Western University Scholarship@Western

Chemistry Publications

Chemistry Department

2-18-2014

The [4+2] cycloaddition of donor-acceptor cyclobutanes and nitrosoarenes.

Naresh Vemula

Andrew C Stevens

Tyler B Schon

Brian L Pagenkopf

Follow this and additional works at: https://ir.lib.uwo.ca/chempub Part of the <u>Organic Chemistry Commons</u>

Citation of this paper:

Vemula, Naresh; Stevens, Andrew C; Schon, Tyler B; and Pagenkopf, Brian L, "The [4+2] cycloaddition of donor-acceptor cyclobutanes and nitrosoarenes." (2014). *Chemistry Publications*. 38. https://ir.lib.uwo.ca/chempub/38 Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

The [4+2] Cycloaddition of Donor-Acceptor Cyclobutanes and Nitrosoarenes

Naresh Vemula, Andrew C. Stevens, Tyler B. Schon and Brian L. Pagenkopf*

Received (in XXX, XXX) Xth XX 20XX, Accepted Xth XX 20XX 5 DOI: 10.1039/b000000x

The Yb(OTf)₃ catalyzed [4+2] cycloaddition between donoracceptor cyclobutanes and nitrosoarenes is disclosed. This method facilitates the synthesis of tetrahydro-1,2-oxazines in good to excellent yields as single diastereomers. Except for a ¹⁰ few electron-deficient nitrosoarenes, excellent regioselectivity

was observed throughout these studies.

Cycloaddition chemistry remains a premier method for the synthesis of diverse structural architectures and functionalities.¹ In particular, exploitation of ring strain to facilitate cycloaddition

- ¹⁵ reactions is a well-appreciated strategy in modern organic synthesis.² In this regard, the strained carbocyclic donor-acceptor (DA) cyclopropanes have been extensively studied due to their unique reactivity profile and their value as synthetic building blocks has been demonstrated by the preparation of highly
- ²⁰ functionalized carbo- and heterocyclic products via cycloaddition reactions.³ While this area continues to mature, the reactivity of the homologous DA cyclobutanes have only recently garnered significant attention. In recent years, a number of reactive partners have been found to undergo cycloadditions with DA ²⁵ cyclobutanes⁴ and cyclobutanones,⁵ and further exploration will
- create a greater understanding of these fascinating systems. Nitrosoarenes have been utilized in a variety of transformations,⁶ such as dienophiles in hetero Diels-Alder (HDA) cycloadditions,⁷ and enophiles in nitroso-ene reactions.⁸
- ³⁰ Some intriguing reports describe the nitroso functional group's dichotomous capacity to act as either nitrogen or oxygen transfer reagents in nitroso-aldol chemistry, which can be controlled by judicious selection of catalyst.⁹ Surprisingly, nitrosoarenes have not yet seen application in cycloaddition chemistry with either
- ³⁵ DA cyclopropanes or cyclobutanes or with cyclobutanones.¹⁰ Herein we report the first example of a [4+2] cycloaddition of DA cyclobutanes and nitrosoarenes to give tetrahydro-1,2oxazines.¹¹ The tetrahydro-1,2-oxazine core structure can be found in numerous natural products¹² and are known to undergo

⁴⁰ reductive cleavage of the N-O bond to give synthetically useful

Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada, N6A 5B7. Fax: +1(519)661 3022; Tel: +1(519) 661 2111 Extn. 81430; E-mail: bpagenko@uwo.ca

⁴⁵ †Electronic Supplementary Information (ESI) available: [Full experimental procedures; ¹H and ¹³C NMR spectra of new compounds, 2D NMR correlations of key compounds and crystalographic data of **3b** and **3k**]. See DOI: 10.1039/b000000x/ motifs, which were utilized in the total synthesis of several 50 natural products.¹³

Investigations into the reactivity of nitrosoarenes and DA cyclobutanes began with the examination of the reaction between cyclobutane 1a and nitrosobenzene 2a (Table 1).

While a variety of Lewis acids were found to catalyse the ⁵⁵ reaction, maximum yields were obtained with Yb(OTf)₃. Additionally, the product yield was dramatically increased (entries 1, 6 and 8) by decreasing the catalyst loading from 10 to 2 mol %. The reaction could be effected with catalyst loadings as low as 0.5 mol % but in lower yield (entry 9).¹⁴ Among the two

⁶⁰ possible regioisomers (**3a** and **4a**, Table 1), the product observed was always **3a**, and no noticeable amount of **4a** was obtained, irrespective of the Lewis acid used. Thereby demonstrating that the nitrogen of the nitroso functional group was acting as a nucleophile rather than oxygen.¹⁵

 Table 1 Catalyst Screening

O H H 1a	CO ₂ Et Ph ^{-N} CO ₂ Et 2a Lewis acid CH ₂ Cl ₂ , rt	$ \begin{array}{c} $	CO_2Et + O_2Et + H	O_{N}^{Ph} $L_{CO_2Et}^{Ph}$ CO_2Et
Entry	Lewis acid	Mol %	3a:4a ^a	Yield $(\%)^b$
1	Yb(OTf) ₃	10	>20:1	60
2	Sc(OTf) ₃	10	>20:1	55
3	La(OTf)3	10	>20:1	22
4	Zn(OTf) ₂	10	>20:1	61
5	Pr(OTf) ₃	10	>20:1	63
6	Yb(OTf) ₃	5	>20:1	72
7	Sc(OTf) ₃	5	>20:1	61
8	Yb(OTf) ₃	2	>20:1	92
9	Yb(OTf) ₃	0.5	>20:1	80

^aBased on ¹H NMR, ^bIsolated yield

70

With optimal conditions in hand, the scope of the reaction was examined (Table 2). It was discovered that nitrosoarenes with

halogen substituents are excellent reaction partners regardless of the position on the aryl ring (entries 2-7).¹⁶ Substrates with moderately deactivating carbonyl (entries 8 and 9) or ethoxycarbonyl (entry 10) substituents were also resulted in good 5 yields. The electron-deficient nitrosoarenes afforded moderate

- yields (entries 11 and 12); however, another isomer (Figure 2) was also formed up to 25% of the overall isolated yield. Nitrosoarene with weekly electron donating methyl substituent resulted in a substantially decreased yield (entry 13). Upon
- ¹⁰ incorporations of a strongly electron donating group no reaction was observed (entries 14 and 15), likely due to the sequestration of the ytterbium catalyst by the electron-rich nitrosoarene.

Table 2 Reaction Scope

15		$\begin{array}{c} D_2 \text{Et} \\ CO_2 \text{Et} \\ \begin{array}{c} \text{Ar} \\ \textbf{2a-o} \\ \hline \textbf{Yb}(OTf)_3 \\ (2 \text{ mol }\%) \\ CH_2 \text{Cl}_2 \\ \text{rt} \end{array} \xrightarrow{\begin{array}{c} \text{H} \\ \textbf{V} \\ \textbf{Ar} \\ \textbf{N} \\ \textbf{N} \\ \textbf{H} \\ \textbf{H} \\ \textbf{Ar} $	$C_{CO_2Et}^{O} + O_{H}^{H}$	Ar CO_2Et CO_2Et a-o
	Entry	Nitrosoarene	Product	Yield $(\%)^b$
-	1	$Ar = C_6H_5$	3 a	92
	2	$Ar = 4 - C_6 H_4 Br$	3 b	89
	3	$Ar = 4 - C_6 H_4 Cl$	3c	93
	4	$Ar = 3 - C_6 H_4 Br$	3d	87
	5	$Ar = 3-C_6H_4Cl$	3e	95
	6	$Ar = 2,4-C_6H_3Br_2$	3f	47
	7	$Ar = 3,4\text{-}C_6H_3Cl_2$	3g	91
	8	$Ar = 4 - C_6 H_4 C(O) Me$	3h	69
	9	$Ar = 3-C_6H_4C(O)Me$	3i	87
	10	$Ar = 4 - C_6 H_4 CO_2 Et$	3ј	76
	11	$Ar = 4 - C_6 H_4 CN$	3k , 4k (3:1) ^{<i>a</i>}	61
	12	$Ar = 4 - C_6 H_4 NO_2$	31 , 41 (4:1) ^{<i>a</i>}	59
	13	$Ar = 4 - C_6 H_4 C H_3$	3m	29
	14	$Ar = 4 - C_6 H_4 OC H_3$	-	no reaction ^{c}
	15	$Ar = 4 - C_6 H_4 N(CH_3)_2$	-	no reaction ^c

^aRatio of **3:4** of isolated overall yield, ^bIsolated yield, ^cYb(OTf)₃ 2 mol % or 10 mol %

Figure 1 X-ray Crystal Structures of 3b and 3k

- Fortuitously, X-ray quality crystals of compounds **3b** (entry 2, Table 2) and **3k** (entry 11, Table 2) were obtained and the ORTEP structures are depicted in Figure 1. These crystal structures unambiguously establish both the regiochemistry of the cyclization and the relative configuration at the ring fusion.¹⁷
- Extensive 2D NMR analysis was used to support the structural assignments of the isomers formed with electron deficient nitrosoarenes (entries 11 and 12, Table 2). The major isomer in each case was found to have nOe and ¹H-¹⁵N HMBC interactions that were consistent with those observed for **3b** and **3k** (Figure 2).
- ³⁰ The minor isomer, showed nOe interactions suggesting a *cis* ring fusion, and ¹H-¹⁵N HMBC data indicated that it is a regioisomer, rather than a diasteriomer was formed. Similar nOe and ¹H-¹⁵N HMBC correlations were observed for **31** and **41** also.¹⁸ This lack of selectivity could be due to delocalization of the nitrogen lone
- ³⁵ pair of electrons into the aromatic ring, leading to competition between nitrogen and oxygen for dominant nucleophilicity.

In summary, we have reported the first example of a [4+2] cycloaddition between DA cyclobutanes and nitrosoarenes. The regiochemistry and relative stereochemistry of **3b** and **3k** have ⁴⁵ been unambiguously assigned by single crystal X-ray diffraction. The reaction proceeds well with electron neutral and deficient nitrosoarenes to form tetrahydro-1,2-oxazines. Optimization of reaction conditions for electron rich nitrosoarenes and expansion of the substrate scope to additional DA cyclobutanes are currently ⁵⁰ under investigation and a full account will be reported in due course.

We thank the University of Western Ontario and the National Science and Engineering Research Council of Canada for financial support. We also thank Dr. Jacquelyn T. Price and Ms. Aneta Borecki for X-ray crystallographic analysis, Dr. Mathew Willans for NMR spectrographic assistance, Mr. Doug Hairsine for high resolution mass spectroscopy and Prof. Viktor N.

s Staroverov for calculating atomic charges (all from UWO). ACS thanks the Ontario government for an Ontario Graduate Scholarship in Science and Technology (OGSST).

Notes and references

Typical Procedure for Cycloaddition: To a mixture of nitrosoarene (0.30 nmmol) and Yb(OTf)₃ (4 mg, 2 mol %) in anhydrous CH₂Cl₂ (3 mL) at room temperature, was added the cyclobutane (0.36 mmol) under argon atmosphere. After complete consumption of the nitrosoarene (as indicated by TLC) the reaction mixture was layered directly onto a silica gel column and purified by flash chromatography (0-25% EtOAc/hexanes).

- 1 For reviews see; (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98, 863; (b) S. Kobayashi and K. A. Jørgensen, Cycloaddition Reactions in Organic Synthesis, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2001; (c) A. Padwa and W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons, Inc., New York, 2003; (d) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887.
- 2 T. Seiser, T. Saget, D. N. Tran and N. Cramer, *Angew. Chem. Int. Ed.*, 2011, **50**, 7740.
- For reviews see; (a) H.-U. Reissig and R. Zimmer, *Chem. Rev.*, 2003, 103, 1151; (b) M. Yu and B. L. Pagenkopf, *Tetrahedron*, 2005, 61, 321; (c) C. A. Carson and M. A. Kerr, *Chem. Soc. Rev.*, 2009, 38, 3051; (d) F. De Simone and J. Waser, *Synthesis*, 2009, 3353; (e) M. Y. Mel'nikov, E. M. Budynina, O. A. Ivanova and I. V. Trushkov, *Mendeleev Commun.*, 2011, 21, 293.
- 4 For examples see; (a) S. Shimada, K. Saigo, H. Nakamura and M. Hasegawa, *Chem. Lett.*, 1991, **20**, 1149; (b) E. A. Allart, S. D. R. Christie, G. J. Pritchard and M. R. J. Elsegood, *Chem. Commun.*, 2009, 7339; (c) A. T. Parsons and J. S. Johnson, *J. Am. Chem. Soc.*, 2009, **131**, 14202; (d) M. M. A. R. Moustafa and B. L. Pagenkopf, *Org. Lett.*, 2010, **12**, 4732; (e) M. M. A. R. Moustafa, A. C. Stevens, B. P. Machin and B. L. Pagenkopf, *Org. Lett.*, 2010, **12**, 4736; (f) B. P. Machin and B. L. Pagenkopf, *Synlett*, 2011, **2799**; (g) A. C. Stevens, C. Palmer and B. L. Pagenkopf, *Org. Lett.*, 2011, **13**, 1528.
- 5 For examples see; (a) J.-i. Matsuo, S. Sasaki, H. Tanaka and H. Ishibashi, J. Am. Chem. Soc., 2008, 130, 11600; (b) J.-i. Matsuo, S. Sasaki, T. Hoshikawa and H. Ishibashi, Org. Lett., 2009, 11, 3822; (c) J.-i. Matsuo, S. Negishi and H. Ishibashi, Tetrahedron Lett., 2009, 50, 5831; (d) J.-i. Matsuo, S. Sasaki, T. Hoshikawa and H. Ishibashi, Chem. Commun., 2010, 46, 934; (e) S. Negishi, H. Ishibashi and J.-i. Matsuo, Org. Lett., 2010, 12, 4984; (f) J.-i. Matsuo, R. Okado and H. Ishibashi, Org. Lett., 2010, 12, 3266; (g) M. Kawano, T. Kiuchi, S. Negishi, H. Tanaka, T. Hoshikawa, J.-i. Matsuo and H. Ishibashi, Angew. Chem. Int. Ed., 2013, 52, 906.
- For reviews see; (a) S. Patai, *The Chemistry of Amino, Nitroso, Nitro and Related Groups*, John Wiley & Sons Ltd, New York, 2003; (b) H. Yamamoto and N. Momiyama, *Chem. Commun.*, 2005, 3514; (c) H. Yamamoto and M. Kawasaki, *Bull. Chem. Soc. Jpn.*, 2007, 80, 595.
- 7 For reviews see; (a) Y. Yamamoto and H. Yamamoto, *Eur. J. Org. Chem.*, 2006, 2006, 2031; (b) B. S. Bodnar and M. J. Miller, *Angew. Chem. Int. Ed.*, 2011, 50, 5630.
- 8 For reviews see; (a) W. Adam and O. Krebs, *Chem. Rev.*, 2003, **103**, 4131; (b) M. Baidya and H. Yamamoto, *Synthesis*, 2013, **45**, 1931.
- 9 For few examples see; (a) Y. Yamamoto, N. Momiyama and H. Yamamoto, J. Am. Chem. Soc., 2004, **126**, 5962; (b) M. Kawasaki, P. Li and H. Yamamoto, Angew. Chem. Int. Ed., 2008, **47**, 3795; (c) A. Yanagisawa, S. Takeshita, Y. Izumi and K. Yoshida, J. Am. Chem. Soc., 2010, **132**, 5328; (d) A. Yanagisawa, T. Fujinami, Y. Oyokawa, T. Sugita and K. Yoshida, Org. Lett., 2012, **14**, 2434.

- 10 F. Cermola, G. Lucrezia Di, G. Maria Liliana and I. Maria Rosaria, J. Chem. Res., 2005, 10, 677.
- 11 Portions of this work have been presented at the 244th and 246th ACS National Meetings.
- 12 For natural products, containing tetrahydro-1,2-oxazine core see; (a) Z. Horii, T. Imanishi, M. Yamauchi, M. Hanaoka, J. Parello and S. Munavalli, Tetrahedron Lett., 1972, 13, 1877; (b) I. Uchida, S. Takase, H. Kayakiri, S. Kiyoto, M. Hashimoto, T. Tada, S. Koda and Y. Morimoto, J. Am. Chem. Soc., 1987, 109, 4108; (c) N. Lajis, O. Guan, M. Sargent, B. Skelton and A. White, Aust. J. Chem., 1992, 45, 1893; (d) P. Seephonkai, P. Kongsaeree, S. Prabpai, M. Isaka and Y. Thebtaranonth, Org. Lett., 2006, 8, 3073; (e) A. Ohsaki, Y. Kobayashi, K. Yoneda, A. Kishida and H. Ishiyama, J. Nat. Prod., 2007, 70, 2003; (f) Q. Sun, Y.-H. Shen, J.-M. Tian, J. Tang, J. Su, R.-H. Liu, H.-L. Li, X.-K. Xu and W.-D. Zhang, Chem. Biodiversity., 2009, 6, 1751; (g) K. Koyama, Y. Hirasawa, A. E. Nugroho, T. Hosoya, T. C. Hoe, K.-L. Chan and H. Morita, Org. Lett., 2010, 12, 4188; (h) K. Kanokmedhakul, S. Kanokmedhakul, R. Suwannatrai, K. Soytong, S. Prabpai and P. Kongsaeree, Tetrahedron, 2011, 67, 5461; (i) Y. Zhou, A. Debbab, A. Mándi, V. Wray, B. Schulz, W. E. G. Müller, M. Kassack, W. Lin, T. Kurtán, P. Proksch and A. H. Aly, Eur. J. Org. Chem., 2013, 2013, 894.
- For examples see; (a) I. S. Young and M. A. Kerr, *Org. Lett.*, 2003, 6, 139; (b) I. S. Young, J. L. Williams and M. A. Kerr, *Org. Lett.*, 2005, 7, 953; (c) C. A. Carson and M. A. Kerr, *Angew. Chem. Int. Ed.*, 2006, 45, 6560; (d) I. S. Young and M. A. Kerr, *J. Am. Chem. Soc.*, 2007, 129, 1465; (e) A. Y. Sukhorukov and S. L. Ioffe, *Chem. Rev.*, 2011, 111, 5004; (f) N. Moinizadeh, R. Klemme, M. Kansy, R. Zimmer and H.-U. Reissig, *Synthesis*, 2013, 45, 2752.
- 14 No reaction was observed without the Lewis acid, either at room temperature (CH₂Cl₂ 3 d), reflux ((CH₂)₂Cl₂, 3 d) or microwave conditions (CH₂Cl₂, 100° C, 105 min).
- 15 Atomic charges derived from the electrostatic potentials for the nitrosobenzene were in agreement with the results observed. CHelpG charges (a.u.); nitrogen (-0.228) and oxygen (-0.163). Geometry: B3LYP/6-31G*; Density: B3LYP/6-311++G(3df,3pd)
- 16 The low yield of the **3f** could be due to the sterics of bromine at 2-position. Investigation of the reaction scope in detail will be reported in the following full paper.
- 17 The regiochemistry and relative stereochemistry of the other products were assigned by analogy.
- 18 See supplementary information for details.