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Abstract 

Driven by the increasing demands of producing consistent and high-quality crystals for high 

value-added products such as pharmaceutical ingredients, the operation and design of a 

crystallization process have phased from an empirical trial-and-error approach to the modern 

frameworks powered by the online process analytical technologies (PATs) and model-based 

process optimization techniques.  

The one-dimensional crystal size distribution (CSD) measured by the well-established PATs 

is inadequate due to the missing particle morphology information. A major contribution of  

this thesis is to develop an image analysis-based PAT powered by the deep learning image 

processing techniques, whose accuracy and functionality outperformed the traditional PATs 

and other image analysis techniques. The PAT was deployed to monitor and study the slurry 

mixture of glass beads and catalyst particles as well as a taurine-water batch crystallization 

process. The results confirmed the superb accuracy of two-dimensional size and shape 

characterization in a challengingly high solids concentration. The classification capability 

enabled unparalleled functionalities including quantification of agglomeration level and 

characterization of different polymorphs based on their distinct appearances. A computerized 

crystallization platform was built with the developed PAT, which could automate the time-

consuming experiments for determining the metastable zone width (MSZW) and induction 

time of a crystallization system. The application of the PAT revealed the potential to simplify 

and speed up the research and development stage of a crystallization process. 

The rich two-dimensional crystal size and shape information provided by our PAT enabled 

more descriptive multi-dimensional modeling for the better prediction of the crystallization 

process. The novel population array (PA) solver developed in this thesis could solve the 

multi-dimensional crystallization population balance equation (PBE) more computationally 

efficient than the existing discretization-based numerical methods without compromising the 

accuracy. The PA solver could accurately model the complex phenomena including 

agglomeration, breakage, and size-dependent growth. The efficient computation enables 

solving the complex multi-dimensional PBE for crystal morphology modeling. The 

combination of the innovative PAT and modeling technique is a significant contribution to 
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the crystallization field that enables better understanding and more effective control of a 

crystallization process.  
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Summary for Lay Audience 

Many food, drug, and industrial products are in crystalline form. The size, shape, and many 

other attributes of the crystals will affect the process efficiency and product quality, which is 

especially critical for the pharmaceutical industry. Therefore, process analytical technologies 

(PATs) were developed to monitor the process variables and ensure product quality.  

An efficient PAT instrument for the size and shape characterization, which was powered by 

the latest artificial intelligence algorithms was developed. The accuracy of the proposed PAT 

was validated by comparing the measurement results with the established particle sizing 

methodologies. The PAT was proven not only accurate but could also differentiate the type 

of the crystals and perform multi-dimensional size measurement, which was very challenging 

for the existing instruments. The crystal size and shape data were used to build a dynamic 

model to predict and optimize the product quality of a crystallization process. 

The crystallization modeling helps to design optimal crystallization processes. A numerical 

solver was proposed to efficiently solve the mathematical model of a crystallization process. 

The proposed solver was tested under various scenarios. The accuracy and computational 

efficiency have improved compared to the conventional approaches.  

The PAT and the modeling techniques were combined in the development of an automated 

crystallization experiment platform, which aimed to automate the repetitive and time-

consuming crystallization experiments. The homemade instruments enabled automated data 

acquisition and process manipulation. With the automated platform, the research and 

development of a crystallization process could be significantly simplified. 
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 Introduction 

 

1.1. Introduction to Crystallization Process 

1.1.1. Background of Crystallization Process 

Chemical separation is one of the main branches of chemical engineering in the chemical 

industry, in which crystallization plays an important role in separating and engineering 

solid-state products from a solution, molten or directly from a gas. Depending on the 

operation modes, crystallization can be categorized into evaporative crystallization, 

cooling crystallization (from solution or molten state), and precipitation (reactive and 

anti-solvent crystallization). The solution crystallization process refers to the solute 

molecules being organized into a crystalline form driven by supersaturation (Eq. 1-1). 

The driving force may come from the increasing solute concentration (𝑐) by evaporation 

of solvent or decreasing the solubility (𝑐∗) by cooling or reaction of the solution system.  

𝜎 =
𝑐

𝑐∗
− 1 ( 1-1 ) 

The supersaturation has a direct effect on the two primary processes of solution 

crystallization: nucleation and growth. The nucleation refers to the generation of nuclei in 

a supersaturated solution. The next step is for these nuclei to grow larger by the addition 

of solute molecules from the supersaturated solution, which is known as crystal growth 

(Myerson, 2002). The primary nucleation occurs when no crystal or other substance 

exists in the solution. Due to the large energy barrier, the primary nucleation occurs only 

when the supersaturation exceeds a threshold known as the metastable limit (Mullin & 

Nývlt, 1971).  The presence of crystals in the supersaturated solution lowers the energy 

barrier and leads to more controllable secondary nucleation.   

The solution crystallization is preferred for the separation of thermosensitive substances 

due to its mild operating conditions, especially in the areas of pharmaceutical, solid 
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intermediate chemical products, solid-state functional materials, etc. More importantly, 

compared with other separation methods, the solution crystallization process provides an 

additional ability to engineer or fine-tune the solid-state product properties such as the 

structure at the molecular level and the powder performance like particle morphology and 

crystal size distribution (CSD), which impose a significant impact on the performance of 

the downstream processes such as filtration and drying (Bourcier et al., 2016). 

From the interactions at the molecular level to the product powder properties in industrial 

production, solution crystallization involves interdisciplinary research fields that cover 

the studies of scales span from nanostructure (10−10 m) to macroscale (about 10−3 m), 

which has plenty of room for product quality improvement and process efficiency 

optimization (Merkus, 2009). As shown in Figure 1-1, the research and industrialization 

of the solution crystallization process contain the mechanism and regulation of molecular 

assembly, bench-scale process development and optimization, process design, and 

industrial realization. The research in solution crystallization area attracts much attention 

in the molecular level design of crystal structure as well as the process development and 

control, especially in high-value-added crystalline products (Gao et al., 2017). 

 

Figure 1-1 Schematic of the various research scales of solution crystallization: from 

molecular to industrial manufacturing. 
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1.1.2. Crystallization in The Pharmaceutical Industry 

Over 90% of the small molecule drugs in the market exist in crystalline form (Alvarez & 

Myerson, 2010). Solution crystallization is a widely used technology in the purification 

of active pharmaceutical ingredients (APIs) as well as define the properties of crystalline 

pharmaceuticals such as polymorphism, morphology, crystal size, etc. Pharmaceuticals, 

as high value-added products, have strict requirements and regulations for product quality 

which will directly affect the drug function. The crystalline product consistency, as well 

as the robustness of the crystallization process, are crucial factors for successful 

commercialization.   

Regarding regulating the quality of crystalline API, there are two main research branches 

in the solution crystallization process: 1) crystal engineering at the molecular level; 2) 

crystallization process design and control (Gao et al., 2017).  Figure 1-2 demonstrates the 

major topics of interest in the branches. In crystal engineering, the focus is concentrated 

on discovering and investigating the polymorphism and the multi-component crystals 

with the aid of the analytical technologies from the crystallography. Polymorphism refers 

to the same solute molecules to crystallize in more than one crystal structure with 

different molecular packing arrangements and conformation. The polymorphism 

exhibited in the crystalline API leads to different solubility and dissolution dynamics, 

which significantly impact the stability and bioavailability of the pharmaceutical products 

(Lee, Erdemir & Myerson, 2011). Over 40% of existing drug products have limited 

aqueous solubility and hence cannot be delivered to the body using conventional 

techniques (Kalepu & Nekkanti, 2015). Multi-component crystal engineering is a novel 

approach to modify the physicochemical properties of a crystalline API by forming the 

cocrystal with other pharmaceutically acceptable substances, which offers the potential of 

improved solubility via modification of the underlying crystal structure, thus potentially 

rendering the compound bioavailable (Karimi-Jafari et al., 2018). The marketed cocrystal 

and salts of pharmaceutical products have achieved great success by improving the 

bioavailability and oral absorption of the insoluble APIs (Emami et al., 2018).   
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Figure 1-2 The main research branches in the solution crystallization process: crystal 

engineering and crystallization process design and control 

This work focused on the topic of crystallization process engineering that concerns the 

implementation of the production scale-up and optimization of the crystalline product 

quality after the pathway to synthesize the desired crystalline product has been designed 

by chemists and crystal engineers. The objectives of a pharmaceutical crystallization 

process include improving the yield, product purity, polymorphic form, and the crystal 

size and morphology; significantly affect the downstream processability and the 

bioavailability of the pharmaceutical product (Nagy et al., 2013a). Typically, large and 

uniform crystals with low-aspect-ratio morphology are desired, whereas fine or needle-

like particles are unwanted since they can cause problems in filtration and drying, leading 

to residual solvent and unacceptable product quality (Bourcier et al., 2016; Yang, Song & 

Nagy, 2015). The optimal crystallization process is achieved by combining the proper 

design of the crystallizer and the effective control strategy during operation. The former 

involves optimizing the geometry of the internal structure and the agitation system of the 

crystallizer to ensure sufficient mass and energy transportation, which has been greatly 

enhanced with the aid of computational fluid dynamics (CFD) simulation (Rane et al., 

2014). The latter involves effective scheduling of the crystallizer temperature, 

evaporation rate, or the anti-solvent addition rate to provide an optimal level of 

supersaturation that balances the productivity and quality of the product crystals. The 

pioneering work of supersaturation control (SSC) was done by Mullin (1971), who 



6 

 

 

 

demonstrated that controlling the supersaturation within the metastable zone width 

(MSZW) following an optimal cooling curve can suppress the undesired excessive 

nucleation while promoting the growth of large crystals. This control strategy is simple 

yet effective as the MSZW can be determined experimentally. However, its open-loop 

nature implies no effective compensation against the process shift due to unexpected 

disturbances such as incrustation.  

With the tightening regulations requiring the consistent pharmaceutical product, the 

United States Food and Drug Administration (FDA) introduced the guidance concerning 

the concepts of quality-by-design (QbD) and quality-by-control (QbC). The use of 

process analytical technologies (PATs) and feedback control strategies enables 

dynamically adjusting the operating conditions according to the online measurements to 

compensate the disturbances and reduce the product variations, therefore improving the 

process robustness (Yang, Song & Nagy, 2015). The effectiveness of the closed-loop 

SSC with online supersaturation measurement was confirmed with attenuated total 

reflection Fourier Transform infrared spectroscopy (ATR-FTIR), conductivity meter, and 

density meter (Sheikhzadeh, Trifkovic & Rohani, 2008; Wijaya Hermanto et al., 2013). 

Direct nucleation control (DNC) is a novel control strategy that controls the count of 

crystals provided by FBRM (Focused Beam Reflectance Measurement) measurement 

using temperature cycle between dissolution and growth (Saleemi, Rielly & Nagy, 2012). 

This approach is based on the fact that if a smaller number of particles is maintained the 

resulting mean size of the product will be larger and vice versa (Nagy et al., 2013b). The 

DNC strategy was proven to produce large crystals with no agglomeration and eliminated 

problems with solvent inclusion (Saleemi et al., 2012). 

In the pharmaceutical industry, the continuous crystallization process has received 

increasing attention due to its improved product robustness and consistency compared to 

traditional batch crystallization. Continuous crystallization operates at a steady state after 

the startup process, allowing constant product quality without batch-to-batch variation. 

The FDA has come out in strong support of the implementation of continuous 
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pharmaceutical manufacturing as a methodology to achieve improved process quality and 

control (Wood et al., 2019). Powell et al. (2016) used an integrated PAT array to monitor 

and control the early onset of fouling and encrustation in a mixed suspension mixed 

product removal (MSMPR) crystallizer to achieve the extended operating periods. Yang 

and Nagy (2015) demonstrated that using an appropriate startup policy facilitated with 

PATs can reduce approximately 50% of the startup time in the anti-solvent/cooling 

continuous crystallization. Furthermore, the periodic steady-state flow crystallization 

process was investigated that employed intermittent slurry transportation to solve the 

product classification and clogging problems (Powell et al., 2015). The PAT played an 

important role in determining the oscillatory steady state of the process and the variation 

of the product attribute within each operating cycles. 

The recent development of the PAT enables the online monitoring of a more variety of 

system states, which leads to the expanded quality objectives towards better crystal 

process control. Raman spectroscopy is the most effective online analytical tool to 

quantitively determine the composition of different polymorphic forms. Pataki et al. 

(2013) performed controlled crystallization based on the feedback of real-time Raman 

signals to ensure that the product of the drugs was free of undesired polymorph. The 

advancement of in-situ microscopic imaging and deep-learning-based image analysis 

enables the online monitoring of multi-dimensional crystal size and morphology. Gao et 

al. (2018) implemented the novel crystal image analysis algorithm that not only could 

accurately measure the size of needle-like β-form L-glutamic crystal, but also 

differentiate the polymorphic forms based on the distinct morphologies and achieved a 

similar detection accuracy as the Raman spectroscopy. More studies have shown the 

potential of coupling the PATs and the process intensification technologies such as wet 

milling, ultrasonic, and microwave irradiation to achieve the more challenging controls of 

crystal morphology, size distribution, and polymorph purity (Ahmed et al., 2019; Hatkar 

& Gogate, 2012; Kacker et al., 2016; Yang et al., 2016). 
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The significance of the PAT in crystallization process engineering has been 

acknowledged by industry, which motivates our study of improving the current PAT to 

facilitate better process monitoring and control. 

1.2. Process Analytical Technology (PAT) in Crystallization 

The PAT framework was proposed by the U.S. FDA in 2004, which intended to 

encourage the development and implementation of the timely measurement of critical 

quality attributes of the product and process to achieve better product quality assurance in 

designing, analyzing, and controlling the process (U.S. Food and Drug Administration, 

2004). The framework consists of a set of guidance of data acquisition, multivariate 

process analysis, and process control strategies. In this section, the important 

characterization technologies that quantify the key attributes of a crystallization process 

are reviewed.   

1.2.1. Solute Concentration PATs 

The supersaturation of the crystallization process can be inferred from solution 

concentrations. Accurate measurement of the solute concentration can be obtained by 

sampling the solid-free solution and weighing the evaporated dry sample, but such an 

approach is prohibitively time-consuming for real-time control. The PATs infer the solute 

concentration by measuring other attributes that are correlated to solute concentration. 

The density (Garside & Mullin, 1966), reflective index (Helt & Larson, 1977), speed of 

sound (Stelzer, Pertig & Ulrich, 2013),  and conductivity (Lin, Wu & Rohani, 2019) were 

employed to provide calibration and online estimation of the solute concentration. The 

application is limited depending on the system properties and working conditions, e.g., 

the conductivity of the majority of organic solute is too low for reliable measurement 

(Zhang et al., 2017). Also, monitoring the scalar attributes are less effective for 

simultaneous measurement of the solute concentrations of multiple compounds. With the 

rapid development of spectroscopy technology, the corresponding instruments for non-

invasive solute concentration measurement have been developed for the crystallization 

process, including attenuated total reflectance Fourier transform infrared spectroscopy 
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(ATR-FTIR) and ATR-UV/vis. The stretching, bending, and twisting of the molecular 

bonds cause the absorption of photons at various frequency. The intensity of absorption 

from the spectrum can be used to estimate the solute concentration of a substance with 

specific molecular bonds or groups. The ATR accessory reflects the beam at the interface 

and evaluates the solution IR absorption with the evanescent wave of low penetrates 

depth (2-3 μm), which avoids the disturbance of crystals suspended in the crystallization 

system (Figure 1-3). The recent works demonstrated the effectiveness of the Raman 

spectroscopy in simultaneous solid phase and solute concentration measurement (Lin, 

Wu & Rohani, 2020). Lin et al. (2020) compared the data processing approaches and 

showed that the neural network model outperformed the least squares analysis for 

extracting the solid and solute concentrations from the Raman spectra. The calibration of 

Raman spectroscopy to obtain solute concentration requires a large number of calibration 

experiments because Raman spectral response is a function of temperature, solute 

concentration, slurry density, crystal polymorph, and the CSD (Kristova, Hopkinson & 

Rutt, 2015). In Chapter 3 of this thesis, a Raman spectroscopy calibration strategy is 

proposed that uses the data acquired in the automated temperature-cycle experiments to 

obtain the accurate calibration model of solute concentration, which simplifies the 

process of adopting Raman spectroscopy as a PAT for solute concentration monitoring. 
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Figure 1-3 Schematic of the ATR-FTIR in a crystallization process 

 

1.2.2. Polymorphic Forms PATs 

On-line monitoring and control of the polymorphic forms not only improves the product 

quality assurance but also helps in identifying the transient unstable polymorphs during 

the research and development stage (Roy, Chamberlin & Matzger, 2013). The definitive 

evidence for the existence of polymorphism is via single-crystal X-ray diffraction (Yu et 

al., 2004). Other methods including X-ray powder diffraction and thermal analysis 

require lengthy preparation and measurement process, rendering these approaches 

inapplicable as an online polymorphic PAT monitoring candidates. 

In contrast, Raman spectroscopy is capable to provide qualitative and quantitative 

polymorphic information of the solid phase as well as the solution properties in real-time. 

Raman spectroscopy functions based on the principle of light scattering (Figure 1-4.a). 

After the incident light activates the molecules to an excited state, the majority of the 

molecules undergoes Rayleigh scattering and return to the original energy state with the 

emission of the photon with the same wavelength. A small portion of excited molecules 

undergoes Raman scattering and relaxes to a different vibrational state, emitting photons 

with a different wavelength than the incident light. The Raman scattering spectra can 
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distinguish the vibrational modes of the molecules in different crystalline structures, 

enabling the characterization of fingerprints associated with each polymorph (Weber & 

Merlin, 2013). Figure 1-4.b depicts the schematic of an in-situ Raman spectroscopy for 

monitoring a crystallization process. In order to detect the weak Raman scattering signal, 

a set of optical devices is used to focus the laser beam on the slurry, redirect the reflected 

light, and filter the non-Raman scattering light with the same wavelength as the incident 

light. Finally, the spectral data is acquired by a cooled optical sensor (approximately 

−40℃) using a long exposure time to accumulate the signal. 

Raman spectroscopy has been actively employed in quantitatively monitoring the 

polymorphic transformation of L-glutamic acid (LGA), p‐aminobenzoic acid (PABA), 

and paracetamol in a solution crystallization process (Ono, Ter Horst & Jansens, 2004; 

Wang et al., 2011; Yang, Wang & Ching, 2009). Other works have demonstrated the 

ability to track the reactive crystallization system and indicating the reaction endpoint 

(Hart et al., 2015; Qu et al., 2009). Esmonde-White et al. (2017) reviewed the 

applications of Raman spectroscopy in the pharmaceutical manufacturing process for 

product quality control. As discussed in the previous section, the Raman spectroscopy is 

able to provide simultaneous solid-phase characterization as well as the solute 

concentration measurement. 
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Figure 1-4 Schematics of Raman spectroscopy. (a) The energy level diagram of Rayleigh 

scattering and Strokes Raman scattering and anti-Strokes Raman scattering. (b) 

Illustration of the mechanism of an in-situ back-scattering Raman spectrometer for the 

crystallization process. 
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1.2.3. Crystal Size and Shape PATs 

1.2.3.1. Traditional Particle Sizing PATs 

Developing the PAT for crystal size and shape monitoring is one of the core topics in this 

thesis. The modern particle sizing instruments measure the electric, optical, or acoustic 

properties of the slurry to infer the CSD information. The Coulter Counter makes use of 

the difference in an electrical impedance caused by a crystal flowing through a sensing 

zone (Figure 1-5.a). The crystal size measured with the Coulter counter is the equivalent 

diameter of the sphere whose volume is equal to that of the particle (Presles, 2010). The 

main advantage is the capability of precise particle volume measurement. Although the 

Coulter Counter for in-situ monitoring was studied in 1965, it is mainly used as an offline 

analytical approach due to its limiting requirement of slurry density and suspension 

medium (Garslde & Shah, 1980; Maddux & Kanwisher, 1965). Figure 1-5.b depicts the 

ultrasonic attenuation spectroscopy (UAS) instrument. The UAS is based on the 

interaction between the sound wave and crystals of different size and shape that 

contribute to attenuation at different frequencies ranging from 0.1 – 200 MHz (Merkus, 

2009). The significant advantage of UAS is the ability to operate in the concentrated 

systems up to 70% volume fraction, making it an ideal PAT instrument without the need 

for dilution (Li, Wilkinson & Patchigolla, 2005). In a concentrated system above 5% 

volume fraction, the inter-particle interactions and multiple scattering mechanisms may 

have to be taken into account (Merkus, 2009). Bar-yosef et al. (2004) demonstrated that 

the UAS could determine the CSD as well as the solute concentration with a neural 

network-based calibration model. The main limitation of the UAS approach is the 

requirement of the physical properties of both the liquid and particle phases at different 

states, which can be difficult to obtain.  Laser diffraction (LD) is one of the most accurate 

and reproducible particle sizing technologies, which measures the scattering pattern of a 

monochromatic laser light by particles with an array of detectors positioned at different 

angles (Figure 1-5.c). The signals are then deconvoluted to a size distribution using Mie 

theory (Li et al., 2008).  The LD technology typically works with the best accuracy in 

low solids concentration, implying its main application in offline measurement (Merkus, 
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2009). The FBRM (Focused Beam Reflectance Measurement) instrument is arguably the 

most popular online PAT for crystallization process monitoring and control device (Yu, 

Chow & Tan, 2008). The FBRM works with a rotating focused laser beam that scans the 

particles traveling through its focal volume (Figure 1-5.d). The back-scattering light from 

the crystal surface is measured as the chord length. As shown in Figure 1-5.d, the chord 

length is arbitrary, so the conversion from chord length to particle size is challenging 

(Heinrich & Ulrich, 2012a). The in-depth discussion of the existing PATs can be found in 

Chapter 2 of this thesis and the recommended book by (Merkus, 2009). 
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Figure 1-5 Common particle sizing PATs for the crystallization process. 

 

1.2.3.2. Image-based Particle Sizing PATs 

The abovementioned particle sizing approaches require an assumption of the particle 

shape, leading to a one-dimensional distribution of equivalent size. For high-aspect-ratio 

(needle-like) crystals, the assumption does not hold. Recovering the morphology 

information from the one-dimensional CSD requires complex modeling work and is 
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difficult to generalize in broader applications (Szilagyi et al., 2017). In addition, the 

validity of the size measurement is questionable in the slurry with other discrete phases 

such as impurities and air bubbles, which require cross-validation with other methods, 

such as optical microscopic imaging. These limitations of existing PATs and the demand 

for more intuitive size and shape measurement motivated the development of the in-situ 

imaging PAT powered by image analysis technologies in this work. 

Several commercial hardware for crystallization imaging is available, including PVM and 

EasyViewer (Mettler Toledo, Chicago, United States) and SOPAT (SOPAT GmbH, 

Berlin, Germany) (Ahmed et al., 2019; Kacker et al., 2018). We will demonstrate a 

homemade flow-through cell imaging set up in the Chapters 2 and 3 in this thesis. The 

external circulation of the flow-through cell adds up the complexity and requires extra 

thermal isolation to prevent undesired crystal growth outside the crystallizer. However, 

this setup enables a more straightforward arrangement of camera and illumination units 

that are otherwise difficult in the limited space in an insertable probe, making it a 

favorable setup to deploy the customized imaging system for a crystallization system. 

Although crystallization imaging devices have existed for a long time, they are primarily 

employed as a qualitative visualization tool of a process. Despite the visual particle 

information, quantitatively extracting the crystal size and shape information using an 

automated algorithm is deemed challenging due to the complexity of the crystallization 

images. The motion blur and out-of-focus artifacts cause confusion in determining the 

type and the boundary of the objects. Another major problem emerges when 

distinguishing the intersecting or overlapping crystals. These robustness issues prevent 

the extensive use of the image-based particle sizing PAT (Ferreira et al., 2011).   

Over the years, the researchers proposed innovations in the particle image analysis field 

to improve detection performance, including the multi-variate analysis (Sarkar et al., 

2009), adaptive threshold algorithms ( Lu et al., 2018) for solving the uneven background 

problem; the salient corner segmentation;  model-based object detection (Larsen, 

Rawlings & Ferrier, 2007); and pattern matching (Huo et al., 2017; Kacker et al., 2018) 
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algorithms for differentiating the agglomerate cluster and single crystals (Liu et al., 2017; 

Lu et al., 2019). Due to the complexity and specialization of these methods, they tend to 

be computation-intensive and difficult to generalize. The parameter tuning heavily 

depends on human interference, thus unable to fully automate the analysis process. 

The recent development of the deep learning-based image analysis enables successful 

applications including autonomous driving and medical diagnoses where the image 

complexity is very high (Hassaballah & Awad, 2020). This motivated our research to 

study the feasibility to incorporate the new technology into the crystallization image 

analysis. The model consists of a set of convolutional operators (Figure 1-6.b), which are 

small square matrices of weights (typically 3 × 3 pixels) that scan the image from left to 

right and top to bottom, computing dot products with the pixel values in its path (Figure 

1-6). The weights of the operators will be adjusted so that a specific local feature can be 

captured by one of the operators (Lecun et al., 1998). By stacking the convolutional block 

multiple times, the depth and capacity of the model are significantly improved to learn 

increasingly complex features at different scales (Figure 1-6.d).  

 

Figure 1-6 Schematic of a simple convolution operation: (a) input pixels; (b) convolution 

weights; (c) output; (d) convolutional block. (Manee, Zhu & Romagnoli, 2019) 

Compared to the conventional image analysis methods where human decision plays a 

significant part in identifying the features in the images and hard coding them into pattern 
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recognition algorithms, the deep learning-based image analysis approaches use the 

workflow of training the model by feeding the input images and the labeled targets. This 

allows the model to heuristically determine the optimal parameters that minimize the 

difference between the model prediction and the labels. By providing abundant labeled 

training data, the model is capable to learn the common features and parameters that can 

be generalized for all scenarios in the process. This workflow allows simple and robust 

modeling that requires only a basic understanding of the crystal morphology to create the 

polygon labels in software rather than the knowledge of theneed for complex modeling 

techniques in computer vision. Our pioneering study (Gao et al., 2018) showed that the 

deep learning-based image analysis did not only maintain the accuracy, even when the 

crystals were overlapping, but also could differentiate the polymorphic forms of L-

glutamic acid crystals based on their morphologies to generate the size distribution for 

the individual forms. Despite the tremendous computational scale, the parallel 

computation capability provided by the modern GPU, drastically reduces the 

computational time, enabling real-time image analysis and the application of the 

proposed deep learning image analysis technique as an online PAT solution.  

Three main tasks can be achieved using deep learning-based image analysis (Figure 1-7). 

Image classification generates categorical predictions such as whether input images 

contain crystal or not, which can be extended to classify the types of the crystals based on 

the appearances. Object detection localizes with bounding boxes and applies 

classification to distinct objects. The geometries of the bounding boxes can be used to 

represent the two-dimensional size of the crystals with a rectangular shape. Image 

segmentation is similar to the object detection task except that the objects are localized 

using pixel-wise masks instead of predefined shapes. The mask provides more versatility 

to describe irregularly shaped particles such as an agglomerate. In this work, the 

capabilities of image segmentation and object detection in particle size and shape 

measurement are presented in Chapter 2 and Chapter 3 in this thesis. 
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Figure 1-7 Three main tasks achieved by deep learning-based image analysis and the 

predicted outputs 

1.3. Crystallization Process Modeling and Simulation 

1.3.1. Population Balance Equation (PBE) 

Crystallization modeling and simulation are effective tools for design and control to 

investigate the impact of the operating conditions on the system states and crystalline 

product properties. In the process development stage, the data acquired by the PATs can 

be used to estimate the parameters of the kinetic models. The model helps to optimize the 

operating conditions and scale up the process with a limited number of experiments. The 

population balance equation (PBE) is an established technique to describe the change of 

crystal size distribution (CSD) caused by various mechanisms such as growth, 

dissolution, nucleation, agglomeration, and breakage of particles. PBE was first proposed 

by Hulburt and Katz (1964) and further developed for the crystallization process by 

Randolph et al. (1971) and Ramkrishna (2014). Eq. 1-2 depicts a general form of the PBE 

for a well-stirred batch or continuous crystallization system, which is a partial differential 

equation (PDE) expressed in terms of the number density of the CSD, 𝑛, with respect to 

time, 𝑡, and internal coordinates of each dimension (often referred to as the characteristic 

size), 𝐿𝑖 (Myerson, 2002).  
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𝜕𝑛

𝜕𝑡
+ ∑

𝜕(𝐺𝑖 ⋅ 𝑛)

𝜕𝐿𝑖
𝑖⏟        

growth, dissolution

+
𝑛 − 𝑛𝑖𝑛
𝜏⏟    

continuous

= 𝐵 − 𝐷⏟  
agglomeration, 

breakage, nucleation

 
( 1-2 ) 

Due to the hyperbolic nature of the growth/dissolution term and the non-linearity from 

the kinetics and the coupled solute mass balance equation (MBE), analytical solution of a 

PBE model is not possible except for a few simplified cases (Gunawan, Fusman & 

Braatz, 2004; Sanjeev, 1996). Thus, numerical approaches have been developed to solve 

the PBE for crystallization process simulation. 

1.3.2. Numerical Solution of the PBE 

The numerical solution techniques of PBE have been reviewed by Omar and Rohani 

(2017). Method of moments (MoM) and discretization (grid) method are two widely 

employed techniques. MoM involves converting the PBE into a set of ordinary 

differential equations (ODEs) in terms of the moments, which can be integrated 

numerically. The main advantage of MoM is the relatively low computational effort 

thanks to tracking only specific moments instead of the full CSD, leading to its popularity 

in the CFD simulation (Y. Ma et al., 2020). The drawback of MoM is the unclosed 

moment problem that a moment in the set of ODEs depends on higher-order moments. 

The specific moment approximation technique must be applied for complicated kinetics 

such as size-dependent growth and breakage (Szilágyi, Agachi & Lakatos, 2015; Yuan, 

Laurent & Fox, 2012). Also, MoM does not provide the full CSD, and the inversion of 

the moments to recover the CSD is not trivial and is still an open area of research (Omar 

& Rohani, 2017). When the full CSD information or complex kinetics is required, the 

more general discretization method is preferred. 

The discretization method uses a grid with a finite number of bins that represent the 

crystal count in the given size range. The derivatives in the growth term of PBE could be 

replaced with the discretized arithmetic operations (𝐹) so that the time-derivative of each 

bin could be computed and integrated (Eq. 1-3). The 𝐹 functions can be represented using 
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the upwind scheme (Eq. 1-4) or the high-resolution scheme (Eq. 1-5) (Gunawan, Fusman 

& Braatz, 2004). 

𝑛𝑘
𝑚+1  =  𝑛𝑘

𝑚  +  𝐹(Δ𝑡, Δ𝐿, 𝑛, 𝐺) ( 1-3 ) 

𝐹 = −
𝐺𝑖Δ𝑡

Δ𝐿
(𝑛𝑘
𝑚 − 𝑛𝑘−1

𝑚 ) ( 1-4 ) 

𝐹 =  −
𝐺𝑖Δ𝑡

Δ𝐿
(𝑛𝑘
𝑚 − 𝑛𝑘−1

𝑚 ) −
𝐺𝑖Δ𝑡

2Δ𝐿
(1 −

𝐺𝑖Δ𝑡

Δ𝐿
) [(𝑛𝑘+1

𝑚 − 𝑛𝑘
𝑚)𝜙𝑘 − (𝑛𝑘

𝑚 − 𝑛𝑘−1
𝑚 )𝜙𝑘−1] ( 1-5 ) 

Despite the ability to handle the complex kinetic models, the main drawback is the 

numerical diffusion and the massive computational cost to scale up the dimensionality. 

As shown in Figure 1-8, the numerical diffusion refers to that the solution becomes 

smeared or damped when the local gradient of CSD is large. This has been partially 

resolved after the high-resolution scheme was introduced (Gunawan, Fusman & Braatz, 

2004). The computational efficiency problem of the discretization method originates 

from the limitation of the discretization grid. In order to conserve the crystal mass and 

count, the upper limit of the grid must be sufficiently large such that no crystal would 

grow or agglomerate to the size beyond the assumed scope of the grid, leading to the 

wasted computation on the grid points without any data. Furthermore, the increase in grid 

dimensionality will lead to a polynomial scale-up of the computational cost (Szilagyi et 

al., 2017). For example, to achieve the same resolution, the number of grid points should 

scale up from one thousand for a 1D PBE to one million for a 2D PBE. The efficiency 

problem deteriorates on a high-dimensional grid because, most CSD data will densely 

distribute along the characteristic line, while the rest of the grid remains unused and 

waste the efforts spent to update them. We will propose an alternative numerical method, 

namely the population array (PA) method in Chapter 5, and demonstrate that the accuracy 

and computational cost problems can be addressed by the proposed method. 
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Figure 1-8 Demonstration of the numerical diffusion caused by the discretization 

methods. 

1.4. Research Objectives and Organization of Thesis 

1.4.1. Research Objectives and Approach 

The overall objective of this thesis is to enhance the methodologies and tools for the 

development, monitoring, and control of a crystallization process. The objectives of the 

thesis include:  

• To develop and validate an efficient image-based PAT instrument, including the 

imaging hardware and the deep learning-based image analysis system, for crystal 

size and shape characterization. 

• To develop an automated crystallization setup and the controlling software to 

utilize the developed PAT instruments to automatically carry out the lengthy 

experiments and data processing works, which not only reduces the amount of 

laboratory work but also generates reproducible kinetic data.   
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• To develop an improved numerical solver for crystallization process simulation to 

outperform the conventional numerical techniques in the computational efficiency 

and accuracy. 

For the study of the image-based PAT, the performance of the proposed setup and 

algorithm was evaluated in two steps. First, the glass beads (GB) and the fluid catalytic 

cracking (FCC) catalyst particles were chosen as the model particles because of the well-

defined shape and surface texture. The particles were monitored using a homemade flow-

through cell imaging device to capture the microscopic images in the concentrated slurry. 

The image segmentation model, Mask RCNN, was trained to extract the size and 

classification of the particles in the images. The detection accuracy was confirmed by 

comparing with the measured CSD by laser diffraction, the sieve method, and the 

manually labeled validation images. Next, the proposed PAT was deployed as the 

monitoring system of the seeded batch cooling crystallization using the taurine-water 

system. The object detection model, S2A-Net, was employed to measure the multi-

dimensional CSD and the aspect ratio as well as quantifying the agglomeration level. The 

Raman spectroscopy was used to measure the solute concentration. The FBRM was used 

as the reference particle sizing PAT to compare the sensitivity and the accuracy of the 

proposed image-based PAT technique. The combined methodology of spectroscopy and 

the image-based PAT was employed for the kinetic study of the nucleation, growth, and 

agglomeration of taurine-water system with accurate multi-dimensional information. 

The simulation of the crystallization process using the proposed PA solver was 

implemented in Python, with some performance-sensitive functions implemented in C++ 

for maximum runtime speed. The accuracy and simulation speed of the solver were 

compared with the analytical solutions reported in the literature and the numerical solver 

implemented using the high-resolution discretization scheme as the reference. 

An automated experimental setup was built based on the internet-of-things (IoT) 

microcontrollers, ESP8266, that provided the wireless connectivity for the hardware and 

instruments. The data was exchanged using Message Queuing Telemetry Transport 
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(MQTT) protocol. The execution of the experiments was scheduled on IPython Jupyter 

Notebook, which also serves as the dashboard to visualize the real-time process 

parameters. 

 

1.4.2. Thesis Organization 

This thesis is written in the integrated-article format.  

Chapter 1 briefly discusses the research background and the status of PAT and numerical 

simulation of the crystallization process. The motivation, objectives, and thesis structure 

are introduced in this chapter. 

Chapter 2 and Chapter 3 emphasize the topic of the development of image-based PAT. In 

Chapter 2, the deep learning-based in situ microscopic image analysis system for 

detecting particles and performing size analysis in a high-density slurry is investigated. 

The ability to classify visually distinct particles (glass beads and FCC catalyst particles) 

and generate the accurate size distribution of individual classes is confirmed by 

comparing with other established particle sizing technologies. Pixel fill ratio (PFR) is 

proposed as a scale-invariant descriptor of solid concentration level and complexity of an 

image. Chapter 3 extends the work by investigating the proposed PAT in a batch 

crystallization process of taurine crystal for in-situ estimation of the two-dimensional 

CSD, count, and shape statistics. Combined with the Raman Spectroscopy calibrated with 

an automated online calibration strategy, the PATs provided effective online crystal size 

and shape measurement as well as the parameter estimation of the growth and nucleation 

mechanisms. 

Chapter 4 introduces an automated crystallization platform equipped with the PAT 

introduced in Chapters 2 and 3. The hardware design and software architecture are 

discussed to achieve cost-effective customization of the existing laboratory instruments. 

The time-consuming experiments for determining the metastable zone width (MSZW) 
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and induction time of a crystallization process were successfully automated, indicating 

the promising application of the PAT and the crystallization platform in simplifying and 

speeding up the research and development stage of a crystallization process.  

In Chapter 5, the numerical algorithm used in Chapter 3 for parameter estimation is 

further investigated. By learning from the advantages and drawbacks of the existing 

numerical techniques, a simple numerical technique, namely the population array (PA) 

method, is proposed to solve the one-dimensional as well as multi-dimensional PBE 

problems involving various challenging kinetic behavior including size-dependent 

growth, agglomeration, breakage, and polymorphic transformation. The row compression 

algorithm is proposed to facilitate the PA method to reduce the computation scale while 

maintaining accuracy.  

Chapter 6 summarizes the research work and gives recommendations for future works. 
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Particle Characterization with On-line Imaging 

and Neural Network Image Analysis 

A version of this chapter has been published in Chemical Engineering Research 

and Design: Wu, Y., Lin, M. & Rohani, S. (2020). Particle characterization with 

on-line imaging and neural network image analysis. Chemical Engineering 

Research and Design, 157, 114-125. 
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 Particle Characterization with On-line Imaging and 

Neural Network Image Analysis 

 

Abstract 

We proposed a deep learning-based in-situ microscopic image analysis system for 

detecting particles and performing size analysis in a high-density slurry, which shows 

great potential usage in the area of the solution crystallization process. A cost-effective 

imaging system consisting of a flow-through cell and a 3D-printed microscopic probe 

was built for high-quality image acquisition. The state-of-the-art deep learning model, 

Mask RCNN, was used to segment the overlapping particles and classify their categories 

with high accuracy. A comprehensive performance evaluation of the proposed system 

was conducted including extrapolation to unseen particle scale, detection in different 

solids concentration levels, and separation of two different types of particles. Compared 

with the previous studies, the solids concentration detection limit was improved by five 

times higher in terms of particle number per frame and three times higher regarding the 

particle pixel fill ratio (PFR). The categorized detections successfully classified the two 

different particles in a mixed suspension, and the individual particle size information was 

extracted, which showed high consistency with the particle information. What’s more, a 

progressive labeling strategy was employed to improve the processing efficiency and 

accuracy, which would enable the transfer application in the solution crystallization 

process for various crystal species. 

Keywords: Process analytical technology; Image analysis; Instance segmentation; 

Particle classification; High solids concentration; Mask RCNN 

 

2.1. Introduction 

The size and the shape of the solid products from a particulate process such as solution 

crystallization have a considerable impact on the final product quality and downstream 



35 

 

 

 

processability. For example, the size of the active pharmaceutical ingredient (API) 

crystals can affect the dissolution rate and bioavailability. The efficacy of the 

downstream filtering, drying, and blending processes are highly dependent on the powder 

properties determined by the crystal size and the shape. In order to design an efficient 

process and maintain the quality and consistency of the final product, various process 

analysis technologies (PATs) have been developed in the past decade for monitoring the 

size and shape of the solid products. 

Some PATs perform the particle size analysis indirectly based on the size-dependent 

optical or acoustic properties. The laser backscattering method works with a rotating 

focused laser beam that scans the particles traveling through its focal volume. The time 

duration of backscattered light from particles is used to construct particle chord length 

distribution (CLD). Mettler Toledo FBRM (focused beam reflectance measurement) is a 

widespread commercial probe based on laser backscattering. Despite the capability of 

working at high solids concentration (about 30 vol%) (Merkus, 2009), transforming CLD 

into normal CSD is challenging and non-trivial because the optical properties and 

movement of the particles can affect the FBRM measurement (Heinrich & Ulrich, 2012). 

Ultrasonic attenuation spectroscopy (UAS) measures CSD based on the interaction 

between different sizes of particles and the sound wave that contributes to attenuation at 

different ultrasonic sound frequencies. The maximum solids concentration of UAS is 

about 70 vol%, making it an ideal online particle sizing instrument without the need to 

dilute the sample (Merkus, 2009). The laser diffraction (LD) method is an established 

particle size analysis method with extraordinary precision compared with many other 

techniques (Fisher et al., 2017). LD typically works with the best accuracy in solids 

concentration under 5 vol%, implying its main application in offline measurement 

(Merkus, 2009). 

The indirect particle size analysis methods typically report the CSD in one-dimensional, 

shape-equivalent size distribution. Extracting shape information, such as aspect ratio, 

requires complex modeling work. In addition, the indirect size may require cross-
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validation with other methods, such as optical microscopic imaging, to confirm the 

validity of the results. For example, the bubbles in the slurry can result in biased size 

distribution with the indirect methods. On the other hand, the combination of in-situ 

imaging and imaging analysis methods not only provides clear discrimination for 

different types of objects but can also extract more natural multi-dimensional size and 

shape information (El Arnaout, Cullen & Sullivan, 2016). Despite the visually natural 

particle information for manual examination, automated image analysis and feature 

extraction are deemed as challenging tasks because 1) illumination condition may lead to 

uneven background intensity; 2) visually overlapping particles and clusters introduce 

significant error in size and shape estimation; 3) out-of-focus and motion-induced 

blurriness cause undesired artifacts (Ferreira et al., 2011). Therefore, image analysis 

becomes extremely difficult when the suspension solids content exceeds 8-10% (Nagy et 

al., 2013). 

Over the years, researchers have brought innovations into the particle image analysis 

field to improve detection performance. The contrast-based algorithms, such as edge-

detection and thresholding, have been extensively used for their simplicity. These 

algorithms function by first scanning the image and extracting the features (edge or area) 

that contrasts significantly from the background. Then, the features will undergo a series 

of filtering and morphological operations to provide detailed information about the 

locations, sizes, and shapes of the particles. However, these primitive methods do not 

discriminate overlapping particles, and the optimal threshold can be inconsistent due to 

the heavy dependency on the human decision. The multi-variate analysis (Sarkar et al., 

2009) and the adaptive threshold (Lu et al., 2018) algorithms have been employed to 

improve the robustness by providing more stable optimal parameters or introducing the 

mechanism to determine the local optimal parameters in different regions automatically. 

In order to address the problem of separating the overlapping or contacting particles, 

some special image features have been used to identify the contact points of multiple 

objects and split the detections into the individual particles. For example, Ahmad et al. 

(2012) developed a salient corner-based overlapping crystal segmentation method that 
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extracts the individual contour of the overlapping objects by classifying and grouping the 

detected salient points into multiple polygons based on their angular and spatial 

information. However, in the case of high solids concentration, a large number of semi-

transparent overlapping objects present in the image might decrease the detection 

accuracy. Also, the polygon descriptor required a priori of the object shape, which may 

vary significantly for the crystals in the in-situ imaging due to breakage or polymorphic 

transformation. Larsen et al. (2007) developed a model-based crystal detector, SHARC, 

that functioned by extracting and matching the linear feature as the edges of the crystals. 

The SHARC algorithm was applied to analyze noisy in-situ images and monitored the 

size distribution of the high-aspect-ratio crystals. The highly overlapping objects will be 

discarded in favor of the reliability of the results. However, the probability of particles 

overlapping increases with higher solids concentration. The rejection of the overlapping 

objects makes the number of useful particles impractically low (less than ten percent of 

the total particles) (Larsen & Rawlings, 2009) and leads to a biased size evaluation over 

the small particles that have a lower chance of overlapping. 

In this work, the state-of-the-art convolutional neural network model, Mask RCNN (He et 

al., 2017), was adopted to implement the overlapping object segmentation in high solids 

concentration and multi-species particle classification functionalities. Unlike the 

abovementioned conventional algorithms where the detection rules were exploited and 

concluded by a human, this approach achieved superior accuracy and robustness by 

enabling the neural network to discover the optimal underlying patterns in the images in 

the training process. The training is an iterative process that minimizes the difference 

between the calculated segmentation and the manually created labels (training loss) by 

automatically adjusting the parameters in the neural network model. Also, the fully 

parallelizable convolution operators can benefit from the parallel computation on a 

modern graphics processing unit (GPU), allowing the real-time (about 5 frames per 

second) image processing and process monitoring applications despite the tremendous 

computation scale. Our previous work (Gao et al., 2018) employed this approach to track 

the L-glutamic acid crystal nucleation, growth, dissolution, and polymorphic 
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transformation. A more recent work (Manee, Zhu & Romagnoli, 2019) presented 

monitoring a chloride sodium crystallization process with the customized neural network 

based on the single-stage RetinaNet (Lin et al., 2017) model, which featured faster speed 

and uncompromised detection accuracy. 

This paper aimed to investigate the capabilities and limitations of the current Mask 

RCNN-based image analysis approach in the following aspects: 1) the detection accuracy 

in increasing solids concentration; 2) the capability to detect the particles of untrained 

size (scale extrapolation); 3) the ability to recover the individual size distribution after 

mixing two different particles (multi-species classification). Also, an efficient neural 

network training and labeling strategy were discussed in the background section. These 

conclusions will help researchers understand the feasibility of using this technology and 

speed up the model construction process.  

 

2.2. Background 

2.2.1. Mask RCNN 

Mask RCNN (He et al., 2017) is a state-of-the-art two-stage instance segmentation 

framework proposed by Facebook Artificial Intelligence Research (FAIR). First, the 

input images are scanned by a backbone convolutional network (e.g., feature pyramid 

network (Lin et al., 2017)) to construct feature maps. The feature maps contain spatial 

semantic information at different scales. For example, the feature maps may reveal the 

locations of the long linear feature of needle-like crystals or the curly-shaped edge of 

glass beads. With the spatial information in the feature maps, the model proposes a set of 

regions of interest (RoI) that may contain objects with the regional proposal network 

(RPN). This operation narrows down the search scope and computational load of the 

following tasks. Also, the RPN allows overlapping proposals present with different 

aspect ratios, which enables the important overlapping objects segmentation feature for 

the in-situ crystallization monitoring. Next, the RoI Align module maps the multi-level 



39 

 

 

 

feature maps into the proposed regions and presents the cropped data for the following 

networks to further classify the detection category and find the precise bounding box and 

pixel-wise mask. 

2.2.2. Training and Dataset preparation 

The neural network was trained in an end-to-end manner that involved providing the raw 

image as input and the categories, bounding boxes, and masks of the objects present in 

the image as target or ground-truths (GTs). During training, the optimizer adjusts the 

parameters so that the model predictions match the desired GTs; in other words, 

minimize the training loss functions (He et al., 2017). Therefore, creating a sufficient and 

precise dataset is critical to train an efficient model. The dataset labeling process involves 

manually specifying the object boundaries with polygons or masks and assigning the 

categories for all objects in each image. In this study, the labeling process was done with 

an open-source web-based annotation software, Computer Vision Annotation Tool 

(CVAT) (Sekachev, Manovich & Zhavoronkov, 2019). 

The training samples of each category were prepared separately to reduce confusion for 

manual labeling. Several labeling criteria were set to ensure consistency. Only typical 

objects that were seen frequently should be labeled, for example, a rod-like particle or a 

blob of particle cluster should not be labeled in a glass beads dataset. When encountering 

an object blurry due to out-of-focus, it should not be labeled because the casted shadow 

leads to incorrect size estimation, and the blurry looking will confuse the classification. 

The occluded objects should not be labeled if more than 20% area is invisible. For 

contacting objects with less than 20% overlapping, the hidden object boundaries should 

be predicted by inferring from its shape. 

2.2.3. Progressive Labeling Strategy 

Manually labeling thousands of objects is time-consuming and the optimal dataset size is 

difficult to estimate. The progressive labeling strategy is one of the automated labeling 

techniques that helps to offload the labor work and determine the dataset sufficiency. 
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Figure 2-1 depicts the procedure to implement the progressive labeling strategy. The 

training epochs in each iteration are selected by trial-and-error that balances the training 

time and label prediction accuracy. The accuracy target and relative improvement 

threshold were selected to be 80% and 10%, respectively. For simple-shaped objects like 

glass beads, the labeling can be completed with about 50 images.  

 

Figure 2-1 Schematic of progressive labeling strategy workflow 

 

2.2.4. Neural Network Performance Evaluation 

The image analysis performance can be evaluated externally or internally. The external 

evaluation compares the processed size distributions with the data from the manufacturer 

or the other instruments (Borchert et al., 2014; Cardona et al., 2018; Schorsch et al., 

2014), while the internal evaluation compares the masks predicted by the image analysis 

with the GTs labeled by a trained expert and calculate the evaluation metrics. The 

evaluation metrics were used to assess the model prediction performance on validation 

and test datasets. The average precision (AP) measures how accurate the predicted masks 

match the GTs. The average recall (AR) measures the completeness of the prediction, i.e., 

find all GTs rather than miss them. The AP and AR are the trade-offs between finding 

fewer but more accurate samples and finding as many objects as possible regardless of 

the risk of mistake.   

 



41 

 

 

 

The match between masks is measured by intersection-over-union (IoU) that is the area 

of intersection of the masks being divided by the area of the union of the masks. When 

IoU between a GT and a prediction is greater than 0.5, they are considered matching. If a 

GT does not have any matching prediction, it is counted as a false negative; if a 

prediction does not have any matching GT, it is considered a false positive. For each GT, 

the prediction with the highest IoU is considered as true positive, while the rest are 

counted as false positives. The AP was calculated by averaging the IoUs of the true 

positives and false positives (IoU=0), while the AR was calculated by averaging the IoUs 

of the true positives and false negatives (IoU=0). 

2.2.5. Particle Size Descriptor 

In order to analyze the size distributions and various properties of particles, the geometric 

information should be extracted from the predicted masks. Based on the shape of 

interested particles, the optimal mask evaluation model should give the size that matches 

the actual dimension of the particle. 

The objects cropped by the frame boundaries may affect the accuracy of size and shape 

measurement. Since the masks of some cropped objects may be underestimated so that 

they did not intersect with the image borders, we found that removing the predicted 

masks with their bounding-box-to-frame-boundary distance less than 2 pixels produced 

the optimal result without cropped objects while keeping the most valid samples. 

𝐷𝑒𝑞 = √
4 ⋅ 𝐴𝑚𝑎𝑠𝑘

𝜋
 ( 2-1 ) 

The area equivalent circular diameter is a one-dimensional size measurement that is 

defined by the diameter of a circle with the same area of the mask (Eq. 2-1), which is 

ideal to describe the size of spherical particles. The minimum area bounding rectangle 

size is a two-dimensional size obtained from the width and height of the smallest rotated 
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rectangle encompassing the mask. The size and aspect ratio of rod- or needle-like 

particles can be accurately determined from this method.  

2.2.6. Solids Concentration and Pixel Fill Ratio 

The solids concentration can be characterized by volume fraction (solids volume per 

slurry volume) or number density (number of particles per volume slurry). The scales of 

these statistics depend on the particle size. For example, smaller particle slurry has a high 

number density while a relatively low volume fraction. This scale inconsistency makes it 

difficult to compare the solids concentration for particles with different sizes. In the 

previous study (Larsen & Rawlings, 2009), the image complexity has been defined based 

on the depth of field, particle shape, and number density. However, the definition 

involves complex mathematics and requires a priori of the particle shape, thereby 

inapplicable for the images acquired in the real system. Inspired by the concept of the 

IoU metrics, we proposed the pixel fill ratio (PFR) as a simple descriptor of the solids 

concentration and image complexity in the imaging-based system. The PFR is defined as 

Eq. 2-2 given below. Note that due to object occluding, the total projected area can be 

larger than the observing field area. Therefore, the PFR can be greater than one. Higher 

PFR means more chance that particles are agglomerated or overlapped, implying more 

difficult analysis and lower accuracy.  

During the experimental design stage, estimation of volume fraction, number of objects 

in each frame, and PFR can be performed by Eqs. 2-3 to 2-7, where 𝑚𝑎𝑑𝑑  [𝑘𝑔] is the 

mass of added material; 𝜌𝑝 [𝑘𝑔 𝑚3⁄ ] is the particle density; 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 [𝑚
3] is the slurry 

volume; 𝐴𝑜𝑏𝑠 is the observed area; 𝑁𝑡 is the total number of objects in the system; 

𝑁𝑠𝑙𝑢𝑟𝑟𝑦 [𝑚
−3] is the particle volumetric number density; 𝑉𝑜𝑙% is the volume fraction; 

𝑁𝑜𝑏𝑠 is the number of objects in the observed volume, and 𝑃𝐹𝑅 is the pixel fill ratio. 𝑉𝑝, 

𝑉𝑜𝑏𝑠, 𝐴𝑝𝑟𝑜𝑗 are functions to calculate per-particle the volume [𝑚3], observed field 

volume [𝑚3], and per-particle projected area [𝑚2], respectively. The depth of field is 

required to calculate the observed volume, which can be treated as a tunable parameter 
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and is estimated by fitting the computed PFR or number of objects per frame with the 

experimental ones.  

𝑃𝐹𝑅 ≝
Projected area of particles in the observing volume

Observing field area
 ( 2-2 ) 

𝑁𝑡 =
𝑚𝑎𝑑𝑑

𝑉𝑝 ⋅ 𝜌𝑝
 ( 2-3 ) 

𝑁𝑠𝑙𝑢𝑟𝑟𝑦 =
𝑁𝑡

𝑉𝑠𝑙𝑢𝑟𝑟𝑦
 ( 2-4 ) 

𝑉𝑜𝑙% = 𝑁𝑠𝑙𝑢𝑟𝑟𝑦 ⋅ 𝑉𝑝 ( 2-5 ) 

𝑁𝑜𝑏𝑠 = 𝑁𝑠𝑙𝑢𝑟𝑟𝑦 ⋅ 𝑉𝑜𝑏𝑠 ( 2-6 ) 

𝑃𝐹𝑅 =
𝐴𝑝𝑟𝑜𝑗 ⋅ 𝑁𝑜𝑏𝑠

𝐴𝑜𝑏𝑠
  ( 2-7 ) 

With the image segmentation results, the masks of each object are used to calculate the 

total projected area in each frame. Since the masks can overlap, the total mask area can 

be greater than the frame area. On the other hand, the non-overlapping area is calculated 

with the area of the union of the masks, which does not count the overlapping area 

repeatedly and will not exceed the frame area. Therefore, two experimental 𝑃𝐹𝑅𝑠 can be 

defined based on the total mask area (𝑃𝐹𝑅𝑇) or non-overlapping area (𝑃𝐹𝑅𝑁) (Figure 

2-2). The overlapping ratio 𝑟 = 𝑃𝐹𝑅𝑇 𝑃𝐹𝑅𝑁⁄ − 1 is a quantity between zero to one that 

quantifies the level of object overlapping and obstruction, which can be used to determine 

whether the solids concentration is too high for accurate measurement. Alternatively, it 

may be used as a quantitative measurement of particle agglomeration. 
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Figure 2-2 Illustration of the concepts of two PFRs. Function A stands for the area of the 

objects. 

 

2.3. Experimental Setup and Procedures 

2.3.1. Neural Network Training Parameters 

In this study, we built a deep learning model with the latest FAIR Detectron2 platform 

(Wu et al., 2019). A desktop computer with Intel i7-6700K CPU, 32 GB DDR3 RAM, 

and an NVIDIA GTX 1070 GPU (performance: 6.5 TFLOPs) was used for neural 

network training and inference. During training and evaluation, the processing speeds of 

the images (800 by 600 pixels resolution) were 3 frames per second (fps) and 5 fps, 

respectively. The computation power can be upgraded by using multiple GPUs or use the 

latest GPU that supports the mixed-precision training (Micikevicius et al., 2017), which 

trades marginal computation precision for significant speed improvement. 
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ResNet-101 was selected as the backbone of the neural network. The neural networks 

were trained for 240,000 epochs with the learning rates of 0.002 for the first 60,000 

epoch and 0.0002 for the rest.   

2.3.2. Particle Imaging Process Setup 

Figure 2-3 demonstrates the experimental setup used in this study. During the 

experiment, the solid samples dispersed in 200-mL deionized water were added into a 

multi-port crystallizer. An overhead stirring motor working at 500 RPM drove a 50-mm 

Teflon anchor stirrer to provide sufficient mixing. The slurry was circulated by a 

peristaltic pump (Kamoer KCM-ODM, four rotors) at 120-mL/min in a 4-mm-diameter 

tubing, which ensured minimal clogging and classification effect. The flow cell was 

customized by welding circular glass tubing (3-mm I.D.) on both ends of a rectangular 

glass tubing (Friedrich & Dimmock, 2-mm height, 4-mm width). The circular glass 

tubing served as a connection port, while the flat surface of a rectangular tubing provided 

a perfect observing window with minimal distortion. The similar internal dimensions and 

smooth welding transition ensured no dead zone inside the apparatus. 

 

Figure 2-3 Flow cell imaging experimental setup 

A 3D-printed part bound together the flow cell, a high-power LED (CREE XHP70.2, 29-

watt) for bright field lighting, and a lens. The lens consisted of an achromatic convex lens 

(10-mm-diameter, 30-mm-focal length) for optical imaging and a 3D-printed extension 
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tube that connected the convex lens to the camera. An industrial camera (Allied Vision 

Mako U-051) was used as the image acquisition device. In order to minimize the motion 

blurry of the objects, a strobe lighting strategy similar to the previous work (Simon et al., 

2012) was implemented with an STM32F103 microcontroller, and the high-power LED 

that was capable to illuminate within several microseconds. Because of the short 

illumination period, the global-shutter-equipped industrial camera was required for full-

frame exposure.  

The software was developed to coordinate each component, store captured images, and 

perform various analyses. The industrial camera was interfaced with an open-source 

library, harvesters, which enabled fast development and provided excellent performance 

(Kudo, 2019). The exposure time controller and pump were controlled via serial ports, 

enabling automated experiments and data acquisition. 

2.3.3. Camera Scale Calibration 

The pixel size calibration was performed to convert the captured images into the actual 

scale. A standard hemocytometer was used as the size reference for calibration. ImageJ 

(Rueden et al., 2017) provides convenient tools for extracting the profile data (pixel gray 

value along a given line). The extrema of the profile were used to identify the 

intersections and lengths of the grids. The calibration statistics were obtained from 

repeated profile measurements in different locations of the image (1.286 ±

0.001 𝜇𝑚 𝑝𝑖𝑥𝑒𝑙⁄ , 𝑛 = 8). 

2.3.4. Particle Sample Preparation 

Glass beads and fluid catalytic cracking (FCC) catalyst particles were chosen as the 

model particles to study the performance of the image analysis model. Glass beads were 

transparent spherical particles (Figure 2-4.a), which were used as the model particle for 

neural network training and evaluation. The fluid catalytic cracking (FCC) catalyst 

particles (Figure 2-4.b) have an oval to grainy shape and an opaque body, which were 

used to evaluate the capability to differentiate different species of particles with a distinct 
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appearance. Compared with the common crystallization materials, the model particles are 

stable in the aqueous slurry with negligible breakage, agglomeration, or dissolution, 

allowing more accurate and stable solids concentration quantification. The regular and 

uniform shape makes it easy to define the characteristic size, calculate different types of 

size distribution, and compare with the measurements by other instruments.  

 

  

Figure 2-4 Dark-field microscopic image of (a) glass bead (un-sieved) and (b) FCC 

catalyst sample. 
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2.3.4.1. Experiments for preparing model training dataset 

A GilSonic AutoSiever (Gilson Inc., OH, USA). was used to separate glass beads sizes 

into 10-cuts: 20, 32, 45, 53, 63, 75, 90, 106, 125, and 150 μm. 20-32-μm. These particles 

were used to collect training data. Glass beads with the size 125-150-μm were reserved to 

evaluate particle size extrapolation capability. The added amounts of particles were 

calculated based on a flat number distribution (Table 2-1 No. 1). 51-images were labeled 

with a progressive labeling strategy. The dataset was split into the training set (41 

images) and the validation set (10 images). 

The FCC particles were used to test the model capability to differentiate different types of 

particles. The FCC training data was collected according to Table 2-1, No. 8. 28-images 

were labeled progressively and split into the training set (24 images) and validation set (4 

images). 

2.3.4.2. Experiments for evaluating model performance 

The model capability of predicting objects with unseen scales was assessed by analyzing 

smaller or larger particles than the trained scale range and comparing the validation 

metrics with manual labels and the size distribution measured by the laser diffraction size 

analysis with Malvern Mastersizer 2000 (Malvern Instrument, UK). The experimental 

procedure is described in Table 2-1, No. 2 to 4. The samples were tested by Malvern 

Mastersizer 2000 for size verification. Ten images in each run were manually labeled to 

calculate the validation metrics. 

The model prediction accuracy at different solids concentration levels was evaluated. 

Three glass beads samples (small: 32-45-μm, medium: 63-75-μm, large: 106-125-μm) 

were used in each experiment (Table 2-1, No. 5 to 7) to evaluate how the solids 

concentration of different sized particles can affect the model performance. At each 

solids concentration level, ten images were labeled as validation GTs to evaluate the 

accuracy, and the size distributions were compared to evaluate the consistency. The final 

samples of each experiment were tested by Malvern Mastersizer 2000. 
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The size distributions of the glass beads and FCC particle samples were analyzed 

separately in two crystallizers (Table 2-1 No. 9). Then, the solid samples were filtered, 

mixed, and dispersed in 200 mL DI water. The size distributions of the mixed samples 

were analyzed and compared with the ones before mixing to evaluate the classification 

capability of the model. 
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Table 2-1 Experiments description 

No. Objective Material* Solid concentration 

1 
Glass beads 

training data 

Sieved glass beads mixture 

of which the number-based 

distribution was flat** 

– 

2 

Size 

extrapolation 

(small) 

20-32-micrometer glass 

beads: 1 g 

 

number density: 2.5 × 105 mL−1; volume 

fraction: 0.2%; PFR: 9.2%. 

3 

Size 

extrapolation 

(large) 

125-150-micrometer:  6 g 

 
number density: 9.2 × 103 mL−1; volume 

fraction: 1.3%; PFR: 10.8%. 

4 

Size 

extrapolation 

(extreme 

large) 

150-300-micrometer:  8 g 

 

number density: 2.1 × 103 mL−1; volume 

fraction: 1.7%; PFR: 8.1%. 

5 

Solids 

concentration 

test (small) 

32-45-micrometer glass 

beads 8 to 3.9 g, added 

separately 

number density: 500 to 2.5 × 105 mL−1; 

volume fraction: 0.002% to 0.8%; PFR: 

0.04% to 24.7% 

6 

Solid 

concentration 

test (medium) 

63-75-micrometer glass 

beads 42 mg to 17 g, added 

separately 

number density: 500 to 2.0 × 105 mL−1; 

volume fraction: 0.9% to 3.5%; PFR: 

0.15% to 60.7% 

7 

Solids 

concentration 

test (large) 

125-150-micrometer glass 

beads 200 mg to 15 g, 

added separately 

number density: 500 to 3.8 × 104 mL−1; 

volume fraction: 0.04% to 3.1%; PFR: 

0.4% to 32.1% 

8 
FCC training 

data 
FCC particles, 3.0 g – 

9 
Classification 

test 

FCC particle 1.0 g;  

un-sieved glass beads 1.0 g 
– 

 

 

* 200-mL DI water was added as the dispersion in each experiment. 
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2.4. Results and Discussion 

2.4.1. Neural Network Training and Progressive Labeling 

The neural network training loss and validation metrics at different training epochs are 

demonstrated in Figure 2-5.a. The training loss continued to decrease throughout the 

training process, and two sudden drops in the training loss were observed at epoch 40,000 

and 60,000, where the learning rate was decreased by a factor of 0.5. The optimal training 

steps were found to be 60,000 epochs, where the validation performance stopped 

improving. After that, the validation metrics plateaued, indicating no significant over-

fitting occurred. The final validation AP and AR stabilized at 0.84 and 0.86, respectively. 

Figure 2-5.b helps to interpret the validation metrics. The true positives (TPs) were the 

successful prediction that matched the GT whose overlapping metrics (IoU) contribute to 

the AP; the false positives (FPs) were unexpected predictions that lowered the validation 

AP; the false negatives (FNs) were missed predictions that lowered the validation AR. 

Note that the validation set was not involved in the training process. Some FNs and FPs 

were due to the inconsistent labels in the validation set. For example, the FPs could be 

some objects that were otherwise labeled and included in the training sets. If we only 

look at the successful predictions, the TPs, the average IoU could reach 88.9%, implying 

a very accurate mask segmentation.  

 

 

** Sieved glass beads addition: 32-45-μm: 162-mg; 45-53-μm: 314-mg; 53-63-μm: 521-

mg; 63-75-μm: 878-mg; 75-90-μm: 1504-mg; 90-106-μm: 2509-mg; 106-125-μm: 4110-

mg. 
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Figure 2-5 (a) Neural network training loss and validation metrics (full glass beads 

training set); (b) validation image with overlays of GTs and the masks predicted by the 

neural network (240,000 epoch training). The orange masks are true positives (TPs) 

(overlapping GT and prediction); the yellow masks are false negatives (FNs) (GT only); 



53 

 

 

 

the red masks are false positives (FPs) (prediction only); (c) Neural network performance 

after 60,000 epochs with different training set sizes.  

The progressive training exploited the relation between training set size and validation 

accuracy. The result is shown in Figure 2-5.c. Each neural network was trained from the 

same starting point for 60,000 epochs with different training set sizes. When only one 

image (82 label samples) was used for training, the AP and AR were higher than 0.7. 

With the increasing training data size, the AP was stable after 21 images (1628 samples), 

but the AR was still improving. This behavior could be attributed to the simple and 

uniform shape of the glass beads, which allowed learning the precise masks in a smaller 

number of samples. On the other hand, with expanding training samples, more rare cases 

or random human inconsistencies were learned, which reflected in fewer missed 

detections or false negatives, hence improving the AR metrics. This analysis of Figure 

2-5.c is a powerful tool to help efficiently decide the sufficiency of dataset size. With the 

optimized training strategy, the training time was approximately five hours, and the total 

time for model preparation could be done within two days. 

2.4.2. Particle Size Extrapolation Performance 

The particle size extrapolation tests reveal the generalization capability of the neural 

network model to detect the particle of unseen size, which were summarized in Figure 

2-6 and Table 2-2. The small size extrapolation (20-32-μm) demonstrated the superior 

capability of the neural network to detect the objects smaller than the training objects. 

The area equivalent circle diameter and size calculation methods showed a good 

agreement in the predicted size distribution (Figure 2-6.a). The size distribution produced 

by the proposed method matches the sieved sample specifications and the Mastersizer 

2000 laser diffraction analysis, whose default volume-based distribution was converted 

into number-based size distribution to ensure comparability. With training validation 

metrics as the baseline, the evaluation metrics (Table 2-2) of small size extrapolation 

showed an equal performance in AP and a decreased AR, which implied that the masks 

generated for small particles were still accurate, but they failed to find some objects 
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intended by the GTs. This behavior was an expected extrapolation issue because the 

neural network was confused by the scale variation (Kanazawa, Sharma & Jacobs, 2014).  

The experiment with 125-150-μm glass beads samples slightly extrapolated the range to 

the larger size. Due to sample contamination or errors during sieving, some small 

particles were mixed in, which was confirmed by microscopic images (Figure 2-6.e). 

Despite the good agreement between the image analysis and laser diffraction (Mastersizer 

2000) results, the size distributions obtained by image analysis successfully reported the 

smaller particles, while the laser diffraction (Mastersizer 2000) failed to resolve the 

differences, possibly because the laser diffraction is volume-based size analysis, so that 

the volume fraction of large particles effectively masked the size distribution peak of the 

smaller particles, resulting in a lower resolution for small particles. The images and 

predicted masks were reviewed to ensure the size distribution was not due to the partition 

of large objects. From Table 2-2, the AR was consistent with the baseline, while the AP 

dropped, which was because the large particles were easier to find, but the shape of the 

mask may be variable and difficult to predict. 

The neural network performance degraded significantly when processing the 150-300-μm 

glass beads samples. Not only the predicted masks became incomplete and partitioned 

(Figure 2-6.f), the size distribution also failed to report the correct size range. From Table 

2-2, the AP and the AR continued the trends in 125-150-μm case. 

In conclusion, it is necessary to prepare the training set with all possible scaled objects. 

Besides, the solids concentration specifications for each experiment matched the 

predictions.  
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Figure 2-6 Particles small extrapolation test results with sieved glass beads sample (row 

1: 20-32-μm; row 2: 125-150-μm; row 3: 150-300-μm). (a-c) The particle size 

distributions obtained by different size extraction models compared with the result from 

Malvern Mastersizer 2000 (converted from volume-based to number-based size 
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distribution). The grey lines stand for the sieve size ranges.; (d-f) sample validation 

images with GT and prediction overlays. Refer to Figure 2-5 for the color codes. 

Table 2-2. Extrapolation test evaluation metrics 

Sieve size 

(μm) 
AP AR 

PFR 
Average objects per 

frame Overlapping 

ratio 
calculated PFRN PFRT calculated measured 

20-32 0.8432 0.7938 9.2% 8.9% 9.1% 124.2 132.2 0.012 

125-150 0.7987 0.8702 15.0% 10.8% 11.4% 15.3 11.8 0.039 

150-300 0.6257 0.8469 8.1% 6.38% 7.25% 1.3 5.9 0.136 

 

2.4.3. Detection Performance in The Increasing Solids Concentration 

Figure 2-7 demonstrates the sample images and predicted masks for three different-sized 

particles at three levels of solids concentration. At the higher solids concentration, despite 

the drastically increasing complexity of the images and overlapping of the objects, the 

image segmentation performance was not compromised. By visual examination less than 

2% of objects were missed (false negative); the contacting and overlapping objects 

(Figure 2-7.h) were segmented into multiple; the undistinguishable cluster (Figure 2-7.f) 

segmentation was attempted by picking up a few visible objects on the cluster, and some 

of the overlapping masks successfully predicted the invisible parts (Figure 2-7.e). The 

PFR was used as a scale-invariant solids concentration indicator that successfully 

classified the images with distinct visual complexity. Also, we observed the decreasing 

image brightness with the increasing PFR or solids concentration due to the obstruction 

of the particles out of the depth of field. This inconsistent exposure led to the wash-out 

looking of low solids concentration pictures in which the particles were difficult to detect. 

For the high solids concentration images, the excessive shadows might hide some 

particles and cause incorrect segmentation. Therefore, it is recommended to introduce 

closed-loop control to maintain the image brightness at an optimal level. 
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Figure 2-7 Sample images array for the small (32-45-μm), medium (63-75-μm), and 

large (106-125-μm) glass beads samples in rows and different solids concentrations in 

columns (average total PFR). The detected instances were overlaid with multiple colors. 

 

The size distributions and the performance metrics were summarized in Figure 2-8. The 

size distribution statistics were stable at different solids concentration levels (Figure 

2-8.a-c). The size distribution for medium-sized samples (Figure 2-8.b) demonstrated a 

tendency to increase when the solids concentration was extremely high, possibly due to 

the unsuccessful segmentation of overlapping objects, which can be confirmed by the AP 

performance drop at high solids concentration (Figure 2-8.d). The Mastersizer 2000 

number-based quantiles match the results from image analysis. For large particle samples 
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(Figure 2-8.c), the image analysis could differentiate the small particles that the laser 

diffraction failed to detect, leading to the difference in the D10 quantile. The PFR was 

found linearly correlated with the mass of particles when PFR was below 0.3. This 

relation was observed in all runs with different-sized particles, rendering it an effective 

scale-invariant solids concentration quantity.  

The AR matched the performance of the baseline even at a very high solids 

concentration, which was confirmed by visual examination that only a few objects were 

missed. However, the AP started to drop when the particles became more crowded and 

complex, which implied approaching the solids concentration limit when the PFR was 

greater than 0.5. In this case, an in-situ dilution device is recommended to archive the 

best accuracy. 

In summary, the size analysis by the neural network image analysis was consistent at 

various solids concentrations. The capability of high-resolution analysis and visual 

examination make it an ideal particle size analysis PAT. 
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Figure 2-8 Performance evaluation results for the small (32-45-μm), medium (63-75-

μm), and large (106-125-μm) glass beads samples at different solids concentrations. (a)-

(c) the size distribution statistics (D90, D50, D10, and mean) and the PFR at the 

increasing solids concentrations. The Mastersizer 2000 number-based size statistics 

(horizontal dash lines) were included for reference; (d) The validation metrics at 

increasing solids concentrations (PFR) and the baselines; (e) The average number of 
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detected particles per frame at various 𝑷𝑭𝑹𝑻 levels; (f) The simulated and experimental 

overlapping ratio at various 𝑷𝑭𝑹𝑻 levels 

 

The further study of the effects of PFR shows its effectiveness to characterize the particle 

solids concentration and image complexity. Figure 2-8.e shows that the 𝑃𝐹𝑅𝑇 has a linear 

relation with the number of the detected particle in each frame, thereby enabling it an 

effective predictor of the particle number density. In previous studies (Borchert et al., 

2014; Cardona et al., 2018), the effective range of solids concentration for an image 

analysis system usually limited the number of particles to tens of particles per frame due 

to the limited ability to differentiate the overlapping particles. Larsen and Rawlings  

(2009)found that linear relationship between the number of identified objects per frame 

and the actual number density held only when the equivalent 𝑃𝐹𝑅𝑇 is below 0.15, and 

above that the number of missed particles became dominant. On the other hand, our work 

successfully shows that the neural network image analysis is capable to measure the 

particle number density without major error up to the 𝑃𝐹𝑅𝑇 of 0.49, implying its superior 

capability to measure the particle number density at the high solids concentration. 

The 𝑃𝐹𝑅𝑇 was also found to have a linear effect on the average overlapping ratio 

regardless of the particle size (Figure 2-8.f). The Monte Carlo method was used to 

simulate the average overlapping ratio by generating the circles of the specified diameter 

at random locations in an image. The 𝑃𝐹𝑅𝑇 and 𝑃𝐹𝑅𝑁 were obtained by measuring the 

total area of all generated objects and the object-occupied area, respectively. Although 

both simulated and experimental overlapping ratio showed a linear relation with the 

𝑃𝐹𝑅𝑇, the slope of the simulated overlapping ratio was approximately three times greater 

than the slope of the experimental one, which is possibly attributed to the limitation of 

overlapping segmentation. When the overlapping area was more than approximately 1/3 

of the area of the smaller object, the algorithm might recognize the cluster as a single 

particle, resulting in a reduced number of detections. Therefore, the overlapping ratio 

predicted in experiments was lower than the simulated cases, and the slope difference 
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between the experiments and simulations could be used to evaluate the overlapping 

segmentation performance. 

The performance of the high solids concentration analysis has been studied in the 

previous works. Table 2-3 compares the image analysis result of this work at PFRT =

0.252 and PFRT = 0.495 and the images obtained from the other studies (Javier Cardona 

et al., 2018) . Larsen and Rawlings (2009) studied their SHARC image analysis algorithm 

on artificial images. The PFRT and the average recall were estimated from the data in the 

publication. The accuracy of the SHARC algorithm was obtained from the data from the 

similar in another study (Larsen, Rawlings & Ferrier, 2007) and the average recall was 

calculated based on the data in the paper (Larsen & Rawlings, 2009). Cardona et al. 

(2018) used edge detection algorithms and focus evaluation to filter out undesired 

objects. The PFRT, AP, and AR were estimated with the image sets and the programs 

provided by the authors (Javier Cardona et al., 2018). Borchert et al. (2014) studied the 

cooling crystallization of potassium dihydrogen phosphate with conventional 

thresholding image analysis and used the shape descriptor to classify the single crystals 

and clusters. The PFRT, AP, and AR were estimated with the data and figures in the 

paper (2014). Compared with the previous works, our method pushes the up limit of the 

solid concentration for image analysis to approximately three times higher than before, 

while maintaining the high AP and AR that outperforms any of the image analysis cases, 

which is considerably better than the previous state-of-the-arts.  

 



62 

 

 

 

Table 2-3. Summary of the previous image analysis studies at a high solids concentration 

Reference 
Maximum 

𝐏𝐅𝐑𝐓 

AP @ Maximum 

𝐏𝐅𝐑𝐓 

AR @ 

Maximum 𝐏𝐅𝐑𝐓 Comments 

This work 0.495 0.78 0.865  

Larsen and Rawlings 

(2009) 
~0.371 ~0.5 

~0.2 Artificial images 

Cardona et al. (2018)  ~0.179 ~0.2 ~0.5  

Borchert et al. (2014) ~0.133 ~0.4 ~0.7  

 

2.4.4. Multi-species Classification and Measurement Reproducibility 

 

Figure 2-9 Sample images with overlays colored based on the classification results (Red: 

glass beads, blue: FCC particle). (a) an image captured in pure glass beads sample; (b) an 
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image captured in pure FCC particle sample; (c) an image captured in the mixture; (d) 

area equivalent circle distributions of glass beads and FCC before and after mixing. 

 

The results of distinguishing the visually distinct glass beads and FCC particles are 

demonstrated in Figure 2-9. Owing to the distinctive visual features of the glass beads, 

the neural network was able to correctly predict the mask and its kind. However, the 

opaque appearance of the FCC particle had little surface texture, and the blurry objects 

looked similar to the glass beads, leading to the unexpected glass beads detection in the 

pure FCC sample (Figure 2-9.b). After mixing (Figure 2-9.c) the neural network had no 

trouble identifying the objects, confirmed by the highly matching size distributions of 

each type of particle before and after mixing (Figure 2-9.d). The mixture was prepared by 

transferring the glass beads sample into the crystallizer with FCC particles, which 

explained the minor difference in the glass beads size distribution only. The classification 

ability can be used to analyze the size and concentration of different crystal forms that 

present distinct visual features (Gao et al., 2018) or detect air bubbles and solid particles 

in a three-phase reactor. 

 

2.5. Conclusions 

In this study, we presented the neural network image analysis method that was able to 

classify the particles and perform high-accuracy object segmentation for the contacting or 

overlapping objects. The detection capabilities of unseen-scaled objects and classification 

in high solids concentration were investigated. A scale-invariant solid concentration 

measurement, pixel fill ratio (PFR), was proposed to quantify the image complexity for 

an image analysis model. The image analysis model successfully extracted the image 

information in the concentrated slurry with approximately three times higher PFRT than 

the previous studies without compromising the accuracy. The glass beads and FCC 

particles were successfully differentiated based on their appearance, and the individual 

size distributions were accurately measured. Assisted by the progressive labeling strategy 
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that simplifies and speeds up the model construction stage, the deep learning-based image 

analysis algorithm can serve as an innovative process monitoring technology for the 

crystallization process. 
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Chapter 3 

Deep Learning-Based Oriented Object Detection 

for In-Situ Image Monitoring and Analysis: A 

Process Analytical Technology (PAT) Application 

for Taurine Crystallization 

A version of this chapter has been submitted to Chemical Engineering Research 

and Design: Wu, Y., Gao, Z. & Rohani, S. (2021).  Deep Learning-Based 

Oriented Object Detection for In-Situ Image Monitoring and Analysis: A Process 

Analytical Technology (PAT) Application for Taurine Crystallization 
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 Deep Learning-Based Oriented Object Detection for In-

Situ Image Monitoring and Analysis: A Process Analytical 

Technology (PAT) Application for Taurine Crystallization 

 

Abstract 

Image analysis enables the estimation of critical process properties such as crystal size, 

morphology, and crystallization kinetics. Despite the rich image information, the lack of 

a robust image analysis technique has been an obstacle to promote its applications. In this 

work, an automated image analysis technique that combines the state-of-the-art oriented 

object detection model, S2A-Net, was developed for in-situ estimation of the two-

dimensional crystal size distribution (CSD) and the crystal counts.  The model was 

trained to detect and classify both crystals and clusters to enable quantification of the 

extent of agglomeration and exclude unreliable detections. The effectiveness and 

robustness of extracting size and aspect ratio at various image complexities were verified 

by comparing with the focused beam reflective measurement (FBRM) and manually 

analyzed images in the experimental studies for taurine batch cooling crystallization with 

different seed loadings. An online calibration strategy for solute concentration 

measurement with Raman spectroscopy was introduced to eliminate the dedicated 

calibration experiments. The secondary nucleation and growth rate kinetics were 

evaluated from the online measurements and validated by Monte Carlo simulation. The 

proposed method provides a novel PAT strategy that enables accurate two-dimensional 

size measurement and shape characterization for online monitoring and control of a 

solution crystallization process. 

Keywords: Deep learning-based image analysis; Oriented object detection; Crystal size 

and shape measurement; Cluster detection; Crystallization kinetics estimation; Raman 

spectroscopy 
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3.1. Introduction 

Crystallization operation is the essential step to recover and purify the solids product 

from the upstream processes such as chemical synthesis and fermentation. The product 

crystal size and shape distribution will affect the powder properties (e.g., density and 

flowability) and the downstream processability. For example, the fine and high-aspect-

ratio particles result in high resistance and low efficiency in the filtration step, which 

leads to difficulties and increasing costs in separation and drying (Bahar Basim & Khalili, 

2015; Bourcier et al., 2016). Therefore, growing interests and efforts have been devoted 

to the development of the process analysis technology (PAT) that monitors and optimizes 

the sizes and shapes of particles.  

Despite the complex nature of crystal morphologies, the majority of particle sizing PAT 

initiatives use a simplified particle size descriptor of the characteristic or equivalent 

length, resulting in one-dimensional crystal size distribution (CSD). However, the shape 

and orientation of high-aspect-ratio particles are known to affect optical and acoustic 

scattering, rendering the unreliable size estimations from ultrasonic attenuation 

spectroscopy (UAS) and laser diffraction (LD) techniques in these scenarios (Merkus, 

2009). The chord length distribution (CLD) of FBRM is a function of crystal shape 

(Leyssens, Baudry & Hernandez, 2011). The confounding one-dimensional sizes not only 

cause inconsistency in CSD measurements but also leads to loss of critical shape 

information. Extracting multi-dimensional or shape distribution from the conventional 

PAT initiatives has been studied for FBRM (Irizarry et al., 2017; Leyssens, Baudry & 

Hernandez, 2011) and laser diffraction (Ma et al., 2000). 

However, the recent development of online and offline image analysis techniques has 

shown superb advantages in precise multi-dimensional size and shape measurement. Ma 

et al. (2012) used both intrusive online imaging systems and off-line microscopy to 

measure and optimize the aspect ratio (AR) of the needle-like β-form L-glutamic acid. 

This work showed that the cooling profile could affect the crystal aspect ratio. By 
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controlling the supersaturation, the product shape can be fine-tuned. Three-dimensional 

reconstruction from double-view or orthogonal-view imaging systems were studied in 

(Huo et al., 2017; Ochsenbein et al., 2014). The pictures taken by paired cameras from 

different angles were first aligned and the feature points were used to obtain the 3D 

geometry of the crystal, which can be used for shape/size measurement and growth 

kinetic estimation. Gao et al. (2018) reported a low-cost insertable probe imaging that 

tracked the polymorphic transformation of L-glutamic acid based on the differences in 

crystal habits. The consistency to the polymorphic transformation data from Raman 

spectroscopy prompted the good sensitivity and accuracy of crystal form classification 

from the image. In our previous work, we implemented a home-made flow-through cell 

imaging system and studied the accuracy of size measurement and particle classification 

at high slurry density (Wu, Lin & Rohani, 2020).   

Extracting the geometrical and spatial information of the particles from the images is a 

challenging task especially at high solids concentration where the objects are occluded. 

The requirement of low solids concentration and sample dilution have limited the 

application of quantitative image analysis in crystallization systems (Nagy et al., 2013). 

The major drawback of the conventional image segmentation techniques lies in 

differentiating the contacting or overlapping particles. The recent research works in 

crystallization imaging analysis have extensively adopted the deep-learning-based image 

analysis methods to improve the image segmentation performance (Chen et al., 2019; 

Manee, Zhu & Romagnoli, 2019; Unnikrishnan et al., 2020). Our previous work 

presented that the application of the recent deep learning-based techniques could address 

the issues, enabling the analysis in a considerably wider range of solids concentration 

without sacrificing the accuracy (Gao et al., 2018; Wu, Lin & Rohani, 2020). In the 

present work, in addition to upgrading the camera and optics of the imaging system to 

acquire images with higher resolution and larger field of views, we have improved the 

image analysis algorithm. We have adopted the state-of-the-art oriented object detection 

technique, namely S2A-Net (Han et al., 2020), to further investigate the feasibility of 

characterizing the crystals as rotated rectangle boxes instead of the pixel-wise masks as in 
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the image segmentation methods. This can significantly decrease the computational load 

in model inference and post-processing. The two-dimensional size descriptor can be 

extracted from the width and height of the rotated boxes, resulting in two-dimensional 

CSDs (2D-CSDs). The detections were classified as single crystals and clusters, enabling 

the quantitative analysis of crystal agglomeration and more accurate size estimations by 

removing the detected crystal intersecting with the clusters. Combining with Raman 

spectroscopy and FBRM, the 2D-CSDs were used to estimate nucleation and two-

dimensional growth kinetics, which have been proven challenging due to the lack of 

reliable measurement technology (Ochsenbein et al., 2014).  

 

3.2. Methodologies 

3.2.1. Oriented Object Detection Model 

Most of the recent crystallization image analysis studies employed image segmentation 

algorithms, which predict the pixel-wise object masks. Due to the difficulty to measure 

the irregular-shaped mask, it is common practice to approximate the masks with some 

simple geometries. For example, the smallest rotated rectangle (minimum area) that 

surrounds the mask can be used to measure the two-dimensional sizes. The oriented 

object detection (OOD) task implements the shortcut to achieve this objective: it directly 

predicts each object with a rotated box (five parameters: 𝑥, 𝑦, width, height, rotation) 

without the intermediate mask prediction (hundreds to thousands of parameters 

depending on the size). Given the similar accuracy, the OOD models are much faster 

because of the lack of mask prediction branches and less complex postprocessing thanks 

to the smaller number of parameters to process. 

The S2A-Net (Single-Shot Alignment Network) is a state-of-the-art OOD algorithm (Han 

et al., 2020). In a regional convolutional neural network (RCNN), the feature extraction 

filters are rotation-variant, meaning that the different rotations of the same object are not 

equivalent. In the OOD task, learning all redundant rotations needs a large number of 



72 

 

 

 

model parameters, leading to a significant increase in the training time and risk of model 

overfitting (Zhou et al., 2017). In S2A-Net, this problem is addressed by predicting the 

local rotations to align the filters in the convolutional network to the objects with 

different orientations. Then, the active rotating filters (ARFs) are used to obtain the 

rotation-invariant feature maps by pooling the most significant responses from multiple 

rotations (Zhou et al., 2017). Finally, the oriented bounding boxes, scores, and 

classification are computed from the feature maps. The S2A-Net outperformed many latest 

OOD models in both speed and accuracy (Han et al., 2020). It is worth noting that is 

possible to include the ARF in an image segmentation model to benefit from the rotation-

invariant feature and achieve better irregular-shaped particle (e.g., clusters) analysis. 

3.2.2. Materials and Experimental Setup 

Taurine (2-Aminoethane sulfonic acid) is an important nutrient in the development of the 

muscle and nerve system. It is widely used as an ingredient in pet food, energy drink, and 

pharmaceutical products. The aqueous taurine solution was selected as the model 

crystallization system because of 1) moderate crystal growth rate that keeps the 

experimental time manageable 2) the rod-like crystal morphology that is suitable to be 

approximated by the oriented bounding boxes for two-dimensional size estimation; 3) 

compared to the needle-like crystals (e.g., β-form L-glutamic acid), the shorter edges of 

taurine crystals are substantial and measurable, making the two-dimensional CSD and 

growth kinetics analysis more practical (Ochsenbein et al., 2014).   
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Figure 3-1 PXRD pattern of taurine crystal. The sample and simulated curves were 

obtained from the ground sample from BioShop Inc. and the Mercury simulation, 

respectively. 

The crystalline taurine (99% purity) was purchased from Bioshop Inc (Canada). The 

molecular structure and PXRD patterns are shown in Figure 3-1. The aqueous solution 

was prepared with the raw material and de-ionized water based on the solubility from the 

literature (Wu et al., 2017). The seeds were prepared by grinding the raw taurine crystals 

in a mortar pester for 10 minutes and then sieving 35 to 53 microns crystals with 

GilSonic AutoSiever (Gilson Inc., USA). The mean size and the mean aspect ratio 

(longer axis / shorter axis) of the seeds were 46.1 𝜇𝑚 and 1.79, respectively. The two-

dimensional CSD of the seeds is shown in Figure 3-2. 
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Figure 3-2 (a) Dark field microscopy of the prepared seeds. (b) 2D size distribution of 

the seeds 

 

The experimental setup is shown in Figure 3-3. A 120 mL double-jacket crystallizer was 

used with a customized mechanical stirrer integrated on the plug, which addressed the 

issue of shaft wobbling and PTFE debris from the stirrer due to the shaft misalignment 

when using an overhead agitation motor. The peristaltic pump circulated the slurry 
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through the flow cell (Rectangular quartz tube, 2 × 4 𝑚𝑚, F&D Glass, USA). The 

residence time of the external circulation was 1.5 seconds that minimize the sample 

classification and clogging. A high-power LED light (XHP70.2, CREE Inc., USA) was 

used as the strobing light source. An industrial camera (MV-CA016-10UM, Hikvision 

Digital Technology, China) was installed on a re-purposed PCB microscopic lens for 

imaging. The resolution was 1440-by-1080 pixels and the calibration ratio was 1.67 

𝜇𝑚/𝑝𝑥, which resulted in the field of view (FOV) of 2.4-by-1.8 mm. The exposure 

signal triggered the LED strobing for around 8 microseconds to prevent motion blur. The 

internal temperature was measured by a DS18B20 digital thermometer (Maxim 

Integrated, USA) and controlled by a thermostat (JULABO FP50, USA). A Raman 

spectroscopy (RXN1-785nm, Kaiser Optical System, USA) was employed to track the 

solute concentration. FBRM S400 (Mettler Toledo, USA) was used to detect fine 

particles and compare the performance of measuring the CSD and crystal counts. The 

control signals and the measurements in the set-up were centralized with the wireless 

microcontroller, ESP8266 (Espressif, China), and MQTT technology, which enabled 

automated experiment execution. 
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Figure 3-3 Schematic diagram of the experimental setup 

 

3.2.3. Imaging Dataset Preparation and S2A-Net Model training 

The training dataset contained 29 images collected from various conditions (Table 3-1). 

The solution saturated at 30℃ was prepared by adding 19.30 g taurine to 160 g deionized 

water. The images were selected from the process of linear cooling (0.2℃/min) from 

30℃ to 20℃. The clear solution dissolved at 40℃ for 15 minutes. The low-, medium-, 

and high solids concentration frames were selected from the nucleation onset, when the 

temperature was around 25℃, and when the cooling profile was finished, respectively. 

The seeded images were taken in the linear cooling experiments with the seeds added at 
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the beginning of each experiment. The dissolution images were collected from linearly 

re-heating the slurry at a rate of 0.2℃/min from 20℃ to 30℃. 

Table 3-1 Training data statistics 

Condition 
# 

Images 

# 

Crystals 

# 

Clusters 

Median 

crystal size 

[𝛍𝐦] 

Median 

cluster size 

[𝛍𝐦] 

Median 

crystal 

AR 

Median 

cluster 

AR 

Low density (no seed) 6 1482 144 22.9 107.1 2.02 1.71 

Medium density (no seed) 5 993 204 78.3 159.5 2.83 1.71 

High density (no seed) 6 1641 244 82.5 187.8 3.11 1.70 

Seeding 7 858 7 30.8 111.2 1.78 1.67 

Dissolution 5 1399 92 78.9 138.6 2.86 1.77 

Total 29 6373 691 - - - - 

 

The open-source software, labelimg2, was used to label the oriented bounding boxes. The 

progressive labeling technique (Wu, Lin & Rohani, 2020) was employed to reduce the 

workload required to create a large number of labels. There are four equivalent 

representations depending on the angle and the relative length of the height and width 

(Figure 3-4.a). The duplication may cause confusion and inconsistency during training. 

Therefore, all labels were converted into the format of Figure 3-4.a before training. The 

labels were categorized into crystals and clusters (Figure 3-4.b). The crystals within the 

cluster boxes were labeled if their boundaries were identifiable. Due to the irregular 

shape of the clusters, they may be split into multiple labels that minimize the inclusion of 

background. 
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Figure 3-4 (a) The equivalent label formats. i, ii: the longer edge as height (h); iii, iv: the 

shorter edge as height. i, iii: angle 𝛂 between [𝟎, 𝝅); ii, iv: angle 𝛂 between (−𝝅, 𝟎].  (b) 

Example of a labelled training image. The red and blue bounding boxes are labels of 

crystals and clusters, respectively. 

ResNet-101 was used as the backbone of the S2A-Net model. The model was trained for 

20000 epochs with a learning rate of 0.01 for the first 15000 epochs and 0.001 for the 

rest. Data augmentation techniques were used to expand the training dataset. The training 

dataset was augmented by rotating the images every 5 degrees and adjusting the 
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brightness. With the full-sized input image (1440-by-1080 pixels), the model can process 

up to 4.5 frames per second (FPS) on an NVIDIA GTX 1070 GPU. 

3.2.4. Cooling Crystallization Experiments and Image Analysis Process 

The trained model was used to extract the crystal sizes and counts in a set of cooling 

crystallization experiments with different cooling rates. The solution saturated at 30℃ 

was prepared as described in the training data preparation section. The solution was first 

dissolved to clear at 40℃. It was cooled to the saturated temperature (30℃) and held for 

10 minutes to reach equilibrium. In unseeded experiments, the solution was cooled to 

20℃ linearly at 0.5 ℃/min then heated back to 40℃ at 0.2 ℃/min for next cycle. In 

seeded experiments, 0.1g or 0.3g seeds (1% or 3% solids of the final product) were added 

during the hold period at saturated temperature, then cooled to 20℃ at 0.5 ℃/min. The 

Raman spectra, temperature, FBRM data, and images were acquired during the entire 

duration of the experiments.  

Figure 3-5 depicts the pipeline of the image analysis process and the sample images. The 

images were acquired at 0.5 FPS during heating dissolving and 1.0 FPS during cooling 

crystallization. The acquired images were fed to the S2A-Net model to predict the oriented 

bounding boxes along with their scores and classifications. The labels were refined as 

follows. First, the low-confidence detections (score < 0.5) were removed. Next, the 

crystals cut by the frame edges were also removed since their sizes might be 

underestimated. Then, the intersection ratios of the remaining crystals were calculated 

with Eq. 3-1, where 𝑖 and 𝑗 represent the index of crystals and clusters, respectively; and 

𝐵 stands for the oriented bounding boxes. In the cluster-cut removal mode, the crystals 

with an intersection ratio greater than 0.4 were removed as the obstruction may lead to 

unreliable results. In the normal mode, this step was skipped. The detections were 

aggregated every 10 seconds to compute the counts and 2D CSDs of the crystals and 

clusters individually.  Because of the hydrodynamic pattern inside the flow cell, it is 

assumed that the rod-like taurine crystals are aligned with the flow direction, so that the 

images of the crystals are the orthogonal projections of the height and width. By 
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approximating the size of the invisible axis (normal to the image plane) to the width of 

the crystal, the approximate volumes of individual crystals are estimated with Eq. 3-2, 

where 𝑊 and 𝐻 are width and height of a crystal, respectively.  

 

𝑅𝑖 = max
i
{

𝑎𝑟𝑒𝑎(𝐵𝑖 ∩ 𝐵𝑗)

min[𝑎𝑟𝑒𝑎(𝐵𝑖), 𝑎𝑟𝑒𝑎(𝐵𝑗)]
} , 𝑗 ∈ 𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ( 3-1 ) 

𝑉 = 𝑊2𝐻 ( 3-2 ) 
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Figure 3-5 Image analysis flow diagram. The red and blue labels are crystal and cluster, 

respectively.  

 

3.2.5. Concentration Calibration and Measurement with Raman 

Spectroscopy 

Raman spectroscopy was used as the solute concentration measurement instrument. 

Compared to the other online concentration monitoring PATs (e.g., FTIR, UV-Vis), the 

Raman spectroscopy has the potential to achieve simultaneous measurement of the solute 
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concentration and crystal polymorphic information (Lin, Wu & Rohani, 2020).  Mapping 

Raman spectra to solute concentration requires a large number of calibration experiments 

since Raman spectroscopy depends on temperature, solute concentration, slurry density, 

crystal polymorph (taurine does not exhibit polymorphism in the scope of this study), and 

the CSD (Kristova, Hopkinson & Rutt, 2015). The number of factors makes the 

experimental calibration quite cumbersome. The previous studies demonstrated the 

calibration strategies with the Raman spectra and temperatures collected under numerous 

known solute and solids concentrations (Acevedo et al., 2018; Hu et al., 2005; Lin, Wu & 

Rohani, 2020b).  In this study, we observed the slight differences in the Raman intensities 

when the operating conditions change (e.g., different seed loading). Therefore, a 

calibration methodology that could compensate for this mismatch was required. Based on 

the assumption that the system states were similar between the cooling and heating stages 

and the most states were near the solubility curve, we proposed a Raman spectroscopy 

calibration strategy that uses the data collected during the slow (0.2 ℃/min) heating and 

dissolving process for solute concentration calibration. The exposure time was set to 3 

seconds that achieved less than 5% relative error. During the heating process, the spectra 

and the temperature were concatenated as the input matrix (𝑿) and the solubilities at the 

according temperature were used as target vector (Y). The target value was capped to 

saturated concentration when the temperature was above the saturation temperature. First, 

the input matrix 𝑿 was transformed with the orthogonal signal correction (OSC), which 

suppresses the non-relevant spectra components (e.g., ambient lighting) (Trygg & Wold, 

2002). Then, the partial least square (PLS) regression was used to fit the transformed 𝑿 to 

the target 𝒀 (Lin, Wu & Rohani, 2020). The number of components of the PLS model 

was set to 4 that achieved 99% explained variation. The model could be used to compute 

the solute concentration for the previous cooling stage. The accuracy of the concentration 

measurement was validated with an unseeded cooling experiment. Syringe filters were 

used to sample approximately 1.5 mL solid-free solution from the crystallizer.  Two 

samples during the linear cooling and two samples during the slow heating were collected 

in the validation experiment. The samples were transferred to glass vials and weighted. 
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After vacuum drying at 60℃ for 4 hours with lids open, the dried samples were weighted 

and the actual concentrations at the sample times could be calculated. 

3.2.6. Secondary Nucleation and Growth Rate Estimation 

The kinetic parameters of the secondary nucleation and growth rate could be estimated 

from the data extracted by image analysis. To obtain the nucleation parameters, the 

calibration that maps the crystal counts per frame to the volumetric density is required. 

This step was performed by first adding a known mass of seeds. Immediately, the 2D 

CSD of the seeds was measured by the image analysis model to compute the average 

volume of the seeds. Then, the number of seeds could be estimated, and the bulk 

volumetric seeds density can be computed. By dividing the observed crystal counts by the 

calculated seeds density, the volume observed by the camera could be computed, which 

was further converted to the penetration depth or the depth of field (DOF) with the 

known field of view of the frame (Wu, Lin & Rohani, 2020). The DOF of this imaging 

system was found to be 0.6 mm and it was assumed to be constant due to the relatively 

low solids concentration and agglomeration during the early nucleation stage. 

The secondary nucleation model is shown in Eq. 3-3, where 𝐵𝑠 is the nucleation rate 

[# ⋅ 𝑚−3 ⋅ 𝑠−1]; 𝑐 is the concentration [𝑔 𝑔⁄ ]; 𝑐∗ is the solubility [𝑔 𝑔⁄ ]; 𝑣𝑓 is the solids 

volume fraction; 𝑏0, 𝑚, and 𝑗 are model parameters. The concentration and the solubility 

were computed with the Raman spectroscopy and temperature measurements. The 

volume fraction was obtained from the image analysis CSD transformed by Eq. 3-3 and 

normalized with the crystal count calibration. The experimental nucleation rates were 

calculated with the filtered derivative of the crystal counts. Finally, the nucleation 

parameters were computed by fitting the model with the experimental data using a 

nonlinear optimizer (Virtanen et al., 2020). 

𝐵𝑠 = 𝑏0 ⋅ (
𝑐 − 𝑐∗

𝑐∗
)
𝑚

⋅ 𝑣𝑓
𝑗
 ( 3-3 ) 



84 

 

 

 

The two-dimensional growth rate model is shown in Eq. 3-4, where 𝐺 is the growth rate 

[𝑚/𝑠]; 𝑖 ∈ {ℎ, 𝑤} is the dimension of the growth direction; the 𝑔 and 𝑛 are model 

parameters. The common practice to estimate the growth kinetics is to numerically solve 

the coupled mass balance and population balance model (PBM) and optimize the model 

parameters so that the error between the model prediction and experimental observation 

is minimized (Ochsenbein et al., 2014). With the rich information extracted from the 

image analysis, a direct growth kinetics estimation strategy was proposed to find the 

parameters without the need for solving the PBM. Conventionally, the experimental 

growth rate required for fitting the model was approximated with the time-derivative of 

the size statistics (e.g., mean, median, or quantiles). However, these values are prone to 

bias due to the non-growth mechanisms that cause CSD change such as nucleation and 

agglomeration. The data between seeds addition and onset of the agglomeration could be 

used to fit the model where the growth is the dominant mechanism. The CSD containing 

clusters can be avoided with the capability of cluster detection of the image analysis 

model. In the seeded experiment, the new-born nuclei are smaller than the seeds. After 

seeds addition, the seeds count in each frame was recorded as 𝑁𝑠𝑒𝑒𝑑. In the following 

frames, only the 𝑁𝑠𝑒𝑒𝑑 largest crystals were used for computing the size statistics of 

height and width individually. The growth parameters could be estimated by fitting the 

model with the size statistics of each dimension.  

𝐺𝑖 = 𝑔 𝑖 ⋅ (
𝑐 − 𝑐∗

𝑐∗
)
𝑛𝑖

 ( 3-4 ) 

 

3.3. Results and Discussion  

3.3.1. Evaluation of Concentration Measurement Performance  

Figure 3-6.a demonstrates a cooling-heating cycle of the unseeded validation experiment. 

The Raman spectra and temperatures collected in the heating segment were used as the 

training input (𝑿). The solubility model reported in (Wu et al., 2017) was used to 

compute the solubility curve, which served as the training target (𝒀). The solubility was 
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capped to the concentration of the clear solution when the temperature was above 30℃. 

After training the OSC and PLS model with the data, the predicted concentration and the 

solubility target were in good agreement, with a relative error of less than ±0.4% (Figure 

3-6.b).  The samples taken for confirming the solute concentration were marked in Figure 

3-6.a. The differences between the predicted and actual concentration were shown in 

Figure 3-6.c. The maximum relative error in the validation data was ±3%, which 

confirmed the accuracy and reliability of the proposed concentration measurement 

strategy with Raman spectroscopy. 

 

Figure 3-6 The performance summary of the concentration measurement with Raman 

spectroscopy. (a)  the visualization of a cycle of unseeded crystallization. (b) the 

distribution of relative training errors (c) The graph of actual concentration versus the 

concentration predicted by the Raman spectroscopy. 
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3.3.2. Evaluation of Image Analysis Performance 

The performance of the image analysis was evaluated by comparing the model 

predictions and the manual-labeled ground truths (GTs). The match between the 

predictions and GTs is measured by intersection-over-union (IoU) that is the area of 

intersection between two rectangles being divided by the area of the union of the two 

rectangles. When the IoU is greater than 0.5, the prediction is considered as true positive 

(TP). A false positive (FP) is counted when a prediction failed to match a GT while a 

false negative (FN) is when a GT does not have any matching prediction. The 

performance metrics, average precision (AP), and average recall (AR) metrics are defined 

in Eqs. 3-5 and 3-6. The AP and AR are the trade-offs between finding less but more 

confident crystals and finding as many objects as possible regardless of the risks of the 

wrong prediction.   

𝐴𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ( 3-5 ) 

𝐴𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ( 3-6 ) 

The AP and AR in four different conditions as described in the training data preparation 

section are summarized in Figure 3-7. The AR and AP were high in all conditions, with a 

slight dropping when the solids concentration increased. The cluster-cut removal mode 

removes the cluster contacting crystals, which sacrifice the AR to achieve a higher 

precision. The precision gain increases with increasing solids concentration and image 

complexity. In the application of CSD measurement, the cluster-cut removal helps to 

ensure the accuracy in size evaluation, while the normal mode is more beneficial for the 

measurements of crystal counts and total volume. 
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Figure 3-7 The performance summary of the image analysis. AP and AR stand for 

accuracy and recall metrics, respectively. 

  

3.3.3. Particle Counts Analysis 

The particle counts and solute concentration tracking during the linear cooling 

experiments (0.5℃/min) at different seed loading are shown in Figure 3-8. In the 

unseeded experiment (Figure 3-8.a), the nucleation onsets reported by the image analysis 

and the FBRM were 7.8 minutes (26.9 ℃) and 8.8 minutes (26.4 ℃), respectively. Visual 

examination of the images confirmed the nucleation onset and the better sensitivity of the 

image analysis method. FBRM has strength in detecting fine particles (less than 10 𝜇𝑚), 

but this range is often noisy due to the probe contamination and air bubbles from 

agitation, leading to an offset baseline and delayed nucleation detection. The 

classification capability of the image analysis and manual examination ensure immediate 

nucleation detection without undesired disturbances. Also, the FBRM counts can be 

biased due to the geometry, arrangement, and surface properties of the particles (Irizarry 
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et al., 2017), using the image analysis counts allows setting up a consistent nucleation 

threshold for different conditions. 

 

Figure 3-8 The particle and cluster counts and the solute concentration (Conc.) during 

the linear cooling experiments (0.5 ℃/min) of (a) unseeded, (b) 1% seed loading, and (c) 

3% seed loading. The solubility (Sol.) was computed with the model (Wu et al., 2017). 

The dashed lines of FBRM counts were the missing data due to probe contamination. The 

breakout frame in (a) showed the detected crystals at the onset of nucleation. 
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The increasing seed loadings suppressed the nucleation, leading to the smoother 

increment of the FBRM counts. The image analysis counts not only matched the FBRM 

count trend but also revealed a peak of the counts that became less prominent with the 

increasing seed loading. In the unseeded and 1% seed loading runs, the cluster counts 

started to increase when the crystal counts reached the maximum, which suggested that 

the peak may be attributed to the agglomeration of the nucleated fine crystals. Figure 3-9 

shows the visualization of the images and the detected objects that supported the different 

agglomeration levels. In the unseeded run, the number of fine crystals increased rapidly 

within the first minute after the nucleation onset. The image analysis successfully 

captured the process of crystal agglomeration that explained the drop in crystal counts. In 

the final state, the images were filled with clustered crystals, while only a few small 

crystals were detected, which suggested low nucleation and breakage level in the final 

state. In the 1% seed loading run, the nucleation was not fully suppressed due to the 

insufficient amount of seeds surface area. Despite the relatively fewer clusters compared 

to the unseeded ones, the coexistence of the crystals grown from seeds and nucleated 

crystals resulted in the undesired bimodal size distribution of the products (Kubota et al., 

2001). The nucleation in the 3% seed loading experiment was weak as the number of 

crystals remained steady throughout the process, suggesting that the most supersaturation 

was consumed in crystal growth. The concentration measured by the Raman spectroscopy 

showed a smaller gap between the solubility and concentration curves with the increasing 

amount of seeds. The peak relative supersaturation for the unseeded, 1% seeded, and 3% 

seeded runs were 0.16, 0.11, and 0.07, respectively. The supersaturations remained within 

the reported metastable zone width (MSZW) of homogeneous primary nucleation (Wu et 

al., 2020). The secondary nucleation MSZW is in the range from 1.06 to 1.11, which is an 

important reference in the optimal supersaturation control (SSC) strategy (Ferreira et al., 

2011; Ulrich & Strege, 2002).  
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Figure 3-9 Visualization of the online images and the analysis result of the unseeded and 

seeded experiments at 1) nucleation onset or seed addition, 2) after the temperature 

dropped by 𝟎. 𝟓℃, 3) when the temperature reached 𝟐𝟓℃, and 4) final state. The 

bounding boxes were padded and enlarged by 5 pixels (8 𝝁𝒎) in each direction for better 

viewing. Each frame was cropped to one-quarter of its original size. The red and blue 

labels stand for crystals and clusters, respectively. 

 

3.3.4. Particle Size and Shape Analysis 

Figure 3-10 shows the time series of the size and shape statistics during the experiments. 

In the unseeded experiment, the crystal growth was captured by the image analysis. The 
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90th-quantile (D90) of the height (the longer edge) increased while the gap between the 

D10 and D90 of the heights enlarged due to strong nucleation. In the 1% seed loading run, 

a significant drop in the sizes was detected by the image analysis, which matched the 

nucleation time at 6 minutes in Figure 3-8.  The decrease of D10, D50, and D90 took place 

sequentially because of the progress of nucleation. Finally, the sizes rebounded as the 

result of growth. In the 3% seed loading run, the decrease in sizes was only observed in 

D10 and D50 of the heights, while the D90 kept growing constantly because the low 

nucleation level did not affect the high quantile statistics.  

The FBRM chord length statistics only showed the monotonic increasing sizes. In the 

seeded experiments, before the agglomeration events, the FBRM D90 was close to the D90 

of the widths (the shorter edge) because of the FBRM scanning mechanism that has a 

higher probability to scan the shorter edges of the high-aspect-ratio crystals (Szilagyi & 

Nagy, 2018). In the unseeded run, the FBRM chord length was higher than the width, 

possibly due to a large number of clusters in the system. The FBRM was capable to 

detect finer particles, with the smallest detectable particle size of 0.125 𝜇𝑚, while the 

detection limit of the image analysis was 3.3 𝜇𝑚.  

The aspect ratio (AR) was extracted from the ratios between the heights and the widths of 

the detected crystals. In the unseeded experiment, the median ARs of the nuclei increased 

from 1.6 to 2.0 in 1 minute, then slowly progressed to 2.3. In the seeded runs, the initial 

AR was consistent with the AR of the seeds obtained from offline microscopy. The 

transition of the AR occurred approximately the same time when the nucleation started 

and the drop in the size statistics was observed. Combined with the supersaturation data 

in Figure 3-8, the increasing seed loading led to 1) the decreased average and peak 

supersaturation, 2) the lower AR of the products, and 3) the slower trend of AR 

increment after nucleation, suggesting that the higher supersaturation environment may 

favor the higher aspect-ratio of taurine crystals. 
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Figure 3-10 The crystal size and shape (aspect ratio) trends during the linear cooling 

experiments (0.5 ℃/min) of (a) unseeded, (b) 1% seed loading, and (c) 3% seed loading. 

The data before nucleation onset in (a) were ignored. The shaded areas show the 10th-
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quantile (D10) to the 90th-quantile (D90) ranges of each statistic and the solid lines were 

the median (D50). The height is the longer edge in the image analysis result.   

The 2D CSDs from image analysis are summarized in Figure 3-11. The count-based 

CSDs (the histograms) may cause confusion due to the massive amount of small crystals. 

To address this problem, the weighted CSDs are extensively used in many PATs to 

suppress the bias caused by small particles (nuclei) and emphasize the large ones. For 

example, the Mastersizer 2000 reports the volume-weighted size distribution. The crystal 

volume (Eq 3-2) was used to compute the volume-weighted CSD (the shaded curves in 

Figure 3-11). Compared to the 3% seed loading experiment, the 1% seed loading run 

showed a broader CSD due to nucleation and a higher maximum size because the 

supersaturation consumption was shared by the fewer seeds. 

 

 

Figure 3-11 The 2D CSDs of the seeds and the products of 1% and 3% seed loading 

experiments. The marginal histograms are the count-based size distribution of each 

dimension; the marginal filled curves are the volume-weighted size distribution of each 

dimension. 
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3.3.5. Estimation and Validation of The Kinetic Parameters 

The nucleation model was fitted with the crystal counts and supersaturation data from the 

7.6 to 9.3 minutes of the unseeded run and from the 6.1 to 9.1 minutes of the 1% seed 

loading run. The 3% seed loading run was excluded since the nucleation is insignificant 

in the growth-dominant condition.  The fitted parameters were summarized in Table 3-2 

and the comparison between the experimental and calculated nucleation rates was 

demonstrated in Figure 3-12.a. The nucleation rate in the unseeded run was higher due to 

the higher supersaturation. The nucleation rate of the 1% seed loading run was a 

magnitude slower, and the existence of seeds caused disturbances to the measurement, 

resulting in the less consistent prediction in Figure 3-12.a. 

The crystal growth model was fitted with the first 7 minutes of data from the 1% seed 

loading run and the 7 to 14 minutes of the data from the 3% seed loading run. The 

unseeded experiment was excluded due to the high nucleation and agglomeration levels. 

The fitted parameters were listed in Table 3-2 and the relation between supersaturation 

and the two-dimensional growth rate was shown in Figure 3-12.b. The ratio of the growth 

rate between the major and minor dimensions was approximately two, which was 

consistent with the aspect ratio analysis in Figure 3-10. 

The estimated kinetic model was validated by simulating the crystallization experiments 

with the Monte Carlo method (Van Peborgh Gooch & Hounslow, 1996). The comparison 

between the simulation results and the experimental data were demonstrated in Figure 

3-12.c, d, and e. The simulated concentration trends were consistent with the 

concentration measured by Raman spectroscopy. The simulated crystal count density 

matched with the count density obtained from image analysis before the onset of massive 

agglomeration, which caused a significant decrease of the experimental counts. Also, the 

increasing solids concentration will decrease the DOF of the imaging system, leading to 

underestimated crystal count. In the 3% seed loading run, the nucleation and 
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agglomeration level were the lowest, so that the simulation could trace the crystal count 

of the entire run correctly. The agglomeration onset was also the separator of the 

consistent size measurements of crystal heights (𝐻50) and widths (𝑊50) and the diverging 

trends between the experimental and simulated data. The possible explanation is that 

when the solids concentration or the agglomeration level are high, compared to fine 

crystals, the larger crystals have a higher chance of being cropped or masked by the 

clusters, the image frames, and other crystals, leading to missed detection or 

underestimated sizes. Also, the count-based CSDs shown in Figure 3-11 demonstrate a 

positive skewness, so that the missed detections of the large crystals can cause significant 

bias and fluctuation in the size statistics. This can explain the mismatches in the size 

statistics of the 3% seed loading experiment despite the low agglomeration level. 

In conclusion, the simulation study verified the estimated growth rate and secondary 

nucleation parameters of taurine. The simulation model successfully predicted the 

experimental concentration trends, which could be used to design the optimal cooling 

profiles that control the supersaturation within the desired range. The correct count 

density measurement confirmed the estimation of the nucleation rate. However, the 

mismatch after agglomeration onset suggested the need for modeling the agglomeration 

and breakage mechanisms in future works. The simulation model also achieved effective 

prediction of the heights and widths in relatively low solids concentration. The image 

analysis algorithms and the imaging hardware can be optimized by expanding the training 

data at high slurry density and employing the in-situ dispersion or dilution devices to 

enhance the performance of size measurement in high solids concentration environment.  
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Figure 3-12 a, b: results of the nucleation and growth rate estimation; c (unseeded run), d 

(1% seed loading run), e (3% seed loading): experimental data and simulation results 

with the estimated kinetic parameters.  
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Table 3-2 Summary of the crystallization kinetics of taurine analyzed by image analysis 

Kinetics Parameters Values Units 

Nucleation 

(eq. 3-3) 

𝑏0 5.05 × 1014  # ⋅ 𝑚−3 ⋅ 𝑠−1 

𝑚 6.07 − 

𝑗 0.17 − 

Growth  

(eq. 3-4) 

{𝑔ℎ, 𝑔𝑤} {3.74 × 10−6, 1.09 × 10−6} 𝑚 ⋅ 𝑠−1 

{𝑛ℎ, 𝑛𝑤} {1.33, 1.19} − 

 

3.4. Conclusion 

A novel PAT instrument for crystal monitoring was developed based on the in-situ flow-

cell imaging system and the image analysis model, S2A-Net. The proposed system 

featured the state-of-the-art oriented object detection algorithm for accurate and fast 

crystal characterization. The system was tested with the taurine cooling crystallization of 

various seed loadings. The crystal and cluster detection and classification capabilities of 

the model were able to track the crystal counts, the two-dimensional CSDs, the aspect 

ratios, and the agglomeration levels. The precision of size measurement and sensitivity of 

nucleation detection outperformed the FBRM.  

In the experimental study, the increasing seed loading prevented the accumulation of 

supersaturation and suppressed the level of nucleation and agglomeration. With 

approximately 3% seed loading, the process is growth dominant with negligible 

nucleation and clustering. When the seed loading was insufficient (1%), the nucleation 

led to undesired bimodal CSD of the product, which was confirmed by the previous study 

(Kubota et al., 2001).  

An online calibration strategy for solute concentration measurement with Raman 

spectroscopy was introduced, which eliminated the dedicated calibration experiments and 

prevented degraded accuracy due to uncontrollable factors such as the CSD.  
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Combining the solid-phase information from the image analysis results and the liquid-

phase concentration data from the Raman spectroscopy, the nucleation and growth kinetic 

parameters could be estimated without the need for solving the coupled mass balance and 

population balance model. The estimated parameters were validated by Monte Carlo 

simulation. The simulation study confirmed the consistent concentration prediction and 

the estimation of the count density and 2D sizes prior to the agglomeration onset. It was 

recommended to enhance the model with agglomeration and breakage mechanisms and 

improve the size measurement accuracy in high solids concentration conditions. 
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Chapter 4 

Computerized Crystallization Platform for 

Automated Experiment and Measurements of 

Crystallization Parameters  

  

A version of this chapter will be submitted to Organic Process Chemistry and 

Development under the title: Automated measurement of the MSZW and 

induction time: Comparison of a new platform to the existing platforms 
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 Computerized Crystallization Platform for Automated 

Experiment and Measurements of Crystallization Parameters 

Abstract 

We present a computerized crystallization platform powered by an image-based PAT and 

various customized laboratory instruments for conducting the automated crystallization 

experiments. The hardware design and build enabled by the Internet-of-Things (IoT) 

microcontroller demonstrated the potential to equip the existing laboratory devices such 

as the stirring motor and thermostat water bath with wireless-network connectivity and 

remote-control capability. The communication of the acquired data and control 

commands was centralized at an MQTT (Message Queuing Telemetry Transport) broker. 

The software was developed to execute the experimental procedures by sending the 

instructions to the actuators based on the real-time data acquired by the PATs. The 

automated cooling crystallization experiments for determining the metastable zone width 

(MSZW) and induction time of the taurine-water system were demonstrated. The image-

based PAT outperformed FBRM in providing a sensitive and reproducible nucleation 

detection when the supersaturation and nucleation rate were low. The edge detection-

based image analysis was confirmed to be an effective alternative to the deep learning-

based approach for nucleation detection. The automation of the time-consuming 

crystallization experiments reveals the potential of the proposed automated platform to 

simplify and speed up the research and development stage of a crystallization process. 

Keywords: Crystallization process; Automated experiment; Metastable zone width; 

Induction time; Laboratory instrument development; Process analytical technology 

 

4.1. Introduction 

The operating variables such as agitation rate, cooling profile, and seed addition rate and 

policy can significantly affect the purity, size, and shape distributions of the crystalline 

product (Hu et al., 2005). Discovering the connection between the variables during the 
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research and development stage of a crystallization process requires a lot of experimental 

works, including the determination of the solubility, metastable zone width (MSZW), 

kinetic parameters, etc. Manually conducting these experiments is time-consuming and 

prone to human error.  

Laboratory automation via a computerized smart platform has gained a lot of interest 

from the industry. The crystallization engineering field has adopted the robotic platform 

since 1994 to automate the screening process to obtain high-quality single crystals for the 

determination of the structures by X-ray diffraction (Bard et al., 2004; Chayen, Shaw 

Stewart & Baldock, 1994; Florence et al., 2006). Discovering the optimal co-crystal 

formulation and condition has been boosted by the automated sample preparation and 

analytical tools (Bysouth, Bis & Igo, 2011; Saxena & Kuchekar, 2013). Duros et al. 

(2017) suggested a machine learning-enabled automation system for exploring the 

crystallization variable space. The algorithm-based search could discover 6 times more 

crystallization space than humans and thus increased the prediction accuracy. Selekman 

et al. (2016) developed an automated workflow for investigating polymorphic forms and 

assessing the risk of undesired polymorph. The samples prepared under different 

conditions are automatically scanned by Powder X-ray diffraction (PXRD) to generate a 

risk map where the allowed and unapplicable operating conditions can be intuitively 

visualized. Teychené et al. (2010) investigated the possibility of spherical crystallization 

without additive in the various solvent with the aid of an automated crystallization 

platform. Zhou et al. (2013)  reviewed the automated platform for the development of 

crystallization processes. The PAT-enabled crystallization system allowed performing 

routine process evaluation such as solubility determination and executing feedback 

control of crystallization based on a predefined supersaturation profile via cooling and/or 

antisolvent addition.   

The commercial automated crystallization platforms reported in the literature include the 

Mettler Toledo LabMax series (Teychené, Sicre & Biscans, 2010; Verma et al., 2018), 

HEL AutoLAB (Grön, Borissova & Roberts, 2003; Wang, Calderon De Anda & Roberts, 
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2007), and Atlas HD Automated Jacketed Reactor (Coliaie et al., 2019). As demonstrated 

in Figure 4-1, the main components of the crystallization automation platform consist of 

the jacketed crystallizer, the thermostat for temperature control, the mechanical stirrer for 

mixing the slurry, and various PATs and actuators for real-time data acquisition and 

execution of control commands. A computer interface provides the capability to 

programmatically execute the experiments or compose the feedback control logic. The 

widely adopted PATs include the temperature probe, turbidimeter for slurry density 

measurement, FBRM for online particle size measurement, Raman spectroscopy for 

monitoring the polymorphic forms, and ATR-FTIR for solute concentration estimation. 

Also, Mettler Toledo EasyViewer and Particle Vision and Measurements (PVM) have 

been employed to provide in-situ visualization of the crystal size and morphology (Haer 

et al., 2021; Zhou et al., 2015). The actuators adjust the operating conditions. Common 

actuators include a thermostat water bath for temperature control, a stirring motor for 

agitation strength control, and valves and pumps for anti-solvent addition and vacuum 

pressure control. The rapid development of innovative actuators and PATs over the last 

few years has brought more possibilities for automated platforms. The ultrasonic 

sonification was employed to promote and control nucleation (Fang et al., 2020). The in-

situ wet milling was used to control the size and morphology of the crystals (Yang et al., 

2016). The online image analysis techniques including the image-based PAT proposed in 

this thesis provided the capability of multi-dimensional size measurement. 
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Figure 4-1 A commercial automated crystallization platform (Mettler Toledo EasyMax) 

(Mettler Toledo, 2021). 

Due to the lack of unified communication protocol and programming interface, 

integrating the non-compatible devices is usually challenging and requires strong 

programming skills. The cost of customizing the commercial platforms can be high due 

to their proprietary software interface. This chapter will discuss the development of a 

cost-effective and customizable automated crystallization solution by employing the 

latest Internet-of-Things (IoT) technologies to transform the existing laboratory 

equipment into a compatible wireless PAT platform. The image-based PAT solution 

proposed in Chapter 2 and Chapter 3 is integrated in this system to provide multi-

dimensional size measurement and nucleation onset detection. The automated 

experiments are discussed to demonstrate the procedures of estimating the induction time, 

metastable zone width (MSZW), and kinetic parameters. 
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4.2. Automated Cooling Crystallization Platform 

The automated crystallization platform was designed to conduct a series of common 

experiments to study the basic kinetic characteristics of a aqueous taurine system, 

including determining the metastable zone width (MSZW) at various cooling rates, the 

induction time at different supercooling temperatures, and the parameters of crystal 

growth and nucleation kinetics. These experiments need repetition to ensure reproducible 

and consistent results. Also, since the agitation level is associated with the mixing 

efficiency that ensures the proper energy and mass transfer in the crystallizer, as well as 

the shear force that causes agglomeration and breakage, the experiments need to be 

carried out under different stirring speed to find the optimal agitation configuration for 

production scale-up (Myerson, 2002). The number of experimental works can be 

prohibitive for manual operation. Therefore, the automated platform that carries out the 

experiments uninterruptedly is perfect highly desirable for offloading the tedious 

laboratory work from the operators. 

For cooling crystallization, the induction time is the time duration between the creation of 

the supersaturation and the appearance of detectable nuclei at constant supersaturation. 

The formation of critical nuclei is related to the interfacial energy of the crystals, which is 

usually calculated from the induction time data in the literature (Omar, Mohnicke & 

Ulrich, 2006). The induction time is usually measured using the rapid cooling 

crystallization experiment (Figure 4-2.a). The solution was first held above the saturated 

temperature for 5–10 min to ensure a complete dissolution at the beginning of the 

experiment. As the cooling rate affects the nucleation and induction time (García-Ruiz, 

2003), the solution should be rapidly cooled to the supercooling temperature. The 

nucleation event was detected by the PATs such as FBRM (Mitchell, Frawley & 

Ó’Ciardhá, 2011), turbidimeter (Saleemi, Rielly & Nagy, 2012), and other image-based 

detectors (Gao et al., 2017). The solution is then heated back to dissolution temperature 

to restart the cycle with a different supercooling. 



108 

 

 

 

When the crystallization system is cooled at a linear rate, nucleation will only occur if the 

supersaturation is sufficient to overcome the energy barrier associated with the creation 

of new interfaces of the solid phase. The gap between the nucleation supersaturation and 

the solubility is referred to as metastable zone width (MSZW). The cooling rate, agitation 

level, and temperature will affect the MSZW (Parsons, Black & Colling, 2003). The 

MSZW is deemed as the critical boundary between the ideal zone for crystal growth and 

the region of undesired explosive nucleation (Wood, 1997). Experimental determination 

of MSZW was achieved using the linear cooling profile shown in Figure 4-2.b. The 

solution was first held at the dissolution temperature for dissolving the crystals. Next, the 

system was cooled to the saturated temperature and held for equilibrium. Then, the 

solution would be cooled linearly at the predefined cooling rate until the final 

temperature. The temperature of nucleation onset was detected by the PATs. Finally, the 

temperature was slowly heated up to the saturated temperature to record the dissolution 

data. By recording the concentration, temperature, and size distribution of the whole 

process, the nucleation, growth, and dissolution behaviors can be studied.  

The capability of the automated crystallization platform is not limited to the 

abovementioned experiments. For example, the effect of seed loading in Chapter 3 can be 

studied in a semi-automated fashion by manually handling the material addition. The 

application can be easily extended based on the current PAT and data processing 

frameworks.  In the scope of this work, the design objectives of the automated 

crystallization platform are: 

• Fully automated tasks (perform reproducible repetitions without human 

intervention) 

o Metastable zone width (MSZW) at various cooling rates 

o Induction time at different supercooling temperatures 

o Kinetic regression 
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• Semi-automated tasks (need human intervention and is not able to repeat 

automatically) 

o Seed addition 

o Adding materials to achieve different saturation 

temperatures/concentrations. 

 

 

Figure 4-2 Temperature profiles of rapid cooling and linear cooling experiments 
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4.3. Hardware Components 

The overall structure of the crystallization platform is shown in Figure 4-3. All 

components except the image acquisition by the industrial camera were connected to the 

wireless network gateway to transfer measurement data and control commands. This 

system included several PATs including a Maxim DS18B20 temperature measurement, a 

Kaiser Optical Raman Spectroscopy, a Mettler Toledo FBRM S400, and a flow-through 

cell in-situ imaging system. The agitation level was controlled by a home-made stirring 

motor. The switch valves were used to select the water bath connected to the crystallizer 

jacket. Two water baths were used to provide a quick switch between the dissolving 

temperature and crystallization temperature to achieve rapid cooling for induction time 

measurement. Only one water bath is connected to the instrument network for an 

adjustable setpoint, while the other water bath is fixed at the desired dissolution 

temperature. It is worth noting that the rapid switching between dissolution and growth is 

also an ideal approach to achieve fines (crystals smaller than a given size, e.g. 50 𝜇𝑚) 

dissolution by temperature cycling, which has been widely adopted as a direct nucleation 

control (DNC) strategy (Hansen et al., 2017). 
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Figure 4-3 Schematic of the automated crystallization platform. 

 

4.3.1. The IoT Microcontroller – Espressif ESP8266 

The ESP8266 microcontroller board (Figure 4-4) is a modern microcontroller with built-

in Wi-Fi connectivity and various peripheral interfaces (e.g., I2C, SPI, UART, etc.). The 

price of each unit is as low as 3 – 4 Canadian dollars.  Due to its popularity, the user-

community has developed various simplified programming interface for ESP8266 that 

enables fast and robust prototyping of an IoT project with very low requirement of the 
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programming skills. This makes it a perfect tool to transform the existing equipment into 

a wireless-enabled device. All devices associated with a symbol of “wireless integrated 

circuit” in Figure 4-3 are interfaced and controlled by this microcontroller.  

 

Figure 4-4 WeMos D1 mini ESP8266 board 

 

4.3.2. Stirring Motor 

Mechanical stirring is generally preferred over magnetic stirring for the crystallization 

process because of the better mixing efficiency and less crystal breakage due to grinding 

(Coliaie et al., 2019). The common mechanical stirrer is driven using an overhead motor 

that is usually bulky, which causes stability issues due to elevated center of gravity and 

insufficient room for deploying the image PAT that shares the same overhead space. We 

borrowed the idea from the commercial products and used 3D printing to create a similar 

miniature overhead stirring motor (Figure 4-5.a). The stirring shaft was driven by a 540 

DC motor. The agitation speed was adjusted using a PWM (pulse width modulation) 

signal generated by the ESP8266 microcontroller. The measurement for feedback control 

of the revolution per minute (RPM) was achieved using a Vishay TCRT 5000 reflective 

sensor (Figure 4-5.c), which served as a tachometer using infrared (IR) light to detect the 

passage of a black marker under the driven gear. A ball bearing was used to connect the 

driven gear and the main structure to reduce friction. The ratio of the driven gear and the 

driving pinion on the motor could be modified to adjust the speed ratio. In this design, the 

gear ratio was 5.6:1, which was ideal for the stirring rate between 100 to 1000 RPM.  
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Figure 4-5 The stirring motor and the optical RPM measurement sensor 

 

4.3.3. Water Baths and Switch Valves 

Two thermostat water baths were connected to the crystallizer jacket through the switch 

valves for temperature control (Figure 4-6). The primary water bath (Julabo FP50) with 

cooling capability was connected to the instrument network to execute a variable 

temperature setpoint or temperature profile. The dissolution water (Thermo Neslab 

EX10) bath was manually set to 10℃ above the saturated temperature. The tubing was 

wrapped with glass fiber insulation due to the large temperature difference to the room 

temperature. 
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Figure 4-6 Two thermostat water baths and the switch valves 

The switch valves and the mechanism to selectively connect one of the water baths to the 

crystallizer jacket are illustrated in Figure 4-7. The switch valve was a four-way 

motorized valve that could be sourced as the original equipment manufacturer (OEM) 

part in the cooling system of an electric vehicle. These modules were designed to work in 

various temperature conditions. At any time, the valve would connect the pairs of the 

adjacent ports in the configurations as shown in Figure 4-7.b-c. The motor could be 

engaged in different polarities to switch the configurations. The STMicroelectronics 

L298N motor driver was used to assist the ESP8266 microcontroller to drive the two 

valves in different polarities. The action time of switching the configuration was only 4 

seconds. The shortcut pathway was an optional feature that ensured the circulation of the 

idle water bath, which prevented the safety alarm of pump failure.  
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Figure 4-7 The switching valves and the operation configurations. 
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4.3.4. Imaging System 

The flow-through cell imaging system is illustrated in Figure 4-8. A peristaltic pump 

(Kamoer KCM) driven by a stepper motor was used to circulate the slurry through a 

quartz flow-through cell (width: 2 mm, depth: 1 mm). The stepper motor was driven with 

an Allegro A4988 motor driver under the control of an ESP8266 microcontroller. The 

pump could provide a flow rate of up to 4 mL per second, which eliminated the undesired 

sampling classification effect. The cell was clamped between a 3D-printed lens guide and 

a 3D-printed LED holder. The lens guide ensured the proper spacing for focusing 

between the cell and the optical lens. The optical lens was repurposed from a low-cost 

PCB microscope (maximum magnification = 4.5). An industrial camera equipped with 

the SONY 1/2.9” IMX273 image sensor (resolution: 1440-by-1080) was used to acquire 

the microscopic crystal images. Due to the high flow rate of the slurry, the microscopic 

image was prone to motion blur. This issue was resolved using a high-power LED 

(CREE XHP70.2) and strobing lighting triggered by the exposure signal emitted by the 

industrial camera. Compared to the commercial crystallization imaging instruments, this 

set-up can achieve comparable image quality with significantly lower cost. 
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Figure 4-8 The flow-through cell imaging system 

4.4. Software Architecture 

4.4.1. Device Communication and Data Exchange 

The data flow of the automated experiment platform is shown in Figure 4-9. A wireless 

router was used as the network gateway to coordinate all devices including the 

homemade devices and the dedicated PCs for Raman spectroscopy and FBRM. The 

router operated a custom OpenWRT firmware with a lightweight MQTT (Message 

Queuing Telemetry Transport) broker (Eclipse Mosquitto), which coordinated the bi-

direction communication between the broker and the devices. MQTT was a standard 

messaging protocol for the Internet of Things. MQTT worked with the publish-

subscription (PubSub) approach: the client device could subscribe to a topic (e.g., the 

temperature of the crystallizer), and the broker would actively push the message to the 

client once the temperature was updated by the sensor. This ensured timely handling of 

the new data and saved lots of network resources compared to the polling approach where 

the client must repetitively send requests to check for updates. MQTT aimed to provide 
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efficient and robust IoT communication. For richer data management, storage, and stream 

process features, the other software including RabbitMQ (Wood, 2016) and Apache 

Kafka (Narkhede, Shapira & Palino, 2017) can be used. 

All data transmitted to the MQTT broker were subscribed and processed on a PC using a 

Python program. The camera was directly connected to the PC due to the high bandwidth 

required by image acquisition. The acquired images and data were visualized on a web 

dashboard composed using the Plotly software package (Plotly Technologies Inc, 2015). 

 

Figure 4-9 Software architecture and data flow of the platform 

4.4.2. Data Hooking for Raman spectroscopy and FBRM 

The Raman spectroscopy (Kaiser Optics RXN1) and FBRM S400 used proprietary 

software (iC Raman and iC FBRM) to control the hardware and visualize the data. The 

outdated software did not provide a convenient way to fetch the real-time raw 

measurement data. Therefore, we developed the data hooking programs for the software.  

The iC Raman software supported exporting the real-time data as a CSV (Comma-

separated values) file. An application was created to monitoring the new file and post it to 

the MQTT broker. The iC FBRM software only supported exporting the statistics (e.g., 
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mean chord length and total counts) instead of the raw size distribution. We developed an 

application using the Mettler Toledo AutoChem C# SDK (Software Development Kit) to 

read the raw measurement data directly from the software and upload it to the MQTT 

broker. The source code of the developed applications can be found in Appendix. B. 

These applications served as examples to read the data from a non-compatible 

instrument. 

4.4.3. Microcontroller Firmware 

The firmware on the microcontrollers of the homemade hardware was developed with 

Arduino. Arduino is an open-source hardware and software framework, which allows the 

developers to write the program for a microcontroller using the C++ programming 

language. Due to the abstraction layer implemented by the Arduino framework, many 

third-party libraries for interfacing with various sensors and actuators can be shared for 

many different hardware platforms. The microcontroller firmware for various devices is 

listed in Appendix. B. 

 

4.4.4. Automated Experiment Execution 

The experimental procedures usually involve several operations: reading the real-time 

measurement; waiting until conditions are satisfied; issuing a command to the actuator. 

The Python asynchronous programming library “asyncio” is ideal for these tasks. 

Asynchronous programming is a means of parallelization, but the purpose is not to 

improve computational performance. In fact, the asynchronous tasks in Python are not 

executed in parallel by default. The asynchronous task is added to a queue rather than 

executed immediately. An asynchronous scheduler will execute the task from the queue if 

the criterion is met, e.g., the delay time has elapsed. This programming technique allows 

scheduling multiple long-lasting tasks without blocking the program, e.g., waiting for the 

nucleation onset while executing a linear cooling profile, making it perfect for executing 

the automated experiments. 
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Figure 4-10 demonstrates the implementation of the automated experimental tasks to 

execute the temperature profiles described in Figure 4-2. The material addition was not 

automated and required human intervention. After the slurry was prepared, the linear 

cooling experiments protocol was executed. First, the slurry was slowly heated to the 

dissolution temperature. After the solution was clear, it was cooled to the saturated 

temperature as the starting point of the linear cooling step. Finally, the slurry was held for 

about 10 minutes for equilibrium. The process states were monitored by the PATs. The 

cycle was repeated at different linear cooling rates to complete the measurement of the 

MSZW. The next phase was the rapid cooling experiment for induction time 

determination. The dissolution water bath was set to the dissolution temperature 

manually. The switch valves were configured to engage the dissolution water bath. The 

primary water bath was set to a supercooling temperature. The program waited for the 

solution to become clear and the primary water bath was stable. Then, valves were 

switched to engage the primary water bath. Finally, the cycle was completed if the 

nucleation onset was detected by the PAT or if the wait time exceeded the timeout. The 

cycle was repeated for different supercooling temperatures. After the rapid cooling 

experiment was completed, the solute concentration could be adjusted to a different level 

by adding materials manually. The automated experiments were restarted to study the 

kinetic behavior in different saturated temperatures. 
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Figure 4-10 Flow chart of the automated linear cooling and rapid cooling experiments. 

The blue blocks are the procedures requiring human intervention, and the black blocks 

are the automated tasks. 

 

4.5. Results and Discussion 

This section demonstrates and discusses the pilot run of the automated experiment 

platform with an aqueous taurine solution saturated at 30℃ and 40℃. The execution of 

the automated experimental procedures resulted in the temperature profiles as shown in 

Figure 4-11. In the linear cooling experiment, the linear heating segment was used for 

Raman spectroscopy calibration (discussed in Chapter 3). The cooling capacity of the 
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primary water bath could only provide a cooling rate of up to 1.0 ℃ min⁄ . By employing 

the switch valves, the cooling rate could reach 7 − 10℃ min⁄  in the rapid cooling 

experiments. The supercooling temperature could be reached more rapidly using the 

feedback control to adjust the setpoint of the primary water bath. 

 

Figure 4-11 Temperature profiles of the linear and rapid cooling experiments for the 

aqueous taurine solution saturated at 𝟑𝟎℃ 

Reliable determinations of MSZW and induction time depended on accurate and 

reproducible nucleation onset detection. Figure 4-12 compares the nucleation onset 

detection using different techniques. The FBRM chord count was widely used as the PAT 

to detect the nucleation onset due to its high sensitivity. The nucleation onset was 

reported when the temperature dropped to 27.3℃. The primitive image analysis 

techniques could be used to detect the presence of nuclei. The mean grayscale value was 

the brightness of the image. With the same exposure and illumination condition, the 

brightness could be correlated to the slurry density. The nucleation onset found with this 

technique was 27.2℃. Another simple image analysis technique was Canny edge 

detection, which was a high-pass filter that finds the edges between crystals and 

background based on the local contrast (Ding & Goshtasby, 2000). This technique was 

more sensitive than the mean grayscale value since the small number of nuclei could not 
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significantly affect the brightness of the whole image. With the edge detection method, 

the nucleation onset was brought forward to 27.6℃. The image analysis count was 

obtained using the deep learning-based image analysis techniques. The image was 

manually reviewed (Figure 4-14.c) and confirmed the nucleation onset at 27.7 ℃ 

reported by the image analysis method. 

In the linear cooling experiments, due to the large supersaturation that caused rapid 

nucleation, the performance of the techniques was similar. However, in the rapid cooling 

experiments where the supercooling temperature was close to the saturated temperature, 

the nucleation rate was much slower. Instead of the sharp changes as demonstrated in 

Figure 4-12, the trends became much smoother (Figure 4-13). The chord count trend 

reported by FBRM contained low-frequency baseline noise due to probe contamination, 

making it difficult to determine the nucleation onset. Solely relying on the FBRM data 

could lead to a large variation of the induction time measurement. The brightness-based 

method failed to detect the nucleation onset due to the low sensitivity. The Canny edge 

detection and deep learning-based approaches were able to detect the insignificant 

nucleation event and report the correct induction times, which were confirmed by visual 

examination of the images.  

Unlike the FBRM and other techniques, the deep learning-based image analysis could 

reject the disturbance caused by undesired objects such as air bubbles and debris from the 

PTFE stirring impeller (Figure 4-14), which might lead to the non-physical spikes and 

false detection of nucleation in other methods. The ability to get the accurate counts of 

the nuclei allows specifying the nucleation detection threshold semantically in terms of 

crystals count instead of the chord counts, image brightness, or edge pixels counts that 

are difficult to interpret or use as the consistent threshold throughout all experiments. The 

FBRM S400 is prone to probe contamination (build-up on the probe window) and 

requires manual probe cleaning, making it less robust as a PAT for the long-running 

automated experiments. For the image-based technique, the stuck objects on the probe 

window can be easily rejected by comparing the consecutive frames and excluding the 
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persisting objects in the same location. The Canny edge detection method could detect 

the nucleation onset as effectively as the deep learning-based techniques. In the scenario 

where the computational power does not allow real-time deep learning-based image 

analysis, the edge detection-based method could serve as the alternative to coordinate the 

automated induction time measurement. The MSZW and induction time measurements 

are summarized in Table 4-1 and Table 4-2. The metastable zone and the induction time 

of the aqueous taurine solution are relatively small and short due to the fast nucleation 

kinetics. By repeating the same procedures for different saturated temperatures, the 

complete MSZW curve and induction profile could be built.  
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Figure 4-12 Nucleation onset detection during the linear cooling experiment (0.1 

℃ min⁄  ) using different techniques. The saturated temperature is 𝟑𝟎℃. 
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Figure 4-13 Nucleation onset detection during the rapid cooling experiment 

(supercooling temperature = 𝟐𝟖. 𝟓℃) using different techniques. The saturated 

temperature is 𝟑𝟎℃. 
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Figure 4-14 Undesired objects (a, b) that may cause false detection of nucleation and the 

true nucleation onset (c) with crystals detected in the consecutive images. 
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Table 4-1 The 95% confidence of the interval metastable zone width (MSZW) of the 

aqueous taurine solution measured using FBRM and image analysis.  

Saturated 

temperature 

 (℃) 

Linear 

cooling rate 

 (℃ min⁄ ) 

MSZW by 

image analysis 

 (℃) 

MSZW by 

FBRM 

 (℃) 

30 

0.1 27.57 ± 0.23 27.15 ± 0.14 

0.2 27.03 ± 0.12 26.8 ± 0.23 

0.5 26.53 ± 0.11 25.98 ± 0.26 

1.0 25.94 ± 0.20 25.26 ± 0.25 

40 

0.1 38.86 ± 0.31 39.0 ± 0.29 

0.5 37.67 ± 0.23 37.13 ± 0.81 

1.0 37.1 ± 0.35 36.5 ± 0.40 
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Table 4-2 The 95% confidence interval of the induction time of aqueous taurine solution 

measured using FBRM and image analysis.  

Saturated 

temperature 

 (℃) 

Supercooling 

temperature 

(℃) 

Induction time by 

image analysis 

 (𝑠) 

Induction time 

by FBRM  

 (𝑠) 

30 

< 27 Nucleation detected during cooling 

27 95.3 ± 5.1 157 ± 29.5 

27.5 374.3 ± 24.2 400 ± 20 

28 493.7 ± 8.3 540 ± 5.6 

28.5 1146 ± 64.6 1080 ± 116.3 

> 29 Timeout (> 3000) 

40 

< 38.5 Nucleation detected during cooling 

38.5 177 ± 11.1 215.7 ± 19.6 

39 298.6 ± 69.7 316.7 ± 54.3 

39.5 809.7 ± 30.1 897.7 ± 79.0 

> 39.5 Timeout (> 3000) 

4.6. Conclusion 

The significance and design of the automated crystallization platform are discussed in 

this chapter. We discussed the feasibility to build or customize the automated laboratory 

instruments in a cost-effective fashion with the IoT microcontroller, ESP8266, and 3D-

printing techniques. The proposed experimental procedures can achieve automated 

measurement of the metastable zone width (MSZW) and the induction time. Between the 

cycles of the automated experiments, the material addition must be performed manually 

to change the saturation concentration. It is recommended to develop an automated solid 

addition device to fully automate the experiments and enable more potential applications 

such as investigating the seeding and feedback control strategies. 
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 Chapter 5 

A New Highly Efficient and Stable Population 

Array (PA) Algorithm to Solve Multi-Dimension 

Population Balance Equation in the Presence of 

Agglomeration and Breakage 

A version of this chapter will be submitted to AIChE Journal under the title:  A 

New Highly Efficient and Stable Population Array (PA) Algorithm to Solve 

Multi-Dimension Population Balance Equation in the Presence of Agglomeration 

and Breakage 
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  A New Highly Efficient and Stable Population Array 

(PA) Algorithm to Solve Multi-Dimension Population Balance 

Equation in the Presence of Agglomeration and Breakage 

Abstract 

Solving the population balance equation (PBE) that describes the dynamics behavior of a 

crystallization process requires a robust and computational-efficient numerical solver. 

The widely used discretization methods are prone to the numerical diffusion that causes 

over-prediction of the crystal size, and the multi-dimensional solution is highly inefficient 

due to the ineffective computations performed on the unused grids. We present a highly 

efficient numerical solver for the PBE model using the population array (PA) method, 

which employs an array to store the size and counts information as a sparse grid. The 

two-dimensional pure-growth case could achieve approximately ten times speedup 

compared to the high-resolution discretization method since the PA method maintains the 

high efficiency by avoiding the computation on the unused grids. The numerical 

difficulties associated with the discretization methods were avoided using the method of 

characteristics, which also allows approximately five times larger simulation time steps 

without compromising the stability and accuracy of the solution. A row compression 

algorithm is proposed to facilitate the PA method to reduce the computational cost by 

grouping the crystals with similar internal coordinates. Various numerical cases including 

crystal growth, continuous crystallization, polymorphic transformation, agglomeration, 

and breakage were simulated and compared with the analytical solutions and the 

established high-resolution discretization schemes to confirm the accuracy and 

computational efficiency of the proposed PA algorithm. The superior efficiency of our 

proposed PA algorithm in handling multi-dimensional PBE makes it a promising 

technique to utilize the multi-dimensional crystal size measurement obtained using an 

image-based PAT instrument. 

 

Keywords: Crystallization modeling; Multi-dimensional population balance equation; 

Numerical solution; Agglomeration and breakage modeling  
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5.1. Introduction 

Crystallization modeling is an essential tool for design and to investigate the impact of 

the operating conditions on the system states and crystalline product properties. In the 

past, due to the difficulty of in-situ solid phase characterization, the model parameters 

were estimated with the offline size measurement of the final product and the 

concentration and temperature profiles (Hu, Rohani & Jutan, 2005; Lin, Wu & Rohani, 

2019; Qiu & Rasmuson, 1990). Simplified crystallization models without accounting for 

agglomeration, breakage, and crystal morphology were generally sufficient to match the 

de-supersaturation curve. The recent improvement of the process analytical technologies 

(PATs) enables robust real-time monitoring of multi-dimensional crystal size distribution 

(CSD) and polymorphism with image analysis and spectroscopy, which motivates the 

development of more general and descriptive crystallization models (Chen et al., 2019; 

Gao et al., 2018; Lin, Wu & Rohani, 2020b). The population balance equation (PBE) is 

an established technique to describe the change of crystal size distribution (CSD) caused 

by various mechanisms such as growth, dissolution, nucleation, agglomeration, and 

breakage of particles.  Eq. 5-1 depicts a general form of the PBE for a well-stirred batch 

or continuous crystallization system. The  model is a partial differential equation (PDE) 

expressed in terms of the number density of the CSD, 𝑛, with respect to time, 𝑡, and 

internal coordinates of each dimension (often referred to as the characteristic size), 𝐿𝑖 

(Myerson, 2002). 

𝜕𝑛

𝜕𝑡
+ ∑

𝜕(𝐺𝑖 ⋅ 𝑛)

𝜕𝐿𝑖
𝑖⏟        

growth, dissolution

+
𝑛 − 𝑛𝑖𝑛
𝜏⏟    

continuous

= 𝐵 − 𝐷⏟  
agglomeration, 

breakage, nucleation

 
( 5-1 ) 

The second term in Eq. 5-1 describes the propagation of the CSD caused by crystal 

growth or dissolution, where 𝐺𝑖 is the growth/dissolution rate of the i-th dimension. The 

last term on the left-hand side is related to the continuous operation and will diminish in a 

batch-mode system. The birth and death rates, 𝐵 and 𝐷, are the net effects of 

agglomeration, breakage, and nucleation. Because the breakage and agglomeration terms 
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involve integral of the CSD, Eq. 5-1 is typically an integrodifferential equation 

(Gunawan, Fusman & Braatz, 2004). Due to the hyperbolic nature of the 

growth/dissolution term and the non-linearity from the kinetics and the coupled solute 

mass balance equation (MBE), analytical solution of a PBE model is not possible except 

for a few simplified cases (Gunawan, Fusman & Braatz, 2004; Sanjeev,1996). Thus, 

numerical solution techniques have to be employed to solve the coupled PBE and MBE 

problems. 

The numerical methods are categorized into three classes: moment method, Monte Carlo 

method, and discretization method (grid method) (Omar & Rohani, 2017). The moment 

method involves converting the PBE into a set of ordinary differential equations (ODEs) 

in terms of the moments, which can be integrated numerically. For a one-dimensional 

CSD, the 𝑘-th moment, 𝑀𝑘, is defined in Eq. 5-2. 

𝑀𝑘 = ∫ 𝑛 𝐿𝑘 𝑑𝐿
∞

0

 ( 5-2 ) 

Specific moments can be interpreted with physical meanings. For example, 𝑀0, 𝑀3, 

𝑀4/𝑀3 are related to the particle count, volume, and volume-weighted mean size, 

respectively. Tracking only specific moments instead of the full CSD decreases the 

computational efforts. However, the moment method is unrealizable if a moment in the 

set of ODEs depends on a higher-order moment, namely the unclosed moment problem. 

The moment approximation technique must be chosen to guarantee the moment closure 

for various complicated kinetics such as size-dependent growth and breakage (Szilágyi, 

Agachi & Lakatos, 2015; Yuan, Laurent & Fox, 2012). Also, inverting the moment to 

recover the CSD is not trivial and is still an open area of research (Omar & Rohani, 

2017). When the full CSD information or complex kinetics is required, the more general 

discretization method is preferred. 

In the Monte Carlo (MC) method, a large population of crystals is presented by a small 

sample (often in the order of 107). The simulation tracks the evolving properties of the 



137 

 

 

 

sample by randomly triggering the kinetic events such as growth, nucleation, and 

agglomeration for the crystals (Van Peborgh Gooch & Hounslow, 1996; Yu, Hounslow & 

Reynolds, 2015). The implementation of the MC method is straightforward by simply 

adding, removing, or updating the particles even in the presence of complex kinetics. 

Also, the MC method can efficiently handle multidimensional problems (Rosner, 

McGraw & Tandon, 2003). The drawback of this method is the high computational cost 

for simulating a large sample of the population, especially when the particle interaction 

via agglomeration and breakage is involved. Also, the statistical noise due to the 

stochastic simulation requires several repetitions to smoothen the solution (Hao et al., 

2013). 

The discretization method breaks up the continuous internal coordinates into a grid with a 

finite number of bins that represent the particle count in the given size range. The 

derivatives in the growth term of PBE and the integral operations in the agglomeration 

and breakage could be replaced with the discretized arithmetic operations so that the 

time-derivative of each bin could be computed and integrated. Refining the grid can 

improve the resolution of the solution and minimize the discretization error at the cost of 

increased computational complexity. Due to the constraint of the time step size for 

numerical convergence, known as the Courant-Friedrichs-Levy (CFL) condition 

(Gunawan, Fusman & Braatz, 2004), linearly increasing the resolution of the grid can 

result in the quadratic expansion of the computational cost. Also, the refinement of the 

grid cannot resolve the numerical diffusion (smeared solution) and numerical dispersion 

(non-physical oscillation) where the local gradient of the CSD is large (Gunawan, 

Fusman & Braatz 2004). The high resolution (HR) finite volume discretization scheme 

proposed in (Gunawan, Fusman & Braatz, 2004) could provide high accuracy while 

avoiding both numerical diffusion and dispersion associated with other finite difference 

and finite volume schemes, which shows increasing popularity in recent works (Lin, Wu 

& Rohani, 2020a; Shu et al., 2020; Szilágyi & Nagy, 2016). 
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Despite the improvement of the discretization algorithm, the use of the fixed grid has 

computation efficiency problems. The upper limit of the grid must be sufficiently large 

such that no crystal would grow or agglomerate to the size beyond the scope of the grid, 

leading to the wasted computation on the grid points without any data. Also, the multi-

dimensional grid for solving a multi-dimensional PDE will result in a polynomial scale-

up of the computational cost (Szilagyi et al., 2017). The former problem can be addressed 

with the moving-pivot technique, which uses the method of characteristics to move the 

bin boundaries and the pivots (the characteristic size of the bin) according to the local 

growth rate and allocate new bins for nucleation (Kumar & Ramkrishna, 1997). This 

method eliminates the numerical diffusion due to the growth term. A general PBE with 

breakage and agglomeration can be solved with this method. It is also very efficient due 

to the on-demand creation of new bins instead of using a full grid and the ability to 

convert the fine grid into a coarse grid to reduce the computational scale while 

maintaining accuracy. Nevertheless, there are a few challenges with this method. For 

continuous crystallization, it is difficult to merge the different size grids of each stage. 

The multi-dimensional moving-pivot technique is rarely studied except by Borchert 

(2012), who used circular cells as the moving grids to solve a 2D PBE. 

In this work, we propose a simple numerical approach to model the crystallization 

process based on the concept of the moving-pivot technique. Instead of tracking the 

pivots and the boundaries, we found that tracking only the pivots as a series of discrete 

Dirac pulse enables simple but powerful implementation that can handle multi-

dimensional PBE for both batch and continuous operation and complex kinetics including 

agglomeration and breakage. The pivots in the vicinity can be efficiently binned to reduce 

the computational cost in a manner that conserves the crystal count and volume. The 

Python code was accelerated and optimized with the Numba package that compiles the 

program into efficient native code (Lam, Pitrou & Seibert, 2015). The efficiency and 

accuracy of the method were validated against the conventional discretization methods 

and analytical solutions. 
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5.2. Proposed Method 

In the proposed method, the crystal population of each polymorph is represented in a 

population array (Figure 5-1) similar to the Monte Carlo method (Van Peborgh Gooch & 

Hounslow, 1996). Each row stands for 𝑁 crystals sharing the similar characteristic 

internal coordinates, 𝑳. Various kinetics were simulated by updating, appending, or 

removing the rows in this population array.  The population array allows duplicated rows 

of internal coordinates generated from the continuous input, breakage, or agglomeration, 

so the grid boundaries cannot be implicitly inferred from the population table. Therefore, 

each row is considered as a discrete Dirac pulse sampled from the number density CSD 

(Eq. 5-4).  

𝑁𝑖 = ∫𝑛(𝑳)𝛿(𝑳 − 𝑳𝒊)𝑑𝐿 ( 5-3 ) 

With this representation, the total crystal count density (per volume of the crystallizer), 

𝑁𝑇, and volume fraction, 𝑣𝑓, can be determined from the population array using Eqs. 5-4 

and 5-5, where 𝑘𝑠 is the shape factor, and 𝑤 is the power of each internal coordinate. For 

example, 𝑤1 = 3 is the common case for one-dimensional case. For multi-dimensional 

case, the powers of the dimensions depend on the perspective of the measurement. 

𝑁𝑇 =∑𝑁𝑟

𝑅

𝑟

 ( 5-4 ) 

𝑣𝑓 = 𝑘𝑠∑𝐿1,𝑟
𝑤1𝐿2,𝑟

𝑤2

𝑅

𝑟

⋯𝐿𝐷,𝑟
𝑤𝐷  ( 5-5 ) 

Figure 5-1 depicts the flow diagram of the proposed method. The population balance was 

solved iteratively after initialized with the initial condition. First, the operating conditions 

such as the temperature profile are applied. The nucleation and growth or dissolution 

kinetics are computed with the supersaturation (Eq. 5-6), where 𝑐∗ is the solubility of the 
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form. The growth or dissolution rate can be used to adaptively decide the time step, Δ𝑡. 

Next, the 𝐵 and 𝐷 are computed from the agglomeration and breakage kinetics. The time 

step determined from the previous step should be scaled down if any count is negative 

after applying the death term. After the system is updated with breakage, agglomeration, 

and continuous inflow of the seeded charge, the population array will contain a lot of 

rows with duplicating or similar sizes, which will significantly slow down the next 

simulation step. The row compression algorithm is therefore used to represent the 

population array with minimum equivalent rows that have the conserved crystal counts 

and volumes. If the system is polymorphic, the above operations are repeated for each 

form. Finally, the population array of each form is used to compute the mass difference 

than the previous step to update the concentration. 

𝜎 =
𝑐

𝑐∗
− 1 ( 5-6 ) 
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Figure 5-1 Flow diagram of simulating a crystallization process with the proposed 

method. 
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5.2.1. Nucleation and Growth Modeling 

The nucleation and growth processes are modeled with the method of characteristics. 

When the relative supersaturation, 𝜎 (Eq. 5-6) is positive, the primary and secondary 

nucleation rates are calculated from Eqs. 5-7 and 5-8 (Omar & Rohani, 2017).  

𝐵𝑝𝑛 = 𝑘𝑝𝑛𝜎
𝛼𝑝𝑛 , 𝜎 > 0 ( 5-7 ) 

𝐵𝑠𝑛 = 𝑘𝑠𝑛𝜎
𝛼𝑠𝑛𝑣𝑓

𝛽𝑠𝑛 , 𝜎 > 0 ( 5-8 ) 

𝑁0 = (𝐵𝑠𝑛 + 𝐵𝑝𝑛)Δ𝑡  ( 5-9 ) 

The nuclei are recorded by appending a new row to the population array with 𝑁0 from 

Eq. 5-9 and 𝑳 set to the nuclei size, which can be zeros or the detection limit of the 

instrument. The growth rate of i-th internal coordinate is computed with Eq. 5-10, where 

𝛽 and 𝛾 are the size-dependent parameters. The vector 𝑳 of each row is updated with Eq. 

5-11 to represent the enlargement of crystals due to growth. During dissolution, the 

nucleation step is skipped, and any row with non-positive 𝑳 after being updated with Eq. 

5-11 is removed from the population array. This method is efficient for multi-

dimensional growth and dissolution as adding a new dimension only requires updating 

one extra column of the internal coordinates. 

𝐺𝑖 = {

𝑘𝑔𝜎
𝛼𝑔(1 + 𝛽𝑔)𝐿𝑖

𝛾𝑔 , 𝜎 > 0

0, 𝜎 = 0

𝑘𝑑𝜎
𝛼𝑑(1 + 𝛽𝑑)𝐿𝑖

𝛾𝑑 , 𝜎 < 0

 ( 5-10 ) 

𝑳 = 𝑳 + 𝑮Δ𝑡  ( 5-11 ) 
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5.2.2. Agglomeration Modelling 

Agglomeration refers to the generation of a larger composite crystal by attachment of two 

or several crystals, often as a result of the formation of a solid bridge between them. 

During the agglomeration event, the total particle volume remains constant while the 

crystal number changes. The birth and death terms, due to agglomeration, are used to 

quantify the rate of generating new particles and the consumption of the existing 

particles. In this work, only binary agglomeration is considered.  

For one-dimensional agglomeration, every binary inclusive combination of two crystals 

is involved in generating a new particle. i.e., all rows in the population array belong to 

only one domain Ω. The death rate of the crystal represented by the 𝑟-th row is calculated 

from Eq. 5-12, where 𝛼 is the agglomeration kernel function measuring the size-

dependent aggregation frequency of two crystals. The commonly used agglomeration 

kernel is reviewed in (Omar & Rohani, 2017). The birth rate is computed by enumerating 

all combinations of two rows in the population array with Eq. 5-13. The size of the new 

particle is calculated using the volume-weighted average of the parent crystals so that the 

volume is conserved during agglomeration. The same goal is achieved in the fixed-grid 

method by converting the grid to volumetric coordination. It is worth noting that the 

shape is assumed unchanged during agglomeration. i.e., two spherical particles will 

generate a new spherical particle with the summed volume.  

𝐷𝑎𝑔𝑔𝑙(𝑟) = ∑ 𝛼(𝑳𝒓, 𝑳𝒓𝟏)𝑁𝑟𝑁𝑟1|𝑟,𝑟1∈Ω𝑖𝑟1   ( 5-12 ) 

𝐵𝑎𝑔𝑔𝑙 =∑∑𝛼(𝑳𝒓𝟏 , 𝑳𝒓𝟐)𝑁𝑟1𝑁𝑟2|𝑟1,𝑟2∈Ω𝑖
𝑟2𝑟1

  ( 5-13 ) 

The multi-dimensional agglomeration is illustrated in Figure 5-2. Following the work 

done by Shu et al. (2020), it is assumed that the agglomeration involves the shapes 

change in only one internal coordinate; i.e., the two involved particles are different in 

only one internal coordinate (Figure 5-2.b). This assumption ensures the unchanged 
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shape of the generated crystal, which can be correctly represented by the same set of 

internal coordinates. The topic of agglomeration of arbitrary crystals is studied by Amrei 

and Dehkordi (2013) and is out of the scope of this work.  Since the population array only 

stores the information of the pivots, a uniform grid is used to partition the points in the 

population array into multiple domains. As depicted in Figure 5-2.a, for an arbitrary 

crystal represented by the row 𝑟𝑎 belonging to the domains Ω1 and Ω2, the death and birth 

terms are calculated with the binary combination of 𝑟𝑎 and any other particle in these 

domains. Since the non-agglomerating dimensions of the agglomerating particles are not 

guaranteed to be equal, the mean values are used as the non-agglomerating dimension of 

the agglomerate. With the summed volume and all other dimensions determined, the 

agglomerating dimension could be determined with Eq. 5-5. Each domain should only be 

computed once to prevent duplication. In every stimulation step, the volume of the largest 

crystal is doubled by agglomerating with itself, resulting in extremely large agglomerates 

with a negligible count. This can be resolved with a minimum count threshold that 

excludes the rows with a negligible count from the agglomeration. Compared to the 

previous work (Shu et al., 2020), our method does not require the iterative search to find 

the internal coordinates of the generated crystals, and the volume after agglomeration is 

conserved. 
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Figure 5-2 Illustration of two-dimensional agglomeration along the internal coordinates. 

(a) the grid representation of agglomeration. Each scattering point represents the location 

of a row in the population array. 𝛀𝟏 and 𝛀𝟐 are the agglomeration domain of the crystal 

represented by the row 𝒓𝒂. (b) the visualization of the agglomeration along the two 

internal coordinates. Note that the agglomerate dimensions are not the summation of the 

agglomerating dimensions but calculated from the conserved volume. 

 

5.2.3. Breakage Modeling 

Breakage is the generation of fragments from the existing crystals. Like the 

agglomeration events, the total crystal volume is conserved while the total crystal count 

increases. In this work, we only consider the binary breakage where one parent crystal 

breaks into two complementary daughter crystals. 

For one-dimensional breakage, every particle represented by the rows in the population 

array breaks into pieces symmetrically distributed about the half volume (Figure 5-3.a), 
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since the probabilities of generating the crystal of volume 𝑉𝑝 and the complementary 

crystal of volume 𝑉 − 𝑉𝑝 are the same. The death rate of the existing parent crystal is 

computed with Eq. 5-14, where 𝛽𝑖 is the breakage kernel function measuring the size-

dependent breakage frequency along the i-th breakage dimension. Various breakage 

kernels are summarized by Omar and Rohani (2017). The birth rate of the new fragments 

generated by the parent crystal of 𝑟-th row is expressed in Eq. 5-15, where 𝑃𝑖 is the 

probability of generating the fragment of the internal coordinate 𝑳 along i-th dimension. 

The previous study suggests the use of a uniform or parabolic probability distribution of 

𝑃𝑖 (Figure 5-3.a) (Bao et al., 2006). For the constant probability distribution, 𝑃𝑖 = 2 𝑉𝑃⁄ , 

where 𝑉𝑃 is the volume of the breaking parent crystal. The volumes of the daughter 

particles are converted to its characteristic length using Eq. 5-5 and stored in the 

population array as new rows. 

For multi-dimensional breakage, it is also assumed the breakage event involves the 

shapes change in only one internal coordinate, which can be represented by the arbitrary 

cuts along different sides (Figure 5-3.b). Note that due to the different powers (𝑤 in Eq. 

5-5) of each internal coordinate in crystal volume calculation, the size of each fragment 

does not equal the position of the cut. For example, the three-dimensional illustration in 

Figure 5-3.b can be mapped into the two-dimensional case by projecting from either 𝐿2- 

or 𝐿3- direction. For a needle-like or rod-like crystal, using the representation of 

projecting from the 𝐿3-direction is preferred since the internal coordinates matches the 

size measurement of major and minor dimensions from imaging analysis. By assuming 

the hidden dimension is the same as the minor dimension (𝐿1), the power of 𝐿1- and 𝐿2- 

dimensions are 2 and 1, respectively. In this case, if evenly cutting along 𝐿1, the daughter 

crystals will have the breaking dimension of 𝐿1 √2⁄  instead of 𝐿1 2⁄  so that the volume is 

conserved after breakage. The death rates of the existing crystals are the summation of 

the death rate in each internal coordinate (Eq. 5-14). For the daughter crystals, the 

internal coordinates are determined with a uniform volume grid along the breaking 

dimension (Figure 5-3.c). The volumes are converted to the length by fixing the non-
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breaking dimensions. The birth rates of the daughter crystals are calculated from Eq. 5-15 

by using the grid interval Δ𝑉𝑖, and probability distribution, 𝑃𝑖 obtained with the volume 

grid. The interval of the volume grid can be adjusted based on the internal coordinates to 

balance the resolution of breaking a large crystal and the efficiency of breaking a small 

crystal.  

𝐷𝑏𝑟𝑘(𝑟) = ∑ 𝛽𝑖(𝑳𝒓)𝑁𝑟𝑖   ( 5-14 ) 

𝐵𝑏𝑟𝑘(𝑟) =∑𝛽𝑖(𝑳𝒓)𝑁𝑟𝑃𝑖(𝑳)Δ𝑉𝑖
𝑖

  ( 5-15 ) 
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Figure 5-3 (a) Illustration of one-dimensional breakage on a volume grid for uniform and 

parabolic probability distributions. The size of the points represents the relative count of 

the daughter crystals; (b) demonstration of two-dimensional and three-dimensional 

breakage by cuts along the breakage dimensions; (c) visualization of two-dimensional 

breakage. Note that the grid is not linear if the volume power of the breaking dimension 

is not one.  
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5.2.4. Continuous Operation 

For a mixed-suspension mixed-product-removal (MSMPR) continuous crystallizer with a 

residence time of 𝜏, the death rate of the existing crystals due to continuous material 

removal can be characterized by Eq. 5-16. The population array of the slurry inlet is 

copied and appended to the population array of the current stage. The counts of the inlet 

crystals are computed with the time step times the birth rate in Eq. 5-17. For multi-stage 

crystallizer, the population array of the subsequent stages will inflate much faster than the 

first stage because of the accumulated rows from the previous stages. The row 

compression algorithm discussed shortly will reduce the rows and prevent significant 

slow-down during the multi-stage simulation. 

𝐷𝑟,𝑐𝑜𝑛𝑡 =
𝑁𝑟
𝜏
   ( 5-16 ) 

𝐵𝑐𝑜𝑛𝑡 =
𝑁𝑖𝑛
𝜏
  ( 5-17 ) 

 

5.2.5. Row Compression 

The number of rows in the population array increases over the simulation steps. Every 

nucleation step will add one new row to the population array, which is usually not a 

problem even for a long-running simulation. Nevertheless, the breakage and 

agglomeration event will introduce a large number of new crystals. For example, one-

dimensional agglomeration of 𝐾 crystals will produce 𝐾2 2⁄  agglomerates. For multi-

stage continuous crystallization, the stream from the previous stage will copy the same 

number of rows to the current stage. The computation cost on the inflating population 

array will increase exponentially, making the following simulation step much slower than 

the previous one. 
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Figure 5-4 Illustration of row compression procedures of a one-dimensional and a two-

dimensional population array. 

In the grid-based method, this problem does not exist since the grid automatically bins 

the crystals to their assigned intervals. Hence generating new crystals only affects the 

count data stored on each grid. The pivot (characteristic internal coordinates of a grid 

cell) will also move to ensure both total volume and counts are conserved (Kumar & 

Ramkrishna, 1996; Sanjeev, 1996). We use the concept of grid to compress the 

population array into the equivalent pivots by grouping the points in the vicinity. Figure 

5-4 depicts the procedures of the row compression algorithm. First, a grid covering the 

full span of the data in the population array is generated to partition the points. The linear 

or logarithmic scales and intervals can be decided based on the range of the internal 
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coordination and the application. Then, the points in each grid cell are replaced with one 

pivot point, whose count is the summation of the counts (last column in the population 

array) of the points (Eq. 5-18). The volume-weighted mean sizes of the crystals are used 

as the internal coordinates of the pivots for one-dimensional cases (Eq. 5-19). For multi-

dimensional cases, one dimension, 𝑑𝑐, is selected as the compression dimension. The 𝑖-th 

component of the pivot internal coordinate vector, 𝐿𝑝,𝑖, are computed with Eq. 5-20 by 

first reducing the non-compression dimensions of the crystals using the count-weighted 

mean. Then, the compression dimension is computed such that the total crystal volume in 

the cell Ω is conserved.  

𝑁𝑝(Ω) = ∑𝑁𝑟
𝑟∈Ω

  ( 5-18 ) 

𝐿𝑝(Ω)  = √
∑ 𝐿𝑟

3𝑁𝑟𝑟∈Ω

𝑁𝑝(Ω) 

3

  ( 5-19 ) 

𝐿𝑝,𝑖(Ω)  =

{
 
 

 
 
∑ 𝐿𝑟𝑁𝑟𝑟∈Ω

𝑁𝑝(Ω)
, 𝑖 ≠ 𝑑𝑐

𝑣𝑓(Ω)

𝑘𝑠∏ 𝐿
𝑝,𝑗

𝑤𝑗
𝑗≠𝑖

, 𝑖 = 𝑑𝑐

 ( 5-20 ) 

The row compression can be applied at the end of every simulation step or when the rows 

stored in the population array exceeds a threshold. Unlike the fixed-grid method where 

the grid range is defined manually, the partition grid is generated to fit the range of the 

existing crystals, so that no redundant grid cells above the largest crystal are considered. 

The multi-modal CSD can be efficiently stored and computed as the cells without data 

are discarded so that no data point is assigned to the empty gaps between the modals.  
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5.2.6. Adaptive Time Step Size 

Compared to the fixed simulation time step size, adaptively computing the time step 

based on the current state helps to efficiently allocate more computation resources to 

where the system states change rapidly. This ensures accuracy and stability. In an explicit 

fixed-grid method, the stable solution is obtained if the Courant–Friedrichs–Lewy (CFL) 

criterion in Eq. 5-21 is met, where Δ𝐿𝑖 is the grid interval along 𝑖-th internal coordinates 

(Szilágyi & Nagy, 2016). Due to the use of the method of characteristic, the stability of 

our method is not limited by the CFL criterion. By defining 𝛥𝐿𝑖 as a tunable parameter, 

we can use Eq. 5-21 as a reference to scale the time step size based on the current growth 

or dissolution rate. Another constraint on the time step is determined from the death rate 

of the existing crystals. For any crystal represented by the 𝑟-th row, the remaining count 

after subtracting the death term should be positive (Eq. 5-22), which prevents the non-

physical negative count in the population array (Van Peborgh Gooch & Hounslow, 1996). 

If the crystallizer is operated continuously, the time step should not exceed the residence 

time, 𝜏, to prevent the negative count (Eq. 5-16). The minimum of the time steps 

computed for various internal coordinates and polymorphs is then used as the current 

time step. 

𝐶𝐹𝐿 = |max (𝐺𝑖
𝛥𝑡

𝛥𝐿𝑖
)| ≤ 1   ( 5-21 ) 

Δ𝑡 <
𝑁𝑟
𝐷𝑟
  ( 5-22 ) 

 

5.2.7. CSD Reconstruction 

Reconstructing the CSD from the discrete points stored in the population array can be 

achieved with a count-weighted histogram like the row compression method. Eq. 5-23 

computes the number density at the grid cell, Ω, where Δ𝐿𝑖 is the grid interval along 𝑖-th 
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internal coordinates. Unlike the row compression where the objective is to combine the 

crystals with close internal coordinates, the reconstructed CSD histogram should also 

provide meaningful interpretation. However, as depicted in Figure 5-5, if the grid interval 

is not properly chosen, the resulting CSD can be fluctuating and misleading. The 

fluctuation is attributed to the mismatch between the frequencies of the data points and 

the grid intervals. For example, when the data is evenly distributed, the proper interval 

will split the data evenly into each bin, while the over-sampling or under-sampling 

intervals cause uneven binning of the data, resulting in spikes and valleys. The optimal 

grid interval can be found by evaluating the average rolling standard deviation of the 

CSD reconstructed with different intervals, which should be minimized to produce a 

smooth distribution.  

𝑛(Ω) =
𝑁𝑝(Ω)

∏ Δ𝐿𝑖𝑖
 ( 5-23 ) 

 

Figure 5-5 Demonstration of the effect of the grid interval on the reconstructed CSD. 

Another approach to reconstruct the smooth CSD from the discrete points is kernel 

density estimation (KDE), which uses a weighted sum of a known non-negative kernel 
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density function to represent the CSD (Yuan, Laurent & Fox, 2012). The bandwidth is 

the tunable parameter that controls the smoothness of the CSD, which can be determined 

globally or adaptively based on the local structure of the data (Pedretti & Fernàndez-

garcia, 2013). The challenge that often arises in the use of KDE is the boundary bias 

problem, which predicts unphysical nonzero CSD on the negative internal coordinates 

and underestimates the density function near the boundary (Sole-mari et al., 2019). These 

issues have been addressed with various boundary correction techniques (Sole-mari et al., 

2019).  

5.3. Simulation Case Studies 

5.3.1. Nucleation and Growth 

Pure growth and simplified simultaneous nucleation and growth simulations were 

performed to demonstrate the accuracy of the proposed population array method in 

handling the growth term that is challenging in the fixed-grid methods. Figure 5-6.a 

depicts the one-dimensional growth-only simulation with the initial condition consisting 

of a rectangle and a smooth normal distribution. The numerical diffusion problems are 

identified for both fixed-grid methods near the edges of the rectangle where the local 

gradient is large. Ideally, the size-independent growth will cause the CSD profile to shift 

along the axis while preserving the shape. However, the first-order accurate upwind 

(UW) scheme damps the sharp features such as the edges of the rectangle. The high-

resolution (HR) method shows improved shape preservation for the smooth normal 

distribution but the numerical diffusion is still noticeable near the discontinuities 

(Gunawan, Fusman & Braatz, 2004). Our proposed population array (PA) approach 

employs the method of characteristics to simulate crystal growth, which moves the 

internal coordinates of each tracked pivot according to the growth rate. This method not 

only perfectly matches the analytical solution but also improves the efficiency by 

dropping the empty grid points and only tracking the data on the initial condition profiles. 

A similar conclusion can be drawn for the two-dimensional growth-only simulation, 

where the growth is simulated with a square-patch initial condition that is shifted to 
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different directions with the same magnitude of growth rate. The contours of the PA 

method in Figure 5-6.b fit the analytical reference and show no numerical diffusion 

pattern around the solution. Figure 5-6.c is a simplified case of simultaneous constant 

nucleation and constant growth where a flipped Heaviside (step) function is the expected 

solution. This case shows that discontinuities are common during crystal growth 

simulation and can lead to the over-estimated crystal size. The population array with row 

compression (PAC) method reduces the increasing computation complexity introduced 

during the nucleation event. With row compression, the front in the CSD is slightly lower 

than the analytical solution due to the averaging with the fine nuclei in the same grid cell. 

The performance gain from row compression is insignificant in this simple case but it is 

shown that this mechanism can speed up the computation at the cost of negligible 

accuracy loss. The one-dimensional size-dependent growth on a volumetric coordinate is 

discussed by Gunawan et al. (2004). For a size-dependent growth rate given by Eq. 5-24 

and the initial CSD is given by Eq. 5-25, where the parameter 𝐺0 = 0.1 𝜇𝑚
3/𝑠, 𝑁0 = 1 

and 𝑣0 = 0.01𝜇𝑚
3, the analytical solution after growing for 𝑡 seconds is given by Eq. 

5-26 (Ramabhadran, Peterson & Seinfeld, 1976). The simulated results are shown in 

Figure 5-6.d. While all numerical methods match well with the analytical solution at the 

large volume range, the fixed-grid methods show a larger deviation at the smaller size. 

The deviation is explained by the boundary condition at zero volume that is numerically 

equivalent to a discontinuity, causing the numerical diffusion and large deviation for the 

fixed-grid method. In this case, the PA method tracks the propagation of the boundary 

condition much more accurate than the fixed-grid methods. 

𝐺(𝑣) = 𝐺0𝑣 ( 5-24 ) 

𝑛(𝑣, 0) =
𝑁0
𝑣0
𝑒
−
𝑣
𝑣0 ( 5-25 ) 

𝑛(𝑣, 𝑡) =
𝑁0
𝑣0
exp (−

𝑣

𝑣0
𝑒−𝐺0𝑡 − 𝐺0𝑡) ( 5-26 ) 
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Figure 5-6 Batch crystallization simulation results obtained with the high-resolution 

(HR), upwind (UW), and population array (PA) methods compared with the analytical 

solutions. (a) One-dimensional growth-only simulation (𝑮 = 𝟎. 𝟕𝝁𝒎 𝒔⁄ , 𝚫𝒕 = 𝟏 𝒔, 𝚫𝑳 =

𝟏 𝝁𝒎, and 𝒕𝒆𝒏𝒅 = 𝟐𝟎𝟎 𝒔). (b) CSD contours of the two-dimensional growth-only 

simulation of a step initial condition. (c) Constant nucleation and growth simulation (𝑩 =

𝟏𝟎𝟓 # ⋅ 𝒎−𝟑 ⋅ 𝒔−𝟏, 𝑮 = 𝟎. 𝟕𝝁𝒎 𝒔⁄ ,  𝚫𝒕 = 𝟏 𝒔, 𝚫𝑳 = 𝟏 𝝁𝒎). PAC: the rows in the 

population array are compressed to a grid of 𝟏 𝝁𝒎 interval at the end of each simulation 
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step. (d) Size-dependent growth simulation case solved analytically by Ramabhadran et 

al. (1976). 

 

5.3.2. Concentration-dependent Kinetics in Batch and Continuous 

Crystallization Processes 

In the crystallization process, the constant growth and nucleation kinetics do not hold. 

The growth and nucleation are functions of supersaturation, temperature, and the existing 

CSD of the current state. The coupled mass balance equation computes the mass 

difference after nucleation and growth and updates the solute concentration. For a seeded 

batch crystallization, the secondary nucleation is dominant, which is typically described 

by a power-law form given in Eq. 5-8. The size-dependent growth rate has a similar 

power-law expression (Eq. 5-10). In this case study, a seeded batch crystallization 

process of potassium nitrate (KNO3) is simulated to validate the performance of the PA 

method in a realistic context. The initial CSD of seeds is given in Eq. 5-27. The solubility 

and kinetic parameters of KNO3 from literature are given in Eq. 5-28 and Table 5-1 

(Miller, 1993). The simulation time step size is determined using the CFL condition (Eq. 

5-21).  

𝑛𝑠𝑒𝑒𝑑(𝐿) = {
−3.48 × 10−4𝐿2  +  0.136𝐿 −  13.21, 180.5 ≤ 𝐿 < 210.5 𝜇𝑚

0, elsewhere
 ( 5-27 ) 

𝑐∗(𝑇[℃]) = 1.721 × 10−4𝑇2 − 5.88 × 10−3𝑇 + 0.1286 ( 5-28 ) 
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Table 5-1 Kinetic parameters and properties of KNO3 for the batch process (Miller, 1993) 

Parameter Description Value 

𝝆𝒄 Crystal density 2.11 × 10−12 [𝑔 ⋅ 𝜇𝑚−3 ] 

𝒌𝒔𝒏 Nucleation coefficient 4.64 × 10−7 [# ⋅ 𝜇𝑚−3 ⋅ 𝑠−1] 

𝜶𝒔𝒏 Nucleation supersaturation power 1.78  [−] 

𝜷𝒔𝒏 Nucleation volume power 1 [−] 

𝒌𝒈 Growth coefficient 116 [𝜇𝑚 ⋅ 𝑠−1] 

𝜶𝒈 Growth supersaturation power 1.32  [−] 

𝜷𝒈 Growth size-dependent coefficient 0.1 [𝜇𝑚] 

𝜸𝒈 Growth size-dependent power 1 [−] 

 

The analytical solution for this case does not exist. The high-resolution simulation on a 

very fine grid was performed by Gunawan et al. (2004) and the numerical accuracy was 

confirmed using the method of moments. A linear grid with an interval of 0.5 𝜇𝑚 is used 

for the fixed-grid method and sampling the seeds CSD for the population array methods. 

Since the large span of crystal size makes it difficult to reconstruct the CSD using a 

histogram for the population array method, we used the kernel density estimator with the 

Epanechnikov kernel and the bandwidth of 1.0 to reconstruct the CSD. The boundary at 

zero-size was handled using the reflection method (Pedretti & Fernàndez-garcia, 2013). 

When the nucleation is switched off (𝑘𝑠𝑛 = 0), the reconstructed CSD using KDE 

matches the final CSD obtained with the fixed-grid methods. Figure 5-7.a demonstrates 

the final CSD simulated with various methods. The left part of the distribution is due to 

the growth of nucleated crystals and the peak on the right is the result of the growth of the 

seeds. On the CSD generated by nucleation, the right tail is smoother due to the relatively 

low supersaturation at the beginning. While the supersaturation increases, the CSD 

becomes steep and the results from different numerical methods start to deviate due to the 

numerical diffusion of the fixed-grid methods. Due to the lack of sufficient data and the 

boundary bias caused by KDE, the CSD reconstructed with KDE for the population array 

method underestimates the size near the zero size. The product CSD of the seeds (Figure 
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5-7.b) demonstrates the numerical diffusion of high-resolution and upwind methods 

causes the smoothened peak while the population array method can generate the CSD 

without smearing the edges. The concentration and count profile are related to the 

evolution of the third moment and the first moment. The concentration trajectories are 

insensitive to the minor CSD difference due to the weighting and the results generated by 

all methods overlap with each other (Figure 5-7.c). However, the crystal count plot 

shown in Figure 5-7.c revealed a slightly slower count change reported by the fixed-grid 

method. After refining the grid interval from 0.5 𝜇𝑚 to 0.1 𝜇𝑚, the high-resolution 

method produces the same count curve as the population array method. This indicates 

that the population array method is able to accurately simulate the crystallization process 

that requires a very fine grid and high computation cost to achieve the same level of 

accuracy for the fixed-grid method. The nucleation expands the population array to more 

than 1000 rows over time. The row compression used in this case keeps the number of 

rows in the population array about ten times less than the uncompressed population array 

method while maintaining the same level of accuracy, making it a very efficient way to 

speed up the simulation. 
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Figure 5-7 Concentration-dependent kinetics and size-dependent growth simulation for a 

batch process. (a) Initial and final CSD simulated with high resolution (HR), upwind 

(UW), population array (PA), and population array with row compression (PAC). (b) 

CSD of the crystals grown from the seeds. (c) Concentration profiles. (d) Crystal count 

profiles. The intervals of the coarse and fine grids are 𝟎. 𝟓 𝝁𝒎 and 𝟎. 𝟏 𝝁𝒎, respectively. 
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Simulating a continuous MSMPR process is similar to the batch process except that the 

simulation duration is usually much longer to ensure the steady-state result is reached (5 

– 6 residence times) (Power et al., 2015). The long simulation potentially causes the CSD 

leaking problem in the fixed-grid methods, which refers that the grid loses track of the 

large crystals growing beyond the up limit of the grid. The vanishing crystals will break 

the conservation of crystal mass and count, causing non-physical fluctuations in the 

simulated states. This problem is usually overlooked due to the exponential residence 

time distribution (RTD) of an MSMPR process that implies very low steady-state number 

density for large crystals, which imposes a negligible effect on the mass and count 

balances. However, when seeding is used to facilitate the start-up process, the amount of 

leaked mass and count is substantial. The acute change of the states may lead to 

elongated steady-state time or even diverging simulation. Therefore, downscaling the 

time step is usually required for the continuous case to ensure the stability of the solution. 

The following numerical example of a continuous crystallization process illustrates the 

accuracy and advantages of the population array (PA) method over the fixed-grid 

methods. The parameters in Table 5-1 are used except that the volume dependency of the 

nucleation rate is ignored (𝜷𝒔𝒏 = 0) and the size-dependent growth coefficient 𝜷𝒈 is 

varied among positive (0.005), negative (−0.005), and size-independent (0) cases. The 

inlet stream is clear solution saturated at 32℃. The temperature (𝑇) and residence time 

(𝜏) of the crystallizer is 31.5℃ and 100 seconds, respectively. The fixed-grid methods are 

simulated on a grid between 0 and 1000 𝜇𝑚 and the interval is 0.5 𝜇𝑚. The simulation 

results are demonstrated in Figure 5-8. The steady-state CSDs generated by the 

population array method and the other numerical methods are in good agreement (Figure 

5-8) and the trends of the size-dependent growth match the analytical solutions (Myerson, 

2002). Figure 5-8.b and c demonstrate the concentration and count profile for the positive 

size-dependent growth case. The steady-state values converge for all methods, but the 

fixed-grid method reports a non-physical fluctuation in concentration and count due to 

the CSD leak of the initial seeding crystals. To prevent this issue, the grid range should 

be enlarged to ensure the proper tracking of the largest crystal, which significantly 
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increases the computational cost and needs trial-and-errors to determine the suitable 

range. The population array can track all crystals regardless of their size, making it 

suitable for such a long-lasting simulation towards the steady state. However, tracking the 

large range of crystals is inefficient and usually unnecessary because of the negligible 

counts. Therefore, the rows with the count below the threshold (10−15 for this case) can 

be safely removed so that the computation efficiency is maintained while imposing 

minimal impact on the mass conservation. Due to the overhead of the row compression 

algorithm, it is the most efficient to compress the population array once the number of 

rows exceeds 3000 rather than on every time step.  
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Figure 5-8 Concentration-dependent kinetics and size-dependent growth simulation for a 

continuous process. The suffixes +, -, 0 stand for positive, negative size-dependent and 

size-independent growth kinetics a) steady-state CSD simulated with various numerical 
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methods. b) Relative concentration profile of the positive size-dependent growth. c) 

Count profile of the positive size-dependent growth. 

 

5.3.3. Polymorphic Transformation 

Polymorphism refers to the molecules crystallizing in more than one crystal structure 

with different packing arrangements and/or conformations. The solubility of the stable 

form is lower than the unstable forms, driving the polymorphic transformation to the 

most stable form. The previous work showed that the relative kinetics of the forms play 

an important role in the crystallization process and the expected outcome (Lin, Wu & 

Rohani, 2020a). When simulating the de-supersaturation process involving polymorphic 

transformation, it is challenging to correctly describe the behavior when the concentration 

is between the solubilities of two forms. The time step needs to be downscaled because 

the simultaneous dissolution and growth may cause the concentration fluctuation near the 

solubility limits. Also, the dissolution rate is generally the order of magnitudes faster than 

the growth, resulting in a much finer time step to satisfy the CFL condition (Lin, Wu & 

Rohani, 2020a). 

In this numerical case, the polymorphic transformation from the unstable 𝛼-form to the 

stable 𝛽-form L-glutamic acid crystal in a batch process is simulated with the high-

resolution and population array methods. The solubility of the two forms from the 

literature is given in Eqs. 5-29 and 5-30 (Hermanto et al., 2012). The kinetic parameters 

for the simulation are listed in Table 5-2. The nucleation coefficients of the unstable 𝛼-

form is higher than the stable 𝛽-form to emulate the kinetically favorable behavior of the 

unstable form. In this case, the rate-limiting step is the nucleation of the stable form. 

Besides, a dissolution-limiting case was simulated where the dissolution coefficient of the 

unstable form is reduced to −0.2 𝜇𝑚 ⋅ 𝑠−1.  

𝑐𝛼
∗(𝑇[℃]) = 8.437 × 10−6 𝑇2 − 3.032 × 10−5 𝑇 + 4.564 × 10−3 ( 5-29 ) 
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𝑐𝛽
∗(𝑇[℃]) = 7.644 × 10−6 𝑇2 − 1.165 × 10−4 𝑇 + 6.622 × 10−3 ( 5-30 ) 

Figure 5-9 demonstrates the simulation results of these cases. When the polymorphic 

transformation is limited by the nucleation of the stable form, there is a concentration 

plateau near the solubility of the unstable form, where the dissolution of the 𝛼-form 

crystals is enough to compensate the solute consumption of the relatively slow nucleation 

and growth of the stable form. However, if the dissolution rate of the unstable form is 

slow (dissolution-limiting), the concentration will not plateau but slowly approach the 

solubility of the stable form. These phenomena are correctly described by both HR and 

PA methods. Despite the good agreement between the HR and PA methods, there are 

noticeable differences after the concentration drops below the solubility of the unstable 

form. It is concluded that the accuracy of the fixed-grid methods is sensitive to the time 

step. By scaling the time step size determined by the CFL condition, the PA method 

generates consistent results, and the curves simulated by the HR method are approaching 

the result of the PA method. Figure 5-10 demonstrates the relative difference between the 

concentration profile simulated with a very small step (CFL scaled by 0.1) and larger 

time steps. When the time step is scaled by 0.1, the relative error between the PA method 

and the HR method is negligible. As the scale factor increases, the difference between the 

two methods enlarges. The numerical stability of the fixed-grid method is limited by the 

CFL condition, so the time step factor is cut off at one. The PA method allows the use of 

much larger time steps without encountering numerical stability issues. When the large 

time step is used, it invalidates the assumption that the system state is constant within 

each simulation step, resulting in the loss of accuracy. The stability and accuracy of the 

PA method enable much faster polymorphic transformation simulation than the HR 

method. 
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Table 5-2 Kinetic parameters and properties of the polymorphic system  (L-glutamic acid) (Lin, 

Wu & Rohani, 2020a) 

Parameter Description Value 

𝝆𝒄 Crystal density 1.54 × 10−12 [𝑔 ⋅ 𝜇𝑚−3 ] 

𝒌𝒔 Shape factor 0.48 

𝒌𝒑𝒏 Primary nucleation coefficient of two forms {105, 106}  [# ⋅ 𝑘𝑔−1 ⋅ 𝑠−1] 

𝒌𝒔𝒏 Secondary nucleation coefficient of two forms {105, 106}  [# ⋅ 𝜇𝑚−3 ⋅ 𝑘𝑔−1 ⋅ 𝑠−1] 

𝜶𝒑𝒏, 𝜶𝒔𝒏 Nucleation supersaturation powers 2 

𝜷𝒔𝒏 Secondary nucleation volume power 1 

𝒌𝒈 Growth coefficient 0.1 [𝜇𝑚 ⋅ 𝑠−1] 

𝒌𝒅 Dissolution coefficient −2.2 or −0.2 [𝜇𝑚 ⋅ 𝑠−1] 

𝜶𝒈, 𝜶𝒅 Growth/dissolution supersaturation power 1 

𝜷𝒈, 𝜷𝒈 

𝜸𝒈, 𝜸𝒅 

Size-dependent growth/dissolution coefficient 

and power 
0 
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Figure 5-9 The simulated concentration, crystal counts, and crystal volumes profile of 

the polymorphic transformation from the unstable 𝜶-form to the stable 𝜷-form crystals. 

(a-c): nucleation-limiting case; (d-f): dissolution-limiting case. 
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Figure 5-10 Relative error of the concentration profile compared to the results simulated 

with the smallest time step (scaled by 0.1). The curves depict the mean relative error and 

the shaded areas show the 90% confidence interval. 

 

5.3.4. Agglomeration and Breakage 

The mechanism of agglomeration simulation borrows features from the grid methods and 

the population array (PA) method. By iterating every pair of rows/grid cells, the birth rate 

and the size of the new agglomerates can be calculated. In the grid method, the arbitrary 

agglomerate size is usually different than the size represented by the grid points. Kumar 

and Ramkrishna proposed a technique to interpolate the size and count of an arbitrary 

crystal such that the total volume and count are conserved (Kumar & Ramkrishna, 1997). 

The PA implements the same concept in two steps. First, the birth rates of each 

agglomerate produced by any two crystals and their exact sizes are computed using Eqs. 
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5-12 and 5-13. Then, the PA is compressed to an equivalent array with fewer rows while 

conserving the crystal count and volume.  

𝐿𝑎𝑔𝑔𝑙 = √𝐿1
3 + 𝐿2

33
  ( 5-31 ) 

𝑛(𝐿, 0) =
𝑁0
𝐿0
(
𝐿

𝐿0
)
2

𝑒
−(

𝐿
𝐿0
)
3

 ( 5-32 ) 

𝑛(𝐿, 𝑡) =
4 𝑁0 (

𝐿
𝐿0
)
2

𝐿0 ⋅ (𝑌 + 2)2
𝑒−

2(
𝐿
𝐿0
)
3

𝑌+2  
( 5-33 ) 

The agglomeration on a linear size grid with a constant agglomeration kernel was solved 

analytically in the previous work (Gelbard & Seinfeld, 1978). In this case, the 

agglomerate size generated by two crystals of size 𝐿1 and 𝐿2 is calculated with Eq. 5-31. 

For the initial CSD given as Eq. 5-32, where 𝑁0 = 10
11 , 𝐿0 = 1.5 𝜇𝑚, and the 

agglomeration kernel 𝛼 = 6 × 10−13 𝑠−1, the analytical solution at time 𝑡 = 300 is given 

in Eq. 5-33, where 𝑌 = 𝑁0𝛼𝑡. This analytical result is referred to as the self-preserving 

particle size distribution, as the form of the distribution does not vary with time (Van 

Peborgh Gooch & Hounslow, 1996). Figure 5-11.a demonstrates the consistent numerical 

results generated by the grid and PA methods that match the analytical solution.  

𝑣𝑎𝑔𝑔𝑙 = 𝑣1 + 𝑣2  ( 5-34 ) 

𝑛(𝑣, 0) =
𝑁0 𝑣

𝑣0
𝑒
−
𝑣
𝑣0 ( 5-35 ) 

𝑛(𝐿, 𝑡) =
𝑁0(1 − 𝑇)

2

𝑣0 √𝑇
 𝑒
−
𝑣
𝑣0 sinh

𝑣

𝑣0
√𝑇 ( 5-36 ) 
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𝑇 =
𝛼𝑁0𝑡

2 + 𝛼𝑁0𝑡
 ( 5-37 ) 

Using a volume grid to solve the agglomeration and breakage problem is generally more 

straightforward as the size can be simply represented by the summation of the volumes 

(Eq. 5-34). The logarithmic grid is used since agglomeration results in the crystal 

volumes spanning many orders of magnitudes. The analytical solution was solved by 

Ramabhadran et al. (2004). The initial CSD is given by Eq. 5-35, where 𝑁0 and 𝑣0 are 

given as 1.0 and 1.0 𝜇𝑚3, respectively. The constant agglomeration kernel is given by 

𝛼 = 10−2 𝑠−1. The size distribution after agglomerating for 𝑡 = 300 𝑠 is represented by 

Eq. 5-36, where 𝑇 is defined in Eq. 5-37. As shown in Figure 5-11.b, the simulation 

results of both numerical methods agree well with the analytical solution.  

Similar CSD leaking problems described in the continuous crystallization section also 

apply to the grid method in the agglomeration case. When the size of agglomerates is 

larger than the up limit of the grid, the volume and count balances between the death and 

birth terms no longer hold and will lead to significant errors. Increasing the up limit of 

the grid will remedy this issue at the cost of quadratically expanding computational 

effort. All grid cells are involved in agglomeration no matter the crystals exist in the cells 

or not. It is possible to optimize the computation by filtering out the cells containing data 

below a threshold such that the accuracy is not impacted. The PA method does not use a 

fixed grid so that the CSD leaking problem does not apply. The computation cost 

optimization also works for the PA method, which prevents performance degradation due 

to the extremely large agglomerates of a very low count. Unlike the grid method whose 

computation complexity is predictable, the computation cost to compress and compute 

the agglomerate of the PA method increases over time. If the same grid of the grid 

method is used for the row compression of the PA method, the computational complexity 

of generating the agglomerates is equal when the agglomerate is forming in the largest 

size segment of the grid. The row compression then becomes the extra performance 

overhead. This is generally an unattainable case since the accuracy of the grid method is 
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deteriorating due to the CSD leaking so there should always be extra grid cells on the 

larger size. Due to the large number of new rows in the PA, it is essential to apply the 

compression algorithm after the agglomeration process to ensure the computation 

efficiency of the next simulation step. Optimizing the speed of the row compression 

algorithm ensures minimal performance overhead when dealing with a large population 

array. 

𝑛(𝑣, 0) = 𝛿(𝑣 − 𝑏) ( 5-38 ) 

𝑛(𝑣, 𝑡) = 𝑒−𝑡𝑣 ⋅ [𝛿(𝑣 − 𝑏) + 𝜃(𝑏 − 𝑣) ⋅ (2 + 𝑡2(𝑏 − 𝑣))] ( 5-39 ) 

𝑛(𝑣, 𝑡) = 𝑒−𝑡𝑣
2
⋅ [𝛿(𝑣 − 𝑏) + 2𝑏𝑡 𝜃(𝑏 − 𝑣)] ( 5-40 ) 

The binary breakage generates a finite number of daughter crystals determined by the 

breakage frequency distribution. The analytical solutions of the linear-volume (𝛽 = 𝑣) 

and squared-volume (𝛽 = 𝑣2) breakage kernels and a uniform daughter crystal 

distribution are available in the literature (Hasseine et al., 2015). The initial condition a 

monodisperse size distribution (Eq. 5-38) at the largest size defined in the grid, 𝑏. When 

the breakage kernel function is linear, the rate of crystal breakage is proportional to its 

volume. The analytical solution at any time is given by Eq. 5-39, where 𝜃 is the 

Heaviside (step) function that sets the number density larger than the parent particle to 

zero (Hasseine et al., 2015). For the squared breakage kernel, the analytical solution is 

given by Eq. 5-40. Figure 5-11.c and Figure 5-11.d demonstrate that the results of the 

numerical methods are in good agreement with the analytical solutions at 𝑡 = 10 𝑠. In the 

general cases where the simultaneous crystal agglomeration and breakage are considered, 

the empty grids above the largest existing crystal will reduce the computation efficiency 

of the grid method, whereas the PA method can maintain the maximum efficiency 

because only the crystals in the population array are involved. Like the agglomeration 
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process, the PA method also heavily relies on the row compression algorithm to maintain 

the computation scale manageable. 

 

Figure 5-11 Simulation results of one-dimensional agglomeration and breakage. (a) 

constant agglomeration kernel on a linear size grid; (b) constant agglomeration kernel on 

a logarithmic volume grid; (c) linear-volume breakage kernel 𝜷 = 𝒗 on a logarithmic 

volume gird; (d) squared-volume breakage kernel (𝜷 = 𝒗𝟐) on a logarithmic volume grid. 

The two-dimensional agglomeration and breakage are computationally more 

complicated. The analytical solution of the multi-dimensional agglomeration and 

breakage was reported by Gelbard (1978) and Singh et al. (2020), which considered any 

combination of two crystals regardless of their shapes. In this work, due to the 
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assumption that only one dimension is involved in the agglomeration or breakage event, 

the numerical simulation is not compatible with the analytical results. Instead, we use the 

grid-based implementation described in (Shu et al., 2020) as a reference to cross-validate 

the performance of the proposed PA method in two-dimensional agglomeration and 

breakage.  

For the agglomeration case, the initial condition is a normal distribution at the origin 

point with a scale of 𝜎 = 3 𝜇𝑚. The agglomeration kernel coefficients are assumed to be 

1.0 𝑠−1 for both dimensions. However, the agglomeration rates along the two dimensions 

are not equal because the volume powers of the two internal coordinates are different, 

which are assumed to be 2 and 1, respectively. The partition interval is set to 0.5 𝜇𝑚. The 

breakage simulation starts from the normal distribution offset by 10 𝜇𝑚 in both 

directions. The standard deviation of the normal distribution is 𝜎 = 0.4 𝜇𝑚. The squared-

volume kernel is used, and the breakage frequency coefficient is 𝛽0 = 10
−7 𝜇𝑚−6 ⋅ 𝑠−1. 

The simulation time step of both simulations is set to 0.1 seconds. 

Figure 5-12.a depicts the simulated count profiles of agglomeration and breakage 

simulations. The PA method is able to generate consistent results that closely match the 

reference implementation. Figure 5-12.b demonstrates that the PA method guarantees the 

crystal volume conservation in the pure agglomeration or breakage process, while the 

grid method is showing the accumulating error in the total volume. This mismatch is due 

to the difference between the size represented by a grid pivot and the size of the newborn 

crystal, which was confirmed by Shu et al. (2020). This error could be reduced by 

refining the grids or introducing the correctors (Singh et al., 2020). In the PA method, the 

volume and count are inherently balanced, which guarantees accuracy without requiring 

dedicated correction and computationally expensive fine grid. 

Figure 5-13 illustrates the contour plots of the initial and final CSDs of the simulations. 

The agglomeration enlarges the internal coordinates and the agglomeration rate along the 

height is faster than the width direction, which is explained by the different volume 

power of the internal coordinates. For two crystals with the internal coordinates of 
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(ℎ1, 𝑤1) and (ℎ2, 𝑤2),the agglomeration along the height direction results in a new 

particle of (ℎ1 + ℎ2, 𝑤1) since the volume power of height is one. In contrast, the volume 

power of the width is two. To ensure volume conservation, the agglomeration along the 

width direction results in the internal coordinates of (ℎ1, √𝑤1 + 𝑤2). For the same 

reason, the breakage rate along the height direction appears faster than the width direction 

in Figure 5-13.d.  
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Figure 5-12 (a) The count profile of the agglomeration and breakage simulation 

generated by the PA and grid methods. (b) Crystal volume profile to demonstrate the 

relative volume change during the agglomeration and breakage. The Aggl and Break in 

the legends refer to agglomeration and breakage, respectively. 
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Figure 5-13 Two-dimensional agglomeration and breakage simulation results using the 

PA method. (a) The initial condition of the agglomeration simulation. (b) Final CSD of 

the agglomeration simulation. (c) The initial condition of the breakage simulation. (d) 

Final CSD of the breakage simulation. 

 

5.3.5. Computation Efficiency 

The computational complexity of the PBE is critical when coupling the solver in the 

computational fluid dynamic (CFD) simulation or deploying the algorithm in the model 
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predictive control (MPC) that requires in-time on-line optimization of the outputs. For the 

simulation time-sensitive applications, the method of moments is preferred over the 

discretization methods due to its efficiency. In this section, the computational efficiency 

of the PA method coupled with the on-demand row compression is demonstrated. The 

execution time was measured on a PC with an Intel i7-8750H 4.0GHz CPU and 32GB 

RAM. The performance of the grid-based discretization methods depends on the span and 

the resolution of the grid. We used the relatively coarse grids that achieved a similar 

accuracy of the PA method while maintaining efficiency. All operations of the PA and 

grid methods are accelerated with the python just-in-time (JIT) compiler, Numba (Lam, 

Pitrou & Seibert, 2015), to maximize the execution efficiency. 

Figure 5-14 demonstrates the computation speed of pure growth and simultaneous 

nucleation and growth cases. Figure 5-14.a and c show that the one-dimensional pure 

growth speed is similar for the PA method and the grid methods. However, the PA 

method is orders of magnitude more efficient than the grid methods in the two-

dimensional growth case (Figure 5-14.b). When nucleation is involved, the computational 

scale varies over time. Figure 5-14.d depicts that the row compression enables a slower 

increase of the simulation time for each step. The row compression mechanism is 

efficient and only incurs little overhead in the same order of magnitude of the growth 

operation.  

Figure 5-15 illustrates the more realistic simulation cases where the nucleation and 

growth depend on the system states. The single-stage MSMPR case (Figure 5-15.a) 

shows the fluctuating computational speed of the PA method due to the nucleation that 

expands the population array and the row compression mechanism that is triggered when 

the number of rows in the population array exceeds the threshold. The computation time 

reaches steady state thanks to the minimum count threshold that prevents the infinite 

growth due to the exponential residence time distribution in the MSMPR. This 

comparison shows that the PA method with row compression maintains the efficiency in 

the same order of magnitude as the grid methods in a long-run simulation.  
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Figure 5-15.b and c are the simulation time of the polymorphic transformation cases 

presented above. In Figure 5-15.b, the computation time trend of the PA method matches 

the events of the transformation process. The dissolution of the unstable form leads to the 

removal of rows from the population array. In Figure 5-15.c, due to the limiting 

dissolution rate of the 𝛼-form, the decrease of simulation time is not as significant. After 

the transformation process is completed, there is no computation wasted on the 

nucleation and growth of the unstable form. For the grid-base HR method, the 

computation on the grid of the non-existing form lowers the efficiency.  
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Figure 5-14 Nucleation and growth simulation speed comparison between the grid 

methods and the PA method. 
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Figure 5-15 Simulation speed comparison of the concentration-dependent cases. 
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The agglomeration and breakage are more computation-intensive operations. The 

computational scale of agglomeration increases quadratically with the number of 

grids/rows. Therefore, the PA method can outperform the grid method in the one-

dimensional agglomeration cases (Figure 5-16.a and b) because the grid method has to 

iterate all combinations of the grid cells while the PA method only considers the existing 

crystals. The breakage operation is generally faster than agglomeration for the same 

scales of input since the computational scale has a linear dependency on the input. Figure 

5-16.c and Figure 5-16.d demonstrate the similar performance of the grid and PA 

methods in the one-dimensional breakage simulation. The initial conditions of the 

numerical cases are the Dirac pulses on the largest size on the grid, which allows the grid 

method to utilize the full grid at the highest efficiency. When the growth or 

agglomeration mechanisms are involved, the reserved extra grid cells for the size 

enlargement will lower the computational efficiency.  

The computational time of the two-dimensional agglomeration and breakage simulations 

is demonstrated in Figure 5-16.e and Figure 5-16.f. It is observed that the number of 

nodes on each dimension will significantly affect the performance of the grid method. For 

the PA method, the spatial resolution of the internal coordinates only depends on the grid 

interval of the efficient row compression algorithm. Since the agglomeration and 

breakage implementations of the grid and PA method are similar, the performance gain of 

the PA method is mainly from the excluded calculation on the unused grid. 

The simulation time of various operations given the different number of rows in the 

population array is illustrated in Figure 5-17. Due to the important role of the row 

compression algorithm in all simulation cases, a native version was implemented using 

C++ to minimize the performance overhead during row compression, which was about 

one order of magnitude faster than the JIT-accelerated python implementation. The 

growth and nucleation are the least time-consuming operations since they only involve 

updating the columns and inserting new rows in the population array. The on-demand 

row compression policy can be employed to maintain the number of rows within the most 
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efficient range (e.g.,  < 104 rows). For the agglomeration and breakage operations, the 

computational time has a strong dependency on the size of the population array, and 

many new rows will be created after these operations. It is beneficial to always use the 

row compression method at every simulation step when the agglomeration and breakage 

are involved.  
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Figure 5-16 Agglomeration and breakage simulation speed profiling 
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Figure 5-17 Computation speed of various operations for population array method at 

different numbers of rows. 

 

5.4. Conclusion 

A computationally efficient and accurate numerical PBE solution method for studying the 

crystallization kinetic process is discussed and validated in this work. In the proposed PA 

method, the crystals are tracked as the pivots represented by the rows in a population 

array. The numerical difficulties such as numerical diffusion and dispersion in many grid-

based discretization methods are avoided by solving the growth and dissolution using the 

method of characteristic. The limitation of a fixed grid leads to inefficient computation on 

the unused grid cells and potential CSD leak due to the size-enlargement of the crystals 

that causes inaccurate crystal mass and count balance, while the efficiency and accuracy 

are guaranteed in the PA method that performs only the necessary computation with the 
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existing crystals and keeps tracking every crystal regardless of the size. The simulation 

time step is decoupled from the grid of the internal coordinates, allowing the larger 

simulation step size without affecting the stability.  An efficient row compression 

algorithm is used to speed up the PA method by merging the pivots with duplicating or 

similar internal coordinates while maintaining the conservation of crystal mass and count.  

The analytical solution or the solution obtained using a very fine grid was used to 

validate the accuracy of the nucleation, growth, agglomeration, and breakage simulated 

by the PA method. The complicated operations such as polymorphic transformation and 

continuous MSMPR processes were studied to ensure the performance of the general 

crystallization simulation cases. The numerical case studies confirmed the accuracy of the 

PA method and the numerical stability when a large simulation time step is used. The PA 

method shows superior computational efficiency especially for the multi-dimensional 

simulations, which enables the potential application of online optimization and model 

predictive control. The challenge of the PA method is to recover the CSD from the 

population array with histogram or kernel density estimation method, where the decision 

of the optimal parameters such as bandwidths should be further studied to eliminate the 

influence brought by the manually chosen parameters. The source code of the PA method 

and the high-resolution discretization method is listed in Appendix. B. 
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Chapter 6 

Conclusions and Recommendations 
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 Conclusions and Recommendations  

The studies in this thesis proposed several methodologies and novel process analytical 

technologies (PATs) to improve the crystallization field. The results contribute to 

developing efficient crystallization processes for new crystalline products while 

maintaining the crystalline product quality via process monitoring and control. In 

addition, an efficient algorithm was developed for the solution of the multi-dimension 

population balance equation, in the presence of agglomeration and breakage. The 

conclusions and recommendations for future study are given in the following sections. 

6.1. Conclusions 

The most significant achievement in this thesis was the development of the image-based 

PAT powered by the deep learning models for online measurement of the multi-

dimensional particle size distribution and morphological information, which filled in the 

gaps of the conventional particle sizing PATs. Our studies confirmed the superb accuracy 

of the proposed PAT in a challengingly high solids concentration, which largely resolved 

the bottleneck that limited the application of the image-based PATs. The classification 

capability of the deep learning model was used to realize the quantitative measurement of 

agglomeration level and build the size distributions of different classes of visually distinct 

particles, which were impossible for the existing solid-phase monitoring PATs. The 

computerized crystallization platform powered by the image-based PAT demonstrated 

the potentials to automate the time-consuming experiments for determining the 

metastable zone width (MSZW) and induction time of a crystallization system, which 

was an important contribution to the crystallization field that could simplify and speed up 

the research and development stage of a crystallization process. In addition, the 

computational efficiency issues of solving a multi-dimensional population balance 

equation model with the discretization methods were addressed using the developed 

population array method, whose accuracy and efficiency were validated for various 

complicated cases such as polymorphic transformation, continuous operation, and 

agglomeration and breakage. The efficient computation of the PA method will greatly 
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benefit the use of model predictive control that requires timely model optimization and 

the modeling of crystal morphology that requires solving a complex multi-dimensional 

PBE. The summaries and contributions of the individual subjects are detailed below.  

6.1.1. Development of Image-based PAT for Particle Size and Shape 

Characterization 

The measurement of multi-dimensional crystal size and shape was achieved using the 

proposed image-based PAT powered by the novel deep learning algorithms. The imaging 

hardware was designed and built using microcontrollers and 3D-printing rapid 

prototyping technologies. The accuracy of the image analysis model was confirmed by 

comparing it with the established particle sizing techniques and the manually examined 

images. The neural network image analysis method was able to classify the particles and 

perform high-accuracy object segmentation for the contacting or overlapping objects. We 

proposed the scale-invariant solid concentration measurement, pixel fill ratio (PFR), to 

quantify the image complexity. The challenging image analysis task in the highly 

concentrated slurry was performed to demonstrate the potential of the proposed method. 

We successfully extracted accurate size information from the slurry of three times higher 

solids concentration than that of the previous studies reported by Borchert et al. (2014). 

The ability to differentiate the particles using the classification of the deep learning 

model enabled measuring the individual size distributions of multiple classes of visually 

distinct particles, for example, tracking the polymorphic forms of the L-glutamic acid 

(Gao et al., 2018). The effort to build a robust deep learning model was significantly 

reduced with a proposed progressive labeling strategy. This study confirmed that the deep 

learning-based image analysis algorithm could serve as an effective process monitoring 

technology for the crystallization process. 

The developed PAT was deployed to monitor the seeded batch crystallization process of 

the aqueous taurine solution to further exploit the potential of multi-dimensional size and 

shape characterization. The classification capability was extended to detect and quantify 

the agglomeration. It was shown that the proposed PAT was able to effectively track the 
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crystal counts, the two-dimensional CSDs, the aspect ratios, and the agglomeration 

levels. The accuracy of size measurement and sensitivity of nucleation detection 

outperformed the conventional PATs such as the FBRM.  

In the experimental study, the image-based PAT revealed a negative correlation between 

the seed loading and the level of agglomeration, which was confirmed by the previous 

study (Kubota et al., 2001). This study demonstrated the promising application of the 

image-based PAT in optimizing the seeding strategy of a crystallization system prone to 

agglomeration, which not only improves productivity but also provides a desired narrow 

size distribution.  

Finally, the multi-dimensional size recorded by the image-based PAT and the solute 

concentration measured by Raman spectroscopy were used to estimate the parameters of 

the nucleation and growth models. The simulation study confirmed the consistent 

concentration prediction and the estimation of the count density and multi-dimensional 

sizes prior to the agglomeration onset, which motivated the development of an efficient 

numerical solver that can handle complex crystallization mechanisms such as 

agglomeration and breakage. 

 

6.1.2. Development of An Automated Crystallization Platform 

The experience in successfully designing and building the homemade imaging system for 

the image-based PAT, motivated the development of an automated versatile 

crystallization platform. In this work, we integrated a few automated laboratory 

instruments using the IoT wireless microcontroller and 3D-printing techniques. The 

various automated instruments included switch valves that enabled rapid temperature 

switching between two thermostat water baths and the stirring motor assembly that 

allowed remote control and monitoring of the crystallizer temperature and the stirring 

rate. The software architecture was discussed, and the repositories of the source code 

were listed in Appendix. B. The proposed experimental setup was used for the automated 
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measurement of the metastable zone width (MSZW) and the induction time, which 

showed the potential to automatically carry out the lengthy experiments and data 

processing works encountered in crystallization research.  

 

6.1.3. Development of An Efficient Population Array (PA) Numerical 

Solver for Modelling Crystallization Process 

Modeling is an effective way to process and summarize the large amount of data 

generated by the proposed PAT. The significance of a reproducible, efficient, and general 

numerical solver that could handle multi-dimensional growth, agglomeration, and 

breakage was recognized. Therefore, we developed a computationally efficient and 

accurate numerical PBE solution method. In the proposed population array (PA) method, 

the crystals are tracked as the pivots and no discretization grid was used, which avoided 

the CSD leaking problem due to the insufficient grid limit and the numerical difficulties 

such as numerical diffusion and dispersion. The efficiency and accuracy of the PA 

method are guaranteed by performing only the necessary computation with the existing 

crystals. The simulation time step is decoupled from the grid of the internal coordinates, 

allowing the larger simulation step size without affecting the stability.  An efficient row 

compression algorithm is used to speed up the PA method by merging the pivots with 

duplicating or similar internal coordinates while maintaining the conservation of crystal 

mass and count. The analytical solution or the solution obtained using a very fine grid 

was used to validate the accuracy of the nucleation, growth, agglomeration, and breakage 

simulated by the PA method. The complicated operations such as polymorphic 

transformation and continuous processes were tested to ensure the PA method can be 

generalized for broader simulation cases. The PA method shows superior computational 

efficiency especially for the multi-dimensional simulations, which makes it an ideal tool 

to facilitate processing the multi-dimensional size measurements obtained using the 

image-based PAT. 
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6.2. Recommendation of The Future Works 

1. Develop a robust insertable imaging probe for the image-based PAT. 

The proposed image-based PAT relied on the homemade flow-through cell imaging 

system for acquiring sharp microscopic images. The main advantage of the flow-through 

cell is to alleviate the space constraints in the overhead of a laboratory crystallizer. 

However, there are a few limitations and drawbacks associated with the use of external 

circulation. First, the crystals and other impurities may stick to the inside of the cell that 

are difficult to remove, resulting in irreversible deterioration in the image quality. Also, 

the external circulation may cause undesired heat transfer and nucleation outside the 

crystallizer, especially when the crystallizer temperature is much higher than the room 

temperature. The solution was to use resistive heating coils on the external tubing and 

flow cell. However, controlling the temperature of the heating coil requires extra 

feedback control, which complicates the problem. With an insertable imaging probe, the 

window can be cleaned easily, and the issues caused by the external circulation are also 

resolved. Developing the insertable probe involves multi-discipline engineering work that 

requires proper optical design, mechanical sealing, and software development. Despite 

the difficulty and cost, it is worthwhile to equip the image-based PAT with the hardware 

for broader applications. 

 

2. Set up benchmark procedures and datasets to quantify the performance of the image 

analysis models. 

Motivated by the tremendous demand in various applications such as remote sensing, 

autonomous driving car, and medical diagnosis, the computer vision algorithms and deep 

learning models are iterating at a considerable speed. In the thesis, two different deep 

learning-based image analysis models were used for different tasks. It is important to 

follow up on the trend and upgrade the image analysis algorithm to the latest state-of-the-

art. The researchers and engineers in the computer vision field have set up several 
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contests as the benchmark protocol to unify the comparison of the speed and accuracy of 

the emerging image analysis models with the representative image dataset (Lin et al., 

2014). However, there is no such benchmark for the crystallization image analysis field. 

It is recommended to set up a standard dataset using different imaging hardware and a 

reproducible benchmark protocol to compare the performance of the image analysis 

models. 

3. Develop the solids addition device for the automated crystallization platform. 

The automated crystallization platform could automate the studies of the measurement of 

the metastable zone width (MSZW) and the induction time. However, to investigate the 

kinetic behavior at different saturated concentrations, the material had to be manually 

added. To adjust the saturated concentration of the crystallization system, one can start 

from the high saturated concentration, and use a controlled dosing pump to feed solvent 

into the crystallizer to dilute the concentration. Alternatively, an automated solids 

addition device could be designed that feeds the crystals into the system to increase the 

solute concentration. This device enables not only the fully automated MSZW and 

induction time experiments at different saturated concentrations, but also allows the 

automated experiments for investigating the optimal seeding level. 

4. Reconstruct the population array (PA) for visualization and number density 

estimation 

The proposed population array (PA) is able to efficiently solve the population balance 

equation. However, unlike the grid data generated by the discretization method, the data 

in the population array cannot be directly visualized or used to compute the number 

density. In Chapter 5, the histogram and kernel density estimation (KDE) approaches 

were introduced. It is recommended to investigate the estimation of the optimal 

parameters for these approaches to generate reproducible results without human decision 

and intervention. 
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Appendix B: Source code repositories 

• Chapter 4: 

Data hooking applications 

iC Raman https://github.com/wuyuanyi135/Raman-MQTT-Broker  

iC FBRM https://github.com/UWO-CCPL/FBRMBroker 

Microcontroller firmware 

DS18B20 

Temperature 

sensor 

https://github.com/wuyuanyi135/ArduinoSimpleDS18B20  

Julabo FP50 

Water bath 
https://github.com/wuyuanyi135/Julabo_FP50_DS18B20_Control  

Peristaltic pump 

driver 
https://github.com/wuyuanyi135/ArduinoSimpleStepperPumpDriver  

Switch valves https://github.com/wuyuanyi135/ArduinoSwitchingValve 

Stirring motor https://github.com/wuyuanyi135/ArduinoTachoStir  

• Chapter 5: 

Demo source code for comparing the computational efficiency and accuracy with 

the reference high-resolution discretization method is available at: 

https://github.com/wuyuanyi135/Population_array_demonstration_code   

 

https://github.com/wuyuanyi135/Raman-MQTT-Broker
https://github.com/UWO-CCPL/FBRMBroker
https://github.com/wuyuanyi135/ArduinoSimpleDS18B20
https://github.com/wuyuanyi135/Julabo_FP50_DS18B20_Control
https://github.com/wuyuanyi135/ArduinoSimpleStepperPumpDriver
https://github.com/wuyuanyi135/ArduinoSwitchingValve
https://github.com/wuyuanyi135/ArduinoTachoStir
https://github.com/wuyuanyi135/Population_array_demonstration_code
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