietary type (i.e. herbivore, faunivore), and can be

empirically determined using controlled diet experiments [9,49,64–66,68–70,77,80,81,84,88,90,91,94–

96,98–100,105]. Unfortunately, these experiments are often time-intensive and costly, and as such the

dietary fractionations for each tissue are not known for most species [4,8,9,11,12], nor is the full range of

variability in these factors or their relation to diet and physiology completely understood [11,12,114–

116]. Despite these uncertainties, dietary fractionation factors for close relatives, or taxa with similar

diets, are commonly used when a species-specific factor is unavailable [1,4,5,111], although more

complex Bayesian approaches also exist for predicting TEFs [117]. Here, we use TEFs (D) obtained from

the literature searches, and compiled in electronic supplementary material, table S3. Where available,

species-specific TEFs for each tissue were used in order to obtain diet-corrected stable isotope ratios

(electronic supplementary material, table S3a). In most cases, however, species-specific Dtissue-diet were

unavailable, and so average TEFs were calculated for each tissue using the literature data for related

taxa with similar diets (electronic supplementary material, table S3b). The individual isotopic

compositions for each sample prior to applying TEF values are listed in electronic supplementary

material, tables S4 and S5. Bioapatite d18O data represent either bioapatite structural carbonate oxygen

or laser-produced total-oxygen (LPTO), depending on the particular sample/method. LPTO data

represent a combination of phosphate þ carbonate þ hydroxyl oxygen, though the hydroxyl

contribution is minimal per [73], leading to LPTO being a weighted average of these sources, and

typically approximately 1‰ higher than the phosphate d18O alone (i.e. by 1.2‰ per Cerling & Sharp

[112] and by 0.7‰ per Sharp & Cerling [118]). Comparisons to previously reported relationships

[73,112,118] that are consistent with the analysed dataset (electronic supplementary material, figure S1a)

allow bioapatite oxygen isotope data from structural carbonate and LPTO to be converted to phosphate

oxygen isotope equivalents to facilitate comparison and discussion.

2.7. Data analyses
Data analyses were performed, and base plots made, using the R programming language and contained

core packages [119], along with the functions in the ‘ggplot2’ package [120], with plots further modified

or grouped using Adobe Illustrator CS6. Statistical tests were performed to assess normality and

distribution of the data, and to confirm the comparability of isotopic data from different tissues and

individuals in the species-level community comparisons (electronic supplementary material, S1,

figures S1 & S2 and tables S6 & S7).

Community-level comparisons were performed on the stable carbon, nitrogen and oxygen isotope

results for all sampled species. Stable isotope data were adjusted through the application of TEFs (for

nitrogen and carbon) and carbonate-phosphate/LPTO-phosphate discrimination factors (for oxygen),

as described above (and in electronic supplementary material, S1). Comparisons were made using

combined keratin (hair and claw) and bioapatite (bone and tooth) data, respectively. In each case,

species isotopic ranges were plotted for keratin nitrogen, keratin carbon, bioapatite carbon and

bioapatite oxygen to test for species-level differences, and illustrated in combined bi-plots of isotopic

ratios (keratin nitrogen versus keratin carbon, bioapatite carbon versus bioapatite oxygen) to more

fully visualize the range of community isotopic distribution and possibly niche space occupation,

under the methodological constraints present in a Mesozoic system (i.e. no preservation of blood/

muscle tissue, little to no preservation of measurable plant or soft-bodied organism tissues, general

lack of measurable/observable diet data). These distributions were also compared with observational

natural history records compiled from the literature (electronic supplementary material, table S2).

These comparisons were used to assess the inferences made from the distributions themselves

(nitrogen isotope results being used in somewhat the same way relative to carbon isotope or oxygen

isotope results), given the general lack of availability of such data in fossil systems.

Body water oxygen isotope concentrations were calculated from bioapatite oxygen isotope data

(adjusted to their phosphate equivalent) for each sampled taxon, using a combination of taxon/
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physiology-specific equations from Kohn [121] (for endotherms; faunivorous/carnivorous mammals,

omnivorous mammals and herbivorous mammals) and Amiot et al. [65] (for ectotherms; reptiles, fish):

— faunivorous mammal (d18Osurface water ¼ (d18Ophosphate 2 21.3 þ 3h)/0.74),

— omnivorous mammal (d18Osurface water ¼ (d18Ophosphate 2 22.7 þ 3.9h)/0.64),

— herbivorous mammal (d18Osurface water ¼ (d18Ophosphate 2 26.8 þ 8.9h)/0.76),

— reptile/fish (d18Osurface water ¼ 0.82d18Ophosphate 2 19.13),

where d18Ophosphate is the bioapatite oxygen from the sampled taxon, and h is the decimal fraction

relative humidity (in this case obtained from the average annual relative humidity for the sampling

area, approx. 75%).

These results were then converted into temperature using the following equation in Kohn [121]:

d18Osurface water ¼ (0:69)(T)� 13:6,

where T is the temperature in degrees Celsius.

In addition, we propose a modification to the two-part temperature calculation using combined

oxygen isotope data from endotherms and ectotherms from Fricke & Wing [25], in order to calculate a

mean temperature estimate using all sampled taxa. The original equations are

d18Omammal ¼ (0:76)(d18Oriver)þ 19:94

T ¼ 111:4� (4:3)(d18Ogar phosphate � d18Oriver):

The first part uses the Kohn [121] mammalian herbivore equation (assuming h ¼ approx. 0.75), and

then combines the resultant river oxygen isotope composition with the oxygen isotope data for

ectothermic fish (in their case derived from fossil gar ganoine) in order to calculate river temperature.

This procedure was modified to calculate d18Oriver for each individual endothermic species using the

equations noted above, with the mean of the resultant d18Oriver values entered into the temperature

equation, and with the mean d18Ophosphate of all ectothermic taxa used in place of using a single gar

taxon. Mammalian physiology/body temperature is considered in these calculations via the Kohn

endotherm equations (though variability due to slight differences in physiology and humidity

tolerance in the averaged mammal samples is probably not fully accounted for due to the pooled

nature of the calculation). As noted above, individual taxon temperature estimates were also

calculated using species-specific or diet/physiology-specific equations where available, allowing for

comparison with the results of the modified two-part endotherm–ectotherm mean temperature

calculation. In all cases, calculated temperatures were also compared with water temperatures

recorded hourly for the Atchafalaya River, obtained from the United States Geological Survey (site

07381600 Lower Atchafalaya River at Morgan City, LA) [122], covering the dates 24 February 2015–22

February 2018, inclusive (electronic supplementary material, table S8).

3. Results
3.1. Individual and intraspecific variation
See electronic supplementary material, S1 for detailed descriptions of the analytical results of all tissue

comparisons and methodological testing. Isotopic results for nitrogen, carbon and oxygen all fall

within broadly expected ranges based on related mammals, reptiles and fish, though the degree of

analytical variability was dependent on several factors. In general, variability was low in repeated

sampling of the same tissues of a given specimen, but became higher when comparing between

tissues, or between specimens and species. Bulk powder isotopic analyses produced more consistent,

low variability, results, whereas laser ablation isotopic analyses resulted in higher variation (electronic

supplementary material, table S5). This is probably due to the nature of the sampling and analytical

methods, as bulk powders naturally lead to a more consistently mixed and averaged isotopic signal,

whereas laser ablation, by nature of the small spatial scale of the samples, potentially reveals temporal

variability in isotopic signal. This higher variability is consistent with previous stable isotope studies

using laser ablation techniques [73,123].

When comparing carbon isotopic compositions taxonomically, variation was greater in certain species

when compared with others in the overall sample. Within the keratin samples, Sus (feral pig) and Mephitis
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(skunk) exhibited the greatest variation in carbon isotope compositions. Within the bioapatite samples, the

greatest degree of isotopic variation was seen in aquatic taxa, particularly Atractosteus (alligator gar) and

Lepisosteus (longnose/spotted gar). Offsets between keratin and bioapatite isotopic compositions in

mammalian taxa match literature expectations (electronic supplementary material, table S3). While no

direct Alligator hard tissue to soft tissue comparison could be found in the literature, the keratin-

bioapatite offsets in sampled Alligator match those of other known reptiles (electronic supplementary

material, tables S3 and S5). While keratin and bioapatite carbon isotopic ranges were generally consistent

in taxa sampled for both, there were moderate differences in average signal recorded in several taxa,

including Neovison (mink), Lontra (otter) and Sciurus (squirrel).

Offsets in oxygen isotopic compositions of bioapatite tissues obtained via bulk powder carbonate

sampling and laser ablation total oxygen sampling for the same specimens were on average

approximately 7‰, consistent with the literature expectations [73,112,118,123] (also see electronic

supplementary material, S1). However, oxygen isotope compositions obtained from bone carbonate

and tooth enamel, both sampled by laser ablation, contained the highest levels of variation seen in the

study. This issue is discussed in greater detail in electronic supplementary material, S1, but it is likely

that this higher variability represents differences in the temporal scale reflected in these tissues, and

so more acutely corresponds to seasonal and ontogenetic changes experienced in the lives of the

sampled organisms.

3.2. Community comparisons
Mean isotopic results from bioapatite and keratin samples of each specimen, with TEFs applied, are

presented in table 1. TEF-corrected mean isotopic results for each taxon (þ/2 standard error) are

presented for keratin in table 2 and for bioapatite in table 3. Bi-plots of keratin d15N and d13C (figure 2a),

and bioapatite d13C and d18O (figure 2b) were produced to assess the range and variation in isotopic

compositions for each taxon, and visualize resource/niche partitioning in this community in multi-

dimensional space. Coloured hulls in these figures (with associated colour-filled points) indicate broad

dietary/guild assignment (green ¼ herbivore, yellow ¼ omnivore, red ¼ terrestrial faunivore, blue ¼

aquatic faunivore). Keratin d15N effectively separated groups of taxa by relative trophic position

(figure 2a) over a range of approximately 0 to þ 10‰, with faunivorous taxa (e.g. Alligator, Lontra,
Neovison) possessing mean d15N . þ 7.5‰, omnivorous taxa (e.g. Procyon, Didelphis, Mephitis, Dasypus,
Sus) possessing mean d15N of þ4‰ to þ6.5‰, and herbivorous taxa (e.g. Peromyscus, Sciurus, Sylvilagus,
Odocoileus) possessing mean d15N , þ4‰. In both keratin d13C (figure 2a) and bioapatite d13C

(figure 2b), taxa occupied similar ranges of isotopic space (approx. –30 to –15‰ for keratin d13C and

–35 to –20‰ for bioapatite d13C). No significant outlier taxa are present in the bioapatite d13C results,

whereas three taxa in the keratin dataset (Neovison, Mephitis and Sus, with the latter two also having

much higher variability than observed in other taxa) had average d13C that were approximately 4 to 8‰

higher than the mean of most sampled taxa. Herbivores typically had lower d13C than most other taxa,

though moderate to considerable overlap exists in d13C among most taxa for both keratin and bioapatite.

Fully aquatic faunivores (i.e. fish) had higher d13C than most other faunivores, and little difference

existed in d13C distributions for sampled terrestrial faunivores and omnivores. A high degree of overlap

also existed in bioapatite d18O, with a total range of approximately þ13 to þ23‰. Within this range,

omnivores and faunivores typically had the lowest d18O, followed by fish and herbivores. The main

exceptions to this pattern were the high values for a large herbivore, Odocoileus (mean d18O of approx.

þ23‰), and low values of Amia (mean d18O of approx. þ15‰) when compared with other fish or

semi-aquatic taxa.

3.3. Temperature reconstructions
Water temperatures for each taxon were calculated using equations from Kohn [121] and Amiot et al. [65],

and compared against water temperatures recorded hourly between 2015 and 2018 from the Atchafalaya

River near Morgan City, LA (table 4 and figure 3; electronic supplementary material, table S8). Mean

annual Atchafalaya River water temperature was 20.38C, with temperatures ranging from a minimum

winter water temperature of 4.68C to a maximum summer water temperature of 35.58C. Temperatures

calculated from mean bioapatite oxygen isotope data varied among taxa, though all fell within the

annual water temperature range for the Atchafalaya River. Temperatures calculated from oxygen

isotope results for Canis latrans most closely reflected mean annual river temperature (20.6 versus

20.38C), and the majority of bioapatite-derived temperatures plotted between 10 and 158C. This is
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Table 1. Specimen-level mean stable isotope compositions, subdivided by tissue sampled. d13C values standardized to VPDB
and TEF-corrected to diet. d15N values standardized to AIR and TEF-corrected to diet. d18O values standardized to VSMOW and
corrected to phosphate moiety.

specimen no. taxon
d13C (‰ [VPDB])
(diet) (bioapatite)

d13C (‰
[VPDB])
(diet)
(keratin)

d18O (‰,
[VSMOW])
( phos.)
(bioapatite)

d15N (‰,
[AIR]) (diet)
(keratin)

AWR-105 Alligator mississippiensis 225.4 226.3 þ19.1 þ10.5

AWR-107 Alligator mississippiensis 227.1 227.8 þ18.0 þ9.3

AWR-128 Alligator mississippiensis 223.8 — þ17.6 —

AWR-134 Alligator mississippiensis 222.8 — þ18.8 —

AWR-135 Alligator mississippiensis 225.9 — þ18.1 —

AWR-96 Alligator mississippiensis 226.4 — þ20.1 —

AWR-123 Amia calva 220.2 — þ15.2 —

AWR-124 Amia calva 223.1 — þ13.8 —

AWR-125 Amia calva 224.8 — þ14.0 —

AWR-126 Amia calva 224.4 — þ15.9 —

AWR-106 Atractosteus spatula 220.4 — þ20.6 —

AWR-120 Atractosteus spatula 223.4 — þ21.6 —

AWR-127 Atractosteus spatula 226.6 — þ17.0 —

AWR-136 Atractosteus spatula 223.5 — þ16.9 —

AWR-137 Atractosteus spatula 222.7 — þ16.9 —

AWR-129 Canis latrans 224.8 — þ19.5 —

AWR-156 Canis latrans 227.2 — þ18.3 —

LSUMZ-11274 Canis latrans 222.5 — þ13.6 —

LSUMZ-17873 Canis latrans 221.5 — þ14.8 —

LSUMZ-26849 Canis latrans 225.9 — þ13.8 —

LSUMZ-26851 Canis latrans 227.4 — þ15.1 —

AWR-05 Dasypus novemcinctus — 223.8 — þ2.3

AWR-18 Dasypus novemcinctus — 223.3 — þ4.1

AWR-26 Dasypus novemcinctus — 223.8 — þ5.9

AWR-28 Dasypus novemcinctus — 224.0 — þ4.5

AWR-29 Dasypus novemcinctus — 224.7 — þ4.4

AWR-02 Didelphis virginiana 225.9 225.7 þ17.5 þ4.3

AWR-06 Didelphis virginiana 225.0 223.1 þ16.9 þ5.8

AWR-07 Didelphis virginiana 227.4 226.8 þ16.1 þ8.5

AWR-08 Didelphis virginiana 223.8 225.9 þ15.8 þ6.3

AWR-119 Didelphis virginiana 224.5 224.0 þ18.7 þ3.1

AWR-12 Didelphis virginiana 224.0 224.8 þ17.5 þ4.2

AWR-13 Didelphis virginiana — 224.3 — þ5.5

AWR-22 Didelphis virginiana — 226.0 — þ4.4

AWR-27 Didelphis virginiana — 222.6 — þ6.6

AWR-121 Lepisosteus sp. 224.2 — þ15.4 —

AWR-122 Lepisosteus sp. 223.7 — þ19.4 —

AWR-35 Lepisosteus sp. 224.6 — þ20.2 —

(Continued.)
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Table 1. (Continued.)

specimen no. taxon
d13C (‰ [VPDB])
(diet) (bioapatite)

d13C (‰
[VPDB])
(diet)
(keratin)

d18O (‰,
[VSMOW])
( phos.)
(bioapatite)

d15N (‰,
[AIR]) (diet)
(keratin)

AWR-37 Lepisosteus sp. 223.7 — þ20.3 —

AWR-09 Lontra canadensis 230.8 230.1 þ16.6 þ8.5

AWR-130 Lontra canadensis 230.3 — þ16.5 —

AWR-45 Lontra canadensis 227.3 225.3 þ15.0 þ8.8

LSUMZ-13747 Lynx rufus 227.0 — þ13.9 —

LSUMZ-32761 Lynx rufus 228.9 — þ15.6 —

LSUMZ-9726 Lynx rufus 226.0 — þ13.4 —

AWR-20 Mephitis mephitis — 216.2 — þ5.3

AWR-32 Mephitis mephitis — 218.7 — þ4.0

AWR-33 Mephitis mephitis — 224.0 — þ6.7

AWR-102 Myocastor coypus 228.2 — þ17.1 —

AWR-99 Myocastor coypus 231.8 — þ17.2 —

AWR-133 Neotoma floridana 232.6 — þ18.4 —

AWR-19 Neovison vison 226.8 218.1 þ17.5 þ6.6

AWR-46 Neovison vison 227.1 218.1 þ18.4 þ9.3

AWR-17 Odocoileus virginianus — 230.4 — þ2.6

AWR-21 Odocoileus virginianus 229.0 228.8 þ22.7 þ1.3

AWR-50 Odocoileus virginianus — 229.1 — þ3.0

AWR-51 Odocoileus virginianus — 230.5 — þ3.5

AWR-52 Odocoileus virginianus — 229.6 — þ2.6

AWR-55 Odocoileus virginianus — 230.0 — þ0.3

AWR-56 Odocoileus virginianus — 228.8 — þ1.2

AWR-57 Odocoileus virginianus — 228.4 — þ2.4

AWR-58 Odocoileus virginianus — 228.2 — þ7.2

AWR-59 Odocoileus virginianus — 229.8 — þ8.2

AWR-60 Odocoileus virginianus — 230.1 — þ0.8

AWR-61 Odocoileus virginianus — 231.2 — þ3.8

AWR-62 Odocoileus virginianus — 231.1 — þ4.4

AWR-63 Odocoileus virginianus — 229.9 — þ1.6

AWR-64 Odocoileus virginianus — 230.6 — þ5.9

AWR-65 Odocoileus virginianus — 228.8 — þ2.8

AWR-66 Odocoileus virginianus — 229.9 — þ2.8

AWR-67 Odocoileus virginianus — 228.7 — þ0.4

AWR-68 Odocoileus virginianus — 227.9 — þ1.8

AWR-69 Odocoileus virginianus — 229.5 — 20.4

AWR-70 Odocoileus virginianus — 229.2 — þ2.1

AWR-71 Odocoileus virginianus — 229.7 — þ1.8

AWR-72 Odocoileus virginianus — 228.9 — þ2.4

AWR-73 Odocoileus virginianus — 228.4 — þ2.2

(Continued.)
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particularly true of temperatures derived from aquatic ectotherm bioapatite, in which all sampled taxa

produced estimates consistent with non-summer Atchafalaya River water temperature ranges. When

the proposed multi-taxic two-part endotherm–ectotherm method (modified from Fricke & Wing [25])

is used to calculate mean water temperature obtained from the bioapatite oxygen isotope results of all

taxa, a value of 21.98C is obtained. This value is within 28C of the measured mean annual

temperature (20.38C) and 18C of the measured median annual temperature (21.18C).

4. Discussion
4.1. Factors affecting isotopic compositions of vertebrate tissue
The relative amounts of different stable isotopes preserved in the tissues of an organism depend on

several factors. Stable carbon isotope ratios, particularly in terrestrial systems, generally relate to the

Table 1. (Continued.)

specimen no. taxon
d13C (‰ [VPDB])
(diet) (bioapatite)

d13C (‰
[VPDB])
(diet)
(keratin)

d18O (‰,
[VSMOW])
( phos.)
(bioapatite)

d15N (‰,
[AIR]) (diet)
(keratin)

AWR-74 Odocoileus virginianus — 228.7 — þ1.2

AWR-75 Odocoileus virginianus — 228.5 — þ1.0

AWR-76 Odocoileus virginianus — 228.8 — 20.2

AWR-77 Odocoileus virginianus — 228.8 — þ1.7

AWR-78 Odocoileus virginianus — 227.0 — þ1.1

AWR-79 Odocoileus virginianus — 229.2 — 20.3

AWR-24 Peromyscus gossypinus — 227.2 — þ2.2

AWR-01 Procyon lotor 227.0 225.5 þ17.4 þ5.7

AWR-10 Procyon lotor 225.2 222.1 þ15.5 þ6.0

AWR-25 Procyon lotor — 227.3 — þ5.2

AWR-30 Procyon lotor — 226.3 — þ7.3

AWR-98 Procyon lotor 230.3 — þ16.8 —

AWR-104 Sciurus niger 234.5 — þ19.3 —

AWR-11 Sciurus niger 231.8 226.1 þ16.5 þ6.0

AWR-23 Sciurus niger — 227.9 — þ1.6

AWR-31 Sciurus niger 229.5 227.3 þ21.6 þ2.6

AWR-34 Sciurus niger — 223.8 — þ4.0

AWR-36 Sciurus niger — 228.6 — þ2.9

AWR-48 Sus scrofa — 217.6 — þ5.3

AWR-85 Sus scrofa — 226.5 — þ3.7

AWR-101 Sylvilagus aquaticus 227.0 224.4 þ15.4 þ3.0

AWR-47 Sylvilagus aquaticus 227.9 228.2 þ16.7 þ0.7

AWR-86 Sylvilagus aquaticus 225.1 221.2 þ18.0 þ4.7

AWR-93 Sylvilagus aquaticus 229.8 225.4 þ16.9 þ1.5

LSUMZ-36097 Ursus americanus 226.9 — þ16.0 —

LSUMZ-36101 Ursus americanus 222.5 — þ15.6 —

LSUMZ-36102 Ursus americanus 220.9 — þ16.0 —

LSUMZ-9045 Ursus americanus 227.7 — þ15.1 —
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plant source at the base of the food web, which typically follow either the C3 (d13C� –36 to –21‰,

average of approx. –28 to –26‰), or C4 (d13C� –14 to –10‰, average� –12‰) photosynthetic

pathway, being therefore low in d13C relative to modern atmospheric CO2 (approx. –8.5 to –8.4‰)

[1,4,10,20,29,39,60,78,111,124]. The stable carbon isotope compositions of ingested plant tissues do not

generally change greatly per trophic level when they are incorporated into the tissues of herbivores

and, later, omnivores/generalists and faunivores (i.e. organisms regularly/primarily feeding on

invertebrates and vertebrates) [2,8,10,125]. Stable carbon isotope ratios are also affected by body size

Table 2. Species-level mean d13Cdiet and d15Ndiet values from keratin samples. d13C values standardized to VPDB and TEF-
corrected to diet. d15N values standardized to AIR and TEF-corrected to diet.

taxon
mean d13C
(‰, VPDB) (diet)

std. err.
d13C (‰)

mean d15N
(‰, AIR) (diet)

std. err.
d15N (‰)

Alligator mississippiensis 227.1 0.77 þ9.9 0.60

Lontra canadensis 227.7 2.38 þ8.7 0.14

Neovison vison 218.1 0.01 þ7.9 1.32

Procyon lotor 225.3 1.13 þ6.1 0.45

Didelphis virginiana 224.8 0.48 þ5.4 0.53

Mephitis mephitis 219.6 2.31 þ5.3 0.76

Dasypus novemcinctus 223.9 0.21 þ4.2 0.59

Sus scrofa 222.0 4.48 þ4.5 0.82

Peromyscus gossypinus 227.2 — þ2.2 —

Sciurus niger 226.7 0.83 þ3.4 0.75

Sylvilagus aquaticus 224.8 1.45 þ2.5 0.88

Odocoileus virginianus 229.3 0.18 þ2.3 0.37

Table 3. Species-level mean d13Cdiet and d18Ophosphate for bioapatite samples. d13C values standardized to VPDB and TEF-
corrected to diet. d18O values standardized to VSMOW and corrected to phosphate moiety.

taxon
mean d13C
(‰, VPDB) (diet)

std. err.
d13C (‰)

mean d18O
(‰, VSMOW)( phos.)

std. err.
d18O (‰)

Amia calva 223.1 1.04 þ14.7 0.50

Atractosteus spatula 223.3 0.99 þ18.6 1.04

Lepisosteus sp. 224.1 0.22 þ18.8 1.16

Alligator mississippiensis 225.3 0.66 þ18.6 0.37

Lontra canadensis 229.5 1.08 þ16.0 0.52

Neovison vison 226.9 0.17 þ17.9 0.47

Lynx rufus 227.3 0.84 þ14.3 0.66

Canis latrans 224.9 1.00 þ15.9 0.99

Ursus americanus 224.5 1.66 þ15.7 0.22

Didelphis virginiana 225.1 0.55 þ17.1 0.44

Procyon lotor 227.5 1.49 þ16.6 0.55

Neotoma floridana 232.6 — þ18.4 —

Sciurus niger 231.9 1.44 þ19.1 1.45

Myocastor coypus 229.9 1.82 þ17.1 0.03

Sylvilagus aquaticus 227.5 0.97 þ16.8 0.52

Odocoileus virginianus 228.9 — þ22.7 —
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[126], physiology [5] and local environmental conditions, including humidity [5,20], forest density/

canopy cover [55,127], dissolved inorganic carbon (DIC) in surrounding water bodies [111], and

degree of marine/coastal influence [10,111]. Nitrogen isotope ratios reflect the relative trophic level of

a sampled organism in the local food web, with 15N becoming more enriched as the trophic level

increases [1,8,9,111]. This predictable enrichment (most often approx. 2–4‰) per trophic level makes

nitrogen isotope ratios a powerful tool for studying diet, food web interactions and resource

partitioning [1,3,16,48,50–54,56,82,90,92,103,106,128–130]. Depending on the study system, the

utilization of nitrogen isotopes in (palaeo)ecological studies may be limited, given that it is not
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Figure 2. Bi-plots of (a) keratin d15N ([AIR], diet) versus keratin d13C ([VPDB], diet) and (b) bioapatite d18O ([VSMOW], phosphate-
corrected) versus bioapatite d13C ([VPDB], diet) community distributions for all sampled taxa. Species means plotted with standard
errors (thick lines) and standard deviations (thin lines). Coloured hulls indicate diet/guild assignments (green ¼ herbivore,
yellow ¼ omnivore, red ¼ terrestrial faunivore, blue ¼ aquatic faunivore). See table 2 for mean isotopic compositions for
keratin, table 3 for mean isotopic compositions for bioapatite, and electronic supplementary material, table S2 for natural
history data for each taxon.
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contained in the inorganic components of bone and teeth [3,4,8,49,78,111,131]. Oxygen isotope ratios are

perhaps the most complex of those included in this study, being controlled by a number of factors, most

largely related to environmental and physiological conditions [4,5,20,49,111]. Environmentally, changes

in d18O record consumed water sources, depending on the diet/behaviour of an organism, and are often

closely related to surface water conditions, local and regional patterns of temperature, precipitation,

humidity, evaporation, elevation and marine versus freshwater settings [5,6,20,121]. The behaviour

and physiology of a given organism influences which of these external environmental changes to d18O

may predominate in the signal present in a given tissue. These considerations include whether an

organism obtains water by drinking (recording a value closer to the surface water d18O) or primarily

through its diet (such as large herbivores obtaining water through consuming plant matter rather than

drinking, in which the more 18O-rich plant water from leaves will be reflected in the tissues of the

herbivore), the degree of humidity dependence in a given taxon, and metabolism (i.e. ectothermic

versus endothermic) of a taxon [4,5,20,49]. These various factors must be considered when

interpreting the isotopic results in the sampled taxa, and the conclusions drawn from them regarding

the community ecology of the Atchafalaya system. The major observations are discussed below, with

additional discussion of tissue-level isotopic results found in electronic supplementary material, S1.

Table 4. Calculated temperature and d18Owater for bioapatite from each sampled taxon, along with measured Atchafalaya River
water temperatures derived from USGS data (electronic supplementary material, table S8; [122]). Bioapatite d18O values
standardized to VSMOW and corrected to phosphate moiety. Method of calculation or source of measured data noted in ‘details’
column, with referenced papers discussed in manuscript text.

datapoint(s) temp. (8C) d18Ow (‰) details

Atch. Riv. Max. Rec. Temp. 31.8 — USGS site 07381600 Lower Atchafalaya River at

Morgan City, LA (2015 – 2018) [122]

Odocoileus virginianus 24.6 3.4 Kohn 1996 mammalian herbivore eqn. [121]

All Taxa Mean Endo-Ecto

Calc.

21.9 — Modified Fricke & Wing 2004 two-part endotherm –

ectotherm water temp calculation [121]

Atch. Riv. Median Rec. Temp. 21.1 — USGS site 07381600 Lower Atchafalaya River at

Morgan City, LA (2015 – 2018) [122]

Canis latrans 20.6 0.6 Kohn 1996 mammalian carnivore eqn. [121]

Atch. Riv. Mean Rec. Temp. 20.3 — USGS site 07381600 Lower Atchafalaya River at

Morgan City, LA (2015 – 2018) [122]

Sciurus niger 17.8 21.3 Kohn 1996 mammalian herbivore eqn. [121]

Neovison vison 17.6 21.5 Kohn 1996 mammalian carnivore eqn. [121]

Neotoma floridana 16.4 22.3 Kohn 1996 mammalian herbivore eqn. [121]

Lepisosteus sp. 14.4 23.7 Amiot 2007 ectotherm eqn. [65]

Alligator mississippiensis 14.1 23.9 Amiot 2007 ectotherm eqn. [65]

Atractosteus spatula 14.1 23.9 Amiot 2007 ectotherm eqn. [65]

Myocastor coypus 14.0 23.9 Kohn 1996 mammalian herbivore eqn. [121]

Lontra canadensis 13.8 24.1 Kohn 1996 mammalian carnivore eqn. [121]

Didelphis virginiana 13.6 24.2 Kohn 1996 mammalian omnivore eqn. [121]

Sylvilagus aquaticus 13.3 24.4 Kohn 1996 mammalian herbivore eqn. [121]

Procyon lotor 12.4 25.0 Kohn 1996 mammalian omnivore eqn. [121]

Ursus americanus 10.4 26.4 Kohn 1996 mammalian omnivore eqn. [121]

Lynx rufus 10.4 26.4 Kohn 1996 mammalian carnivore eqn. [121]

Amia calva 9.5 27.1 Amiot 2007 ectotherm eqn. [65]

Atch. Riv. Min. Rec. Temp. 4.6 — USGS site 07381600 Lower Atchafalaya River at

Morgan City, LA (2015 – 2018) [122]
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4.2. Isotope ecology of Atchafalaya taxa
Comparisons of mean isotope distributions (figure 2) illustrate the considerable variability and overlap in

isotopic resource usage among sampled Atchafalaya taxa. While non-overlap of species isotopic ranges is

not required, or even necessarily expected, a considerable degree of overlap in isotopic range without

significant differences in mean isotope compositions suggests that dietary or trophic discriminations

may not be resolvable using these isotopic proxies alone. Where additional data are present (such as

natural history or other observational records), then these distributions may be further contextualized

and meaningfully interpreted. As will be discussed further below, this has potential implications for

studies of Mesozoic systems, where additional sources of contextual information may or may not be

present.

The degree of overlap present, and ecological interpretation possible, in these data is dependent on

the particular isotope and tissue being discussed. Keratin d15N is more effective at partitioning taxa by

relative trophic level (low values representing primary consumers and higher values representing

secondary and tertiary consumers), matching predictions from natural history data (electronic

supplementary material, table S2). Both keratin and bioapatite d13C have considerable overlap in

terms of overall distribution, among guilds, as well as separately among the sampled species

(figure 2), and their strongly negative values probably reflect C3-based systems [1,4,111]. A minor

exception to this exists in the keratin d13C ranges of Neovison (mink), Mephitis (skunk) and Sus (feral

pig), all of which are richer in 13C relative to the community average, suggesting some degree of C4

influence on their diets. Interestingly, the mean bioapatite d13C of Neovison is approximately –27‰,

whereas its keratin d13C is approximately –18‰, suggesting that whatever C4 influence existed on the
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Figure 3. Comparison of Atchafalaya River measured annual water temperature range (median ¼ solid line, mean ¼ dashed line)
with calculated water temperature (filled circles) from mean bioapatite oxygen isotope data for each measured taxon (using taxon/
physiology specific equations from Kohn [121] and Amiot et al. [65]). Also plotted (unfilled circle) is the temperature estimate using
modified two-point calculation of Fricke & Wing [25] derived from mean bioapatite oxygen isotope data of endotherms (mammals)
and ectotherms (fish þ reptiles). See table 4 for calculated and measured temperature values.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181210
15



diet of Neovison in this sample may have been present on a shorter/recent timescale (keratin isotopic

signals typically reflect weeks to months [77,132]) when compared with the more permanent or

longer-term d13C signal provided from bioapatite. Mammalian enamel bioapatite is generally fixed

relatively early in life, often over a period of several months to half a year [133], whereas bone

bioapatite reflects something akin to a multi-year rolling average, taking a decade in some cases to

fully remodel [134]). It is also possible that Neovison (mink), which is known to feed on a wide variety

of terrestrial and aquatic organisms, shifts its diet opportunistically or seasonally between C3 (e.g.

fish, muskrat, swamp rabbit etc.) and C4 (e.g. animals feeding on grass or human grain crops, such as

some rodents, birds or insects) feeding prey, and the C3 source happens to have been what was

preserved in these individuals during the relatively short period of mammalian enamel formation

early in ontogeny [133].

Despite the observed overlaps, some broad patterns can be seen in the keratin and bioapatite carbon

isotope results at both the species and guild levels. Among larger grouping, such as diet/guild (coloured

hulls in figure 2), some separation can be seen between herbivores and faunivores þ omnivores, as well

as between fully aquatic faunivores (i.e. fish) and other faunivores þ omnivores. These relative

differences are more pronounced in the bioapatite carbon isotope results than in the keratin carbon

isotope compositions, which as noted above may relate to temporal effects or dietary averaging in

bioapatite versus keratin isotope signatures.

Relatively little evidence exists to suggest a widespread canopy effect contribution to the overall

pattern of either the keratin or bioapatite d13C [55,127]. It is possible, however, that canopy effects

could explain the lower mean d13C of Sciurus niger and Neotoma floridana, in particular, relative to

both other herbivores and the majority of taxa sampled in this study, as both are known to be either

arboreal or prefer forest understorey habitats [135,136]. Another potential cause of the distinct d13C of

these taxa when compared with the other sampled herbivores is their more granivorous diet, whereas

Odocoileus virginianus is primarily a terrestrial folivore, and Sylvilagus aquaticus and Myocastor coypus
consume a mixture of terrestrial and aquatic vegetation (see electronic supplementary material, table

S2). Previous studies comparing differences in the carbon isotope compositions of photosynthetic

versus reproductive plant tissues, however, typically find the latter (seeds, fruit etc.) to be 13C-

enriched rather than 13C-depleted [137], suggesting that dietary effects may be at odds with potential

canopy effects. A canopy effect explanation for Sciurus and Neotoma is also supported by the relatively

higher mean bioapatite d18O for these taxa, as arboreality has previously been shown to correlate with
18O-enrichment [49].

Among higher-level consumers, several species-level patterns exist. Omnivorous species such as

Procyon and Didelphis contain overlapping isotopic ranges, though the former overlaps with multiple

herbivorous taxa, whereas the latter does not (overlapping only with Sylvilagus). This difference may

be the result of aquatic invertebrates/bivalves forming a large component of the diet of Procyon when

compared with Didelphis (electronic supplementary material, table S2), as similar diets have previously

been found to be more negative in d13C [138]. Relatively close isotopic associations exist between

some predators and potential prey d13C (e.g. Lynx and Sylvilagus, Canis and Didelphis) [139], though

there are also cases where predator–prey relationships are very difficult to extrapolate based on the

available data (e.g. Alligator, Ursus, Lontra). In the case of both Alligator and Ursus (bear), it is known

that these animals can have varied diets composed of terrestrial and/or aquatic sources [140,141], and

in the case of Ursus there is also probably a large herbivorous component to the diet [140]. The d13C

range of Ursus structural carbonate from bone bioapatite in this study is interesting as it contrasts

with recent reports [140] of their dietary preferences from other areas in Louisiana, where C4 plants

(specifically corn) seem to make up a large component of the overall diet. It is possible that these

Ursus specimens did not feed as heavily on human crops. Given the seasonal nature of that feeding

[140], it is also possible that the averaging effect of the sampled bone bioapatite removes any apparent

C4 effects when combined with primarily C3 feeding during the majority of the year. Crustaceans, fish

(e.g. Amia, Atractosteus) and mammals (e.g. Myocastor) are typical prey for Alligator in Louisiana [141],

forming a large component of their diet. This is consistent with the intermediate d13C range of

Alligator relative to Myocastor and sampled fish taxa. The three sampled fish taxa (Amia, Atractosteus
and Lepisosteus) have carbon isotope ranges consistent with aquatic feeding on pelagic/limnetic and

littoral, rather than benthic, food sources [110,138,142,143]. The measured carbon isotope ranges of

Lontra, being depleted of 13C relative to other aquatic taxa and highly variable (for keratin), may be

the result of several factors. Primarily freshwater feeding in Lontra would explain the lower d13C if

individuals of other aquatic taxa (e.g. Amia, Atractosteus, Lepisosteus) have a higher amount of

estuarine or marine influence in their feeding [144]. It is also possible that the seasonally variable diet
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of Lontra, consuming mostly fish in summer and crustaceans/bivalves in winter, is responsible for its

more divergent d13C [145], as benthic bivalves often have considerably more negative carbon isotope

compositions relative to littoral and pelagic/limnetic feeding taxa [138,142]. Carbon isotope

compositions for bioapatite tissues from the sampled gar taxa are also of interest, as they record a higher

degree of inter-tissue (i.e. signal in tooth enamel versus bone structural carbonate versus scale ganoine)

variability than seen in other sampled taxa (electronic supplementary material, S1, tables S6 & S7 and

figures S1 & S2). A possible explanation for this a high degree of variation in d13C of bioapatite tissues in

Lepisoteus and Atractosteus relates to their natural history. A study of seasonal habitat use in Lepisosteus
oculatus from the Atchafalaya River (and surrounding lakes and streams) found considerable variation in

home range size/shape [146]. Variation was particularly high during the annual spring flood pulse, at

which time home ranges commonly expanded to include inundated floodplain terrain [146]. This

variable habitat use during flooding could conceivably result in greater environmental variability in

resources sources due to the mixing of freshwater aquatic with terrestrial and even marine sources, and

consequently produce the greater variation obtained here for gar isotope data.

Resource mixing of the form suggested for gar may also account for some of the intra-species

variability and overall isotopic range overlap seen in the Atchafalaya dataset. Just as this hypothesized

mixing of organic carbon, sediment and even individual aquatic taxa (such as gar) may occur during

annual flood-induced inundations, terrestrial taxa feeding across these landscapes may be consuming

resources that are less distinct in isotopic composition than is the case in other environments. As well,

living in annually flooded, often water-fragmented habitats may result in more mixed-feeding diets

for taxa in these communities, deriving food resources from a mix of terrestrial and aquatic sources,

rather than more specialized behaviours. An important consideration here is that without the

observed natural history data available for this extant system (electronic supplementary material, table

S2), the patterns in these d13C data would be even more difficult to interpret. It is also possible that

some component of the isotopic distributions of taxa sampled in these analyses may be influenced by

other factors, such as species-specific ontogenetic dietary niche shifts [147,148], body size [149] or

physiology [150], and further investigations into these questions may be warranted. Nevertheless,

these results suggest that in coastal floodplain forest systems, considerable isotopic overlap between

taxa, particularly where mean isotopic values are not significantly different, may obfuscate ecological

and niche-use differences present in the sampled communities.

4.3. Oxygen isotopes and temperature-estimation
The overall pattern of oxygen isotope data from bioapatite is similar to the carbon isotope data in that a

high degree of overlap exists among taxa (figure 2), which as noted above may be related to canopy

effects, diet and humidity tolerance in some taxa. Surface water ‘temperatures’ were calculated from

mean bioapatite oxygen isotope data (figure 3), and compared both among taxa and with the annual

range of temperatures recorded directly from the Atchafalaya River. While some apparent patterns

exist in the calculated temperatures, such as values for numerous aquatic or semi-aquatic taxa (e.g.

Lepisosteus sp., A. spatula, A. mississippiensis, M. coypus, L. canadensis, S. aquaticus) all being within 18C
of one another, and the oxygen isotope compositions of these taxa being similar to unpublished USGS

records of Atchafalaya River oxygen isotope data (–7.2 to –3.7‰, seasonally, with an average of

–5.8‰, sensu Kendall, reported in Wagner [151]), this was not completely consistent. Some terrestrial

taxa also had calculated temperatures very similar to those aquatic taxa, while certain aquatic taxa

(e.g. A. calva) had much lower calculated temperatures. The reason for the difference in d18O and

calculated temperatures for Amia compared to other ectothermic fish such as Lepisosteus and

Atractosteus is not known. It may represent a partial marine or estuarine signal in the gar taxa, as

marine d18O is typically higher than that of freshwater (due to factors such as precipitation, surface

water, unless evaporated in areas of poor circulation) [21] and gar are known to frequent both

freshwater and estuarine/marine settings [152]. Amia provides just one example of the many taxon-

specific sources of variability that may exist. Behavioural factors (e.g. basking or shade-seeking in

reptiles [65]), proportion of water obtained by drinking versus dietary sources (i.e. water contained in

leaves and other vegetation), different tolerances to relative humidity conditions, and seasonal/annual

changes in food availability may influence aspects of life history in these specific organisms that

general oxygen isotope-temperature equations may not adequately take into account [5]. Similarly, it

is also possible that some variability in the bioapatite oxygen isotope compositions, and

corresponding temperature calculations, between sampled taxa may reflect differences in the seasonal

timing of growth or remodelling of these tissues. Given that these data represent mean values from
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multiple individuals of different ages, they may not all correspond to the temperature/environmental

conditions from the same temporal period. In addition to simply sampling individuals of different

ages, taxonomic issues could also complicate this variability. For example, enamel oxygen isotope

compositions of mammals would preserve a signal from an early ontogenetic stage (as permanent teeth

in mammals form relatively early and are not replaced [133]), whereas those from fish or reptiles would

be replaced on a regular basis throughout life and are located away from the body core (potentially

leading to different formational temperatures) [65]. Bone bioapatite would presumably reflect more of an

average oxygen isotope environmental signal given its longer remodelling time [134], though its oxygen

isotope/temperature signal would also probably be influenced by ontogenetic and seasonal/temporal

environmental differences between individuals and taxa. These factors may produce relatively small

changes in oxygen isotope composition of a species, or may cause greater divergence in oxygen isotope

composition when comparing one species to others, such as the case of Odocoileus in this dataset. The

particularly high d18O of Odocoileus compared to the other taxa may relate to it being a large-bodied

folivore. It primarily consumes leaf water rather than surface water; leaf water is typically enriched in
18O relative to surface water by transpiration and greatly affected by humidity [4,20,49,111]. This higher

oxygen isotope composition consequently impacts the calculated ‘temperature’ values from the

bioapatite of this organism.

The uncertainties and associated variability present in the calculated temperatures derived from oxygen

isotopes in vertebrate bioapatite in the Atchafalaya dataset present some possible problems for the use of

such methods in palaeontological contexts. This variation, as noted above, may be the result of multiple

factors influencing the preserved oxygen isotope composition, and potentially interfering with the

oxygen isotope–temperature relationship. This suggests that alternative methods of isotope temperature

reconstruction, such as the measurement of clumped isotopes [153], be used to confirm the utility of this

proxy in palaeontological settings prior to widespread use. Despite these caveats, however, there may

still be some cause for optimism in using oxygen isotope data from vertebrate bioapatite. Despite the

variability in the oxygen isotope data here, the calculated mean temperatures for each taxon are within

the range of temperatures recorded annually in the Atchafalaya River, and much more interestingly, the

combined taxon mean temperature estimate (calculated from the proposed two-part endotherm-

ectotherm method modified from Fricke & Wing [25]) of 21.98C is within 28C of the measured annual

temperature (20.38C) and 18C of the measured annual median temperature (21.18C) (figure 3 and

table 4). The result of this combined taxon calculation approach suggests it may be a viable alternative to

the variability of the single taxon methods, by providing an average ‘temperature’ estimate that is

relatively free of the ‘noise’ present in individual taxon calculations (building on the two-taxon approach

originally proposed by Fricke & Wing [25]). This ‘noise’ may be representative of different life histories

and/or environmental preferences in the individual taxa, which in turn may bias the estimated

‘temperature’ calculated from their respective bioapatite oxygen. A wide sampling of taxa in a given

system, representing a sufficiently wide breadth of life histories and relative environmental preferences

may sufficiently cancel out the putative biases introduced by any individual taxon. If this is the case,

then the modified method may be useful as an alternative to more intensive methods, such as clumped

isotope measurements, in performing palaeo-temperature reconstructions, and may offer a way to

minimize the impact of other factors affecting oxygen isotope composition (e.g. salinity, leaf water versus

drinking water, evaporation etc.), depending on the specific taxa sampled and their proportion of the

total sample. However, additional testing may be required, particularly against other methods of

temperature estimation, to verify the efficacy of this modified multi-taxic method.

Although the relatively high degree of variability and overlap seen in the Atchafalaya results may

appear somewhat at odds with other vertebrate isotope ecology studies [1,50,53,83], it is more typical of

C3-dominated systems [61,154], and is consistent with the overlapping dietary and behavioural

information available through observational natural history data of the taxa sampled from this system

(electronic supplementary material, table S2). The isotopic results from the Atchafalaya system suggest a

complex and considerable degree of resource mixing and aquatic–terrestrial interchange among taxa,

and relative lack of resource ‘specialists’. If strong niche partitioning exists in this system, it may not

involve variables/dimensions that can be easily detected via the isotopes analysed here. It is also

possible given the degree of isotopic overlap that this system is currently unsaturated in terms of

ecological resource use, allowing multiple taxa to utilize similar resources without extensive or

exclusionary competition [155–158]. These results provide us with a rare example of a vertebrate

community to ecosystem-scale sampling of isotopic distributions in a subtropical coastal floodplain

forest environment. This case study thus provides us fundamental insight into the complex

inter-relationships of the constituent taxa and an isotopic baseline for future comparisons in similar systems.
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4.4. Implications and recommendations for isotopic studies of Mesozoic systems
As noted in the discussion of the isotope ecology of the ARB data themselves, one particularly important

implication for interpreting isotopic data from Mesozoic systems is the degree to which ecological or

dietary relationships can be interpreted in the presence of broad isotopic overlap between species. If

overlap is considerable, and if there is not significant separation in the mean values between species,

then drawing direct conclusions regarding the fine-scale ecological patterns present in such a system

may not be possible (barring additional data that further contextualizes the results).

The relative relationships of bioapatite carbon and oxygen isotope distributions of taxa presented in this

study (figures 2b and 3), particularly among groups like crocodilians (Alligator), ‘holostean’ fish (Amia,

Lepisosteus, Atractosteus) and metatherians (Didelphis), should be useful for future direct comparisons with

Mesozoic systems, given the presence of many morphologically, ecologically and/or phylogenetically

similar taxa in such assemblages [45,70,159–162]. The environmental [41] and taxonomic [46] similarities

between this study area and much of the Mesozoic terrestrial record (particularly in the Cretaceous)

highlight the utility of the ARB dataset as a useful analogue comparator for Mesozoic system. In addition

to these factors, the broad range of represented body sizes within both the endotherm–ectotherm and

terrestrial–aquatic sample groups should further enhance the utility of the Atchafalaya dataset in

facilitating comparisons with ancient and modern coastal floodplain forest ecosystems.

Another consideration from these data is their utility in constraining interpretations of isotopic results

and informing on several sources of error/variation, or causes for caution, in isotopic studies of Mesozoic

(and other pre-Cenozoic) systems. In several isotopic studies of Mesozoic dinosaurs, samples of gar

ganoine have been used to facilitate intra- and inter-specific comparisons of herbivorous dinosaur

enamel stable isotope data sampled from single sites or across formations [21,23,24]. While these

comparisons may be of some use (such as in identifying shared relative offsets between taxa in

different sites as a relative indicator of original biological signal preservation [23]), the use of gar (or

any single taxon) as a consistent point of comparison [21,23] may be hampered by situations in which

the isotopic compositions of the selected taxon vary considerably between sampling locations [21], a

concern supported by the high variability observed in both d13C and d18O within and among enamel,

bone and ganoine tissues from gar in this study, relative to other sampled taxa (figures 2 and 3;

electronic supplementary material, figures S1 and S2). A possible method to control for some of

sources of error and variability in pre-Cenozoic community studies is to sample a larger number of

taxa, and to sample as many specimens as possible from a single locality and stratigraphic horizon.

This should provide a reasonable approximation of the range of isotopic compositions in such a

system, allow general ecological trends/patterns to be observed, and permit multiple temperature

estimators (spanning the range of annual temperature variation) to be calculated. Additionally, our

proposed modified two-part temperature estimate method, with sufficient taxonomic sampling,

appears to allow for a surprisingly accurate approximation of mean annual water temperature to be

captured. Given that the precise factors affecting species-level oxygen isotope composition may not be

known when sampling fossil taxa, this method may mitigate some of that uncertainty. We would also

recommend that additional methods for temperature estimation be employed to confirm these results.

Nitrogen isotope results in the Atchafalaya dataset, derived from keratin, are not particularly applicable

to most pre-Cenozoic fossil stable isotope analyses due to a presumed lack of appropriate soft tissue

preservation. In our view, previous research examining nitrogen isotope distributions (from high

molecular weight compounds) in Mesozoic vertebrate communities [28] produced d15N values that did

not show the expected increase with increasing trophic level (albeit some suggestions to the contrary in

that study), but instead exhibited a high degree of trophic level mixing (i.e. some secondary consumers

with greater 15N than primary consumers, but also multiple secondary consumers with 15N considerably

lower than any co-occurring primary consumer). Based on our results, it seems likely that those

inconsistencies are the result of methodological issues, contamination or diagenetic alteration, or because

nitrogen isotopes do not preserve in fossils of such considerable age. While evidence of original organic

preservation in pre-Cenozoic fossils remains controversial [28,163–172], promising recent studies on

the subject [173–175] suggest that further research on nitrogen isotope variation in these fossil systems

is warranted.

A number of studies using carbon and/or oxygen isotope data have made ecological, environmental

or physiological inferences about Mesozoic vertebrate communities and the taxa within them

[21,23,28,33–35,159,176,177]. Our results should allow for both new research expanding on these

foundational Mesozoic investigations, as well as the re-evaluation of previous hypotheses in the light

of this new comparative framework. For example, Amiot et al. [159] performed palaeoenvironmental
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reconstructions and compared carbon and oxygen isotope compositions measured from multiple

dinosaurs and reptiles sampled from six localities from the Cretaceous of East Asia, inferring evidence

of niche partitioning of food resources. Three of their six sampled sites were compared statistically to

assess for significant differences between carbon and oxygen isotope compositions in the sampled

dinosaurs, with significant differences detected between taxa in two of the sites (table 3 in [159]).

What is of particular interest in these sites with respect to the results from the Atchafalaya dataset is

that fossil sites in Amiot et al. [159] with greater overlap between taxa possess wet/humid sub-

tropical palaeoenvironments (not dissimilar from the ARB [71]), whereas those with greater apparent

partitioning are reconstructed as cool temperate forests or warm temperate woodlands. It is

conceivable that additional sampling in these sites, combined with comparisons with the Atchafalaya

and other extant systems could expand upon the ecological patterns identified thus far and provide

insight into resource-use and community structure across environmental gradients.

Similar to the previous example, Fricke & Pearson [21] compared carbon and oxygen isotope data

from hadrosaurs and ceratopsians and concluded that micro-habitat niche-partitioning existed

between them, with hadrosaurs suggested to live in floodplain forests and feed on plants of the forest

canopy, and ceratopsians suggested to shift (over time) from a preference for plants in more open

coastally influenced settings towards a preference for understorey plants in more closed canopy

settings. Their results were based on the combined analysis of data from five vertebrate microfossil

bonebeds (microsites), with statistical comparisons between hadrosaur and ceratopsian isotopic ranges

within each site, as well as hadrosaur–hadrosaur and ceratopsian–ceratopsian ranges between larger

multi-site groups. Statistically, hadrosaur and ceratopsian carbon isotope compositions were

significantly different in 3/5 of sites, though this dropped to 1/5 of sites if the statistical analyses

were performed on all samples from each site, as in two sites some hadrosaur teeth were removed

from the final analyses due to concerns they represented misidentified ceratopsian teeth (due to

plotting isotopically more similarly to ceratopsians rather than hadrosaurs, per Appendix 3 of [21]).

Similarly, oxygen isotope compositions were identified as significantly different between hadrosaurs

and ceratopsians in 1/5 of sites [21]. Though hadrosaurs and ceratopsians could often not be

distinguished statistically, ceratopsians were found to be statistically distinct in carbon and oxygen

isotope ranges from other ceratopsians when analysing among the larger multi-site groups,

representing a possible temporal shift in diet or habitat-use in ceratopsians [21]. By comparison, in the

Atchafalaya dataset, mean carbon and oxygen isotope compositions from bioapatite among herbivores

such as Sciurus, Myocastor and Sylvilagus are approximately 2.0–4.5‰ and approximately 0.5–2.5‰

from one another, respectively (similar to hadrosaurs and ceratopsians), with broadly overlapping

total isotopic ranges (figure 2). All three of these species were sampled from the same region, across a

mixture of relatively closed to open canopy settings, and it is only through independent observational

natural history records (electronic supplementary material, table S2) that differences in their

microhabitat and dietary preferences can be readily identified. As the ceratopsians and hadrosaurs

display inter-specific overlap in their isotopic ranges of a similar degree to those found between taxa

in the Atchafalaya dataset, and that the identification of microhabitat niche-partitioning, if present, is

often subtle in the Atchafalaya dataset (despite the advantage of possessing independent knowledge

of those patterns from observational natural history data), a re-examination of the hypothesis of niche-

partitioning through microhabitat preferences between herbivorous dinosaurs, or at least the degree of

interpretive resolution possible from those data, may be warranted.

As a final example, a number of studies have identified that stable carbon isotope compositions in

dinosaurs are much higher than would be expected for an extant vertebrate in a C3-based system

[23,34]. Several explanations were suggested to explain this phenomenon, including differences in

environmental/isotopic baseline [34], differences in consumed plant species or various stresses on

those plants [21,34] or physiological or other factors resulting in dinosaurs possessing higher

magnitude TEFs than seen in most extant vertebrates [21,23,34,159]. Interestingly, the carbon isotope

compositions measured in Ostrom et al. [28] do not show this offset, though as noted above, the way

in which those data were measured was atypical and thus may not be directly comparable. If

combined with diverse multi-taxic isotopic sampling of dinosaurs and non-dinosaurs from a Mesozoic

site, the Atchafalaya dataset could be integral in further testing these alternative hypotheses, as it

provides an analogue system to be used as a comparative isotopic baseline, and includes multiple

taxa from a wide variety of diets, physiologies and autecologies.

An important consideration for future interpretations of deep-time vertebrate isotope distributions is

that extant analogue datasets can provide a useful isotopic baseline and point of comparison to facilitate

the testing of previously hypothesized ecological patterns in Mesozoic vertebrate isotope studies, and
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may be of particular value given that they facilitate independent confirmation of results (via comparison

with observational natural history data) and lack the confounding concern of diagenetic alteration that

accompanies any investigation of ancient stable isotopes [4]. From the high degree of isotopic overlap

among taxa in the Atchafalaya system, we might predict both considerable aquatic–terrestrial resource

intermixing, and possible ecological undersaturation (in terms of resource use and the severity of

competitive exclusion) in similar systems found in the Mesozoic [155–157]. As well, it is probably the

case that niche partitioning in these coastal floodplain forest systems is occurring in ways not easily

detectable via carbon and oxygen isotope proxies (such as through feeding-height stratification [178]).

This combination of factors may account for some of the diversity present in assemblages of co-

occurring herbivorous and faunivorous dinosaurs found in settings such as the Late Cretaceous of

western North America [179–182].

5. Conclusion
This study provides the first broad-scale vertebrate isotope ecology case study with multi-taxic, multi-tissue

and multi-isotope sampling from a modern C3-dominated coastal floodplain forest system. Measured

ranges of d13C (from keratin and bioapatite tissues) and d18O (from both carbonate and total oxygen

sampling of bioapatite) were found to have considerable overlaps among individuals and taxa,

suggesting a high degree of resource mixing, terrestrial–aquatic interchange, and a possible lack of

ecological saturation in this system. Even with well-established natural history data on ecological

variables for our ARB taxa, such as trophic habits and microhabitat use, the subtleties involved in

identifying these patterns in our isotopic data highlight the difficulties involved in detecting and

interpreting ecological patterns in a complex C3-based system. It stands to reason that for a

palaeoecological system where the description of niches often requires significant inference (particularly

among non-avian dinosaurs, for which there is no exact extant analogue), using isotopic data to describe

fine-resolution details of niche partitioning should be done conservatively. Consequently, though carbon

isotope data can provide some meaningful ecological data in these systems, we also recommend that

novel stable isotope systems be considered in future investigations of trophic and niche structure in C3

ecosystems. Our proposed multi-taxic modification to the two-part endotherm–ectotherm equation

provides a surprisingly accurate method of temperature estimation, and may be of considerable use in

palaeoenvironmental analyses. This research provides a fundamental comparative baseline for assessing

isotopic variation and testing ecological hypotheses in future studies of analogous or near-analogous

Mesozoic systems. Comparisons of this nature should assist in constraining predictions and limiting the

degree to which palaeoecological-proxy data may be over-interpreted.
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