
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2006

Integrating Schedulability Analysis with UML-RT
Qimin Gao
Dematic Corp., gaoqimin@hotmail.com

Lyndon Brown
University of Western Ontario, lbrown@uwo.ca

Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Gao, Qimin; Brown, Lyndon; and Capretz, Luiz Fernando, "Integrating Schedulability Analysis with UML-RT" (2006). Electrical and
Computer Engineering Publications. 138.
https://ir.lib.uwo.ca/electricalpub/138

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/138?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages


Control and Intelligent Systems, Vol. 34, No. 2, 2006

INTEGRATING SCHEDULABILITY

ANALYSIS WITH UML-RT

Q. Gao,∗ L.J. Brown,∗∗ and L.F. Capretz∗∗

Abstract

The use of object-oriented techniques and methodologies to design

real-time control systems appears to be necessary in order to deal

with the increasing complexity of such systems. Recently, many

object-oriented methods have been used for the modelling and de-

signing of real-time control systems. We believe an approach that

integrates the advancements in both object modelling and design

methods, and real-time scheduling theory is a key to the successful

use of object-oriented technology for real-time software. However,

past approaches to integrate the two either have restricted the

object models, or did not allow sophisticated schedulability analysis

techniques. In this paper, we show the manner in which schedu-

lability analysis can be integrated with object-oriented design; we

develop the schedulability and feasibility analysis method for exter-

nal messages that may suffer release jitter due to being dispatched

by a tick-driven scheduler in real-time control system; and we also

develop the schedulability method for sporadic activities, where

messages arrive sporadically and are then executed periodically for

some bounded time. This method can be used to cope with timing

constraints in complex real-time control systems.

Key Words

Real-time software, computer-aided control design, manufacturing

systems, real-time control systems, real-time scheduling theory

1. Introduction

There have been many attempts to make use of object-
oriented technology for real-time software. Some such at-
tempts have come from the industrial areas [1–3], whereas
others have come from academia [4–7]. Many of these
claims are mostly based on the assumption that real-time
scheduling theory can be used to perform schedulability
analysis. But traditional real-time scheduling theory re-
sults [8–11] can be directly used only when the object mod-
els are restricted to look like the tasking models employed
in real-time scheduling theory. In other cases, either the
claims are unsupported [2] or are based on less sophis-
ticated analysis [4]. Saksena and Karvelas [12] provided

∗ Trojan Technology Inc., London, Ontario, N5V 4T7, Canada;
e-mail: pgao@trojanuv.com

∗∗ University of Western Ontario, London, Ontario, N6A 5B9,
Canada; e-mail: {lbrown, lcapretz}@eng.uwo.ca

(paper no. 201-1590)

the first attempt to apply real-time scheduling theory to
the object-oriented design by use of the state-of-the-art
technology in both fields. In their paper, these authors
show how to integrate traditional schedulability analysis
techniques with object-oriented design models based on
the assumptions that the entire external message arrives
perfectly on a periodic or aperiodic time interval. Martins
[13] provided the first attempts to commercially implement
the scheduling theory for the Unified Modelling Language
(UML) by using the technologies in [12]; these integrated
tools allow issues on timeliness to be addressed much earlier
in the development process.

However, some critical issues regarding real-time con-
trol systems have not been well addressed by current
approaches, especially because schedulability analysis for
real-time control systems has not been effectively incorpo-
rated. Although some researchers [12, 13] have addressed
this problem by providing code synthesis of scheduling as-
pects and functionality aspects models, they have mainly
focussed on the assumptions that all external events arrive
perfectly on periodic or aperiodic time intervals without
release jitter and sporadic effects. In general, the real-time
control systems do not satisfy these constraints. A mes-
sage may be delayed by the polling of a tick scheduler,
or perhaps awaiting the arrival of another message, and
some real-time control systems have messages that behave
as so-called sporadically periodic; a message arrives at
some time, executes periodically for a bounded number
of periods, and then does not re-arrive for a larger time.
Examples of such messages are interrupt handlers for burst
interrupts or certain monitoring messages in real-time con-
trol systems. Until now, there has been no widely accepted
object-oriented design methodology that deals with these
timing constraints for real-time control systems; thus, the
above analysis methods need to be expanded.

In this paper, we will present an approach to incor-
porating schedulability analysis in a UML for Real-Time
(UML-RT) model-based development process, as an ex-
tension of the theoretical work developed by Martins [13].
Using this approach, satisfaction of the end-to-end timing
constraints of real-time control systems can be verified and
the schedulability analysis results will be used for aspect-
oriented code generation in the model transformation and
automatic code generation. The rest of the paper is orga-
nized as follows. Section 2 introduces schedulability anal-

125



ysis based on RMA. Section 3 describes the feasibility and
schedulability analysis methods for real-time control sys-
tems with jitter messages and sporadically periodic mes-
sages. In Section 4, we present schedulability results for
an example system based on our method. Finally, we end
with some concluding remarks.

2. Schedulability Analysis and Extended Sequence
Diagram for UML-RT

Scheduling theory for real-time systems has received a
great deal of attention. The first contribution to real-time
scheduling theory was made by Liu and Layland [8], who
developed optimal static and dynamic priority scheduling
algorithms for hard real-time sets of independent tasks.
Since then, significant progress has been made on gen-
eralizing and improving the schedulability analysis. The
authors developed an exact schedulability analysis to de-
termine worst-case timing behaviour for tasks with hard
real-time constraints in the RMA model considered in the
initial work [8], as well as extended models such as arbi-
trary deadlines, release jitter, sporadic and periodic tasks
[9–11, 14–16].

Most of the deterministic schedulability analysis tech-
niques follow the same approach. First, the notion of the
critical instant of a task is defined to be an instant at which
a request for that task will have the largest response time.
Then, the notion of busy period at level “i” is defined
as a continuous interval of time during which events of
priority “i” or higher are being processed [8]. With these
concepts, the calculation of the worst-case response time
of an action involves the computation of the response time
for successive arrivals of the action, starting from a critical
instant until the end of the busy period; also, the response
time of a particular instant of action can be calculated by
considering the effects of the blocking factor from lower
priority actions and the interference factor from higher or
equal priority actions, including previous instances of the
same action. If the worst-case response time of the action
is less than or equal to its deadline, the action can be said
to be schedulable and feasible. Otherwise, the action is not
schedulable or feasible.

In our work, we assume that real-time control systems
are implemented in a uni-processor single thread environ-
ment made up of a set of transactions, where transaction
denotes a single end-to-end computation within the sys-
tem. Specifically, it refers to the entire causal set of actions
executed as a result of the arrival of an external event
that originated from an external source. External event
sources are typically input devices (such as sensors) that
interrupt the CPU-running embedded software. These ex-
ternal events can be periodic or aperiodic, and also have
jitter and sporadically periodic characteristics. We express
the real-time control system as a collection of transactions
that capture all computation in the design model. We also
use the term action to capture the processing information
associated with an external or internal event. In our model,
an action captures this entire run-to-completion processing
of an event. The execution of an action may generate
internal events that trigger the execution of other actions.

Thus, each transaction can be expressed as a collection
of actions and events. Each action is a composite action
and composed from primitive sub-actions. These primi-
tive sub-actions include send, call, and return actions [12],
which generate internal events through sending messages
to other objects.

From UML and UML-RT, we know that the finite
state machine behaviour models of objects are useful for
code-generation; they are not very conducive for reasoning
about end-to-end behaviour or scenarios. UML-RT uses
sequence diagrams to model end-to-end system behaviour
or scenarios. However, sequence diagrams are weak in
expressing a detailed specification of end-to-end behaviour
which is necessary for schedulability analysis. To express
our ideas, we extend the sequence diagram notation to
capture detailed end-to-end behaviour.

We use an extended sequence diagram from UML
to describe transactions in the system models. In the
expanded sequence diagram, we capture the detail of the
processing associated with an event. We use the following
notations to represent the different event types.

1. We use “ ” to represent the asynchronous messages
(events).

2. We use “ ” to represent the synchronous mes-
sages (events).

3. We use “ ” to represent the periodic messages
(events).

4. We use “ ” to represent the aperiodic messages
(events).

5. We use “ ” to represent the sporadically periodic
messages (events).

6. We use “ ” to represent the release jitter time of
messages (events).

As an illustration, Fig. 1 describes the transaction
of automatic gauge control system in a steel mill. The
transaction is driven by a timeout message with jitter char-
acteristics. As can be seen, the automatic gauge control
object obtains the steel plate thickness from the thickness
gauge object using a synchronous call action. It then car-
ries out control law calculations and generates a position
value, which is sent asynchronously to the hydraulic posi-
tion control object. The hydraulic position control object
then sends a command to the hydraulic position actuators,
adjusting the separation of the rolling cylinders. The se-
quence diagram for a transaction can be easily expanded
to include sub-actions associated with code executed by
the real-time execution framework.

In the expanded sequence diagram, we can repre-
sent the external events, internal event, actions, and sub-
actions. We can also express the external events’ arrival
patterns such as periodic external event with release jitter,
aperiodic event with release jitter and sporadic external
event with outer period and inner period. The extended
sequence diagram is useful in capturing timing constraints
such as arrival rates of external events; periodic, aperi-
odic and sporadically periodic external messages (events);
release jitter time of external messages (events); and end-
to-end deadlines. This extended sequence diagram has
been integrated with a real-time scheduling algorithm to

126



Figure 1. Extended sequence diagram of automatic gauge control system.

analyse the schedulability and feasibility of control sys-
tems. For the purpose of this paper, we are concerned
about (1) arrival patterns of the external events, and (2)
end-to-end deadlines of actions in the extended sequence
diagram. The end-to-end deadlines can be specified on any
action in a transaction, which is relative to the arrival of
the external event.

2.1 Notation

In our paper, we use event and message synonymously. Let
ε={E1, E2, . . . , En, En+1, . . . , EN} represent the set of all
event-streams in the system, where E1, E2, . . . , En denote
external event streams, and the remaining are internal
ones. All external events are assumed to be asynchronous,
periodic, aperiodic and sporadic events with release jitter.
We use Ji to represent the jitter time of external event Ei.
Ti and ti represents the outer period and inner period for
sporadically periodic external events Ei. If the external
event is without sporadic effects, then the inner period of
such an event is equal to its outer period. Each external
event stream Ei corresponds to a transaction τi.

We also use Ai to represent an action associated with
each event Ei. An action may be decomposed into a se-
quence of sub-actions Ai ={ai,1, ai,2, ai,3, . . . , ai,ni

}, where
each ai,j denotes a primitive action, such as sending a
message, calling a message, and returning a message. We
use q to represent the instance “q” of action Ai. Within
this model, each action Ai represents the entire “run-to-
completion” processing associated with an event Ei, and
is characterised as either asynchronously triggered or syn-
chronously triggered, depending on whether the trigger-
ing event is asynchronous or synchronous. Each action
Ai executes within the context of an active object (cap-
sule) Õ(Ai), and is characterised by a priority (π(Ai)),
which is the same as the priority of its triggering event
Ei. Each action Ai is also characterized by the compu-
tation time (C(Ai)) and the deadline (D(Ai)). Each sub-
action ai,j of Ai is characterized by a computation time
C(ai,j) (abbreviated as Ci,j); the computation time of an
action is simply the sum of its component sub-actions (i.e.,
C(Ai)=

∑
j Ci,j). Also, the computation time of any se-

quential subgroup of sub-actions is ai,p to ai,q where p≤ q

is Ci,p,...,q =
∑j≤q

j=p Ci,j . Each event and action is part of
a transaction. For the rest of this paper, we use super-

script to denote transactions. For example, Aτ
i represents

an action and Eτ
i represents an event, both of which be-

long to transaction τ . Adding the superscript for external
events {Ek: k= 1, 2, . . . , n} is unnecessary since there is
exactly one external event associated with each transaction
(i.e., external event Ek belongs to transaction k and would
be denoted as Ek

k). In this case, the superscript will be
omitted.

2.1.1 Communication Relationships

We assumed that there are two types of communica-
tion relationships between actions, asynchronous and
synchronous. We use the symbol “→” to denote an
asynchronous relationship. An asynchronous relation-
ship Ai →Aj indicates that action Ai generates an asyn-
chronous signal event Ej (using a send sub-action) that
triggers the execution of action Aj . Likewise, we use
the symbol “↔” to denote synchronous relationships. A
synchronous relationship Ai ↔Ak indicates that action
Ai generates a synchronous call event Ek (using a call
sub-action) that triggers the execution of action Ak. We
assume that if the events have a synchronous relation-
ship, the actions have the same priority. We also use a
‘causes’ relationship, and use the symbol ∝ for that pur-
pose. Both asynchronous and synchronous relationships
are also causes relationships, as in Ai →Aj =>(Ai ∝Aj),
and Ai ⇔Aj => (Ai ∝Aj). Moreover, the causes relation-
ship is transitive; thus, (Ai ∝Aj)∧ (Aj ∝Ak)=>Ai ∝Ak.
When Ai ∝Aj . We say that Aj is a successor of Ai since
Ai must execute (at least partially) for Aj to be triggered.

2.1.2 Synchronous Set

For the purpose of analysis, we define the term “syn-
chronous set of Ai”. The synchronous set of Ai is a set of
actions that can be built starting from action Ai and adding
all actions that are called synchronously from it. The pro-
cess is repeated recursively until no further actions can be
added to the list. We use Υ(Ai)) to denote the synchronous
set of Ai and C(Υ(Ai)) to denote the cumulative execution
time of all the actions in this synchronous set. We also
refer to Ai as the root action of this synchronous set.

127



Figure 2. The reverse rolling mill.

2.2 A Case Study

Fig. 2, for instance, depicts a typical reverse rolling mill in
the steel rolling mill. It has a payoff reel, a rolling mill, and
a tension reel. A hot coil strip is uncoiled by the payoff
reel. The strip is rolled to the specified thickness and coiled
by the tension reel. The aim of the rolling process is to
reduce the thickness of a strip to a desired thickness gauge.
This is done by applying a force to the strip while moving
through the roll gap. In order to meet the increasing de-
mand for the high precision of strip thickness, a new auto-
matic gauge control system was proposed containing Roll
Gap Control, Roll Speed Control, and Roll Eccentricity
Compensation. The Roll Gap Control System attempts
to adjust the force from the hydraulic cylinder and hence
the roll gap, in order to ensure the output thickness of
the rolled strip. The Roll Speed Control System auto-
matically adjusts the roll speed according to the mass flow
theory and the tension of the steel strip to reduce the in-
fluence of thickness fluctuation and satisfy the high quality
requirements. The Roll Eccentricity Compensation Sys-
tem is applied to adjust the roll gap to accommodate devi-
ations produced as a result of the rolls not being perfectly
circular. If the eccentricity compensation is delayed, it can
accentuate the errors rather than cancelling, thus making
the strip thickness worse. The eccentricity compensation
must be done in the right time or right phase. Even if it is
done in the right amplitude, but it is not done at the right
time, it can also worsen the strip thickness. All the control
systems must guarantee their functional requirements and
timing requirements. In order to design such systems, we
will use the object-oriented analysis and design method-
ologies to analyse the functional requirements and timing
requirements in such real-time control systems.

2.2.1 General Description

Fig. 3 gives the general description of the automatic
gauge control system. This system is made up of nine
objects, where each object’s finite state machine is shown.

We can observe that each object has only one ‘real’ state
associated with it. We also notice that each object calls its
SpecialInitialization action during initialization, through
the system event RTInitSignal, and SpecialDestruction
action during system shutdown, through the system event
RTDestroySignal. In addition, there are three external
events interacting with the system just described above.
The first external is the thickness setup event. This event is
a periodic event with period 60 time units and 3 time units
release jitter in the system. The second external event is
Tension_AGC triggered event, which is an aperiodic event
with period 200 time units and 5 time units release jitter.
The third external event is Eccentricity Control Triggered
Event; this event is a sporadical event, with outer period
900 time units and inner period 300 time units. The entire
external events arrive into the system at time 0.

2.2.2 Timing Characteristics of Automatic Gauge
Control System

We have already described the automatic gauge control
system functional requirements. Now, we will consider
the timing characteristics of the system. Table 1 shows
the timing characteristics in the automatic gauge control
system. All the timing properties can be derived from
the real-time control system timing requirements. From
Table 1 we can see that events have unique priorities,
they can arrive at any time, but have variable-bounded
delay before being placed in a priority-order run-queue.
Periodic and aperiodic events are given worst-case inter-
arrival time, and sporadically periodic events are given the
outer period and inner period. Each event cannot re-arrive
sooner than its inner-arrival time; each event may execute a
bounded amount of computation, and it is associated with
the action; each action is given the worst-case execution
time and deadline. This worst-case execution time value is
deemed to contain the overhead due to context switching.
The cost of preemption, within the model, is thus assumed
to be zero.

128



Figure 3. Method description of automatic gauge control system.

2.2.3 Extended UML-RT for Real-Time Control
Systems

Fig. 4 describes the automatic gauge control system for
the No. 1 roll stand in the tandem cold rolling mill
as discussed earlier. The transaction in the system is
driven by different external events. As it can be seen, the
Thickness_Control object obtains the steel strip thickness
from the Thickness_Sensor object using a synchronous
call action. It then does the control law calculations and
generates a roll gap value, which is sent asynchronously to
the Roll_Gap_Control object. The Roll_Gap_Control
object is responsible for adjusting the gap of roll in the
stand, then using this method to adjust the thickness of
steel strip. The extended sequence diagram includes sub-
actions associated with code executed by the real-time
execution framework. In this extended sequence diagram,
we can see the external events, internal events, actions, and
sub-actions. We can also express the external event arrival
patterns, such as periodic external event with release jitter,
aperiodic event with release jitter, sporadic external event
with outer period and inner period.

3. Schedulability and Feasibility Analysis

In our real-time control system model, we assume that only
the external events have release jitter, and the internal

events do not, because the internal event arrival is only
decided by the action associated with the internal event.
For the external events Eτ , which behave as ‘sporadically
periodic’ executing with an inner period (tτ ) and an outer
period (Tτ ). We assume that the ‘burst’ behaviour must
finish before the next burst (i.e., nτ tτ ≤Tτ ), where nτ is
the number of release of external events Eτ in a burst, and
we also assume that the release jitter (Jτ ) of external event
Eτ is the inner release jitter (i.e., each release of external
events Eτ can suffer from this jitter).

In our analysis model, we carry out the schedulabil-
ity and feasibility analysis by calculating the worst-case
response time of actions, the worst-case response time of
actions Aτ

i is calculated relative to the arrival of the ex-
ternal event Eτ that triggers the transaction τ . If the
worst-case response time of an action is less than or equal
to its deadline, the action is schedulable; if all the worst-
case times of actions in the systems are less than or equal
to their deadline, the system is schedulable or feasible. We
use the well-known critical instant/busy-period analysis [4,
8, 9, 11] developed for fixed priority scheduling. In our
uni-processor single thread implementation environments,
a priority inversion occurs if a lower priority event is pro-
cessed, while a higher priority event is pending. In the
same way, a level-i busy period is a continuous interval of
time during which events of priority “i” or higher are being
processed.

129



Table 1
Time Characteristic of Automatic Gauge Control System

Trans Out.P. Inn.P. Num. Jitter Event (Type) Action Priority Deadline Sub-action Comp. Time Events

τi Ti ti ni Ji Ei Ai π(Ai) D(Ai) ai,j Ci,j Generated

Ei(ai,j)

τ1 60 60 1 3 E1(External) A1 10 60 {a1,1, a1,2, {5, 1, 1} E4(a1,1),

a1,3} E5(a1,2),

E6(a1,3),

E4(call) A4 10 60 {a4,1, a4,2} {5, 1} —

E5(Signal) A5 10 60 {a5,1,} {5} —

E6(Call) A6 10 60 {a6,1} {3} —

τ2 200 200 1 5 E3(External) A2 9 125 {a2,1, a2,2, {4, 1, 5} E7(a2,2)

a2,3}

E7(Signal) A7 9 125 {a7,1, a7,2, {4, 1, 5, 1} E8(a7,1),

a7,3,a7,4} E9(a7,2)

E8(Call) A8 9 125 {a8,1, a8,2} {6, 1} —

E9(Call) A9 9 125 {a9,1, a9,2} {8, 1} —

τ3 900 300 3 E3(External) A3 8 250 {a3,1, a3,2, {1, 3, 1, 1, 4} E10(a3,1),

a3,3, a3,4, E11(a3,3),

a2,5} E12(a3,4)

E10(Call) A10 8 250 {a10,1, a10,2} {7, 1} —

E11(Call) A11 8 250 {a11,1 a11,2} {6, 1} —

E12(Signal) A12 7 250 {a12,1} {30} —

3.1 Worst-Case Response Time Analysis

In the worst-case response time analysis for action Aτ
i , we

will compute the response time of the action for successive
arrivals of the transaction, starting from a critical instant,
until the end of the busy period. Let Sτi (q) denote the
worst-case start time for instance “q” of action Aτ

i (i.e.,
when the instance “q” of the action gets the CPU for
the first time), starting from the critical instant (time
0). Likewise, let Fτ

i (q) denote the worst-case finish time,
starting from the critical instant (time 0). Arrτ (q) denotes
the arrival time of instance “q” of external event Eτ starting
from the critical instant (time 0). According to our system
model, we not only consider the busy-period starting at
time Jτ + qTτ , but also consider the busy-period starting
at Jτ + qtτ before the release of event Eτ . In order to
do that, we define two integers Mτ and mτ , where Mτ is
the number of outer periods previously in the window [0,
Sτ
i (q)], and mτ is the number of inner periods. Mτ and mτ

are given by:

Mτ =
⌊
q−1
nτ

⌋
mτ = (q − 1)−Mτmτ

where q is an integer, and q≥ 1.

The arrival time Arrτ (q) of instance “q” of external
event Eτ can be given as Arrτ (q)=MτTτ +mτ tτ . Based
on the traditional scheduling theory for real-time systems
[8–11], we can iteratively compute Sτ

i (q) and F τ
i (q) for

q=1, 2, 3, . . . until we reach a q=m, so that F τ
i (q)≤

Arrτ (m+1)− Jτ . Then, let R(Aτ
i ) denote the worst-case

response time of action Aτ
i , and it is given by:

R(Aτ
i ) = max

q∈[1,2,...,m]
{Fτ

i (q) + Jτ −Arrτ (q)}

3.2 Blocking

According to scheduling theory [8, 12], blocking refers to
the effect of lower priority actions on the response time of
an action. It may be from any transaction. Let B(Aτ

i )
denote the maximum blocking time of an action Aτ

i . In
uni-processor single-thread implementation environments,
since scheduling is non-preemptive, priority inversion is
limited to one synchronous set of actions with a lower
priority root action. This action has started executing just
before the transaction containing Aτ

i arrives. Thus, the
maximum blocking time of an action is given by:

130



Figure 4. Extended sequence diagram of automatic gauge control system.

B(Aτ
i ) = max

1≤k≤N
{C(Υ(Ak)) :: π(A

τ
i ) ≥ π(Ak)}

3.3 Interference Effects and Busy Period Analysis

We know that the critical instant of an action Aτ
i occurs

when all transactions arrive at the same time (we denote
this as time 0), and the root action of the synchronous
set of actions that contributes the maximum blocking term
B(Aτ

i ). Since actions are executed in a non-preemptive
manner, when Aτ

i starts executing, no other action can
interrupt it other than any synchronous calls that Aτ

i

makes. Let early interference function Early
Aτ

i (q)
k (t) denote

the interference effect of transaction k prior to Sτi (q),
assuming that Sτi (q)= t. The value for Sτi (q) is then given
by the lowest value of Wτ

i (q), satisfying the following
equation:

Sτ
i (q) = minWτ

i (q) :: W
τ
i (q)

= B(Aτ
i ) +

∑
1≤k≤N

Early
Aτ

i (q)
k (Wτ

i (q))

That is, an action (instance) will start, in the worst case,
at a time Wτ

i (q) if the sum of the blocking and interference
effects equals Wτ

i (q), where W
τ
i (q) is the first time instant

when this becomes true. Note that the term Wτ
i (q) occurs

on both sides of the equation; this equation can be solved
by iteratively refining Wτ

i (q) using the right side of the
equation, in this case, starting from an initial lower bound
value B(Aτ

i ), as explained in [8, 12, 15].
Once Sτi (q) is known, we can compute Fτ

i (q). There-
fore, Fτ

i (q) can be calculated as follows:

Fτ
i (q) = Sτi (q) + C(Υ(Aτ

i ))

131



where C(Υ(Aτ
i )) is the cumulative execution time of all the

actions in this synchronous set of Aτ
i .

3.4 Early Interference Function

The early interference function depends on whether we are
considering interference from a different transaction (i.e.,
k �= τ), or from the same transaction (i.e., k = τ).

3.4.1 Early Interference Effects from Different
Transactions

In this case, we consider the arrival of transactions where
k �= τ in the interval [0, Wτ

i (q)]. We have to consider the
computation times of all higher or equal priority actions
comprising transaction k. Again, any synchronous call
made recursively from the resulting actions will be consid-
ered, because of our earlier assumption that the priority of
a synchronously triggered action is the same as that of the
caller action. Note that we have to take the closed interval,
because if a higher action becomes enabled at time Wτ

i (q),
then Aτ

i (q) cannot begin executing. Now consider the com-
putation occurring in the window [0, Wτ

i (q)] from higher
priority sporadically periodic event Ek with release jitter
Jk. If the window is larger than the number of ‘bursts’ of
Ek, then the computation time from each burst amount is
nkC(Ak). For the partial ‘burst’ starting in the window,
we can treat Ek as a simple periodic event executing with
period tk over the remaining part of the window. Let Fk

represent the whole number of event Ek ‘bursts’ starting
and finishing in the window, and it is given as follows:

Fk =

⌊
Jk +Wτ

i (q)

Tk

⌋

The remaining part of the window [0, Wτ
i (q)] is the

length Jk +Wτ
i (q)−FkTk. Hence, a bound on the number

of events Ek in this remaining time is Fkr, and it is given
by:

Fkr =

⌊
Jk +Wτ

i (q)− FkTk

tk

⌋
+ 1

Another bound on the number of events Ek in this
remaining time is nk, since a burst can consist of atmost nk

invocations of event Ek. Therefore, the least upper bound
number Fkrmin can be given by:

Fkrmin = min(nk,Fkr)

So the total interference of action Aτ
i from different

transaction k is given as:

Early
Aτ

i (q)
k �=τ (Wτ

i (q)) = (Fkrmin + Fknk)

×
∑
l

(C(Ak
l ) :: π(A

k
l ) ≥ π(Aτ

i ))

3.4.2 Early Interference Effects from the Same
Transaction

In this case, we consider the arrival of transactions where
k= τ in the interval [0, Wτ

i (q)]. It is important to dis-
tinguish between previous instances (i.e., 1,2, . . . , q− 1) of
the transaction, and all other instances after that. Accord-
ingly, we can write:

EarlyA
τ
i (q)

τ (Wτ
i (q)) = Early

Aτ
i (q)

τ− (Wτ
i (q))

+ Early
Aτ

i (q)
τ+ (Wτ

i (q))

where the Early
Aτ

i (q)
τ− (Wτ

i (q)) is the interference effects

from the past instances (1,2, . . . , q− 1) and Early
Aτ

i (q)
τ+ ×

(Wτ
i (q)) is the interference effects of all other instances q,

q+1, . . . that may have arrived in [0, Sτi (q)].

Past instances of the transaction have similar effects
as other transactions, since any higher or equal priority
actions of the transaction must execute prior to Aτ

i (q).

Thus, the Early
Aτ

i (q)
τ− (Wτ

i (q)) can be given as:

Early
Aτ

i (q)
τ− (Wτ

i (q)) = (Mτnτ +mτ )

×
∑
l

(C(Aτ
l ) :: π(A

τ
l ) ≥ π(Aτ

i ))

The interference effect of instance q onwards must not
count the effect of any action Aτ

l , if A
τ
i ∝Aτ

l , since if A
τ
i (q)

has not executed, any action that is caused by it could
not have executed either. Furthermore, we assume that
multiple instances of the same action execute in order, and
thus this is true for instance q+1 onward as well.

If the action Aτ
i is asynchronously triggered, the

Early
Aτ

i (q)
τ+ (Wτ

i (q)) is given by the following equations. Let
Fτ represent the whole number of events Eτ ‘bursts’ start-
ing and finishing in the window [0, Wτ

i (q)] and is given
by:

Fτ =

⌊
Wτ

i (q)

Tτ

⌋

The remaining part of the window [0, Wτ
i (q)] is the

length Wτ
i (q)−FτTτ , hence a bound on the number of

events Eτ in this remaining time is Fτr, and it is given by:

Fτr =

⌊
Wτ

i (q)− FτTτ

tτ

⌋
+ 1

Another bound on the number of events Eτ in this
remaining time is nτ , since a burst can consist of at most
nτ invocations of event Eτ . Therefore, the least upper
bound number Fτrmin can be given by:

Fτrmin = min(nτ ,Fτr)

So the Early
Aτ

i (q)
τ+ (Wτ

i (q)) is given by:

132



Early
Aτ

i (q)
τ+ (Wτ

i (q)) = {(Fτrmin + Fτnτ )− (Mτnτ +mτ )}

×
(∑

l

(C(Aτ
l ) :: ¬(Aτ

i ∝ Aτ
l )

∧π(Aτ
l ) ≥ π(Aτ

i ))

)

According to the above analysis, for the asyn-
chronously triggered action Aτ

i , we can find start times
Sτi (q) as follows:

Sτi (q) = minWτ
i (q) :: W

τ
i (q)

= B(Aτ
i ) +

∑
1≤k≤N

Early
Aτ

i (q)
k (Wτ

i (q))

= B(Aτ
i ) +

∑
k �=τ

1≤k≤N

(Fkrmin + Fknk)

×
∑
l

(C(AK
l ) :: π(Ak

l ) ≥ π(Aτ
i ))

+ (Mτnτ +mτ ) ·
∑
l

(C(Aτ
l ) :: π(A

τ
l )

≥ π(Aτ
i )) + {(Fτrmin + Fτnτ )− (Mτnτ +mτ )}

×
(∑

l

(C(Aτ
l ) :: ¬(Aτ

i ∝ Aτ
l ) ∧ π(Aτ

l ) ≥ π(Aτ
i )

)

If the action Aτ
i is synchronously triggered, the above

worst starting time Sτi (q) for the asynchronously triggered
action Aτ

i may be improved. Consider a synchronously
triggered action Aτ

i . Let Aτ
g be the asynchronously trig-

gered action, such that Aτ
i belongs to Υ(Aτ

g), that is the
synchronous set of Aτ

g . Then we have a chain of actions,
starting from Aτ

g to Aτ
i that only execute partially in

this interval, and are blocked waiting for Aτ
i to execute.

Note that there must be exactly one such action Aτ
g , so

there is no ambiguity. This changes the interference for
instances, q, q+1, . . . of transaction τ . For instance, q,
only a part of the synchronous set Υ(Aτ

g), has executed,
and this should be reflected in the equation. Rather than
extending the notation to explicitly define this subset, we
denote the sub-action producing the action Aτ

i as aτg,h, and
the computation time associated with this sub-action as
C(sub(γ(aτg,1,...,h))). For instance, q+1 onwards, none of
the actions in the synchronous set Υ(Aτ

g) can cause inter-
ference, since their previous instance (q) is blocked. The
blocking term, interference from other transaction, and in-
terference from previous instances (0,1,2, . . . , q− 1) of the
same transaction remain the same, because we assumed
that π(Aτ

g)=π(Aτ
i ). Based on the above analysis, the

worst starting time Sτi (q) for the synchronously triggered
action Aτ

i is given as follows:

Sτi (q) = minWτ
i (q) :: W

τ
i (q)

= B(Aτ
g) +

∑
1≤k≤N

Early
Aτ

i (q)
k (Wτ

i (q))

= B(Aτ
g)

+
∑
k �=τ

1≤k≤N

(Fkrmin + Fknk)
∑
l

(C(AK
l ) ::

π(Ak
l ) ≥ π(Aτ

g)) + (Mτnτ +mτ ) ·
∑
l

(C(Aτ
l ) ::

π(Aτ
l ) ≥ π(Aτ

g)) + C(sub(γ(Aτ
g,1,...,h)))

+
∑
l

(C(Aτ
l ) :: ¬(Aτ

g ∝ Aτ
l ) ∧ π(Aτ

l ) ≥ π(Aτ
g))

+ {(Fτrmin + Fτnτ )− (Mτnτ +mτ )− 1}

×
(∑

l

(C(Aτ
l ) :: ¬(Aτ

i ∝ Aτ
l ) ∧ π(Aτ

l ) ≥ π(Aτ
g))

)

4. Schedulability Analysis

From the above equations, we can calculate the value
of Sτi (q). Once the value of Sτi (q) is obtained from the
above equations, we can iteratively compute Sτ

i (q) and for
Fτ
i (q) for q=1,2,3, . . . , until we reach a q=m, such that

Fτ
i (q)≤Arrτ (m+1)− Jτ . Then, the worst-case response

time of action Aτ
i is given by:

R(Aτ
i ) = max

q∈[1,2,...,m]
{Fτ

i (q) + Jτ −Arrτ (q)}

If the worst-case response time R(Aτ
i ) is less than or

equal to its deadline D(Aτ
i ), then the action Aτ

i implemen-
tation is feasible. If the worst-case response time R(Aτ

i )
is larger than the deadline D(Aτ

i ), then the action Aτ
i im-

plementation is not feasible. If all the action worst-case
response times in the real-time control system are less than
or equal to their deadlines, we can say that the system’s
implementation is feasible.

4.1 Schedulability Analysis for our Case Study

Now, let us revisit our automatic gauge control system
and apply the above scheduling analysis method to analyse
the system schedulability. Table 2 shows the worst-case
response time of each action found by this analysis method.
Here, we can see that all the worst-case response times of
actions in the system are less than their deadline constraint,
so it can be said that the system is schedulable and feasible.
From the results, we can also see that the worst-case
response time of all actions is large due to the action A12,
which has a large computation time and the lowest priority
in the system. Consequently, it results in blocking of all
other actions since our system model is uniprocessor, single
threaded.

Based on the results, we can see that the effect of the
lowest priorities of action A12 is also reflected in its larger
worst-case response time because of the greater interfer-
ence. For non-preemptive scheduling in our uni-processor
single thread environment, the worst-case response time of
the lowest priority action A12 is relatively large. Once the
action starts executing, it does so as if its priority is raised

133



Table 2
Worst-Case Response Time of Automatic Gauge Control

System

Transaction Action Priority Deadline Worst-Case

Response Time

τ1 A1 10 60 46

A4 10 60 39

A5 10 60 38

A6 10 60 36

τ2 A2 9 125 114

A7 9 125 114

A8 9 125 94

A9 9 125 96

τ3 A3 8 250 122

A10 8 250 117

A11 8 250 116

A12 7 250 119

to the highest priority in the system. From the results, we
can also see that the worst-case response time of action A3

is the largest. This is because it is affected by the higher
priority interference and lower priority blocking; it has two
synchronously call sub-actions and it must wait for the
recipient action to finish its execution.

If we change the priority of action 7 from 9 to 8 in the
automatic gauge control system (i.e., changing the priority
of action 7 from higher priority to lower priority), we get
the worst-case response time results as shown in Table 3.
In Table 3 we can see that the worst-case response time of
action 7 changes to 139 seconds from 114 seconds. Even
though all the worst-case response time of other actions
are less than their deadline constraint, we cannot say that
the system is feasible because the worst-case response time
of action 7 is larger than its deadline.

From the above analysis results, we can see that our
extended schedulability analysis method can be used to
analyse the schedulability and feasibility of real-time con-
trol systems with release jitter and sporadic effects. Us-
ing this method, a designer can quickly evaluate the im-
pact of various implementation decisions on schedulability.
In conjunction with automatic code generation, this can
greatly reduce the development of real-time control system
software.

5. Conclusion

Software design has become more and more important
within the real-time control system design process since
functionality implementation gradually migrated from
hardware to software. Consequently, several commercial
tools have become available that provide an integrated

Table 3
Worst-Case Response Time of an Unfeasible Automatic

Gauge Control System

Transaction Action Priority Deadline Worst-Case

(sec) Response Time

(sec)

τ1 A1 10 60 46

A4 10 60 39

A5 10 60 38

A6 10 60 36

τ2 A2 9 125 66

A7 8 125 139

A8 8 125 119

A9 8 125 121

τ3 A3 8 150 122

A10 8 150 117

A11 8 150 116

A12 7 150 119

development environment for real-time control systems
with object-oriented techniques to facilitate the design
phase. However, these tools lack the “real-time” support
required by many of these systems, especially those with
stringent timing constraints.

As a result, we proposed a methodology for the inte-
gration of schedulability analysis techniques within UML-
RT techniques to support the timing requirements in a
real-time control system design process. The main contri-
bution of our paper is in the development of the worst-case
response time analysis for object-oriented design models in
which the external events suffer release jitter and have spo-
radically periodic characteristics. We also extended UML
sequence diagrams to visually describe the timing proper-
ties for real-time control systems. The results developed
are also generally applicable to any modelling language
using active objects, and explicit communication between
objects through message passing. This method can be used
to cope with timing constraints in realistic and complex
real time control systems. Using this method, a designer
can quickly evaluate the impact of various implementation
decisions on schedulability. In conjunction with automatic
code-generation, we believe this will greatly streamline
the design and development of real-time control system
software.

References

[1] B. Selic, G. Gullekson, & P. T. Ward, Real-time object-oriented
modeling (New York, NY: John Wiley & Sons, 1994).

[2] M. Awad, J. Kuusela, & J. Ziegler, Object-oriented technology
for real-time systems: A practical approach using OMT and
fusion (New York, NY: Prentice Hall, 1996).

134



[3] B.P. Douglass, Doing hard time: Developing real-time systems
with objects, frameworks, and patterns (Menlo Park, CA:
Addison-Wesley, 1999).

[4] H. Gomaa, Software design methods for concurrent and real-
time systems (Menlo Park, CA: Addison-Wesley, 1993).

[5] A. Burns & A.J. Wellings, HRT-HOOD: A design method for
hard real-time, Real-time systems, 6 (1), 1994, 73–114.

[6] K.H. Kim, Object structures for real-time systems and simu-
lators, IEEE Computer, 30 (8), 1997, 62–70.

[7] S.S. Yau & X. Zhou, Schedulability in model-based software
development for distributed real-time systems, Proc. 7th Inter-
national Workshop on Object-Oriented Real-Time Dependable
Systems, 2002, San Diego, CA, 45–52.

[8] C. Liu & J. Layland, Scheduling algorithm for multiprogram-
ming in a hard real-time environment, Journal of the ACM,
20(1), 1973, 46–61.

[9] J.P. Lehoczky, L. Sha, & Y. Ding, The rate monotonic schedul-
ing algorithm: Exact characterization and average case behav-
ior, Proc. IEEE Real-Time Systems Symposium, 1989, Santa
Monica, CA, 166–171.

[10] M. Harbour, M. Klein, & J. Lehoczky, Fixed priority scheduling
of periodic tasks with varying execution priority, Proc. IEEE
Real-Time Systems Symposium, 1991, San Antonio, TX, 116–
128.

[11] K. Tindell, A. Burns, & A. Wellings, An extendible approach
for analysing fixed priority hard real-time tasks, Journal of
Real-Time Systems, 6(2), 1994, 133–152.

[12] M. Saksena & P. Karvelas, Designing for schedulability: In-
tegrating schedulability analysis with object-oriented design,
Proc. 12th Euromicro Conf. on Real-Time Systems, Stockholm,
2000, 101–108.

[13] P. Martins, Integrating real-time UML models with schedulabil-
ity analysis, Tri-Pacific Software Inc., http://www.tripac.com/
html/whitepapers/umlsched.pdf, 2003.

[14] J.Y.T. Leung & J. Whitehead, On the complexity of fixed-
priority scheduling of periodic, real-times tasks, Performance
Evaluation, 2(4), 1982, 237–250.

[15] M. Joseph & P. Pandya, Finding response times in a real-time
systems, Computer Journal, 29(5), 1986, 390–395.

[16] L. Sha, R. Rajkumar, & J.P. Lehocaky, Priority inheritance
protocols: An approach to real-time synchronization, IEEE
Trans. on Computers, 39(9), 1990, 1175–1185.

Biographies

Qimin Gao received his B.Eng.
(Electrical and Computer Engi-
neering) from Anshan University
of Science and Technology, China,
his M.E.Sc. degree from the
University of Western Ontario,
Canada, in 1986 and 2003, respec-
tively. The author worked in the
Shenyang Institute of Science in
a Chinese project to develop an
autonomous underwater vehicle
and remotely operated vehicles.

Currently, he is a controls engineer with Trojan Technolo-
gies Inc, in London, Ontario, where he designs real-time
control systems for ultraviolet (UV) water and wastewater
treatment series products. His research interest lies in soft-
ware for real-time control systems in the area of industrial
process control and automation.

Lyndon J. Brown received his
B.A.Sc. degree in electrical en-
gineering from the University of
Waterloo,Waterloo, ON,Canada,
in 1988 and his M.S. and Ph.D.
degrees in electrical engineering
from the University of Illinois,
Urbana-Champaign, in 1991 and
1996, respectively. He was with
E.I. DuPont de Nemours, Newark,
DE, from 1996 to 1999 and joined
the Faculty of Engineering, Uni-

versity of Western Ontario, London, ON, in 1999. His
research interests include adaptive control, periodic sig-
nals, manufacturing control, welding control and biological
control systems.

Luiz Fernando Capretz has over
20 years of experience in the soft-
ware engineering field as a prac-
titioner, manager and educator.
Prior to joining the University of
Western Ontario, in Canada, he
worked at both technical andman-
agerial levels, taught and carried
out research on the engineering
of software in Brazil, Argentina,
England and Japan since 1981.
He was the Director of Informat-

ics and Coordinator of the computer science program in
two universities (UMC and COC) in the State of Sao
Paulo/Brazil. He has authored and co-authored over 50
peer-reviewed research papers on software engineering in
leading international journals and conference proceedings,
and co-authored the book,Object-OrientedSoftware: De-
sign and Maintenance, published by World Scientific. His
current research interests are software engineering (SE),
human factors in SE, software product lines, and software
engineering education. Dr. Capretz received his Ph.D. from
the University of Newcastle upon Tyne (UK),Master’s from
the National Institute for Space Research (INPE-Brazil),
and B.Sc. from UNICAMP (Brazil). He is a senior member
of IEEE.

135


	Western University
	Scholarship@Western
	2006

	Integrating Schedulability Analysis with UML-RT
	Qimin Gao
	Lyndon Brown
	Luiz Fernando Capretz
	Citation of this paper:


	Document

