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Abstract

Financial econometrics is a highly interdisciplinary field that integrates finance, economics,

probability, statistics, and applied mathematics. Machine learning is a growing area in finance

that is particularly suitable for studying problems with many variables. My thesis contains

three chapters that explore financial econometrics and machine learning in the fields of asset

pricing and risk management.

Chapter 2 studies the implications of the new Basel 3 regulations. In 2019, the BCBS final-

ized the Basel 3 regulatory regime, which changes the regulatory measure of market risk and

adds new complex calculations based on liquidity and risk factors. This chapter is motivated

by these changes and seeks to answer the question of how regulation affects banks’ choice of

risk-management models, whether it incentivizes them to use correctly specified models, and

if it results in more stable capital requirements.

Chapter 3 conducts, to our knowledge, the largest study ever of five-minute equity market

returns using state-of-the-art machine learning models trained on the cross-section of lagged

market index constituent returns, where we show that regularized linear models and nonlinear

tree-based models yield significant market return predictability. Ensemble models perform the

best across time and their predictability translates into economically significant Sharpe ratios of

0.98 after transaction costs. These results provide strong evidence that intraday market returns

are predictable during short time horizons.

Chapter 4 studies the idiosyncratic tail risk premium and common factor. Stocks in the

highest idiosyncratic tail risk decile earn 8% higher average annualized returns than in the

lowest. I propose a risk-based explanation for this premium, in which shocks to intermediary

funding cause idiosyncratic tail risk to follow a strong factor structure, and the factor, common

idiosyncratic tail risk (CITR), comoves with intermediary funding. Consequently, firms with

high idiosyncratic tail risk have high exposure to CITR shocks, and command a risk premium

due to their low returns when intermediary constraints tighten. To test my explanation, I cre-

ate a novel measure of idiosyncratic tail risk. Consistent with my explanation, CITR shocks
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are procyclical, are correlated to intermediary factors, are priced in assets, and explain the

idiosyncratic tail risk premium.

Keywords: Financial Econometrics, Machine Learning, Asset Pricing, Risk Management,

Tail Risk
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Summary for Lay Audience

Financial econometrics is a highly interdisciplinary field that integrates finance, economics,

probability, statistics, and applied mathematics. Machine learning is a growing area in finance

that is particularly suitable for studying problems with many variables. My thesis contains

three chapters that explore financial econometrics and machine learning in the fields of asset

pricing and risk management.

Chapter 2 is motivated by the new Basel 3 market risk regulation, which introduces new

complex calculations for global banks. This chapter has three main findings. First, under

Basel 3, banks are incentivized towards riskier models. Second, banks are incentivized toward

inaccurate models meaning that the Basel 3 penalty for inaccuracy may be insufficient. Third,

Basel 3 results in more stable capital requirements.

Chapter 3 is motivated by the idea that markets may be predictable in very short time hori-

zons, since it takes time for traders to incorporate information into prices. To test this idea,

we conduct the largest study of intraday (i.e. five-minute) market return predictability using

machine learning techniques. This chapter has three main findings. First, intraday market re-

turns are predictable, though this predictability has decreased across the years. Second, this

predictability is profitable after transaction costs. Third, consistent with slow traders, pre-

dictability is higher during the middle of the day, and during volatile or illiquid days.

Chapter 4 uses a new tail risk factor to provide an economic explanation for a recent asset

pricing puzzle, which uncovers a hidden risk that emerges during bad times. Specifically, this

chapter is on idiosyncratic tail risk, which measures the severe losses of an individual stock

that are uncorrelated to the market. I propose that idiosyncratic tail risk is caused by large

investment firms impacting individual stocks due to the large size of their trades. When they’re

flush with cash, they conduct more trades, causing tail risk to go up. This means the aggregate

level of tail risk is informative of how much cash big investment firms have. As these are key

players in financial markets, then idiosyncratic tail risk matters for prices and financial stability.
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Chapter 1

Introduction

Financial econometrics is a highly interdisciplinary field that integrates finance, economics,

probability, statistics, and applied mathematics, and is important for understanding complex

financial problems. Machine learning is a growing area in finance that is particularly suitable

for studying problems with many variables, and may help solve problems that have challenged

traditional econometric models. Examples of problems include: risk managers need to under-

stand the behavior of extreme losses of their financial assets and its implications for regulatory

capital requirements, investors seek to explain the price movements of financial assets with

respect to different types of risk, and traders are interested in anticipating short- and long-term

financial market movements. These difficult problems can be solved by combining the theoret-

ical foundation in economics with the quantitative methods in statistics and applied math.

My thesis contains three chapters that explore financial econometrics and machine learning

in the fields of asset pricing and risk management. In Chapter 2, joint with Lars Stentoft, we

study the implications of new market risk regulations for banks’ choice of econometric models

and whether it incentivizes banks to use accurate models. In Chapter 3, joint with Dillon

Huddleston and Lars Stentoft, we examine the predictability of intraday (i.e. five-minute)

market returns using machine learning models estimated on a large cross-section of stocks. In

Chapter 4, I study two recent empirical puzzles: the idiosyncratic tail risk premium and the

common factor driving the idiosyncratic tail risks. I introduce a new econometric measure of

idiosyncratic tail risk using a high-frequency factor model, and resolve the idiosyncratic tail

1
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risk premium puzzle using its common factor.

Chapter 2 studies the implications of the new Basel 3 regulations for banks’ quantitative

risk models. In response to the Subprime Mortgage crisis, the Basel Committee on Banking

Supervision (BCBS) has spent the previous decade overhauling the regulatory framework that

governs how banks calculate minimum capital requirements. In 2019, the BCBS finalized

the Basel 3 regulatory regime, which changes the regulatory measure of market risk and adds

new complex calculations based on liquidity and risk factors. This chapter is motivated by

these changes and seeks to answer the question of how regulation affects banks’ choice of

risk-management models, whether it incentivizes them to use correctly specified models, and

if it results in more stable capital requirements. Our results show that, although the models

that minimize regulatory capital for a representative bank portfolio also result in the most

stable requirements, these models are generally rejected as being correctly specified and tend

to produce inferior forecasts of the regulatory risk measures.

Chapter 3 conducts, to our knowledge, the largest study ever of five-minute equity market

returns using state-of-the-art machine learning models trained on the cross-section of lagged

market index constituent returns, where we show that regularized linear models and nonlinear

tree-based models yield significant market return predictability. Ensemble models perform the

best across time and their predictability translates into economically significant Sharpe ratios of

0.98 after transaction costs. These results provide strong evidence that intraday market returns

are predictable during short time horizons, beyond what can be explained by transaction costs.

Furthermore, we show that constituent returns hold significant predictive information that is not

contained in market returns or in price trend and liquidity characteristics. Consistent with the

hypothesis that predictability is driven by slow-moving trader capital, predictability decreased

post-decimalization, and market returns are more predictable during the middle of the day, on

days with high volatility or illiquidity, and in financial crisis periods.

Chapter 4 studies the idiosyncratic tail risk premium and common factor. Stocks in the

highest idiosyncratic tail risk decile earn 8% higher average annualized returns than in the
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lowest. I propose a risk-based explanation for this premium, in which shocks to intermediary

funding cause idiosyncratic tail risk to follow a strong factor structure, and the factor, common

idiosyncratic tail risk (CITR), comoves with intermediary funding. Consequently, firms with

high idiosyncratic tail risk have high exposure to CITR shocks, and command a risk premium

due to their low returns when intermediary constraints tighten. To test my explanation, I create

a novel measure of idiosyncratic tail risk that is estimated using high-frequency returns, and

theoretically establish its time-aggregation properties. Consistent with my explanation, CITR

shocks are procyclical, are correlated to intermediary factors, are priced in assets, and explain

the idiosyncratic tail risk premium. Furthermore, volume tail risk also earns a premium, fol-

lows a strong factor structure, and its common factor is priced. This duality of idiosyncratic tail

risk and volume tail risk provides evidence for my risk-based explanation, and further supports

the hypothesis that intermediaries’ large trades cause idiosyncratic tail risk and volume tail risk

from Gabaix et al. (2006).



Chapter 2

Regulatory Capital and Incentives for

Risk Model Choice under Basel 3

2.1 Introduction

The regulatory environment that governs how banks calculate minimum capital requirements

has changed dramatically in recent years. First, in response to the 2008 Subprime Mortgage

Crisis, the Basel Committee on Banking Supervision (BCBS) adopted the Stressed Value at

Risk measure. Value at Risk (VaR) is the conditional quantile of the loss distribution at a

given confidence level, and Stressed VaR is defined as the VaR on a one year historical dataset

with significant financial stress (BCBS (2011)). This change significantly increased the capital

charges banks faced. Second, in 2019 the BCBS finalized the Fundamental Review of the

Trading Book (FRTB) regulatory regime as part of Basel 3. This will change the regulatory

measure of market risk from VaR at the 99% confidence level to Expected Shortfall at the

97.5% confidence level (BCBS (2019)). Expected Shortfall (ES) is defined as the expected

loss conditional on VaR being exceeded and is widely perceived to be a more appropriate risk

measure as it captures both the size and likelihood of losses (BCBS (2013)). Additionally, in

Basel 3 Stressed ES at the 97.5% confidence level, defined as the ES during the most severe

4
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one year period of losses available, replaces Stressed VaR as the key risk measure.

The new capital requirements for market risk present an interesting trade-off for banks.

Assuming bank capital is costly and hence banks minimize their capital requirements, Basel

3 incentivizes them to use models producing low Stressed ES. At the same time, Basel 3 pe-

nalizes banks by increasing their capital requirements when their model generates too many

VaR exceedances, which incentivizes banks to use more conservative models. It is not obvious

how different models for VaR and Stressed ES perform in terms of this trade-off and which

model is therefore privately optimal in the sense that it minimizes banks’ capital requirements.

Moreover, it is likely even more costly, and sometimes impossible, for banks to raise capital

during times of high volatility, so prudence might suggest building a buffer stock of capital

during good times that can be drawn down during times of stress. Basel 3 aims at creating

more stable capital requirements by focusing on stressed risk measures. It is also not obvious

how different models for VaR and Stressed ES perform in terms of minimizing measures of

capital requirement stability.

Our paper is motivated by these changes and seeks to answer the question of how regulation

affects banks’ choice of risk-management models and whether it incentivizes them to use cor-

rectly specified models. We also analyze whether the changes made to regulation incentivize

banks to use models that lead to more stable (through-the-cycle) capital requirements rather

than more dynamic (point-in-time), and therefore potentially more systemically risky, capital

requirements. To preview our results, we find that, although the proposed regulation under

Basel 3 seems to incentivize banks to use models that have more stable capital requirements

through time, the models that minimize average capital requirements appear misspecified, in

the sense that they are rejected using standard backtests, and produce inferior forecasts of the

regulatory risk measures.

To answer these questions we construct a portfolio of diverse assets, with different risk

factors and subject to different levels of liquidity risk, that a bank might realistically hold, and

we consider three classes of models for the dynamics of the losses of this portfolio: 1) ad hoc
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methods like Historical Simulation (HS) and RiskMetrics that involve no parameter estimation,

2) models within the classical GARCH framework of Engle (1983) and Bollerslev (1986) that

are estimated by fitting model parameters to the entire dynamic distribution of losses, and 3) a

new class of models developed by Patton, Ziegel, and Chen (2019) that are estimated by fitting

model parameters directly to the dynamics of the risk measures instead, which we refer to as

“FZ” models. For the dynamic models, and the GARCH models in particular, we consider

several types of conditional distributions that can accommodate stylized facts like heavy tails

and skewness toward losses as documented by Hansen (1994) among others.1

We first examine which of the models are correctly specified using both traditional VaR

backtests and a battery of recent joint VaR and ES backtests, and we examine which models

produce optimal forecasts of the risk measures.2 As expected our results show that the ad hoc

models and the HS model in particular fail the backtests and provide inferior forecasts of the

risk measures. More interestingly though, our results also show that the FZ models fail some

backtests and provide inferior forecasts of the VaR and ES compared to the subset of GARCH

models that allow for skewed conditional distributions and are not rejected by the backtests.

Next, we carefully calculate the capital requirements for each model using the Basel 3

formulas and compare the results to those using previous regulatory regimes. Our results show

that the HS model has the lowest average Basel 3 capital of 17.21% whereas the best model in

the FZ class has average capital requirements of 17.42%. However both of these models, along

with several other models that have low capital requirements, are rejected as being correctly

specified or shown to produce inferior forecasts of the regulatory risk measures. The best

performing model which is not rejected by the backtests, a skewed GARCH model, provides

1Using a rolling window estimation setup we also accommodate the recent observation that the conditional
distribution and tails in particular of financial returns vary significantly over time and this particularly so during
times of crisis (Bollerslev and Todorov (2014a) and Kelly and Jiang (2014a)).

2The methods we use to backtest predicted VaR are standard and can be found in, e.g., Christoffersen (2009).
In terms of joint VaR and ES backtests, we consider McNeil and Frey (2000)’s residual test (ER), Bayer and
Dimitriadis (2018)’s strict, auxiliary, and one-sided regression tests (ESR), Nolde and Ziegel (2017)’s conditional
calibration test (CCa), and Gordy and McNeil (2020)’s Spectral Backtests. To asses the optimality of a model’s
forecasts, we consider the Model Confidence Set of Hansen, Lunde, and Nason (2011), the pairwise forecast
performance tests from Diebold and Mariano (2002), and Ziegel et al. (2017)’s Murphy Diagrams.
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superior risk measure forecasts but requires nearly 1.55 times higher capital than the HS model.

The Filtered Historical Simulation (FHS) model, which is also not rejected and in the set of

models that provide superior risk measure forecasts, has capital requirements that are roughly

1.78 times larger than the incorrectly specified HS model. Under Basel 3 there is therefore

little incentive for a capital requirement minimizing bank to choose correctly specified models.

Compared across the previous regimes our results show that correctly specified models are in

fact never the models that minimize capital requirements.

Finally, we measure the variability of the minimum capital requirements under Basel 2,

2.5, and 3 to determine whether the new regulation is successful at increasing the stability of

capital requirements. We consider several measures of the volatility of regulatory capital and

we also measure peak-to-trough variation as the maximum difference in capital requirements.

The BCBS has also focused on the procyclicality of regulation, often measured as peak-to-

trough variation in minimum capital requirements (Gordy and Howells (2006), Heid (2007),

and Shim (2013)). Our results show that capital requirements became significantly more stable

from Basel 2 to Basel 2.5 due to the introduction of Stressed VaR. Basel 3 will further increase

the stability of capital requirements by decreasing non-standardized and standardized volatility

across most models and could also reduce the procyclicality of capital requirements as evi-

denced by the lower peak-to-trough variation across most models under this regime compared

to previous regimes. However, the results also show that the models that result in the most sta-

ble capital requirements across regulatory regimes and across variability metrics are generally

not the correctly specified models.

Our findings have important implications for current regulation. In particular, our results

show that Basel 3 regulation strongly disincentivizes banks from using correctly specified mod-

els. In fact, banks can minimize both the mean and volatility of Basel 3 capital by using the

hybrid FZ model of Patton, Ziegel, and Chen (2019) which is not only rejected by some of

the backtests but also provides inferior risk measure forecasts for our portfolio. Although the

same holds for previous regulatory regimes, the changes suggested in Basel 3 make the relative
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differences even larger. For example, under Basel 2.5 FHS is only marginally worse than HS

and would require only 1.09, instead of 1.78 under Basel 3, times the capital. We identify two

possible reasons for this. First, and this is somewhat subtle, it appears that the requirement un-

der Basel 3 to penalize low liquidity assets, i.e. assets with long liquidity horizons, additionally

in fact disincentivizes banks from using the correctly specified skewed GARCH models due to

their consistently high Stressed ES across liquidity horizons. Second, and this is more obvious,

given the low level of the Basel 3 multiplier banks have little incentive to choose conservative

and correctly specified models. Thus, if the regulator’s objective is to incentivize the use of

correctly specified models they would have to reconsider the effect of these changes.3

Our paper is related to at least three strands of existing literature. First of all, there is

a large literature on empirically backtesting VaR (see, e.g., Christoffersen, Hahn, and Inoue

(2001) and Gencay and Selcuk (2004)) and a growing literature on backtesting VaR and ES

jointly. Our paper complements this literature in several ways. First, while most backtesting

papers focus on one asset class (most commonly equities) we consider a large and diverse set

of assets spanning the multiple risk factors and liquidity horizons that banks may be exposed

to. Second, we use cutting-edge ES backtesting techniques recently developed by academics

to determine if models are correctly specified and we compare these models’ forecasts of VaR

and ES. Finally, we go beyond simple backtesting by calculating Basel 3 capital requirements

for the representative bank portfolio and by evaluating the trade-off between correctly speci-

fied models and models that minimize not only the level but also the variability of the capital

requirements.

Next, our paper is related to studies of backtesting that use actual bank P&L or VaR data.

For example, Berkowitz and O’Brien (2002) show that U.S. banks had conservative VaR esti-

mates during the 1998 Asian crisis with few exceedances, but the exceedances were clustered

indicating bank models did not adapt to dynamic volatility. Pérignon, Deng, and Wang (2008)

3Another possibility is that regulators could attempt to incentivize the use of correctly specified models by
penalizing models with high standardized volatility, the only capital stability measure for which correctly specified
models, in this case models based on Extreme Value Theory, perform the best.
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find that Canadian banks also have conservative VaR forecasts and Pérignon and Smith (2008)

extends the results to international banks. O’Brien and Szerszeń (2017), on the other hand,

show that these early results were driven by a calm sample period and that U.S. banks had

excessive exceedances and clustering during the 2008 financial crisis. Their findings suggest

that the banks used misspecified models that do not adapt to time-varying volatility. Berkowitz,

Christoffersen, and Pelletier (2011) compares the accuracy of VaR forecasts for trading desks

in a commercial bank using a novel spectral backtest. Gordy and McNeil (2020) study model-

implied probabilities associated with bank-reported P&L and reject the hypothesis of correct

specification for many U.S. bank models. While these studies use actual bank data, they are

limited in that they do not observe the bank’s internal model or portfolio composition. They

also do not calculate capital requirements under Basel 3. Our study complements this literature

by using a transparent representative bank portfolio and well known models.

Finally, our study is similar in spirit to the annual BCBS monitoring exercise that provides

a hypothetical portfolio for banks to calculate actual risk measures and capital requirements,

see, e.g., BCBS (2014). However, in these exercises the banks’ internal models are confi-

dential and the BCBS only reports aggregate capital results. Also, formal backtests are not

performed to determine if the internal models used by banks are correctly specified as a part

of these exercises. Our research complements the BCBS exercises by examining model VaR

and ES forecasts on a hypothetical portfolio. We are able to backtest if the models are cor-

rectly specified and compare the mean and variability of their capital requirements. Hence, a

bank’s regulatory supervisor could assess the trade-off between correct specification, capital

requirements, and capital stability for the bank’s internal model.

The paper is organized as follows: Section 2.2 describes how the regulatory environment

has changed over time and outlines the requirements and objectives of the current regulation.

Section 2.3 presents the data used, reviews the different classes of dynamic models considered,

and explains how multiperiod risk measures can be calculated with these models. Section 2.4

contains extensive backtests for the models considered, analysing which of them are correctly
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specified and which produce the best risk measure forecasts. Section 2.5 calculates the reg-

ulatory capital under Basel 3 and the previous regulatory regimes and assesses the stability

through time of different model’s capital requirement. Section 2.6 concludes. Appendix A

contains further details on the regulatory calculations, on how to select optimal thresholds for

Extreme Value Theory models, on the backtesting methods used for ES, and some additional

results.

2.2 Regulatory Capital Calculations

The last 25 years have seen significant changes to the regulation faced by banks when it comes

to the regulatory capital requirements. In particular, over this period the Basel Accord has

had three regimes for calculating market risk capital requirements: Basel 2, Basel 2.5, and the

incoming Basel 3. While banks are currently adapting to the new requirements of Basel 3, it

remains important to consider how we arrived at this regulation as well as the motivation and

implications of this changing regulation.

To set the scene for the rest of the paper, this section first provides a brief background

on the regulation that led to Basel 3 paying special attention to how this has changed the

calculations of minimum capital requirements. We then provide details on the proposed Basel

3 capital requirements and its formulas for calculating market risk capital. Finally, we discuss

the intended and expected impact of this regulation on banks and the requirements it imposes

on them.

2.2.1 Background

The Basel 2 market risk requirements were first introduced by the BCBS in the 1996 Amend-

ment to the Basel Accord (BCBS (1996a)) and allowed banks to use their own “internal” mod-

els to calculate regulatory capital. The internal model-based approach for setting market risk

capital involved calculating a VaR measure with a 10-day time horizon and at a 99% confi-
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dence level. Denoting daily losses, or negative returns, on a single asset or portfolio by Lt then

formally the 1-day VaR measure at time t is defined as the value VaRp
t+1 such that

Pr(Lt+1 > VaRp
t+1|=t) = p, (2.1)

where =t is the information at time t and p is the coverage probability. That is, at period t + 1,

losses exceed VaRp
t+1 only with probability p, given the available information. The day t capital

requirement for a bank with this VaR is then set as

CAB2
t = max(VaRt−1,mc × VaRt−1), (2.2)

where mc is a multiplicative factor, VaRt−1 is the previous day’s 10-day value at risk, and

VaRt−1 is the average value at risk over the previous 60 days. The multiplicative factor mc has

a minimum value of 3 and adds a scaling factor between 0 and 1 that depends on the model’s

backtesting performance and penalizes models that backtest poorly, see BCBS (1996b). Basel

2 backtesting compares VaR with a 1-day time horizon at the 99% confidence level to realized

exceedances (losses above VaR) over the previous 250 days.4

A given internal model’s multiplication factor is set according to the “traffic light” system

of exceedances reproduced in Table 2.1. Column 3 shows that if the number of exceedances

in the previous 250 days is 4 or fewer, the model is in the Green Zone and the multiplicative

factor mc is 3. If the number of exceedances is between 5 and 9, the model is in the Yellow

Zone and mc is between 3.4 and 3.85. Note that the large discrete jump between 4 and 5

exceedances increases the penalty with more than 10%. If the number of exceedances is greater

than 10, the model is in the Red Zone and mc is set at 4. Additionally, during Red Zone

periods, regulatory supervisors can disallow the use of a particular internal model, which forces

the bank to use the standard model approach. This could potentially increase overall capital

requirements significantly.

4Backtesting is not done on a 10-day horizon, since the portfolio composition may change within the ten days.
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Table 2.1: Basel backtesting zone boundaries

Backtesting zone Exceedances Basel 2 Multiplier Basel 3 Multiplier Cumulative Probability

Green 4 or fewer 3 1.5 89.22%
Yellow/Amber 5 3.4 1.7 95.88%

6 3.5 1.76 98.63%
7 3.65 1.83 99.60%
8 3.75 1.88 99.89%
9 3.85 1.92 99.97%

Red 10 or more 4 2 99.99%

This table defines the Green, Yellow/Amber, and Red Zones that supervisors use to assess backtesting results in conjunc-
tion with the internal models approach to market risk capital requirements under Basel 2 and Basel 3, see BCBS (1996b)
and BCBS (2019). The boundaries shown in the table are based on a sample of 250 observations.

The 2008 Subprime Mortgage Crisis revealed that the Basel 2 requirements were far too

low to capture systemic risks, which resulted in banks holding insufficient capital before the

crisis. Additionally, the sudden jump in capital requirements during the crisis caused banks to

deleverage by sharply shedding risk exposures (Adrian and Shin (2014)), resulting in fire-sales,

liquidity spirals, and disinflation (Brunnermeier and Sannikov (2016)). The reduction in bank

balance sheets and credit at the height of the financial crisis caused by the procyclicality of

Basel 2 capital requirements amplified the downturn (Adrian and Shin (2014)).

To address the shortcomings of Basel 2, the BCBS introduced the current regulatory regime,

Revisions to the Basel 2 Framework (Basel 2.5), with an implementation date of December 31,

2011 (BCBS (2009)). In Basel 2.5, the level and stability of capital requirements is increased

by introducing the Stressed VaR measure. Stressed VaR is VaR calculated during a 12-month

period of significant financial stress. The stress period is identified as the 12 months in history

that maximizes Value at Risk with a 10-day time horizon and a 99% confidence level (EBA

(2012)). The Basel 2.5 capital charge is set at

CAB2.5
t = max(VaRt−1,mc × VaRt−1) + max(S VaRt−1,ms × S VaRt−1), (2.3)
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where the first term is the Basel 2 capital charge, S VaRt−1 is the previous day’s Stressed VaR,

S VaRt−1 is the average Stressed VaR over the previous 60 days, and ms is the stressed multi-

plicative factor set by the regulatory supervisor. Since Stressed VaR is always at least as large

as VaR and assuming mc = ms, the Basel 2.5 capital charge is at least double the Basel 2 charge.

Also since the period for Stressed VaR rarely changes Basel 2.5 should result in more stable

capital requirements.

2.2.2 Basel 3

While Basel 2.5 was implemented to temporarily increase the level and stability of capital

requirements to address some of the serious flaws in the capital regulation framework exposed

by the 2008 crisis, the BCBS has continued to work on implementing more stringent capital

calculations. In 2014, the BCBS proposed Basel 3, formally named the Fundamental Review

of the Trading Book (FRTB), as a new and comprehensive approach to determining minimum

regulatory capital for market risk. The key changes to market risk calculations under Basel

3 include the use of ES instead of VaR, calculations based on liquidity horizons, calibration

to periods of significant financial stress, and diversification restrictions. We now summarize

each of the changes and explain the Basel 3 market risk formula based on the finalized FRTB

documentation (BCBS (2019)).

In Basel 3, the measure used to determine capital changes from 10-day VaR at a 99%

confidence level to 10-day ES at a 97.5% confidence level. Formally, the 1-day ES measure at

time t is defined as

ES p
t+1 = E(Lt+1|Lt+1 > VaRp

t+1,=t). (2.4)

That is, if losses at time t + 1 exceed VaRp
t+1, then the expected loss is ES p

t+1. The motivation

for changing risk measures is that ES reflects tail risk better than VaR, since ES captures both

the size and likelihood of losses in the tail (e.g. BCBS (2013)). Moreover, ES is a coherent

risk measure (Artzner et al. (1999)) since it satisfies the subadditivity property while VaR does
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not.5

Market liquidity played a large role during the 2008 Subprime Mortgage Crisis. At the

height of the crisis, investors took large discounts to sell illiquid assets which further lowered

asset prices and caused a liquidity spiral (Brunnermeier and Sannikov (2016)). Basel 3 pro-

poses to account for liquidity risk by scaling the 10-day ES based on an asset’s liquidity. Assets

are assigned to one of five h j day liquidity horizons, where h1 = 10, h2 = 20, h3 = 40, h4 = 60,

and h5 = 120.6 Define LH h j as the portfolio of the subset of assets with a liquidity horizon of

h j days or longer. For example, LH 10 is the portfolio of all assets, LH 20 is the portfolio of

assets with a liquidity horizon of 20 days or more, and LH 120 is the portfolio of assets with

the longest liquidity horizon of 120 days only. Next, define ES ( j) as the ES of portfolio LH

h j. The formula for liquidity-adjusted ES is

ES =

√√√√
ES (1)2 +

5∑
j=2


√

h j − h j−1

10
ES ( j)

2

, (2.5)

where h j is the liquidity horizon,
√

h j−h j−1

10 is the liquidity scaling based on a normality assump-

tion on asset returns, and ES ( j) is the ES for assets with an liquidity horizon of h j or longer.

Hence, ES (1) and ES (2) have no additional liquidity scaling, ES (3) and ES (4) are scaled by
√

2, and ES (5) is scaled by
√

6. The high scaling on illiquid assets such as credit derivatives is

meant to reflect their additional risk of discounts during financial stress.

A key weakness of Basel 2 was that its risk measures were calibrated to current market

conditions, which resulted in undercapitalization and procyclical capital requirements during

the crisis. Basel 2.5 introduced Stressed VaR to ensure the capital charge includes periods of

significant financial stress in addition to current market conditions, which may be unnecessarily

duplicative (BCBS (2013)). In Basel 3, the capital charge is instead only based on a Stressed

5A risk measure is subadditive if the risk measure for the sum of two portfolios is no greater than the sum of
the risk measures for those portfolios. Subadditivity of risk measures means that diversification may help reduce
risks.

6See Table 2.2 for some examples of this classification.
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ES, which is ES calibrated to a period of significant financial stress. Since historical data may

be unavailable for the full set of risk factors, Basel 3 allows Stressed ES calculations to use a

reduced set of risk factors, as long as the reduced set explains at least 75% of the variation in

the full set. The formula for the bank’s Internally Modeled Capital Requirement (IMCC) is

IMCC(C) = ES R,S ×
ES F,C

ES R,C
, (2.6)

where ES R,S is the liquidity-adjusted ES of the reduced set of risk factors calibrated to a period

of significant financial stress, ES F,C is the liquidity-adjusted ES of the full set of risk factors

calibrated to the current market, ES R,C is the liquidity-adjusted ES of the current reduced set

of risk factors, and where the ratio ES F,C

ES R,C
is floored at 1.

The IMCC calculated above naturally benefits from portfolio diversification. However, dur-

ing a financial crisis, systemic risk often causes correlations to increase and reduces this effect.

To account for this risk, Basel 3 requires banks to calculate partial ES capital requirements,

denoted IMCC(Ci) for each regulatory risk class. The undiversified IMCC for risk class i is

IMCC(Ci) = ES R,S ,i ×
ES F,C,i

ES R,C,i
, (2.7)

where i refers to interest rate risk, equity risk, foreign exchange risk, commodity risk, or credit

spread risk. The stress period used to calculate ES R,S ,i is the same as the period used to calculate

the portfolio-wide ES R,S . The bank’s aggregate IMCC is then given by

IMCC = ρ(IMCC(C)) + (1 − ρ)(
5∑

i=1

IMCC(Ci)), (2.8)

where ρ = 0.5.

The capital charge for modellable risk factors under Basel 3 is

CAB3
t = max(IMCCt−1,mc × IMCCt−1), (2.9)
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where IMCCt−1 is the previous day’s aggregate IMCC, IMCCt−1 is the average IMCC over the

previous 60 days, and mc is the Basel 3 multiplicative factor. Similar to the previous regimes,

Basel 3 backtesting compares VaR with a 1-day time horizon at the 99% confidence level to

realized exceedances over the previous 250 days. However, Basel 3 essentially halves the Basel

2 multiplicative factor with a minimum value of 1.5 for mc and a scaling factor between 0 and

0.5 that depends on the model’s backtesting performance. The model’s multiplication factor is

set according to the system of exceedances in Column 4 in Table 2.1.

2.2.3 Discussion

Whereas Basel 2.5 introduced only one change to Basel 2 when it comes to calculating capital

requirements for market risk, by requiring the use of Stressed VaR, Basel 3 involves several

additional changes: 1) the use of ES as the key risk metric instead of VaR, 2) explicit penalties

for exposure to assets with liquidity risk, and 3) reduction in the possible gains from diver-

sification. Although these changes may appear innocuous they in fact severely complicate

the calculations required to conduct proper risk management within banks. First of all, under

Basel 3 banks face additional requirements on the data needed to calculate the relevant cap-

ital requirement. In particular, long samples of data are needed for all the combinations of

risk factors and liquidity horizons towards which the bank is exposed. And if some of these

risk factors are less liquidly traded or they do not have sufficient amounts of historical data,

mimicking portfolios with equivalent characteristics are needed. Moreover, on each day under

Basel 3 there are 3 liquidity-adjusted ES calculations (ES R,S , ES F,C, ES R,C) and 21 possible

liquidity horizons across the 5 risk factors, totaling 63 daily ES calculations.

Finally, while ES as a risk measure has several benefits compared to VaR, it is a coherent

risk measure that captures both the size and likelihood of losses in the tail, a downside is that

it is slightly more difficult to estimate and that historically it has been complicated to backtest

this measure as it lacks a property called elicitability (Gneiting (2011)). A risk measure is

elicitable if there exists a loss function such that the risk measure is the solution to minimizing
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the expected loss and while VaR is elicitable ES is not so individually. However, ES is jointly

elicitable with VaR as shown by Fissler and Ziegel (2016), and using this result it is possible

not only to jointly backtest VaR and ES, see Section 2.4, but also to model these measures

jointly, see Section 2.3.2. An added complication of using 10-day ES is that it cannot be

scaled from the 1-day ES, and although Basel 3 does allow calculating 10-day ES by using

10-day overlapping periods in many cases this method is not applicable and instead simulation

is needed to create these multiperiod forecasts.

So why would regulators consider changing the regulatory capital requirements and, in

particular, make these much more complicated to calculate for banks? If the objective is to

incentivize banks to use models that best predict such risk measures there now exist several tests

that can be used to test the backtesting performance. Models that pass these tests are essentially

correctly specified. Moreover, if the question is one of finding the “best” forecasting model for

risk measures, this can be examined by using an appropriate and consistent loss function for

the risk measures together with Diebold and Mariano (2002) type tests to assess significant

difference between two sets of forecasts or the Model Confidence Set of Hansen, Lunde, and

Nason (2011) to examine which models among a set of models provide superior forecasts. We

conduct several such tests and examine which models, among a large class of statistical models,

are indeed correctly specified and which provide superior risk measure forecasts.

However, for regulators it is clearly not sufficient that banks hold enough capital to cover

their losses 99% of the time and instead regulators require banks to keep a buffer of capital that

is generally larger than the predicted risk measures by maximizing over current risk and histor-

ical averages. Moreover, by using backtesting multipliers banks are incentivized to use more

conservative models. We show that though capital requirements have increased, historically

Basel regulation has failed to incentivize banks to use correctly specified models and Basel 3

is no exception. Moreover, an additional goal of Basel 3 is the ensure the stability of these

capital requirements by calibrating the risk measures to periods of significant financial stress.

We show that Basel 3 further dampens the cyclicality in capital requirements by focusing on
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Stressed ES and by removing most point-in-time calculations. However, the models that mini-

mize capital requirements, though misspecified, are also generally the models that generate the

most stable capital requirements for banks seeking to minimize Basel capital variability.

2.3 Data, models and multiperiod risk measures

Basel 3 puts additional requirements on the data needed to calculate regulatory capital, re-

quiring long samples of data for all the combinations of risk factors and liquidity horizons

towards which the bank is exposed, on the risk measures that an internal model should be able

to produce estimates of, which includes Stressed ES measures, and explicitly disallows simple

scaling techniques for generating multiperiod forecasts of risk measures, which in many cases

are available only using simulation techniques.

In this section we first provide an overview of the data used in this paper. Next, we introduce

the various dynamic models that are used to estimate VaR and ES. Finally we explain how

multiperiod VaR and ES forecasts can be generated using, in most cases, simulation techniques.

Readers, who are familiar with all these issues, can skip this section and go straight to our

backtesting results in Section 2.4.

2.3.1 Data

A key feature distinguishing our paper from most of the existing literature is that we consider

a realistic portfolio of multiple asset classes that banks likely trade in and hold on their trading

book instead of a single asset class like, e.g., equities. We use the daily indexes in Table 2.2

to proxy for the various risk exposures and liquidity horizons that enter into the calculation

of capital requirements under Basel 3. These indexes are highly liquid, widely traded, and

constitute a diverse sample that span all risk factors and relevant liquidity horizons. Our sample

is from January 1989 to February 2020, and indexes are included when they become available.

All data are obtained from Bloomberg.
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Table 2.2: Sample of indexes used

Risk Liquidity
Factor Index Symbol Start Date Horizon

Interest Rate Bloomberg US Treasury LUATTRUU 03/1994 10
Interest Rate Bloomberg US Treasury Inflation-Linked LBUTTRUU 04/1998 10
Equity S&P 500 SPX 01/1989 10
Equity Russel 2000 RTY 01/1989 20
Equity CBOE Putwrite PUT 01/1989 60
Commodity Bloomberg Commodities BCOM 01/1990 20
Commodity Bloomberg Commodities Volatility GSVL1027 02/2001 120
Foreign Exch. JP Morgan USD Trade Weighted JPMQUSD 01/1990 20
Foreign Exch. Bloomberg Dollar DXY 01/2005 20
Credit Bloomberg US Aggregate LBUSTRUU 01/1989 20
Credit Bloomberg Mortgage Backed Securities LUMSTRUU 01/1991 40
Credit Bloomberg Corporate LUACTRUU 08/1998 40
Credit Bloomberg High Yield LF98TRUU 08/1998 60
Credit Bloomberg Municipal LMBITR 12/2000 60
Credit Credit Default Swap Investment Grade CDXIG 04/2007 120
Credit Credit Default Swap High Yield CDXHY 04/2007 120

This table shows the list of indexes used to form the representative banking portfolio. The sample is from January 1989
to February 2020. Indexes are sorted by risk factor first and then Basel 3 liquidity horizon category. We also provide
the symbol and starting month for each index.

For interest rate risk, we use the Bloomberg US Treasury and US Treasury Inflation-Linked

indexes for exposure to U.S. government bonds. For equity risk, we include the S&P 500 Index

for exposure to large-cap firms and the Russell 2000 Index for exposure to small-cap firms. For

equity derivatives risk, we include the CBOE Putwrite Index for exposure to a trading strategy

that sells one-month at the money S&P 500 put options and invests the proceeds in one- and

three-month Treasury bills. For commodity risk, we include the Bloomberg Commodities

Index for exposure to energy, grains, metals, softs, and livestock. For commodity derivatives

risk, we include the Bloomberg Commodities Volatility Index. For foreign exchange risk, we

include the JP Morgan USD Trade-Weighted Index for exposure to the Australian dollar, British

pound, Canadian dollar, Euro, Japanese yen, Swedish krona, and Swiss franc. We also include

the Bloomberg Dollar Index for exposure to the Australian dollar, British pound, Canadian



20 Chapter 2. Regulatory Capital and Incentives for RiskModel Choice under Basel 3

dollar, Euro, Japanese yen, Swiss franc, Mexican peso, Chinese renminbi, Korean won, and

Indian rupee. For credit risk, we include the Bloomberg US Aggregate, Mortgage Backed

Securities, High Yield, Corporate, and Municipal Indexes for exposures to a large variety of

U.S. fixed income securities. For credit derivatives risk, we include the Credit Default Swap

Investment Grade and High Yield Indexes for exposure to credit default swaps, which played

an important role in the 2008 crisis.

The risk factors we use are similar to those considered in Falato, Iercosan, and Zikes (2019)

who use proprietary P&L data reported to the Federal Reserve to show that bank trading desks

have exposures to these risk factors. We evaluate a representative bank portfolio that takes

an equal-weighted long position in each available index, adjusting the weights as new indexes

become available. We choose a simple equal-weighted portfolio, since the start date of the

indexes roughly coincides with their importance in the market. Hence, we expect the portfolio

to be a good representation of a typical U.S. bank’s trading portfolio. Since the index returns

are given as simple returns and our models use log returns, we first form the representative

portfolio by taking an equal-weighted mean, then transforming the portfolio to log returns to

form the representative bank portfolio used to calculate VaR and ES. We perform the same log

transformation for portfolios grouped by risk factor (see Section A.1 of Appendix A for further

details).

Table 2.3 provides summary statistics for the representative portfolio and individual risk

factors. The representative portfolio had a mean daily return of 0.025% mainly driven by the

equity, credit, and interest risk factors. Equity had the highest mean return, but also the highest

daily volatility of 0.968% corresponding to an annualized volatility of 15%. The representative

portfolio is highly skewed towards losses and heavy-tailed, demonstrating that models must

accommodate these empirical features to accurately measure tail risk. The 0.025 quantile and

0.01 quantile and minimum return for the representative portfolio are roughly 2, 3, and 13

standard deviations from the mean, highlighting the non-normality of the distribution’s loss

tail.
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Table 2.3: Summary statistics for portfolios

Portfolios Representative Interest Equity Commodity Foreign Exchange Credit

Mean 0.025 0.020 0.037 0.003 0.005 0.025
Standard Deviation 0.276 0.290 0.968 0.616 0.332 0.190
Skewness -1.016 -0.207 -0.677 -0.661 0.215 -0.815
Kurtosis 9.692 3.790 9.603 10.168 6.377 9.674
0.025 -0.567 -0.583 -2.033 -1.291 -0.648 -0.366
0.01 -0.777 -0.759 -2.865 -1.697 -0.840 -0.516
Min -3.728 -2.170 -9.747 -9.171 -2.476 -2.118

This table shows summary statistics for the representative banking portfolio and by risk factor. The sample is from
January 1989 to February 2020. The representative portfolio is formed by taking the equal-weighted mean return of all
available indexes (denoted rBank) in Table 2.2, then taking the log transformation xBank = log(1 + rBank). Risk factor
portfolios are analogously formed by taking the equal-weighted mean return of indexes in the risk factor, then taking the
log transformation. Summary statistics are calculated based on each portfolio’s daily log return and include the sample
mean, standard deviation, skewness, kurtosis, 0.025 quantile, 0.01 quantile, and min in percentage terms.

2.3.2 Dynamic Models for returns

We assume throughout that losses are governed by a dynamic model given by

Lt = µt + σtεt, t = 1, ...,T, (2.10)

where µt is the conditional mean, σt is the conditional volatility, and εt are independent and

identically distributed (i.i.d.) innovations with distribution G(0, 1).

Given the dynamic model in Equation (2.10), VaR can be expressed as

VaRp
T+1 = µT+1 + σT+1G−1

1−p ≡ µT+1 + σT+1c1,p, (2.11)

where G−1
1−p denotes the (1 − p)’th quantile of G. For example, if G is the standard normal

distribution and p = 0.01, then G−1
0.99 = Φ−1

0.99 = 2.33, where Φ denotes the standard normal

distribution function, and hence VaRp
T+1 = µT+1 + 2.33σT+1. Similarly, ES can be expressed as

ES p
T+1 = µT+1 + σT+1E(εT+1|εT+1 > G−1

1−p) ≡ µT+1 + σT+1c2,p. (2.12)
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For example, if εt ∼ N(0, 1) and p = 0.01, it can be shown that E(εT+1|εT+1 > Φ−1
0.99) =

φ(Φ−1
0.99)/0.01 = 2.67, where φ denotes the standard normal density function, and hence ES p

T+1 =

µT+1 + 2.67σT+1. When the innovation distribution is non-normal we can still express VaR and

ES as in Equations (2.11) and (2.12), though the values of c1,p and c2,p will depend on the

distribution G.

In this paper, we consider several techniques for estimating the upper tail of the innovation

distribution to find the tail risk measures. We first introduce two ad hoc models that involve no

estimation including the most popular model used in banks called Historical Simulation. Next

we consider a popular class of models in which the dynamics are parameterized using GARCH

processes with parameters fitted to the entire conditional distribution. Finally, we describe a

new class of models with conditional dynamics based on Generalized Autoregressive Score

type models where parameters are instead fitted directly to a relevant loss metric for the risk

measures considered.

Ad hoc models

The simplest and most popular model for estimating VaR and ES is undoubtedly Historical

Simulation (HS) due to ease of implementation.7 This nonparametric and distribution-free

model calculates VaR and ES using the empirical distribution of past losses. The HS estimate

for VaRp
T+1 is

HS − VaRp
T+1 = Q1−p({Lt}), (2.13)

where Q1−p({Lt}) denotes the (1 − p)’th empirical quantile of losses {Lt}
T
t=1. The HS estimate

for ES p
T+1 is

HS − ES p
T+1 =

1
#(Lt > HS − VaRp

T+1)

( ∑
Lt>HS−VaRp

T+1

Lt

)
, (2.14)

where #(Lt > HS − VaRp
T+1) denotes the number of losses {Lt}

T
t=1 exceeding HS − VaRp

T+1.

While HS can capture the nonnormality commonly observed in financial returns it cannot ac-

7Pérignon and Smith (2010) report that 73% of international banks use HS and Mehta et al. (2012) reports that
75% of large banks use only HS.
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count for the conditional dynamics in Equation (2.10).

The HS model is a “fully” nonparametric model since no assumptions are made about nei-

ther the dynamics nor the conditional distribution. Parametric models on the other hand use

explicit formulas for the dynamics together with a parameterized distribution to calculate the

values of ĉ1,p and ĉ2,p. The simplest parametric model is the RiskMetrics (RM) model devel-

oped by JP Morgan (JPMorgan (1996)). RiskMetrics assumes losses are normally distributed,

that µt = 0, and that the conditional variance follows

σ2
t = 0.06(Lt−1)2 + 0.94σ2

t−1, (2.15)

and thus no estimation is required for this model either. The RM estimate for VaRp
T+1 is

RM − VaRp
T+1 = σT+1cNorm

1,p , (2.16)

where cNorm
1,p = Φ−1

1−p. The RM estimate for ES p
T+1 is

RM − ES p
T+1 = σT+1cNorm

2,p , (2.17)

where cNorm
2,p = φ(cNorm

1,p )/p.

Dynamic location-scale models

The most popular approach for specifying the dynamic model in Equation (2.10) in a flexible

manner is to let µt follow some ARMA process and to let σ2
t follow a GARCH process. In this

paper we will assume that the conditional mean is constant (µt = µ) and that the conditional

variance follows a GARCH(1,1) model given by

σ2
t = ω + α(Lt−1 − µt−1)2 + βσ2

t−1, (2.18)
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where α + β < 1 to ensure stationarity.8 The RM model is a special case of this framework

which sets µ = 0, ω = 0, α = 0.06, and β = 0.94 in Equation (2.18).9

A first model that corrects the shortcomings of the HS model above is the Filtered His-

torical Simulation (FHS) model which computes ĉ1,p and ĉ2,p from the empirical distribution

of centered innovations ε̂t − ¯̂ε. Thus, this model uses the conditional dynamics without the

need for distributional assumptions on the empirical innovations.10 FHS was first proposed

by Barone-Adesi, Bourgoin, and Giannopoulos (1998), Diebold, Schuermann, and Stroughair

(2000), and Hull and White (1998). The FHS estimate of c1,p is

ĉFHS
1,p = Q1−p({ε̂t − ¯̂ε}), (2.19)

and the FHS estimate of c2,p is

ĉFHS
2,p =

1
#(ε̂t − ¯̂ε > cFHS

1,p )
(

∑
ε̂t− ¯̂ε>cFHS

1,p

(ε̂t − ¯̂ε)), (2.20)

The FHS estimates for VaRp
T+1 and ES p

T+1 are then obtained by substituting these estimates

into Equations (2.11) and (2.12), respectively.

Parametric models Whereas FHS makes no assumptions about the conditional distribution,

the RM model assumes losses are Normally distributed. Other typical choices in the literature

include the Student’s t-distribution (STD), the Hansen (1994) Skewed Student’s t-distribution

(SSTD), or the Generalized Error distribution (GED) which are popular because they can cap-

ture heavy tails exhibited by financial returns. We consider the flexible Skewed Generalized

t-distribution (SGT) of Theodossiou (1998), which nests many of the popular parametric dis-

8Naturally, our approach generalizes to more complex specifications of the conditional mean and variance.
9Since α + β = 1, the RM model follows a IGARCH random walk process and is therefore not stationary.

10The parameters of ARMA-GARCH type models can be estimated consistently using Quasi-Maximum Like-
lihood estimation with a Gaussian likelihood even if the underlying distribution is non-Gaussian assuming the
correct order of the dynamic processes is specified, see, e.g. Bollerslev and Wooldridge (1992) and Gourieroux
(1997).
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tributional assumptions for modeling financial returns. The probability density function of the

SGT distribution is given by

f (x|λ, n, k) =
k

2φ
n−

1
k B

(
1
k
,

n
k

)−1 (
1 +

1
n

|x − m|k

(1 + sgn(x − m)λ)kφk

)− n+1
k

, (2.21)

where m is the mode, φ is a scaling constant, −1 < λ < 1 is a skewness parameter, k and

n are positive tail parameters, sgn is the sign function, and B is the Beta function. For a

standardized SGT random variable with mean zero and unit variance, the mode is m = −2λG1φ

and the scaling constant is φ =
(
(1 + 3λ2)G2 − 4λ2G2

1

)− 1
2 , where G1 and G2 are given by G j =

n
j
k B

(
j+1
k ,

n− j
k

)
B

(
1
k ,

n
k

)−1
for j = 1, 2.

Theodossiou (2018) shows that the closed form expression for the (1− p)’th quantile of the

SGT distribution is

cS GT
1,p = m + (1 + λ)φn

1
k t

1
k
p (1 − tp)−

1
k , (2.22)

where tp = IB−1
(

2|(1−p)−(1−λ)/2|
(1+λ) ; 1

k ,
n
k

)
and IB−1 is the inverse incomplete Beta function ratio, and

that

cS GT
2,p = m +

(1 + λ)2

2p

[
1 − IB

(
tp;

2
k
,

n − 1
k

)]
G1φ, (2.23)

where IB is the incomplete Beta function ratio. We calculate the values for VaRp
T+1 and ES p

T+1

in Equations (2.11) and (2.12) under a SGT distributional assumption on the innovations by

using estimated values of λ, n, and k to obtain ĉS GT
1,p and ĉS GT

2,p in Equations (2.22) and (2.23),

respectively.

The SGT distribution is extremely flexible and nests all the parametric distributions used

in this paper. For example, the SGT distribution is equivalent to the normal distribution when

λ = 0, k = 2, and n→ ∞ and a SGT distribution with λ = 0, k = 2, and n = d is equivalent to a

Student’s t-distribution with d degrees of freedom. When the skewness parameter −1 < λ < 1,

the SGT distribution with k = 2, and n = d is equivalent to Hansen’s skewed t-distribution with

d degrees of freedom and the same skewness parameter λ. Finally, the SGT distribution with
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n→ ∞ is equivalent to the (skewed when λ , 0) GED distribution with shape parameter v = k.

Methods based on Extreme Value Theory Whereas the parametric model above imposes

assumptions on the entire distribution of the innovations, Extreme Value Theory (EVT) models

the behaviour of the distribution’s tail. Tail values are described by the conditional excess

distribution function defined by

Fη(y) = Pr{X − η ≤ y|X > η} =
F(y + η) − F(η)

1 − F(η)
, y > 0, (2.24)

which is the probability that x exceeds threshold η by at most y given x exceeds the threshold.11

Generalized Pareto Distribution estimator Balkema and Haan (1974) show that, for

a sufficiently high threshold η, the cumulative distribution function in Equation (2.24) can be

approximated by the Generalized Pareto Distribution (GPD) given by

G(y) =


1 −

(
1 + ξ y

σ

)−1/ξ
, if ξ , 0

1 − exp(−y/σ), if ξ = 0,
(2.25)

where ξ is a shape parameter and σ > 0 is a scale parameter defined for y ≥ 0 when ξ ≥ 0

and 0 ≤ y ≤ −σ/ξ when ξ < 0. When ξ > 0, the distribution becomes the heavy-tailed Pareto

distribution. The probability density function of the GPD is given by

g(zt; ξ, σ) =


1
σ

[
1 +

ξzt
σ

]−(1+1/ξ)
, if ξ , 0

1
σ

exp[− zt
σ

], if ξ = 0,
(2.26)

11See Christoffersen (2011) for a highly accessible introduction to the use of EVT in risk management.
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where the exceedances {z1, ..., zNη
} are defined as zt = εt − η for 1 ≤ t ≤ Nη, and Nη is the

number of exceedances above the threshold η. Maximizing the likelihood function given by

L(ξ, σ) =

Nη∏
i=1

1
Nη

g(zt; ξ, σ), (2.27)

yields estimates of ξ and σ.

Using the estimated parameters ξ̂ and σ̂, McNeil and Frey (2000) show that the closed form

expression for the (1 − p)’th quantile of the GPD distribution is

ĉGPD
1,p = η +

σ̂

ξ̂

(T p
Nη

)−ξ̂
− 1

 , (2.28)

where T is the sample size, and that

ĉGPD
2,p = ĉGPD

1,p

 1
1 − ξ̂

+
σ̂ − ξ̂η

(1 − ξ̂)ĉGPD
1,p

 . (2.29)

Hence, given a GPD assumption on exceedances, the values for VaRp
T+1 and ES p

T+1 are obtained

by substituting these estimates into Equations (2.11) and (2.12), respectively.

Hill estimator Hill (1975a) provides an alternative estimation method used in EVT. The

Hill estimator assumes that ξ > 0 and the distribution has heavy tails. Suppose the tail of the

conditional distribution of innovations is approximated by the distribution function

F(z) = 1 − L(z)z−1/ξ ≈ 1 − cz−1/ξ, (2.30)

whenever εt > u, where u is the threshold, and L(z) is a slowly varying function, which we

approximate with a constant c. Let k be the number of observations that exceed u. The Hill

estimator ξ̂ is the maximum likelihood estimator of ξ assuming innovations are i.i.d. from an
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unknown distribution given in closed form by

ξ̂ =
1
k

k∑
t=1

ln(ε̂(T−t+1)) − ln(u), (2.31)

where ε̂(t) denotes the t’th order statistic of ε̂t such that ε̂(t) ≥ ε̂(t−1) for t = 2, ...,T .

Huisman et al. (2001) provide an alternative estimator of ξ that does not require choosing

a threshold u. They show that the bias in the Hill estimator is a linear and increasing function

of k. Hence, a threshold-free estimate of ξ is the intercept β0 in the regression

ξ̂k = β0 + β1k + ν(k), k = 1, ..,K, (2.32)

where ξ̂k is the Hill estimator in Equation (2.31) with threshold u = ε̂(k). Since the variance of

ξ̂k depends on k, ν(k) is heteroskedastic. To correct for this, they estimate Equation (2.32) using

Weighted Least Squares (WLS) with a (K ×K) weighting matrix W, which has {
√

1, ..,
√

K} as

diagonal elements and zeros elsewhere. We set K = T/4.

Given ξ̂ we approximate the tail distribution F by setting c = k
T u1/ξ̂, which is derived from

the condition 1 − F(u) = k
T . The estimate of F is

F̂(z) = 1 −
k
T

( z
u

)−1/ξ̂
. (2.33)

Christoffersen and Gonçalves (2005) show that the (1 − p)’th quantile of F̂(z) is

ĉHill
1,p = u

( pT
k

)−ξ̂
, (2.34)

and that

ĉHill
2,p =

ĉHill
1,p

1 − ξ̂
. (2.35)

We substitute these estimates into Equations (2.11) and (2.12) to obtain the corresponding

estimates of VaRp
T+1 and ES p

T+1.
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In Section A.2 of the Appendix A, we conduct a simulation study to estimate the optimal

threshold, η̂, for GPD estimation and, û, for Hill estimation at the 99%, 97.5% and 95% confi-

dence levels. We find that GPD estimates are optimized by setting η̂ equal to the 0.85 quantile

of innovations for all three confidence levels and that Hill estimates are optimized by setting û

equal to the same quantile as the confidence level, and we use these thresholds in this paper.

Dynamic VaR and ES models

When estimating the parameters of the location-scale models above this is typically done by

fitting to the whole conditional distribution of asset returns using Maximum Likelihood type

methods. Such methods are efficient if the dynamics and the distributional specification are cor-

rect and in this case the model will also yield optimal forecasts of the risk measures. However,

if we think of the dynamic models only as approximations it is not obvious that the estimated

model is optimal when the application is to forecast VaR and ES. Indeed, in this situation it may

be possible to improve the forecasted risk measures by estimating model parameters using an

alternative metric, one that is consistent for VaR and ES, rather than using a (Quasi) Maximum

Likelihood approach which focuses on the conditional mean and variance.

An appropriate metric for this problem was provided by Fissler and Ziegel (2016), who

showed that the class of FZ loss functions given by

LFZ(Y, v, e; p,G1,G2) = (1Y≤v−p)(G1(v)−G1(Y)+
1
p

G2(e)v)−G2(e)(
1
p
1Y≤vY−e)−G2(e), (2.36)

where Y denotes the return, −v is the VaR, −e is the ES, G1 is weakly increasing, G2 is strictly

increasing and strictly positive, and G′2 = G2, is consistent for VaR and ES. In other words,

minimizing the expected FZ loss returns the true VaR and ES and

(−VaRt,−ES t) = argmin
(v,e)

Et−1
[
LFZ(Yt, v, e; p,G1,G2)

]
. (2.37)

To implement this approach for estimation one needs to choose the functions G1 and G2. Patton,
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Ziegel, and Chen (2019) suggest to set G1(x) = 0 and G2(x) = −1/x to obtain

LFZ0(Y, v, e; p) = −
1
pe
1Y≤v(v − Y) +

v
e

+ log(−e) − 1, (2.38)

which they refer to as the FZ0 loss function, and they provide asymptotic theory for estimating

VaR and ES models by minimizing this loss. Thus, one can now use this criterion to estimate

parameters of any dynamic specifications like, e.g., an ARMA-GARCH type model.

While GARCH type dynamics could be considered, Patton, Ziegel, and Chen (2019) spec-

ify instead a dynamic model for VaR and ES using the Generalized Autoregressive Score

(GAS) model of Creal, Koopman, and Lucas (2013) and Harvey (2013) where the forcing

variable is a function of the derivative and the Hessian of the FZ0 loss function instead of a

log-likelihood. We first consider their one-factor GAS model for VaR and ES, where the risk

measures, vt = a exp(κt) and et = b exp(κt) with b < a < 0, are driven by a factor κt = log (σt),

interpreted as the log volatility, with dynamics given by

κt = ω + βκt−1 + γ
1

b exp(κt−1)

(
1
p
1Yt−1≤a exp(κt−1)Yt−1 − b exp(κt−1)

)
. (2.39)

The parameters (a, b, β, γ) can be estimated using the FZ0 loss function while setting ω = 0

ensures identification, see Patton, Ziegel, and Chen (2019) for details. We also consider their

Hybrid GAS/GARCH model with

κt = ω + βκt−1 + γ
1

b exp(κt−1)

(
1
p
1Yt−1≤a exp(κt−1)Yt−1 − b exp(κt−1)

)
+ δ log |Yt−1|, (2.40)

where parameters (a, b, β, γ, δ) are estimated using the FZ0 loss function and setting ω = 0

again ensures identification.12 We refer to these two models as the FZ1 and FZH models,

12Patton, Ziegel, and Chen (2019) also consider a two-factor model for VaR and ES. However, they found the
one-factor model performed better than the two-factor model, so we exclude it from our analysis.
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respectively. The 1-day VaR and ES forecasts are given by

FZ − VaRp
T+1 = −vT+1 = −a exp(κT+1), (2.41)

and

FZ − ES p
T+1 = −eT+1 = −b exp(κT+1), (2.42)

where κT+1 follows Equation (2.39) in the FZ1 model and Equation (2.40) in the FZH.

2.3.3 Multiperiod VaR and ES forecasts

Basel 2 and 2.5 capital charges are based on VaR with a 10 day time horizon whereas Basel 3

capital charges are based on ES with a 10 day time horizon. During Basel 2, banks would often

approximate 10 day VaR by multiplying 1-day VaR by
√

10, which is correct when returns

are normally distributed. Due to the non-normality of returns this scaling method is explicitly

prohibited in Basel 3 (BCBS (2019)). Basel 3 regulation though, does allow 10-day forecasts to

be calculated using overlapping observations, which is how we calculate HS forecasts. Define

the sum of 10-day losses conditional on time t as

Lt[10] =

t+10∑
k=t+1

Lk. (2.43)

The goal of multiperiod forecasts is to calculate the VaR and ES of LT [10] given the information

at time T . The HS estimate for VaRp
T+10 is

HS − VaRp
T+10 = Q1−p({Lt[10]}), (2.44)
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where Q1−p({Lt[10]}) denotes the (1− p)’th empirical quantile of the 10-day losses {Lt[10]}T−10
t=1 .

The HS estimate for ES p
T+10 is

HS − ES p
T+10 =

1
#(Lt[10] > HS − VaRp

T+10)

( ∑
Lt[10]>HS−VaRp

T+10

Lt[10]
)
, (2.45)

where #(Lt[10] > HS−VaRp
T+10) denotes the number of 10-day losses exceeding HS−VaRp

T+10.

For GARCH models, the volatility forecast and conditional distribution of 10-day losses

is only available in closed form for normally distributed innovations. The 10-day GARCH

variance forecast for normal innovations is

σ2
T+10 =

ω

1 − γ

(
10 −

1 − γ10

1 − γ

)
+

1 − γ10

1 − γ
σ2

T+1, (2.46)

where γ = α + β < 1 (Tsay (2010)). The normal estimate for VaRp
T+10 is

Norm − VaRp
T+10 = 10µ + σT+10cNorm

1,p , (2.47)

and the estimate for ES p
T+10 is

Norm − ES p
T+10 = 10µ + σT+10cNorm

2,p . (2.48)

Taking the limit as γ → 1 the 10-day RiskMetrics variance forecast is seen to be σ2
T+10 =

10σ2
T+1. Hence, the RM estimate for VaRp

T+10 and ES p
T+10 is

√
10RM−VaRp

T+1 and
√

10RM−

ES p
T+1 respectively. This relationship is referred to as the square root of time rule under Risk-

Metrics.

In all other cases multiperiod risk measures are obtained through simulation. We approx-

imate the conditional distribution of LT [10] = LT+1 + .. + LT+10 by simulating future paths of

losses

LT+k = µ + σT+kεT+k, (2.49)
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where the conditional variance in GARCH models follows

σ2
T+k = ω + α(LT+k−1 − µ)2 + βσ2

T+k−1, (2.50)

for σ2
T+1, .., σ

2
T+10. We perform B = 2,000 simulations, resulting in a sample {Lb,T [10]}Bb=1 of 10

day losses indexed by b. The GARCH estimate for VaRp
T+10 is then

VaRp
T+10 = Q1−p({Lb,T [10]}), (2.51)

Q1−p({Lb,T [10]}) denotes the (1−p)’th empirical quantile of the simulated 10-day losses {Lb,T [10]}Bb=1.

The GARCH estimate for ES p
T+10 is

ES p
T+10 =

1
#(Lb,T [10] > VaRp

T+10)

 ∑
Lb,T [10]>VaRp

T+10

Lb,T [10]

 , (2.52)

where #(Lb,T [10] > HS −VaRp
T+10) denotes the number of simulated 10-day losses {Lb,T [10]}Bb=1

exceeding VaRp
T+10. The simulated innovations {εT+1, .., εT+10} in Equation(2.49) are drawn

directly from the estimated distribution, or in the case of the Filtered Historical Simulation

model drawn with replacement from the empirical distribution of centered innovations ε̂t − ¯̂ε.

A similar approach is used for the FZ models with the only change that here the innovations

are given by ηt = Lt/ exp(κt).

For the EVT models, we follow the procedure in McNeil and Frey (2000). For the GPD

model, we estimate the positive and negative threshold η± as the 0.15 and 0.85 quantiles of ε̂t

respectively. Using the thresholds, we estimate the positive and negative shape ξ± and scale

σ± parameters. We draw innovations from the empirical distribution of innovations ε̂t. If the

drawn innovation is greater than η+, we replace the innovation with η+ + y+, where y+ is drawn

from a GPD distribution with shape ξ+ and scale σ+. Similarly, if the drawn innovation is less

than η−, we replace the innovation with η−− y−, where y− is GPD distributed with shape ξ− and

scale σ−. If the drawn innovation is between η− and η+, we use the innovation itself. We take



34 Chapter 2. Regulatory Capital and Incentives for RiskModel Choice under Basel 3

a similar approach for the Hill model, estimating the positive and negative threshold u± as the

p and (1 − p)’th quantiles of the innovations ε̂t respectively. Using the thresholds, we estimate

the positive and negative shape ξ± parameter. If the drawn innovation is greater than u+, we

replace the innovation with u+ + z+, where z+ is drawn from a Pareto distribution with shape

parameter ξ+. If the drawn innovation is less than u−, we replace the innovation with u− + z−,

where z− is drawn from a Pareto distribution with shape parameter ξ−. If the drawn innovation

is between u− and u+, we use the innovation itself.

2.4 Model Backtesting

Basel 3 changes the regulatory market risk measure from VaR at the 99% confidence level to

ES at the 97.5% confidence level. With this change, banks are strongly motivated to identify

which models are correctly specified under the new risk measure and regulatory supervisors

are particularly interested in identifying the set of models that underestimate risk, since banks

using these models may be undercapitalized prior to a financial shock. When Basel 3 was

introduced, though, a major criticism against using ES for regulation was the lack of available

backtesting due to the risk measure not being elicitable (Gneiting (2011)).13 However, Fissler,

Ziegel, and Gneiting (2015) showed that ES is in fact jointly elicitable with VaR, and a recent

literature on joint VaR and ES backtesting has been developed by academics. This section

uses these recently developed and state-of-the-art methods, which we simply refer to as ES

backtests, to examine which of the models are correctly specified and provide the best risk

forecasts.

Since VaR is still used for regulatory backtesting and for setting the capital multiplier, we

first consider individual backtests for VaR. The methods we use to backtest predicted VaR are

standard and can be found in, e.g., Christoffersen (2009). Specifically, we report the actual

exceedances (Actual) and p-values from Kupiec (1995)’s Unconditional Coverage (UC) test,

13A variable is elicitable if it can be defined as the minimizer of a mean scoring function. Gneiting (2011)
shows that ES lacks elicitability while VaR is elicitable allowing backtesting VaR but not ES individually.
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Christoffersen (1998)’s Conditional Coverage (CC) test, Christoffersen and Pelletier (2004)’s

Duration (Dur) test, and Engle and Manganelli (2004)’s Dynamic Quantile (DQ) test. In terms

of ES backtests, Nolde and Ziegel (2017) suggest that these can be separated into two cate-

gories: 1) traditional backtests which can be used to determine the correctly specified models,

and 2) comparative backtests which can be used to select the models that provide superior

forecasts. For the traditional backtests, we next report p-values for McNeil and Frey (2000)’s

residual test (ER), Bayer and Dimitriadis (2018)’s strict, auxiliary, and one-sided regression

tests (ESR), Nolde and Ziegel (2017)’s conditional calibration test (CCa), and Gordy and Mc-

Neil (2020)’s Spectral Backtests. Finally, for the comparative backtests, we report average

FZ0 losses with Hansen, Lunde, and Nason (2011)’s Model Confidence Set, Diebold and Mar-

iano (2002) t-statistics from Patton (2019)’s FZ0 backtest, and Ziegel et al. (2017)’s Murphy

Diagrams.14

We empirically evaluate the various models’ performance in terms of estimating 1-day VaR

and ES for our representative portfolio from January, 1997, to February, 2020.15 For HS and

RM, we use a 250-day rolling estimation window. While most banks use short windows for

their HS estimation, dynamic models generally require a larger estimation window to reduce

estimation error. We therefore choose to report results using a rolling estimation window of

T = 2, 000 days and include data from 1989 for estimation purposes. In addition to results

at the 99% and 97.5% confidence levels, we also consider a 95% confidence level. The 95%

confidence level is not currently used for regulatory purposes. However, due to the larger tail

sample, estimation error could be reduced across models at this level and hence this confidence

level could be used for future regulation. For visual clarity, hypothesis tests that are rejected

with 95% confidence are bold. Previewing our results, we reject that the HS, RM, Normal,

STD, and GED models are correctly specified for VaR and ES backtests at traditional levels and

find that these models provide poor forecasts. We also reject the FZ models in the conditional

14Further details on all these ES backtests can be found in Section A.3 of Appendix A.
15Although Basel sets capital charges based on 10-day risk estimates, multi-horizon backtests are challenging

to conduct due to overlapping observations and changing portfolio compositions. We follow the existing literature
and conduct backtests at a 1-day horizon which is also the horizon used for Basel backtesting.
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spectral backtests and find that these models provide inferior forecasts. We cannot reject the

hypothesis of correct specification for most of the skewed GARCH models and find that these

models also provide superior VaR and ES forecasts.

2.4.1 VaR Backtests

Panel A of Table 2.4 reports 1-day VaR backtesting results at the 99% confidence level for

which 57 exceedances are expected. The UC and CC p-values indicate we can reject the

hypothesis that the HS, RM, Normal, STD, and GED models are correctly specified. These

models have too many exceedances from underestimating VaR and are likely to have serially

correlated exceedances. The Dur p-values indicate we can reject the hypothesis that HS has

the correct duration between exceedances, likely because the model is misspecified against

volatility clustering. Additionally, the DQ p-values indicate that HS, RM, Normal, STD, and

FZ1 models are misspecified. Panel B of Table 2.4 reports results at the 97.5% confidence level

for which 144 exceedances are expected. The UC and CC p-values indicate we can reject the

same set of models as with the 99% confidence level. The Dur p-values indicate we can reject

the hypothesis that the HS, RM, STD, GED, GPD, and FZ1 models have independent durations

between exceedances. Additionally, the DQ p-values indicate that the HS, RM, Normal, STD,

FZ1, and now also the FZH models are misspecified. We cannot reject the hypothesis of correct

specification for FHS, SSTD, SGED, SGT, Hill, and HillH for either confidence level.

Next, Panel C of Table 2.4 reports the results at the 95% confidence level for which 288 ex-

ceedances are expected. The UC, CC, and Dur test results are similar to the previous confidence

levels. Interestingly, the DQ p-values indicate we can reject the hypothesis of correct specifi-

cation for every model except the two semi-parametric FZ models. This finding is consistent

with Manganelli and Engle (2001), who find that their CAViaR model outperforms GARCH

models at the 95% confidence level. The two semi-parametric FZ models are an extension

of the CAViaR model and as such are expected to outperform GARCH models at this lower

confidence level.
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Table 2.4: Value at Risk Backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Results at a 99% confidence level (Expected exceedances = 57)

Actual 80 116 59 105 80 64 78 65 65 52 59 59 53 54
UC 0.01 0.00 0.87 0.00 0.01 0.42 0.01 0.35 0.35 0.44 0.87 0.87 0.52 0.61
CC 0.00 0.00 0.88 0.00 0.00 0.68 0.01 0.62 0.62 0.59 0.88 0.88 0.66 0.73
Dur 0.00 0.17 0.51 0.09 0.08 0.49 0.23 0.39 0.33 0.61 0.51 0.51 0.08 0.45
DQ 0.00 0.00 0.33 0.00 0.00 0.45 0.07 0.20 0.20 0.32 0.33 0.33 0.00 0.49

Panel B: Results at a 97.5% confidence level (Expected exceedances = 144)
Actual 178 200 141 204 197 149 180 141 151 131 141 141 165 147
UC 0.01 0.00 0.77 0.00 0.00 0.70 0.00 0.77 0.59 0.25 0.77 0.77 0.09 0.83
CC 0.00 0.00 0.21 0.00 0.00 0.31 0.00 0.21 0.31 0.06 0.21 0.21 0.05 0.06
Dur 0.00 0.03 0.05 0.07 0.04 0.05 0.03 0.07 0.08 0.02 0.05 0.05 0.03 0.07
DQ 0.00 0.00 0.24 0.00 0.00 0.12 0.00 0.12 0.16 0.11 0.24 0.24 0.01 0.02

Panel C: Results at a 95% confidence level (Expected exceedances = 288)
Actual 314 312 297 333 357 310 331 292 314 299 297 297 329 309
UC 0.14 0.17 0.63 0.01 0.00 0.21 0.01 0.85 0.14 0.55 0.63 0.63 0.02 0.23
CC 0.00 0.12 0.30 0.02 0.00 0.38 0.04 0.53 0.25 0.31 0.30 0.30 0.06 0.33
Dur 0.00 0.02 0.28 0.42 0.27 0.58 0.54 0.32 0.31 0.22 0.28 0.28 0.89 0.78
DQ 0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.02 0.01 0.01 0.02 0.02 0.13 0.58

This table shows the VaR backtesting results of the representative portfolio from 01/1997 to 02/2020.
Each panel reports results for a particular confidence level. In each panel, Row 1 shows the actual number
of exceedances. Rows 2 to 5 display two-sided p-values for the Unconditional Coverage, Conditional
Coverage, Duration, and Dynamic Quantile backtests. Models with p-values below 0.05 are in bold.

In summary, Table 2.4 shows that irrespective of the confidence level we can reject that the

HS, RM, Normal, STD, and GED models are correctly specified. These models underestimate

VaR and often have clustered exceedances. Also, since the symmetric GARCH and FZ para-

metric models are often rejected, we conclude that modeling skewness is crucial for estimating

VaR in financial returns. At the extreme 95% confidence level, the FZH model is the only

model to not be rejected by any test. However, the FHS, SSTD, SGED, SGT, Hill, and HillH

models have the most accurate VaR estimates for the 99% and 97.5% confidence levels, the

relevant levels for Basel regulation.

2.4.2 Traditional Backtests

Panel A of Table 2.5 reports traditional ES backtest results at the 99% confidence level. The ER

p-values indicate that we can reject the hypothesis that the HS, RM, Normal, GED, and SGED

models have the correct ES estimates on average. Since we evaluate the one-sided hypothesis

of the unconditional ER test, we can conclude that these models systemically underestimate

ES. The ESR Strict and Aux p-values indicate we can reject the hypothesis that the HS, RM,
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Table 2.5: Traditional Expected Shortfall Backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Results at a 99% confidence level

ER 0.02 0.00 0.53 0.00 0.10 0.41 0.00 0.01 0.41 0.20 0.57 0.14 0.31 0.07
ESR Strict 0.00 0.00 0.98 0.00 0.09 0.79 0.01 0.26 0.73 0.96 0.99 0.62 0.28 0.87
ESR Aux 0.00 0.00 0.93 0.00 0.09 0.84 0.01 0.23 0.80 0.94 0.90 0.69 0.19 0.92
ESR Int 0.00 0.00 0.27 0.00 0.01 0.13 0.00 0.02 0.11 0.32 0.29 0.09 0.32 0.15
CCa 0.01 0.00 0.97 0.00 0.07 0.87 0.01 0.17 0.85 0.63 1.00 0.84 0.76 0.62

Panel B: Results at a 97.5% confidence level
ER 0.04 0.00 0.74 0.00 0.25 0.39 0.00 0.02 0.48 0.62 0.84 0.00 0.93 0.86
ESR Strict 0.01 0.00 0.90 0.00 0.02 0.79 0.00 0.46 0.77 0.76 0.71 0.08 0.99 0.90
ESR Aux 0.00 0.00 0.85 0.00 0.02 0.84 0.00 0.49 0.81 0.70 0.65 0.11 0.95 0.85
ESR Int 0.00 0.00 0.43 0.00 0.00 0.14 0.00 0.06 0.13 0.53 0.56 0.01 0.44 0.55
CCa 0.01 0.00 1.00 0.00 0.01 0.83 0.00 0.36 0.79 0.35 1.00 0.10 1.00 0.99

Panel C: Results at a 95% confidence level
ER 0.04 0.00 0.84 0.00 0.02 0.42 0.00 0.12 0.54 0.91 0.94 0.00 0.96 0.93
ESR Strict 0.00 0.00 0.81 0.00 0.00 0.54 0.00 0.54 0.53 0.76 0.45 0.00 1.00 0.81
ESR Aux 0.00 0.00 0.90 0.00 0.00 0.58 0.00 0.57 0.55 0.80 0.54 0.00 0.98 0.85
ESR Int 0.00 0.00 0.39 0.00 0.00 0.07 0.00 0.06 0.06 0.46 0.63 0.00 0.26 0.37
CCa 0.05 0.00 1.00 0.00 0.00 0.42 0.00 0.42 0.38 1.00 1.00 0.00 1.00 1.00

This table shows the traditional ES backtesting results of the representative portfolio from 01/1997 to
02/2020. Each panel reports results for a particular confidence level. In each panel, Row 1 shows the
one-sided p-values for the Exceedance Residual test. Rows 2 and 3 show the two-sided p-values for the
Strict and Auxiliary ES regression backtests. Rows 4 and 5 show the one-sided p-values for the Intercept
ES regression and Conditional Calibration backtests. Models with p-values below 0.05 are in bold.

Normal, and GED models have accurate ES estimates. Specifically, we can reject the hypothe-

sis of zero intercept and unit intercept when regressing exceedances from these models on ES.

The ESR Int p-values for the one-sided intercept backtest show that these models along with

STD and SGED have intercepts that are too low, confirming that these models underestimate

ES on average. The CCa p-values indicate we can reject the hypothesis that the HS, RM, Nor-

mal, and GED models have accurate VaR and ES estimates. Since we conduct the one-sided

CCa test where the null hypothesis is that the VaR and ES estimates are weakly greater than

their true values on average, we conclude that the rejected models underestimate risk. We can-

not reject the hypothesis that VaR and ES are correctly specified for FHS, SSTD, SGT, GPD,

Hill, HillH, FZ1, and FZH in any traditional ES backtest at this level. The traditional ES back-

test results are nearly identical for the 97.5% and 95% confidence levels in Panels B and C,

except that HillH is rejected at these confidence levels.

Panel A of Table 2.6 reports unconditional spectral backtest results for the wide interval

from [0.95,0.995] using the Uniform (Uni), Arcsin (Arc), and Epanechnikov (Epa) continu-
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ous kernel density functions. The continuous kernel p-values indicate that we can reject the

hypothesis that the RM, Normal, STD, GED, and HillH models have uniformly distributed

probability integral transform (PIT) values. Given the results from the traditional backtests in

Table 2.5, we conclude these models have thinner tails than actual losses have, which likely

results in underrepresented tail PIT values. Panel B of Table 2.6 reports unconditional spectral

backtest results for the narrow interval from [0.97,0.98], which is the neighborhood around the

97.5% confidence level used for Basel 3. The p-values for all three kernels indicate we reject

the same set of models as for the wide interval. Panel C of Table 2.6 reports unconditional

spectral backtest results for the uniform 3-level points (0.95,0.975,0.99), the main confidence

levels of interest in our paper. The p-values indicate that we reject the hypothesis that the RM,

Normal, STD, and GED models have uniformly distributed PIT values. The set of models

rejected is consistent across all the unconditional backtests, indicating these models have non-

uniform PIT-values and are unlikely to be correctly specified. We cannot reject that HS, FHS,

SSTD, SGED, SGT, GPD, Hill, FZ1, and FZH have uniformly distributed PIT-values in any

unconditional spectral backtest.

Panel D of Table 2.6 reports conditional spectral backtest results for the wide interval.

The continuous kernel p-values indicate that we can reject the hypothesis that the HS, RM,

Normal, STD, GED, HillH, FZ1, and FZH models have uniformly distributed PIT-values and

are serially independent. Interestingly, the HS, FZ1, and FZH models pass the unconditional

backtests, but are rejected in the conditional backtest. This indicates that these models exhibit

correlated spectrally transformed PIT-values. These models fail to use all available information

when forecasting, resulting in temporal dependence between PIT-values.16 Panel E of Table

2.6 reports conditional spectral backtest results for the narrow interval. The set of rejected

models are the same as for the wide interval, reaffirming that these models have non-uniform

or dependent PIT-values and are unlikely to be correctly specified. Panel F of Table 2.6 reports

conditional spectral backtest results for the uniform 3-level points. The p-values indicate that

16This is confirmed by these models inferior performance in comparative backtests below.
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Table 2.6: Spectral Backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Unconditional Coverage on a Wide Interval [0.95,0.995]

Uni 0.19 0.00 0.87 0.00 0.00 0.17 0.00 0.85 0.17 0.80 0.72 0.00 0.90 0.93
Arc 0.23 0.00 0.94 0.00 0.00 0.16 0.00 0.74 0.15 0.93 0.68 0.01 0.91 1.00
Epa 0.17 0.00 0.82 0.00 0.00 0.20 0.00 0.96 0.21 0.66 0.75 0.00 0.90 0.88

Panel B: Unconditional Coverage on a Narrow Interval [0.97,0.98]
Uni 0.11 0.00 0.62 0.00 0.00 0.43 0.00 0.69 0.46 0.28 0.78 0.00 0.99 0.93
Arc 0.13 0.00 0.61 0.00 0.00 0.40 0.00 0.68 0.43 0.29 0.78 0.00 0.99 1.00
Epa 0.09 0.00 0.63 0.00 0.00 0.48 0.00 0.69 0.49 0.27 0.78 0.00 0.97 0.86

Panel C: Unconditional Coverage on a Discrete 3-level points (0.95,0.975,0.99)
Uni 0.21 0.00 0.92 0.00 0.00 0.31 0.00 0.83 0.21 0.77 0.73 0.11 0.88 0.92

Panel D: Conditional Coverage on a Wide Interval [0.95,0.995]
Uni 0.00 0.00 0.32 0.00 0.00 0.09 0.00 0.15 0.08 0.32 0.82 0.06 0.00 0.01
Arc 0.00 0.00 0.37 0.00 0.00 0.11 0.00 0.19 0.10 0.38 0.86 0.18 0.00 0.02
Epa 0.00 0.00 0.29 0.00 0.00 0.08 0.00 0.14 0.08 0.27 0.77 0.02 0.00 0.00

Panel E: Conditional Coverage on a Narrow Interval [0.97,0.98]
Uni 0.00 0.00 0.23 0.00 0.00 0.12 0.00 0.12 0.13 0.18 0.85 0.01 0.00 0.00
Arc 0.00 0.00 0.24 0.00 0.00 0.13 0.00 0.12 0.13 0.17 0.82 0.01 0.00 0.00
Epa 0.00 0.00 0.22 0.00 0.00 0.11 0.00 0.12 0.13 0.19 0.87 0.01 0.00 0.00

Panel F: Conditional Coverage on a Discrete 3-level points (0.95,0.975,0.99)
Uni 0.00 0.00 0.36 0.00 0.00 0.12 0.00 0.15 0.08 0.52 0.93 0.52 0.00 0.02

This table shows the Spectral Backtest results of the representative portfolio from 01/1997 to 02/2020.
Each panel reports results for a particular test type and interval. Panels A and B show p-values for the
unconditional Z-test using a uniform, arcsin, and epanechnikov kernel. Panel C shows p-values for the
unconditional Z-test using a discrete uniform kernel. Panels D and E show p-values for the conditional
Martingale Difference test using a uniform, arcsin, and epanechnikov kernel and the conditioning
variable transformation h(p) = |2p − 1|4 with 4 lags. Panel F shows p-values for the conditional Z-test
using a discrete uniform kernel. HS and GARCH models have the same PIT values across confidence
levels. FZ PIT values are estimated at the 95% confidence level. Models with p-values below 0.05 are
in bold.

we reject the hypothesis that the HS, RM, Normal, STD, GED, FZ1, and FZH models have

uniformly distributed and independent PIT-values. We cannot reject that FHS, SSTD, SGED,

SGT, GPD, and Hill have uniformly distributed and independent PIT-values in any conditional

spectral backtest.

In summary, Tables 2.5 and 2.6 show that the HS, RM, Normal, STD, GED, SGED, HillH,

FZ1, and FZH models are likely not correctly specified for VaR and ES at the 99%, 97.5%, and

95% confidence levels. These models either underestimate tail risk or have dependent forecasts.

The FHS, SSTD, SGT, GPD, and Hill models are, on the other hand, never rejected by the

traditional ES backtests. In particular, we cannot reject that these models have independent

forecasts or PIT-values, suggesting that they are using the full information set when making

forecasts. These models can accommodate the heavy tails and skewness of financial returns

and appear to be correctly specified for VaR and ES. While the traditional backtests in this
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section determines which models are incorrectly specified for VaR and ES, the next section

compares across models to evaluate the set of best forecasting models.

2.4.3 Comparative Backtests

Table 2.7 shows results for comparative ES backtests using the FZ0 loss function. Patton,

Ziegel, and Chen (2019) show that FZ0 is the only FZ loss function that generates loss dif-

ferences that are homogeneous of degree zero, a property that has been shown in volatility

forecasting applications to lead to higher power in Diebold and Mariano (2002) tests. We con-

sider results at the 97.5% confidence level here and, since the results are qualitatively similar,

report 99% and 95% confidence levels in Section A.4 of Appendix A. Panel A in Table 2.7

reports the average FZ0 loss for each model with a star besides models in the 75% Model

Confidence Set (MCS). The FHS, SSTD, SGED, SGT, GPD, and Hill models have the lowest

average loss of -0.47 and are the only models that belong to the MCS. This is consistent with

the traditional backtesting results, where the same set of models fail to be rejected as correctly

specified in every backtest. The Normal, STD, GED, HillH, FZ1, and FZH models, on the

other hand, have average losses between -0.46 to -0.42 and do not belong to the MCS. This is

consistent with the traditional backtesting results, where these models are sometimes rejected

as correctly specified. HS and RM have relatively higher average losses of -0.27 and -0.37, and

are not in the MCS which is consistent with their rejection for nearly every traditional backtest.

Next, Panel B in Table 2.7 reports Diebold-Mariano test statistics on average FZ0 losses.

Along each row, a negative number indicates the row model outperforms the column model.

A t-stat greater than 1.96 in absolute value indicates the loss difference is statistically different

from zero at the 95% confidence level. The HS row is positive and statistically significant for

each column model, indicating that HS performs worse than every other model. The RM row

shows the model underperforms every column model except for HS. The SSTD row on the

other hand is negative for every column model indicating that SSTD has the lowest average

loss. However, the loss difference is not statistically significant for models in the MCS. In-
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Table 2.7: Comparative Expected Shortfall Backtests at the 97.5% Confidence Level

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

Panel A: Average FZ0 Loss
Loss -0.27 -0.37 -0.47* -0.43 -0.45 -0.47* -0.46 -0.47* -0.47* -0.47* -0.47* -0.46 -0.42 -0.44

Panel B: Diebold-Mariano Test Statistics for FZ0 Loss
HS NA 2.46 4.09 3.51 4.03 4.20 4.10 4.17 4.19 4.04 4.08 4.13 3.50 3.54
RM -2.46 NA 3.55 2.97 3.89 3.83 4.00 3.73 3.81 3.40 3.51 3.79 1.88 2.23
FHS -4.09 -3.55 NA -2.45 -1.39 0.50 -1.11 0.32 0.41 -0.43 0.03 -0.54 -2.74 -2.26
Norm -3.51 -2.97 2.45 NA 3.99 3.00 3.92 2.78 2.98 2.25 2.39 2.74 -0.10 0.42
STD -4.03 -3.89 1.39 -3.99 NA 2.05 2.24 1.74 2.01 1.18 1.34 1.57 -1.73 -1.06
SSTD -4.20 -3.83 -0.50 -3.00 -2.05 NA -1.80 -0.40 -0.42 -0.58 -0.42 -1.21 -2.97 -2.39
GED -4.10 -4.00 1.11 -3.92 -2.24 1.80 NA 1.50 1.75 0.92 1.06 1.25 -2.03 -1.34
SGED -4.17 -3.73 -0.32 -2.78 -1.74 0.40 -1.50 NA 0.18 -0.51 -0.27 -0.87 -2.93 -2.35
SGT -4.19 -3.81 -0.41 -2.98 -2.01 0.42 -1.75 -0.18 NA -0.50 -0.35 -1.20 -2.93 -2.35
GPD -4.04 -3.40 0.43 -2.25 -1.18 0.58 -0.92 0.51 0.50 NA 0.47 -0.18 -2.71 -2.21
Hill -4.08 -3.51 -0.03 -2.39 -1.34 0.42 -1.06 0.27 0.35 -0.47 NA -0.47 -2.72 -2.25
HillH -4.13 -3.79 0.54 -2.74 -1.57 1.21 -1.25 0.87 1.20 0.18 0.47 NA -2.63 -2.09
FZ1 -3.50 -1.88 2.74 0.10 1.73 2.97 2.03 2.93 2.93 2.71 2.72 2.63 NA 0.88
FZH -3.54 -2.23 2.26 -0.42 1.06 2.39 1.34 2.35 2.35 2.21 2.25 2.09 -0.88 NA

This table shows the comparative ES backtesting results of the representative portfolio from 01/1997 to 02/2020.
Results are based on the FZ0 loss function at the 97.5% confidence level. Panel A shows the average FZ0 loss
with a star beside models in the 75% model confidence set. Panel B shows t-statistics from Diebold-Mariano tests
comparing FZ0 average losses. A negative value indicates that the row model has lower average loss than the
column model. t-statistics greater than 1.96 in absolute value indicate the loss difference is significantly different
from zero at the 95% confidence level. Models with t-stat below -1.96 are in bold.

terestingly, the FZ1 and FZH columns are positive and statistically significant for the models

in the MCS, indicating they perform worse than this group of skewed GARCH models. This

finding contradicts the results in Patton, Ziegel, and Chen (2019) who find that semi-parametric

FZ models outperform GARCH models. In their analysis however, models are estimated once

whereas we use a rolling window estimation procedure. Our results show that after accounting

for time-varying parameters and changes to the distribution of innovations, GARCH models

have superior forecasts compared to semi-parametric FZ models.17

Figure 2.1 plots selected Murphy diagrams at the 99% and 97.5% confidence levels, com-

paring pairwise FHS to HS, FZH to HS, and FHS to FZH across the entire class of consistent

loss functions. Complementary to the Murphy diagrams, Table 2.8 reports minimal Westfall-

Young (WY) p-values, formally testing for forecasting dominance across a grid of thresholds.

Panels (a) and (d) in the figure compare FHS to HS at the 99% and 97.5% confidence levels and

17Section A.4 of Appendix A shows that skewed GARCH models also outperform FZ models at the 99% and
95% confidence levels, though the loss differences are not statistically significant at the 95% confidence level.
Section A.5 of Appendix A confirms that skewed GARCH models have lower losses than FZ models for the risk
factor portfolios and liquidity horizon portfolios.



2.4. Model Backtesting 43

Figure 2.1: Murphy Diagrams at the 97.5% and 99% confidence levels

(a) FHS vs HS at a 99% level (b) FZH vs HS at a 99% level (c) FHS vs FZH at a 99% level

(d) FHS vs HS at a 97.5% level (e) FZH vs HS at a 97.5% level (f) FHS vs FZH at a 97.5% level

This figure shows Murphy diagrams of the representative portfolio from 01/1997 to 02/2020 for the 99% and
97.5% confidence levels. In each panel, the vertical axis is the difference in average loss between models, where a
negative value indicates the first model outperforms the second model. The horizontal axis is the threshold value,
where each threshold corresponds to a different consistent loss function. Confidence intervals at the 95% level are
plotted in gray.

show that the loss difference is negative at nearly every threshold, indicating FHS outperforms

HS. The 95% confidence interval shows that the difference is nearly always statistically differ-

ent from zero. The WY p-values in Row 1 of Table 2.8 show that we can reject the hypothesis

of HS dominating FHS at the 99%, 97.5%, and 95% confidence levels. The WY p-values in

Row 2 show that we cannot reject FHS dominating HS in any confidence level. Next, Panels

(b) and (e) in Figure 2.1 show that FZH outperforms HS. The WY p-values in Row 3 of Table

2.8 show that we can reject the hypothesis that HS weakly dominates FZH, while Row 4 shows

that we cannot reject that FZH weakly dominates HS.

Finally, Panels (c) and (f) in Figure 2.1 plot the Murphy diagram comparing FHS to FZH

at the 99% and 97.5% confidence levels. The negative loss difference shows that FHS outper-
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Table 2.8: Tests of Forecast Dominance

Hypothesis 99% Confidence Level 97.5% Confidence Level 95% Confidence Level

HS weakly dominates FHS 0.002 0.000 0.000
FHS weakly dominates HS 0.940 0.702 0.808

HS weakly dominates FZH 0.020 0.004 0.004
FZH weakly dominates HS 0.982 0.912 0.406

FZH weakly dominates FHS 0.050 0.048 0.002
FHS weakly dominates FZH 0.688 0.904 0.800

This table shows the tests of forecast dominance of the representative portfolio from 01/1997 to 02/2020 for the 99%, 97.5%, and
95% confidence levels. Each row shows the minimal Westfall-Young p-values for the hypothesis of weak dominance. Models
with p-values below 0.05 are in bold.

forms FZH across different consistent loss functions. Rows 5 and 6 of Table 2.8 report WY

p-values for the hypothesis of weak dominance between FHS and FZH. Row 6 shows that we

cannot reject the hypothesis that FHS dominates FZH at the 99%, 97.5%, and 95% confidence

levels. However, Row 5 shows we can reject the hypothesis that FZH dominates FHS at the

97.5% and 95% confidence levels only. The comparative backtest found FHS outperforms

FZH for the FZ0 loss function, while the Murphy diagram and WY p-values confirm that FHS

outperforms FZH across a large family of loss functions.

In summary, the comparative backtests show that FHS, SSTD, SGED, SGT, GPD, and

Hill consistently have the best performance across the 99%, 97.5%, and 95% confidence lev-

els. The HS, RM, Normal, STD, GED, HillH, FZ1, and FZH models have statistically higher

losses compared to the best performing models. We also find that the best performing GARCH

models had lower average losses than the FZ models, and we fail to reject the hypothesis that

FHS weakly dominates FZH. The set of best performing models is broadly consistent with the

set of correctly specified models in the traditional backtests. Considering all the results re-

ported in this section, we conclude that skewed GARCH models are likely correctly specified

and perform the best in terms of forecasting risk measures. The semi-parametric FZ1 and FZH

models are generally outperformed by the skewed GARCH models. The symmetric Normal,
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STD, and GED models perform worse than the previous models and are likely not correctly

specified. The HS and RM models, which are frequently used by banks, are nearly always re-

jected as being correctly specified and are the worst performing models in terms of forecasting

the relevant risk measures.

2.5 Regulatory Capital Requirements

Assuming that capital is costly and hence banks are interested in minimizing their capital re-

quirements, Basel 3 incentivizes banks to select models that produce low Stressed Expected

Shortfall.18 However, at the same time Basel 3 also penalizes models with too many VaR ex-

ceedances through the backtesting multiplier which increases capital requirements and incen-

tivizes banks to use more conservative models. Given this trade-off, it’s not clear which model

minimizes capital for banks. Moreover, from a regulatory supervisor’s perspective, banks us-

ing incorrectly specified models that underestimate risk is problematic during a financial crisis,

since the banks’ risk management models will fail at the same time which increases systemic

risk. Considering the backtesting results from Section 2.4, this section determines whether

Basel regulation is in fact incentivizing banks to choose models that are correctly specified.

We address the question about correctly incentivizing banks by carefully calculating the

capital requirements for a representative bank with the diverse portfolio of assets described in

Section 2.3.1. We do this for each model under the Basel 3 regulatory framework to determine

which models minimize capital requirements. We then use the same data to calculate require-

ments under Basel 2 and Basel 2.5 to determine whether the set of models that minimize capital

change across the three regimes. Finally, we measure the volatility and the peak-to-trough vari-

ation as the maximum difference of capital requirements in Basel 2, 2.5, and 3 to determine

whether this regulation is successful at increasing the stability of the capital requirements.

18While lower capital requirements may be privately optimal for banks, higher capital requirements may be
socially beneficial in reducing the likelihood of systemic crisis. See Birn et al. (2020) for a review on the costs
and benefits of bank capital.
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We empirically determine the capital requirements of each model for the representative

bank portfolio from January, 1997, to February, 2020. We calculate capital requirements for

Basel 2, 2.5, and 3 by fixing the regime and closely following the regime’s capital calculations

over the entire period. Consistent with backtesting, we use a rolling estimation window of 250

days for HS and RM and 2,000 days for the dynamic GARCH and FZ models. In each table,

columns are bold if the models are rejected in the traditional ES or spectral backtesting of Sec-

tion 2.4. Previewing our results, we find that HS and FZH have the lowest capital requirement

for Basel 3. In fact, the results show that incorrectly specified models generally have lower

capital requirements than correctly specified ones and Basel 3 therefore does not incentivize

banks to use correctly specified models. Moreover, we find that while average capital require-

ments nearly quadruple from Basel 2 to Basel 2.5, they decreased significantly from Basel 2.5

to Basel 3 only for incorrectly specified models. Finally, we show that capital stability gener-

ally increases with the regulatory changes. However, the models that have the lowest volatility,

the FZ1 and FZH models, are not among the correctly specified models.

2.5.1 Basel 3 Capital Requirements

Table 2.9 shows the average capital requirements of each model calculated under the Basel 3

framework. We also provide a detailed breakdown of the intermediary calculations by risk fac-

tor and liquidity horizon to verify that our findings are robust to various portfolio specifications.

Panel A of Table 2.9 reports the average Basel 3 capital requirement, backtest multiplier, and

IMCC. Row 1 demonstrates that correctly specified models have significantly higher average

Basel 3 capital than rejected models. HS has the lowest average Basel 3 capital of 17.21%,

despite having the worst backtesting performance in Section 2.4. The light-tailed RM and

GARCH Normal models also have low average capital of 19.47% and 21.69%, despite hav-

ing poor backtesting performance. The FZ1 and FZH models outperform these models during

backtesting and also have low average capital of 17.42% and 19.96%. The FHS, SSTD, SGT,

GPD, and Hill models generally have the highest average capital requirements of 26.61% to
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Table 2.9: Basel 3 Capital Requirements

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

Panel A: Basel 3 Average Capital Requirement
Basel 3 Capital 17.21 19.47 30.64 21.69 25.77 26.61 26.33 27.48 27.38 32.38 29.85 32.46 19.96 17.42
Basel 3 Multiplier 1.57 1.65 1.53 1.63 1.58 1.55 1.58 1.55 1.56 1.52 1.53 1.53 1.53 1.53
IMCC 10.96 11.82 20.04 13.27 16.29 17.20 16.67 17.76 17.66 21.37 19.48 21.22 13.14 11.43

Panel B: Liquidity-Adjusted Stressed Expected Shortfall by Risk Factor
All 10.18 9.92 16.94 11.11 13.70 15.38 14.45 15.78 14.96 18.98 17.23 19.27 11.45 9.59
Interest 0.25 0.39 0.47 0.38 0.45 0.43 0.42 0.42 0.45 0.47 0.44 0.43 0.45 0.50
Equity 5.82 6.71 12.27 7.72 9.81 9.67 9.46 10.22 10.91 13.57 12.43 13.06 8.15 6.68
Commodities 1.46 1.55 1.60 1.28 1.41 1.47 1.44 1.46 1.44 1.46 1.55 1.47 1.48 1.40
Foreign Exch. 0.37 0.79 0.67 0.65 0.67 0.74 0.70 0.72 0.72 0.64 0.66 0.67 0.47 0.51
Credit 3.85 4.29 8.13 5.38 6.54 6.71 6.86 6.92 6.84 7.62 6.64 7.54 4.28 4.17

Panel C: Stressed Expected Shortfall of Representative Portfolio by Liquidity Horizon
LH 10 6.43 6.21 7.61 5.73 6.70 7.74 6.83 7.20 7.32 7.78 8.15 7.32 6.71 6.35
LH 20 4.98 4.57 5.86 4.31 5.10 5.69 5.14 5.69 5.59 6.14 5.45 5.85 4.56 3.64
LH 40 3.03 2.82 6.56 4.12 5.26 5.94 5.45 5.85 5.84 7.48 5.87 7.02 3.52 2.99
LH 60 2.42 2.36 6.43 3.76 4.73 5.16 5.43 6.17 5.00 7.60 6.83 7.15 3.29 2.46
LH 120 0.33 0.44 0.50 0.40 0.42 0.45 0.43 0.45 0.47 0.42 0.47 0.40 0.35 0.37

This table shows the Basel 3 capital requirement results of the representative bank portfolio from
01/1997 to 02/2020. Panel A shows the average daily Basel 3 capital requirement in in percentage
terms, backtesting multiplier, and IMCC in in percentage terms. Panel B shows in percentage terms
the average liquidity-adjusted Stressed ES of the representative portfolio and separated by risk factor.
Panel C shows in percentage terms the Stressed ES of the representative portfolio for each individual
liquidity horizon. Models rejected by the traditional ES or spectral backtests are bold.

32.38%, despite failing to be rejected in any ES backtest and having the lowest average FZ0

losses in Table 2.7. While FHS weakly dominates HS and FZH across the set of consistent loss

functions, using this model requires 1.78 times the average daily capital. SSTD has the lowest

average capital among correctly specified models, but using this model still requires 1.55 times

the capital relative to HS and FZH.

The multiplier and IMCC in Panel A of Table 2.9 explain why correctly specified models

have higher average capital than rejected models. Despite poor backtesting performance, HS

has an average multiplier of 1.57. The average multiplier of correctly specified models ranges

from 1.52 to 1.56. Since Basel 3 capital is equal to IMCC times the multiplier, we see that

differences in average Basel 3 capital across models are almost entirely attributed to differences

in IMCC. HS has the lowest IMCC of 10.96%, while FHS has nearly double the IMCC at

20.04% due to its dynamic volatility and heavy tails. The difference between HS and FHS

is illustrated in Panels (d) and (e) of Figure 2.2, which show that FHS has a higher average

capital and IMCC on every day after the 1998 Asian crisis. SSTD has the lowest IMCC among

correctly specified models at 17.20%, which is still substantially higher than HS. The RM

and Normal models have the highest multipliers at 1.65 and 1.63, but much lower average
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Figure 2.2: Basel Capital Requirements

(a) HS Basel 2 and 2.5 Capital (b) FHS Basel 2 and 2.5 Capital (c) FZH Basel 2 and 2.5 Capital

(d) HS Basel 3 Capital (e) FHS Basel 3 Capital (f) FZH Basel 3 Capital

This figure shows the returns, negative risk measures, and capital requirements of the representative portfolio from
01/1997 to 02/2020 for HS, FHS, and FZH. The top panels plot the daily returns, negative 10-day VaR, Basel 2
capital requirement, 10-day Stressed VaR, and Basel 2.5 capital requirement. The bottom panels plot the daily
returns, negative 10-day ES, 10-day Stressed ES, IMCC, and Basel 3 capital requirement.

capital requirements than SSTD due to their low IMCC. The FZ models have both low average

multipliers of 1.53 and low IMCC, resulting in low Basel 3 capital. Generally, the least costly

model for banks is the one that minimizes IMCC, or equivalently minimizes Stressed ES at the

97.5% confidence level. The HS, RM, Normal, FZ1, and FZH models minimize Stressed ES,

resulting in significantly lower Basel 3 average capital requirements. However, these models

are either rejected using traditional backtests or provide inferior forecasts of risk measures.

Panel B of Table 2.9 shows the liquidity-adjusted Stressed ES of the representative bank

portfolio as well as by individual risk factors. From Equation (2.8), IMCC is calculated by tak-

ing a weighted sum of the representative portfolio and risk factor portfolios’ liquidity-adjusted

Stressed ES. Row 1 of Panel B shows that for the representative portfolio, correctly specified
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models have high liquidity-adjusted Stressed ES ranging from 14.96% to 18.98%. The rejected

HS, RM, Normal, FZ1, and FZH models have the lowest liquidity-adjusted Stressed ES, the

same set of models that minimize IMCC and Basel 3 capital. Rows 2-6 of Panel B show that

HS has the lowest ES for the interest, equity, foreign exchange, and credit risk factors, while

the Normal model has the lowest ES for commodities. The FZH model has the lowest ES for

the representative portfolio of 9.59%, but it has moderate levels of ES for the individual risk

factors explaining why its IMCC is higher than HS. The correctly specified models have high

ES for every risk factor, verifying that our results are not sensitive to risk factor weights. FHS

has more than twice the ES of HS for equity and credit, the two largest risk factors. Across

risk factors, the models that minimize liquidity-adjusted Stressed ES are rejected by backtests,

while correctly specified models have the highest ES.

Panel C of Table 2.9 shows the Stressed ES of the representative bank portfolio for each liq-

uidity horizon. The liquidity-adjusted Stressed ES of the representative portfolio is calculated

as a function of these liquidity portfolios. The panel shows that the HS, RM, Normal, FZ1, and

FZH models minimize Stressed ES across liquidity horizons. Since differences in Basel 3 cap-

ital are driven by Stressed ES, this explains why these models have the lowest average Basel 3

capital requirements. The ES backtests in Section 2.4 are only for the representative portfolio

(LH 10). For this portfolio, correctly specified models have the highest Stressed ES of 7.32%

to 8.15%. We show in Section A.5 of Appendix A that for the LH 20-60 portfolios, skewed

GARCH and FZ models are likely to be correctly specified. The HS, RM, Normal, STD, GED,

SGED models are rejected for the LH 20-60 portfolios, explaining their lower Stressed ES. For

the LH 20-60 portfolios, FZ1 and FZH are never rejected and also have a low average Stressed

ES. These results also show that every model except STD is rejected for the LH 120 portfolio.

However, the HS, FZ1, and FZH models have the lowest Stressed ES for LH 120.

In Basel 3, capital requirements are minimized for models that consistently minimize

Stressed ES at the 97.5% confidence level across risk factors and liquidity horizons. HS, RM,

Normal, FZ1, and FZH consistently minimize Stressed ES across portfolios, resulting in low



50 Chapter 2. Regulatory Capital and Incentives for RiskModel Choice under Basel 3

Basel 3 capital requirements. The HS, RM, Normal, FZ1 and FZH models are misspecified

since they are rejected in nearly every ES backtest, have the largest FZ0 losses, or provide infe-

rior forecasts of risk measures. The FHS, SSTD, SGT, GPD, and Hill models are never rejected

in the traditional backtests and minimize FZ0 losses. However, they have high Stressed ES es-

timates, resulting in much higher average Basel 3 capital requirements. Thus, a first result is

that under Basel 3 there is little incentive for a capital requirement minimizing bank to choose

correctly specified models. In particular, given the level of the Basel 3 multiplier, this tool that

regulators can use to punish misspecified models has only a marginal effect on average capi-

tal requirements and banks have little incentive to choose conservative and correctly specified

models.

2.5.2 Evolution of Basel capital requirements

Table 2.10 summarizes the average Basel 2, 2.5, and 3 capital requirements, risk measures,

and Basel backtesting results. Panel A of Table 2.10 shows the average 10-day VaR at the

99% confidence level and average capital requirements of the entire sample calculated under

the Basel 2 framework. Row 1 shows that the HS average 10-day VaR is 2.17%, which is

roughly 2.5 times the 10-day volatility (0.276
√

10 = 0.87) of the representative portfolio in

Table 2.3. All dynamic models have a lower 10-day VaR compared to HS, since dynamic

volatility decreases risk levels faster after a shock. This phenomenon is illustrated in panels (a)

and (b) of Figure 2.2, which plots HS and FHS 10-day VaR. After a shock like that following

the 2008 Subprime Mortgage crisis, the FHS model quickly decreases VaR levels, while HS

maintains high levels of VaR for the entire estimation window. The model with the lowest VaR

though is the Normal model. Row 2 shows that the Normal model also has the lowest average

Basel 2 capital requirement of 4.98%, despite the Basel backtest results in Panel D showing

that this model has the second highest average exceedances and multiplier of 4.48 and 3.26,

respectively. In contrast to Basel 3 results, HS has the highest average Basel 2 requirement

of 7.12% due to its high 10-day VaR and capital multiplier of 3.15. The correctly specified
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Table 2.10: Basel 2, 2.5, and 3 Average Capital Requirements

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Basel 2 Average Capital Requirements

VaR 2.17 1.80 2.06 1.23 1.73 1.86 1.71 1.83 1.86 2.04 2.14 1.89 1.92 2.08
Basel 2 Capital 7.12 5.98 6.09 4.98 5.38 5.61 5.35 5.56 5.60 5.98 6.12 5.91 5.93 6.88

Panel B: Basel 2.5 Average Capital Requirements
Stressed VaR 6.45 6.18 7.76 6.70 6.60 7.03 6.49 6.85 7.04 7.35 7.89 7.48 5.78 7.75
Basel 2.5 Capital 27.34 26.27 29.73 26.83 26.17 27.26 25.78 26.67 27.31 28.19 30.15 28.71 23.44 30.48

Panel C: Basel 3 Average Capital Requirements
Stressed ES 6.43 6.21 7.61 5.73 6.70 7.74 6.83 7.20 7.32 7.78 8.15 7.32 6.71 6.35
Basel 3 Capital 17.21 19.47 30.64 21.69 25.77 26.61 26.33 27.48 27.38 32.38 29.85 32.46 19.96 17.42

Panel D: Basel Backtests on 1-day VaR
Exceedances 3.49 4.93 2.48 4.48 3.42 2.82 3.42 2.82 2.91 2.22 2.48 2.48 2.26 2.04
Basel 2 Multiplier 3.15 3.30 3.07 3.26 3.16 3.10 3.16 3.10 3.11 3.04 3.07 3.07 3.05 3.06

This table shows the Basel 2, 2.5, and 3 risk measures and capital requirements of the representative
bank portfolio from 01/1997 to 02/2020. Panel A shows the average daily VaR estimate and Basel 2
capital requirement in percentage terms. Panel B shows the average daily Stressed VaR estimate and
Basel 2.5 capital requirement in percentage terms. Panel C shows the average Stressed ES (LH 10) and
Basel 3 capital requirements in percentage terms. Panel D shows the average number of exceedances
and the Basel 2.5 multiplier. Models rejected by the traditional ES or spectral backtests are bold.

models have high average Basel 2 capital of 5.60%-6.12%, despite having low multipliers of

3.04-3.11. This shows that Basel 2 failed to incentivize banks to choose correctly specified

models.

Next, Panel B of Table 2.10 reports the average 10-day Stressed VaR and Basel 2.5 capital

requirement. Stressed VaR is defined as the maximum historical 10-day VaR at the 99% confi-

dence level and the panel shows that the average Stressed VaR is significantly higher than VaR.

In contrast to non-stressed VaR, all of the GARCH models have higher Stressed VaR than HS

does, since the stressed measure never decreases. Put differently, the VaR-minimizing benefit

of dynamic volatility disappears for Stressed VaR. The top panels of Figure 2.2 show that the

stressed period for HS, FHS, and FZH is set during the Asian crisis, the Dot-Com crisis, and

the 2008 recession resulting in high values of Stressed VaR. FZ1 has the lowest Stressed VaR

across all models at 5.78%. Row 2 shows the FZ1 model also has the lowest average Basel

2.5 capital, partially due to its low multiplier. HS has a low Stressed VaR but a high multiplier

resulting in moderate Basel 2.5 capital. The correctly specified FHS, SSTD, SGT, GPD, and

Hill models have a high Stressed VaR but a low multiplier and as a result reasonable capital

requirements. Consequently, the correctly specified SSTD and SGT models require less av-

erage capital than HS. These results show that Basel 2.5 has better incentives to use correctly

specified models relative to Basel 2.
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Finally, Panels A-C of Table 2.10 together allow us to compare capital calculated under

Basel 2, 2.5, or 3. We first note that models generally require more than four times the average

capital under Basel 2.5 than under Basel 2. As illustrated in the top panels of Figure 2.2, this

increase in capital is driven by shocks during the 1998, 2001, and 2008 crises leading to a

large Stressed VaR. Since Stressed VaR never decreases, capital levels stay elevated after the

2008 crisis across all models. The comparison of Basel 2.5 to Basel 3 is more nuanced. For

HS, there is a significant decrease in required capital from 27.34% under Basel 2.5 to 17.21%

under Basel 3, and Panels (a) and (d) of Figure 2.2 illustrate that HS requires more capital under

Basel 2.5 on each day. The capital requirements under Basel 3 are also much lower than under

Basel 2.5 for the FZ and light-tailed RM and Normal models but remain mostly unchanged

from Basel 2.5 to Basel 3 for the skewed GARCH models.

So what drives these differences from Basel 2.5 to Basel 3? First of all, comparing HS

Stressed 10-day VaR at the 99% level in Panel B with Stressed 10-day ES at the 97.5% level

in Panel C shows that the two stressed risk measures are nearly identical. However, Table

2.9 shows that HS has substantially lower Stressed ES for the 40, 60, and 120 day liquidity-

horizon portfolios, also causing low liquidity-adjusted Stressed ES across several risk factors.

The capital requirements under Basel 3 are also much lower than under Basel 2.5 for the FZ

and light-tailed RM and Normal models due to their relatively low Stressed ES estimates for

longer liquidity-horizon portfolios and low liquidity-adjusted Stressed ES. Interestingly, it ap-

pears that the requirement under Basel 3 to penalize low liquidity assets, (i.e. assets with long

liquidity horizons), additionally in fact disincentivizes banks from using the correctly specified

skewed GARCH models due to their consistently high Stressed ES across liquidity horizons.

Instead, under Basel 3 banks are incentivized to use misspecified models that consistently min-

imize Stressed ES across liquidity horizons.
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Table 2.11: Basel 2, 2.5, and 3 Capital Variability

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Volatility in Percentage Terms

Basel 2 Vol 6.57 2.91 2.38 2.73 2.33 2.27 2.32 2.25 2.27 2.16 2.36 2.31 1.85 1.64
Basel 2.5 Vol 13.43 6.15 6.85 8.39 6.71 6.14 5.87 5.89 5.89 5.71 6.65 6.13 4.06 4.46
Basel 3 Vol 7.17 5.72 8.85 7.51 7.54 7.63 7.92 7.66 7.02 7.36 6.12 7.26 5.02 4.66

Panel B: Volatility standardized by Average Capital
Basel 2 Vol/CA 0.92 0.49 0.39 0.55 0.43 0.40 0.43 0.40 0.40 0.36 0.39 0.39 0.31 0.24
Basel 2.5 Vol/CA 0.49 0.23 0.23 0.31 0.26 0.23 0.23 0.22 0.22 0.20 0.22 0.21 0.17 0.15
Basel 3 Vol/CA 0.42 0.29 0.29 0.35 0.29 0.29 0.30 0.28 0.26 0.23 0.21 0.22 0.25 0.27

Panel C: Maximum Annual Difference in Percentage Terms
Basel 2 Max Diff 33.58 17.38 15.63 18.60 15.22 14.19 15.16 14.43 14.45 13.57 15.75 15.13 10.20 9.18
Basel 2.5 Max Diff 58.05 24.96 24.07 33.11 25.45 20.76 21.37 21.12 21.14 18.76 23.74 21.42 17.31 16.23
Basel 3 Max Diff 15.71 13.72 16.94 18.85 20.87 17.52 21.07 19.74 22.51 23.91 29.06 21.61 52.79 10.26

This table shows the Basel 2, 2.5, and 3 variability measures of the representative bank portfolio from
01/1997 to 02/2020. Panel A shows the daily volatility of capital in percentage terms. Panel B shows
the daily volatility divided by the average capital requirement in percentage terms. Panel C shows the
maximum annual difference (250-day difference) of capital requirements in percentage terms. Models
rejected by the traditional ES or spectral backtests are bold.

2.5.3 Basel Capital Variability

Table 2.11 reports several measures of capital variability across the Basel 2, 2.5, and 3 regimes.

We measure the daily capital volatility to capture day-to-day fluctuations in capital and report

volatility standardized by capital to compare across regimes as well. We also measure the

maximum of annual differences in capital to capture peak-to-trough variation in capital re-

quirements. Panel A of Table 2.11 shows the capital volatility, which is suitable for comparing

across models holding the regime fixed. Row 1 shows that FZH has the lowest Basel 2 volatil-

ity of 1.64% followed by FZ1 with 1.85%. The non-normal GARCH models have Basel 2

volatility ranging from 2.16% for GPD to 2.38% for FHS. The RM and Normal models have

significantly higher volatility at 2.73% and 2.91%, but HS has the absolute highest Basel 2

volatility with 6.57%. Row 2 shows that FZ1 and FZH have the lowest Basel 2.5 volatility at

4.06% and 4.46%. Compared to this, HS has more than three times the volatility of FZ models

and double the volatility of most GARCH models. Panel (a) of Figure 2.2 shows that the high

HS volatility is caused by its short estimation window and the Basel multiplier. Panel (c) of

Figure 2.2, on the other hand, shows that FZH has stable estimates of 10-day VaR and is gener-

ally unaffected by the Basel multiplier. Row 3 shows that HS has a moderate Basel 3 volatility

of 7.17% whereas FHS has the highest volatility at 8.85% under this regulation. FZ1 and FZH

continues to have the lowest Basel 3 volatility at 5.02% and 4.66%. These numbers are close
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Figure 2.3: Basel Models Mean-Volatility Plots

(a) Basel 2 Capital Requirements (b) Basel 2.5 Capital Requirements

(c) Basel 3 Capital Requirements

This figure shows mean and volatility plots of the representative portfolio from 01/1997 to 02/2020 for Basel 2,
2.5, and 3. In each panel, the vertical axis is the mean capital requirement and the horizontal axis is the volatility
of capital requirements. Models in the bottom left minimize mean and volatility of capital requirements, while
models at the top right maximize mean and volatility.

to the Basel 2.5 volatility levels for the FZ models whereas Basel 3 volatility is significantly

higher than Basel 2.5 volatility for most of the GARCH models. Seen across the regulatory

regimes, the table shows that the FZ models have the lowest capital volatility for Basel 2, 2.5,

and 3, and banks seeking to minimize capital volatility in Basel 3, in particular, since it may be

costly to raise capital during times of high volatility, should consider using the FZH model.

Figure 2.3 visualizes the trade-off between capital minimization and stability of capital re-

quirements by plotting the mean against the volatility of model capital. We color code the

rejected models in red and the correctly specified models in blue. For each regime, the bottom
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models minimize mean capital and the left models minimize capital variability. Panel (a) shows

that HS in the top-right maximizes both mean and volatility of Basel 2 capital. The GARCH

models are clustered with the Normal model minimizing mean and the correctly specified mod-

els having high means. The FZ models minimize volatility with a moderate mean capital. Panel

(b) shows that HS maximizes Basel 2.5 volatility with a moderate mean capital. The GARCH

models are clustered with moderate mean and volatility of capital. FZ models minimize Basel

2.5 volatility and FZ1 has the lowest mean capital as evidenced by its position in the bottom

left, and banks can minimize both the mean and volatility of Basel 2.5 capital requirements by

using the FZ1 model. Panel (c) shows that the FZ models minimize Basel 3 volatility with low

means as evidenced by their positions in the bottom left. HS has the lowest mean capital, but

has higher volatility than the FZ models. GARCH models have both high mean and volatil-

ity as evidenced by their positions in the top right. Basel 3 disincentivizes banks to use these

correctly specified models, since they have the highest means and volatilities, despite never

being rejected in any ES backtest and having the lowest FZ losses. Banks are instead incen-

tivized to use FZ models, which minimize mean and variability of capital, but perform worse

than GARCH models in the comparative backtests. Many banks may remain with HS, since

the model minimizes mean capital and is simplest to implement. This may be problematic to

regulators, since HS has the worst ES backtest performance across all models and systemat-

ically underestimates ES. However, since there is negligible punishment for misspecification

and the Basel backtests only VaR, banks have little incentive to move away from HS. Reg-

ulators may be able to incentivize banks to move towards correctly specified models if they

penalize misspecification in VaR and ES.

Next, we compare stability across Basel regimes using volatility standardized by capital.

We use standardized volatility to capture models with either a high volatility or low capital.

Panel B of Table 2.11 shows that standardized volatility significantly declines between Basel

2 and Basel 2.5 as a result of including Stressed VaR. This decline is most apparent for HS,

where standardized volatility decreases from 0.92 to 0.49. Rows 2 and 3 show that HS capital
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volatility further declines to 0.42 from Basel 2.5 to Basel 3, demonstrating that Basel 3 indeed

induces more stability when using HS. However, nearly every other model experiences an

increase in capital volatility from Basel 2.5 to Basel 3. Panel (d) of Figure 2.2 illustrates the

stability of HS under Basel 3 relative to Basel 2.5. Panels (e) and (f) of Figure 2.2 show that for

FHS and FZH, the increase in Basel 3 volatility is largely driven by variation in ES F,C

ES R,C
, the ratio

that Basel 3 uses to adjust the reduced portfolio to the current. This point-in-time adjustment

ratio causes day-to-day capital changes in dynamic models as evidenced by the erratic IMCC

changes between 1999 to 2008, but is set to 1 after the reduced set of portfolios becomes the

full set in 2008. The increase in standardized volatility for FZ models also occurs due to their

significant decrease in capital requirements from Basel 2.5 to Basel 3. In general, most of the

models are more stable in Basel 3 than the previous regimes.

Finally, Panel C of Table 2.11 shows the maximum annual difference in percentage terms.

The max difference measures the largest annual peak-to-trough variation in capital require-

ments, which occurs during the 2008 financial crisis for most models. Peak-to-trough variation

in minimum capital requirements is a common measure of regulatory procyclicality (Gordy

and Howells (2006)). Rows 1 and 2 show that the max difference increases from Basel 2 to

Basel 2.5 due to the introduction of Stressed VaR. The top panels in Figure 2.2 illustrate that

the new stressed period in 2008 combined with the multiplier causes a large jump in capital

requirements. This is particularly apparent for HS in Panel (a), where the peak-to-trough vari-

ation in Basel 2.5 capital requirements is 58%. While Basel 2.5 was implemented after 2008,

the results show that staying with Basel 2.5 can cause a large peak-to-trough variation in cap-

ital requirements if a future shock moves the stressed period, although this risk is somewhat

mitigated by the higher Basel 2.5 capital requirements. Rows 2 and 3 show that the maximum

difference substantially decreases from Basel 2.5 to Basel 3 for most models. This decrease

is largest for HS, where the peak-to-trough variation in Basel 3 is only 15.71% as shown in

Panel (d) of Figure 2.2. FZH has the lowest maximum difference across all models for every

Basel regime, making the model suitable for banks seeking to minimize large jumps in capital
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requirements.19

In summary, our results show that capital requirements became significantly more stable

from Basel 2 to Basel 2.5 due to the introduction of Stressed VaR. Basel 3 will further in-

crease the stability of capital requirements by decreasing non-standardized and standardized

volatility across most models and could also reduce the procyclicality of capital requirements

as evidenced by the lower peak-to-trough variation across most models under this regime com-

pared to previous regimes. Procyclicality is particularly concerning to regulators, since it may

amplify severe shocks and increase systemic risk. However, the results also show that the mod-

els with the most stable capital requirements across regulatory regimes and across variability

metrics are generally not the correctly specified models. In particular, FZ models most often

result in the least variability although they provide inferior forecasts of the risk measures. The

exception to this is when considering the standardized volatility of the Basel 3 capital which

is the lowest for the GPD and Hill models. Thus, while banks can minimize both the mean

and volatility of Basel 3 capital by using the FZH model, regulators could attempt to incen-

tivize the use of correctly specified models under this regime by penalizing models with high

standardized volatility.

2.6 Conclusion

In 2019, the Basel Committee on Banking Supervision (BCBS) finalized the Basel 3 regulatory

regime, which changes the regulatory measure of market risk from Value at Risk (VaR) at

the 99% confidence level to Expected Shortfall (ES) at the 97.5% confidence level and adds

new complex calculations based on liquidity and risk factors resulting in the most complex

market risk framework to date. As a result, banks are eager to know which models minimize

these new capital requirements. Additionally, regulatory supervisors are eager to know if the

models incentivized by the new regulations are correctly specified. Finally, regulators are also

19The FZ1 model had a large shock during the dot-com crisis resulting in high one-day Basel 3 capital require-
ments.
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interested in whether Basel 3 increases the stability and reduces the procyclicality of capital

requirements. This paper answers these questions using cutting-edge ES backtests by carefully

calculating regulatory capital under the new Basel 3 framework for realistic portfolios banks

may hold.

Our backtesting results show that Historical Simulation (HS), RiskMetrics, and symmetric

GARCH models are misspecified and systematically underestimate VaR and ES. In particular,

HS is rejected by every traditional backtest and has the worst comparative backtest results.

A new class of FZ models due to Patton, Ziegel, and Chen (2019) perform much better, but

are rejected by conditional spectral backtests and underperform the class of skewed GARCH

models traditionally used in empirical finance in comparative backtests. GARCH Filtered His-

torical Simulation, Skewed Student’s t, Skewed Generalized t, Generalized Pareto Distribution,

and Extreme Value Theory based Hill models are not rejected in any traditional ES backtest.

These skewed GARCH models also have the best performance for comparative backtests, often

belonging to the model confidence set and weakly dominating the class FZ models.

Our regulatory capital results demonstrate that Basel 3 incentivizes banks to choose models

that minimize Stressed ES at the 97.5% level, since there is nearly no penalty for using mis-

specified models. As a result, HS is the model that minimizes capital requirements for Basel

3 despite failing every backtest. The Hybrid FZ model requires the second lowest regulatory

capital and leads to the most stable capital requirements whereas correctly specified GARCH

models require the highest regulatory capital and have the highest capital requirement variabil-

ity using most metrics. Our results thus show that, although the proposed regulation under

Basel 3 seem to incentivize banks to use models that have more stable capital requirements

through time, the models that minimize average capital requirements appear misspecified and

produce inferior forecasts of the regulatory risk measures.

Our findings have important implications for the current regulation. In particular, we show

that Basel 3 regulation strongly disincentivizes banks from using correctly specified models.

Although the same holds for previous regulatory regimes, the changes suggested in Basel 3
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makes the relative differences even larger. We identify two possible reasons for this. First of

all, it appears that the requirement under Basel 3 to penalize low liquidity assets, i.e. assets

with long liquidity horizons, additionally in fact disincentivizes banks from using the correctly

specified skewed GARCH models due to their consistently high Stressed ES across liquidity

horizons. Secondly, given the low level of the Basel 3 multiplier banks have little incentive

to choose conservative and correctly specified models. Thus, if regulator’s objective is to also

incentivize the use of correctly specified models they would have to reconsider the effect of

these changes.



Chapter 3

Intraday Market Predictability: A

Machine Learning Approach

3.1 Introduction

The previous chapter focuses on the predictability of tail risk. In this chapter, we study the

mean predictability of the aggregate market. We focus on intraday market predictability using

machine learning models.

The predictability of the aggregate market is a central topic in financial economics. While

long-horizon (i.e. monthly or quarterly) market predictability has been extensively studied,

intraday (i.e. within a trading day) market predictability has received relatively less attention.

Traders require time to incorporate new information about cash flows and discount rates, and

over short time horizons equity prices can differ from their adjusted fundamental values, partic-

ularly when market frictions are high. This process may introduce short-horizon predictability

in equity returns and raises several interesting questions. First of all, if markets are predictable

at short horizons what is the magnitude of this predictability? Secondly, is intraday return pre-

dictability economically profitable, and if so, does this profitability survive transaction costs?

Finally, if markets are predictable it is obviously interesting to know which characteristics, like,

60
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e.g., lagged liquidity or price trends, are in fact important for predicting intraday returns.

Motivated by these questions, we study intraday market predictability using a cross-section

of lagged returns of the market and its constituent stocks as predictor variables.1 We believe

our paper is the first to conduct such a study and speculate that the lack of previous studies

on this topic may be due to statistical challenges associated with the high-dimensional inputs

and the computational difficulties of estimating models using large panels of high-frequency

data. We overcome the first issue by using a variety of cutting-edge machine learning models

necessary to accommodate the long list of predictors and rich functional forms. We consider

candidate methods from Gu, Kelly, and Xiu (2020c) and Hastie, Tibshirani, and Friedman

(2009), including linear models with regularization and dimension reduction using lasso (LAS),

elastic net (EN), and principal component regression (PCR), and nonlinear tree based models

like random forests (RF) and gradient-boosted regression trees (GBRT) along with artificial

neural networks (ANN). We also consider the ensemble mean and median of these models. Our

baseline model uses all the five-minute returns in an expanding estimation window. Training

machine learning models on such a large data panel is computationally challenging and this

second issue is overcome using the Apache Sparkling Water and H2O.ai computing framework,

which allows us to efficiently estimate machine learning models on large datasets. For example,

in October, 2016, the estimation window covers 285 months and contains roughly 450,000

five-minute returns for each S&P constituent, requiring approximately 48 hours to estimate all

models.

Our null hypothesis throughout this paper is that markets are not predictable, since any

predictability should be removed by active traders. Our alternative hypothesis is that the in-

formation in lagged returns is not instantly reflected in market prices, and as a result, lagged

returns are predictive of short-term market returns. These hypotheses are tested by examin-

ing the statistical predictability and the economic significance thereof for each of the machine

learning models considered. If models can forecast returns and consistently profit in so doing,

1While individual stocks are likely more predictable than the market, we begin with market predictability to
avoid issues related to data mining and concerns about lack of liquidity.
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then markets are likely to be predictable on short-horizons. Our second alternative hypothesis

is that there is predictability beyond that explained by transaction costs. This is tested by eval-

uating the economic significance of model predictions after accounting for realistic transaction

costs. If model predictions remain profitable after such costs, then there is likely incorrect

pricing beyond that explained by transaction costs.

To examine if there is statistical predictability of intraday market returns over five-minute

time intervals, our estimated models are trained on lagged returns with an expanding estima-

tion window from 1993 to 2016. For non-ensemble models, linear as well as nonlinear, out-of-

sample R2 (R2
OOS) values range up to 2.00% for LAS, followed by 1.95% for EN, and 1.71%

for the nonlinear RF model. The ensemble mean (median) model yields R2
OOS of 2% (2.01%),

illustrating the strength of combined forecasts. However, most of this predictability is concen-

trated in the pre-decimalization period from 1993 to 2000. In the early post-decimalization

period from 2001 to 2004, the LAS, EN, and RF models still have positive R2
OOS values of

0.91%, 0.81%, and 0.85%, respectively. The ensemble mean and median models have respec-

tive post-decimalization R2
OOS values of 1.04% and 1.01%. However, during the late decimal-

ization period from 2005 to 2016, we find model predictability significantly decreases due to

decreased transaction costs, but remains positive for the LAS, PCR, and ensemble models.

Next, to examine the economic significance of model predictions, a market-timing strategy

that buys (sells) the market on positive (negative) predictions is considered. Our results demon-

strate that a small intraday R2
OOS value can yield large economic profits, especially given the

numerous trading opportunities available at a five-minute interval. Using the baseline model

from 1993 to 2016, all models are found to have positive returns. The LAS, EN, RF, and

GBRT models have the highest non-ensemble statistical predictability and so too high annual-

ized returns (Sharpe ratios) of 191%, 188%, 198%, and 192% (2.71, 2.68, 2.90, and 2.84). The

ensemble mean and median have annualized returns (Sharpe ratios) of 205% and 204% (2.90

and 2.82). Again, most returns are concentrated in the pre-decimalization period. However,

in the late post-decimalization period from 2005 to 2016, all models still earn economically
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significant profits, with ANN earning the lowest returns (Sharpe ratios) of 16% (0.83). The

consistently positive returns and high Sharpe ratios provide further evidence that intraday mar-

kets are predictable.

Lastly, economic significance is analyzed after transaction costs. To do this the market-

timing strategy is modified to only trade when the signal is strong, i.e., when the model pre-

diction exceeds the transaction cost. Using the baseline model from 1993 to 2016, all models,

with the exception of ANN, are found to have positive returns even after accounting for trans-

action costs. The PCR, RF, and ensemble mean and median models have Sharpe ratios of 0.68,

0.77, 0.67, and 0.98, respectively, vastly exceeding the Sharpe ratio of 0.48 for the benchmark

buy-and-hold SPDR S&P 500 (SPY) portfolio. Again, most returns are concentrated in the

pre-decimalization period. In the late post-decimalization period from 2005 to 2016, the PCR

and RF models have annual returns (Sharpe ratios) of 9% and 8% (0.88 and 0.81) after trans-

action costs. The ensemble mean and median have respective annual returns (Sharpe ratios) of

4% and 5% (0.35 and 0.68) after transaction costs. As a comparison, from 2005 to 2016 the

SPY returned 7% with a Sharpe ratio of 0.46. Thus, in this recent sample PCR, RF, and the

ensemble median models continue to earn significantly higher Sharpe ratios than the market

does even after transaction costs, providing strong evidence that markets are predictable even

after accounting for transaction costs.

We hypothesize that the demonstrated significant predictability of intraday market returns

through time is driven by slow-moving trader capital, i.e. by infrequent portfolio rebalancing

(Bogousslavsky (2016) and Duffie (2010)), at a high frequency. If some traders rebalance their

portfolios infrequently, they may be slow to incorporate shocks to individual stock returns into

the aggregate market, particularly when traders face severe volatility or illiquidity. To analyse

this further, we examine if our results differ within the trading day, in periods of high versus

low volatility or illiquidity, and during periods of financial crisis. First, since traders are most

active at the beginning and end of each day, we expect predictability to be low during those

times. Our results show that predictability is indeed stronger when traders are less active and
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exhibits an inverse-U shape. Second, during periods of high volatility and high illiquidity,

traders encounter significant market frictions. Consistent with our hypothesis we find that

predictability and its economic significance increases when market volatility and illiquidity are

high. Finally, since crisis periods are associated with significant market frictions we expect

to find that predictability is also relative high in these periods. Our results demonstrate that

predictability is indeed stronger during the Subprime Mortgage crisis and the EU debt crisis.

The baseline predictor variables used here are the cross-section of lagged intraday returns

for the market constituents. A natural comparison to these cross-sectional models are autore-

gressive models for the market return itself, since our predictability results could simply be

capturing intraday momentum. For example, Heston, Korajczyk, and Sadka (2010) find sig-

nificant auto-correlation of half-hour returns at daily intervals and Gao et al. (2018) find that

the first half-hour return of the SPY predicts the last. Thus, as an additional analysis we vali-

date our cross-sectional model’s results by contrasting them against the results obtained with

AR(1), AR(p) where the lag-order p is chosen to minimize the validation error, and AR(500)

models estimated using OLS, LAS, EN, and PCR. We confirm that our baseline cross-sectional

models significantly outperform the autoregressive models, indicating that the cross-section of

lagged constituent returns has significant predictive information that is not contained in lagged

market returns.

As a final additional analysis we evaluate intraday market predictability using additional

lagged stock characteristics as predictors. In this analysis we include market beta, momentum,

illiquidity, extreme returns, trading volume, volatility, skewness, and kurtosis, all estimated

over the previous day.2 We also consider the lagged bid-ask spread. In most cases adding addi-

tional variables is found to decrease model predictability, indicating that these characteristics

do not help lagged returns predict the market portfolio returns. These findings have important

implications for the possible economic mechanisms that drive such predictability. For example,

could the predictability be caused by intraday momentum, as argued by Heston, Korajczyk, and

2Gu, Kelly, and Xiu (2020c) demonstrate that price trend and liquidity have the strongest predictive ability.
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Sadka (2010) and Gao et al. (2018)? This explanation seems unlikely given that price trend

variables fail to improve model predictability. A big picture implication of our findings is that

a careful exploration of the economic mechanisms driving predictability is warranted.

Our paper is related to at least three existing strands of literature. First, our results are

naturally related to the recent literature examining intraday return predictability using lagged

returns and trading volume. Chordia, Roll, and Subrahmanyam (2005) and Chordia, Roll, and

Subrahmanyam (2008) study the predictability of short-run stock returns, finding that intraday

returns cannot be predicted by past prices, but that order imbalances do forecast short-horizon

returns. Heston, Korajczyk, and Sadka (2010) find significant autocorrelation of returns at

daily intervals, for up to 20 days. Gao et al. (2018) demonstrate that the first half-hour return

of the SPY market exchange-traded fund (ETF) predicts the last half-hour return. Bogous-

slavsky (2016) theoretically establishes that seasonality in intraday returns may be caused by

traders’ infrequent rebalancing. Chinco, Clark-Joseph, and Ye (2019) use a LAS model on the

cross-section of NYSE lagged returns to show that one-minute returns are predictable. These

studies use linear models to forecast returns, whereas our models use information from the

entire cross-section of lagged returns as well as other characteristics, and permit more flexible

functional forms accommodating variable interactions and other nonlinear effects. Further-

more, Ke, Kelly, and Xiu (2019) and Renault (2017) show that text data forecasts intraday

returns.

Our paper also relates to the rapidly expanding literature applying machine learning tech-

niques in financial economics.3 Our paper is most closely related to Gu, Kelly, and Xiu

(2020c), which applies an extensive array of machine learning techniques to the problem of

predicting equity risk premiums (see also Fischer and Krauss (2018), Long, Lu, and Cui (2019)

and Marković et al. (2017)).4 Bianchi, Büchner, and Tamoni (2021) consider the prediction of

3See Weigand (2019) for a recent concise summary of asset pricing via machine learning and Heston and Sinha
(2017) and Hajek and Barushka (2018) for reviews of the history of financial applications of machine learning.

4Other papers similar to that of Gu, Kelly, and Xiu (2020c), which are also concerned with the use of machine
learning for predicting returns, include those of Chong, Han, and Park (2017), Feng, He, and Polson (2018), Kelly,
Pruitt, and Su (2019b), Sutherland, Jung, and Lee (2018), and Xue et al. (2018).
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bond, rather than stock, risk premiums, and other financial applications of machine learning

include their use for derivatives pricing (Ye and Zhang (2019)), hedge fund selection and re-

turn prediction (Chen, Wu, and Tindall (2016)), credit risk management (Barboza, Kimura,

and Altman (2017)), portfolio management and optimization (Yun et al. (2020) and Day and

Lin (2019)), cryptocurrency (Dutta, Kumar, and Basu (2020) and Alessandretti et al. (2018)),

stochastic discount factors (Korsaye, Quaini, and Trojani (2019)), and factor models (Bryz-

galova, Pelger, and Zhu (2019), Chen, Pelger, and Zhu (2019), Feng, Polson, and Xu (2019),

Gu, Kelly, and Xiu (2020a), and Kelly, Pruitt, and Su (2019a)).

Finally, our study is similar in spirit to the literature on aggregate market return predictabil-

ity, which focuses on long horizons over months, quarters and years.5 Fama (1991) established

the general view that return predictability at long horizons is driven by time-varying expected

returns, consistent with market efficiency. Our research differs fundamentally, since the estab-

lished predictability and its economic value is driven by market frictions at high frequencies.

The paper is organized as follows: Section 3.2 introduces the machine learning methods

we consider and explains how we evaluate intraday predictability. Section 3.3 presents re-

sults for statistical predictability, economic significance before and after transaction costs, and

a robustness check using different training window sizes. Section 3.4 examines if the results

differ across the time of day, across levels of volatility and illiquidity, or during crisis periods,

whether autoregressive models can also forecast returns, and whether predictability can be im-

proved by including additional input variables. Section 3.5 concludes. The appendices contain

further details on the data used, variable cleaning, the stock characteristics used as inputs,

and on the implementation of the machine learning methods, in general, and hyperparameter

optimization, in particular.

5See, among others, Ang and Bekaert (2007), Campbell and Thompson (2008), Chen, Da, and Zhao (2013),
Kelly and Pruitt (2015), Neely et al. (2014), and Welch and Goyal (2008). See Koijen and Van Nieuwerburgh
(2011) and Rapach and Zhou (2013) for recent surveys.
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3.2 Methodology

Given T high-frequency price observations, indexed by 1 ≤ t ≤ T , and denoting by pt the

natural logarithm of the tth observed price, the corresponding logarithmic return is given by

rt ≡ pt − pt−1. (3.1)

Of particular interest in this paper is the market return which we denote by rM
t and whether

or not this can be predicted. To assess this, we conduct one of the largest empirical studies

of market prediction in the high-frequency literature. The primary dataset is the trade and

quotes (TAQ) database, containing intraday transaction data for all stocks on the New York

stock exchange (NYSE), American stock exchange (AMEX), NASDAQ, and other American

regional exchanges, from February, 1993, to October, 2016. Our goal is to predict five-minute

changes in the aggregate market, which we proxy by the SPDR S&P 500 (SPY) ETF. The

baseline predictor variables are lagged returns of the SPY and S&P 500 constituents. We

obtain the list of S&P 500 constituents from the center for research in security prices (CRSP),

and update the 500 constituents monthly.6

Given a vector of lagged characteristics of the SPY and S&P 500 constituents, X`
t , indexed

by integers, 0 ≤ ` ≤ 500, the objective of our paper is to use state of the art machine learning

methods to approximate the empirical model given by

rM
t+1 = f

(
X`

t

)
. (3.2)

In the baseline model, the covariates are lagged returns, such that X`
t = r`t , resulting in 501

covariates. We consider in addition models that include other firm-level characteristics, such

that X`
t = [ r`t z`t ], where [.] denotes matrix concatenation, and z0

t (z`t with ` ≥ 1) is the

market beta (of firm ` ≥ 1), illiquidity, kurtosis, maximum, minimum, momentum, skewness,

6See Appendix B.1.1 for more details on the databases used.
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volatility, trading volume, or bid-ask spread. These expanded models have 1002 covariates

(501 lagged returns and 501 characteristics).7

The rest of this section introduces several methods for estimating the function f in the em-

pirical model in Equation (3.2) above. In this paper we consider specifically 1) linear models,

2) nonlinear models, and 3) so-called ensemble models that weigh together multiple individ-

ual models. Finally, we explain how, given an estimator of f , possible predictability can be

assessed both statistically and economically.

3.2.1 Linear models

When restricting the focus to linear models the optimization problem is given by

inf
β∈RK

m[y − Xβ], (3.3)

where we use notation from the machine learning literature and refer to the market returns as

the targets denoted by y, an n × 1 column vector, and where the predictors, e.g. lagged returns

or other characteristics, are denoted by X, an n × K matrix in the case of K predictors. In

Equation (3.3), m[·] denotes a metric or loss for the fit of the model and β denotes the relevant

parameters in the model. For example, in the case of OLS regression the metric is taken to be

the Euclidean/`2 norm, i.e. m ≡ ‖ · ‖2, and the solution to the optimization problem in Equation

(3.3) is given by the classical OLS estimator

β̂ ≡ (XT X)−1XT y.

In the presence of many predictors, the simple linear regression model easily becomes ineffi-

cient leading to in-sample over-fitting which is detrimental to our objective of out-of-sample

prediction. We present here two approaches to deal with this: 1) regularization and 2) principle

7The only exception to this is the expanded model with z`t equal to market beta which only has 1001 covariates,
since the SPY market beta z0

t = 1. See Appendix B.1.2 for details on how these characteristics are calculated.
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component regression.

Regularization

One primary objective of regularization techniques (see, e.g., Friedman, Hastie, and Tibshirani

(2010)) is to avoid over-fitting in statistical models. This is often accomplished by adding a

penalty term to the optimization problem in Equation (3.3) as follows

inf
β∈RK
{m[y − Xβ] + λn[β]} . (3.4)

Here, the functional n[·], often a norm, penalizes non-zero estimators and the regularization

parameter λ regulates the penalty’s impact as a multiplicative scale. A classical example is

ridge regression, in which the optimization problem in Equation (3.4) is modified to

inf
β∈RK

{
‖y − Xβ‖22 + λ‖β‖22

}
.

The smoothness of ridge regression (see, e.g., Marquaridt (1970)) resulting from using the `2

norm is computationally advantageous, but may result in many ‘near-but-non-zero’ coefficients

and thus may not reduce the dimensionality of the optimization problem in a sufficient manner.

In this paper we instead consider lasso regression (see, e.g., Tibshirani (1996)) and elastic nets

(see, e.g., Zou and Hastie (2005)).

In the case of a lasso regression (LAS) the optimization problem in Equation (3.4) is mod-

ified to

inf
β∈RK

{
1
2
‖y − Xβ‖22 + λ‖β‖1

}
.

Hence LAS employs the computationally difficult (i.e., non-smooth) `1 norm, but has the re-

sulting advantage that many coefficients are driven to zero exactly, leaving out only those of

sufficient predictive importance. The resulting β, is non-zero only for those predictors which
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most significantly determine the target and may therefore be of much lower dimension than

the original problem which is indeed one of the primary objectives of our use of regularization

techniques.

In the case of an elastic net regression (EN) the optimization problem in Equation (3.4) is

modified to

inf
β∈RK

{
1
2
‖y − Xβ‖22 + αλ1‖β‖1 +

1 − α
2

λ2‖β‖
2
2

}
.

Hence EN convexly combines ridge and lasso penalties to balance these two competing prop-

erties; smoothness and perfect elimination of unimportant predictors. Here, α ∈ [0, 1] is the

coefficient of the convex combination of `1 and `2 norms of the regression coefficients, β, and

in general, each may have its own regularization parameter, respectively, λ1 and λ2. In the

particular cases of α ∈ {0, 1}, elastic nets respectively reduce to ridge and lasso regressions.8

Principal component regression

Principal component regression (PCR) is a dimension-reduction technique used to summarize

variation within a data set using a small number of linear combinations thereof (see, e.g.,

Jolliffe (2002)). Given a data set X, consisting of n observations of K predictors, PCR solves

the following problem

sup
w∈RK

wTΣw
wT w

,

where w ∈ RK are the predictor weight vectors and Σ is the covariance of the predictors. The

motivation for PCR is clear from this formulation: since an eigenvector of Σ, w, solves the

eigenvalue problem, Σw = λw, for a corresponding eigenvalue of Σ, λ, the best eigenvector

solution of this problem is obviously that for which the corresponding eigenvalue, λ, is largest.

This follows since the Raleigh quotient to be optimized, wTΣw/wT w, which measures nor-

8Appendix B.2 explains how the hyper-parameters α, λ1, and λ2, or in the case of LAS only λ, are selected.



3.2. Methodology 71

malized variation/variance of the data set along the weight vector, w, simplifies in this case

to λ. So in applying PCR, it is necessary only to compute an eigenvalue decomposition of Σ,

sort its eigenvalues, and take as many corresponding eigenvectors as are desired principal com-

ponents, to yield the principal directions. Normalizing each by its corresponding square-root

eigenvalue, the desired principal components are obtained.

In the context of the optimization problem in Equation (3.3), PCR is first applied to the

predictors, X. Supposing κ � K components are desired, the projected predictors, Z, are then

used in a linear regression yielding the classical OLS estimator given by

β̂ ≡ (ZT Z)−1ZT y,

in which

Z ≡ (X − µ)W,

where µ is the mean of the predictors and W ≡ [ w(1) w(2) · · · w(κ) ] is the matrix of princi-

pal components to be used. The resulting (demeaned) projected predictors, Z, are thus only of

dimension κ � K, yielding a potentially significant reduction in the number of predictors and

resulting regression model complexity, while preserving, to the extent possible, the richness of

variation in the original data.9

3.2.2 Nonlinear models

More generally, the fundamental problem to be addressed in this paper is to solve the following

optimization problem

inf
f∈F

m[y − f(X)], (3.5)

9Selecting the value of κ can be a complex problem. Appendix B.2 explains how we set this hyper-parameter.
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where F denotes the set of functions from which candidate predictors are drawn and m denotes

a metric or loss for the fit of the model. Above we considered several linear models and we

now consider two general examples of nonlinear models: 1) models based on decision trees

and 2) models based on artificial neural networks.

Tree-based models

Decision trees are nonparametric, hierarchical sequences of decisions, which optimally con-

struct, based on the training and validation data, sequences of decisions to classify or regress

arbitrary input predictors. Individual decision trees train in logarithmic time with the number

of training points, but over-fitting is common, as more decisions (greater ‘depth’) are needed to

better model training data, which may not generalize well. Individual trees often behave chaot-

ically, too, in that the optimal structure may change drastically in response to the addition or

removal of a handful of training data. Ensembles of trees mitigate the resulting large variance

of individual decision trees, and avoid over-fitting by restriction to simple individuals across

the ensemble, but inherit from such individuals some degree of the advantages of interpretation

and efficient training. The fundamentals and many refinements of decision tree training are

provided by, e.g., Breiman et al. (1984).

Random forest (RF) models (see, e.g., Breiman (2001)) independently and pseudorandomly

generate decision trees, which are separately trained and whose predictions are then averaged

to yield the ensemble prediction. In RF prediction robustness improvements are achieved via

variance reductions implicit in the law of large numbers. Given predictors X, denote an in-

dividual decision tree’s estimator, say that of the ith tree generated in an ensemble, by gi(X).

Supposing there are N decision trees in the ensemble, the prediction of RF is simply

fRF(X) ≡
1
N

N∑
i=1

gi(X).

That is, RF amounts to considering the (arithmetic) average of the predictions of individual
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trees in the forest.10

Each individual decision tree in the ensemble is trained on data drawn pseudorandomly

with replacement from the training data. I.e., each individual tree is trained on a bootstrapped

sample of the training data, and aggregated in making predictions via the average of those

from each individual, and so random forests constitute one instance of bootstrap aggregated

(bagged) predictors (see, e.g., Breiman (1996)). This bagging yields many individuals with

uncorrelated prediction errors and less variance on average, whereas individuals tend to have

high variance and over-fit. The construction may however introduce estimator bias, which

is the problem addressed below by gradient-boosted regression trees. The bagging implicit

in random forests also addresses the NP-completeness of the problem of training a globally

optimal individual decision tree, which necessitates the use of heuristics, including typical

greedy implementations, in training such individuals and bagging mitigates much of the bias

that such heuristics introduce during individuals’ training.

As their name suggests, gradient-boosted regression trees (GBRT) implement boosting, a

second case of ensemble methods. As opposed to averaging methods, the simple estimators are

sequentially (and so not independently) generated in a manner which progressively eliminates

bias from the ensemble (a standard reference is Schapire and Freund (2013)). Boosting refers

to the notion of developing a strong learner (a predictor with metric, m, approaching zero on

arbitrary data) from a weak one (a predictor which performs marginally better than random

guessing). Schapire (1990) first affirmatively answered this hypothesis boosting question, and

the adaptive resampling and combining, or arcing, algorithm of Freund and Schapire (1997) is

regarded as the canonical method for achieving such boosting in machine learning. Gradient

boosting refers to the generalization of this and other boosting algorithms to the case of arbi-

trary differentiable loss functions, first achieved explicitly by Friedman (2001) and Friedman

(2002).

10The crucial hyper-parameters to optimize for RF are the number of trees in the forest, the maximum number
of predictors or features considered at each node of each tree, and the maximum number of nodes between the
leaves and root of any tree, known as the depth. Appendix B.2 explains how these are selected.
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In the case of GBRT, the ensemble prediction is a weighted combination of individual pre-

dictions, with weights γi determined as part of training leading to the following representation

fGBRT(X) ≡
N∑

i=1

γigi(X).

Specifying f0 ≡ 0 and denoting fGBRT ≡ fN , the following holds for 1 ≤ i ≤ N

fi(X) = fi−1(X) + γigi(X).

At each stage, i, of training, the decision tree predictor, gi, is greedily chosen to solve

inf
g∈G
L[y, fi−1(X) + γigi(X)]. (3.6)

Here, L is some loss function, typically expressed as a sum of losses, say L, between corre-

sponding targets, y j ∈ y ≡ {y j}, and predictors, x j· ∈ X ≡ {x j·}, as

L[y, fi−1(X) + γigi(X)] ≡
n∑

j=1

L[y j, fi−1(x j·) + γigi(x j·)]. (3.7)

Note that the solution to the optimization problem in Equation (3.6) is conditional on the cur-

rent ensemble, fi−1, as opposed to the independent generation of individual decision tree pre-

dictors, gi, in a RF.

In the case where the loss, L, is differentiable, gradient boosting solves the optimization

problem in Equation (3.6) via gradient descent as

fi(X) = fi−1(X) − γi

n∑
j=1

∇fL[y j, fi−1(x j·)],

where the the weights, γi, are chosen to optimize a loss similar to that of Equation (3.7) given
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by

inf
γ>0

n∑
j=1

L
(
y j, fi−1(x j·) − γ∂fL[y j, fi−1(x j·)]

)
.

Thus, the weights can be interpreted as step sizes/learning rates in this gradient descent proce-

dure.11

Artificial neural networks

As their name suggests, artificial neural networks (ANNs) are motivated by the neural networks

found in animal brains, and theoretical neuroscientific models thereof (see Bishop (1995) and

Bishop (2006)). The most general-purpose and well-known neural network architecture is

feedforward in which an input layer consisting of the inputs, y0 ≡ xi·, is followed by a sequence

of hidden layers, each consisting of a number of neurons. Initially, the inputs are weighted by

a set of learned parameters and added to another, the so-called bias, to yield an input for each

neuron in the succeeding layer. Denoting by k1 the number of neurons in this layer and k0 ≡ K

the number of inputs, there are thus k1(k0 + 1) parameters which yield this layer’s inputs as

(∀1 ≤ j ≤ k1) x1
j ≡ y0w1

j + b1
j .

Here, w1
j is the learned column vector of weights for the row vector of inputs, y0, and b1

j the

corresponding learned additive bias. To introduce non-linearity into the output of a neuron

y1
j ≡ φ

1
j(x1

j) where φ1
j is the so-called activation function of neuron j.

More concisely we can write the mapping as

x1 ≡ y0W1 + b1

y1 = Φ1(x1).
(3.8)

11In addition to the hyper-parameters discussed for RF, in the case of GBRT the loss function, L, used for
training and the additional uniform multiplier/scale, ν, which may be factored out of the step sizes, γi, as an
explicit learning rate, can also be important. See Appendix B.2 for further details.



76 Chapter 3. IntradayMarket Predictability: A Machine Learning Approach

Here, W1 is the matrix with columns w1
j , b1 is the row vector with entries b1

j , and Φ1 is the

mapping from the row vector x1, with entries x1
j , to the row vector y1, with entries, y1

j . In

succeeding hidden layers, if applicable, the process is iterated as follows

(∀2 ≤ ν ≤ N) xν ≡ yν−1Wν + bν

yν = Φν(xν),
(3.9)

where N is the total number of hidden layers. Finally, the output layer yields predictions given

by

xN+1 ≡ yNWN+1 + bN+1

yN+1 = ΦN+1(xN+1).
(3.10)

In our application, the output layer is linear and the number of neurons, kN+1, is naturally set to

one, resulting in

fANN(X) ≡ yNWN+1 + bN+1. (3.11)

Hence, the neurons are simply linearly aggregated into the forecast.

Collecting all weights and biases across layers, the feedforward network has a total pa-

rameter count of
N∑
ν=0

kν+1(kν + 1) as there are
∑N
ν=0 kν+1 biases and

∑N
ν=0 kν+1kν weights and such

networks may indeed be highly parametric. Classically, these are optimized via stochastic gra-

dient descent, but several adaptive/‘momentum’-based generalizations have been proposed.12

12In ANN, the optimization algorithm employed for training, the loss function it uses, the `1 and `2 regulariza-
tion parameters, the number of epochs and batches, and the level of dropout all constitute hyperparameters which
impact the quality of predictions from a model with trained parameters. However, the actual network architecture,
characterized by the number of hidden layers, the number of neurons in each layer, and the activation function
associated with each neuron, often have an even greater impact. We fix the number of hidden layers at 3 and
use hyperparameter optimization to determine the number of nodes in each layer. Appendix B.2 provides further
details on these hyperparameters.
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3.2.3 Ensemble methods

Ensemble methods seek to combine multiple predictors’ results, for both variance reduction

and ‘crowd wisdom’ purposes. For example, various measures of central tendency or location

parameters, including the median and alternate (weighted) means, such as the harmonic, geo-

metric and arithmetic mean, may act as ensemble aggregation methods and represent an ‘aver-

age’ prediction based on all the predictors’ outputs.13 For regression problems, the two most

prominent machine learning ensemble aggregation methods are boosting and bagging, as re-

spectively outlined for GBRT and RF models. Abstractly, given any of these ensemble aggrega-

tion methods, say, AM ∈ {Bag, boost, (weighted) arithmetic/geometric/harmonic mean,median},

etc., and a set of predictors’ outputs, e.g., {fLAS(X), fEN(X), fPCR(X), fRF(X), fGBRT(X), fANN(X)},

the ensemble prediction is

fAM(X) ≡ AM ({fLAS(X), fEN(X), fPCR(X), fRF(X), fGBRT(X), fANN(X)}) .

In our application we will consider the average and the median as aggregation methods and as

such this method does not introduce any additional hyperparameters.

It should be noted that regularization may also be applied to the ensemble aggregation

methods just as it may be in the particular cases of GBRT and RF models.14 The machine

learning ensemble aggregation methods are more flexible than straightforward computation of

some measure of central tendency or location parameter of the various models’ predictions,

as the former permit regularization and hyperparameter tuning. Which ensemble aggregation

method to use is itself a hyperparameter optimization problem, albeit a small one which may

be largely mitigated by simply computing many ensembles, e.g., boosting, bagging, and a

variety of ‘popular’ measures of central tendency or location parameters. The justification for

any particular aggregation method may come from either the statistical (variance-reduction and

13Timmermann (2006) provides an overview of forecast combinations and Genre et al. (2013) show that forecast
combinations using a simple average often outperform methods that rely on estimated combination weights.

14In fact, Koren (2009) aggregated model predictions using GBRT, in the winning solution of the Netflix Prize.
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bias) properties of bagging or boosting, or laws of large numbers, central limit theorems, or

other asymptotic results applicable to the computed measures of central tendency or location

parameters.

3.2.4 Evaluation criteria

Our objective is to assess the predictability of market returns. We do so using two types of

criteria: purely statistical criteria based on a relevant metric for out of sample model fit and

economic criteria based on the obtained returns from trading on a given model’s predictions.

Statistical significance

To evaluate the predictive performance of the high-frequency market return forecasts, we cal-

culate the out-of-sample R2 metric proposed by Gu, Kelly, and Xiu (2020c). Given the market

return, rM
t+1, and a corresponding model prediction given the history up to time t, r̂M

t+1, the out-

of-sample R2 is calculated as

R2
OOS ≡ 1 −

∑
t∈Test

(
rM

t+1 − r̂M
t+1

)2

∑
t∈Test

(
rM

t+1

)2 . (3.12)

Note that the R2
OOS metric is only calculated over the test samples, indexed by times t in the set

Test. The denominator of R2
OOS is the squared sum of market returns without demeaning. As

discussed by Gu, Kelly, and Xiu (2020c), the historical mean underperforms a zero forecast.

The historical mean return is noisy, resulting in artificially high estimates of R2. Hence, we

benchmark against zero rather than the historical mean.15

Following Gao et al. (2018) and Chinco, Clark-Joseph, and Ye (2019), we also consider the

estimated coefficients from running a simple predictive regression given by

rM
t+1 = α + βr̂M

t+1 + εt+1, (3.13)

15When we benchmark against the historical mean, the R2 increases by approximately 0.01% across methods.
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where rM
t+1 is the market return and r̂M

t+1 is the model prediction for five-minute time interval

t + 1.

Economic significance

In addition to evaluating predictive performance, we assess the ability of each model to time the

market. We implement a trading strategy that takes a long (short) position in the market if the

model predicts a positive (negative) return. The profitability can be expressed as π ≡
∑

t∈Test πt

where the individual daily profits, πt, are defined as

πt

(
r̂M

t+1

)
≡



−rM
t+1 if r̂M

t+1 < 0,

rM
t+1 if r̂M

t+1 > 0,

0 otherwise.

(3.14)

Reported are annualized excess arithmetic returns and Sharpe ratios of this trading strategy

across the test sample. The Sharpe ratio is calculated as the monthly excess return divided by

the corresponding standard deviation and scaled by
√

12.

The economic significance of the trading strategy could be completely driven by small re-

turn fluctuations such as the bid-ask bounce discussed by Roll (1984), which is not useful to

traders. To assess the models’ ability to predict larger returns, we consider a trading strat-

egy that accounts for transaction costs. Given national best bid (ask) price, Bidt (Askt), and

midquote Mt = Bidt+Askt
2 , we estimate the transaction cost by the relative national-best bid-offer

(NBBO) spread, given by

Spreadt =
Askt − Bidt

Mt
. (3.15)

Following Chinco, Clark-Joseph, and Ye (2019), we evaluate the economic significance of

returns after transaction costs by implementing a trading strategy that only trades when model
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predictions exceed the transaction costs. The returns of this trading strategy are

φt

(
r̂M

t+1

)
≡



−rM
t+1 − Spreadt if

∣∣∣r̂M
t+1

∣∣∣ > Spreadt and r̂M
t+1 < 0,

rM
t+1 − Spreadt if

∣∣∣r̂M
t+1

∣∣∣ > Spreadt and r̂M
t+1 > 0,

0 otherwise.

(3.16)

Again, we report annualized excess returns and Sharpe ratios for this trading strategy. For

models to be profitable, their predicted returns must be properly directed and exceed transaction

costs, that is r̂M
t+1 > 0 and |r̂M

t+1| > Spreadt for a long position to be implemented. This simple

trading strategy presents a significant hurdle for model validation and provides a benchmark

for returns available to traders. We use a simple strategy to avoid data mining concerns, but

more sophisticated strategies can yield higher returns.

3.3 Empirical results

In this section we present the results for the eight models considered: lasso (LAS), elastic

net (EN), principal component regression (PCR), random forest (RF), gradient-boosted regres-

sion trees (GBRT), artificial neural networks (ANN), and the ensemble (arithmetic) average

(MEAN) and median (MED). We omit results for OLS from our analysis, since we find that

the simple linear model is highly inaccurate, resulting in a negative out-of-sample R2 in most

periods. All models are estimated using Sparkling Water from H2O.ai, which combines the

machine learning algorithms of H2O with the big data capabilities of Apache Spark, and per-

mits efficient estimation of machine learning models on much larger datasets than the existing

literature. We train the models using all intraday and overnight observations, however we re-

port results from 9:35 to 3:55 only excluding the opening and closing returns to avoid concerns

regarding the accuracy of these auction-based prices and the effect of overnight/weekend ef-

fects. For each model, we tune hyperparameters in the validation set using random search on

mean squared error.
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We evaluate the predictive performance of each model by out-of-sample R2, R2
OOS, and the

predictive regression coefficients and t-statistics. We evaluate the economic significance by

the excess returns and Sharpe ratios of the market timing trading strategy with and without

transaction costs. In each case, we examine model performance over the entire testing sample

from April, 1993, to October, 2016. The results are also presented for significant sub-periods,

including the 1/8 tick size sample from 1993 to 1996, the 1/16 tick size sample from 1997 to

2000, the early post-decimalization sample from 2001 to 2004, and the late post-decimalization

sample from 2005 to 2016. Finally, we consider the robustness of our results to using models

trained on 1, 4, 7, 10, 16, 22, 34, and 58 months of returns instead of our baseline expanding

window.

3.3.1 Market predictability

Table 3.1 reports coefficients from the predictive regression in Equation (3.13) along with

Newey-West t-statistics with 79 lags, R2
OOS percentages, and the ratio of R2

OOS to mean transac-

tion cost (R2
OOS/(Bid-Ask Spread scaled by 1,000)) for the eight machine learning techniques

considered. Panel A presents results for the entire testing sample from April 1993 to October

2016. Across models, slope coefficents are roughly 1 with most t-statistics exceeding 40. The

magnitude of the intercept and slope coefficients are not exactly 0 and 1 respectively, since the

relationship between realized and predicted returns is non-linear (for example, due to the preva-

lence of zero return observations in five-minute returns). The table shows that all the models

predict the market better than a naive forecast of zero, since each of them have a positive R2
OOS.

The LAS and EN models have R2
OOS of 2% and 1.95%, respectively. These regularized linear

models have the highest R2
OOS among non-ensemble models. Among non-linear models, RF

performs best with an R2
OOS of 1.71%. Surprisingly, ANN performs poorly despite performing

well in Gu, Kelly, and Xiu (2020c). This performance difference is likely because they forecast

using an ensemble of neural networks, while we are limited by computational time to a single

neural network prediction each period, which typically has higher variance forecasts. Across
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all models, the ensemble mean and median perform best with respective R2
OOS values of 2% and

2.01%. Note that most models have an R2
OOS exceeding 1.6%, which is the R2

OOS documented

in Gao et al. (2018) for 30-minute returns and roughly twice the monthly R2
OOS reported by Gu,

Kelly, and Xiu (2020c). Having a similar level of R2
OOS at a higher-frequency (like five-minutes

in this paper) than at a lower frequency is interesting since more trades can be carried out

based on the predictability. Our findings are different than Chordia, Roll, and Subrahmanyam

(2005), which uses linear models and find that lagged returns cannot forecast five-minute eq-

uity returns. Our results reveal that by including lagged returns of market constituents using

high-dimensional models, market returns are predictable using only lagged returns.

Next, we break down the predictability by time period based on observed structural breaks

caused by changes to tick size and transaction costs. Panel B presents results for the early

sample from 1993 to 1996, coinciding with a 1/8 tick size. This sample has the strongest

predictability, with R2
OOS exceeding 6% across all models and slope t-statistics exceeding 30.

This finding makes sense intuitively, since predictability should be high when a large tick size

prevents traders from bringing prices to their fundamental values. Also, trading volumes were

relatively low and transaction costs were high during this time period, which further increased

market frictions. Panel C presents results for the period with 1/16 tick size from 1997 to

2000. This period has the second highest predictability with R2
OOS exceeding 3% for all models

except PCR. The R2
OOS/Cost ratio decreased by roughly 90% relative to the previous period,

demonstrating that most of the decreases in predictability were due to factors other than the

decreases in transaction costs, and possibly due to technological improvements for traders (i.e.

faster computer driven trading).16

Beginning in 2001, exchanges adopted decimal ($0.01) trading ticks, which is the tick

size in the remainder of our sample. For this reason, we refer to 2001 to 2016 as the post-

decimalization period. Panel D reports results for the early post-decimalization period from

2001 to 2004. Coefficients are statistically significant at the 1% level across all models, and

16The simple intuition for this is the following: if the decrease in R2
OOS could be fully explained by a decrease

in transaction costs, then the R2
OOS/Cost ratio should remain the same across periods.
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while the R2
OOS are lower than pre-decimalization, they remain relatively high. Furthermore,

the R2
OOS/Cost ratio decreased by roughly 50% relative to the previous period, indicating that

much of the decrease in predictability can be explained by decreases in transaction costs. The

highest non-ensemble R2
OOS are for the LAS, EN, and RF models at 0.91%, 0.81%, and 0.85%,

respectively. The ensemble mean and median reach an R2
OOS of 1.04% and 1.01%, respectively.

These R2
OOS are still in line with the market predictability results from Gao et al. (2018) and Gu,

Kelly, and Xiu (2020c) for the 30-minute and monthly time horizons, respectively. It should

be noted that from 2001 to 2004 there was a significant decrease in transaction costs with

no change to tick size. Figure 3.1 plots the median transaction cost (Bid-Ask Spread scaled

by 1,000) against the R2
OOS for each model during the post-decimalization period. Consistent

with our hypothesis, the decrease in transaction costs in the early post-decimalization period

significantly decreased the R2
OOS across all models.

Finally, Panel E reports results for the late post-decimalization period from 2005 to 2016.

The LAS and PCR models have positive R2
OOS of 0.02% and 0.04%, respectively, during this

period. Interestingly, the PCR model has a positive R2
OOS during this period despite having the

lowest R2
OOS in all previous periods. This is likely because the Subprime crisis and European

debt crisis occurred in this period, and as a result of asset correlation increasing to near one

in these crisis periods, returns had a strong factor structure.17 The EN, RF, GBRT, and ANN

models have negative R2
OOS of -0.04, -0.01, -0.39, and -0.45, respectively, indicating that they

perform worse than a naive constant prediction of 0. The poor performance of the non-linear

models suggests that non-linear models may be over-fitting a simpler predictive relationship

during this recent period. The ensemble mean and median, however, have the highest R2
OOS of

0.04% and 0.06% respectively, benefiting from PCR’s strong performance during crisis peri-

ods. This result shows that models that perform poorly on average can still improve ensemble

models.

At a first glance, it may appear that after 2005 all of the predictability is gone. However,

17In Section 3.4.3 we confirm that the PCR model indeed performs well during both these crisis periods.
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Figure 3.1: R2
OOS and trading costs
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ANN EN GBRT LAS MEAN MED PCR RF SPY Cost

Plot of the post-decimalization R2
OOS for the SPY using the lasso (LAS), elastic net (EN), principal component

regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean
ensemble (MEAN), and median ensemble (MED). Also plotted is the median transaction cost scaled by 1,000
(SPY Cost).

we argue that this is not the case. In particular, Figure 3.1 shows that the R2
OOS for the two

ensemble methods stay consistently positive, although it is small in magnitude, and the ensem-

ble median R2
OOS is positive in every year except for 2015. Relative to the previous period, the

R2
OOS decreased by roughly 95%, but the R2

OOS/Cost ratio only decreased by 33-66%, indicating

that some of the decrease in predictability can be explained by decreases in transaction costs.

Given the substantial decrease in transaction costs for five-minute returns, a high R2
OOS would

be unreasonable, and a small but positive R2
OOS should be expected. As argued by Campbell and
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Thompson (2008) and Rapach and Zhou (2013), even a small R2 can generate economically

large portfolio returns. This can be especially true given the number of trading opportunities at

a five-minute interval.

In summary, our first set of results demonstrate that the market is remarkably predictable

at the five-minute frequency. This predictability is highest prior to the decimalization of ex-

changes in 2001. Post-decimalization, markets became faster in integrating lagged intraday

information. However, the R2
OOS remains positive for the LAS, PCR, and ensemble models,

demonstrating that some predictability persists even after the decimalization of exchanges and

indicating that decreases in transaction costs also decreased market frictions.

3.3.2 Economic significance

As we mentioned above, even a small predictability at five-minute intervals can result in large

and economically significant returns. In this section we therefore evaluate the economic sig-

nificance of our models’ predictions by implementing the simple trading strategy specified

in Equation (3.14). Since the models are optimized to minimize forecasting error, the eco-

nomic significance of forecasts provides an indirect evaluation of model performance. Table

3.2 presents the annualized excess returns, Newey-West t-statistics with 1 lag and Sharpe ra-

tios, denoted SR in the table, of the market timing strategy. Columns (1) - (8) presents results

for the eight machine learning models and columns (9) and (10) report the intraday SPY returns

as well as the benchmark buy-and-hold SPY returns, respectively, for comparison.

Panel A of Table 3.2 reports the results for the entire sample from 1993 to 2016. Rankings

across methods are mostly consistent with their R2
OOS percentages, and all models have positive

returns and Sharpe ratios. Among the non-ensemble models, LAS, EN, RF, and GBRT have the

highest R2
OOS and also have high returns (Sharpe ratios) of, respectively, 191%, 188%, 198%,

and 192% (2.71, 2.68, 2.90, and 2.84), indicating that dimension reduction is important for

predicting returns. In particular, the tree-based RF and GBRT have the highest non-ensemble

returns (Sharpe ratios), showing that modeling non-linearities and interaction effects are impor-
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tant for return prediction. The ANN model has lower returns (Sharpe ratios) of 172% (2.66)

due to its high variance predictions. PCR has positive but relatively low excess returns of 75%

matching its low R2
OOS over the entire sample. Consistent with their R2

OOS percentages, the en-

semble mean and median have the highest returns (Sharpe ratios) of, respectively, 205% and

204% (2.90 and 2.82), illustrating that combining forecasts yields higher economic predictabil-

ity. It is noteworthy that every model significantly out-performs the benchmark buy-and-hold

SPY strategy, which yields excess returns (Sharpe ratios) of 7% (0.48).

Next, Panel B of Table 3.2 reports results for the 1/8 tick period from 1993 to 1996. The

excess returns (Sharpe ratios) of all models exceed 300% (5). The large economic returns

are consistent with the large R2
OOS observed for this period. Panel C reports results for the

1/16 tick period from 1997 to 2000. While Table 3.1 showed that the R2
OOS decreased relative

to the previous period, surprisingly returns and Sharpe ratios increased during this period for

nearly all models. This volatile period contains both the Asian crisis and the dot-com bust, and

in Section 3.4.3 we show that the economic significance of model predictions increase during

financial crises. PCR has a highly negative R2
OOS during this period resulting in a low predictive

return, suggesting that there is not a strong factor structure during this period.

Finally, we consider the results in the post-decimalization period. Panel D reports results

for the early post-decimalization period from 2001 to 2004 and shows that, consistent with the

finding that the R2
OOS decreased post-decimalization, excess returns and Sharpe ratios, although

significant and larger than the benchmark buy-and-hold SPY returns, are lower than in previous

periods. Panel E reports results for the late post-decimalization period from 2005 to 2016.

Table 3.1 showed that this period had a substantial decrease in R2
OOS, and consequently returns

and Sharpe ratios are significantly lower than in previous periods. However, returns and Sharpe

ratios remain high relative to the benchmark buy-and-hold SPY. In particular, all models have

returns exceeding 16% and most models have Sharpe ratios exceeding 1. In comparison, the

buy-and-hold SPY returns (Sharpe ratios) were 7% (0.46).

Figure 3.2 plots the cumulative log returns for each model and of the SPY from 2001 to
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Figure 3.2: Cumulative returns by model
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Plot of the post-decimalization cumulative log returns of the market-timing strategy for the SPY using the lasso
(LAS), elastic net (EN), principal component regression (PCR), random forest (RF), gradient-boosted regression
trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensemble (MED).

2016. Every model has higher cumulative returns than the market portfolio with the RF and

ensemble models having significantly higher cumulative returns. In summary, the consistency

of the results across models supports the hypothesis that the intraday market is predictable and

demonstrates that the predictability is economically significant. Next we show that profitability

remains even with (large) transaction costs.
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3.3.3 Economic significance after transaction costs

The economic significance established above does not account for transaction costs, which

are substantial when trading at a five-minute frequency. If models are only accurate for small

return fluctuations but cannot forecast large returns, then they are not useful to traders. This

section shows that the predictability of the market portfolios is economically significant even

after accounting for transaction costs. Additionally, we documented above that after 2005,

R2
OOS, excess returns, and transaction costs significantly decreased at the same time, so it is

not obvious if model predictions remain profitable after accounting for transaction costs in this

recent sample.

Table 3.3 presents the annualized excess returns and Sharpe ratios of the market timing

strategy with transaction costs along with the average percentage of executed trades. Panel A

of Table 3.3 reports the results for the entire sample from 1993 to 2016. Columns (1) - (8)

presents results for the eight machine learning models and columns (9) and (10) report the

intraday SPY and the benchmark buy-and-hold SPY returns respectively. As expected, all re-

turns are significantly lower due to transaction costs and infrequent trading. However, even

after accounting for transaction costs, every model (with the exception of ANN) has positive

returns. Among non-ensemble models, PCR and RF have the highest returns (Sharpe ratios),

respectively yielding 5% and 6% (0.68 and 0.77). The two ensemble models have high returns

(Sharpe ratios), both yielding 6% (0.67 and 0.98). As a benchmark, a buy-and-hold SPY strat-

egy has 7% return and a Sharpe ratio of 0.48. Thus, even after transaction costs, the PCR, RF,

and ensemble models outperform holding the market.18 These findings demonstrate that such

models can predict large returns that exceed the transaction costs very well. Our results are

similar in magnitude to the strategies in Gao et al. (2018) and Chinco, Clark-Joseph, and Ye

(2019) that have after-transaction cost annualized returns of 4.46% (Sharpe ratio of 0.98) and

18When regressing the returns after transaction costs of our trading strategy onto the benchmark buy-and-hold
SPY we find that the alphas are positive and statistically significant for the PCR, RF, and ensemble models. The
betas, on the other hand, are mostly small, and if they are large and significant, they tend to be negative indicating
that our trading strategy if anything hedges systematic risk. Thus, there is strong evidence that our trading strategy
out-performs the benchmark portfolio and little evidence that our models are simply buying systematic risk.
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4.92%, respectively. Consistent with the previous sections, ANN predictions have a high vari-

ance and hence fail to forecast large returns. Similarly, the linear LAS and EN models had high

R2
OOS, but the statistical predictability did not translate well into economic profitability, earning

returns (Sharpe ratios) after transaction costs of 3% and 1% (0.42 and 0.20), respectively. We

show in Section 3.4.3 that LAS and EN had highly negative returns during the Subprime Mort-

gage crisis, since these models generally perform worse when predictors are highly correlated

(Wang et al. (2011)).19

Next, Panel B of Table 3.3 reports results for the 1/8 tick period from 1993 to 1996. The

models returns are low since they only trade roughly 1% of the time. However, the large and

positive Sharpe ratios of at least 0.8 indicate model predictions are economically significant

even after paying transaction costs. The LAS, EN, GBRT, and ensemble models have Sharpe

ratios exceeding 2 and exceeding the benchmark buy-and-hold SPY Sharpe ratio of 1.6. Panel

C of Table 3.3 reports results for the 1/16 tick period from 1997 to 2000, where models trade

less than 0.25% of the time due to large transaction costs. Whereas Table 3.2 showed that

pre-transaction cost returns are higher than in the previous period, Table 3.3 shows that after

accounting for transaction costs returns (Sharpe ratios) are now lower than in the previous

period. LAS, EN, PCR, RF, ANN, and the ensemble models, though, continue to have higher

Sharpe ratios than the buy-and-hold benchmark Sharpe ratio of 0.71.

Finally, Panel D and E reports results for the post-decimalization period from 2001 to 2016,

where models trade much more frequently due to lower transaction costs. Panel D reports

results for the early post-decimalization period from 2001 to 2004 and shows that excess returns

(Sharpe ratios) increase for the LAS, EN, RF, GBRT, and ensemble models relative to the

period before 2001 due to the significantly lower transaction costs. All models, except ANN,

19In unreported results we confirm that when correlations among constituent returns increase LAS and EN
perform worse while PCR performs better. Intuitively, LAS and EN may encounter difficulties when stocks are
highly correlated. For example, if several highly correlated stocks are relevant for prediction, then LAS may only
select one from the group and shrinks the rest to zero (Zou and Hastie (2005)). EN mitigates this issue by using
the ridge penalty. However, the ridge penalty forces the estimated coefficients of highly correlated predictors to be
close together, which is problematic since the coefficients on our predictor stocks likely have different magnitudes
or different signs (Wang et al. (2011)). Conversely, PCR has stronger predictability when correlations increase,
since the model creates new predictors that summarize the variation of the constituent stocks.
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earn much higher returns (Sharpe ratios) than the benchmark -0.01% (-0.07) for the buy-and-

hold SPY. Panel E of Table 3.3 reports results for the late post-decimalization period from

2005 to 2016. In the previous sections, we documented that this period had substantially lower

R2
OOS, returns, and Sharpe ratios relative to previous periods. However, due to the decrease in

transaction costs, the after-transaction cost returns and Sharpe ratios are still high. During this

period, the benchmark buy-and-hold SPY earned 7% returns with a 0.46 Sharpe ratio. The

PCR and RF models out-perform the benchmark with returns (Sharpe ratios) of 9% and 8%

(0.88 and 0.81), respectively, which we in Section 3.4.3 show is partially due to their strong

performance during the Subprime mortgage crisis. The ensemble median also beat the buy-

and-hold SPY with returns (Sharpe ratios) of 5% (0.68).20

Figure 3.3 plots the cumulative log returns after transaction costs for each model and of the

SPY from 2001 to 2016. After accounting for transaction costs, the PCR, RF and ensemble

models have higher cumulative returns relative to the market, despite only trading infrequently.

Even accounting for the drop in R2
OOS after 2005, the after-transaction cost returns remain con-

sistently large. That is, even after accounting for transaction costs, the considered models earn

economically significant returns with low variance. We demonstrate economic gains available

to traders using such model forecasts supporting the hypothesis that markets are predictable at

the five-minute frequency. However, the market is notably less predictable post-decimalization,

particularly after 2005, as expected, evidenced by the lower returns and Sharpe ratios. Further-

more, the LAS and EN models outperformed PCR and RF prior to the 2008 crisis, but per-

formed poorly during and after the crisis due to the higher level of correlation among stocks.

20These results are robust to assuming fixed transaction costs of, say, 0.01% or 0.1% instead of the bid-ask
spread (the median post-decimalization spread was 0.008%). In particular, with 0.01% fixed transaction costs
economic profitability generally increases across models and though the models nearly never trade with a 0.1%
fixed transaction cost Sharpe ratios remain positive for the LAS, EN, and ensemble models. This verifies that our
results are not driven by models that only trade when the spread is low.
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Figure 3.3: Cumulative returns after transaction costs by model
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Plot of the post-decimalization cumulative log returns of the market-timing strategy with transaction costs for the
SPY using the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF), gradient-
boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensemble (MED).

3.3.4 Robustness to training sample size

The baseline model uses an expanding window for training and one month each for validation

and for out-of-sample testing. If the predictive relationship that we document is stable, then

forecasting accuracy should be increasing in training sample size, since more observations

yield lower variance forecasts. However, financial time series are notorious for containing

structural breaks, time-varying volatility, and other nonstationarities (Timmermann (2008)).

A shorter training sample may therefore outperform a longer one if the empirical model in
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Equation (3.2) changes due to this nonstationarity, in which case using a longer training sample

may yield biased forecasts. We test the importance of various training periods by evaluating

R2
OOS and after-transaction cost Sharpe ratios using 58-, 34-, 22-, 16-, 10-, 7-, 4-, and 1-month

samples for training and compare the results with the baseline training duration.

Panel A of Table 3.4 reports the post-decimalization R2
OOS of the eight machine learn-

ing models using different training window lengths. This sample includes several possible

structural breaks, including the Subprime mortgage crisis and EU debt crisis. Across nearly

all models, R2
OOS is increasing in training size, indicating that the predictive relationship is

mostly stable. However, the R2
OOS do not increase monotonically, which demonstrates that

non-stationarities do have some effect on forecasts. This is particularly apparent comparing

the 58-month estimation window to expanding, suggesting that results could be improved by

starting the expanding window later in the sample. Furthermore, the R2
OOS are positive for the

ensemble models across nearly all training periods and positive for most individual models.

Panel B of Table 3.4 reports the after-transaction cost Sharpe ratios using different training

window lengths for the post-decimalization period. Consistent with the results for the R2
OOS,

model Sharpe ratios are mostly increasing in training size across models.

The results in Table 3.4 first of all show that our predictability findings for intraday market

returns are largely robust to using different training window specifications. Secondly, they

importantly show that predictability increases with the training window size. Chinco, Clark-

Joseph, and Ye (2019) theorize that market predictability could be driven by very short-term

sparse signals. Our results indicate instead that predictability may be consistently exploiting

inefficiencies across time and is not necessarily driven by infrequent signals.

3.4 Additional analysis

Our hypothesis for intraday predictability is based on slow-moving trader capital. In this sec-

tion we examine if our results differ within the trading day, in periods of high versus low
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volatility or illiquidity, and during periods of financial crisis. Finally, we compare our base-

line model performance to that of autoregressive models for the market return and we consider

whether forecasting accuracy may be improved by including additional lagged variables.

3.4.1 Time-of-day patterns

This section tests the intraday implications of slow traders on intraday predictability. Since

traders are most active at the beginning and end of each day, we expect predictability to be

low during those times. Also, since intraday trading volume exhibits a ”U” shape, we expect

predictability to exhibit an inverse-U shape.

Panel A of Table 3.5 reports the R2
OOS of each half-hour interval in the post-decimalization

period. For every model, the R2
OOS is low in the first half hour and last hour of the day, when

traders are most active. On the other hand, these models have high R2
OOS between 10:00 -

15:00, demonstrating that nearly all of the predictability occurs during the middle of the day

when traders are less active. Panel B of Table 3.5 reports after-transaction cost Sharpe ratios

of each half-hour interval in the post-decimalization period. For most models, the Sharpe

ratios are highest between 10:00 - 15:00, demonstrating that the increased R2
OOS translates into

economically meaningful returns after transaction costs. The Sharpe ratio for the intraday SPY

in column (9) does not display the same pattern, showing that our models are not simply buying

the SPY portfolio.

Figure 3.4 plots the R2
OOS and median trading volume in each half-hour interval in the

post-decimalization period. Across all models (except ANN), there is a remarkably similar

inverse-U pattern, suggesting that these models are approximating the same function. Every

model’s R2
OOS jumps up between 14:00 - 14:30, suggesting that this is the least active time

for traders. Every model’s R2
OOS jumps down between 15:00 - 15:30, suggesting that traders

are active at this time, which is consistent with Lou, Polk, and Skouras (2019)’s finding that

institutional investors tend to initiate trades near the close. Our discovery that predictability is

stronger when traders are less active is consistent with our hypothesis that the predictability is
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Figure 3.4: R2
OOS and trading volume
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Plot by time of day of the post-decimalization R2
OOS for the SPY using the lasso (LAS), elastic net (EN), principal

component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network
(ANN), mean ensemble (MEAN), and median ensemble (MED). Also plotted is the median SPY trading volume
in millions.

driven by slow traders.

Gao et al. (2018) find that returns in the first half hour forecast returns in the last half

hour. The results in Table 3.5 show that the predictability of our models are orthogonal to

their findings and complement their paper meaningfully. Economically, there are likely several

sources of risk and trading behaviors driving intraday patterns in returns.
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3.4.2 Volatility and illiquidity effects

During periods of high volatility or illiquidity (i.e. periods of low liquidity), traders encounter

higher market frictions. According to our slow trader hypothesis, predictability should be

higher when volatility or illiquidity is higher. We test this hypothesis by first sorting days into

3 equal groups (tertiles) based on their daily realized volatility and Amihud (2002) measure of

illiquidity, respectively. We then study the predictability individually for each tertile.

Panel A of Table 3.6 reports the R2
OOS of each volatility group during the post-decimalization

period. Consistent with our hypothesis, R2
OOS is strictly increasing in volatility across every

model (except PCR). Likewise, Panel B of Table 3.6 shows that after-transaction cost Sharpe

ratios are increasing in volatility for most models. Note that column (9) shows that the intraday

SPY Sharpe ratio decreases in volatility, so model Sharpe ratios relative to the benchmark are

strongly increasing across the volatility tertiles.21

Panel A of Table 3.7 reports the R2
OOS of each illiquidity group during the post-decimalization

period. Interestingly, R2
OOS is small for low and mid illiquidity days, but extremely large only

for high illiquidity days. This suggests that most of the predictability occurs during days when

the market is illiquid and when it’s more expensive for traders to rebalance their portfolios.

Panel B of Table 3.7 reports after-transaction cost Sharpe ratios of each illiquidity group dur-

ing the post-decimalization period. For most models, Sharpe ratios are increasing in illiquidity.

In summary, predictability and economic significance increase when market volatility and

illiquidity are high. These findings are similar to Gao et al. (2018) who show that 30-minute

predictability is higher on high volatility and illiquidity days. Our results are consistent with

their findings and with our hypothesis that market predictability is driven by slow-moving capi-

tal from traders that face market frictions. These findings also support the argument in Chordia,

Roll, and Subrahmanyam (2005) and Chordia, Roll, and Subrahmanyam (2008) that prices can

21To examine this further, we considered a volatility timing strategy that trades only when the previous day’s
volatility is in a given tertile group using only past information to create the groups, i.e. with no look-ahead bias.
The results show that Sharpe ratios are increasing in volatility for all models except LAS and EN, demonstrating
that our ex-post volatility analysis could be converted into a tradeable volatility timing strategy.
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be separated from fundamentals and are predictable in short horizons due to insufficient liquid-

ity.

3.4.3 Impact of financial crisis

The recent 2005 to 2016 period contains the Subprime mortgage and European debt crises.

These crisis periods are associated with significant market frictions. According to our hypoth-

esis, predictability should be higher during these crisis periods. This is tested in this section

by studying several interesting sub-periods of the late post-decimalization period illustrating

crisis and non-crisis periods.

Panel A of Table 3.8 reports the R2
OOS of crisis and non-crisis periods. Across most models,

the R2
OOS during the Subprime and EU crises are higher than during the 2010 - 2011 and 2014 -

2016 periods. However, the R2
OOS was high during the earliest 2005-2007 period, possibly due

to technological factors (i.e. less sophisticated trading). PCR had the highest R2
OOS during the

Subprime mortgage crisis and a positive R2
OOS during the EU debt crisis. This finding confirms

our assertion in Section 3.3.1 that PCR has stronger predictability when equities are more

correlated and follows a strong factor structure, as is the case during a financial crises. From

2014 - 2016, model predictability is negative across models. This may be because the period

was relatively stable, but could also be caused by reduced trader frictions.22 These results

demonstrate that the predictability is higher during a financial crisis. In the slow moving theory

of capital, traders may not invest in arbitrage opportunities if they have insufficient capital or

can invest in assets with higher expected returns (Duffie (2010)). These results suggest that

during the financial crisis, the market portfolio may have been particularly predictable due to

slow moving capital. These findings are similar to Gao et al. (2018), who show 30-minute

predictability is higher during the Subprime mortgage crisis.

The economic significance results of crisis and non-crisis periods are somewhat mixed.

22It will be interesting to study if predictability increases during the ongoing Coronavirus crisis once high-
frequency data becomes available for this period.
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Panel B of Table 3.8 reports the pre-transaction cost Sharpe ratios of crisis and non-crisis peri-

ods. The pre-transaction cost Sharpe ratios are mostly consistent with the R2
OOS results, with the

exception of the 2010 - 2011 period which earned higher Sharpe ratios than expected given the

low R2
OOS. Panel C of Table 3.8 reports the after-transaction cost Sharpe ratios. Surprisingly,

the results differ from the findings in Panel A and B for the 2005 - 2007 period and the EU

debt crisis period. It appears that high transaction costs during these periods removed most

of the predictive profits. Similarly, the 2010 - 2011 period had the highest after-transaction

cost Sharpe ratios, potentially due to reduced transaction costs after the Subprime crisis. Inter-

estingly, the LAS and EN models had extremely low returns during the financial crisis, likely

because these models often perform poorly when predictors are highly correlated as explained

in Section 3.3.3.

3.4.4 Comparison to autoregressive models

A natural comparison to our cross-sectional models with lagged intraday returns for the mar-

ket constituents are autoregressive models for the market return itself, since our predictability

results could simply be capturing intraday momentum. For example, Heston, Korajczyk, and

Sadka (2010) find significant auto-correlation of half-hour returns at daily intervals and Gao

et al. (2018) find that the first half-hour return of the SPY predicts the last. This section eval-

uates the predictability of linear models estimated on up to 500 lagged SPY returns using the

same specifications as our baseline machine learning models. We consider a simple AR(1) that

uses the SPY return with 1 lag (i.e. our baseline model without constituent returns) and an

AR(p) model where the number of lagged returns (up to 500) are chosen to minimize the vali-

dation mean squared error. We also consider the linear LAS, EN, and PCR models to perform

dimension reduction on the 500 lagged SPY returns.

Panel A of Table 3.9 reports the R2
OOS of the linear autoregressive models together with the

linear baseline models for comparison. During the overall period from 1993 to 2016, LAS and

EN generally have the highest R2
OOS among AR models of 0.6% and 0.58%, suggesting that
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certain market return lags contain predictive information. However, these regularized models

only slightly improve on the simplest AR(1) model’s R2
OOS of 0.55%, indicating that the most

recent lag is the most important for prediction. This is reinforced by the AR(p), which uses

a median of 29 lags and performs worse than the AR(1) model with an R2
OOS of 0.53%. The

AR(500) model without dimension reduction, i.e. estimated with OLS, performs poorly due

to the high-dimensional inputs as expected. In comparison, our baseline LAS and EN models

significantly outperform every AR model with an R2
OOS of 2% and 1.95% respectively. Addi-

tionally, the baseline PCR’s R2
OOS of 0.31% is higher than the AR(500) PCR model’s R2

OOS of

-0.07%. These results demonstrate that there is significant predictive information embedded in

the lagged returns of the S&P 500 constituents.

Panel B of Table 3.9 reports the after-transaction cost Sharpe ratios of the linear autore-

gressive models together with the linear baseline models for comparison. During the overall

period from 1993 to 2016, every AR model has a negative Sharpe ratio except for the AR(1),

which has a Sharpe ratio of 0. In contrast, the baseline linear models all have positive Sharpe

ratios, with the PCR’s Sharpe ratio of 0.68 even outperforming the buy-and-hold S&P 500’s

Sharpe ratio of 0.48. These results demonstrate that using the lagged returns of the S&P 500

constituents is necessary for improving the economic significance of our predictions. The panel

also shows that this holds true for all the sub-periods considered in this paper.

3.4.5 Effect of additional variables

Finally, we consider whether including additional lagged characteristics of the S&P 500 con-

stituents may improve forecasting accuracy. Due to computational constraints (both in terms

of memory requirements and training time), we only consider results using the four-month

training sample during the post-decimalization period. We consider characteristics that proxy

short-term changes in liquidity and trading trends. The characteristics include firm-level mar-

ket beta, momentum, maximum, minimum, volatility, illiquidity, trading volume, kurtosis, and

skewness calculated over preceding days as well as the lagged observed bid-ask spread.
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Table 3.10 reports R2
OOS when including different characteristics during the post-decimalization

period. The first row reports R2
OOS for the baseline model using lagged returns only. The panel

shows that the LAS model is improved by including illiquidity, momentum, or skewness, in-

dicating that there may be some index constituents with useful characteristics for predicting

the market return. PCR is also slightly improved by adding momentum and volume. However,

for most models including any single characteristic reduces the R2
OOS. One possibility for the

poor performance of the price trend and liquidity characteristics is that they are estimated over

the preceding day and potentially noisy. However when we include the lagged bid-ask spread,

which is not estimated, the R2
OOS also decreases across most models. These result may suggest

that including additional characteristics simply adds noise to the model without providing ad-

ditional predictive information. While adding these characteristics generally does not improve

market forecasts beyond the baseline model, it remains possible that such characteristics may

help predict individual stock returns.

Panel B of Table 3.10 reports the after-transaction cost Sharpe ratios when including differ-

ent characteristics during the post-decimalization period. This panel shows, similarly to Panel

A, that including some characteristics may slightly improve the Sharpe ratios of certain models.

For example, LAS, EN, PCR, RF, ANN, and the ensemble median can be slightly improved by

including some characteristics. In particular, the median ensemble after including the bid-ask

spread achieves a Sharpe ratio of 0.44. However, these results are not robust and could just be

due to random chance.

One concern may be that including other characteristics may increase the dimensionality

of the data and increase estimation error. However, we also analyzed the predictability of

only the characteristics, removing lagged returns from the model, and again found no evidence

of predictability. In summary, we find little evidence that including other characteristics can

improve predictions. Among our tested characteristics, only lagged returns consistently predict

market returns.
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3.5 Conclusion

This paper conducts, to our knowledge, the largest study ever of intraday market return pre-

dictability using state-of-the-art machine learning models trained on the cross-section of lagged

market index constituent returns and other characteristics to forecast five-minute market returns

over the longest possible time period. The paper demonstrates that there is significant statistical

predictability of intraday market returns and establishes that this return predictability translates

into economically significant profits even after accounting for transaction costs. Furthermore,

we show that the lagged constituent returns holds significant predictive information that is not

contained in lagged market returns or in lagged price trend and liquidity characteristics.

Specifically, the paper shows that regularized linear models such as lasso and elastic nets

and nonlinear tree-based models such as random forests yield the largest positive out-of-sample

R2s. Linear models such as principal component analysis had a high out-of-sample R2s during

the Subprime crisis and EU debt crisis, providing returns that hedge these crisis states. En-

semble models that combine individual model predictions perform the best across time and

the return predictability from these models translates into economically significant profits with

Sharpe ratios after transaction costs of 0.98. This Sharpe ratio is much higher than what is

obtained from holding the index intraday and significantly exceeds the Sharpe ratio of the

benchmark buy-and-hold strategy.

Across time, we show that the statistical predictability has suffered somewhat as transaction

costs were reduced post-decimalization. We argue that this strongly suggests that predictability

could be a result of slow-moving trader capital. Consistent with the hypothesis of slow traders,

market returns are also shown to be more predictable during the middle of the day when trading

activity is lower, on days with high volatility or high illiquidity where prices can be driven

further away from their fundamental values, and during years of financial crisis which are

plagued by market frictions. Nevertheless, the best ensemble models retain some predictability

and trading based on the model’s signals remain profitable throughout the sample, even after

adjusting for transaction costs.
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Our results provide strong evidence that market returns are predictable over short-horizons.

Our empirical findings suggest that further investigation into the economic mechanisms driving

such short-horizon predictability is warranted. The late-informed investor explanation in Gao

et al. (2018) is supported by our evidence. Another explanation in Chinco and Fos (2019)

theorizes that computational complexity of traders’ rebalancing introduces noise. We believe

this can explain some of our predictability results, wherein models appear able to capture the

systematic behaviour of traders’ rebalancing. In particular, this could explain the persistent

profitability of our models in recent years. However, verifying these economic mechanism

requires further investigation which we leave for future research.
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Table 3.1: Market predictability

(1) (2) (3) (4) (5) (6) (7) (8)

LAS EN PCR RF GBRT ANN MEAN MED

Panel A: Overall Period (1993 - 2016)
Intercept -0.64 -0.59 -0.31 -0.45 -0.36 -0.32 -0.64 -0.67
t-stat -4.02 -3.72 -1.98 -2.84 -2.28 -1.98 -4.04 -4.24
Slope 1.38 1.29 0.65 1.22 0.90 0.83 1.53 1.54
t-stat 47.26 46.06 24.14 54.11 43.23 42.49 58.28 58.97
R2

OOS 2.00 1.95 0.31 1.71 1.64 1.40 2.00 2.01
R2

OOS/Cost 1.16 1.13 0.18 0.99 0.95 0.81 1.15 1.16

Panel B: 1/8 Tick Size Period (1993 - 1996)
Intercept -0.22 -0.17 -0.16 -0.14 -0.32 0.16 -0.21 -0.26
t-stat -1.16 -0.90 -0.95 -0.84 -1.68 0.79 -1.29 -1.59
Slope 1.55 1.45 0.92 1.70 1.18 1.17 1.59 1.65
t-stat 36.53 35.80 44.92 41.48 38.60 41.24 42.96 41.07
R2

OOS 9.27 9.32 6.52 6.78 8.95 7.41 9.16 9.14
R2

OOS/Cost 10.82 10.88 7.61 7.92 10.46 8.66 10.70 10.67

Panel C: 1/16 Tick Size Period (1997 - 2000)
Intercept -1.71 -1.67 -0.61 -1.28 -1.22 -1.04 -1.67 -1.73
t-stat -3.91 -3.82 -1.40 -2.88 -2.71 -2.23 -3.80 -3.93
Slope 1.42 1.38 0.18 1.27 1.05 0.92 1.62 1.56
t-stat 35.52 35.31 2.77 46.73 41.86 38.57 43.56 45.09
R2

OOS 3.72 3.69 -0.76 3.48 3.45 3.21 3.60 3.66
R2

OOS/Cost 0.68 0.67 -0.14 0.64 0.63 0.59 0.66 0.67

Panel D: Early Post-Decimalization Period (2001 - 2004)
Intercept -0.65 -0.57 -0.42 -0.25 -0.30 -0.14 -0.55 -0.57
t-stat -1.40 -1.24 -0.91 -0.55 -0.68 -0.32 -1.19 -1.24
Slope 1.14 0.99 0.59 0.87 0.63 0.61 1.36 1.38
t-stat 10.52 9.67 4.67 16.09 13.46 10.87 15.12 14.65
R2

OOS 0.91 0.81 0.03 0.85 0.48 0.38 1.04 1.01
R2

OOS/Cost 0.30 0.27 0.01 0.28 0.16 0.13 0.35 0.34

Panel E: Late Post-Decimalization Period (2005 - 2016)
Intercept -0.10 -0.03 -0.12 -0.07 0.08 0.07 -0.14 -0.20
t-stat -0.43 -0.11 -0.52 -0.30 0.35 0.29 -0.60 -0.84
Slope 0.58 0.38 0.64 0.48 0.13 0.10 0.68 0.82
t-stat 3.70 3.17 4.80 4.85 1.53 1.25 4.02 4.59
R2

OOS 0.02 -0.04 0.04 -0.01 -0.39 -0.45 0.04 0.06
R2

OOS/Cost 0.07 -0.14 0.13 -0.03 -1.22 -1.42 0.12 0.18

This table reports coefficients from the predictive regression in Equation (3.13) along
with Newey-West t-statistics with 79 lags, R2

OOS percentages, and R2
OOS scaled by trans-

action cost for the SPY using the lasso (LAS), elastic net (EN), principal component
regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neu-
ral network (ANN), and ensemble mean (MEAN) and median (MED). The intercept is
reported as a percentage scaled by 1,000. The predictors used are lagged returns for the
market and all the S&P 500 constituents. Results are reported for the full, 1/16 tick size,
1/8 tick size, early post-decimalization, and late post-decimalization samples.
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Table 3.2: Excess Returns and Sharpe ratios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

Panel A: Overall Period (1993-2016)
Return 1.91 1.88 0.75 1.98 1.92 1.72 2.05 2.04 -0.03 0.07
t-stat 4.81 4.92 4.62 4.50 4.26 5.11 4.60 4.91 -1.11 2.19
SR 2.71 2.68 1.97 2.90 2.84 2.66 2.90 2.82 -0.24 0.48

Panel B: 1/8 Tick Size Period (1993 - 1996)
Return 3.74 3.73 3.15 3.47 3.47 3.39 3.83 3.88 -0.01 0.11
t-stat 5.73 6.00 10.73 6.43 6.35 8.13 6.77 6.72 -0.37 2.62
SR 5.63 5.60 8.49 6.81 5.73 6.90 6.63 6.19 -0.17 1.19

Panel C: 1/16 Tick Size Period (1997 - 2000)
Return 5.61 5.57 0.33 5.72 5.61 5.11 5.79 5.83 -0.14 0.12
t-stat 25.49 26.00 1.35 16.05 18.06 18.92 17.92 20.74 -1.78 1.62
SR 12.35 12.20 1.01 11.30 12.73 10.35 11.73 11.28 -0.89 0.71

Panel D: Early Post-Decimalization Period (2001-2004)
Return 1.61 1.51 0.31 1.74 1.61 1.37 1.85 1.77 -0.04 -0.01
t-stat 5.12 5.74 3.32 5.37 6.31 4.06 4.46 4.60 -0.63 -0.12
SR 4.55 4.62 1.56 4.29 4.84 4.42 4.67 4.64 -0.35 -0.07

Panel E: Late Post-Decimalization Period (2005 - 2016)
Return 0.18 0.17 0.29 0.33 0.29 0.16 0.30 0.27 0.01 0.07
t-stat 4.48 3.89 7.75 6.02 4.84 3.27 6.22 4.96 0.32 1.37
SR 1.36 1.41 2.10 2.06 2.03 0.83 1.80 1.73 0.09 0.46

Reported are the annualized excess returns, t-statistics, and Sharpe ratios for the SPY market-timing strategy. Models
include the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF), gradient-
boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensemble (MED).
The independent variables are lagged returns of S&P 500 constituents. Results are reported for the full, 1/16 tick
size, 1/8 tick size, early post-decimalization, and late post-decimalization samples.
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Table 3.3: Excess Returns and Sharpe ratios with transaction costs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

Panel A: Overall Period (1993 - 2016)
Return 0.03 0.01 0.05 0.06 0.02 -0.07 0.06 0.06 -0.03 0.07
t-stat 1.71 0.77 3.29 2.70 1.10 -3.87 3.38 4.27 -1.11 2.19
SR 0.42 0.20 0.68 0.77 0.24 -0.66 0.67 0.98 -0.24 0.48
% Trades 11.63 12.73 11.45 12.39 14.86 19.26 11.21 11.00

Panel B: 1/8 Tick Size Period (1993 - 1996)
Return 0.04 0.05 0.04 0.01 0.07 0.03 0.05 0.04 -0.01 0.11
t-stat 4.79 4.86 2.68 1.22 2.82 2.77 4.98 4.28 -0.37 2.62
SR 2.50 2.60 1.48 0.80 2.27 1.20 2.70 2.34 -0.17 1.19
% Trades 0.47 0.60 1.53 0.27 1.25 0.75 0.52 0.48

Panel C: 1/16 Tick Size Period (1997 - 2000)
Return 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 -0.14 0.12
t-stat 1.83 1.67 1.48 1.88 0.46 1.38 2.15 2.42 -1.78 1.62
SR 1.01 0.95 0.75 0.97 0.21 1.14 1.04 0.98 -0.89 0.71
% Trades 0.11 0.12 0.07 0.13 0.20 0.25 0.08 0.10

Panel D: Early Post-Decimalization Period (2001 - 2004)
Return 0.14 0.13 0.00 0.11 0.06 -0.06 0.17 0.17 -0.04 -0.01
t-stat 3.17 3.05 0.05 2.09 0.85 -1.29 3.17 3.70 -0.63 -0.12
SR 2.00 1.97 0.02 1.20 0.49 -0.61 2.20 2.19 -0.35 -0.07
% Trades 10.57 11.31 7.23 12.76 15.01 17.54 10.05 10.05

Panel E: Late Post-Decimalization Period (2005 - 2016)
Return -0.01 -0.04 0.09 0.08 0.00 -0.14 0.04 0.05 0.01 0.07
t-stat -0.58 -1.41 3.07 1.95 -0.18 -4.44 1.41 2.32 0.32 1.37
SR -0.18 -0.49 0.88 0.81 -0.05 -0.98 0.35 0.68 0.09 0.46
% Trades 19.45 21.35 19.88 20.29 24.12 32.18 18.78 18.37

Reported are the annualized excess returns, t-statistics, and Sharpe ratios for the SPY market-timing strategy with
transaction costs. Models include the lasso (LAS), elastic net (EN), principal component regression (PCR), random
forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median
ensemble (MED). The independent variables are lagged returns of S&P 500 constituents. Results are reported for the
full, 1/16 tick size, 1/8 tick size, early post-decimalization, and late post-decimalization samples.
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Table 3.4: Market predictability (percentage R2
OOS) and profitability (Sharpe

ratio) by training duration post-decimalization

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Post-Decimalization Out-of-Sample R2

Training months LAS EN PCR RF GBRT ANN MEAN MED
Expanding 0.30 0.22 0.04 0.26 -0.12 -0.19 0.35 0.35
58 month 0.33 0.30 -0.06 0.25 -0.13 -0.15 0.38 0.39
34 month 0.23 0.26 0.09 0.23 -0.29 -0.20 0.36 0.38
22 month 0.29 0.27 0.07 0.22 -0.42 -0.30 0.33 0.34
16 month 0.19 0.18 0.08 -0.01 -0.39 -0.36 0.28 0.30
10 month 0.07 0.05 0.07 -0.06 -0.36 -0.29 0.22 0.24
7 month 0.05 0.05 0.00 -0.03 -0.36 -0.42 0.20 0.21
4 month 0.05 0.05 -0.08 -0.22 -0.63 -0.65 0.12 0.14
1 month -0.09 -0.09 -0.33 -0.68 -1.35 -0.40 -0.08 -0.04

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED

Expanding 0.34 0.06 0.72 0.90 0.12 -0.90 0.69 1.04
58 month 0.26 0.21 -0.16 0.85 0.23 -0.73 0.80 0.81
34 month -0.07 -0.21 0.19 0.69 -0.30 -0.72 0.45 0.56
22 month -0.13 -0.26 0.43 0.19 -0.30 -1.27 0.50 0.37
16 month -0.10 -0.28 0.41 0.06 -0.24 -1.04 0.41 0.57
10 month -0.11 -0.14 0.27 -0.43 -0.64 -0.54 0.50 0.55
7 month -0.04 -0.06 0.28 -0.03 -0.22 -0.63 0.59 0.61
4 month -0.41 -0.40 0.02 -0.30 -0.66 -0.89 0.34 0.15
1 month -0.16 -0.15 -0.40 -1.50 -2.13 -1.29 -0.29 0.09

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for
the SPY market-timing strategy with transaction costs. Models include the lasso (LAS), elas-
tic net (EN), principal component regression (PCR), random forest (RF), gradient-boosted
regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median en-
semble (MED). We compare R2 values across 1-, 4-, 7-, 10-, 16-, 22-, 34-, and 58-month
training windows. The independent variables are lagged returns of S&P 500 constituents.
Reported are results for the post-decimalization subsamples.
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Table 3.5: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by time

post-decimalization

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Time LAS EN PCR RF GBRT ANN MEAN MED
9:35 - 10:00 -0.06 -0.21 0.21 -0.20 -1.26 -0.72 0.12 0.19
10:00 - 10:30 0.34 0.26 0.05 0.09 -0.27 -0.17 0.33 0.36
10:30 - 11:00 0.38 0.40 0.10 0.55 0.29 -0.02 0.56 0.49
11:00 - 11:30 0.41 0.32 0.03 0.35 0.20 -0.07 0.49 0.47
11:30 - 12:00 0.32 0.24 -0.02 0.29 -0.22 -0.11 0.38 0.38
12:00 - 12:30 0.47 0.41 -0.01 0.48 0.32 -0.21 0.54 0.51
12:30 - 13:00 0.39 0.26 0.24 0.48 -0.20 -0.46 0.40 0.45
13:00 - 13:30 0.31 0.33 0.10 0.43 -0.05 -0.28 0.38 0.31
13:30 - 14:00 0.37 0.26 0.01 0.34 -0.04 -0.07 0.38 0.39
14:00 - 14:30 0.99 0.96 0.19 0.62 0.65 0.62 0.90 0.84
14:30 - 15:00 0.42 0.35 0.17 0.47 0.01 0.12 0.44 0.47
15:00 - 15:30 -0.16 -0.27 -0.26 -0.08 -0.32 -0.77 -0.13 -0.09
15:30 - 15:55 0.10 -0.01 -0.26 0.13 0.11 -0.11 0.17 0.14

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Time LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY
9:35 - 10:00 -0.20 -0.35 0.23 0.26 -0.64 -0.63 0.55 0.21 -0.25
10:00 - 10:30 0.57 0.47 0.60 0.08 0.19 -0.19 0.50 0.69 -0.02
10:30 - 11:00 0.18 0.23 0.35 0.07 0.17 0.03 0.62 0.31 -0.21
11:00 - 11:30 -0.11 -0.30 -0.08 0.00 0.18 -0.17 0.08 -0.08 -0.29
11:30 - 12:00 0.13 0.15 0.21 0.52 0.08 -0.23 0.40 0.32 0.12
12:00 - 12:30 0.00 -0.09 0.44 0.38 0.20 -0.50 0.28 0.24 -0.04
12:30 - 13:00 0.22 0.32 0.40 0.39 -0.52 -0.89 0.18 0.62 0.47
13:00 - 13:30 0.13 0.11 0.55 0.74 0.23 -0.29 0.18 0.57 0.16
13:30 - 14:00 0.17 0.00 0.09 0.39 -0.26 -0.59 0.34 0.34 -0.31
14:00 - 14:30 0.01 0.19 0.51 0.44 0.64 -0.17 0.27 0.34 -0.23
14:30 - 15:00 0.31 0.17 0.49 0.52 0.24 -0.30 0.35 0.59 0.43
15:00 - 15:30 -0.13 -0.30 -0.30 -0.34 -0.51 -0.99 -0.59 -0.39 0.27
15:30 - 15:55 -0.11 -0.28 -0.44 0.43 0.40 0.27 -0.05 -0.11 -0.09

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY market-
timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), principal com-
ponent regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network
(ANN), mean ensemble (MEAN), and median ensemble (MED). We compare results across 30-minute win-
dows throughout the trading day. The independent variables are lagged returns of S&P 500 constituents.
Reported are results for the post-decimalization subsamples.
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Table 3.6: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio)

by volatility in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Volatility LAS EN PCR RF GBRT ANN MEAN MED
Low 0.09 -0.02 -0.03 0.02 -0.41 -0.76 0.12 0.17
Mid 0.19 0.11 -0.09 0.11 -0.11 -0.37 0.24 0.25
High 0.34 0.26 0.07 0.31 -0.09 -0.11 0.40 0.39

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Volatility LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY
Low 0.47 0.09 0.20 0.23 -0.81 -1.79 -0.03 0.44 2.88
Mid 0.40 0.39 0.43 0.28 0.26 -1.08 0.81 0.89 -0.20
High 0.14 -0.15 0.73 1.04 0.23 -0.33 0.60 0.87 -0.93

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY
market-timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), prin-
cipal component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT),
neural network (ANN), mean ensemble (MEAN), and median ensemble (MED). We compare results
across 3 groups sorted on realized volatility. The independent variables are lagged returns of S&P
500 constituents. Reported are results for the post-decimalization subsamples.

Table 3.7: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by

illiquidity in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Illiquidity LAS EN PCR RF GBRT ANN MEAN MED
Low 0.00 -0.08 0.06 -0.06 -0.41 -0.46 0.04 0.04
Mid 0.01 -0.04 0.02 0.02 -0.43 -0.34 0.05 0.07
High 0.76 0.66 0.04 0.69 0.37 0.11 0.85 0.83

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Illiquidity LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY
Low -0.25 -0.43 0.42 0.11 -0.34 -1.08 0.24 0.26 0.33
Mid -0.02 -0.21 0.93 0.83 0.11 -0.47 0.23 0.59 -0.22
High 1.03 0.85 0.18 1.03 0.47 -0.56 1.50 1.22 -0.07

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the market-
timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), principal
component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural
network (ANN), mean ensemble (MEAN), and median ensemble (MED). We compare results across 3
groups sorted on Amihud (2002) illiquidity. The independent variables are lagged returns of S&P 500
constituents. Reported are results for the post-decimalization subsamples.
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Table 3.8: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by crisis period

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Post-Decimalization Out-of-Sample R2

LAS EN PCR RF GBRT ANN MEAN MED
2005-2007 0.07 -0.04 -0.01 0.00 -0.11 -0.30 0.12 0.10
Subprime 0.04 -0.02 0.08 0.02 -0.37 -0.48 0.06 0.07
2010-2011 -0.02 -0.05 0.03 -0.03 -0.67 -0.39 -0.03 0.02
EU Debt 0.08 -0.01 0.01 0.03 -0.30 -0.70 0.06 0.10
2014-2016 -0.07 -0.17 -0.04 -0.14 -0.36 -0.41 -0.03 0.00

Panel B: Post-Decimalization Sharpe Ratio before Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

2005-2007 1.64 1.48 1.65 1.82 2.08 2.06 2.38 1.97 -1.09 0.56
Subprime 1.06 0.96 3.11 3.78 2.67 0.94 2.22 1.91 0.07 -0.40
2010-2011 2.18 2.07 2.22 1.87 2.32 1.14 2.42 3.22 0.20 0.54
EU crisis 3.07 2.88 2.82 3.08 2.30 0.84 3.52 3.08 1.34 2.29
2014-2016 0.79 0.94 1.70 1.68 1.88 0.51 0.91 1.35 0.61 0.68

Panel C: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

2005-2007 0.35 -0.06 0.17 0.08 -0.21 -0.92 0.16 -0.04 -1.09 0.56
Subprime -1.09 -1.55 1.38 2.00 -0.12 -0.52 0.73 0.87 0.07 -0.40
2010-2011 0.77 0.30 1.97 1.07 0.38 -1.35 0.69 1.82 0.20 0.54
EU crisis 0.63 -0.22 0.68 0.14 -1.05 -2.68 -0.09 0.57 1.34 2.29
2014-2016 -0.58 -0.38 0.64 0.12 0.17 -2.18 -0.06 0.40 0.61 0.68

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY market-timing
strategy without and with transaction costs. Models include the lasso (LAS), elastic net (EN), principal component
regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean en-
semble (MEAN), and median ensemble (MED). The independent variables are lagged returns of S&P 500 constituents.
Reported are results for the late post-decimalization subsample which include the Subprime Mortgage crisis, during
2008-2009, and the European Debt crisis, during 2012-2013.
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Table 3.9: Market predictability (percentage R2
OOS) and profitability (Sharpe ra-

tio) for autoregressive models

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Out-of-Sample R2

Autoregressive Models Baseline Models

AR(1) AR(p) OLS LAS EN PCR LAS EN PCR
1993-2016 0.55 0.53 -0.49 0.58 0.60 -0.07 2.00 1.95 0.31
1993-1996 0.22 0.37 -4.51 0.12 0.40 -0.04 9.27 9.32 6.52
1997-2000 1.87 1.95 1.07 1.78 1.79 -0.01 3.72 3.69 -0.76
2001-2004 0.17 0.08 -0.81 0.30 0.27 -0.13 0.91 0.81 0.03
2005-2016 -0.10 -0.20 -0.67 -0.02 -0.03 -0.08 0.02 -0.04 0.04

Panel B: Sharpe Ratio after Transaction Costs

Autoregressive Models Baseline Models

AR(1) AR(p) OLS LAS EN PCR LAS EN PCR
1993-2016 0.00 -0.63 -1.25 -0.27 -0.38 -0.03 0.42 0.20 0.68
1993-1996 -0.49 -0.71 -0.56 -0.68 -0.68 0.14 2.50 2.60 1.48
1997-2000 0.72 0.73 0.41 0.49 0.65 0.33 1.01 0.95 0.75
2001-2004 0.10 -0.39 -2.08 0.63 0.27 0.38 2.00 1.97 0.02
2005-2016 -0.04 -0.91 -1.70 -0.50 -0.62 -0.10 -0.18 -0.49 0.88

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the
SPY market-timing strategy with transaction costs. Models include the AR(1), AR(p), lasso
(LAS), elastic net (EN), and principal component regression (PCR). The independent variables
are 500 lagged returns of S&P 500. Results are reported for the full, 1/16 tick size, 1/8 tick size,
early post-decimalization, and late post-decimalization samples.
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Table 3.10: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio)

with additional characteristics in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Post-Decimalization Out-of-Sample R2

LAS EN PCR RF GBRT ANN MEAN MED
Base 0.05 0.05 -0.08 -0.22 -0.63 -0.65 0.12 0.14
BETA -0.98 -1.41 -2.44 -1.92 -1.54 -4.10 -0.39 -0.03
ILLIQ 0.09 -0.44 -8.73 -2.70 -7.74 -3.22 -0.62 0.05
KURT -0.64 -2.27 -1.1E+18 -2.12 -1.62 -4.25E+23 -1.18E+22 -0.01
MAX 0.03 -0.50 -0.10 -0.56 -1.14 -1.27 -0.02 0.09
MIN -0.37 -0.36 -0.10 -5.53 -0.68 -1.38 -0.25 0.01
MOM 0.07 -1.24 -0.07 -0.42 -2.59 -1.05 -0.08 0.08
SKEW 0.06 -1.13 -4.8E+12 -0.72 -1.59 -1.8E+15 -5.5E+13 -0.01
VOL -0.02 -0.35 -0.16 -1.69 -2.26 -1.09 -0.07 0.07
VOLUME -1.95 -2.24 -0.06 -3.05 -7.49 -1.35 -0.47 -0.24
SPREAD -1.51 -1.20 -3.67 -0.12 -0.42 -1.40 -0.08 0.13

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED

Base -0.41 -0.40 0.02 -0.30 -0.66 -0.89 0.34 0.15
BETA -0.27 -0.30 0.14 -0.80 -2.18 -1.38 -0.17 -0.08
ILLIQ -0.29 -0.36 -0.48 -1.12 -2.77 -1.29 -0.95 -0.18
KURT -0.47 -0.46 0.22 -0.90 -1.74 -1.19 -0.07 0.11
MAX -0.21 -0.31 -0.27 -0.71 -1.76 -1.00 -0.53 0.02
MIN -0.18 -0.18 -0.06 -0.47 -1.28 -0.99 -0.20 0.06
MOM -0.29 -0.32 0.12 -0.80 -1.72 -0.92 -0.18 0.07
SKEW -0.26 -0.37 0.27 -0.62 -1.58 -1.00 -0.10 0.32
VOL -0.53 -0.61 -0.21 -0.94 -2.33 -1.14 -0.17 -0.12
VOLUME -0.24 -0.27 0.28 -1.02 -2.75 -1.11 -0.68 0.08
SPREAD -0.21 -0.25 -0.03 0.16 -0.56 -1.00 0.17 0.44

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY
using the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF),
gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and me-
dian ensemble (MED). In addition to lagged returns (LAG), the independent variables include market
beta (BETA), illiquidity (ILLIQ), kurtosis (KURT), maximum (MAX), minimum (MIN), momentum
(MOM), skewness (SKEW), volatility (VOL), or volume (VOLUME) of S&P 500 constituents cal-
culated over the previous day as well as the percent bid-ask spread (SPREAD). See Appendix B.1.2
for details on how these characteristics are calculated.



Chapter 4

Can the Premium for Idiosyncratic Tail

Risk be Explained by Exposures to its

Common Factor?

Introduction

Chapters 2 and 3 study the predictability of tail risk and the expected returns of the market

portfolio, respectively. This chapter is motivated by the previous research and studies the

relationship between the tail risk and expected returns of individual stocks. To analyze the

relationship, this chapter introduces a new measure of firm-level tail risk estimated using high-

frequency data.

A stock’s idiosyncratic tail risk (ITR), denoted as ξ in this paper, measures the density of

the left tail of idiosyncratic returns, the residual returns after removing the effect of systematic

factors. Empirically, stocks with higher idiosyncratic tail risk have higher average excess re-

turns. This idiosyncratic tail risk premium is recently documented in Savor (2012), Jiang and

Zhu (2017), Begin, Dorion, and Gauthier (2019) and Kapadia and Zekhnini (2019), and it con-

tradicts classical asset pricing theory where only systematic risk earns a risk premium. These

111
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papers speculate that the premium is caused by either the inability for investors to diversify due

to frictions or market under-reaction to firm-specific news.1 However, none of them find that

the premium can be explained in the conventional manner by exposures to systematic risk.

In this paper, I propose a risk-based explanation for the idiosyncratic tail risk premium that

combines two ideas. First, I hypothesize that idiosyncratic tail risk is caused by large inter-

mediaries trading on news or propriety analysis, which is motivated by Gabaix et al. (2006).2

Since intermediaries require funding to trade, shocks to intermediary funding cause idiosyn-

cratic tail risks of different firms to comove over time and share a common factor, which is

denoted as the common idiosyncratic tail risk (CITR). This explanation is consistent with the

recent finding of commonality in idiosyncratic tail risk (Qin and Todorov (2019) and Begin,

Dorion, and Gauthier (2019)). Since CITR decreases when intermediary constraints tighten, it

is correlated to the intermediary marginal value of wealth and is procyclical.

Second, the recent intermediary asset pricing literature shows that intermediaries are the

marginal investor in many financial assets. Subsequently, shocks to their funding, correlated

with shocks to CITR, are an important source of undiversifiable risk and may explain cross-

sectional differences in average returns (see e.g. Brunnermeier and Pedersen (2009)). Since

intermediaries play a central role in explaining asset prices, they may explain the idiosyncratic

tail risk premium. I hypothesize that firms with higher idiosyncratic tail risk have higher ex-

posure to shocks to CITR, thus commanding a risk premium. Differences in exposure to CITR

shocks provide a risk-based explanation for the idiosyncratic tail risk premium.

To test my explanation, I first introduce a new measure of idiosyncratic tail risk, that is the

shape parameter of the power-law distribution of idiosyncratic returns, denoted as ξ. A large

ξ corresponds to high density in the left tail of idiosyncratic returns. Therefore ξ, which is

inversely proportional the slope of the tails, is an intuitive measure of idiosyncratic tail risk.

To measure ξ, I use a high-frequency factor model, then use Extreme Value Theory to prove

1Examples of frictions include short-sale constraints, narrow framing, or market incompleteness due to non-
traded assets (e.g. human capital or private businesses).

2Examples of intermediaries include hedge funds, mutual funds, or banks’ propriety trading desks.
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that my idiosyncratic tail risk measure is inherited under time-aggregation, meaning that within

each month, the idiosyncratic tail risk calculated on high-frequency returns can be extrapolated

to longer time horizons (i.e. daily, weekly, or monthly), even with a finite number of return

observations. Moreover, the measure is robust to certain microstructure noise processes.

Testing my explanation requires a large sample of medium and small stocks, since their

idiosyncratic tail risks are most affected by large intermediary trades. Existing options-based

measures of idiosyncratic tail risk require a large cross-sections of options at different strike

prices (i.e. Begin, Dorion, and Gauthier (2019), Kapadia and Zekhnini (2019), and Qin and

Todorov (2019)), which are available only for a limited number of large stocks. Instead, I

use the richness of high-frequency data to study a much larger sample of stocks. Additionally,

existing options-based measures only extract the market factor, while my high-frequency model

can remove multiple factors from returns.

I begin my empirical analysis by establishing that the idiosyncratic tail risk premium is a

significant and prevalent phenomenon. I estimate the factor model with respect to the Fama

and French (2015) five factor model and estimate the idiosyncratic tail risk as the Hill estimate

of idiosyncratic returns. In each month, I sort stocks into deciles based on their idiosyncratic

tail risk and hold the portfolios for a month. Stocks in the decile with the highest idiosyncratic

tail risk earn 0.66% (t-stat of 3.16), approximately 8% annually, higher value-weighted returns

than stocks in the lowest decile. This idiosyncratic tail risk premium cannot be explained by the

market, size, value, profitability, investment, or momentum factors. The premium exists even

when stocks are conditionally sorted on other firm characteristics and is robust to different

factor model specifications and tail risk estimation methods. Additionally, Gabaix et al. (2006)

theorize that large intermediaries cause both idiosyncratic tail risk and trading volume tail risk,

predicting that their tail distributions are proportional. Under my explanation, volume tail risk

(VTR) as a proxy for idiosyncratic tail risk should also earn a premium. To test my explanation,

I estimate volume tail risk as the Hill estimate of the right tail of changes in trading volume.

Stocks in the decile with the highest volume tail risk earn 0.67% (t-stat of 3.70) higher value-
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weighted returns than stocks in the lowest decile. This volume tail risk premium is highly

correlated to the idiosyncratic tail risk premium, indicating that these premia are driven by the

same factor.

The idiosyncratic tail risk and volume tail risk premia are highly persistent. In each month,

I sort stocks into deciles based on their idiosyncratic tail risk and hold the portfolios for up to

two years. For the two-year holding period, stocks in the decile with the highest idiosyncratic

tail risk earn 16.60% (t-stat of 3.44) higher value-weighted returns than stocks in the lowest

decile. Likewise, stocks in the decile with the highest volume tail risk earn 22.46% (t-stat of

3.71) higher value-weighted returns than stocks in the lowest decile for the two-year holding

period. This finding is consistent with the intuition that firm exposure to CITR shocks does not

frequently change. If the idiosyncratic tail risk premium is compensation for exposure to CITR

shocks, and stocks’ risk exposures do not frequently change, then the risk premium should be

persistent, which is exactly what I document.

Next, I test the large intermediary hypothesis of idiosyncratic tail risk by conducting firm-

level regressions. A cross-sectional regression shows that idiosyncratic tail risk is correlated

to intermediary trading volume as a percentage of total trading volume, where a one percent

increase in intermediary volume increases idiosyncratic tail risk by 0.06. Furthermore, idiosyn-

cratic tail risk is highly correlated to volume tail risk, providing empirical evidence that inter-

mediary trades cause both idiosyncratic tail risk and volume tail risk (Gabaix et al. (2006)).

Finally, idiosyncratic tail risk is highly autocorrelated, which provides evidence against the

explanation that the measure is only driven by fundamental news-shocks. This finding is con-

sistent with previous studies that show large intermediaries frequently trade the same stocks

(Sias (2004)).

Comovement in idiosyncratic tail risks is pervasive. Commonality of idiosyncratic tail

risk exists for firms with different sizes, values, and industries. Their common factor, CITR

estimated as the average cross-sectional idiosyncratic tail risk, explains 42.6% of the time

variation in firm-level tail risk. This synchronization of idiosyncratic tail risks is robust across
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various specifications and does not arise from omitted factors, since the factor model residuals

are virtually uncorrelated. Consistent with my explanation, the CITR factor, defined as shocks

to CITR, is procyclical as evidenced by its positive correlation to log changes in the price-

to-earnings ratio, market return, gross domestic product, investment, and consumption. In

addition, the CITR factor is highly correlated to existing intermediary factors, demonstrated

by its strong positive correlation to the intermediary capital factor (He, Kelly, and Manela

(2017)) and the broker-dealer leverage factor (Adrian, Etula, and Muir (2014)), and its negative

correlation to the Leverage Constraint Tightness of mutual funds (Boguth and Simutin (2018)).

Furthermore, the CITR factor is uncorrelated with shocks to market volatility, shocks to the

VIX, and the common idiosyncratic volatility factor of Herskovic et al. (2016), showing that

it’s not driven by volatility.

The CITR factor is a systematic risk factor, since CITR is correlated to the intermediary

marginal value of wealth. Consequently, exposure to this risk should be priced in equilibrium.

To test that, I examine whether the CITR factor is a priced risk factor and find support for

this hypothesis in stock returns. First, I sort stocks into portfolios based on their CITR-betas,

which are estimated by regressing individual stock excess returns on the CITR factor, then hold

the portfolios for a month. Excess returns and alphas monotonically increase in CITR-betas.

Stocks in the highest CITR-beta quintile earns a 0.62% (t-stat of 2.01) higher value-weighted

returns than the lowest quintile, reflecting their compensation for higher exposures to shocks

to CITR.

The main question of this paper is whether high idiosyncratic tail risk firms have high

exposure to the CITR factor and if that can explain their cross-sectional differences in average

returns, which are confirmed by my following findings. My analysis shows that betas to the

CITR factor are increasing in the idiosyncratic tail risk deciles and the relationship is nearly

monotonic. Furthermore, the CITR factor alone explains 73%, up to 86% along with the market

factor, of the cross-sectional variation of average excess returns for the portfolios sorted by

idiosyncratic tail risk. These findings confirm my hypothesis that exposure to the CITR factor
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explain most of the idiosyncratic tail risk premium. The CITR factor alone also explains nearly

32% of its cross-sectional variation in the volume tail risk deciles and adding the market factor

increases the cross-sectional R2 to 68%.

My explanation for the idiosyncratic tail risk premium is supported by a battery of robust-

ness checks. First, the CITR factor also helps to explain cross-sectional differences in average

returns of portfolios conditionally double-sorted on size and then idiosyncratic tail risk or vol-

ume tail risk. The CITR factor is also priced in anomaly portfolios independently double-sorted

on size and the following characteristics: operating profitability, investment, momentum, or id-

iosyncratic volatility. Second, the CITR factor risk price is positive for all asset classes used in

He, Kelly, and Manela (2017) and is statistically significant for the sophisticated options, CDS,

commodities, and foreign exchange portfolios. Third, some intermediary models predict that

the intermediary factor negatively forecasts market returns (He, Kelly, and Manela (2017)).

I test this hypothesis by regressing equity market returns on CITR. A one-standard-deviation

increase in CITR forecasts a decrease in annualized excess market returns of -9.56%, -7.09%,

-5.31%, and -3.65% at the one-month, six-month, one-year, and two-year horizons, respec-

tively. The results are statistic significant with Hodrick t-statistics of -2.02, -2.31, -2.36, and

-2.05 and produce an R2 of 9.83% at the annual frequency. Furthermore, I use the idiosyncratic

tail risk long-short portfolio as a factor-mimicking portfolio for the non-traded CITR factor,

and find that this traded CITR factor is also priced in equities and sophisticated asset classes.

Finally, in my explanation volume tail risk is a substitute for idiosyncratic tail risk, since

they are both caused by large intermediary trades (Gabaix et al. (2006)). Hence, a litmus test

is to evaluate whether volume tail risk exhibits commonality that is correlated to the interme-

diary marginal value of wealth and helps explain average returns across multiple asset classes.

Consistent with my explanation, volume tail risk also exhibits a strong factor structure and

common volume tail risk (CVTR), estimated as the average cross-sectional volume tail risk,

explains 46.3% of the time variation in volume tail risks. The common volume tail risk fac-

tor, defined as 3-month shocks to CVTR is procyclical, correlated to intermediary factors, and
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helps explain cross-sectional differences in average returns for anomalies and sophisticated

assets. The CITR and CVTR factors are highly correlated and have similar prices of risk, sup-

porting the theory that they are driven by shocks to intermediary funding. This paper is the first

to show duality in the tail distributions of idiosyncratic returns and trading volume in empirical

asset pricing, providing strong support for the large intermediary hypothesis of tail risk and my

explanation of their risk premia.

My paper is related to several strands of literature. My power-law measure of idiosyncratic

tail risk is closest to the seminal work of Bollerslev and Todorov (2011a), which measures

the total tail risk (tail risk of returns) from high-frequency returns. My measure complements

their work by measuring idiosyncratic tail risk after removing common factors. Danielsson

and De Vries (1997) use power-law to estimate the tail distribution of high-frequency foreign

exchange data. Kelly and Jiang (2014b) use power-law to measure market tail risk. Bollerslev

and Todorov (2011b), Bollerslev, Todorov, and Li (2013), and Bollerslev and Todorov (2014b)

use power-law to measure tail risk implied from options prices. Qin and Todorov (2019) study

the asymmetry of power-law measures of idiosyncratic tail risk using high-frequency returns

and options, but focusing on the latter. Van Oordt and Zhou (2016) uses power-law theory to

estimate exposures to systematic tail risk. My paper complements these studies by measuring

the realized idiosyncratic tail risk estimated using high-frequency equity returns. My model

allows removal of multiple factors and provides a much larger sample of stocks. Additionally, I

theoretically demonstrate the time-aggregation properties of my idiosyncratic tail risk measure,

which justifies extrapolating the high-frequency idiosyncratic tail risk measure to longer time

horizons.

Next, my research on the idiosyncratic tail risk premium is motivated by the recent liter-

ature on idiosyncratic tail risk and returns. Begin, Dorion, and Gauthier (2019) shows that

idiosyncratic jump risk explains 28% of the variation in risk premium on a stock. Kapadia and

Zekhnini (2019) show ex-ante jump probabilities predict cross-sectional average returns. Ped-

erzoli (2018) shows that idiosyncratic skewness is priced in individual stocks. Kelly, Lustig,
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and Van Nieuwerburgh (2016) show that for firms in the financial sector, idiosyncratic risk

had a higher price than sector risk during the financial crisis. Long, Jiang, and Zhu (2018)

study idiosyncratic tail risk in Chinese stock markets and finds that it negatively predicts stock

returns. My paper complement this literature by demonstrating that idiosyncratic tail risk es-

timated using high-frequency returns predicts cross-sectional average returns. Furthermore, I

demonstrate that volume tail risk measured from high-frequency trading volume also predicts

cross-sectional average returns. Finally, I show both the idiosyncratic tail risk and volume tail

risk premia are highly persistent and can be explained by exposures to a common factor.

In addition, my paper is related to the literature on total tail risk and returns. Savor (2012)

finds momentum after large absolute returns with information and reversals in the absence

of information. Jiang and Zhu (2017) find that markets under-react to jumps interpreted as

information shocks and Jiang and Yao (2013) argue that jumps are due to new information and

not systematic shocks. My paper complements these studies by measuring idiosyncratic tail

risk with systematic factors removed. Additionally, I demonstrate that idiosyncratic tail risk

has a strong factor structure, which provides evidence against their interpretation that tail risk

is only caused by firm-specific news and that the premium is due to market under-reaction.

Furthermore, my research on the commonality of idiosyncratic tail risk is connected to the

literature on cross-sectional studies of firm-level risk. Campbell et al. (2001) show between

1962 to 1997 that firm-level volatility increased relative to market volatility. Herskovic et al.

(2016) find that idiosyncratic volatility follows a strong factor structure, where their common

idiosyncratic volatility factor is priced and related to labor income risk. Dew-Becker and Giglio

(2020) study the cross-section of implied volatility and find a strong factor structure. Begin,

Dorion, and Gauthier (2019) find a high degree of comovement in idiosyncratic tail risk mea-

sured from options and daily returns. Lin and Todorov (2019) study the asymmetry between

positive and negative idiosyncratic tail risk from options and find their asymmetry measure

predicts the market risk premium. My paper compliments this literature in several ways. First,

I study the realized idiosyncratic tail risk measured from high-frequency returns and show that
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idiosyncratic tail risk follows a strong factor structure. Second, I show that CITR is correlated

to the intermediary marginal utility wealth and is procyclical. Finally, my paper studies the

cross-sectional asset pricing implications of the CITR factor, showing exposures to this factor

earn higher average returns and that the factor explains the idiosyncratic tail risk premium.

Finally, my study is similar in spirit to the recent work on intermediary asset pricing in-

cluding Adrian and Shin (2010), Adrian, Etula, and Muir (2014), Brunnermeier and Pedersen

(2009), Brunnermeier and Sannikov (2014), Boguth and Simutin (2018), Fontaine and Garcia

(2012), Gromb and Vayanos (2002), He and Krishnamurthy (2013), He, Kelly, and Manela

(2017). My paper complements this literature by showing that intermediaries also drive the tail

distribution of returns and trading volume and that common idiosyncratic tail risk and common

volume tail risk are both correlated to the intermediary marginal value of wealth. I also demon-

strate that the common idiosyncratic tail risk and common volume tail risk factors are priced

in many sophisticated asset classes, which further supports the hypothesis that intermediaries

are the marginal investor in these assets.

The paper is organized as follows: Section 4.1 provides my explanation for the idiosyn-

cratic tail risk premium. Section 4.2 presents the econometric model, idiosyncratic tail risk

measure, time-aggregation properties, robustness to microstructure noise, and estimation of

idiosyncratic tail risk. Section 4.3 describes the data and factors, then documents the idiosyn-

cratic tail risk and volume tail risk premia, persistence of the tail risk premia, and firm-level

evidence that idiosyncratic tail risk is driven by large intermediary trades. Section 4.4 explores

the factor structure in idiosyncratic tail risk, defines the CITR factor and shows that it’s priced

and explains the idiosyncratic tail risk premium. Section 4.5 demonstrates robustness of the

results by showing that the CITR factor is priced in anomaly portfolios and in sophisticated

assets, the common volume tail risk factor has similar pricing abilities, the traded idiosyncratic

tail risk factor has similar pricing abilities, and CITR predicts market returns. Section 4.6

concludes.
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4.1 Explanation for the Idiosyncratic Tail Risk Premium

In this section, I describe my explanation for the idiosyncratic tail risk premium using a highly

stylized model, where intermediary funding drives the comovement in idiosyncratic tail risk.

Motivated by Gabaix et al. (2006), I hypothesize that intermediaries’ large trades, either due

to fundamental news or proprietary analysis (absent news), causes idiosyncratic tail risk. The

assumptions of this model are, in turn, motivated by existing empirical evidence on intermedi-

aries and the price impact due to their large trades.

Empirically, intermediaries hold the majority of equities, approximately 78.5% in 2007

(French (2008)). Most equities in those institutions are actively managed; the fraction of ac-

tively managed mutual funds is 83% in 2012 and the fraction of actively managed institutional

owned equities is 59% (Stambaugh (2014)). Intermediaries conduct large trades based on in-

vestment opportunities from news or proprietary analysis, executing 86% of large block trades

with 10,000 shares or more (Griffin, Harris, and Topaloglu (2003)). While they moderate trad-

ing volume to mitigate the price impact, the desired trading volume will still cause a large

temporary price impact, particularly in small and medium sized stocks. The average price

pressure (i.e. temporary price impact) is 0.49% for a one standard deviation inventory change

and the average price pressure is 1.18% for the smallest quintile of stocks (Hendershott and

Menkveld (2014)). These large price impacts cause the tail distribution of stock returns to

become heavier (i.e. more extreme returns).

Intermediaries require funding to trade on investment opportunities (Brunnermeier and

Pedersen (2009)). Intuitively, as funding constraints tighten, intermediaries forgo trading on

some investment opportunities (especially in riskier investments in small and medium sized

stocks (Naes, Skjeltorp, and Odegaard (2011)), and subsequently idiosyncratic tail risk de-

creases on average. Hence, the common component of each stock’s idiosyncratic tail risk is a

decreasing function of the shadow cost of capital in Brunnermeier and Pedersen (2009), which

is a measure of the tightness of intermediary funding constraints. A higher shadow cost of cap-

ital means low intermediary funding, indicating that investment opportunities are higher and
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therefore idiosyncratic tail risks are lower across stocks due to fewer large intermediary trades.

My explanation is consistent with intermediaries deleveraging when their funding constraints

tighten as demonstrated by Adrian, Etula, and Muir (2014), impairing their ability to conduct

large trades. Consequently, the common factor of the idiosyncratic tail risks is correlated to

their leverage factor.

4.1.1 Stylized Model of Idiosyncratic Tail Risk

Denote the idiosyncratic tail risk of firm l = 1...L, as ξl,1. Each firm’s time-one idiosyncratic

tail risk is driven by intermediary funding and firm-specific news Nl,1, and equals

ξl,1 = b − cφ1 + Nl,1, (4.1)

where Nl,1 is i.i.d., with mean µN , variance σ2
N , independent of φ1, b, c > 0 are constants, and φ1

is the time-one intermediary shadow cost of capital from Brunnermeier and Pedersen (2009).

Taking an average over a large number of firms yields approximation

CITR1 ≡
1
L

L∑
l=1

ξl,1 ≈ b + µN − cφ1, (4.2)

where CITR1 is the common idiosyncratic tail risk. CITR1 is a negative function of the inter-

mediary shadow cost of capital, since

φ1 ≈
b + µN −CITR1

c
, (4.3)

such that a lower CITR1 corresponds to tighter funding constraints. Also, each firm’s idiosyn-

cratic tail risk comoves with CITR1, since substituting (4.3) into (4.1) yields approximate factor

structure

ξl,1 ≈ −µN + CITR1 + Nl,1, (4.4)
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implying that Cov0(CITR1, ξl,1) > 0 for all firms. Brunnermeier and Pedersen (2009) demon-

strate how funding liquidity enters the pricing kernel even when investors are risk-neutral. Let

W1 be time-one wealth such that the risk-neutral investor maximizes E0[φ1W1]. Then, the

stochastic discount factor is φ1/E0[φ1] and asset k’s time-zero expected excess return Re
k,1 is

E0[Re
k,1] = −

Cov0(φ1,Re
k,1)

E0[φ1]
. (4.5)

Equation (4.5) states that stocks with a negative covariance term have higher expected excess

returns, since the stock has a low payoff during future funding liquidity crises when φ1 is high.

Substituting Equation (4.3) into Equation (4.5) yields approximation

E0[Re
k,1] ≈ λCITRCov0(CITR1,Re

k,1), (4.6)

where price of risk λCITR > 0. Thus, CITR is a priced risk factor and assets that covary with

CITR are risky and earn a higher risk premium. A risk-based explanation of the idiosyncratic

tail risk premium requires a further assumption that exposure to CITR is increasing in idiosyn-

cratic tail risk, that is if ξn,1 > ξm,1, then

Cov0(CITR1,Re
n,1) > Cov0(CITR1,Re

m,1), (4.7)

and consequently E0[Re
n,1] > E0[Re

m,1] by (4.6). One possible economic mechanism for As-

sumption (4.7) is flight-to-quality. When funding is tight, intermediaries decrease ownership

in small and medium stocks (Naes, Skjeltorp, and Odegaard (2011), Papaioannou et al. (2013))

due to their higher risk and increased margins on leverage. Since small and medium stocks

have high idiosyncratic tail risks, their exposure to intermediary funding is high, increasing

their riskiness.

My explanation relies on two central assumptions. First, the common component of id-

iosyncratic tail risk is correlated to the intermediary marginal value of wealth, which implies

CITR is a priced risk factor. Second, exposure to CITR is increasing in idiosyncratic tail risk.



4.1. Explanation for the Idiosyncratic Tail Risk Premium 123

Large exposures to CITR for firms with high idiosyncratic tail risk can explain their premium.

These simple assumptions have several testable implications, listed below, that allow me to

distinguish my theory from existing theories of what causes idiosyncratic tail risk and its pre-

mium.

a) CITR is correlated to the intermediary marginal value of wealth and can be estimated as

the cross-sectional mean of idiosyncratic tail risks. Since intermediary funding is pro-

cyclical, then CITR should be as well. This is the opposite prediction of several existing

explanations of what drives the commonality of idiosyncratic tail risk like fire-sales and

labour tail risk, which predict counter-cyclical comovement. Also, if idiosyncratic tail

risk were only caused by firm-specific news, there should be no commonality.

b) CITR is a risk factor with a positive price. Stocks with higher exposures to CITR should

earn higher average returns. The prediction that CITR has a positive price of risk dis-

tinguishes the model from existing possibilities like fire-sales and labour tail risk, which

predict a negative price of risk, and firm-specific news which should have no price of risk.

Additionally, CITR’s correlation to the intermediary marginal value of wealth means it

should negatively forecast market returns as predicted by some intermediary models (i.e.

He, Kelly, and Manela (2017)).

c) The idiosyncratic tail risk premium is explained by exposures to CITR. Firms with high

idiosyncratic tail risk also have high betas to CITR and are compensated with high re-

turns. This is the main test that distinguishes my explanation from the inability of in-

vestors to diversify or under-reaction to news, which should be firm-specific.

d) Firms with higher idiosyncratic tail risk should continue to enjoy higher future expected

returns. If the idiosyncratic tail risk is driven by intermediary trading, then it should

be persistent, since intermediaries can frequently trade these stocks according to their

proprietary models. If the idiosyncratic tail risk premium is a systematic risk premium,

then firms with higher idiosyncratic tail risks are riskier due to their higher exposures
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to the CITR factor. If the relationship between idiosyncratic tail risk and CITR do not

change rapidly, then this risk premium should be persistent. This test allows me to distin-

guish my explanation from firm-specific explanations like under-reaction to fundamental

news-shocks, which should be short-lived.

A litmus test for my explanation uses the relationship between the tail distribution of returns

and trading volume predicted by Gabaix et al. (2006). Under their model, the tail distribution

of returns and volume are proportional, meaning volume tail risk is a proxy for idiosyncratic

tail risk. This implies that trading volume should follow the same predictions as above, where

volume tail risk earns a premium, exhibits commonality, its common factor is driven by inter-

mediary funding, is a priced risk factor, and explains the volume tail risk premium.

This paper uses a power-law measure of idiosyncratic tail risk, which is motivated by the

power-law economic model in Gabaix et al. (2006). Power-law conveniently summarizes the

tail distribution using a single parameter corresponding to the idiosyncratic tail risk ξl. Addi-

tionally, tail risk under power-law is preserved under time aggregation, which justifies measur-

ing tail risk using high-frequency returns resulting in a time-varying measure of idiosyncratic

tail risk. Section C.1 presents empirical evidence that idiosyncratic returns and trading volume

have power-law distributed tails.

4.2 Econometric Framework

4.2.1 Idiosyncratic Tail Risk Measure

In each month t, I observe a large series of high-frequency observations i = 1, ..,N, where N is

the number of observations. For example, in a month with 21 trading days and 5-minute time

intervals, N = 1659.3 The high-frequency log return during month t for firm l = 1, .., L is

rl,t,i = pl,t−1+ i
N
− pl,t−1+ i−1

N
, (4.8)

3In a trading day, there are 78 intraday returns when sampled in 5-minute intervals and 1 overnight return.
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where p is the natural log of price. I assume return dynamics follow a standard factor model

rl,t,i = βᵀl,tft,i + xl,t,i, (4.9)

where the βl,t are the factor loadings of firm l on systematic factors ft,i, and xl,t,i are unobserv-

able idiosyncratic returns. The factors are assumed to be observable and log returns of equity

portfolios, for example in the CAPM ft,i is the high-frequency return of the market portfolio.

βl,t is assumed to be constant throughout each month t, but can vary month-to-month. The con-

stant βl,t assumption is common in the literature (e.g., Todorov and Bollerslev (2010), Dai, Lu,

and Xiu (2019)). Furthermore, I assume that the tails of idiosyncratic returns are power-law

distributed.

Assumption 1 (a) For each firm l, the idiosyncratic returns xl,t,i, i = 1, ...,N, are inde-

pendent and identically distributed, and are regularly varying with tail risk parameter

ξl,t > 0. That is, P(|xl,t,i| > y) = y−
1
ξl,t L(y), where L is a slowly varying function.4

(b) lim
y→∞

P(xl,t,i≤−y)
P(|xl,t,i |>y) = θ ∈ (0, 1]

Assumption 1(a) postulates that the tails of idiosyncratic returns are power-law distributed

with tail risk parameter ξl,t, which is supported by empirical evidence presented in Figure C.2

in Section C.1. Tail risk parameter ξl,t is firm-specific, dynamic, and able to capture monthly

changes in idiosyncratic tail risk. The tail risk parameter ξl,t is inversely proportional to the

slope of the tails. Figure 4.1 illustrates the relationship between tail risk parameter ξl,t and

the slope of the left tail. A large tail risk parameter corresponds to a small slope and a high

probability of extreme observations. Hence, ξl,t is an intuitive measure of idiosyncratic tail risk.

Assumption 1(b) is a standard regularity condition that ensures the right tail of idiosyncratic

returns does not dominate the left tail. Assumption 1(b) can be economically interpreted as the

probability of bankruptcy is non-zero for any firm. For simplicity, I assume that idiosyncratic

4Function L is slowly varying if L is strictly positive and lim
x→∞

L(tx)/L(x) = 1 for all t > 0. Prototypical
examples include L(x) = log(x) and L(x) = c for a c > 0.
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Figure 4.1: Probability Density of Power-Law Distributed Tails

The figure plots the probability density of Pareto distributed tails with various tail risk parameters ξ and L(y)=1.
Pareto tails become heavier as the tail risk parameter ξ increases. A larger ξ has a smaller slope, which increases
the severity of extreme negative returns.

returns are independent and identically distributed within each month. The i.i.d. assumption is

stronger than necessary for the theoretical results and estimation methods in my paper, which

can still hold for idiosyncratic returns that are dependent and heterogeneous.5

The strict positivity of ξl,t rules out light tails that understate the probability of rare events,

such as normally distributed tails. Most parametric models of financial returns are power-law

distributed. For example, a Student’s t distribution with d degrees of freedom satisfies As-

sumption 1 with tail risk ξl,t = 1/d. Other prototypical examples of power-law distributions are

the Pareto, Levy-Stable, and Cauchy distributions (see Embrechts, Kluppelberg, and Mikosch

(1997) for more examples). Assumption 1 is semi-parametric and agnostic on the body (region

of the distribution not belonging to the tail) of idiosyncratic returns, allowing for skewness and

5See Hill (2010) for tail risk estimation using dependent and heterogeneous data.
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excess kurtosis commonly exhibited by returns.6

Factor models of equity returns are commonly used in financial economics due to their

connection to investor preferences. In the absence of arbitrage, expected stock returns can

be expressed as a function of the stochastic discount factor (SDF), where in equilibrium the

stochastic discount factor is the investor’s marginal utility. As a result, systematic factors cor-

related with the stochastic discount factor determine expected returns.7 For example, in the

Capital Asset Pricing model (CAPM) by Sharpe (1964) and Lintner (1965), the market portfo-

lio is the single factor determining expected returns. Models with multiple factors include the

Fama and French (1993) and Carhart (1997) four factor model, the Fama and French (2015)

five factor model, and statistical factor models. However, most factor models of returns as-

sume the idiosyncratic returns are light-tailed. Light-tailed idiosyncratic returns understate the

probability of rare events and fitting a light-tailed model on power-law distributed data causes

severe econometric issues (Balkema and Embrechts (2018)).

The model assumes high-frequency idiosyncratic returns have power-law distributed tails.

High-frequency returns have more observations than daily, which should improve the precision

of tail risk estimates. However, this gain in precision assumes that the idiosyncratic tail risk

is the same at longer time-intervals (e.g. daily, monthly). Assumption 1 describes the tail

behaviour of high frequency idiosyncratic returns. This is different from many factor models

and risk measures that are measured at longer time horizons. The next section demonstrates

how the high-frequency idiosyncratic tail risk ξl,t maps to longer time horizons.

4.2.2 Temporal Aggregation of Idiosyncratic Tail Risk

In this section, I theoretically demonstrate that within each month, longer-horizon (i.e. daily,

weekly, or monthly) idiosyncratic returns inherit the tail risk of the underlying high-frequency

returns, which I refer to as the inheritance property under time-aggregation. Heuristically, a

6While I assume the left and right tails have the same tail risk parameter ξ, the body of the distribution can still
exhibit skewness. For example, a Levy-Stable distribution has a tail parameter and a separate skewness parameter.

7For a further explanation, see Chapter 6 of Cochrane (2009).
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property of power-law distributed random variables is that their sum inherits the tail risk of the

underlying random variables. For example, the sum of two t-distributed random variables with

tail risk ξ will also have tail risk ξ, despite not being t-distributed. This section uses extreme

value theory to formalize these heuristic arguments. I show that the inheritance property under

time-aggregation is theoretically guaranteed even with a finite number of observed returns.

Additionally, the measure is robust to certain microstructure noise. To simplify the notation in

this section, I drop the firm l superscript with the understanding that all idiosyncratic returns

xt,i and idiosyncratic tail risk parameters ξt are firm-specific.

I prove that idiosyncratic tail risk is inherited under time-aggregation using progressively

weaker assumptions. First, I show that the monthly idiosyncratic returns weakly converge to

a Levy distribution with the same tail risk as the high-frequency returns, when returns are

continuously observed in a month. Second, I show that when the number of returns is finite

and the distribution of the monthly idiosyncratic return is unknown, the inheritance property

under time-aggregation still holds. Finally, I show the high-frequency idiosyncratic tail risk can

also be measured when certain microstructure noise exists, which justifies using my measure

of idiosyncratic tail risk even when returns are contaminated with light-tailed noise such as the

bid-ask bounce.

Monthly Idiosyncratic Tail Risk

The literature overwhelmingly specifies factor models at the monthly time horizon, so this

section uses only the definition of log returns to show the connection between high-frequency

and monthly idiosyncratic returns. To do so, I first construct a monthly factor model defined

analogously to the high-frequency model. By definition, monthly log returns are Rt = pt− pt−1,

where pt is the log price at month t. I then assume the monthly factor model of each firm

follows

Rt = βᵀt Ft + Xt, (4.10)
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where returns Rt, factors Ft, and idiosyncratic returns Xt are monthly log returns. By definition,

the observable returns and factors can be written as the sum of their underlying high-frequency

returns by using the aggregation properties of log returns, such that Rt =
∑N

i=1 rt,i and Ft =∑N
i=1 ft,i. Since βt are constant for each month t, βt is assumed to be the same in the monthly

and high-frequency models. Furthermore, I impose no direct assumptions on the distribution

of the unobservable monthly idiosyncratic returns Xt. Using only the definition of the models

and log returns, the following Lemma shows the monthly idiosyncratic return can be expressed

as the sum of the underlying high-frequency idiosyncratic returns.

Lemma 4.2.1 The monthly idiosyncratic return is equal to the sum of high-frequency idiosyn-

cratic returns, that’s Xt =
∑N

i=1 xt,i.

Proof See Section C.2.1 in the appendix.

Lemma 4.2.1 shows the identity that the monthly idiosyncratic return is equal to the sum

of high-frequency idiosyncratic returns. However, the distribution of the monthly idiosyncratic

return is unknown. In general, the distribution of xt,i will be different from the distribution of

Xt =
∑N

i=1 xt,i. For example, the sum of two t-distributed random variables is generally not

t-distributed. The monthly idiosyncratic return Xt =
∑N

i=1 xt,i has the same distribution as xt,i if

and only if xt,i is a stable distribution.8 However, the monthly idiosyncratic tail risk inherits the

high-frequency idiosyncratic tail risk ξt, which is proved in the next section.

Idiosyncratic Tail Risk with Continuously Observed Returns

I first assume that high-frequency returns are continuously observed, such that N → ∞. As

the number of returns approach infinity, the limiting distribution of the sum of returns can be

derived using Levy’s Theorem. Levy’s Theorem in Section C.2.2 is the generalization of the

Central Limit Theorem for heavy-tailed random variables. The theorem states that the sum of

8A distribution is stable if a sum two i.i.d. random variables with this distribution has the same distribution.
The normal distribution is the only stable distribution to be light-tailed, while all other stable distributions are
heavy-tailed.
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i.i.d. power-law distributed random variables converge to a Levy distribution with the same

tail risk. I use Levy’s Theorem to derive the limiting distribution and tail risk of the monthly

idiosyncratic returns in the following theorem.

Theorem 4.2.2 Suppose the high-frequency idiosyncratic returns xt,i, i = 1, ..,N, satisfy As-

sumption 1 and ξt >
1
2 . Then there exist aN and bN such that the monthly idiosyncratic return

Xt satisfies

(
N∑

i=1

xt,i − bN)/aN
d
−→ ut as N → ∞, (4.11)

where ut is a Levy-distributed random variable with tail risk ξt, and aN = in f {y : P(|xt,1| > y) ≤

N−1}, and bN = NE(xt,11(xt,1≤aN )).

Proof See Section C.2.3 in the appendix.

If the high-frequency returns are continuously observed, then the distribution and tail risk

of the monthly idiosyncratic returns is derived in Theorem 4.2.2. In practice, microstructure

effects prevent returns from being sampled continuously, since microstructure noise dominates

the returns process at ultra high frequencies. Therefore, returns must be sampled discretely,

where the number of returns N is finite. When N is finite, monthly idiosyncratic returns are

no longer Levy distributed and in general the distribution cannot be found. However, the next

section shows that the monthly idiosyncratic tail risk can still be measured.

Idiosyncratic Tail Risk with a Finite Number of Returns

The following theorem is the main theoretical result for the tail risk of the monthly idiosyncratic

return when the number of returns observed in a month is finite.

Theorem 4.2.3 Suppose the high-frequency idiosyncratic returns xt,i, i = 1, ..,N, satisfy As-

sumption 1 and N ≥ 2. Then,
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P(Xt ≤ −y) ∼ NP(xt,i ≤ −y), (4.12)

where f (y) ∼ g(y) means lim
y→∞

f (y)/g(y) → 1. This implies the left tail of the monthly idiosyn-

cratic return Xt is power-law distributed with tail risk parameter ξt.

Proof See Section C.2.5 in the appendix.

The above implies that when the number of returns N is finite and the distribution of the

monthly idiosyncratic return Xt is unknown, the left tail of Xt still inherits the tail risk of the

high-frequency idiosyncratic returns ξt under very general power-law assumptions.

In practice, microstructure effects introduce an unobservable noise process to returns. Sep-

arating the noise from the idiosyncratic returns is difficult, since both processes are unobserv-

able. However, the next section shows that the high-frequency idiosyncratic tail risk can still

be measured under certain microstructure noise processes.

Idiosyncratic Tail Risk with Microstructure Noise

Suppose high-frequency returns are observed with microstructure noise process ηt,i. While

papers often assume microstructure noise follows a normal or light-tailed distribution, I allow

the microstructure noise to be power-law distributed in the following assumption.

Assumption 2 (a) The microstructure noise ηt,i are independent and identically distributed,

and are regularly varying with tail risk ξt > γt > 0. That’s P(|ηt,i| > y) = y−
1
γt Lη(y),

where Lη is a slowly varying function.

(b) lim
y→∞

P(ηt,i≤−y)
P(|ηt,i |>y) = p ∈ [0, 1]

(c) ηt,i is independent of idiosyncratic returns xt,i and systematic factors ft,i.

The key condition is that ξt > γt, meaning the tails of the idiosyncratic returns are heavier than

the noise. If the condition is violated, the idiosyncratic tail risk cannot be measured. Next, I
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assume high-frequency returns are contaminated with additive microstructure noise, such that

the returns contaminated with noise follow

r∗t,i = βᵀl,tft,i + x∗t,i,

x∗t,i = xt,i + ηt,i,

(4.13)

where the x∗t,i are unobservable noisy idiosyncratic returns. Additive noise is by far the most

common assumption in the microstructure literature.9 In general, the distribution of the id-

iosyncratic returns contaminated with noise depend on the distribution of the microstructure

noise. For example the volatility of x∗t,i is a function of the volatility of xt,i and ηt,i. However, if

the tails of the microstructure noise ηt,i are lighter than the tails of the idiosyncratic returns xt,i,

i.e. when ξt > γt, then the idiosyncratic returns contaminated with noise x∗t,i only inherit the tail

risk of the idiosyncratic returns xt,i without the noise, which is demonstrated in the following

theorem.

Theorem 4.2.4 Under Assumption 1 for idiosyncratic returns xt,i, Assumption 2 for noise ηt,i,

and additive microstructure noise (4.13), then ∀i,

P(x∗t,i ≤ −y) ∼ P(xt,i ≤ −y), (4.14)

where the x∗t,i are idiosyncratic returns contaminated with noise defined in Equation (4.13).

Proof See Section C.2.6 in the appendix.

Since microstructure noise such as the bid-ask bounce (Roll (1984)) have lighter tails than

returns, Theorem (4.2.4) indicates that the bid-ask bounce will not affect idiosyncratic tail risk

measurement. However, γt is larger than ξt during rare microstructure events such as the 2013

Flash Crash, meaning the idiosyncratic tail risk cannot be measured during those events.

9The theory also holds for other noise processes, such as multiplicative microstructure noise.
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4.2.3 Volume Tail Risk Measure

In Gabaix et al. (2006), tail returns are caused by the price impact of large intermediaries

trading an abnormally large volume of shares, which implies the tails of idiosyncratic returns

and trading volume are power-law distributed and proportional. In this section, I define a

power-law measure of the right tail of trading volume, which is supported by the empirical

evidence in Figure C.3 of Section C.1. Let st,i denote the total trading volume between time

interval i and i − 1. Since trading volume has intraday seasonality, I use daily differences and

measuring changes in trading volume vt,i = st,i − st,i−d, where d denotes the number of intraday

observations in a day. Next, I assume that changes in trading volume are power-law distributed

with tail risk parameter νt.

Assumption 3 (a) Changes in trading volume vt,i, i = 1, ...,N, are independent and identi-

cally distributed, and regularly varying with volume tail risk parameter νt > 0. That is,

P(vt,i > y) = y−
1
νt Lνt(y), where Lν is a slowly varying function.

(b) lim
y→∞

P(vt,i≤−y)
P(|vt,i |>y) = p ∈ [0, 1]

I define volume tail risk (VTR) as the tail risk parameter νt of changes in trading volume vt,i.

Gabaix et al. (2006) predict that large intermediary trades cause idiosyncratic tail risk and

volume tail risk to be related according to ξt ∼ ρνt for some price impact measure 0 ≤ ρ ≤

1. This theoretical relationship can be tested by substituting volume tail risk in the place of

idiosyncratic tail risk in the empirical asset pricing tests. If ITR and VTR are proportional,

they should produce similar asset pricing results.

4.2.4 Estimation of Idiosyncratic Tail Risk and Volume Tail Risk

The monthly idiosyncratic tail risk ξt for each firm is the main parameter of interest. Sec-

tion 4.2.2 demonstrates that the monthly idiosyncratic tail risk inherits the tail risk of high-

frequency idiosyncratic returns. However, idiosyncratic returns xt,i are unobservable and must
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be estimated. The factor model’s filtered residuals are frequently used as the estimator of id-

iosyncratic returns.10 Filtered residuals depend on the estimates of the factor betas, hence this

section also discusses estimation of betas in heavy-tailed regressions. The asset pricing litera-

ture overwhelmingly uses ordinary least squares (OLS) to estimate factor model betas. When

ξt ≤ 1/2, the idiosyncratic returns have finite variance, and the Gauss-Markov Theorem proves

the OLS estimate has the minimum variance of all linear unbiased estimators. However, when

ξt > 1/2, the idiosyncratic returns have infinite variance and OLS is no longer efficient.11

Least Absolute Deviations (LAD) is a robust alternative to OLS when the errors have heavy

tails, in the sense that LAD is generally more efficient than OLS when the regression errors

have infinite variance.12 Blattberg and Sargent (1971) show that the LAD estimator is the max-

imum likelihood estimate when the i.i.d. regression errors have infinite variance with a Laplace

distribution (two-tailed exponential distribution). It is well known that the LAD estimator is

consistent and asymptomatically normal when the errors have a distribution function that is dif-

ferentiable at 0 with the derivative positive (See Koenker and Bassett (1978)). Knight (1998)

shows that the LAD estimate is asymptotically normal under more general regularity condi-

tions. To find the limiting distribution of the LAD-estimated betas β̂t, requires the following

assumption.

Assumption 4 (a) The returns and factors (rt,i,f
ᵀ
t,i)
ᵀ are independently and identically dis-

tributed across i.

(b) The factors have bounded second moment, i.e., E[||ft,i||
2] < ∞.

(c) Idiosyncratic returns xt,i are continuously distributed given systematic factors ft,i, with

10For example, see Ang et al. (2006), Kapadia and Zekhnini (2019).
11Davis and Wu (1997) show that when ξt > 1/2, the least square estimate converges weakly to a ratio of

stable distributions with heavy tails. Mikosch and Vries (2013) derive explicit finite sample expressions for the
tails of the OLS estimate. They show the OLS estimate is heavy-tailed in finite samples. OLS estimates that are
heavy-tailed can have large errors. Balkema and Embrechts (2018) perform a simulation study and demonstrate
the shortcomings of OLS and other estimators when the errors are heavy-tailed.

12This may not be true if the regressors have infinite variance, as discussed in Balkema and Embrechts (2018).
While I find the factors are heavy-tailed, there is no evidence to suggest they have infinite variance. Additionally,
the results are quantitatively similar when the factors are estimated using the weighted-LAD from Ling (2005),
which is robust to infinite variance regressors.
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conditional density g(xt,i|ft,i), and with median zero conditional on the systematic factors,

i.e.,
∫ 0

−∞
g(λ|ft,i)dλ = 1

2 .

(d) The systematic factors and idiosyncratic return density satisfy a ”local identification”

condition, meaning the matrix C = E[g(0|ft,i)ft,if
ᵀ
t,i] is positive definite.

From Assumption 4, the LAD estimates of the betas β̂t converge to in distribution to a

multivariate normal distribution with covariance matrix 1
4C−1E[ft,ifᵀt,i]C

−1 (Powell (1991)).13

Estimates of idiosyncratic returns are then the LAD filtered residuals

x̂t,i = rt,i − β̂tft,i. (4.15)

Following power-law literature, I use the Hill (1975b) method to estimate the idiosyncratic

tail risk ξt. When a distribution’s tail is exactly Pareto (i.e. when L(x) is a constant) the Hill

estimate is the maximum likelihood estimate of ξt. If the idiosyncratic returns are observable,

the Hill estimate is

ξ̂Hill
t =

1
Kt

Kt∑
k=1

log
xt,(k)

xt,(Kt+1)
, (4.16)

where xt,(k) is the k-th order statistic of high-frequency idiosyncratic returns (xt,(1) ≤ xt,(2) ≤

... ≤ xt,(N)) and Kt is the total number of returns below threshold xt,(Kt+1) in month t. The

Hill estimator only uses idiosyncratic returns less than negative threshold xt,(Kt+1), disregarding

returns that do not belong to the left tail. The threshold is chosen to be sufficiently negative

so that the estimator only uses returns belonging to the left tail. Panel (a) of Figure C.2 shows

idiosyncratic returns greater than 2 standard deviations (approximately the 0.95 quantile of

absolute idiosyncratic returns) are power-law distributed. Hence, a natural value for threshold

xt,(Kt+1) is the 0.05 quantile of the stock’s idiosyncratic returns in month t.14 When Kt → ∞ and

13LAD estimation is only used in the creation of the idiosyncratic tail risk estimates and not in the asset pricing
sections. All the regressions in the asset pricing sections follow the standard procedure by estimating betas with
OLS.

14Kelly and Jiang (2014b) also use the 0.05 quantile for their Hill estimator. As a robustness check, I show
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Kt/N → 0, the Hill estimate is consistent and asymptotically normal with variance ξ2
t .

The Hill estimate in Equation (4.16) is infeasible, because the idiosyncratic returns are

unobservable. Hill (2015) extends the Hill estimator to residuals filtered from a regression.

According to Lemma 2 in Hill (2015), the Hill estimator applied to LAD filtered residuals is

asymptotically normal with variance ξ2
t . Hence, the firm’s idiosyncratic tail risk estimate is

ξ̂Hill−Res
t =

1
Kt

Kt∑
k=1

log
x̂t,(k)(β̂t)

x̂t,(Kt+1)(β̂t)
, (4.17)

where x̂t,(Kt+1)(β̂t) is the k-th order statistic of the estimated idiosyncratic returns in Equation

(4.15).

To estimate the volume tail risk νt, I use the Hill (1975b) estimator

ν̂Hill
t =

1
Mt

N∑
m=Mt+1

log
vt,(m)

vt,(Mt+1)
, (4.18)

where vt,(k) is the m-th order statistic of changes in trading volume (vt,(1) ≤ vt,(2) ≤ ... ≤ vt,(N))

and Mt is the total number of vt,i above threshold vt,(Mt+1) in month t. Figure C.3 shows trading

volume greater than 3 absolute deviations (approximately the 0.9 quantile of trading volume)

are power-law distributed. Hence, a natural value for threshold vt,(Kt+1) is the 0.9 quantile of

the stock’s trading volume in month t. When Mt → ∞ and Mt/N → 0, the Hill estimate is

consistent and asymptotically normal with variance ν2
t . This section’s procedures result in a

monthly idiosyncratic tail risk and volume tail risk estimate for each firm.

that my empirical results are similar for the 0.025 and 0.1 quantiles. Liu and Stentoft (2020a) conducts a large
simulation study to show that the 0.05 quantile is accurate for market tail risk estimation.
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4.3 Empirical Firm-Level Tail Risk

4.3.1 Data

I conduct a large empirical study of high-frequency equity returns, merging the Trade and

Quotes (TAQ), the Center for Research in Security Prices (CRSP), and Compustat databases.

The TAQ is the primary dataset, containing intraday transactions data for all stocks on the

New York Stock Exchange (NYSE), American Stock Exchange (AMEX), NASDAQ, and other

U.S. regional exchanges. I use the Monthly TAQ database up to 2003 then use the Daily TAQ

database from 2004 to 2016.15 I analyze all common stocks (Share Code 10 or 11) and price

above $5. I clean the TAQ according to the procedures in Barndorff-Nielsen et al. (2008), and

extract second-by-second price, trade size, bid, and ask data between 9:30am - 4:00pm. The

data is then aggregated into 5-minute intervals and merged with the monthly CRSP by the

TAQ CUSIP key to obtain overnight returns. During each month, I keep stocks with more than

150 negative returns (roughly 10% of 5-minute returns in a month) to ensure enough left tail

observations and liquidity. Section C.3.1 in Appendix C.3 provides further details on my TAQ

data cleaning procedures. The empirical analysis includes 6,213 unique securities and 414,336

firm-month observations during the post decimalization sample period from January 2001 to

December 2016,16 and the least number of firms in a month is 2,616.17

The CRSP monthly database is used to obtain each stock’s price, shares outstanding, and

returns. Delisted stocks are adjusted using the delisting return from CRSP to avoid survivorship

bias. Daily and monthly portfolio returns for the Fama and French and momentum factors are

downloaded from Kenneth French’s website. Anomaly portfolios and industry classifications

are also downloaded from French’s website.

15The monthly database reports data in second time-intervals, while the daily database reports data in millisec-
onds from January 2004 to July 27, 2015, microseconds to October 2016, and from November 2016 onwards.

16While the TAQ data is available from January 1993, I find a structural break in tail risk measures in 1997
across all stocks, caused by microstructure changes (tick size changes from 1/8 to 1/16). To avoid influence from
tick size changes, the asset pricing analysis focuses on the post decimalization period.

17Factor betas are estimated using a 36 month rolling window, so idiosyncratic tail risk data is used from
January 1998 to December 2001 to estimate the factor betas.
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The Compustat annual database is used to create the Fama and French characteristics from

firm fundamentals. Compustat is merged with CRSP to replicate the Fama and French portfo-

lio sorts and determine daily constituents for each portfolio. The daily constituents are merged

with the TAQ database to create the high-frequency Fama and French factors. My exact proce-

dures to create the high-frequency factors is described in Section C.3.2 of Appendix C.3.

I replicate an extensive set of control variables that may be correlated with idiosyncratic

tail risk, and have demonstrated predictive power for cross-sectional stock returns. I include

characteristics from Fama and French (2015), which are market beta, size, book-to-market,

operating profitability, and investment. Momentum, short-term reversal, and illiquidity are

included, since they can lead to tail risk. Finally, idiosyncratic volatility, coskewness, downside

beta, and extreme positive returns are included, because they are related to the distribution of

returns. The control variables are created using the CRSP and Compustat databases. Section

C.3.3 in Appendix C.3 describes the variables and procedures to create them.

4.3.2 High-Frequency Systematic Factors

The high-frequency factor literature generally uses two types of systematic factors: observable

or latent. Observable factors are often created using portfolios that are sorted on characteris-

tics known to explain the cross-sectional variation of expected returns (i.e. Fama and French

(1993), Carhart (1997), Fama and French (2015)). In this paper, I adopt the approach of Ait-

Sahalia, Kalnina, and Xiu (2020) to create high-frequency Fama and French (2015) factors

using portfolios sorted on characteristics (see Section C.3.2 of Appendix C.3 for further de-

tails). The baseline model in this paper is the well known Fama and French (2015) five factor

model. I also use the market and Fama-French-Carhart four factor models as robustness checks

and find similar results.18 Furthermore, I create a five factor model that uses high-frequency

18Using high-frequency equity factors may have been controversial pre-decimalization due to high trading
costs. However, in the post-decimalization sample used in this paper, trading costs have significantly decreased so
that they are no longer a barrier to forming these traded factors. Note that the observable factors used in this paper
are also openly traded as Exchange Traded Funds (ETFs), which accurately track the factors due to tracking-error
constraints.Examples of ETFs that track factors include the SPY/VTI market, VTV value, VB size, VFQY quality
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cross-sectional moments and liquidity variables. Specifically, I calculate the high-frequency

cross-sectional mean absolute deviation around the median as a robust measure of dispersion,

Hinkley (1975)’s robust coefficient of asymmetry skewness at the 0.95 quantile, the power-law

tail risk measure of Kelly and Jiang (2014b) using the Hill estimate at the 0.05 quantile, the

mean percentage NBBO spread, and the mean dollar trading volume.

As a further robustness check, I consider an alternative latent factor model. Latent fac-

tors use statistical methods to create systematic factors. Pelger (2020) shows that the high-

frequency statistical factors can be proxied by the equal-weighted market, oil, finance, and

electricity portfolios. Motivated by their findings, I use their methods to construct the above

market and industry factors for my sample of stocks, to create the industry statistical model.

4.3.3 The Idiosyncratic Tail Risk Premium

In this section, I verify the idiosyncratic tail risk premium by documenting that stocks with

higher idiosyncratic tail risk have higher average excess returns. For each month from January

2001 until December 2016, each firm’s idiosyncratic tail risk estimate is the Hill estimate of

LAD residuals from the Fama and French (2015) five factor model. Stocks are sorted into decile

groupings based on their idiosyncratic tail risk in that month. Decile 1 (low) contains stocks

with the lowest idiosyncratic tail risk and decile 10 (high) contains stocks with the highest

idiosyncratic tail risk. I form an equally-weighted portfolio and a value-weighted portfolio in

each decile, and hold each portfolio for 1 month.

Panel A of Table 4.1 reports the average idiosyncratic tail risk in each decile. The high val-

ues of idiosyncratic tail risk illustrates that the returns of some stocks have infinite moments.

A random variable’s moment is infinite if its tail risk parameter exceeds the reciprocal of the

moment. The skewness is infinite for deciles 2-10, since ξ > 1/3 in these deciles. The variance

is infinite for deciles 9 and 10, because ξ > 1/2 in these deciles. All deciles have ξ > 1/4 indi-

cating infinite kurtosis. These findings highlight the usefulness of power-law approximations

(investment and profitability), VFMO momentum, and VFMF multi-factor ETFs).
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Table 4.1: Excess Returns and Alphas of Portfolios Sorted on Idiosyncratic Tail Risk

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)

Panel A: Average Portfolio Idiosyncratic Tail Risk
Idiosyncratic Tail Risk 0.32 0.36 0.38 0.39 0.41 0.43 0.45 0.47 0.51 0.65

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)
Excess Return 0.47 0.51 0.67 0.63 0.62 0.75 0.71 0.73 0.87 1.03 0.57
t-stat (1.04) (1.16) (1.52) (1.40) (1.44) (1.76) (1.61) (1.76) (2.11) (2.76) (2.77)
FFC4 alpha 0.51 0.57 0.72 0.69 0.66 0.80 0.74 0.78 0.89 1.05 0.54
FFC4 t-stat (1.23) (1.38) (1.75) (1.70) (1.67) (1.98) (1.83) (2.07) (2.30) (2.96) (2.69)
FF5 alpha 0.68 0.70 0.85 0.84 0.78 0.94 0.85 0.87 0.96 1.11 0.43
FF5 t-stat (1.56) (1.59) (1.94) (1.96) (1.88) (2.24) (2.01) (2.19) (2.39) (3.04) (2.07)

Panel C: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.23 0.39 0.50 0.52 0.41 0.42 0.53 0.48 0.77 0.89 0.66
t-stat (0.61) (1.15) (1.46) (1.41) (1.20) (1.23) (1.34) (1.26) (2.05) (2.23) (3.16)
FFC4 alpha 0.27 0.45 0.55 0.56 0.45 0.46 0.55 0.56 0.80 0.88 0.61
FFC4 t-stat (0.77) (1.41) (1.72) (1.77) (1.42) (1.50) (1.61) (1.65) (2.21) (2.40) (2.90)
FF5 alpha 0.43 0.58 0.59 0.69 0.50 0.55 0.67 0.68 0.84 1.00 0.57
FF5 t-stat (1.15) (1.82) (1.78) (2.19) (1.57) (1.80) (1.90) (1.93) (2.24) (2.57) (2.61)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic tail risk
between January 2001 to December 2016. Panel A reports the average idiosyncratic tail risk for portfolios sorted on idiosyncratic
tail risk. Panel B reports equally-weighted excess returns and alphas for portfolios sorted on idiosyncratic tail risk. Panel C
reports value-weighted excess returns and alphas for portfolios sorted on idiosyncratic tail risk.

that can model returns with infinite moments.

Panel B of Table 4.1 reports the average equal-weighted excess return of each decile port-

folio and a portfolio that goes long the high idiosyncratic tail risk decile and shorts the low

idiosyncratic tail risk decile (10-1). Average excess returns increase as the portfolio’s aver-

age idiosyncratic tail risk increases. The long-short portfolio has an average monthly return

of 0.57% with a t-statistic of 2.77.19 The next 4 rows report returns and t-statistics relative to

the Fama and French (1993) and Carhart (1997) four factor model (FFC4) and the Fama and

French (2015) five factor model (FF5). Alphas are increasing in idiosyncratic tail risk. The

long-short portfolio has a four factor alpha of 0.54% (t-stat of 2.69) and a five factor alpha of

0.43% (t-stat of 2.07).

Panel C of Table 4.1 reports the average value-weighted excess return of each decile portfo-

lio and the long-short portfolio. Average value-weighted excess returns and alphas increase as

19All t-statistics are calculated using Newey and West (1987b) standard errors with one lag.
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the portfolio’s average idiosyncratic tail risk increases. The long-short portfolio has an average

return of 0.66% with a t-statistic of 3.16. The long-short portfolio has a four factor alpha of

0.61% (2.90) and a five factor alpha of 0.57% (2.61). In summary, stocks with higher idiosyn-

cratic tail risk have statistically and economically higher average returns than stocks with lower

idiosyncratic tail risk.

Appendix C.4 verifies the robustness of these results. Appendix C.4.1 shows the cross-

sectional relationship remains when estimating idiosyncratic tail risk using residuals from the

CAPM, the Fama-French-Carhart four factor model, the high-frequency cross-sectional vari-

able model, and the industry statistical model. The premium is also robust to using the 0.025

and 0.1 Extreme Value Theory thresholds xt,(Kt+1). In addition, results are similar for idiosyn-

cratic tail risk estimated using midquotes instead of trades. Appendix C.4.2 reports double sorts

on other firm characteristics that have been shown to predict returns. The double sorts demon-

strate that conditional on other variables, average returns are still increasing in idiosyncratic

tail risk.

I conclude that the idiosyncratic tail risk premium is a large economic phenomenon, highly

statistically significant, and robust to different high-frequency factor models, tail risk thresh-

olds, control variables, and midquotes. This section’s cross-sectional findings are remarkably

similar in magnitude to the cross-sectional results using jump risk implied by equity options.

Kapadia and Zekhnini (2019) and Begin, Dorion, and Gauthier (2019) also find a positive cross-

sectional relationship between implied jump risk and average returns and argue the premium is

caused by the inability to diversity jump risk and not due to a systematic factor. Option implied

jump risk can be considered as the price of insurance against jumps. It’s not obvious that the

realized idiosyncratic tail risk estimated from historical returns will also earn a premium, since

it is a realized measure of jumps. This section demonstrates that the premium is a pervasive

phenomenon that also exists for realized measures of idiosyncratic tail risk.
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Table 4.2: Excess Returns and Alphas of Portfolios Sorted on Volume Tail Risk

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)

Panel A: Average Portfolio Volume Tail Risk
Volume Tail Risk 0.45 0.52 0.57 0.61 0.65 0.69 0.73 0.79 0.87 1.07

Panel B: Univariate Sort on Volume Tail Risk (Equal-Weighted)
Excess Return 0.30 0.58 0.61 0.67 0.65 0.63 0.79 0.73 0.84 1.17 0.88
t-stat (0.66) (1.38) (1.44) (1.57) (1.53) (1.43) (1.82) (1.75) (1.99) (2.83) (3.88)
FFC4 alpha 0.34 0.62 0.66 0.73 0.70 0.69 0.85 0.80 0.88 1.16 0.83
FFC4 t-stat (0.82) (1.64) (1.66) (1.83) (1.73) (1.66) (2.04) (1.98) (2.21) (3.14) (3.80)
FF5 alpha 0.48 0.77 0.78 0.86 0.80 0.82 0.96 0.89 0.97 1.25 0.77
FF5 t-stat (1.16) (1.95) (1.88) (2.02) (1.88) (1.89) (2.22) (2.10) (2.32) (3.21) (3.85)

Panel C: Univariate Sort on Volume Tail Risk (Value-Weighted)
Excess Return 0.31 0.50 0.69 0.77 0.77 0.63 0.68 0.78 0.79 0.98 0.67
t-stat (0.89) (1.41) (1.93) (2.11) (2.12) (1.65) (1.64) (2.03) (2.01) (2.47) (3.70)
FFC4 alpha 0.35 0.54 0.72 0.83 0.80 0.68 0.72 0.82 0.85 0.97 0.61
FFC4 t-stat (1.09) (1.68) (2.32) (2.59) (2.38) (1.96) (1.97) (2.29) (2.48) (2.84) (3.22)
FF5 alpha 0.46 0.65 0.82 0.95 0.87 0.80 0.79 0.90 0.96 1.03 0.58
FF5 t-stat (1.42) (1.98) (2.55) (2.91) (2.49) (2.22) (2.16) (2.45) (2.63) (2.93) (3.17)

The table reports monthly average volume tail risk, excess returns, and alphas for portfolios sorted on Volume Tail Risk
between January 2001 to December 2016. Panel A reports the average volume tail risk for portfolios sorted on volume tail
risk. Panel B reports equally-weighted excess returns and alphas sorted on volume tail risk. Panel C reports value-weighted
excess returns and alphas for portfolios sorted on volume tail risk.

4.3.4 The Volume Tail Risk Premium

The large intermediary hypothesis of tail risk predicts that there is a strong firm-level relation-

ship between idiosyncratic tail risk and volume tail risk. As a litmus test, I evaluate whether

stocks with higher Volume Tail Risk earn higher average returns. Volume tail risk is distinct

from idiosyncratic tail risk, since it measured using trading volume data. For each month from

January 2001 to December 2016, I estimate each firm’s volume tail risk as the Hill estimate of

the firm’s changes in trading volume vt,i. I sort stocks into decile groupings based on their VTR

in that month. Decile 1 (low) holds stocks with the lowest VTR and decile 10 (high) holds with

the highest VTR. I form an equally-weighted and a value-weighted portfolio in each decile,

and hold the portfolio for 1 month.

Panel A of Table 4.2 reports the average volume tail risk in each decile. VTR has very heavy

tails. In deciles 2-10 trading volume has an infinite variance as indicated by ξ > 1/2. In decile
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10 trading volume has an infinite expectation as indicated by ξ > 1. Power-law is particularly

suitable for modeling trading volume, since moment-based measures become intractable with

such heavy tails.

Panel B of Table 4.2 reports the average equal-weighted excess return of each decile portfo-

lio and a portfolio that goes long the highest VTR decile and shorts the lowest VTR decile. The

results are remarkably similar to the idiosyncratic tail risk anomaly in Section 4.3.3. Average

excess returns and alphas increase as portfolio VTR increases. The long-short portfolio has an

average return of 0.88% with a t-stat of 3.88. The long-short portfolio has a four-factor alpha

of 0.83% (t-stat of 3.80) and five-factor alpha of 0.77% (t-stat of 3.85).

Panel C of Table 4.2 reports the average value-weighted excess returns of each decile port-

folio and a long-short portfolio. The value-weighted returns and alphas of the long-short portfo-

lio are nearly identical to the average returns and alphas of the idiosyncratic tail risk long-short

portfolio in Section 4.3.3. These results confirm that VTR has predictive ability for the cross-

section of average stock returns. The returns of the long-short portfolio for ITR and VTR are

highly correlated. The equal-weighted long-short portfolios have a correlation of 0.71 (t-stat

of 13.88) while the value-weighted long-short portfolios have a correlation of 0.43 (t-stat of

6.57). These results suggest that the ITR and VTR premiums may be driven by the same risk

factor.

4.3.5 Persistence in Idiosyncratic Tail Risk and Volume Tail Risk Premia

Existing theories argue that the idiosyncratic tail risk premium is caused by an inability to fully

diversity or an under-reaction to firm-specific news. In both theories, the premium should be

short-lived as markets will quickly adjust to the firm-specific information. My risk-based the-

ory predicts the premium is highly persistent as long as firms’ tail risks and intermediary betas

are fairly stable. If risk exposures do not change rapidly over time, then lagged idiosyncratic

tail risk is correlated to current idiosyncratic tail risk and the risk premium should be persis-

tent across stocks, that is those with high (low) past idiosyncratic tail risks should continue to
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Table 4.3: Persistence in Excess Returns of Portfolios Sorted on Tail Risk

Idiosyncratic Tail Risk Volume Tail Risk

Hold Period (Months) 3 6 12 24 3 6 12 24

Panel A: Univariate Sort on Idiosyncratic Tail Risk and Volume Tail Risk (Equal-Weighted)
(10-1) Return 2.97 4.39 6.16 7.98 3.84 7.23 13.42 25.01
t-stat (5.08) (5.56) (5.00) (3.13) (4.40) (3.95) (3.77) (3.51)

Panel B: Univariate Sort on Idiosyncratic Tail Risk and Volume Tail Risk (Value-Weighted)
(10-1) Return 2.85 5.14 9.35 16.60 2.96 5.97 11.18 22.46
t-stat (4.39) (3.78) (4.04) (3.44) (3.85) (4.13) (3.37) (3.71)

The table reports long-horizon excess returns for portfolios sorted on idiosyncratic tail risk and
volume tail risk between January 2001 to December 2016. Panel A reports equally-weighted
excess returns for the idiosyncratic tail risk and volume tail risk long-short portfolios. Panel B
reports value-weighted excess returns for the idiosyncratic tail risk and volume tail risk long-short
portfolios.

experience high (low) future average returns.

To evaluate this hypothesis, in each month I sort stocks into decile groupings based on their

ITR in that month, form an equally-weighted and a value-weighted portfolio in each decile,

and hold the portfolio for 3, 6, 12, or 24 months. I perform an analogous portfolio sort for

volume tail risk.

Table 4.3 reports the average excess returns of portfolios that buys the highest tail risk

decile and shorts the lowest tail risk decile for 3, 6, 12, or 24 months. The left side of the table

shows results for idiosyncratic tail risk long-short portfolios and the right side shows results

for volume tail risk long-short portfolios. Panel A shows that the equal-weighted idiosyncratic

tail risk and volume tail risk premia are highly persistent. Excess returns of the idiosyncratic

tail risk long-short portfolio range from 2.97% (t-stat of 5.08) at the three-month horizon to

7.98% (t-stat of 3.13) at the two-year horizon. Similarly, excess returns of the volume tail risk

long-short portfolio range from 3.84% (t-stat of 4.40) at the three-month horizon to 25.01%

(t-stat of 3.51) at the two-year horizon.

Panel B shows that the value-weighted idiosyncratic tail risk and volume tail risk premia are

also highly persistent and have higher magnitudes than the equal-weighted portfolios. Excess

returns of the idiosyncratic tail risk long-short portfolio range from 2.85% (t-stat of 4.39) at
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the three-month horizon to 16.60% (t-stat of 3.44) at the two-year horizon. Similarly, excess

returns of the volume tail risk long-short portfolio range from 2.96% (t-stat of 3.85) at the

three-month horizon to 22.46% (t-stat of 3.71) at the two-year horizon.

The persistence of the idiosyncratic tail risk and volume tail risk long-short portfolio returns

is consistent with the risk-based explanation proposed in this paper. This finding also provides

evidence against existing theories of the premium, which should dissipate as the holding period

increases. Instead, I find the returns increase as the holding period increases. Additionally,

transaction costs should not affect the premium, since turnover is likely to be low when returns

are so highly persistent.

4.3.6 Idiosyncratic Tail Risk Covariates

My explanation for the idiosyncratic tail risk premium relies on Gabaix et al. (2006)’s hypothe-

sis that large intermediaries cause tail risk through large trades. This section provides empirical

evidence for their large intermediary hypothesis. In their economic model, the price impact of

a trade scales with the trading volume, and the tail distribution of idiosyncratic returns is pro-

portional to the tail distribution of trading volume. Hence, their hypothesis can be tested by

analyzing the firm-level relationship between idiosyncratic tail risk and volume tail risk. Addi-

tionally, I use the Lee and Radhakrishna (2000) algorithm to identify intermediary trades and

provide direct evidence on whether a higher percentage of intermediary trades is associated

with a higher idiosyncratic tail risk.20 I also classify the direction of intermediary trades using

the Lee and Ready (1991) algorithm to test whether a higher percentage of intermediary sell-

ing (buying) as a percentage of total trades is associated with a higher idiosyncratic tail risk.

Finally, I verify the persistence of idiosyncratic tail risk. In each month from January 2001 to

December 2016, I run Fama-MacBeth cross-sectional regressions on nested versions of

ITRl,t = π0,t+π1,tVTRl,t+π2,t%IntermediaryVolumel,t+π3,tITRl,t−k+π4,tControlsl,t+εl,t, (4.19)

20Large trades are classified as intermediary driven if their dollar volume exceeds $100,000 for the largest,
$50,000 for the medium, and $20,000 for the smallest tripartite of stocks (Lee and Radhakrishna (2000)).
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Table 4.4: Idiosyncratic Tail Risk Covariates

Panel A: VTR Panel B: Intermediary Dollar Volume Panel C: Lagged ITR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Intercept 0.32 0.31 0.39 0.37 0.39 0.38 0.40 0.38 0.28 0.28 0.32 0.32 0.35 0.35
t-stat 52.17 60.62 174.66 125.99 163.22 131.64 234.91 141.00 47.08 49.80 68.90 52.61 106.43 73.52
VTR 0.14 0.12
t-stat 14.01 16.21
%Intermediary Total 0.06 0.06
t-stat 17.98 13.60
%Intermediary Sell 0.12 0.10
t-stat 15.64 13.31
%Intermediary Buy 0.09 0.09
t-stat 14.86 14.21
ITR t-1 0.32 0.27
t-stat 23.90 17.02
ITR t-12 0.22 0.17
t-stat 18.36 12.29
ITR t-24 0.14 0.10
t-stat 13.68 9.05
Size 0.00 0.00 0.00 0.00 0.00 0.00 0.00
t-stat 1.59 -1.93 -1.73 -1.87 -0.36 -0.40 -0.05
ILLIQ 0.12 0.13 0.12 0.13 0.10 0.11 0.11
t-stat 3.96 4.58 4.56 4.61 4.54 5.55 5.93
IVOL 0.01 0.01 0.01 0.01 0.01 0.01 0.01
t-stat 17.71 14.53 14.18 14.99 17.99 16.73 16.88

% Adj. R2 10.19 16.75 1.96 13.35 2.24 13.18 1.25 12.84 10.87 18.63 5.20 13.87 2.43 11.32

Monthly firm-level regression of idiosyncratic tail risk on volume tail risk, percent intermediary dollar
volume, and lagged idiosyncratic tail risk, controlling for size, illiquidity, and idiosyncratic volatility. The
table reports point estimates, Newey-West t-statistics with one lag, and adjusted R2.

where for each firm l and month t, ITRl,t is the idiosyncratic tail risk, VTRl,t is the volume

tail risk, %IntermediaryVolumel,t is the dollar volume of intermediaries’ large trades as a per-

centage of the stock’s total dollar volume, ITRl,t−k is idiosyncratic tail risk with lag k, and

Controlsl,t include size, illiquidity, and idiosyncratic volatility.21

Table 4.4 reports point estimates, Newey-West t-statistics with one lag, and the adjusted R2

for regression (4.19). Column (1) of Panel A regresses idiosyncratic tail risk on just volume

tail risk. The intercept term of 0.32 can be interpreted as the base level of ITR. Volume tail risk

contributes 0.14×VTR to the firm’s monthly idiosyncratic tail risk. VTR also has a high degree

of explanatory power for the cross-section of ITR, with an adjusted R2 of 10%. In column (2),

VTR coefficient does not substantially change after controlling for size, idiosyncratic volatility,

illiquidity. This finding supports the theoretical link between idiosyncratic tail risk and volume

tail risk.

Column (3) in Panel B reports results for a regression of idiosyncratic tail risk on percent

intermediary dollar volume. There is a strong relationship between ITR and percent interme-

21The results are robust to controlling for firm-level and month fixed effects, available upon request.
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diary dollar volume. Stocks with 1% higher intermediary dollar volume have 0.06 high ITR.

Since the average ITR is roughly 0.44 with a standard deviation of 0.1, this increase is highly

economically significant. One potential cause of this relationship may be that stocks that are

small, illiquid or volatile may be associated with higher intermediary dollar volume. However,

after controlling for these characteristics in column (4), the coefficient is unchanged. Column

(5) and (8) report results for a regression of ITR on percent intermediary selling and buying

volume respectively. Since ITR is a measure of the left tail, it should be more affected by

intermediary selling volume, which is what I show. Stocks with 1% higher intermediary sell-

ing volume have 0.12 high ITR. ITR is also associated with higher buying volume, which is

consistent with large trades absent of information being quickly reversed by arbitragers. These

results provide strong empirical support for the large intermediary theory of idiosyncratic tail

risk.

In contrast to existing theories, my explanation predicts idiosyncratic tail risk is persistent.

Columns (9), (11), and (13) in Panel C report results for a regression of idiosyncratic tail risk

on itself with a 1-month, 1-year, and 2-year lag. Idiosyncratic tail risk is highly persistent at the

1-month horizon with an adjusted R2 of nearly 11%. The persistence decreases at the 1-year

and 2-year horizons, but their coefficients remain statistically significant. Since, idiosyncratic

tail risk is estimated with non-overlapping data, this persistence is not mechanical. This finding

is consistent with investor herding, where intermediaries frequently purchase the same stocks

resulting in autocorrelated stock trades as documented in Sias (2004). The persistence of id-

iosyncratic tail risk is also consistent with the persistence of its premium, which requires the

risk measure to be fairly stable. This finding provides evidence against the existing theory

that idiosyncratic tail risk is only caused by inability to diversify or firm-specific news, which

should have no persistence.
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4.4 Commonality in Idiosyncratic Tail Risk and Pricing Im-

plications

A key hypothesis in my explanation of the ITR premium is that idiosyncratic tail risk follows

a strong factor structure and that common idiosyncratic tail risk is correlated to the interme-

diary marginal value of wealth. In this section, I verify that idiosyncratic tail risk follows a

strong factor structure and that a single factor explains a high degree of the time variation in

firm-specific tail risk. The common idiosyncratic tail risk factor is highly correlated to existing

intermediary factors and is procyclical. Stocks with higher exposures to this common idiosyn-

cratic tail risk factor earn higher average returns, suggesting it’s a priced risk factor. Asset

pricing tests show that the common idiosyncratic tail risk factor explains the idiosyncratic tail

risk premium.

4.4.1 Factor Structure in Idiosyncratic Tail Risk

Firms with different characteristics share common idiosyncratic tail risk dynamics over time.

Figure 4.2 plots average total tail risk (tail risk of returns) and idiosyncratic tail risk for portfo-

lios formed on size, book-to-market, and industry. Panels (a) and (b) plot average total tail risk

and idiosyncratic tail risk of size quintiles. As expected, levels of tail risk decreases as firm size

increases. However, the idiosyncratic tail risk of different size quintiles are also strongly cor-

related through time. The largest firms are several orders of magnitude larger than the smallest

firms, but their idiosyncratic tail risk has a time-series correlation of 44.6%. Panels (c) and (d)

plot average total tail risk and idiosyncratic tail risk of firms sorted by book-to-market. The id-

iosyncratic tail risk of quintiles with the highest and lowest book-to-market have a correlation

of 60.5%. Panels (e) and (f) plots average idiosyncratic tail risk for firms sorted into the five-

industry SIC code categories from Kenneth French’s website. The idiosyncratic tail risk of the

industries have an average pairwise correlation of 68.7% with a minimum correlation of 58.4%

between the health and manufacturing sectors. Firms with different size, book-to-market and
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in different industries all share common idiosyncratic tail risk dynamics. Additionally, the total

tail risk time-series dynamics in Panels (a), (c), and (e) are nearly identical to the idiosyncratic

tail risk dynamics in Panels (b), (d), and (f), indicating that most of the time-series variation in

total tail risk is coming from the idiosyncratic component, and not the systematic component.

Tail risk of returns is expected to be correlated by Equation (1), since the systematic factors

are heavy-tailed.22 Returns inherit the tail behaviour of systematic factors, and time variation

in factor tail risk causes the tail risk of returns to be correlated. For example in the CAPM,

returns inherits the tail risk of the market factor. However, the high correlation of idiosyncratic

tail risks is unexpected, since idiosyncratic returns are uncorrelated to systematic factors. If

idiosyncratic tail risk is only caused by firm-specific shocks as in Merton (1976), then there

should be no correlation of firm-specific tail risks. The observed commonality suggests firm-

level tail risk is driven by a common factor.

The high correlation of idiosyncratic tail risks suggests modeling the dynamics using a

single factor model. Consistent with my explanation in Equation (4.2), I define common id-

iosyncratic tail risk (CITR) as the mean cross-sectional idiosyncratic tail risk in each month.

For each firm, I run monthly and annual time-series regressions of idiosyncratic tail risk on

CITR,23

ξl,t = κl,0 + κl,1CITRt + el,t, (4.20)

which is analogous to the hypothesized factor structure in Equation (4.4) with κl,0 = −µN and

κl,1 = 1. This single factor model for idiosyncratic tail risk has an average R2 of 13.6% for

the monthly regression and an average R2 of 42.6% for the annual regression. In comparison,

Begin, Dorion, and Gauthier (2019) document an R2 of 56.4%. However, their sample of 260

S&P stocks is much smaller and more homogeneous than the 6,213 equities sampled in this

paper. Considering that my sample contains small and medium stocks, the 42.6% average R2

22Since the systematic factors are portfolios of heavy-tailed returns, they will also be heavy-tailed. For example,
it is well documented that the market return is heavy-tailed (Kelly and Jiang (2014b))

23Annual idiosyncratic tail risk and CITR is calculated as the average of their monthly values within each year.
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Figure 4.2: Average Idiosyncratic Tail Risk of Portfolios Formed on Firm Characteristics

(a) Average Total Tail Risk by Size (b) Average Idiosyncratic Tail Risk by Size

(c) Average Total Tail Risk by Book-to-Market (d) Average Idiosyncratic Tail Risk by Book-to-Market

(e) Average Total Tail Risk by Industry (f) Average Idiosyncratic Tail Risk by Industry

The figure plots monthly total tail risk and idiosyncratic tail risk averaged within size quintiles, book-to-market quintiles, and industries from

January 2001 to December 2016. Each month, total tail risk for each stock is the Hill estimator of log returns, and idiosyncratic tail risk for

each stock is calculated as the Hill estimator of residuals from the Fama and French (2015) five factor model. Panel (a) and (b) shows total tail

risk and idiosyncratic tail risk averaged within market capitalization quintiles. Panel (c) and (d) shows total tail risk and idiosyncratic tail risk

averaged within book-to-market quintiles. Panel (e) and (f) shows total tail risk and idiosyncratic tail risk averaged within the five-industry

SIC categorizes on Kenneth French’s website.
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is economically significant.

Another natural comparison can be done with common idiosyncratic volatility (CIV) from

Herskovic et al. (2016).24 They document that the annual regression of idiosyncratic volatility

on CIV has an average R2 of 35%. However, they examine a larger sample at a longer time-

span, so it is again difficult to make direct comparisons. However, it is evident that idiosyn-

cratic tail risk follows a strong factor structure, where CITR explains much of the variation in

idiosyncratic tail risk.

4.4.2 Robustness to Omitted Variables

The commonality of the idiosyncratic tail risks cannot be explained by omitted common factors

if any. Panel A of Figure 4.3 shows that high-frequency returns exhibit substantial common

variation, with an average monthly pairwise correlation of 11% during 2001 to 2016, and a

monthly pairwise correlation exceeding 30% during the Subprime Mortgage and Euro Debt

crises. Even after removing the market factor, the residuals continue to exhibit some common

variation, with an average and maximum pairwise correlation of 2% and 4.4% respectively.

The Fama and French five factor model captures nearly all the common variation of high-

frequency returns, as the average pairwise correlation among its residuals is only 0.05% and the

maximum is 1.5% during the 9/11 terrorist attack (after 2001, the average pairwise correlation

never exceeds 0.9%).25 The Fama-French-Carhart four factor and industry statistical models

also remove most of the covariation from returns.

Panel B of Figure 4.3 shows that the average total tail risk of returns and the idiosyncratic

tail risk from the various factor models are nearly identical, despite the fact that the Fama and

24The CITR factor only has a pairwise correlation of 0.08 (t-stat of 0.97) with the CIV factor in Herskovic
et al. (2016) and the opposite price of risk. Additionally, while the volatility factor of Herskovic et al. (2016) is
countercyclical, I affirm that the idiosyncratic tail risk factor is strongly procyclical indicating they are separate
factors.

25Conversely, the high-frequency cross-sectional variable model does not remove as much of the covariation as
the Fama and French models. The failure of the high-frequency cross-sectional variable model is consistent with
the finding from Huddleston, Liu, and Stentoft (2020) that price trends and liquidity variables do not help forecast
high-frequency market returns.



152Chapter 4. Can the Premium for Idiosyncratic TailRisk be Explained by Exposures to itsCommon Factor?

Figure 4.3: Average Pairwise Correlations and Average Idiosyncratic Tail Risks

(a) Average pairwise correlations (b) Average idiosyncratic tail risks

The figure plots the average correlation and idiosyncratic tail risks of returns and factor model residuals from 2001 to 2016. Idiosyncratic tail

risk is the Hill estimate of residuals from the market model (Market), high-frequency cross-section variable model (HF), industry statistical

model (Industry), Fama-French-Carhart four factor model (FFC), or Fama and French five factor model (FF5). Panel A shows the average

pairwise Spearman correlation for returns and residuals for each month. The figures for Pearson and Kendall correlations look nearly identical.

Panel B shows the average idiosyncratic tail risk across firms for each month.

French models and industry model saturate nearly all of the covariation in returns. This makes

omitted factors an unlikely explanation for the strong commonality in idiosyncratic tail risks.

Furthermore, Section C.4.1 shows that the idiosyncratic tail risk premium is robust to these

alternative factor models, verifying that omitted factors also cannot explain the premium.

4.4.3 Link Between Common Idiosyncratic Tail Risk and Intermediary

Factors

A key assumption in my explanation is that CITR, the factor driving idiosyncratic tail risks, is

correlated to the intermediary marginal value of wealth. When intermediary funding is high,

they trade on firm-specific signals, and the average idiosyncratic tail risk increases. When

constraints tighten, investment opportunities increase as intermediaries are unable to fund many

firm-specific trades, and the average idiosyncratic tail risk falls. A testable implication is that
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CITR is highly correlated to intermediary factors in the literature and negative economic news

should be associated with decreases to CITR.

As empirical evidence, I plot the CITR factor and the intermediary capital factor from He,

Kelly, and Manela (2017), downloaded from Asaf Manela’s website. Since their intermediary

factor is defined as quarterly shocks to intermediary capital levels, I define the CITR factor

4CITR as 3-month differences in CITR levels, that is 4CITRt = CITRt − CITRt−3. The in-

termediary capital factor is the change in the equity capital ratio of large primary dealers, a

prominent example of sophisticated intermediaries. Figure 4.4 shows that the CITR factor and

intermediary capital factor are remarkably correlated, despite the fact that CITR is measured

using high-frequency equity returns and intermediary capital is measured using quarterly ac-

counting data. The CITR factor and the intermediary capital factor have a monthly correlation

of 0.32 (t-stat of 4.58) and a quarterly correlation of 0.54 (t-stat of 4.30). Additionally, the

CITR factor and the broker-dealer leverage factor from Adrian, Etula, and Muir (2014) have a

quarterly correlation of 0.31 (t-stat of 2.15). The CITR factor and the (negative) Leverage Con-

straint Tightness factor (the average market beta of actively managed mutual funds is correlated

to intermediary funding liquidity tightness) from Boguth and Simutin (2018) has a correlation

of 0.20 (t-stat of 2.67). The empirical correlation between CITR and existing intermediary

factors provide strong support for my hypothesis that CITR is correlated to the intermediary

marginal value of wealth.

Figure 4.4 also illustrates that there is strong evidence that CITR decreases during negative

news shocks. Significant negative news like the 9/11 terrorist attack, Iraq war, Russia-Ukraine

gas dispute, Lehman Brothers bankruptcy, EU debt crisis, and 2016 election are associated

with large decreases in both the CITR and intermediary factors. The largest decrease to CITR

occurred in October 2008 after the bankruptcy of Lehman Brothers when intermediary funding

was at its lowest. Interestingly, the 2004 Avian flu outbreaks and 2014 Crimea Annexation

resulted in much larger decreases in CITR relative to the intermediary capital factor, illustrating

that CITR contains additional information. These two events show that large intermediaries
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Figure 4.4: The Common Idiosyncratic Tail Risk and Intermediary Capital Factors

The common idiosyncratic tail risk factor and the intermediary capital factor. Both time-series are standardized
to zero mean and unit variance. The monthly sample is from January 2001 to December 2016. CITR is the mean
monthly idiosyncratic tail risk.

decreased large trades as possible risks increased, but quickly reversed course when the risk

failed to materialize.

Consistent with my hypothesis, CITR is correlated to existing intermediary factors. Nega-

tive economic news is associated with decreases to CITR, which contradicts the fire-sale and

labor risk theories of idiosyncratic tail risk. The strong empirical connection between shocks

to CITR and negative economic news rules out the theory that idiosyncratic tail risk is only

caused by firm-specific news shocks.
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Table 4.5: Correlations between the CITR factor and Economic Variables

Monthly Variables P/E Growth Market Volatility Growth Market Return

Pairwise Correlation 0.22 -0.07 0.15
t-stat (3.16) (-0.93) (2.14)

Quarterly Variables GDP Growth Investment Growth Consumption Growth

Pairwise Correlation 0.27 0.25 0.18
t-stat (2.23) (1.98) (1.42)

Time-series correlations between the common idiosyncratic tail risk factor and economic variables from
January 2001 to December 2016. The common idiosyncratic tail risk factor each month is the mean
firm-level tail risk. Monthly growth (log changes) factors are Price-to-Earnings of the S&P 500, market
volatility, and market prices. Quarterly growth (log changes) factors are GDP, investment, and consump-
tion.

4.4.4 Cyclicality of Common Idiosyncratic Tail Risk

In my explanation, idiosyncratic tail risk comoves with intermediary funding, which is a neg-

ative function of the shadow cost of capital φ1. A testable implication is that the common

idiosyncratic tail risk factor should be procyclical, since φ1 is counter-cyclical. In this sec-

tion, I examine the empirical correlation of CITR to innovations in financial and real economic

variables.

Table 4.5 reports correlations of the common idiosyncratic tail risk factor and growth (log

changes) of aggregate macro variables. Monthly economic variables include Robert Shiller’s

(Shiller (2015)) Cyclically Adjusted Price-to-Earnings Ratio of the S&P 500, market volatility,

and market prices. Seasonally adjusted quarterly economic variables include real GDP, gross

private domestic investment, and real personal consumption expenditures. All correlations

support the procyclicality of idiosyncratic tail risk. Shocks to common idiosyncratic tail risk

are positively correlated with positive economic growth, measured as increases to Price-to-

Earnings, market prices, GDP, investment, and consumption. CITR and market volatility have

nearly zero correlation, further illustrating that volatility does not drive tail risk.

The commonality and procyclicality of idiosyncratic tail risk is difficult to reconcile with

the theories positing that idiosyncratic tail risk is caused by firm-specific shocks (Merton



156Chapter 4. Can the Premium for Idiosyncratic TailRisk be Explained by Exposures to itsCommon Factor?

(1976)), investor fire-sales, or labor risk. If idiosyncratic tail risk is only caused by firm-

specific news, then there would be no commonality in idiosyncratic tail risk. Alternatively, if

idiosyncratic tail risk is primarily caused by fire-selling during a liquidity crisis or labor risk

during an economic crisis, then there may be common variation in idiosyncratic tail risk, but

it would be countercyclical. The procyclical common idiosyncratic tail risk factor documented

in this section strongly supports my hypothesis that idiosyncratic tail risk is driven by shocks

to intermediary funding.

4.4.5 CITR Exposure and Average Returns

In my explanation for the idiosyncratic tail risk premium, CITR is a priced risk factor. This

section documents that stocks’ exposure to the common idiosyncratic tail risk factor helps to

explain differences in the cross-section of expected returns. For each month from January 2001

to December 2016, I estimate each stock’s CITR-beta by regressing the stock’s monthly excess

return on the CITR factor using a 36-month trailing window.26 This procedure results in a

CITR-beta for each stock in each month. A stock’s CITR-beta is a measure of its exposure to

the common idiosyncratic tail risk factor.

For the analysis, I sort stocks in each month into quintiles based on their CITR-betas.

Stocks in quintile 1 have the least exposure to CITR and stocks in quintile 5 have the most

CITR exposure. I form an equal-weighted portfolio and a value-weighted portfolio in each

quintile and hold the portfolios for 1 month. Panel A of Table 4.6 reports the average CITR-

beta in each quintile. There is a large range of CITR-betas from -0.97 in the lowest quintile

to 2.28 in the highest quintile. Stocks in quintile 1 hedge states of low CITR, while stocks in

quintile 5 lose value when CITR is low.

Panel B reports excess returns for the equal-weighted portfolios, and a portfolio that goes

long the highest CITR-beta quintile and shorts the lowest CITR-beta quintile. Excess returns

26A stock is included only if it has no missing return in the 36-month estimation window. Additional returns
from 1998-2001 are included in estimating betas.
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Table 4.6: Excess Returns and Alphas of Portfolios Sorted on CITR-betas

1 (Low) 2 3 4 5 (High) (5-1)

Panel A: Average CITR-beta
Average CITR-beta -0.97 0.05 0.57 1.13 2.28

Panel B: Univariate Sort on CITR-beta (Equal-Weighted)
Excess Return 0.50 0.70 0.70 0.89 0.90 0.40
t-stat (1.11) (1.82) (1.79) (2.07) (1.72) (2.06)
FFC4 alpha 0.55 0.74 0.74 0.94 0.95 0.40
FFC4 t-stat (1.30) (2.08) (2.00) (2.28) (1.93) (2.21)
FF5 alpha 0.73 0.86 0.83 0.99 1.01 0.28
FF5 t-stat (1.72) (2.31) (2.10) (2.28) (1.97) (1.77)

Panel C: Univariate Sort on CITR-beta (Value-Weighted)
Excess Return 0.14 0.37 0.54 0.63 0.76 0.62
t-stat (0.37) (1.20) (1.67) (1.71) (1.42) (2.01)
FFC4 alpha 0.15 0.42 0.60 0.70 0.80 0.65
FFC4 t-stat (0.42) (1.44) (1.98) (1.96) (1.65) (2.21)
FF5 alpha 0.29 0.50 0.70 0.78 0.84 0.55
FF5 t-stat (0.86) (1.72) (2.25) (2.08) (1.73) (2.08)

The table reports monthly average CITR-beta, excess returns, and alphas for portfolios
sorted on CITR-betas between January 2001 to December 2016. Panel A reports the aver-
age CITR-beta for portfolios sorted on CITR-beta. Panel B reports equally-weighted excess
returns and alphas sorted on CITR-beta. Panel C reports value-weighted excess returns and
alphas sorted on CITR-beta.

and four factor alphas are monotonically increasing in CITR-betas. The long-short portfolio

has an average return of 0.40% (t-stat of 2.06). The next 4 rows report excess returns relative

to the Fama-French-Carhart four factor model and Fama and French five factor model. The

long-short portfolio has a four factor alpha of 0.40% (t-stat of 2.21) and five-factor alpha of

0.28% (t-stat of 1.77). Panel C reports excess returns and alphas for value-weighted portfolios.

Value-weighted excess returns and alphas are monotonically increasing in CITR-betas. The

long-short portfolio has an average monthly return of 0.62% (t-stat of 2.01), four factor alpha

of 0.65% (t-stat of 2.11), and five factor alpha of 0.55% (t-stat of 2.08).

In summary, stocks with high CITR-betas have economically and statistically higher returns

than stocks with low CITR-betas. These results support the hypothesis that stocks with low or

negative CITR exposure provide hedges for states of low CITR, and stocks with high CITR
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exposure are compensated for the additional risk. These results support my hypothesis that

CITR is a priced risk factor. Additionally, the positive price of risk for CITR contradicts the

existing fire-sale or labour risk theories of tail risk that imply a negative price of risk, and also

contradicts the news explanation that implies no price of risk.

4.4.6 Pricing Idiosyncratic Tail Risk and Volume Tail Risk Portfolios

This section tests the risk-based explanation for the idiosyncratic tail risk premium using formal

asset pricing procedures. To do so, I demonstrate that the CITR factor is priced in portfolios

sorted on idiosyncratic tail risk and volume tail risk. I also show that differences in CITR

exposure of idiosyncratic tail risk and volume tail risk portfolios can account for most of the

differences in average returns. I conduct a two-stage Fama and MacBeth (1973) estimation

procedure from January 2001 to December 2016. In the first stage, I estimate factor betas for

each test asset k from time-series regression,

Rk,t+1 − R f ,t = ak + βk,CITR4CITRt+1 + βk,M(RM,t+1 − R f ,t) + ek,t+1, (4.21)

where Rk,t+1−R f ,t are monthly excess returns for test asset k, 4CITRt+1 is the common idiosyn-

cratic tail risk factor in percentage terms (that is, three-month changes in CITR times 100), and

RM,t+1−R f ,t is the excess return on the market portfolio. In the second stage, I use the estimated

betas to run cross-sectional regression,

E[Rk,t+1 − R f ,t] = α + βk,CITRλCITR + βk,MλM + εk, (4.22)

where E[Rk,t+1 − R f ,t] is the average excess return of test asset k, λCITR is the risk price for the

common idiosyncratic risk factor, and λM is the risk price of the market, reported in percentage

terms. In addition to point estimates of the risk prices, I adjust the Fama and MacBeth stan-

dard errors for time-series correlation by reporting Newey-West t-statistics with one lag and

Shanken t-statistics (Shanken (1992)). To evaluate model fit, I report the cross-sectional R2
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Table 4.7: Cross-sectional Asset Pricing Tests on ITR and VTR Deciles

Panel A: Idiosyncratic Tail Risk Deciles Panel B: Volume Tail Risk Deciles

(1) (2) (3) (4)
Intercept 0.00 1.49 0.20 3.33
NW t-stat (0.01) (1.73) (0.55) (4.15)
Shanken t-stat [0.00] [1.28] [0.47] [2.99]
RM − R f -1.04 -2.84
NW t-stat (-1.13) (-3.31)
Shanken t-stat [-0.84] [-2.43]
CITR 1.21 0.99 1.08 0.73
NW t-stat (2.69) (2.27) (2.90) (2.03)
Shanken t-stat [2.10] [1.83] [2.19] [1.42]

% Adj. R2 73.45 86.05 31.60 68.05
% MAE 0.08 0.06 0.11 0.08
Months 192 192 192 192

In Panel A, the test assets are decile portfolios sorted on idiosyncratic tail risk. In Panel B, the test assets are decile
portfolios sorted on volume tail risk. The Fama MacBeth analysis is from January 2001 to December 2016. The model
in columns (1) and (3) uses innovations in CITR as the factor. The model in columns (2) and (4) uses both the market
portfolio and innovations in CITR as the factors. The table reports the risk price estimates, R2, and mean absolute
pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

and the mean absolute pricing error (MAPE), both in percentage terms.

Panel A in Table 4.7 reports results for using the decile portfolios sorted on idiosyncratic

tail risk from Section 4.3.3 as test assets, to determine whether the CITR factor explains the

idiosyncratic tail risk premium. Column (1) reports results for the pricing model using only the

CITR factor. Consistent with the risk-based explanation, CITR is priced in the idiosyncratic

tail risk deciles with a statistically significant risk price λCITR of 1.21%. CITR explains nearly

all the differences in average returns of the idiosyncratic tail risk decile portfolios, with an

adjusted R2 of 74% and a small pricing error of 0.08%. Column (2) shows that adding the

market factor increases the adjusted R2 to 86% and reduces the pricing error to 0.06%. In the

two-factor model, CITR has positive and statistically significant risk price of 0.99%. Figure 4.5

plots the expected excess returns predicted in the two-factor model against actual returns for

the idiosyncratic tail risk deciles. Test assets line up closely on the 45 degree line, indicating
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that the model does a good job of pricing these assets. Panel B reports results using the decile

portfolios sorted on volume tail risk from Section 4.3.4 as test assets. Column (3) shows that

the CITR single factor model has some ability to explain the VTR premium with an adjusted

R2 of 32% and pricing error of 0.11%. CITR has a statistically significant risk price of 1.08%,

showing the factor is priced in these portfolios. Column (4) shows that adding the market factor

increases the R2 to 68% and reduces the pricing error to 0.08%. The CITR factor remains

statistically significant with a risk price of 0.73%.

To confirm that exposures to CITR explains the idiosyncratic tail risk premium, I examine

the βk,CITR in each of the idiosyncratic tail risk deciles. Table 4.8 reports the βk,M and βk,CITR

of each decile and the difference between the highest and lowest decile. Panel A shows that

in the single factor model, βk,CITR is nearly monotonically increasing in idiosyncratic tail risk.

The highest idiosyncratic tail risk decile has 0.35 higher βk,CITR than the lowest decile. Since

the CITR risk price is 1.21%, the factor explains 0.42% (0.35 × 1.21% = 0.42%) or roughly

two-thirds of the 0.66% idiosyncratic tail risk premium. Hence, the idiosyncratic tail risk can

be mostly explained by exposures to CITR. In Panel B, I add the market factor and find that

βk,CITR is still increasing in idiosyncratic tail risk. The highest idiosyncratic tail risk decile

has 0.42 higher βk,CITR than the lowest decile. Since the CITR risk price is 0.99%, the factor

explains 0.41% of the premium and the two factors combined explain 0.59% (0.18 + 0.41) of

the 0.66% premium.

In summary, exposures to CITR helps to explain the abnormal returns in the idiosyncratic

tail risk and volume tail risk portfolios. The CITR factor provides a risk-based explanation

for the idiosyncratic tail risk premium. Portfolios with high idiosyncratic tail risk earn high

average returns due to their high exposure to the CITR factor. Portfolios with low idiosyncratic

tail risk earn low average returns, since they have less CITR exposure and hedge against states

of low CITR.
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Figure 4.5: Realized Versus Predicted Mean Excess Returns of ITR Deciles

Actual average percent excess returns on all anomaly portfolios versus predicted expected returns using exposures
to CITR and the market portfolio. The test assets are decile portfolios sorted on idiosyncratic tail risk. Distance
from the 45-degree line represents pricing errors (alphas). The monthly sample is from January 2001 to December
2016.

4.5 Robustness

This section examines a battery of robustness tests for my explanation of the idiosyncratic

tail risk premium. In my explanation, CITR is correlated to the intermediary marginal value

of wealth and its shocks should be positively priced in anomaly portfolios and asset classes
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Table 4.8: CITR Betas for Portfolios Sorted on Idiosyncratic Tail Risk

Panel A: One Factor Model: CITR

1 (Low ITR) 2 3 4 5 6 7 8 9 10 (High ITR) (10-1) Beta
βCITR 0.29 0.35 0.37 0.45 0.23 0.34 0.50 0.55 0.55 0.64 0.35

Panel B: Two Factor Model: CITR and Market

1 (Low ITR) 2 3 4 5 6 7 8 9 10 (High ITR) (10-1) Beta
βM 1.07 0.97 0.99 0.93 0.93 0.94 0.99 0.98 0.92 0.90 -0.17
βCITR -0.15 -0.05 -0.04 0.06 -0.15 -0.05 0.09 0.14 0.17 0.26 0.42

The table presents factor betas βk,CITR and βk,M for each idiosyncratic tail risk decile and the difference in factor
betas between the highest and lowest decile. CITR beta βk,CITR and market beta βk,M are estimated in stage one of
the Fama and MacBeth regression in (4.21) using the full sample from January 2001 to December 2016.

traded by intermediaries, and should negatively forecast market returns. Additionally, Gabaix

et al. (2006)’s economic model theorizes that volume tail risk is a proxy for idiosyncratic tail

risk, hence I create a common volume tail risk factor and test whether it is a risk factor that

prices the test assets above. Finally, if the idiosyncratic tail risk premium is caused by different

exposures to the CITR factor, then the long-short idiosyncratic tail risk portfolio is factor-

mimicking portfolio for CITR and can be seen as a traded CITR factor. I test whether this

traded CITR factor is priced in the test assets above. I find that the results of these tests are

consistent with my explanation.

4.5.1 Pricing Anomaly Portfolios

In my explanation of the ITR premium, CITR shocks are a risk factor and should be priced

in portfolios traded by intermediaries. In this section, I examine if the CITR factor can price

test assets with anomalous returns. Recent work by Lewellen, Nagel, and Shanken (2010)

advocates expanding the set of test assets beyond book-to-market. Motivated by their recom-

mendations, I focus my analysis on less known anomalies in which intermediaries are likely

to be the marginal investor. My test assets include portfolios independently double-sorted on

size and another asset characteristic, including operating profitability, investment, momentum,
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Table 4.9: Asset Pricing Tests on Characteristic Portfolios

Panel A: Size and Tail Risk Portfolios Panel B: Size and Characteristic Portfolios

25 ITR 25 VTR 25 OP 25 INV 25 MOM 25 IVOL ALL

(1) (2) (3) (4) (5) (6) (7)
Intercept 0.03 0.44 0.89 1.62 1.35 1.52 1.15
NW t-stat (0.08) (1.24) (2.34) (3.51) (2.88) (4.29) (3.54)
Shanken t-stat [0.05] [0.86] [2.10] [3.31] [2.26] [3.63] [2.95]
RM − R f 0.56 0.21 -0.20 -0.91 -0.61 -0.77 -0.43
NW t-stat (1.19) (0.47) (-0.37) (-1.56) (-1.03) (-1.54) (-0.90)
Shanken t-stat [0.92] [0.36] [-0.38] [-1.63] [-0.97] [-1.56] [-0.90]
CITR 1.05 1.05 0.70 0.97 1.01 0.89 0.84
NW t-stat (2.66) (2.18) (1.76) (2.27) (2.53) (2.23) (2.34)
Shanken t-stat [2.25] [1.81] [1.61] [1.83] [1.95] [1.80] [2.03]

% Adj. R2 67.49 50.16 25.08 45.07 43.92 35.17 26.89
% MAE 0.11 0.12 0.17 0.18 0.16 0.20 0.18
Months 192 192 192 192 192 192 192

This table presents asset pricing tests on double-sorted portfolios using the CITR and market two-factor model
from 2001 to 2016. In Panel A, the test assets are 25 portfolios conditionally sorted on size and idiosyncratic
tail risk or volume tail risk. Stocks are first grouped into size quintiles, then within each size quintile, stocks
are grouped by their ITR or VTR. In Panel B, test assets are 25 portfolios independently sorted by size and
the characteristic. Stocks are grouped by the intersection of 5 quintiles sorted on size and 5 quintiles sorted on
the characteristic. These anomaly portfolios are downloaded from from Kenneth French’s website and include
operating profitability, investment, momentum, and idiosyncratic volatility. The table reports the risk premia
estimates, R2, and mean absolute pricing errors in percentage terms, Newey-West t-statistics with one lag, and
Shanken t-statistics.

and idiosyncratic volatility from January 2001 to December 2016.27 Anomaly portfolios are

sorted by size to have more granular test assets for cross-sectional tests. All anomaly portfolios

are downloaded from Kenneth French’s website. Additionally, Lewellen, Nagel, and Shanken

(2010) advocates including portfolios sorted by exposures to the CITR factor in tests. Since

Section 4.4.6 shows that average returns for ITR and VTR sorted portfolios are largely driven

by their exposures to the CITR factor, I include portfolios conditionally double-sorted on size

then idiosyncratic tail risk and size then volume tail risk.28

Table 4.9 reports results for the CITR and market two-factor model. In each column, the

27In each month, stocks are sorted into 25 (5x5) groups based on their size and characteristic simultaneously, as
the intersection of 5 quintiles sorted on size and 5 quintiles sorted on the characteristic. Value-weighted portfolios
are formed in each grouping, and held for one month. See Kenneth French’s website for more details.

28In each month, stocks are sorted into quintile groupings based on their size. Then, within each size quintile,
stocks are sorted into idiosyncratic tail risk or volume tail risk quintiles, value-weighted portfolios are formed in
each grouping, and held for one month.



164Chapter 4. Can the Premium for Idiosyncratic TailRisk be Explained by Exposures to itsCommon Factor?

CITR risk price λCITR is positive and statistically significant at the 10% confidence level. The

magnitude of λCITRs are remarkably similar, ranging from 0.70% to 1.05%, and in line with the

tail risk decile long-short return of 0.66% in Table 4.7. The two-factor model explains a large

degree of the variation in average returns as indicated by the high adjusted R2s ranging from

25% for the portfolios sorted by size and operating profitability up to 67% for the portfolios

sorted by size and ITR. Likewise, pricing errors are relatively low, ranging from 0.11% for the

portfolios sorted by size and ITR to 0.2% for the portfolios sorted by size and idiosyncratic

volatility. In particular, the high R2s and low pricing errors for the tail risk portfolios in Panel

A confirm that the CITR factor explains most of the idiosyncratic tail risk and volume tail

risk premia. Column (7) reports the results for the all-in portfolio, which includes all 150 test

assets from Columns (1) to (6). The CITR risk price remains statistically and economically

significant. The cross-section standard deviation of CITR-betas across all 150 test assets is

0.19, hence a one standard deviation increase in an asset’s CITR-beta corresponds to a 2%

(0.19 × 0.84 × 12 = 2%) increase in its annual risk premia. Consistent with my risk-based

explanation, CITR shocks are a risk factor that prices anomaly portfolios traded by intermedi-

aries.

4.5.2 Is CITR Just a Proxy for Other Pricing Factors?

A large number of factors have been documented to explain the cross-section of expected equity

returns. This section demonstrates that the CITR factor’s pricing ability is not explained by

existing non-traded factors that have been documented in the literature.29 Using idiosyncratic

tail risk and volume tail risk portfolios as test assets, this section compares the CITR factor’s

pricing ability to existing liquidity, volatility, tail risk, and intermediary factors.

In Table 4.10, I compare the pricing power of the CITR factor relative to similar factors

29Because the CITR factor is non-traded and economically motivated, statistical models such as the Fama and
French three factor and five factor models are not useful benchmarks. Traded factors almost always outperform
economic factors due to measurement error in the latter (Cochrane (2009)). Hence, this section only compares the
CITR factor against other non-traded pricing factors.
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Table 4.10: Comparison with Existing Pricing Factors

Market CITR PS-Liqu. ICR LCT CIV KJ-MTR

(1) (2) (3) (4) (5) (6) (7)
Intercept -0.01 0.25 0.31 0.35 0.02 0.33 -0.01
NW t-stat (-0.04) (0.77) (0.98) (1.10) (0.04) (1.02) (-0.04)
Shanken t-stat [-0.03] [0.53] [0.65] [0.76] [0.03] [0.74] [-0.02]
RM − R f 0.66 0.36 0.30 0.25 0.55 0.21 0.59
NW t-stat (1.41) (0.81) (0.68) (0.56) (1.13) (0.49) (1.29)
Shanken t-stat [1.22] [0.62] [0.51] [0.43] [0.85] [0.38] [0.93]
CITR 1.15 1.19 0.93 0.88 0.81 1.23
NW t-stat (3.05) (3.01) (2.99) (2.59) (2.43) (3.18)
Shanken t-stat [2.46] [2.40] [2.35] [2.04] [2.10] [2.35]
Existing Factor -0.17 2.30 -4.36 -11.61 0.85
NW t-stat (-0.23) (2.34) (-2.26) (-2.45) (2.07)
Shanken t-stat [-0.17] [1.93] [-1.65] [-2.17] [1.36]

% Adj. R2 25.16 58.64 59.50 62.75 62.56 69.53 63.13
% MAE 0.16 0.12 0.12 0.11 0.11 0.10 0.11
Months 192 192 192 192 168 192 192

This table presents asset pricing tests using the CITR single-factor model, the CITR
and market two-factor model, and a three-factor model with CITR, the market, and an
existing factor at a monthly frequency from January 2001 to December 2016. The test
portfolios are the idiosyncratic tail risk deciles and volume tail risk deciles as well as
the 25 portfolios conditionally sorted on size and idiosyncratic tail risk and volume tail
risk from Table 4.9 for a total of 70 test portfolios. Existing factors include the liquidity
factor (PS-Liqu.), intermediary capital factor (ICR), leverage constraint tightness factor
(LCT), common idiosyncratic volatility factor (CIV), market tail risk factor (KJ-MTR).
The table reports the risk premium estimates, R2, and mean absolute pricing errors in
percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

in the literature by adding the existing factor to the CITR and market two-factor model. Fac-

tors considered include the liquidity factor (PS-Liqu.) from Pastor and Stambaugh (2003),

intermediary capital ratio factor (ICR) from He, Kelly, and Manela (2017), leverage constraint

tightness factor (LCT) from Boguth and Simutin (2018), common idiosyncratic volatility fac-

tor (CIV) from Herskovic et al. (2016), market tail risk factor (KJ-MTR) from Kelly and Jiang

(2014b) (defined as monthly changes in market tail risk). The test portfolios are the idiosyn-

cratic tail risk deciles and volume tail risk deciles from Table 4.7, and the 25 portfolios condi-

tionally sorted on size and idiosyncratic tail risk and volume tail risk from Table 4.9 for a total

of 70 portfolios. Column (1) indicates that the one-factor market model fails to price these

assets with a statistically insignificant price of risk and an R2 of 25.16%. Column (2) shows
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that adding the CITR factor increases the R2 to 58.64%. Columns (3) - (7) show that adding an

existing factor only slightly increases the R2. Adding the CIV factor in column (6) obtains the

highest R2 of 69.53%, which is consistent with the literature that demonstrates volatility and

tail risk contain separate information about expected returns (Andersen, Fusari, and Todorov

(2020)). Additionally, the CITR factor risk price is essentially unchanged by the inclusion of

any existing factor and stays statistically significant.

4.5.3 Pricing Sophisticated Asset Classes

In my explanation, the common idiosyncratic tail risk factor is correlated to the intermediary

marginal value of wealth. A natural test of my explanation is to evaluate whether the CITR

factor can price the sophisticated asset classes in which large intermediaries are the marginal

investor. I use the well-known asset returns from He, Kelly, and Manela (2017) as test assets.

The test assets are downloaded from Asaf Manela’s website, and include quarterly returns for

equities, US government and corporate bonds, sovereign bonds, options, credit default swaps,

commodities, and foreign exchange up to December 2012.

To be consistent with their main analysis, I conduct pricing tests at the quarterly frequency.

I construct quarterly CITR levels as the average monthly CITR within each quarter and define

the quarterly CITR factor as first differences in quarterly CITR levels. I then conduct a two-

stage Fama and MacBeth (1973) estimation procedure from January 2001 to December 2012

to estimate the CITR risk premium for each asset class. I analyze both the CITR single-factor

model and the CITR and market two-factor model.

Table 4.11 reports the pricing ability of the CITR factor for the asset classes investigated

in He, Kelly, and Manela (2017) from January 2001 to December 2012. Due to its correlation

with the intermediary marginal value of wealth, the CITR factor should have a positive risk

premium, which is what I find in every asset class for the single-factor model. In odd columns,

λCITR is positive and economically large. λCITR is also statistically significant for the options,

CDS, commodities, and foreign exchange test assets in columns (7), (9), (11), and (13), which
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Table 4.11: Asset Pricing Tests on Sophisticated Assets, Quarterly

FF25 Bond Sov Options CDS Commod FX All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Intercept 1.27 1.09 0.82 0.82 1.24 1.20 -3.16 -5.49 -0.28 -0.21 -0.09 0.34 -0.57 -1.30 0.12 0.28
NW t-stat 0.96 1.04 4.02 4.05 2.92 3.04 -4.08 -5.08 -5.09 -4.07 -0.07 0.37 -1.05 -2.25 0.30 0.97
Shanken t-stat 1.06 0.77 4.03 4.08 2.80 2.81 -1.86 -3.06 -3.67 -1.72 -0.07 0.30 -0.84 -1.47 0.35 0.78
RM − R f 0.71 1.35 1.70 5.55 10.09 0.99 9.35 0.95
NW t-stat 0.52 0.68 0.64 2.63 3.93 0.41 3.03 0.67
Shanken t-stat 0.37 0.89 0.62 2.22 2.86 0.42 2.59 0.67
CITR 0.19 0.18 0.56 0.61 0.49 0.44 2.00 -1.07 0.93 -1.16 0.75 0.79 1.24 0.86 0.51 0.75
NW t-stat 0.74 0.65 1.00 1.51 1.33 1.11 2.50 -1.96 2.21 -2.77 2.04 2.18 2.96 1.86 1.42 2.87
Shanken t-stat 0.65 0.59 1.39 1.30 1.52 1.17 1.45 -1.34 2.27 -1.74 1.57 1.63 2.77 1.75 1.35 2.48
% R2 5.21 5.28 63.37 64.03 72.90 72.97 88.61 95.07 42.83 73.64 26.53 29.88 20.08 37.26 29.91 34.55
% MAE 0.67 0.68 0.30 0.30 0.46 0.47 0.36 0.27 0.19 0.18 1.42 1.41 0.71 0.65 0.92 0.90
Quarters 48 48 48 48 41 41 44 44 47 47 48 48 36 36 48 48

This table presents asset pricing tests using the CITR single-factor model and the CITR and market two-factor
model at a quarterly frequency from January 2001 to December 2012. Quarterly CITR is defined as the
mean of monthly CITRs within the quarter, and quarterly CITR shocks are defined as quarterly changes in
CITR. Test assets are the portfolios in He, Kelly, and Manela (2017) downloaded from Asaf Manela’s website.
Assets include equities, US government and corporate bonds, sovereign bonds, options, credit default swaps,
commodities, and foreign exchange. The table reports the risk premium estimates, R2, and mean absolute
pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

are highly sophisticated assets and are most likely to be traded by large intermediaries. How-

ever, for the two-factor model, λCITR is negative for options and CDS in columns (8) and (10),

suggesting that some of the CITR factor’s ability to price these assets may be due to its corre-

lation with the market factor. Columns (15) and (16) report results for the one- and two-factor

models using all test assets, where λCITR is positive in both columns and statistically significant

in the two-factor model with a risk price of 0.75% (t-stat of 2.87). Furthermore, the two-factor

model achieves an R2 of 34.55% when pricing all assets in Column (16). λCITR is not statisti-

cally significant for equities, bonds, and sovereign bonds in columns (1) to (6), which is likely

because these assets are frequently traded by less sophisticated investors, hence intermediaries

may not be the marginal investor. In summary, there is some evidence that the CITR factor

is priced in highly sophisticated asset classes, further supporting the factor’s correlation to the

intermediary marginal value of wealth.
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4.5.4 Duality of the Common Idiosyncratic Tail Risk and Common Vol-

ume Tail Risk Factors

In my explanation, volume tail risk is a proxy for idiosyncratic tail risk. Section 4.3 presents

new evidence of duality in idiosyncratic tail risk and volume tail risk, showing that stocks with

higher volume tail risks earn higher average returns, this premium is highly persistent, and that

volume tail risk is cross-sectionally correlated to idiosyncratic tail risk. A further test of my

explanation is if volume tail risk has a factor structure and if the common volume tail risk factor

has similar empirical asset pricing results as the CITR factor, which is exactly what I show in

this section, illustrating the duality of the common idiosyncratic tail risk and common volume

tail risk factors.

Analogous to Section 4.4 and Equation (4.20), I test the commonality of volume tail risk

by regressing each firm’s VTR on the mean VTR, denoted as the common volume tail risk

(CVTR). Volume tail risk has a stronger factor structure than idiosyncratic tail risk, where

CVTR explains 25.18% of the monthly variation in firm-level volume tail risk and 46.27% of

the annual variation in firm-level volume tail risk.

In my explanation, volume tail risk is driven by large intermediary trades, and innovations

in CVTR should be driven by innovations in intermediary funding. I define the CVTR factor

4CVTR as 3-month differences in CVTR levels, that is 4CVTRt = CVTRt −CVTRt−3. Figure

4.6 plots the CVTR and CITR factors, showing that they are highly correlated and procyclical.

The common volume tail risk factor has a monthly pair-wise correlation of 0.46 (t-stat of 7.18)

with the common idiosyncratic tail risk factor. While idiosyncratic tail risk and volume tail

risk may be cross-sectionally correlated due to other characteristics like size or idiosyncratic

volatility, the high correlation between CITR and CVTR is not automatic and there is no me-

chanical reason why the two factors should be correlated over time. Furthermore, the CVTR

factor has a monthly pair-wise correlation of 0.35 (t-stat of 5.19) with the intermediary capital

factor of He, Kelly, and Manela (2017). These empirical findings strongly support Gabaix et

al. (2006)’s hypothesis that both idiosyncratic tail risk and volume tail risk are caused by large
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Figure 4.6: Common Idiosyncratic Tail Risk and Volume Tail Risk Factors

The common idiosyncratic tail risk factor and the common volume tail risk factor. Both time-series are standard-
ized to zero mean and unit variance. The monthly sample is from January 2001 to December 2016. CITR is the
mean monthly idiosyncratic tail risk and common volume tail risk is the mean monthly volume tail risk.

intermediary trades and my explanation that the CITR and CVTR factors are dually driven by

shocks to intermediary funding.

Next, I test whether shocks to CVTR is a priced risk factor by analyzing portfolios with

different exposures to CVTR using the same methodology as in Section 4.4.5. For each month

from January 2001 to December 2016, I estimate each stock’s CVTR-beta by regressing the

stock’s monthly excess return on the CVTR factor using a 36-month trailing window. I sort

stocks in each month into quintiles based on their CVTR-betas. Stocks in quintile 1 have the
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Table 4.12: Excess Returns and Alphas of Portfolios Sorted on CVTR-betas

1 (Low) 2 3 4 5 (High) (5-1)

Panel A: Average CVTR-beta
Average CVTR-beta -0.54 0.11 0.47 0.85 1.67

Panel B: Univariate Sort on CVTR-beta (Equal-Weighted)
Excess Return 0.52 0.71 0.78 0.84 0.84 0.32
t-stat (1.24) (1.82) (2.04) (1.93) (1.46) (1.07)
FFC4 alpha 0.57 0.75 0.83 0.89 0.88 0.30
FFC4 t-stat (1.40) (2.05) (2.26) (2.18) (1.71) (1.10)
FF5 alpha 0.78 0.86 0.92 0.95 0.92 0.14
FF5 t-stat (1.94) (2.22) (2.35) (2.23) (1.75) (0.56)

Panel C: Univariate Sort on CVTR-beta (Value-Weighted)
Excess Return 0.07 0.38 0.60 0.52 0.85 0.77
t-stat (0.17) (1.21) (1.83) (1.43) (1.66) (2.25)
FFC4 alpha 0.10 0.41 0.66 0.56 0.91 0.80
FFC4 t-stat (0.27) (1.40) (2.10) (1.65) (1.95) (2.21)
FF5 alpha 0.27 0.51 0.76 0.65 0.98 0.72
FF5 t-stat (0.74) (1.71) (2.34) (1.92) (2.09) (2.09)

The table reports monthly average CVTR-beta, excess returns, and alphas for portfolios
sorted on CVTR-betas between January 2001 to December 2016. Panel A reports the av-
erage CVTR-beta for portfolios sorted on CVTR-beta. Panel B reports equally-weighted
excess returns and alphas sorted on CVTR-beta. Panel C reports value-weighted excess re-
turns and alphas sorted on CVTR-beta.

least exposure to CVTR and stocks in quintile 5 have the most CVTR exposure.

Table 4.12 reports results for the univariate sort. Panel A shows that CVTR-betas range

from -0.54 to 1.67, which is slightly less disperse than CITR-betas. Panel B shows that for the

equal-weighted results, the long-short portfolio return is not statistically significant, but still has

a positive average return of 0.32%. In comparison, the CITR-beta long-short portfolio has a

similar equal-weighted return of 0.40%. Panel C shows that for the value-weighted results, the

long-short portfolio return is 0.77% (t-stat of 2.25), which is higher than the 0.62% for CITR-

beta. Both equal-weighted and value-weighted returns and alphas are generally increasing in

CVTR-betas. These results are consistent with my explanation that shocks to CVTR are a

priced risk factor, are driven by shocks in intermediary funding, and has a pricing duality with

CITR.
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Table 4.13: Asset Pricing Tests on Anomaly Portfolios using the CVTR factor

Panel A: Tail Risk Deciles Panel B: Size & Tail Risk Panel C: Size & Characteristic

ITR Dec. VTR Dec. 25 ITR 25 VTR 25 OP 25 INV 25 MOM 25 IVOL ALL-DS

Intercept 1.05 1.58 -0.47 0.03 0.79 1.61 0.94 1.38 0.86
NW t-stat (1.02) (1.90) (-1.16) (0.08) (2.08) (3.52) (2.19) (4.18) (2.92)
Shanken t-stat [0.71] [1.23] [-0.86] [0.06] [1.70] [3.23] [1.72] [2.84] [2.41]
RM − R f -0.59 -1.08 1.05 0.64 -0.07 -0.88 -0.21 -0.72 -0.13
NW t-stat (-0.53) (-1.15) (1.97) (1.33) (-0.15) (-1.55) (-0.35) (-1.44) (-0.27)
Shanken t-stat [-0.38] [-0.79] [1.62] [1.09] [-0.13] [-1.56] [-0.34] [-1.29] [-0.27]
CVTR 1.39 2.02 1.15 1.08 0.88 1.50 1.48 2.26 0.86
NW t-stat (1.45) (2.51) (2.19) (2.26) (1.20) (2.21) (2.07) (2.97) (1.75)
Shanken t-stat [1.11] [1.64] [2.14] [1.97] [1.30] [2.02] [1.67] [2.36] [1.83]

% R2 47.75 80.80 50.77 29.82 7.04 30.00 28.62 40.85 8.47
% MAE 0.11 0.06 0.14 0.14 0.19 0.20 0.18 0.20 0.21
Months 192 192 192 192 192 192 192 192 192

This table presents asset pricing tests on double-sorted portfolios using the CVTR and market two-factor model from 2001 to
2016. In Panel A, the test assets are the decile portfolios sorted on idiosyncratic tail risk or volume tail risk examined in Table
4.7. In Panel B, the test assets are 25 portfolios conditionally sorted on size and idiosyncratic tail risk or volume tail risk. Stocks
are first grouped into size quintiles, then within each size quintile, stocks are grouped by their ITR or VTR. In Panel C, test
assets are 25 portfolios independently sorted by size and the characteristic. Stocks are grouped by the intersection of 5 quintiles
sorted on size and 5 quintiles sorted on the characteristic. These anomaly portfolios are downloaded from from Kenneth French’s
website and include operating profitability, investment, momentum, and idiosyncratic volatility. The table reports the risk premia
estimates, R2, and mean absolute pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

Next, Table 4.13 reports the ability of the CVTR and market two-factor model to price the

test assets in Sections 4.4.6 and 4.5.1. CVTR explains most of the VTR deciles with an R2 of

81%, and has some ability to price the idiosyncratic tail risk deciles with an R2 of 48%. The

VTR risk price λCVTR is positive for all test assets and statistically significant for many. Column

(9) reports results using all double-sorted portfolios as test assets, where the CVTR factor has

a risk price of 0.86% (t-stat of 1.75). The magnitude of the CVTR risk prices λCVTR are in line

with the magnitude of the CITR risk prices λCITR, further supporting the duality between risk

factors.

Finally, Table 4.14 reports the pricing ability of the CVTR single-factor and the CVTR

and market two-factor models on the sophisticated asset classes investigated in He, Kelly,

and Manela (2017) from January 2001 to December 2012 at the quarterly frequency. In each

asset class, the CVTR risk price is positive for both the single-factor and two-factor models.
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Table 4.14: Asset Pricing Tests on Sophisticated Assets using the CVTR factor, Quarterly

FF25 Bond Sov Options CDS Commod FX All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Intercept 0.60 1.11 0.77 0.83 0.94 0.91 -2.71 8.06 -0.32 -0.20 -0.52 -0.01 -1.78 -1.77 0.03 0.00
NW t-stat 0.50 0.94 4.11 4.88 2.72 2.46 -3.58 2.08 -5.31 -5.63 -0.50 -0.01 -2.89 -2.91 0.12 0.44
Shanken t-stat 0.57 0.67 3.99 4.83 2.14 1.81 -2.57 0.54 -3.89 -2.22 -0.55 -0.01 -1.34 -1.44 0.15 0.41
RM − R f 0.56 1.55 1.50 -9.38 -0.75 -0.17 7.92 0.86
NW t-stat 0.39 0.81 0.60 -1.66 -0.28 -0.07 2.53 0.62
Shanken t-stat 0.26 0.72 0.52 -0.55 -0.24 -0.08 1.52 0.60
VITR 0.48 0.61 0.72 1.06 0.99 1.22 1.41 6.35 1.56 3.04 0.77 0.86 3.52 3.27 0.62 1.05
NW t-stat 1.00 1.30 0.99 1.47 1.32 1.00 2.57 3.20 2.64 2.97 1.85 2.25 4.00 4.00 1.23 2.62
Shanken t-stat 0.96 1.22 1.47 1.27 1.44 0.95 2.45 0.79 2.84 2.33 1.67 1.86 2.29 1.82 1.23 2.07
% R2 9.16 10.23 65.14 61.98 72.31 72.42 95.21 98.34 67.11 71.81 23.27 34.05 45.56 45.74 27.39 37.49
% MAE 0.66 0.65 0.29 0.30 0.50 0.49 0.25 0.15 0.19 0.16 1.48 1.38 0.66 0.65 0.93 0.85
Months 48 48 48 44 41 41 44 44 47 47 48 48 36 36 48 48

This table presents asset pricing tests using the CVTR single-factor model and the CVTR and market two-
factor model at a quarterly frequency from January 2001 to December 2012. Quarterly CVTR is defined as the
mean of monthly CVTRs within the quarter, and quarterly CVTR shocks are defined as quarterly changes in
CVTR. Test assets are the portfolios in He, Kelly, and Manela (2017) downloaded from Asaf Manela’s website.
Assets include equities, US government and corporate bonds, sovereign bonds, options, credit default swaps,
commodities, and foreign exchange. The table reports the risk premium estimates, R2, and mean absolute
pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

Analogous to the CITR results, the CVTR risk price is statistically significant for options, CDS,

commodities, and foreign exchange while not being statistically significant for equities, bonds,

and sovereign bonds. Using all assets in column (16), CVTR has a risk price of 1.05 (t-stat of

2.62). Furthermore, for each asset class the R2 and pricing errors are similar in magnitude for

the CITR and CVTR results. The duality of CITR and CVTR in pricing sophisticated assets

further links these factors to intermediaries.

This section presents new results on the duality of the tail distributions of idiosyncratic re-

turns and trading volume, estimated on two distinct sources of data. Like idiosyncratic tail risk,

volume tail risk follows a factor structure and shocks to common volume tail risk is a priced

risk factor. These results are not automatic and strongly support the hypothesis in this paper

that shocks to intermediary funding drive the time-series variation in common idiosyncratic tail

risk and common volume tail risk.

4.5.5 Pricing Assets using a Traded CITR Factor

Section 4.4.6 demonstrates that the idiosyncratic tail risk premium is explained by exposures

to the CITR factor. If the idiosyncratic tail risk deciles are primarily driven by the CITR factor,
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then the ITR long-short portfolio itself can be used as a traded factor that mimics the non-traded

CITR factor. I define the traded CITR factor as the value-weighted return on a portfolio that

goes long the highest idiosyncratic tail risk decile and shorts the lowest idiosyncratic tail risk

decile.30 The traded CITR factor should price assets better than the non-traded CITR factor,

due to the measurement error in the latter.31

This section investigates the ability of the traded CITR factor to price assets. According to

my risk-based explanation, the traded CITR factor is correlated to the intermediary marginal

value of wealth, and should price assets in which intermediaries are the marginal investor. I test

this hypothesis by evaluating the pricing of the traded CITR factor on the previous anomalies

and the sophisticated assets classes in He, Kelly, and Manela (2017).

Table 4.15 reports the ability of the traded CITR and the market two-factor model to price

the same portfolios in Sections 4.4.6 and 4.5.1. The traded CITR factor prices the test assets

similarly to the non-traded CITR factor, validating that it is an appropriate factor-mimicking

portfolio. In each column, the traded CITR factor risk price is statistically significant and

economically large. Since the traded CITR factor is a traded portfolio, its risk price can be

interpreted as a monthly excess return. Estimates of the traded CITR factor risk premium is

economically large, ranging from 0.63% for the idiosyncratic tail risk deciles to 1.80% for the

portfolios sorted on idiosyncratic volatility. Column (9) reports results using all double-sorted

portfolios as test assets, where traded CITR factor has a risk price of 0.76% (t-stat of 2.5), R2

of 71.74%, and a pricing error of 0.09. This traded CITR factor risk price is in line with the

long-short return of 0.62% for quintile portfolios sorted on CITR-betas in Table 4.6.

Table 4.16 reports the pricing ability of the traded CITR factor for the asset classes inves-

30Motivated by to Fama and French (1993), I use a characteristic-managed portfolio to create the traded CITR
factor. The finance literature on characteristic-managed portfolios include Feng, Giglio, and Xiu (2019), Giglio
and Xiu (2018), Gu, Kelly, and Xiu (2020b), Kelly, Pruitt, and Su (2019b), and Kozak, Nagel, and Santosh (2020).

31Economically motivated macro variables, such as CITR, will always have measurement error. Due to mea-
surement error, the factor-mimicking portfolio will always price assets better than an estimate of the underlying
factor that uses measured macroeconomic variables Cochrane (2009). Additionally, the traded CITR factor can
be a factor-mimicking portfolio for CITR, since they both are both driven by intermediary funding. Using the id-
iosyncratic tail risk premium may be statistically preferred to the projection of non-traded CITR on stocks, since
it avoids the errors-in-variables bias and variance issues associated with estimating factor loadings plagued by
many other factor-mimicking approaches.
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Table 4.15: Asset Pricing Tests on Anomaly Portfolios using the Traded CITR factor

Panel A: Tail Risk Deciles Panel B: Size & Tail Risk Panel C: Size & Characteristic

ITR Dec. VTR Dec. 25 ITR 25 VTR 25 OP 25 INV 25 MOM 25 IVOL ALL-DS

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.35 2.81 -0.03 0.54 0.46 0.73 0.44 0.58 -0.28
NW t-stat (0.35) (3.71) (-0.10) (1.80) (1.39) (2.07) (1.02) (2.11) (-0.72)
Shanken t-stat [0.30] [2.92] [-0.55] [-0.07] [1.06] [1.70] [0.82] [1.62] [1.27]
RM − R f 0.12 -2.39 0.55 -0.03 0.06 -0.21 0.02 -0.13 0.78
NW t-stat (0.12) (-2.81) (1.19) (-0.05) (0.11) (-0.40) (0.03) (-0.25) (1.57)
Shanken t-stat [0.10] [-2.31] [1.32] [0.98] [0.11] [-0.39] [0.03] [-0.26] [0.08]
Traded CITR 0.63 1.44 1.05 1.50 1.37 1.48 1.79 1.80 0.76
NW t-stat (2.74) (2.90) (2.38) (3.46) (2.65) (3.09) (3.16) (3.82) (2.50)
Shanken t-stat [2.50] [2.46] [2.17] [2.15] [2.67] [2.96] [2.46] [3.31] [3.06]

% Adj. R2 80.50 77.03 73.43 71.94 75.54 82.16 66.87 88.75 71.74
% MAE 0.06 0.08 0.09 0.11 0.09 0.10 0.12 0.08 0.09
Months 192 192 192 192 192 192 192 192 192

This table presents asset pricing tests on double-sorted portfolios using the traded CITR and market two-factor model from 2001
to 2016. In Panel A, the test assets are the decile portfolios sorted on idiosyncratic tail risk or volume tail risk examined in Table
4.7. In Panel B, the test assets are 25 portfolios conditionally sorted on size and idiosyncratic tail risk or volume tail risk. Stocks
are first grouped into size quintiles, then within each size quintile, stocks are grouped by their ITR or VTR. In Panel C, test
assets are 25 portfolios independently sorted by size and the characteristic. Stocks are grouped by the intersection of 5 quintiles
sorted on size and 5 quintiles sorted on the characteristic. These anomaly portfolios are downloaded from from Kenneth French’s
website and include operating profitability, investment, momentum, and idiosyncratic volatility. The table reports the risk premia
estimates, R2, and mean absolute pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.

tigated in He, Kelly, and Manela (2017) from January 2001 to December 2012 at the monthly

frequency. In each asset class except for sovereign bonds, the traded CITR factor risk price

is positive, economically large, and statistically significant at the 10% level. This is strong

evidence that supports the link between the traded CITR factor and the intermediary marginal

value of wealth. Column (16) reports the two-factor model results using all test assets. The

traded CITR factor risk premium across all the asset classes is 1.80% and statistically signifi-

cant at the 1% level. The two-factor model provides the best fit for options with an R2 of 95%

and an R2 of 29.74% in Column (16) using all asset classes.

The results in this section show that the traded CITR factor, defined as the long-short ITR

portfolio, has similar pricing results as the non-traded CITR factor, supporting my explanation

that the idiosyncratic tail risk premium is driven by the CITR factor. Furthermore, if the ITR
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Table 4.16: Tests on HKM Portfolios using CITR Factor-Mimicking Portfolio, Monthly

FF25 Bond Sov Options CDS Commod FX All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Intercept 0.61 0.16 0.24 0.22 0.50 0.29 5.93 0.67 0.00 -0.10 0.38 0.27 0.06 -0.66 0.35 0.15
NW t-stat 1.09 0.35 3.63 3.45 2.00 1.63 1.82 1.09 -0.02 -5.08 0.90 0.98 0.27 -2.97 1.43 1.48
Shanken t-stat 1.26 0.28 2.88 3.17 1.65 1.40 0.36 0.42 -0.01 -2.53 0.95 0.87 0.31 -2.11 1.68 1.46
RM − R f 0.14 0.25 1.53 -0.46 -0.03 -0.09 2.73 0.03
NW t-stat 0.21 0.33 1.64 -0.56 -0.03 -0.11 2.28 0.06
Shanken t-stat 0.20 0.57 1.65 -0.28 -0.02 -0.12 1.88 0.07
Tr. CITR 1.19 1.15 4.11 2.19 -5.11 -2.26 27.41 9.44 12.94 7.54 1.60 1.66 2.61 3.01 1.53 1.80
NW t-stat 1.72 1.64 2.43 1.77 -2.06 -1.73 2.03 2.93 4.73 4.65 1.87 1.87 1.95 2.34 2.69 3.44
Shanken t-stat 2.09 2.00 2.33 2.19 -1.32 -1.21 0.41 1.30 1.46 2.36 1.47 1.49 1.89 1.90 2.36 3.01

% R2 45.01 48.49 26.05 69.79 64.00 74.69 88.67 95.63 59.82 81.71 12.25 13.12 10.51 34.93 16.36 29.74
% MAE 0.17 0.16 0.14 0.08 0.15 0.14 0.14 0.09 0.09 0.06 0.56 0.55 0.25 0.23 0.35 0.29
Months 144 144 144 144 124 124 133 133 143 143 144 144 109 109 144 144

This table presents asset pricing tests using the traded CITR single-factor model and the traded CITR and market
two-factor model at a monthly frequency from January 2001 to December 2012. Traded CITR is defined as
the value-weighted return on a portfolio that goes long the highest idiosyncratic tail risk decile and shorts the
lowest idiosyncratic tail risk decile. Test assets are the portfolios in He, Kelly, and Manela (2017) downloaded
from Asaf Manela’s website. Assets include equities, US government and corporate bonds, sovereign bonds,
options, credit default swaps, commodities, and foreign exchange. The table reports the risk premium estimates,
R2, and mean absolute pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken
t-statistics.

and VTR premia are both driven by shocks to the intermediary marginal value of wealth, then

the traded VTR factor, defined as the VTR long-short portfolio, should have similar pricing

abilities as the traded CITR factor, which is what I find in the data. Section C.4.4 investigates

the pricing ability of traded VTR to price anomalies and sophisticated assets. Tables C.10

and C.11 show that traded VTR has nearly the same pricing ability as the traded CITR factor,

providing further support for the empirical duality between ITR and VTR and their risk premia.

4.5.6 Forecasting the Equity Market Premium

A common prediction of intermediary asset pricing models is that expected returns are a func-

tion of lagged state variables that capture financial sector distress. In my explanation, CITR is

negatively related to the shadow cost of capital for intermediaries, implying it should negatively

forecast the equity market risk premium. I test this hypothesis using a monthly time-series re-

gression of market returns on CITR. Denote r[t,t+h] as the CRSP value-weighted return from

time t to t + h, where time t is measured in months. The return regression is

r[t,t+h] = ah + bhCITRt + chXt + εt,t+h, t = 1, 2, ...,T − h, (4.23)



176Chapter 4. Can the Premium for Idiosyncratic TailRisk be Explained by Exposures to itsCommon Factor?

Table 4.17: Equity Market Premium Time-Series Predictability

Horizon 1 4 6 8 12 16 20 24

Panel A: Univariate Regression
CITR -9.56 -7.24 -7.09 -5.79 -5.31 -4.81 -4.09 -3.65
Hodrick t-stat (-2.02) (-2.05) (-2.31) (-2.20) (-2.36) (-2.01) (-1.85) (-2.05)

Intercept 4.28 4.87 4.99 5.12 5.40 5.68 6.05 6.47
Hodrick t-stat (1.17) (1.35) (1.37) (1.40) (1.49) (1.57) (1.69) (1.87)
Adj. R2 3.03 6.78 9.02 7.75 9.83 10.86 9.57 8.72

Panel B: Fama French Carhart Regression
CITR -8.48 -6.57 -5.97 -5.17 -5.12 -4.79 -4.01 -3.39
Hodrick t-stat (-1.85) (-1.93) (-2.03) (-1.99) (-2.26) (-2.03) (-1.84) (-1.96)

Intercept 4.32 5.14 5.56 5.47 5.62 5.69 6.08 6.55
Hodrick t-stat (1.09) (1.37) (1.49) (1.49) (1.53) (1.55) (1.67) (1.86)
Market 1.88 0.62 0.32 0.25 0.03 0.17 0.13 0.05
Hodrick t-stat (1.29) (0.72) (0.44) (0.40) (0.06) (0.40) (0.34) (0.15)
SMB -2.08 -1.18 -1.30 -0.82 -0.32 -0.16 -0.23 -0.09
Hodrick t-stat (-1.27) (-1.41) (-1.95) (-1.37) (-0.73) (-0.47) (-0.76) (-0.34)
HML -0.38 -0.25 -0.81 -0.40 -0.06 0.08 0.07 -0.22
Hodrick t-stat (-0.19) (-0.28) (-1.26) (-0.88) (-0.17) (0.28) (0.27) (-0.90)
UMD -0.15 -0.67 -0.74 -0.70 -0.56 -0.26 -0.27 -0.24
Hodrick t-stat (-0.14) (-1.54) (-2.10) (-2.28) (-2.32) (-1.21) (-1.29) (-1.34)
% Adj. R2 3.97 9.08 13.42 11.10 11.27 10.49 9.31 8.18

This table shows the results of regression (14) for a horizon of 1 - 24 months. The top panel
is a regression of returns on only CITR and the bottom panel is a regression of returns on
CITR and the Fama French Carhart factors. The first row in each panel shows the regression
coefficient for a one standard deviation increase in CITR. The second row shows the t-statistic
calculated using Hodrick standard errors. The third row shows the adjusted-R2.

where CITRt is standardized to have zero mean and unit variance, Xt refers to other explanatory

variables, and the horizon ranges from h = 1 (one month) to h = 24 (two years). I report t-

statistics calculated using Hodrick (1992) standard errors to account for the overlapping returns

when h > 1.32

Panel A in Table 4.17 presents the regression results with no control variables. A one stan-

dard deviation increase in CITR results in a decrease in future returns of 9.6%, 5.3%, 3.7% at

the 1 month, 1 year, and 2 year horizons. The respective t-statistics are all significant at the

32Ang and Bekaert (2007) demonstrate through simulation that Hodrick (1992)’s standard error correction
provide the most conservative test statistics relative to other commonly used procedures. I also find that Hodrick’s
correction produces more conservative t-statistics than those calculated using Newey and West (1987b) standard
errors lag length equal to 2 × h.
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95% confidence level. Panel B in Table 4.17 presents the results for the regression controlling

for Fama-French-Carhart factors. The coefficients remain economically and statistically signif-

icant at the 10% confidence level. The regression R2s are also relatively high, increasing from

3% at the 1-month horizon up to 11% at the 16-month horizon. These results further support

the hypothesis that CITR is a priced risk factor and is driven by intermediary funding. The

results are inconsistent with the fire-sale or labour income risk explanation of idiosyncratic tail

risk, in which a high average ITR should predict positive average returns.

4.6 Conclusion

The idiosyncratic tail risk premium is a significant recent discovery in the asset pricing litera-

ture. Savor (2012) and Jiang and Zhu (2017) interpret the idiosyncratic tail risk as news shocks,

and argues its premium is driven by under-reaction to firm-specific news. Begin, Dorion, and

Gauthier (2019) and Kapadia and Zekhnini (2019) argue that the premium is caused by the

inability to diversify and persists due to limits to arbitrage.

My paper offers a risk-based explanation for the idiosyncratic tail risk premium. I show that

idiosyncratic tail risk is driven by intermediary funding and the common idiosyncratic tail risk

factor is correlated to the intermediary marginal value of wealth. Stocks with high idiosyncratic

tail risk also have high exposures to the common idiosyncratic tail risk (CITR) factor, earning

a risk premium due to their low returns when intermediary constraints tighten.

I test my explanation using a new measure of idiosyncratic tail risk. First, I show that

stocks with high idiosyncratic tail risk earn higher average returns that persists over years.

Second, idiosyncratic tail risk has a strong firm-level correlation to volume tail risk and in-

termediary trading volume as a percentage of total trading volume. Third, idiosyncratic tail

risk follows a strong factor structure, and the common idiosyncratic tail risk factor is procycli-

cal and correlated to existing intermediary factors. Fourth, the common idiosyncratic tail risk

factor explains cross-sectional differences in average returns, including the idiosyncratic tail
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risk premium. I confirm that high (low) idiosyncratic tail risk portfolios have high (low) ex-

posures to the common idiosyncratic tail risk factor, and that the difference can explain most

of the premium. Fifth, the common idiosyncratic tail risk factor is priced in other anomalies

and sophisticated assets, and forecasts the equity market premium. Sixth, the idiosyncratic

tail risk long-short portfolio is a factor-mimicking portfolio for the CITR factor and is priced

in anomalies and sophisticated assets. Finally, I document that these asset pricing results are

similar when using volume tail risk in the place of idiosyncratic tail risk. Volume tail risk earns

a persistent premium and exhibits commonality that’s correlated to intermediary factors. The

common volume tail risk factor is also priced in anomaly portfolios and sophisticated assets.

This duality between idiosyncratic tail risk and volume tail risk in asset pricing provides new

empirical evidence for the intermediary hypothesis of idiosyncratic tail risk from Gabaix et al.

(2006).

Some of these results allow me to distinguish my hypothesis from leading alternative expla-

nations of the idiosyncratic tail risk premium. Savor (2012) and Jiang and Zhu (2017) propose

behavioral explanations for the premium based on short-term under-reaction to news shocks

caused by limited investor inattention. Their short-term explanation is inconsistent with my

finding that the idiosyncratic tail risk premium is persistent. Additionally, if idiosyncratic tail

risk were only caused by news shocks, then it would not exhibit such a strong factor structure.

Begin, Dorion, and Gauthier (2019) and Kapadia and Zekhnini (2019) propose that the pre-

mium is caused by the inability to hedge idiosyncratic tail risk in a diversified portfolio, and

that the premium persists due to limits to arbitrage. This explanation is inconsistent with my

finding that the premium can be explained by differences in exposure to the common idiosyn-

cratic tail risk factor.

Finally, my explanation and empirical findings support the large intermediary hypothesis

of idiosyncratic tail risk and volume tail risk by Gabaix et al. (2006). Their economic model

assumes intermediary funding is constant, while my explanation allows intermediary funding

to change, which provides a stylized framework linking intermediaries, asset prices, and the
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tail distributions of returns and trading volume.
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Appendix A

Appendices for Chapter 2

A.1 Regulatory Calculation Details

This section provides additional technical details on our regulatory calculations for Basel 3.

We discuss portfolio formation, dynamic model estimation, stressed periods, and calculation

of the adjustment ratio ES F,C/ES R,C.

A.1.1 Portfolio Formation

Under Basel 3, each trading desk is required to calculate 3 liquidity-adjusted ES measures

(ES R,S , ES F,C, ES R,C) for 21 possible liquidity horizons across the 5 risk factors, totaling

63 daily ES calculations. To implement this efficiently, we calculate the ES of each portfolio

using univariate models rather than multivariate models, since they have been shown to perform

equally well (Fortin, Simonato, and Dionne (2018)). Each portfolio is formed by taking the

equal-weighted mean return of assets within the portfolio (denoted rPort), then taking the log

transformation xPort = log(1 + rPort). We use the log returns from the univariate portfolio to

estimate models and conduct forecasts. Finally, we weigh the forecasts by the portfolio weight

relative to the number of assets in the representative portfolio. For example, for the 20-day

liquidity horizon portfolio for equities in 2010, the weight used for the data used in Liu and
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Stentoft (2020b) would be 2/16 (the Russel 2000 and the CBOE Putwrite index divided by 16

total indexes).

A.1.2 Dynamic Model Estimation

We use a 2,000 day rolling window to estimate the GARCH and FZ models. However, some

portfolios begin after 1989 and we want to estimate their risk measures without look-ahead

bias. To calculate risk measures for those portfolios during the first 2,000 days, we use param-

eters estimated from the first 2,000 days of the representative portfolio, then filter using returns

from the actual portfolio. For example, suppose we are estimating FHS for the LH 120 portfo-

lio, which begins in 02/2001 in Liu and Stentoft (2020b). We first estimate GARCH parameters

and ĉFHS
1,p and ĉFHS

2,p using returns from the representative portfolio from 01/89 to 12/96. Then,

from 02/2001 to 01/2009, we calculate risk measures using the representative portfolio param-

eters, but update σt using returns from LH 120. After 02/2009, we use parameters estimated

from LH 120 returns using a rolling-window as usual. We find this method provides good risk

estimates without any look-ahead bias.

A.1.3 Stressed Period

The BCBS sets the estimation period for Stressed VaR and ES as 12-months to ensure nonpara-

metric models like HS are sufficiently stressed. Setting a fixed period for HS prevents banks

from “gaming” the regulation by stretching the estimation window and lowering Stressed VaR

or ES. However, this choice of estimation period severely limits the class of available models,

since dynamic models require a longer estimation period. To allow for dynamic models, we

reinterpret Basel’s stress period to be the estimation period that produces the maximum risk

measure. This is justified, since even with the longer estimation window most dynamic models

have a higher Stressed VaR and ES relative to 12-month HS.

While the stressed period is identified as “the 12-month period of stress over the observation

horizon in which the portfolio experiences the largest loss”, the exact choice of stressed period
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is subject to the regulatory supervisor’s judgment (BCBS (2019), 33.7-33.8). For Basel 2.5,

we find the stressed period each day by searching for the maximum historical (up to that day)

representative portfolio 10-day VaR at the 99% confidence level for each model. Analogously

for Basel 3, we find the stressed period each day by searching for the maximum historical (up

to that day) representative portfolio 10-day ES at the 97.5% confidence level for each model.

Then, we use that same stressed period to calculate the liquidity horizons portfolios across the

5 risk factors. The stressed period is stable and only changes during periods of high volatility.

Across all models, the Basel 3 stressed periods are the 1998 Asian crisis, the 2001 dot-com

bust, and the 2008 financial crisis. As a robustness check, we also calculate the stressed period

based on the liquidity-adjusted ES and find that the stressed periods are the same and the capital

requirements are nearly identical.

A.1.4 Reduced Set Adjustment Ratio

Due to data limitations, BCBS allows banks to use the ratio ES F,C/ES R,C with a floor of 1,

to adjust the reduced set Stressed ES to the full set. The main stressed periods are the 1998

Asian crisis, the 2001 dot-com bust, and the 2008 financial crisis. Between 1998 to 2001, we

calculate the reduced set ES R,C using only indexes that begin before 09/1998, while the full set

ES F,C contains all available indexes. We follow the same procedure between 2001 and 2008

by calculating the reduced set ES R,C using only indexes that begin before 9/2001 and the full

set ES F,C containing all available indexes. Finally, after the 2008 financial crisis, the reduced

set is equal to the full set and ES F,C/ES R,C = 1.

A.2 Threshold values for EVT models

In this section we conduct an extensive Monte Carlo study with the objective of determining

appropriate threshold values for the GPD and Hill models. When choosing the threshold, the

problem faced is analogous to the classic Bias-Variance trade-off: a threshold that is too low
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violates the asymptotic basis of the model and increases bias whereas a threshold that is too

high will have few exceedances leading to high variance. The standard practice is to have as

low a threshold as possible, subject to the EVT model providing a reasonable approximation.

Our simulation study considers five versions of the SGT distribution for the innovations in

the dynamic loss model in Equation (2.10) from Liu and Stentoft (2020b).1 The five cases are:

1. Benchmark: k = 2, n = 8, λ = 0

2. Loss skewed: k = 2, n = 8, λ = 0.5

3. Profit skewed: k = 2, n = 8, λ = −0.5

4. Normal: k = 2, n = 500, λ = 0

5. Light-tailed: k = 10, n = 500, λ = 0

The five data generating processes (DGPs) capture the heavy tails and skewness exhibited by

financial returns and reported in, e.g., Section 2.3.1 of Liu and Stentoft (2020b). We set the

estimation window T = 1, 000.

McNeil and Frey (2000) describe a method of threshold choice using a threshold at the

(m)’th order statistic of innovations where Nη = T − m is the number of tail observations. Let

ε(T ) ≥ ε(T−1) ≥ ... ≥ ε(1) denote the ordered innovations. Then the GPD with parameters ξ and

σ are fit to the excesses of innovations over estimated threshold ε(m), i.e., (ε(T ) − ε(m), ..., ε(m+1) −

ε(m)). McNeil and Frey (2000) use Monte Carlo simulation at the 99% confidence level and

estimate the optimal threshold for VaR as η̂ = ε̂(m) = Q0.9({ε̂t}), where Q0.9({ε̂t}) denotes the 0.9

quantile of the empirical innovations. To estimate the optimal threshold at the 97.5% and 95%

confidence levels we perform the simulation exercise described above, which is analogous

to the threshold choice Monte Carlo experiment in Christoffersen and Gonçalves (2005) to

find the optimal threshold of the Hill model. Moreover, while McNeil and Frey (2000) and

Christoffersen and Gonçalves (2005) only study threshold selection with simulations from the

t-distribution we simulate skewed and light-tailed DGPs as well.

1Since the paper’s focus is primarily on the distribution of innovations the GARCH parameters are kept con-
stant at α = 0.1, β = 0.8, and ω = (202/252) ∗ (1 − α − β), resulting in an annual unconditional volatility of
20%.
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Figure A.1: GPD estimator errors for the 99%, 97.5%, and 95% confidence levels

(a) VaR at 99% confidence level (b) ES at 99% confidence level

(c) VaR at 97.5% confidence level (d) ES at 97.5% confidence level

(e) VaR at 95% confidence level (f) ES at 95% confidence level

This figure shows the RMSE and Bias for the GPD estimator as a function of the thresholds. Rows report results
for different confidence levels. Left hand plots reports results for estimated VaR and right hand plots results for
estimated ES.

To select the optimal threshold, η̂, for GPD estimation, we compare the Bias and the root

mean squared error (RMSE) for threshold quantiles between 0.8 and 0.99 using a 0.001 grid.

Figure A.1 plots these as a function of threshold quantile choice for both VaR and ES at the

99%, 97.5% and 95% confidence levels. The figure shows that both VaR and ES have stable

threshold choices up to the 0.94 quantile. The instability after the 0.94 quantile is caused by too
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Figure A.2: Hill estimator errors for the 99%, 97.5%, and 95% confidence levels

(a) VaR at 99% confidence level (b) ES at 99% confidence level

(c) VaR at 97.5% confidence level (d) ES at 97.5% confidence level

(e) VaR at 95% confidence level (f) ES at 95% confidence level

This figure shows the RMSE and Bias for the Hill estimator as a function of the thresholds. Rows report results
for different confidence levels. Left hand plots reports results for estimated VaR and right hand plots results for
estimated ES.

few excesses resulting in high variance. We find the 0.85 quantile of innovations a reasonable

threshold estimate for both the 97.5% and 95% confidence levels, since it minimizes the abso-

lute Bias and RMSE in all five DGPs. For the 99% confidence level, Panel (a) confirms that the

0.9 quantile is reasonable for VaR as in McNeil and Frey (2000). However, Panel (b) shows

that the ES Bias and RMSE increases with the threshold, especially in the Benchmark and Loss
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Skew cases. Hence, for VaR and ES the 0.85 quantile of innovations is more reasonable for the

99% confidence level.

We employ the same strategy to estimate the optimal threshold, û, for Hill estimation at the

99%, 97.5% and 95% confidence levels. Figure A.2 plots the Bias and RMSE as a function

of threshold choice for both VaR and ES at the 99%, 97.5% and 95% confidence levels. The

figure shows that for the 97.5% confidence level, the threshold estimate û is optimized at the

0.975 quantile of innovations for evaluating both VaR and ES. For the 95% confidence level,

the threshold estimate û is optimized at the 0.95 quantile of innovations for evaluating both

VaR and ES. Our choice of Hill estimation method threshold at the 99% level confirms the

results from Christoffersen and Gonçalves (2005) where û is the 0.97 quantile of innovations

for VaR calculations and the 0.99 quantile of innovations for evaluating ES.

At each confidence level, the optimal threshold for both EVT models are remarkably robust

across the different DGPs. This justifies holding the threshold fixed at the optimal quantile for

empirical returns, where the true DGP is unknown. Thus, we recommend setting the threshold

at the 0.85 quantile for the GPD method and equal to the confidence level for the Hill method.

A.3 Backtesting methods for ES

This section summarizes the ES backtesting procedures used in Section 2.4 of Liu and Stentoft

(2020b).

A.3.1 Residual Test

The Residual Test by McNeil and Frey (2000) uses simulation methods to test residuals defined

as

Rt+1 = {Lt+1 − ES p
t+1|Lt+1 > VaRp

t+1}, (A.1)
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where under the true model these residuals are i.i.d. and have expected value 0 conditional on

the losses exceeding VaRp
t+1.2 They test the one-sided hypothesis of mean zero residuals

H0 : E[Rt+1|Lt+1 > VaRp
t+1] ≤ 0 against H1 : E[Rt+1|Lt+1 > VaRp

t+1] > 0, (A.2)

using a bootstrap test that makes no assumptions about the underlying distribution of resid-

uals (Efron and Tibshirani (1994)). A rejection of the hypothesis is evidence that the model

systematically underestimates ES. We report the p-value PER of their one-sided test.

A.3.2 Conditional Calibration Backtest

Nolde and Ziegel (2017) introduce conditional calibration backtests using identification func-

tions (i.e. moment conditions). The strict identification function of VaR and ES for probability

coverage p is

V(L,VaR, ES ) =

 p − 1L>VaR

VaR − ES − 1L>VaR(VaR − L)/p

 , (A.3)

which has expectation zero if and only if we input the true VaR and ES of losses L. They test

the forecasts V̂aR and ÊS based on the hypothesis

H0 : E(V(Lt, V̂aRt, ÊS t)|=t−1) ≥ 0 against H1 : E(V(Lt, V̂aRt, ÊS t)|=t−1) < 0, (A.4)

component-wise for all t = 1, ..,T , where =t is the information at time t. The requirement

E(V(Lt, V̂aRt, ÊS t)|=t−1) ≥ 0 is equivalent to stating E(h′tV(Lt, V̂aRt, ÊS t)) ≥ 0 for all =t−1-

measurable R2-valued functions ht. Since this is infeasible, they consider a =t−1-predictable

sequence of qx2-matrices ht called test functions to construct Wald-type test statistic

TCC = T

 1
T

T∑
t=1

htV(Lt, V̂aRt, ÊS t)

′ Ω̂−1
T

 1
T

T∑
t=1

htV(Lt, V̂aRt, ÊS t)

 (A.5)

2McNeil and Frey (2000) also define a second version of residuals that are standardized by volatility. These
residuals are conditional on volatility estimates and cannot be used to backtest ES for HS.
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where Ω̂−1
T = 1

T

∑T
t=1(htV(Lt, V̂aRt, ÊS t))(htV(Lt, V̂aRt, ÊS t))′. Under H0, the test statistic is

asymptotically χ2
q distributed. We report the p-value PCCa of their simple conditional calibration

test, where the test function is the identity matrix, ht = I2.

A.3.3 Regression Based Backtest

Bayer and Dimitriadis (2018) test whether a series of ES forecasts is correctly specified relative

to returns Yt. They regress returns on expected shortfall forecasts and an intercept term

Yt = γ1 + γ2êt + ue
t , (A.6)

where −êt is the ES forecast and E(ue
t |Yt < −VaRt,=t−1) = 0. Given (A.6), the condition on the

error term is equivalent to

E(Yt|Yt < −VaRt,=t) = γ1 + γ2êt. (A.7)

They test hypothesis

H0 : (γ1, γ2) = (0, 1) against H1 : (γ1, γ2) , (0, 1), (A.8)

where under H0 the ES forecasts are correctly specified and et = E(Yt|Yt < −VaRt,=t−1). Using

the FZ0 loss function to estimate model parameters, they propose the Auxiliary, Strict, and

Intercept backtests. The Auxiliary backtest jointly tests VaR and ES by specifying regression

(A.6) and VaR regression

Yt = β1 + β2v̂t + uq
t , (A.9)

where −v̂t is the VaR forecast and P(Yt < uq
t |=t−1) = p. They test hypothesis (A.8) using

Wald-type test statistic

TES R−Aux = T (γ̂T − (0, 1))Ω̂−1
γ (γ̂T − (0, 1))′, (A.10)
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based on covariance estimator Ω̂−1
γ for the covariance of γ = (γ1, γ2). They further consider a

Strict Backtest using only ES forecasts as inputs. They approximate ê = cv̂t for some constant

c and replace regression (A.9) with

Yt = β1 + β2êt + uq
t , (A.11)

and test hypothesis (A.8) using test statistic (A.10). Finally, they propose a one-sided backtest

to evaluate if ES forecasts are systematically low. Their Intercept backtest regresses forecasting

errors Yt − êt on an intercept term

Yt − êt = β1 + uq
t and Yt − êt = γ1 + ue

t , (A.12)

where P(Yt < uq
t |=t−1) = p and E(ue

t |Yt < −VaRt,=t−1) = 0. Using this restricted regression,

they test hypothesis

H0 : γ1 ≥ 0 against H0 : γ1 < 0, (A.13)

using test statistic (A.10). We report two-sided p-values for their Strict PES R−S trict and Auxiliary

PES R−Aux tests. We also report one-sided p-values for their Intercept PES R−Int test.

A.3.4 Spectral Backtests

Gordy and McNeil (2020) propose backtests using new data reported to regulatory supervisors.

Since 2013, banks are required to report the probability associated with the realized return

based on the previous day’s forecast distribution. This is mathematically expressed as the

probability integral transformation (PIT) process Pt = F̂t(Lt). If distribution function F̂t is

continuous and correctly specified, then Pt should be i.i.d standard uniform. Also, for any

α ∈ (0, 1), let V̂aRα,t = F̂−1
t (α) be the estimated α-VaR constructed at time t − 1, then a VaR

exceedance event {LT ≥ V̂aRα,t} is equivalent to the event {Pt ≥ α}. Hence, PIT-values contain

information about VaR exceedances at every level α, allowing powerful tests of the deficiencies



A.3. Backtesting methods for ES 213

in model F̂ to be constructed.

Gordy and McNeil (2020) create tests based on spectral transformations of PIT exceedances

Wt =

∫
[0,1]

1Pt≥udν(u), (A.14)

where kernel measure ν is a Lebesgue-Stieltjes measure on [0,1]. The choice of measure ν al-

low regulators to customize weights for quantiles of interest (for example, regulators are mainly

concerned about large losses corresponding to α close to 1). Let =∗t−1 denote the regulator’s

filtration generated by the PIT values, the null hypothesis is

Wt ∼ F0
W and Wt ⊥ =

∗
t−1,∀t, (A.15)

where F0
W denotes the distribution of Wt when Pt is uniform, which changes according the

kernel measure. The null hypothesis implies that the Wt are i.i.d., but is weaker than a null

hypothesis that the Pt are i.i.d. uniform. Under the null hypothesis, Wn = n−1 ∑n
t=1 Wt is

asymptotically normal and their spectral Z-test of unconditional coverage is

Zn =

√
nWn − µW

σW

d
−−−→
n→∞

N(0, 1), (A.16)

where µW = E(Wt) and σ2
W = var(Wt) are the moments in null model F0

W . We report p-

values for the unconditional test using the Uniform (Uni), Arcsin (Arc), and Epanechnikov

(Epa) continuous kernel density functions on a wide interval [0.95,0.995] and narrow interval

[0.97,0.98]. We also use the discrete 3-level uniform kernel on points (0.95,0.975,0.99).

Gordy and McNeil (2020) also test for conditional coverage, which detects dependence in

exceedances (i.e. Christoffersen (1998), Christoffersen and Pelletier (2004), and Nolde and

Ziegel (2017)) based on the martingale difference (MD) property E(Wt − µW |=
∗
t−1) = 0. When

the MD property holds, then E(ht−1(Wt − µW)) = 0 for any =∗t−1-measurable random variable

ht−1. Using function h(p), called the conditioning variable transformation (CVT), they form
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a lagged vector ht−1 = (1, h(Pt−1), ..., h(Pt−k)). In our empirical analysis, we set k = 4 lags

and h(p) = |2p − 1|4, which places heavier weight on tail PIT values in the recent past. Let

Yt = ht−1(Wt − µW), where under the null hypotheses E(Yt|=
∗
t−1) = 0. Similar to Nolde and

Ziegel (2017), they construct Wald-type test statistic

TMD = (n − k)Y
′

n,kΣ̂
−1
Y Yn,k (A.17)

where Yn,k = (n − k)−1 ∑n
t=k+1 Yt and Σ̂−1

Y a consistent estimator of ΣY = Cov(Yt). Under the

null hypothesis, they use asymptotic theory from Giacomini and White (2006) to show that

TMD is χ2
k+1 distributed. We report p-values for the conditional tests using the same kernels and

intervals as the unconditional tests.

A.3.5 FZ Loss Comparative Backtest

Fissler, Ziegel, and Gneiting (2015) propose a joint VaR and ES backtest using their FZ loss

function from Equation (2.36) in Liu and Stentoft (2020b). They propose pairwise comparative

backtests by taking differences in average losses between two models and defining the test

statistic

T1,2 =
L̄FZ(Yt, v1t, e1t;α,G1,G2) − L̄FZ(Yt, v2t, e2t;α,G1,G2)

σT
=

∆L̄FZ(Yt, v1t, e1t, v2t, e2t))
σT

,

(A.18)

where L̄FZ(Y, vi, ei;α,G1,G2) = 1
T

∑T
t=1 LFZ(Y, vi, ei;α,G1,G2) for models i = 1, 2 and σT is

an estimate of the respective standard deviation. Using the test statistic requires choosing

functions G1 and G2. We use the FZ0 loss function from Patton, Ziegel, and Chen (2019) and

Diebold and Mariano (2002) test statistics for the loss differences between models, to compare

out-of-sample predictions of VaR and ES. Patton, Ziegel, and Chen (2019) show that FZ0 is

the only FZ loss function that generates loss differences that are homogeneous of degree zero,

a property that has been shown in volatility forecasting applications to lead to higher power

in Diebold and Mariano (2002) tests. We also follow Patton, Ziegel, and Chen (2019) by
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calculating the t-statistic using Newey-West standard errors with 20 lags (Newey and West

(1987a)). Finally, we use FZ0 losses to find the Hansen, Lunde, and Nason (2011) Model

Confidence Set, which contains the best model with a given level of confidence.

A.3.6 Murphy Diagrams

FZ loss comparisons require specifying the loss function. Fissler and Ziegel (2016) show that a

large family of FZ loss functions is consistent and can be used to evaluate forecast performance.

Ziegel et al. (2017) define the forecast dominance of model 1 over model 2 as

E(LFZ(Y, v1, e1; p)) ≤ E(LFZ(Y, v2, e2; p)), for all LFZ ∈ S, (A.19)

where S is the class of consistent LZ loss functions. In the previous section, we used the FZ0

scoring function for model comparison. However, Patton (2019) shows that in the presence of

estimation error or model misspecification, forecast rankings can be sensitive to the choice of

loss function.

In a recent paper, Ehm et al. (2016) show that any loss function that is consistent for a

quantile or expectile has a mixture representation, providing a method to compare models

across all consistent loss functions. Ziegel et al. (2017) derive a mixture representation for

their joint VaR and ES FZ loss function. Defining elementary loss functions Lv1(v,Y) and

Lv2(v, e,Y) for coverage probability p as

Lθ1(v,Y) = (1Y≤v − p)(1θ1≤v − 1θ1≤Y), (A.20)

Lθ2(v, e,Y) = 1θ2≤e(
1
p
1Y≤v(v − Y) − (v − θ2)) + 1θ2≤v(Y − θ2), (A.21)

where θ1 and θ2 are real-valued thresholds, they show that all FZ loss functions can be written
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as a mixture representation

LFZ(Y, v, e; p) =

∫
Lθ1(v,Y)dH1(θ1) +

∫
Lθ2(v, e,Y)dH2(θ2), (A.22)

where H1 is a locally finite measure and H2 is a measure that is finite on all intervals of the

form (−∞, x], x ∈ R. Since they focus on comparing ES forecasts, they define S2 ⊂ S as the

class of all consistent scoring functions with H1 = 0. The mixture representation in Equation

(A.22) can be graphically displayed using Murphy diagrams (Ehm et al. (2016)) by plotting the

average score 1
T

∑T
t=1 Lθ2(vt, et,Yt) on θ2 for loss functions in S2. They use the representation to

formally test forecast dominance under hypothesis

H0,θ2 : E(Lθ2(Y, v1, e1; p)) = E(Lθ2(Y, v2, e2; p)), (A.23)

H1,θ2 : E(Lθ2(Y, v1, e1; p)) > E(Lθ2(Y, v2, e2; p)), (A.24)

where a rejection of H0,θ2 suggests that model 2 performs strictly better. The test is repeated for

threshold values θ2 on a grid, yielding a sequence of point-wise p-values. They then compute

WestFall-Young corrected p-values, PWY , to control the family-wise error rate and report the

minimal p-value (Westfall and Young (1993)).
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A.4 Comparative Backtests for the 99% and 95% Confidence

Levels

Table A.1: Comparative Expected Shortfall Backtests at the 99% Confidence Level

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Average FZ0 Loss

Loss 0.05 -0.04 -0.24 -0.14 -0.22 -0.24* -0.22 -0.24 -0.24 -0.24 -0.24 -0.24 -0.13 -0.14
Panel B: Diebold-Mariano Test Statistics for FZ0 Loss

HS NA 1.34 3.69 2.70 3.79 3.83 3.71 3.84 3.83 3.64 3.68 3.73 2.34 2.65
RM -1.34 NA 3.26 2.74 3.82 3.55 3.80 3.62 3.55 3.21 3.25 3.36 1.43 1.67
FHS -3.69 -3.26 NA -2.57 -0.85 0.99 -1.16 0.24 0.85 0.14 -0.62 0.97 -4.14 -3.94
Norm -2.70 -2.74 2.57 NA 3.73 3.05 3.83 3.19 3.04 2.47 2.55 2.67 -0.24 0.11
STD -3.79 -3.82 0.85 -3.73 NA 1.62 -2.48 1.65 1.59 0.79 0.83 1.03 -3.54 -3.16
SSTD -3.83 -3.55 -0.99 -3.05 -1.62 NA -1.88 -1.13 -1.30 -0.78 -1.01 -0.45 -4.63 -4.38
GED -3.71 -3.80 1.16 -3.83 2.48 1.88 NA 2.00 1.85 1.09 1.14 1.32 -3.10 -2.71
SGED -3.84 -3.62 -0.24 -3.19 -1.65 1.13 -2.00 NA 0.92 -0.15 -0.26 0.07 -4.52 -4.27
SGT -3.83 -3.55 -0.85 -3.04 -1.59 1.30 -1.85 -0.92 NA -0.64 -0.87 -0.33 -4.57 -4.33
GPD -3.64 -3.21 -0.14 -2.47 -0.79 0.78 -1.09 0.15 0.64 NA -0.19 0.31 -4.16 -3.96
Hill -3.68 -3.25 0.62 -2.55 -0.83 1.01 -1.14 0.26 0.87 0.19 NA 1.00 -4.13 -3.92
HillH -3.73 -3.36 -0.97 -2.67 -1.03 0.45 -1.32 -0.07 0.33 -0.31 -1.00 NA -4.10 -3.87
FZ1 -2.34 -1.43 4.14 0.24 3.54 4.63 3.10 4.52 4.57 4.16 4.13 4.10 NA 0.86
FZH -2.65 -1.67 3.94 -0.11 3.16 4.38 2.71 4.27 4.33 3.96 3.92 3.87 -0.86 NA

This table shows the comparative ES backtesting results of the representative portfolio from 01/1997 to
02/2020. Results are based on the FZ0 loss function at the 99% confidence level. Panel A shows the av-
erage FZ0 loss with a star beside models in the 75% model confidence set. Panel B shows t-statistics from
Diebold-Mariano tests comparing FZ0 average losses. A negative value indicates that the row model has
lower average loss than the column model. t-statistics greater than 1.96 in absolute value indicate the loss
difference is significantly different from zero at the 95% confidence level. Models with t-stat below -1.96
indicate the row model is superior and are in bold.
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Table A.2: Comparative Expected Shortfall Backtests at the 95% Confidence Level

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Average FZ0 Loss

Loss -0.50 -0.60 -0.65* -0.63 -0.64 -0.65* -0.64 -0.65* -0.65 -0.65 -0.65* -0.64 -0.64 -0.64
Panel B: Diebold-Mariano Test Statistics for FZ0 Loss

HS NA 3.19 4.28 4.10 4.20 4.42 4.35 4.41 4.40 4.33 4.26 4.22 3.92 3.92
RM -3.19 NA 3.59 3.10 3.34 3.95 3.81 3.91 3.88 3.64 3.51 3.64 2.40 2.40
FHS -4.28 -3.59 NA -1.87 -1.51 -0.02 -0.99 0.71 -0.22 0.14 -0.06 -1.88 -1.13 -1.08
Norm -4.10 -3.10 1.87 NA 2.60 2.81 3.92 2.44 2.68 2.02 1.76 1.68 0.26 0.40
STD -4.20 -3.34 1.51 -2.60 NA 2.40 2.91 2.03 2.25 1.65 1.41 0.95 -0.09 0.07
SSTD -4.42 -3.95 0.02 -2.81 -2.40 NA -1.88 0.87 -0.93 0.08 0.01 -2.97 -1.18 -1.06
GED -4.35 -3.81 0.99 -3.92 -2.91 1.88 NA 1.60 1.65 1.11 0.91 -0.27 -0.59 -0.42
SGED -4.41 -3.91 -0.71 -2.44 -2.03 -0.87 -1.60 NA -1.11 -0.84 -0.61 -2.88 -1.31 -1.22
SGT -4.40 -3.88 0.22 -2.68 -2.25 0.93 -1.65 1.11 NA 0.33 0.18 -2.82 -1.12 -1.00
GPD -4.33 -3.64 -0.14 -2.02 -1.65 -0.08 -1.11 0.84 -0.33 NA -0.14 -2.04 -1.17 -1.10
Hill -4.26 -3.51 0.06 -1.76 -1.41 -0.01 -0.91 0.61 -0.18 0.14 NA -1.62 -1.12 -1.07
HillH -4.22 -3.64 1.88 -1.68 -0.95 2.97 0.27 2.88 2.82 2.04 1.62 NA -0.52 -0.36
FZ1 -3.92 -2.40 1.13 -0.26 0.09 1.18 0.59 1.31 1.12 1.17 1.12 0.52 NA 0.27
FZH -3.92 -2.40 1.08 -0.40 -0.07 1.06 0.42 1.22 1.00 1.10 1.07 0.36 -0.27 NA

This table shows the comparative ES backtesting results of the representative portfolio from 01/1997 to 02/2020.
Results are based on the FZ0 loss function at the 95% confidence level. Panel A shows the average FZ0 loss
with a star beside models in the 75% model confidence set. Panel B shows t-statistics from Diebold-Mariano
tests comparing FZ0 average losses. A negative value indicates that the row model has lower average loss than
the column model. t-statistics greater than 1.96 in absolute value indicate the loss difference is significantly
different from zero at the 95% confidence level. Models with t-stat below -1.96 indicate the row model is
superior and are in bold.
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A.5 Backtests for the Risk Factor and Liquidity Horizon Port-

folios

Table A.3: Traditional ES Backtests for Risk Factors at the 97.5% Confidence Level

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Results for Interest Rate Risk at a 97.5% confidence level

ER 0.00 0.00 0.87 0.00 0.71 0.73 0.05 0.15 0.85 0.36 0.96 0.00 0.93 0.75
ESR Strict 0.00 0.02 0.96 0.01 0.89 0.71 0.63 0.99 0.64 0.93 0.68 0.07 0.82 0.82
ESR Aux 0.00 0.02 0.96 0.01 0.86 0.75 0.60 0.99 0.71 0.97 0.75 0.07 0.86 0.93
ESR Int 0.00 0.00 0.42 0.00 0.20 0.66 0.09 0.34 0.70 0.44 0.65 0.00 0.59 0.53
CCa 0.05 0.01 1.00 0.00 0.86 1.00 0.45 0.69 1.00 0.81 1.00 0.03 1.00 0.89
Loss -0.29 -0.35 -0.36 -0.35 -0.36 -0.35 -0.36* -0.35 -0.35 -0.35 -0.36 -0.35 -0.32 -0.33

Panel B: Results for Equity Risk at a 97.5% confidence level
ER 0.06 0.00 0.57 0.00 0.28 0.71 0.01 0.16 0.54 0.72 0.72 0.00 0.89 0.91
ESR Strict 0.00 0.00 0.44 0.00 0.00 0.12 0.00 0.04 0.09 0.50 0.52 0.00 0.12 0.25
ESR Aux 0.00 0.00 0.29 0.00 0.00 0.09 0.00 0.04 0.05 0.36 0.33 0.00 0.09 0.17
ESR Int 0.00 0.00 0.15 0.00 0.00 0.02 0.00 0.01 0.01 0.34 0.21 0.00 0.04 0.09
CCa 0.00 0.00 1.00 0.00 0.00 0.34 0.00 0.15 0.28 1.00 1.00 0.00 0.38 0.42
Loss 1.11 1.06 0.94 1.02 0.98 0.94 0.96 0.94 0.94 0.93* 0.94 0.94 0.99 0.98

Panel C: Results for Commodity Risk at a 97.5% confidence level
HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

ER 0.00 0.00 0.18 0.00 0.01 0.26 0.00 0.01 0.23 0.29 0.35 0.00 0.65 0.72
ESR Strict 0.00 0.00 0.16 0.00 0.00 0.11 0.00 0.06 0.10 0.20 0.22 0.00 0.19 0.78
ESR Aux 0.00 0.00 0.18 0.00 0.00 0.11 0.00 0.06 0.12 0.22 0.23 0.00 0.19 0.70
ESR Int 0.00 0.00 0.16 0.00 0.00 0.12 0.00 0.04 0.11 0.25 0.23 0.00 0.25 0.44
CCa 0.02 0.00 0.83 0.00 0.01 0.64 0.00 0.24 0.60 0.77 0.97 0.01 1.00 0.97
Loss 0.48 0.49 0.43* 0.46 0.44 0.43* 0.44 0.43* 0.43* 0.43* 0.43* 0.43 0.46 0.44

Panel D: Results for Foreign Exchange Risk at a 97.5% confidence level
HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

ER 0.01 0.00 0.40 0.00 0.79 0.85 0.38 0.34 0.76 0.34 0.62 0.00 0.26 0.22
ESR Strict 0.01 0.00 0.88 0.01 0.92 0.69 0.99 0.84 0.70 0.94 0.96 0.01 0.61 0.82
ESR Aux 0.01 0.00 0.83 0.01 0.91 0.69 0.99 0.85 0.69 0.92 0.93 0.01 0.62 0.83
ESR Int 0.00 0.00 0.18 0.00 0.46 0.62 0.33 0.52 0.61 0.22 0.28 0.00 0.07 0.15
CCa 0.03 0.00 1.00 0.01 1.00 1.00 0.77 0.41 1.00 0.94 1.00 0.01 0.60 0.81
Loss -0.13 -0.20 -0.22* -0.22 -0.22* -0.22* -0.22* -0.22* -0.22* -0.22* -0.22* -0.21 -0.17 -0.18

Panel E: Results for Credit Risk at a 97.5% confidence level
HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

ER 0.03 0.00 0.60 0.00 0.37 0.44 0.00 0.00 0.53 0.53 0.71 0.00 0.93 0.91
ESR Strict 0.00 0.00 0.69 0.00 0.60 0.76 0.33 0.72 0.76 0.60 0.53 0.44 0.49 0.15
ESR Aux 0.00 0.00 0.61 0.00 0.62 0.73 0.35 0.72 0.70 0.53 0.45 0.58 0.58 0.20
ESR Int 0.00 0.00 0.31 0.00 0.05 0.23 0.02 0.09 0.23 0.36 0.40 0.02 0.63 0.87
CCa 0.06 0.00 0.41 0.00 0.51 0.72 0.19 0.05 0.69 0.12 0.41 0.21 1.00 0.78
Loss -0.70 -0.85 -0.96 -0.95 -0.97* -0.97* -0.97* -0.96 -0.97* -0.97 -0.96 -0.96 -0.90 -0.91

This table shows the traditional ES backtesting results of the five risk factor portfolios from 01/1997 to 02/2020.
Each panel reports results for a particular confidence level. In each panel, Row 1 shows the one-sided p-values for
the Exceedance Residual test. Rows 2 and 3 show the two-sided p-values for the Strict and Auxiliary ES regression
backtests. Rows 4 and 5 show the one-sided p-values for the Intercept ES regression and Conditional Calibration
backtests. Row 6 shows the average FZ0 loss with a star beside models in the 75% model confidence set. Models with
p-values below 0.05 are in bold.
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Table A.4: Traditional ES Backtests for Liquidity Horizons at the 97.5% Confidence Level

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH
Panel A: Results for LH 20 at a 97.5% confidence level

ER 0.04 0.00 0.76 0.00 0.04 0.63 0.00 0.04 0.74 0.82 0.84 0.03 0.93 0.91
ESR Strict 0.00 0.00 0.92 0.00 0.00 0.51 0.00 0.19 0.53 0.92 0.83 0.11 0.90 0.75
ESR Aux 0.00 0.00 0.92 0.00 0.00 0.54 0.00 0.20 0.57 0.88 0.86 0.15 0.96 0.77
ESR Int 0.00 0.00 0.37 0.00 0.00 0.09 0.00 0.02 0.10 0.45 0.48 0.01 0.38 0.37
CCa 0.01 0.00 1.00 0.00 0.00 0.35 0.00 0.11 0.35 1.00 1.00 0.09 1.00 1.00
Loss -0.31 -0.42 -0.52 -0.46 -0.49 -0.52* -0.50 -0.52* -0.52 -0.52* -0.52 -0.51 -0.48 -0.48

Panel B: Results for LH 40 at a 97.5% confidence level
ER 0.02 0.00 0.79 0.00 0.48 0.76 0.00 0.01 0.68 0.69 0.83 0.30 0.77 0.80
ESR Strict 0.00 0.00 0.54 0.00 0.04 0.81 0.01 0.37 0.76 0.54 0.32 0.88 0.84 0.91
ESR Aux 0.00 0.00 0.38 0.00 0.06 0.86 0.02 0.40 0.83 0.39 0.20 0.95 0.97 0.89
ESR Int 0.00 0.00 0.51 0.00 0.00 0.11 0.00 0.03 0.09 0.50 0.62 0.10 0.08 0.14
CCa 0.03 0.00 0.54 0.00 0.03 0.80 0.01 0.29 0.76 0.09 0.54 0.54 1.00 1.00
Loss -0.31 -0.42 -0.66 -0.59 -0.64 -0.66 -0.65 -0.67* -0.67* -0.66 -0.66 -0.66* -0.52 -0.54

Panel C: Results for LH 60 at a 97.5% confidence level
ER 0.02 0.00 0.75 0.00 0.76 0.81 0.00 0.01 0.63 0.75 0.82 0.40 0.86 0.89
ESR Strict 0.00 0.00 0.09 0.00 0.01 0.43 0.01 0.13 0.37 0.06 0.02 0.71 0.95 0.43
ESR Aux 0.00 0.00 0.08 0.00 0.02 0.37 0.01 0.15 0.40 0.07 0.01 0.63 0.85 0.37
ESR Int 0.00 0.00 0.51 0.00 0.00 0.03 0.00 0.01 0.02 0.57 0.69 0.19 0.33 0.38
CCa 0.09 0.00 0.06 0.00 0.01 0.25 0.04 0.15 0.32 0.03 0.06 0.06 1.00 1.00
Loss -0.05 -0.11 -0.36 -0.28 -0.32 -0.34 -0.36 -0.36 -0.36 -0.36 -0.36 -0.37* -0.24 -0.26

Panel D: Results for LH 120 at a 97.5% confidence level
ER 0.17 0.00 0.63 0.00 0.60 0.49 0.00 0.04 0.49 0.46 0.72 0.10 0.81 0.87
ESR Strict 0.00 0.00 0.00 0.02 0.19 0.01 0.17 0.02 0.01 0.00 0.00 0.07 0.00 0.00
ESR Aux 0.00 0.00 0.00 0.02 0.15 0.00 0.16 0.02 0.00 0.00 0.00 0.07 0.03 0.00
ESR Int 0.03 0.00 0.84 0.00 0.23 0.68 0.15 0.51 0.68 0.87 0.88 0.57 0.97 0.98
CCa 0.60 0.00 0.01 0.04 1.00 0.04 0.18 0.00 0.04 0.00 0.01 0.01 0.03 0.04
Loss -0.37 -0.49 -0.51 -0.53 -0.55* -0.52 -0.54 -0.51 -0.52 -0.50 -0.51 -0.53 -0.48 -0.49

This table shows the traditional ES backtesting results of the 20-120 day Liquidity Horizon portfolios from 01/1997
to 02/2020. Each panel reports results for a particular confidence level. In each panel, Row 1 shows the one-sided
p-values for the Exceedance Residual test. Rows 2 and 3 show the two-sided p-values for the Strict and Auxiliary
ES regression backtests. Rows 4 and 5 show the one-sided p-values for the Intercept ES regression and Conditional
Calibration backtests. Row 6 shows the average FZ0 loss with a star beside models in the 75% model confidence
set. Models with p-values below 0.05 are in bold.
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Appendices for Chapter 3

B.1 Data

This appendix provides further details on our trade and quote (TAQ) data cleaning procedures

and describes how the additional characteristics used in the empirical analysis are calculated.

B.1.1 Trade and quotes cleaning

The trade and quotes (TAQ) data require substantial cleaning due to contamination from market

microstructure noise. We use the Monthly TAQ Second database up to 2003 and the Daily TAQ

Millisecond/Microsecond database from 2004-2016 and filter noisy observations following the

procedures similar to Barndorff-Nielsen et al. (2008). Returns are primarily calculated using

prices from the trades database. Bid and ask observations from the quotes database are also

used for cleaning trades and calculating transaction costs. For both trades and quotes, entries

with time stamps outside of the trading day (9:30 AM to 4:00 PM) are removed. Entries with a

zero or negative bid, ask, or price are also removed. For each stock, we keep only entries from

the exchange with the highest volume in the month, and delete entries from other exchanges.

For only the quotes database, we construct the national-best bid-ask (NBBO) following pro-

cedures from (https://support.sas.com/resources/papers/proceedings16/11201-2016.pdf) using
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quotes from all exchanges at a second interval. We remove all entries with a negative spread

(ask minus bid) and quotes larger than 50 times the median spread on each day.

For only the trades data, entries with corrected trades (CORR , 0) are deleted. Entries

with an abnormal sale condition are removed, only keeping entries with COND equal to E, F,

@, *, @E, @F, *E and *F. Multiple trades with the same second timestamp are replaced with

an entry with the median price. Finally, quotes are used to discipline the trade prices: Entries

are removed if their price is above the ask plus spread or below the bid minus spread.

The cleaned second-by-second price, bid and ask data is then aggregated into five-minute

intervals and merged with the daily center for research in security prices (CRSP) data file by

the CUSIP key. Merging the TAQ and CRSP data is challenging, because their tickers often

differ. Additionally, tickers change in time due to mergers, acquisitions, and other corporate

events. We instead merge the TAQ and CRSP databases using CUSIPs. The CUSIP identifier

of each stock is obtained by merging trades with the TAQ master files. Finally, each stock is

indexed by CRSP PERMINOs, which are unique and do not change in time.

B.1.2 Additional firm characteristics

In addition to returns with one lag, we consider other lagged characteristics of the SPY and

S&P 500 constituents. These characteristics proxy short-term changes in liquidity and price

trends. We create high-frequency analogs of characteristics from the asset pricing literature that

have been shown to predict returns, including firm-level market beta, momentum, illiquidity,

maximum, minimum, and trading volume. We also consider higher order moments, including

volatility, skewness, and kurtosis. These characteristics are all calculated over preceding days.

The particular variables used are the following:

Market beta: The market beta is motivated by the capital asset pricing model of Sharpe

(1964) and Lintner (1965). At time 1 ≤ t ≤ T , given (SPY market) return of stock 1 ≤ ` ≤ 500,
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r`t (rm
t ), it is based on a single factor model given by

r`t = α` + β`(rm
t ) + ε`t ,

which is computed for each five-minute interval using a rolling window of preceding days,

yielding one overnight and 78 intraday observations. BETA of stock ` during each five-minute

interval, t, is the least-squares estimate, β̂`.

Momentum: Motivated by Jegadeesh and Titman (1993), the MOM of stock ` during each

five-minute interval, t, is the cumulative return for the preceding day, yielding one overnight

and 78 intraday observations; that is,
∑T

t=1 r`t with T = 79.

Illiquidity: Motivated by Amihud (2002), the ILLIQ of stock `, during each five-minute

interval, t, is the ratio of the absolute stock return, |r`t |, to the dollar trading volume, averaged

in a day excluding the overnight volume, i.e., over the T = 78 previous trading intervals in

the day. Given the corresponding five-minute trading volume (price times number of shares

traded) in dollars at time t, VOLD`
t , this yields

ILLIQ` ≡
1
T

T∑
t=1

|r`t |

VOLD`
t

.

Maximum (minimum) return: Motivated by Bali, Cakici, and Whitelaw (2011), the MAX

(MIN) of stock ` during each five-minute interval, t, is defined as the maximum (minimum)

five-minute return within the preceding day (i.e., the previous 79 observations), that is, max1≤t≤T r`t

(min1≤t≤T r`t ).

Trading volume: Motivated by Chordia, Subrahmanyam, and Anshuman (2001), the VOL-

UME of stock ` during each five-minute interval, t, is defined as the average number of shares

traded within the preceding day excluding the overnight volume (i.e., the previous 78 observa-
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tions):

VOLUME` ≡
1
T

T∑
t=1

SharesTraded`t .

Volatility: Motivated by Ang et al. (2006), the VOL of stock ` during each five-minute

interval, t, is the standard deviation of five-minute returns within the preceding day (i.e., the

previous 79 observations):

VOL` ≡

√√
1
T

T∑
t=1

(r`t − r̄)2 ≡ sd(r`t ).

Here, r̄ ≡ 1
T

∑T
t=1 r`t denotes the corresponding arithmetic mean.

Skewness (kurtosis): Motivated by Amaya et al. (2015), the SKEW (KURT) of stock `

during each five-minute interval, t, is the skewness (kurtosis) of five-minute returns within the

preceding day (i.e., the previous 79 observations):

SKEW` ≡
1
T

T∑
t=1

(r`t − r̄)3

sd(r`t )3

KURT` ≡
1
T

T∑
t=1

(r`t − r̄)4

sd(r`t )4

 .

B.2 Hyperparameters

This appendix discusses in more detail the most relevant hyperparameters that are tuned for

each of the models used in the current paper. First, and applicable to all models, inherent in

regularization is the particular binary problem of whether to regularize or not. Generally, the

hyperparameter optimization problem is that of tuning the regularization parameters, λ in the

case of lasso (LAS) regularization, with the binary problem of whether this parameters is zero

or not. In elastic net (EN) regularization, the convex combination coefficient α ∈ [0, 1] is an-

other hyperparameter to be optimized, with the endpoints {0, 1} respectively corresponding to

the discrete choices of only ridge or only lasso regularization, respectively. In principal com-

ponent regression (PCR) the number of principal components, 1 ≤ κ ≤ K, can be considered a
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hyperparameter to be optimized.1

There are two crucial hyperparameters for random forest (RF) models: (1) the number of

decision trees (or base learners) in the forest, and (2) the maximum depth of each of these

trees, i.e., the maximum path length from any tree root to any of its leaves. More trees in the

forest yield greater prediction variance reduction at increased computational cost. Restricting

maximum tree depth limits the complexity, both saving computational time and avoiding over-

fitting. Similar goals may be achieved less directly, e.g., by limiting the number of training

samples per leaf, which generally decreases with increased tree size. The same hyperparam-

eters are important for gradient-boosted regression tree (GBRT) models, in addition to the

explicit learning rate, ν, which may be factored out from the step sizes or weights γi. A

smaller learning rate typically leads to better testing performance, but requires more training

steps/additional decision trees in the ensemble, to maintain a given training error. Though

these are the principal hyperparameters to consider for RF and GBRT models, several other,

generally less important ones do exist. For example, bounding above the number of predictors

determining node splits in base learners is relatively important for RF models in particular.

Greater bounds permit more complexity, resulting in bias reduction at the expense of increased

prediction variance and computational cost. Note that base learner complexity may be directly

limited by bounding above the number of node splits or the total number of tree nodes, i.e., the

tree size, itself.

For artificial neural networks (ANN), in particular, the loss function used for training is

important. Standard choices include mean squared error, used in the current paper, as well as

mean absolute error, logarithmic hyperbolic cosine, and a variety of others adapted to more

specific scenarios.2 We guard against model overfitting by adding `1 and `2 regularization to

the loss function. Other important factors involved in training include the number of iterations,

1Other heuristics for determining κ is to accept the smallest value which achieves some level of total explained
variance or to increase κ so long as the increase in variance explained exceeds a given threshold.

2Of particular interest is the Huber loss function, a combination of the `1 and `2 norms that permits control
of the sensitivity to outliers, used in Gu, Kelly, and Xiu (2020c). Preliminary results show that this metric may
outperform the MSE metric used for both the ANN and the GBRT models.



226 Chapter B. Appendices for Chapter 3

or epochs, and the level of dropout, the percentage of training data discarded in each epoch to

avoid over-fitting and regularize the optimization problem (see, e.g., Srivastava et al. (2014)

for a discussion).

While the optimization algorithm employed for training, the loss function it uses, the num-

ber of epochs, and the level of dropout, all constitute important hyperparameters impacting

the quality of predictions from ANN models with trained parameters, the actual network ar-

chitecture, i.e. the number of hidden layers, the number of neurons in each hidden layer,

and the particular activation function associated with each neuron, may often have an even

greater impact on the results. The activation functions used in this paper are the Rectified lin-

ear unit (ReLU) given by φ(x) = max{0, x} (see Nair and Hinton (2010)), the Maxout given

by φ(x1, x2) = max{x1, x2} (see Goodfellow et al. (2013)), and the Hyperbolic tangent given

by φ(x) = tanh x. We use a hyperparameter grid holding the number of hidden layers fixed at

3. Models are estimated using stochastic gradient descent optimization with the ADADELTA

(Zeiler (2012)) adaptive learning rate method for faster estimation. We use dropout and early

stopping as regularization techniques to prevent overfitting.

Table B.1 summarizes the set of hyperparameters that are tuned for each of the models con-

sidered in the current paper. To tune these at a particular time, the sample of data is partitioned

into training, testing, and validation sets and used specifically in the following way: the opti-

mization problem in Equation (3.5) is repeatedly solved using training predictors and targets,

validating at each training iteration to determine whether to terminate training and minimize

over-fitting using validation predictors and targets. When it comes to training, all decisions

are made according to the goal of minimizing the metric, m[·], modifying internal parameters,

like β in the case of the linear models, according to a specific optimization algorithm, e.g.,

classical stochastic gradient descent in the case of ANN models. When it comes to valida-

tion of the hyperparameters the mean squared error from the validation predictors and targets

is used. For LAS and EN, λ is selected using coordinate descent (see Friedman, Hastie, and

Tibshirani (2010)). For PCR grid search is used. For all other algorithms, random search is
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Table B.1: Model Hyperparameters

LAS λ

EN λ,
α = {0, 0.25, 0.5, 0.75, 1}

PCR κ = 1-99 by 2
RF #trees = 100-700 by 100,

tree depth = 1-40 by 5,
#minimum rows = {1, 25, 50},
columns randomly selected = floor(#number of features * {.05, .15, .25, .333, .4})

GBRT #trees = 100-700 by 100,
tree depth = 2-40 by 3,
learning rate = 0.01 - 0.1 by 0.03,
sample rate = 0.5-1 by 0.2,
column sample rate = 0.1 - 1 by 0.2

ANN Activation Functions = Relu, Maxout, Tanh; with and without dropout,
Hidden nodes = {1000,500,10}, {100,50,10}, {16,14,12},{20,15,10},{25,17,10},{15,10,5},
epochs = {50,100},
dropout ratio = {0, 0.1, 0.2},
max w2 = {10, 100, 1000, 3.4028235e+38},
`1 = {0, 0.00001, 0.0001},
`2 = {0, 0.00001, 0.0001},
rho (rate time decay) = {0.9, 0.95, 0.99, 0.999},
epsilon (rate time smoothing) = {1e-10, 1e-8, 1e-6, 1e-4}

This table describes the set of hyperparameters that are tuned for each individual model considered in the paper.

used with 50 models. Random search has been shown to be more efficient than grid search,

see, e.g., Bergstra and Bengio (2012). In contrast to Gu, Kelly, and Xiu (2020c), we do not use

ensembles of neural networks due to computational limitations.
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Appendices for Chapter 4

C.1 Empirical Evidence of Power-Law Distributed Tails

In this section, I provide empirical evidence for the power-law definition of idiosyncratic tail

risk ξ used in this paper. Since Mandelbrot (1963), numerous studies have documented that the

tails of daily and monthly equity returns are power-law distributed.1 Recently, researchers have

been using high-frequency equity data to show the tails of high-frequency returns are power-

law distributed.2 Gabaix et al. (2006) shows the tail distribution of 15-minute US equity returns

for the 1000 largest stocks from 1994-1995 has power-law distributed tails according to

P(|r| > x) ∼ x−1/ξL(x) (C.1)

where r is the log return (log denotes natural logarithm), L(x) is a slowly varying function, and

∼ denotes asymptotic equivalence.3

Following similar procedures as in Gabaix et al. (2006), Figure C.1 illustrates the empirical

1Power law tail behaviour of equity returns has been thoroughly documented in, for example, Mandelbrot
(1963), Fama (1963), Jansen and De Vries (1991), Kearns and Pagan (1997), Samanta and LeBaron (2005), and
Kelly and Jiang (2014b). For an overview, refer to Gabaix (2009).

2For examples, see Danielsson and De Vries (1997), Gabaix et al. (2006), Stanley, Plerou, and Gabaix (2008),
and Bollerslev and Todorov (2011a)

3Function L is slowly varying if L is strictly positive and lim
x→∞

L(tx)/L(x) = 1 for all t > 0. Prototypical
examples include L(x) = log(x) and L(x) = c for a c > 0. f (x) ∼ g(x) means lim

x→∞
f (x)/g(x)→ 1.
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Figure C.1: Complementary Cumulative Distribution of High-Frequency Returns

This figure plots the empirical complementary cumulative distribution function P(|r| > x) of absolute values of a
sample of 5-minute log returns for the 1000 largest U.S stocks from 2001 to 2016. 10% of the returns are sampled
resulting in approximately 30 million observations. Returns are normalized by stock to have mean 0 and standard
deviation 1. logx is plotted on the horizontal axis and logP(|r| > x) on the vertical axis.

complementary cumulative distribution of a sample of 5-minute normalized absolute returns

for the 1000 largest stocks from 2001 to 2016 using a natural log scale for the horizontal

and vertical axis. The standard normal distribution is plotted in dashed lines for comparison.

According to Figure C.1, the natural log of probability that returns are greater than 2 standard

deviations is approximately linear in log of absolute returns following,

logP(|r| > x) ≈ −
1
ξ

logx + c, (C.2)

and confirming return tails are power-law distributed. Figure C.1 shows that return tails are

much heavier than normal tails. Furthermore, in the data empirical returns greater than 3

standard deviations constitute 1.76% of the sample – approximately 6 times the probability

implied by a normal distribution.

While empirical evidence shows that return tails obey a power-law, this does not guarantee

that idiosyncratic return tails are power-law distributed. In factor models, returns are a function
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Figure C.2: Complementary Cumulative Distribution of High-Frequency, Daily and Monthly
Idiosyncratic Returns

(a) High-Frequency Complemen-
tary Cumulative Distribution

(b) Daily Complementary Cumula-
tive Distribution

(c) Monthly Complementary Cu-
mulative Distribution

Panel (a) plots the empirical complementary cumulative distribution function of absolute values of a sample
of normalized 5-minute residuals for the 1000 largest U.S stocks from 2001 to 2016. Residuals are estimated
every month from regressing log returns on the high-frequency Fama and French (2015) five factors. 10% of the
residuals are sampled resulting in approximately 30 million observations. Panel (b) plots the empirical cumulative
distribution function of absolute values of daily residuals for the 1000 largest U.S stocks from 2001 to 2016. Panel
(c) plots the empirical cumulative distribution function of absolute values of normalized monthly residuals for all
U.S common stocks from 1963 to 2016. Daily and Monthly residuals are estimated for each firm by regressing
log excess returns on the log of Fama and French (2015) five factors over the entire period. For further details on
estimation see Section 4.2.4. High-frequency, daily, and monthly residuals are normalized by stock to have mean
0 and standard deviation 1. logx is plotted on the horizontal axis and logP(|r| > x) on the vertical axis.

of systematic factors and idiosyncratic returns. Returns could be inheriting the power-law be-

haviour only from the tails of systematic factors and not the idiosyncratic returns. I present new

evidence that the tails of idiosyncratic returns are also power-law distributed. Figure C.2 plots

the complementary cumulative distribution of residuals from Fama and French (2015) five fac-

tor model.4 Panel (a) plots high-frequency residuals, panel (b) plots daily residuals, and panel

(c) plots monthly residuals. The distribution is linear in logs, confirming that idiosyncratic

returns are power-law distributed. Returns and residuals have similar slopes 1/ξ, suggesting

4For each firm, high-frequency, daily, or monthly residuals are created by regressing returns on high-frequency,
daily, or monthly Fama and French (2015) five factors, where the factor betas are estimated using Least Absolute
Deviation. See Section 4.2.4 for more details on estimation.
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Figure C.3: Cumulative Distribution of High-Frequency and Daily Trading Volume

(a) High-Frequency Volume Cumulative Distribu-
tion

(b) Daily Volume Cumulative Distribution

Panel (a) plots the empirical cumulative distribution function P(|r| > x) of high-frequency trading volume for the
1000 largest U.S stocks from 2001 to 2016. 10% of the volume observations are sampled resulting in approxi-
mately 30 million observations. Panel (b) plots the empirical cumulative distribution function P(|v| > x) of daily
trading volumes for all U.S common stocks from 2001 to 2016. For each stock, high-frequency and daily trading
volumes are normalized by the stock’s mean absolute deviation v

1
N

∑N
i=1 |v−v̄|

. logx is plotted on the horizontal axis
and logP(|v| > x) on the vertical axis.

that returns are inheriting their power-law behaviour mostly from idiosyncratic returns.5 Addi-

tionally, slopes 1/ξ appear related for high-frequency, daily, and monthly idiosyncratic returns.

Section 4.2.2 proves that that idiosyncratic tail risk ξ is preserved under time aggregation and

that ξ is theoretically equivalent for high-frequency, daily, and monthly idiosyncratic returns.

Gabaix et al. (2006) shows that high-frequency and daily trading volume is power-law dis-

tributed. Following the procedures in their paper, Figure C.3 plots the cumulative distribution

function of 5-minute and daily trading volume for the 1000 largest stocks from January 2001

to December 2016. Each stock’s volume v is normalized by its mean absolute deviation.

Panel (a) of Figure C.3 shows that high-frequency volume greater than 1 absolute deviation

follows a power law with volume tail risk parameter ν. Trading volume has much heavier tails

5ξ here is pooled across firms and time, while ξl,1 in Equation (4.1) is for a single firm-month.
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than returns. The 10% largest 5-minute volumes represents 65.82% of the total volume traded

and the 1% largest volumes represents 27.81% of the total volume traded.6 Panel (b) of Figure

C.3 shows that the tail of daily volume is also power-law distributed. This is unsurprising, since

daily volume is the sum of high-frequency volumes with power-law distributed tails and power-

law random variables are preserved under time aggregation. Additionally, high-frequency and

daily trading volume have similar slopes 1/ν, suggesting that daily trading volume also inherits

the tail distribution of high-frequency trading volume.

In summary, high-frequency returns are power-law distributed. Their availability provides a

new means to effectively capture time-varying idiosyncratic tail risk. In addition, the empirical

evidence shows that idiosyncratic returns are also power-law distributed, as such this is used as

one of the key assumptions in this paper. Furthermore, daily and monthly idiosyncratic returns

inherit the power-law distribution and tail risk parameter ξ from high-frequency idiosyncratic

returns. Trading volume is also power-law distributed and its tail risk can be summarized by

slope parameter ν. The next section introduces a new power-law factor model and idiosyncratic

tail risk measure.

C.2 Proofs

C.2.1 Proof for Lemma 4.2.1

Proof Since βt are constant for each month t, βt is assumed to be the same in the monthly and

high-frequency models. Take the sum of both sides of Equation (4.9) for periods i = 1, ..,N, to

obtain
N∑

i=1

rt,i = βt

N∑
i=1

ft,i +

N∑
i=1

xt,i. (C.3)

6The 0.1% largest volumes represents 9.52% of the total volume traded.
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Then by the aggregation property of log returns, (C.3) can be written as

Rt = βtFt +

N∑
i=1

xt,i, (C.4)

which combined with (4.10) implies Xt =
∑N

i=1 xt,i.

C.2.2 Levy’s theorem (Auxiliary)

Theorem C.2.1 Durrett (2019), Page 186. Suppose Z1,Z2, ... are i.i.d. with a distribution that

satisfies

(i) lim
z→∞

P(Z1>z)
P(|Z1 |>z) = θ ∈ [0, 1]

(ii) P(|Z1| > z) = z−αL(z),

where α < 2 and L is a slowly varying function. Let S n = Z1 + ... + Zn,

an = in f {z : P(|Z1| > z) ≤ n−1} and bn = nE(Z11(Z1≤an))

As n → ∞, (S n − bn)/an ⇒ Y where Y has a nondegenerate distribution. Y follows a Levy

distribution with tail shape α.

C.2.3 Proof for Theorem 4.2.2

Proof Let αt = 1
ξt

in Levy’s Theorem C.2.1 in Section C.2.2. Parameter α is often called

the tail exponent. Assumption 1 (a) and (b) satisfy conditions (i) and (ii) of Levy’s Theorem.

Hence, by Levy’s Theorem,

(
N∑

i=1

xt,i − bN)/aN
d
−→ ut as N → ∞, (C.5)

where u is a Levy-distributed random variable with tail risk ξt, aN = in f {y : P(|xt,1| > y) ≤ N−1},

and bN = NE(xt,11(xt,1≤aN )). By Lemma 4.2.1, the monthly idiosyncratic return is equal to the
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sum of high-frequency returns, that is Xt =
∑N

i=1 xt,i. Substituting Xt =
∑N

i=1 xt,i into (C.5) gives

the result in (4.11).

C.2.4 Jessen and Mikosch Lemma (Auxiliary)

Lemma C.2.2 (Jessen and Mikosch (2006), Lemma 3.1) Assume |Z1| is regularly varying with

shape α ≥ 0. Assume Z1, ...,Zn are random variables satisfying

lim
z→∞

P(Zi > z)
P(|Z1| > z)

= c+
i and lim

z→∞

P(Zi ≤ −z)
P(|Z1| > z)

= c−i , i = 1,..,n, (C.6)

for some non-negative numbers c±i and

lim
z→∞

P(Zi > z,Z j > z)
P(|Z1| > z)

= lim
z→∞

P(Zi ≤ −z,Z j > z)
P(|Z1| > z)

= lim
z→∞

P(Zi ≤ −z,Z j ≤ −z)
P(|Z1| > z)

= 0, i , j, (C.7)

then

lim
z→∞

P(Z1 + ... + Zn > z)
P(|Z1| > z)

= c+
1 + ... + c+

n and lim
z→∞

P(Z1 + ... + Zn ≤ −z)
P(|Z1| > z)

= c−1 + ... + c−n . (C.8)

In particular if the Zi’s are independent non-negative regularly varying random variables then

P(Z1 + ... + Zn > z) ∼ P(Z1 > z) + ... + P(Zn > z). (C.9)

C.2.5 Proof for Theorem 4.2.3

Proof The result is an application of Lemma 3.2 (a) in Mikosch and Vries (2013), and I follow

their proof closely with additional details. The proof uses the result from auxiliary Lemma

C.2.2 (Jessen and Mikosch (2006)) in Section C.2.4 for the sum of regularly varying random

variables. I show the high-frequency idiosyncratic returns, xt,1, .., xt,N , satisfy the conditions of
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Lemma C.2.2.7 Condition (C.6) is satisfied by the tail balance condition in Assumption 1(b),

lim
y→∞

P(xt,1 > y)
P(|xt,1| > y)

= (1 − θ) and lim
y→∞

P(xt,1 ≤ −y)
P(|xt,1| > y)

= θ, (C.10)

where θ ∈ (0, 1]. Since the idiosyncratic returns are i.i.d., then

lim
y→∞

P(xt,i > y)
P(|xt,1| > y)

= (1 − θ) and lim
y→∞

P(xt,i ≤ −y)
P(|xt,1| > y)

= θ, i = 1,..,N. (C.11)

To show condition (C.7), note that

lim
y→∞

P(xt,i ≤ −y, xt, j ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)P(xt, j ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)
P(|xt,1| > y)

P(xt, j ≤ −y)
P(|xt,1| > y)

P(|xt,1| > y), (C.12)

where the first equality uses the independence of xt,i and the second equality is from multiplying

the denominator and numerator by P(|xt,1| > y). It has been proved that for any ρ > 0 and

slowly varying function Lρ(y), lim
y→∞

y−
1
ρ Lρ(y) = 0 (Karamata (1962)), hence lim

y→∞
P(|xt,1| > y) =

lim
y→∞

y−
1
ξt L(y) = 0. Applying the product rule of limits to the last equality in Equation (C.12) and

using Assumption 1(b) gives,

lim
y→∞

P(xt,i ≤ −y, xt, j ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)
P(|xt,1| > y)

lim
y→∞

P(xt, j ≤ −y)
P(|xt,1| > y)

lim
y→∞

P(|xt,1| > y) = θ2 lim
y→∞

y−
1
ξt L(y) = 0.

(C.13)

The other 2 conditions in (C.7) are proved analogously. Since the conditions in Lemma

C.2.2 are satisfied, then

lim
y→∞

P(xt,1 + ... + xt,N ≤ −y)
P(|xt,1| > y)

= Nθ = N lim
y→∞

P(xt,1 ≤ −y)
P(|xt,1| > y)

, (C.14)

7In the notation of Lemma C.2.2, Z1 = xt,1,Z2 = xt,2, ...,ZN = xt,N .
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where the first equality is by Lemma C.2.2 and the second equality is by Assumption 1(b).

Hence,

P(xt,1 + ... + xt,N ≤ −y) ∼ NP(xt,1 ≤ −y), (C.15)

and with the identity in Lemma 4.2.1 implies (4.12).

C.2.6 Proof for Theorem 4.2.4

Proof The result an application of Lemma 3.2 (c) in Mikosch and Vries (2013), and I follow

their proof closely with additional details. Similar to the previous theorem, this proof uses the

result from auxiliary Lemma C.2.2 (Jessen and Mikosch (2006)) in Appendix C.2.4 for the sum

of regularly varying random variables. However, this theorem requires showing the conditions

of Lemma C.2.2 are satisfied for any i by the pair xt,i and ηt,i.8

Fix any i ∈ [1,N], then |xt,i| is regularly varying with shape 1
ξt
> 0. As in Theorem (4.2.3),

xt,i satisfies condition (C.6) by Assumption 1(b). To show ηt,i satisfies condition (C.6), note

that

lim
y→∞

P(ηt,i ≤ −y)
P(|xt,i| > y)

= lim
y→∞

P(ηt,i ≤ −y)
P(|ηt,i| > y)

P(|ηt,i| > y)
P(|xt,i| > y)

. (C.16)

By Assumption 2(b), lim
y→∞

P(ηt,i≤−y)
P(|ηt,i |>y) = p. Also,

lim
y→∞

P(|ηt,i| > y)
P(|xt,i| > y)

= lim
y→∞

y−
1
γt Lη(y)

y−
1
ξt L(y)

= lim
y→∞

y−( 1
γt
− 1
ξt

) Lη(y)
L(y)

= 0, (C.17)

where the last equality is because 1
γt
− 1
ξt
> 0, Lη(y)

L(y) is a slowly varying function, and for any ρ > 0

and slowly varying function Lρ(y), lim
y→∞

y−
1
ρ Lρ(y) = 0 (see Karamata (1962)). Furthermore, by

the product rule of limits,

8In the notation of Lemma C.2.2, Z1 = xt,i and Z2 = ηt,i
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lim
y→∞

P(ηt,i ≤ −y)
P(|xt,i| > y)

= lim
y→∞

P(ηt,i ≤ −y)
P(|ηt,i| > y)

lim
y→∞

P(|ηt,i| > y)
P(|xt,i| > y)

= p0 = 0. (C.18)

The other case in condition (C.6) is proved analogously. To show condition (C.7), note that

lim
y→∞

P(xt,i ≤ −y, ηt,i ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)P(ηt,i ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)
P(|xt,1| > y)

P(ηt,i ≤ −y)
P(|ηt,1| > y)

P(|ηt,1| > y), (C.19)

where the first equality uses the independence of xt,i and ηt,i and the second equality is from

multiplying the denominator and numerator by P(|ηt,1| > y). Applying the product rule of limits

to the last equality in Equation (C.19) gives,

lim
y→∞

P(xt,i ≤ −y, xt, j ≤ −y)
P(|xt,1| > y)

= lim
y→∞

P(xt,i ≤ −y)
P(|xt,1| > y)

lim
y→∞

P(ηt,i ≤ −y)
P(|ηt,1| > y)

lim
y→∞

P(|ηt,1| > y) = θp lim
y→∞

y−
1
ηt Lη(y) = 0.

(C.20)

The other 2 conditions in (C.7) are proved analogously. Since the assumptions of Lemma

C.2.2 are satisfied for xt,i and ηt,i, then

lim
y→∞

P(x∗t,i ≤ −y)

P(|xt,i| > y)
= lim

y→∞

P(xt,i + ηt,i ≤ −y)
P(|xt,i| > y)

= lim
y→∞

P(xt,i ≤ −y) + P(ηt,i ≤ −y)
P(|xt,i| > y)

=

lim
y→∞

P(xt,i ≤ −y)
P(|xt,i| > y)

+ lim
y→∞

P(ηt,i ≤ −y)
P(|xt,i| > y)

= lim
y→∞

P(xt,i ≤ −y)
P(|xt,i| > y)

, (C.21)

which implies that

P(x∗t,i ≤ −y) ∼ P(xt,i ≤ −y). (C.22)
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C.3 Data

C.3.1 TAQ Cleaning

The TAQ requires substantial cleaning due to contamination from market microstructure noise.

As demonstrated in Section 4.2.2, large outliers from microstructure effects must be filtered

for tail risk measurement. I filter noisy observations following the procedures in Barndorff-

Nielsen et al. (2008). My econometric analysis primarily uses prices and trade size from the

trades database. Bid and ask observations from the quotes database are also used for cleaning

trades and robustness analysis. For both trades and quotes, entries with time stamps outside of

the trading day (9:30am to 4:00pm) are removed. Entries with a zero or negative bid, ask, or

price are also removed. For each stock, I keep only entries from the exchange with the highest

volume in the month, and delete entries from other exchanges.

For only the quotes database, entries with a negative spread (ask minus bid) are deleted.

Multiple quotes with the same second timestamp are replaced with a single entry with the

median bid and median ask. Entries with a spread more than 50 times the median spread on

that day are removed. Finally, entries are deleted when the midquote (midpoint of bid and ask)

deviates by more than 10 mean absolute deviations (excluding the considered observation)

from a rolling centered mean of 50 observations (25 observations before and 25 after).

For only the trades data, entries with corrected trades (CORR , 0) are deleted. Entries with

an abnormal sale condition are removed, only keeping entries with COND equal to E, F, @,

*, @E, @F, *E, and *F. Multiple trades with the same second timestamp are replaced with an

entry with the median price. Finally, quotes are used to discipline the trade prices. Entries are

removed if their price is above the ask plus spread or below the bid minus spread.

Merging the TAQ data with the CRSP data is challenging, because CRSP tickers often

differ from TAQ tickers. Additionally, tickers change over time due to mergers, acquisitions,

and other corporate events. I instead merge the TAQ and CRSP databases using CUSIPs. Each

stock’s CUSIP identifier is obtained by merging trades with the TAQ master files. Finally, each
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stock is indexed by CRSP PERMINOs, which are unique and do not change over time.

C.3.2 Constructing High-Frequency Factors

I construct the high-frequency equity factors in the heavy-tailed factor model in Equation (4.9)

following the procedures in Ait-Sahalia, Kalnina, and Xiu (2020). The models considered are

the one-factor CAPM model (Sharpe (1964);Lintner (1965)), the Fama and French (1993) and

Carhart (1997) four-factor model, and the Fama and French (2015) five-factor model. Factors

in the models are reconstructed at 5-minute time intervals. Following Ait-Sahalia, Kalnina,

and Xiu (2020), the construction combines the TAQ, CRSP, and COMPUSTAT databases in a

multiple step procedure.

Since the constituents for the Fama and French factors are not publicly available, the first

step is to replicate their factor construction. Compustat is used to create annual book equity

(BE), operating profit (OP), and investment (INV) variables for each firm in North America.

Only firms on Compustat for more than two years are included, to avoid survival bias. The

firm-year variables are then merged with the CRSP monthly dataset. CRSP data is filtered

according to Fama and French (1993), keeping only ordinary common equity (Share Code 10

or 11) from the NYSE, AMEX, and NASDAQ exchanges. Market equity (ME) for each month

is the product of a firm’s price and shares outstanding. Book-to-market (BE/ME) for June of

year y is the ratio of book equity for y-1 fiscal year end divided by market equity for December

of year y-1. Operating profitability and investment are also calculated during June of year y

according to the formulas in Section C.3.3.

NYSE breakpoints are calculated during June of year y for ME, BE/ME, OP, and INV.

Breakpoints determine portfolio groupings for each variable. Size groupings divide stocks

with ME smaller (S) and bigger (B) than the median NYSE ME. Book-to-market groupings

are denoted growth (L), neutral (N), and value (H), based on breakpoints for the lowest 30%,

neutral 40%, and highest 30% of ranked BE/ME values for NYSE stocks. Six value-weighted

portfolios are formed from the intersection of the two ME and three BE/ME groupings. The
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value factor (HML) is the return of the high value portfolios minus low value (growth) portfo-

lios, given by

HML =
1
2

(S mall Value + Big Value) −
1
2

(S mall Growth + Big Growth). (C.23)

The size factor (S MLB/M) is the return of the small portfolios minus big portfolios, given

by

S MBB/M =
1
3

(S mall Value+S mall Neutral+S mall Growth)−
1
3

(Big Value+Big Neutral+Big Growth).

(C.24)

In Fama and French (2015), the operating profitability groupings are denoted robust (R),

neutral (N), and weak (W). The investment groupings are conservative (C), neutral (N), and

aggressive (A). The operating profitability and investment breakpoints are the 30th and 70th

NYSE percentiles of OP and INV. The profitability factor (RMW) is

RMW =
1
2

(S mall Robust + Big Robust) −
1
2

(S mall Weak + Big Weak),

where the value-weighted portfolios are formed by the intersection of OP and ME groupings.

The investment factor (CMA) is

CMA =
1
2

(S mall Conservative+ Big Conservative)−
1
2

(S mall Aggressive+ Big Aggressive),

where the value-weighted portfolios are formed by the intersection of INV and ME groupings.

Additionally, the size factor (SMB) in Fama and French (2015) is adjusted to
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S MB =
1
3

(S MBB/M + S MBOP + S MBINV), (C.25)

where

S MBOP =
1
3

(S mall Robust+S mall Neutral+S mall Weak)−
1
3

(Big Robust+Big Neutral+Big Weak),

(C.26)

S MBINV =
1
3

(S mall Conservative + S mall Neutral + S mall Aggressive)−

1
3

(Big Conservative + Big Neutral + Big Aggressive), (C.27)

and S MBB/M is given in Equation (C.24).

A stock’s momentum is its return in the previous 12 months excluding the most recent

month. Momentum portfolios are denoted up (U), neutral (N), and down (D) based on break-

points at the 30th and 70th NYSE percentiles. Following Ken French’s website, six value-

weighted portfolios are reformed every month by intersecting MOM and ME groupings. The

momentum factor (UMD) is

UMD =
1
2

(S mall U p + Big U p) −
1
2

(S mall Down + Big Down).

In each model, the market factor (MKT) is the value-weighted portfolio of all stocks con-

sidered in Fama and French (1993).

The replication procedure provides daily portfolio constituents and weights for each equity

factor. The daily constituents are merged with the TAQ to create intraday factors at 5-minute

intervals. The constituents are also merged with the CRSP daily database to create overnight

factors. Portfolios are weighted using the previous day’s market capitalization. The high-
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frequency factors are transformed from simple returns to log returns using

ft,i = log(1 + f S imple
t,i ),

where f S imple
t,i is the simple return of the high-frequency factor created from the procedures in

this section.

In addition to intraday returns, I also include the overnight return of each stock in estimation

procedures, which is consistent with the daily estimation procedures in Savor (2012), Jiang

and Yao (2013), and Jiang and Zhu (2017). Overnight returns are calculated using daily CRSP

data according to the formula in Lou, Polk, and Skouras (2019), which accounts for dividend

adjustments, share splits, and other corporate events. I take the natural logarithm of their simple

return to obtain log overnight return,

Rovernight = log(
1 + Rclose−to−close

1 + Rintraday
), (C.28)

where Rclose−to−close is the standard return from the daily CRSP, and Rintraday =
Pclose
Popen

− 1.

Overnight returns are merged with intraday returns for idiosyncratic tail risk estimation.

C.3.3 Additional Firm Characteristics

Market Beta: Market beta is based on single factor model

Rl,d − r f
d = αl + βl(Rm

d − r f
d ) + εl,d, (C.29)

where Rl,d is the return of stock l on day d, Rm,d is the market return, and r f
d is the risk-free rate.

Equation (C.29) is estimated monthly using a rolling window of the previous 252 days. BETA

for stock l is the least squares estimate β̂l.

Size: Following Fama and French (1993), a firm’s SIZE is the natural logarithm of the market

value of equity. Market equity (ME) is the product of price and number of shares outstanding
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in millions of dollars. The size factor (SMB) includes all common stocks in the NYSE, AMEX,

and NASDAQ exchanges with non-missing market equity for June of year y.

Book-to-Market: Following Fama and French (1993), the BM ratio in June of year y is the

firm’s ratio of book value of common equity in fiscal year y-1 and market value of equity in

December of year y-1. Book value of common equity is defined as book value of shareholders’

equity, plus balance sheet deferred taxes and investment tax credit (if available), minus book

value of preferred stock. The book value of common equity for firm l in fiscal year y-1 is

BEl,y−1 = S EQl,y−1 + T XDBl,y−1 + ITCBl,y−1 − BVPS l,y−1,

where S EQl,y−1 is book value of shareholder’s equity, T XDBl,y−1 is deferred taxes, ITCBl,y−1

is investment tax credit, and BVPS l,y−1 is book value of preferred stock. Depending on avail-

ability, book value of preferred stock is estimated using the redemption (PS T KRVl,y−1), liqui-

dation (PS T KLl,y−1), or par (PS T Kl,y−1) value in that order. The book-to-market factor (HML)

includes all common stocks in the NYSE, AMEX, and NASDAQ exchanges with non-missing

market equity for December of year y-1 and June of year y, and non-missing book equity for

fiscal year y-1.

Operating Profitability: Following Fama and French (2015), the OP of firm l for June of

year y is annual revenues minus cost of goods sold, interest expense, and selling, general, and

administrative expenses divided by book equity for fiscal year y-1, that is,

OPl,y =
REVTl,y−1 −COGS l,y−1 − XINTl,y−1 − XS GAl,y−1

BEl,y−1

where REVTl,y−1 is annual revenues, COGS l,y−1 is cost of goods sold, XINTl,y−1 is interest

and related expenses, XS GAl,y−1 is selling, general, and administrative expenses, and BEl,y−1

is book equity for fiscal year y-1. The profitability factor (RMW) includes all common stocks

on the NYSE, AMEX, and NASDAQ with market equity data for June of year y, positive

BEl,y−1, non-missing REVTl,y−1, and non-missing data for at least one of COGS l,y−1, XINTl,y−1,
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or XS GAl,y−1.

Investment: Following FFama and French (2015), the INV of firm l for June of year y is the

change of total assets from fiscal year y-2 to fiscal year y-1, divided by the total assets in fiscal

year y-2, that is,

INVl,y =
ATl,y−1 − ATl,y−2

ATl,y−2
,

where ATl,y−1 is the firm’s total assets in fiscal year y-1. The investment factor (CMA) in-

cludes all common stocks on the NYSE, AMEX, and NASDAQ exchanges with market equity

data for June of year y and total assets data for fiscal years y-1 and y-2.

Momentum: Following Jegadeesh and Titman (1993), the MOM of stock l in month t is the

cumulative return for the 11 months from month t-12 to t-2, skipping the most recent month.

Short-term reversals: Following Jegadeesh (1990) and Lehmann (1990), the REV of stock l

in month t is the return of the stock in the previous month, that is the return in month t-1.

Illiquidity: Following Amihud (2002), the ILLIQ of stock l in month t is the average daily

ratio of the absolute stock return to the dollar volume, averaged in month t, that is,

ILLIQl =
1
D

D∑
d=1

|Rl,d|

VOLDl,d
,

where D is the number of trading days in the month, Rd is the return on day d, VOLDd is

the respective daily volume in millions of dollars.

Maximum Daily Return: Following Bali, Cakici, and Whitelaw (2011), the MAX is defined

as the maximum daily return within month t.

Idiosyncratic Volatility: Following Ang et al. (2006), idiosyncratic volatility is based on the

Fama and French (1993) three factor model

Rl,d − r f
d = αl + βl(Rm

d − r f
d ) + γlS MBd + φlHMLd + εl,d,

where S MBd and HMLd are daily returns on the size and book-to-market factors defined



C.4. Robustness for Idiosyncratic Tail Risk and Expected Returns 245

in Section C.3.2. The IVOL of stock l in month t is the standard deviation of daily residuals in

month t, that is, IVOLl =
√

var(εl,d).

Coskewness: Following Harvey and Siddique (2000), the COSKEW for stock l in month t is

COS KEWl =
E[(Rl,d − r̄l,t)(Rm

d − r̄m
t )2]√

var(Rl,d)var(Rm
d )

,

where Rl,d is the return of stock l on day d and Rm
d is the market return on day d over the past

year. Variables r̄l,t and r̄m
t are respectively the average daily returns of stock l and the market

portfolio over the past year.

Downside Risk: Following Ang, Chen, and Xing (2006), the βl,down for stock l in month t is

calculated over the past year using excess daily stock returns and market returns, conditional

on the excess market return moving below its average value, that is,

βl,down =
cov(Rl,d − r f

d ,R
m
d − r f

d |R
m
d − r f

d < µ
m)

var(Rm
d − r f

d |R
m
d − r f

d < µ
m)

,

where Rl,d is the return of stock l on day d, Rm
d is the market return on day d, and µm is the

average daily excess market return over the past year.

C.4 Robustness for Idiosyncratic Tail Risk and Expected Re-

turns

C.4.1 Additional Univariate Sorts
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Table C.1: Portfolios Sorted on Idiosyncratic Tail Risk estimated using the Market model residuals

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.50 0.51 0.67 0.62 0.66 0.66 0.76 0.67 0.90 1.02 0.52
t-stat (1.12) (1.15) (1.50) (1.40) (1.56) (1.57) (1.73) (1.55) (2.25) (2.72) (2.61)
FFC4 alpha 0.55 0.58 0.71 0.67 0.73 0.70 0.81 0.70 0.93 1.03 0.48
FFC4 t-stat (1.32) (1.39) (1.73) (1.66) (1.84) (1.79) (1.99) (1.78) (2.45) (2.91) (2.40)
FF5 alpha 0.73 0.70 0.86 0.79 0.86 0.80 0.93 0.81 1.00 1.09 0.36
FF5 t-stat (1.65) (1.61) (1.97) (1.85) (2.11) (1.97) (2.20) (1.92) (2.51) (3.00) (1.67)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.28 0.39 0.47 0.41 0.40 0.49 0.45 0.48 0.73 1.02 0.74
t-stat (0.73) (1.12) (1.27) (1.20) (1.21) (1.45) (1.22) (1.14) (1.97) (2.84) (3.75)
FFC4 alpha 0.33 0.45 0.50 0.43 0.44 0.52 0.53 0.49 0.78 1.05 0.71
FFC4 t-stat (0.89) (1.37) (1.53) (1.47) (1.40) (1.70) (1.67) (1.30) (2.29) (3.17) (3.48)
FF5 alpha 0.49 0.55 0.57 0.51 0.54 0.60 0.63 0.63 0.80 1.18 0.68
FF5 t-stat (1.28) (1.66) (1.70) (1.72) (1.81) (1.88) (1.95) (1.61) (2.23) (3.55) (3.18)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to December 2016. Idiosyncratic tail risk is estimated from the high-frequency the market
model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic tail risk. Panel B
reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.

Table C.2: Portfolios Sorted on Idiosyncratic Tail Risk estimated using the FFC residuals

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.51 0.56 0.68 0.66 0.56 0.76 0.72 0.62 0.88 1.01 0.50
t-stat (1.16) (1.26) (1.61) (1.51) (1.27) (1.77) (1.66) (1.45) (2.13) (2.70) (2.45)
FFC4 alpha 0.57 0.60 0.76 0.73 0.60 0.81 0.76 0.65 0.90 1.03 0.46
FFC4 t-stat (1.34) (1.47) (1.88) (1.83) (1.47) (2.02) (1.92) (1.69) (2.32) (2.90) (2.25)
FF5 alpha 0.74 0.72 0.87 0.88 0.74 0.93 0.88 0.76 0.97 1.09 0.35
FF5 t-stat (1.63) (1.68) (2.04) (2.10) (1.72) (2.19) (2.16) (1.89) (2.39) (2.99) (1.60)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.34 0.43 0.36 0.61 0.29 0.57 0.42 0.52 0.60 0.91 0.57
t-stat (0.93) (1.25) (1.07) (1.77) (0.82) (1.69) (1.10) (1.31) (1.40) (2.37) (2.65)
FFC4 alpha 0.40 0.46 0.42 0.66 0.30 0.63 0.45 0.57 0.62 0.91 0.51
FFC4 t-stat (1.09) (1.46) (1.33) (2.10) (0.96) (2.13) (1.37) (1.62) (1.55) (2.64) (2.39)
FF5 alpha 0.54 0.55 0.52 0.74 0.37 0.75 0.58 0.65 0.66 1.02 0.48
FF5 t-stat (1.42) (1.75) (1.64) (2.33) (1.11) (2.51) (1.75) (1.80) (1.58) (2.95) (2.24)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic tail
risk between January 2001 to December 2016. Idiosyncratic tail risk is estimated from the high-frequency Fama-French-
Carhart model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic tail risk. Panel
B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.
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Table C.3: Portfolios Sorted on Idiosyncratic Tail Risk estimated using the Industry statistical model
residuals

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.45 0.57 0.64 0.61 0.62 0.73 0.73 0.71 0.81 0.98 0.53
t-stat (1.00) (1.20) (1.36) (1.28) (1.31) (1.51) (1.53) (1.50) (1.77) (2.24) (2.95)
FFC4 alpha 0.51 0.62 0.70 0.67 0.66 0.78 0.78 0.75 0.84 0.98 0.47
FFC4 t-stat (1.21) (1.43) (1.64) (1.52) (1.52) (1.74) (1.76) (1.73) (1.96) (2.46) (2.69)
FF5 alpha 0.68 0.75 0.85 0.83 0.77 0.90 0.90 0.85 0.94 1.07 0.39
FF5 t-stat (1.49) (1.66) (1.89) (1.79) (1.68) (1.91) (1.96) (1.87) (2.07) (2.57) (2.25)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.21 0.42 0.48 0.59 0.50 0.57 0.72 0.60 0.67 0.91 0.70
t-stat (0.63) (1.11) (1.35) (1.55) (1.25) (1.49) (1.83) (1.45) (1.53) (2.29) (3.53)
FFC4 alpha 0.27 0.45 0.54 0.63 0.55 0.60 0.76 0.64 0.68 0.94 0.67
FFC4 t-stat (0.81) (1.34) (1.67) (1.95) (1.57) (1.78) (2.19) (1.70) (1.74) (2.67) (3.39)
FF5 alpha 0.37 0.53 0.64 0.74 0.65 0.72 0.89 0.72 0.84 1.02 0.65
FF5 t-stat (1.06) (1.56) (1.88) (2.23) (1.82) (2.07) (2.61) (1.94) (2.11) (2.92) (3.14)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to December 2016. Idiosyncratic tail risk is estimated from the high-frequency industry
statistical model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic tail risk.
Panel B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.

Table C.4: Portfolios Sorted on Idiosyncratic Tail Risk estimated using the High-Frequency Cross-
Sectional Variable model residuals

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.46 0.53 0.61 0.62 0.58 0.69 0.76 0.72 0.86 0.96 0.50
t-stat (1.00) (1.12) (1.32) (1.27) (1.21) (1.41) (1.57) (1.50) (1.87) (2.15) (2.80)
FFC4 alpha 0.51 0.59 0.68 0.68 0.62 0.73 0.80 0.75 0.89 0.96 0.45
FFC4 t-stat (1.20) (1.35) (1.59) (1.52) (1.43) (1.66) (1.79) (1.70) (2.06) (2.37) (2.50)
FF5 alpha 0.65 0.74 0.85 0.80 0.73 0.87 0.95 0.85 0.98 1.05 0.40
FF5 t-stat (1.43) (1.64) (1.89) (1.70) (1.59) (1.92) (2.03) (1.80) (2.13) (2.50) (2.15)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.30 0.31 0.50 0.55 0.32 0.69 0.66 0.76 0.62 0.72 0.42
t-stat (0.85) (0.86) (1.23) (1.57) (0.80) (1.85) (1.70) (1.74) (1.34) (1.66) (1.88)
FFC4 alpha 0.33 0.37 0.50 0.58 0.38 0.75 0.73 0.78 0.62 0.72 0.40
FFC4 t-stat (1.02) (1.13) (1.45) (1.79) (1.06) (2.21) (2.05) (2.20) (1.49) (1.88) (1.74)
FF5 alpha 0.40 0.46 0.65 0.62 0.49 0.88 0.88 0.89 0.73 0.87 0.47
FF5 t-stat (1.18) (1.42) (1.81) (1.90) (1.32) (2.62) (2.56) (2.49) (1.73) (2.27) (1.97)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to October 2016. Idiosyncratic tail risk is estimated from the high-frequency cross-Sectional
variable model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic tail risk. Panel
B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.
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Table C.5: Portfolios Sorted on Idiosyncratic Tail Risk estimated using Midquotes

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.52 0.48 0.59 0.37 0.58 0.56 0.61 0.79 0.83 0.96 0.44
t-stat (1.13) (1.09) (1.37) (0.80) (1.31) (1.29) (1.38) (1.82) (1.88) (2.35) (3.05)
FFC4 alpha 0.53 0.54 0.67 0.39 0.63 0.61 0.64 0.83 0.83 0.97 0.43
FFC4 t-stat (1.32) (1.26) (1.71) (0.93) (1.51) (1.49) (1.60) (2.07) (2.06) (2.57) (3.13)
FF5 alpha 0.67 0.71 0.84 0.52 0.77 0.77 0.74 0.91 0.88 1.03 0.36
FF5 t-stat (1.60) (1.54) (2.11) (1.17) (1.75) (1.85) (1.72) (2.18) (2.10) (2.62) (2.67)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.25 0.13 0.50 0.15 0.28 0.54 0.32 0.61 0.59 0.97 0.72
t-stat (0.61) (0.34) (1.49) (0.38) (0.75) (1.41) (0.76) (1.52) (1.46) (2.65) (3.10)
FFC4 alpha 0.31 0.14 0.58 0.18 0.32 0.57 0.30 0.63 0.60 1.00 0.68
FFC4 t-stat (0.79) (0.39) (1.81) (0.48) (0.96) (1.57) (0.89) (1.76) (1.70) (2.86) (2.81)
FF5 alpha 0.49 0.27 0.66 0.23 0.42 0.72 0.47 0.67 0.71 1.11 0.62
FF5 t-stat (1.21) (0.74) (1.95) (0.62) (1.18) (1.90) (1.34) (1.85) (1.96) (3.13) (2.75)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to October 2016. Idiosyncratic tail risk is estimated using midquote data and the high-
frequency Fama-French five factor model residuals. Panel A reports equally-weighted excess returns and alphas sorted on
idiosyncratic tail risk. Panel B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.

Table C.6: Portfolios Sorted on Idiosyncratic Tail Risk estimated using 0.025 quantile

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.46 0.62 0.58 0.52 0.68 0.75 0.80 0.80 0.85 0.90 0.45
t-stat (1.02) (1.40) (1.31) (1.15) (1.59) (1.75) (1.94) (1.94) (2.08) (2.31) (2.77)
FFC4 alpha 0.50 0.66 0.63 0.56 0.72 0.80 0.84 0.85 0.90 0.93 0.43
FFC4 t-stat (1.23) (1.61) (1.53) (1.37) (1.82) (1.98) (2.17) (2.22) (2.39) (2.52) (2.66)
FF5 alpha 0.66 0.79 0.76 0.69 0.85 0.91 0.97 0.96 1.00 0.99 0.33
FF5 t-stat (1.52) (1.81) (1.75) (1.61) (2.04) (2.12) (2.38) (2.42) (2.58) (2.57) (1.99)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.23 0.32 0.49 0.54 0.39 0.49 0.54 0.56 0.56 0.72 0.49
t-stat (0.62) (0.94) (1.31) (1.55) (1.04) (1.33) (1.65) (1.54) (1.38) (1.92) (2.71)
FFC4 alpha 0.26 0.36 0.54 0.57 0.40 0.53 0.60 0.60 0.60 0.80 0.54
FFC4 t-stat (0.77) (1.10) (1.55) (1.84) (1.25) (1.60) (2.00) (1.83) (1.67) (2.37) (2.72)
FF5 alpha 0.36 0.44 0.65 0.68 0.46 0.61 0.68 0.75 0.73 0.83 0.46
FF5 t-stat (1.00) (1.29) (1.80) (2.12) (1.45) (1.80) (2.23) (2.31) (2.03) (2.36) (2.32)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to December 2016. Idiosyncratic tail risk is estimated using a Hill threshold of 0.025 and the
high-frequency market model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic
tail risk. Panel B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.
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Table C.7: Portfolios Sorted on Idiosyncratic Tail Risk using 0.01 quantile

1 (Low) 2 3 4 5 6 7 8 9 10 (High) (10-1)
Panel A: Univariate Sort on Idiosyncratic Tail Risk (Equal-Weighted)

Excess Return 0.45 0.55 0.63 0.63 0.70 0.62 0.68 0.79 0.89 1.01 0.56
t-stat (1.05) (1.26) (1.43) (1.42) (1.58) (1.45) (1.54) (1.85) (2.08) (2.73) (2.78)
FFC4 alpha 0.51 0.60 0.67 0.68 0.76 0.67 0.73 0.84 0.91 1.02 0.51
FFC4 t-stat (1.29) (1.50) (1.62) (1.70) (1.87) (1.68) (1.78) (2.05) (2.28) (2.89) (2.58)
FF5 alpha 0.68 0.74 0.81 0.83 0.87 0.81 0.83 0.93 1.00 1.08 0.40
FF5 t-stat (1.61) (1.77) (1.85) (1.94) (2.05) (1.95) (1.93) (2.15) (2.38) (2.97) (1.95)

Panel B: Univariate Sort on Idiosyncratic Tail Risk (Value-Weighted)
Excess Return 0.18 0.59 0.47 0.60 0.49 0.71 0.70 0.74 0.72 0.86 0.68
t-stat (0.55) (1.74) (1.27) (1.62) (1.31) (1.84) (1.86) (1.83) (1.66) (2.54) (3.22)
FFC4 alpha 0.23 0.64 0.47 0.65 0.53 0.75 0.74 0.79 0.72 0.86 0.63
FFC4 t-stat (0.76) (2.01) (1.43) (1.99) (1.67) (2.26) (2.16) (2.09) (1.82) (2.72) (2.88)
FF5 alpha 0.33 0.74 0.58 0.76 0.63 0.88 0.87 0.89 0.80 0.93 0.61
FF5 t-stat (1.06) (2.31) (1.69) (2.27) (1.92) (2.64) (2.48) (2.24) (2.05) (2.88) (2.79)

The table reports monthly average idiosyncratic tail risk, excess returns, and alphas for portfolios sorted on idiosyncratic
tail risk between January 2001 to December 2016. Idiosyncratic tail risk is estimated using a Hill threshold of 0.1 and the
high-frequency market model residuals. Panel A reports equally-weighted excess returns and alphas sorted on idiosyncratic
tail risk. Panel B reports value-weighted excess returns and alphas sorted on idiosyncratic tail risk.
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Table C.10: Asset Pricing Tests on Anomaly Portfolios using Traded VTR

Panel A: Tail Risk Deciles Panel B: Tail Risk ME Portfolios Panel C: Characteristic ME Portfolios

ITR Dec. VTR Dec. 25 ITR 25 VTR 25 OP 25 INV 25 MOM 25 IVOL ALL

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 1.28 1.81 0.58 0.25 1.20 1.55 0.64 0.97 0.79
NW t-stat (1.50) (2.10) (1.73) (0.73) (2.94) (3.52) (1.64) (3.38) (2.71)
Shanken t-stat [1.25] [1.84] [1.24] [0.57] [2.85] [3.62] [1.44] [2.85] [2.26]
RM − R f -0.87 -1.38 -0.12 0.24 -0.68 -1.05 -0.08 -0.49 -0.28
NW t-stat (-0.96) (-1.42) (-0.25) (0.54) (-1.14) (-1.75) (-0.14) (-0.97) (-0.56)
Shanken t-stat [-0.80] [-1.30] [-0.21] [0.45] [-1.29] [-1.99] [-0.15] [-1.06] [-0.59]
Traded VTR 0.89 0.69 0.89 0.62 0.86 1.00 0.70 0.96 0.79
NW t-stat (2.56) (3.82) (3.30) (2.44) (2.68) (3.27) (2.55) (3.60) (3.17)
Shanken t-stat [2.31] [3.55] [2.79] [2.30] [2.60] [3.18] [2.32] [3.34] [2.95]

% R2 76.53 93.05 84.71 79.85 64.48 89.33 71.19 80.91 67.85
% MAE 0.07 0.04 0.07 0.07 0.11 0.08 0.11 0.09 0.11
Months 192 192 192 192 192 192 192 192 192

This table presents asset pricing tests on double-sorted portfolios using the traded VTR
and market two-factor model from 2001 to 2016. In Panel A, the test assets are the decile
portfolios sorted on idiosyncratic tail risk or volume tail risk examined in Table 4.7. In
Panel B, the test assets are 25 portfolios conditionally sorted on size and idiosyncratic tail
risk or volume tail risk. Stocks are first grouped into size quintiles, then within each size
quintile, stocks are grouped by their ITR or VTR. In Panel C, test assets are 25 portfolios
independently sorted by size and the characteristic. Stocks are grouped by the intersection
of 5 quintiles sorted on size and 5 quintiles sorted on the characteristic. These anomaly
portfolios are downloaded from from Kenneth French’s website and include operating
profitability, investment, momentum, reversal, and idiosyncratic volatility. The table re-
ports the risk premia estimates, R2, and mean absolute pricing errors in percentage terms,
Newey-West t-statistics with one lag, and Shanken t-statistics.

Table C.11: Tests on HKM Portfolios using Traded VTR

FF Bond Sov Options CDS Conmod FX All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Intercept 0.63 1.25 0.26 0.28 0.84 0.34 0.90 0.78 0.02 -0.11 0.24 0.10 0.22 -0.34 0.34 0.14
NW t-stat 1.12 1.92 4.16 4.91 2.46 1.76 1.07 0.94 0.41 -4.99 0.59 0.34 0.95 -1.29 1.34 1.36
Shanken t-stat 1.27 1.83 2.72 5.20 1.94 1.54 1.01 0.74 0.27 -4.79 0.62 0.30 0.73 -0.78 1.59 1.37
RM − R f -1.01 1.17 2.04 -0.89 2.51 -0.07 0.98 -0.08
NW t-stat -1.20 0.99 2.07 -0.86 3.45 -0.08 0.72 -0.17
Shanken t-stat -1.30 1.16 1.85 -0.76 3.57 -0.09 0.49 -0.18
CITR 1.02 1.27 3.75 -0.17 -3.21 -1.57 2.70 2.59 5.10 -0.77 0.94 0.95 4.51 4.26 1.12 1.21
NW t-stat 2.49 2.51 1.22 -0.10 -2.06 -1.29 2.00 2.18 2.57 -0.99 1.63 1.62 3.64 3.35 3.05 3.25
Shanken t-stat 2.28 2.65 1.13 -0.12 -1.37 -1.11 2.15 1.99 1.48 -0.78 1.34 1.34 2.82 2.53 2.64 2.92

% Adj. R2 58.06 63.23 34.96 58.98 30.18 75.30 97.19 97.19 14.91 66.95 19.70 20.96 14.91 33.22 28.93 43.37
% MAE 0.12 0.12 0.11 0.10 0.26 0.14 0.07 0.07 0.09 0.07 0.50 0.49 0.26 0.23 0.31 0.24
Months 144 144 132 132 124 124 133 133 143 143 144 144 109 109 144 144

Test assets are the portfolios in He, Kelly, and Manela (2017) downloaded from Asaf Manela’s website. Assets in-
clude equities, US government and corporate bonds, sovereign bonds, options, credit default swaps, commodities,
and foreign exchange. The Fama MacBeth analysis is from January 2001 to December 2012. The model uses the
market portfolio and traded CITR as the factors. Traded ITR is the value-weighted return on a portfolio that goes
long the highest ITR decile and shorts the lowest ITR decile. The table reports the risk premia estimates, R2, and
mean absolute pricing errors in percentage terms, Newey-West t-statistics with one lag, and Shanken t-statistics.
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