
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2-2006

A Binary Data Stream Scripting Language
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Lihua Wang
EK3, lihua.hualiwang@gmail.com

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Capretz, Luiz Fernando and Wang, Lihua, "A Binary Data Stream Scripting Language" (2006). Electrical and Computer Engineering
Publications. 139.
https://ir.lib.uwo.ca/electricalpub/139

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/139?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 291

A Binary Data Stream Scripting Language

LIHUA WANG AND LUIZ F. CAPRETZ
Department of Electrical and Computer Engineering

University of Western Ontario
London, Ontario, N6A5B9

CANADA
lwang224@uwo.ca, lcapretz@eng.uwo.ca

Abstract: Any file is fundamentally a binary data stream. A practical solution was achieved to interpret binary data
stream. A new scripting language named Data Format Scripting Language (DFSL) was developed to describe the
physical layout of the data in a structural, more intelligible way. On the basis of the solution, a generic software
application was implemented; it parses various binary data streams according to their respective DFSL scripts and
generates human-readable result and XML document for data sharing. Our solution helps eliminate the error-prone
low-level programming, especially in the hardware devices or network protocol development/debugging processes.

Key-Words: binary data stream, scripting languages, data format, low-level coding

1 Introduction
The distinction between binary file and text file is only
useful to computer users. A binary file is
computer-readable but is hard to read for humans such
as image files, sound files, compiled computer
programs or compressed versions of other files. A text
file is human-readable because it contains bytes that
can be directly interpreted as characters following one
of the standard text schemes (Unicode, ASCII,
EBCDIC, etc). However, text files are essentially a
special case of binary file and most software systems
make no distinction between file types. Only the data
format makes the difference.

Data format is the key for determining the physical
layout and semantic meanings of the data [1].
Producing a parser to parse an arbitrary data stream
according to its data format is a crucial step in data
processing.

Currently, a programmer must choose a language,
convert the documented data format description into
data structures such as C structures; then the data must
be read into memory, some operations performed, and
the data written back to external storage [2].

The C programming language is the most
commonly chosen language for writing such programs,
especially to implement real-time algorithms in a
system that interfaces with bare hardware devices [3].
Engineers incur time-consuming and error-prone
penalties from low efficiency C languages when
working at the bit level.

We propose a new scripting language to specify the

binary data format from lowest granularity level. This
language named Data Format Scripting Language
(DFSL) is easy to learn, straightforward to understand,
and agile to fulfil a users requirements. The advantages
of this solution are:
1. The only tool a user needs is a text editor; no

compiler or linker is necessary.
2. No complicated programming is required.
3. The language is easy to use with simple syntax and

rich semantic meaning. It is very close to the tabular
configuration used to define the data format.

4. It saves developing time because no
time-consuming low-level coding is necessary.

5. Many functions are optimised and hidden from the
user such as file access and low-level bits
manipulation.
We have also developed a generic application to

parse the script and the raw data. The user can write a
script for a specific data format using DFSL language
and the associated application can parse the script and
the raw data. The outputs are a meaningful
interpretation of the data fields and XML document of
the data structure. As a result, this scripting language
frees the programmers from tedious tasks of coding
input/output routines, and helps eliminate the mishaps
of low-level coding.

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 292

2 Existing Problems
The original motivation came from the need for an
easier way to parse and interpret the arbitrary bit
streams in hardware device development. Most devices
such as drivers and interface cards have control and
status registers. The device is controlled by setting and
clearing particular bits in the control register (see
Figure 1), while its status is obtained by examining bits
in the status register.

Figure 1. Disk control register

There are many of these registers and each register,

or even each bit represents different meanings. It is
tedious and error-prone to check the value manually.
Sometimes, the engineers develop special programs to
parse the data. However, it is also error-prone to
process low-level bits using C and it is not worth the
time to implement the program since the user
requirement changes frequently.

The network application developers face the same
problem when writing network data processing code.
Interpreting network packet is the key to most
important network applications including web server
testing, network traffic monitoring, network firewall
checking, and so forth.

 The packets are usually in standardized formats
such as TCP/IP, FTP and SSL. Due to the complexity
of networking protocol, and the bit-oriented feature of
the networking data stream, it is complicated to write a
program using C languages to interpret the data stream.

The main problems are byte-alignment constraints,
byte-order difference, field dependency & dynamic
typing, and system-dependent word-size.

2.1 Byte-Alignment Constraints
The data type system of C language is byte-based,
meaning it applies byte-alignment restriction. This
assumes the storage media and the input/output
routines have a minimum unit of one byte [4].
Programmers are conditioned to think of memory as a
simple array of bytes.

Data types char, int and double are primitive types
and as well as the other data types of C language, they

are all integer multiples of one byte. All the operations
are based on these types. However, the real
machine-level atomic unit is the bit. When the required
granularity is less than a byte (1 byte = 8 bits) and we
need bit-fields with arbitrary length, the byte-alignment
can become a barrier for fast programming.

Generally, one of three techniques is used to
manipulate bit fields:
• Pointer arithmetic and bit masking/shifting: (the <<

and >> bitwise shift operators).
• Macro defines: some single or multiple bit macros

that shift or mask the appropriate bits to get the
desired result.

• Bit-field packing structure: the structure construct
with bit fields specified by a post-declarator colon
and integer field width.
We can use pointer arithmetic to access the memory

and bit masking and shifting to achieve the bit
operations. However, the pointer arithmetic and bit
operations of C language are notorious for their tedious
and error-prone nature. Moreover, the semantics end up
buried in parsing code and the difficulty of reading the
code can make the maintenance even harder.

The macro define is just a set of commands of
pointer arithmetic and bit shifting and masking. C
language also provides a practical feature called bit
fields which automatically packs the bit fields as
compactly as possible and provides that the maximum
length of the field is less than or equal to the integer
word length of the computer, However, bit fields lack
portability between platforms because some bit field
members are stored left to right while others are stored
right to left. Thus the existing approaches are not
efficient enough to deal with low-level coding either
because of the tediousness and error-prone nature or
because of the byte-order problem.

2.2 Byte-Order Difference
The word “endianess” describes the method used to
represent multi-byte integers in a computer system.
There are two types of endianess: big-endian refers to
the method of storing the most significant byte of an
integer at the highest byte address, and little-endian is
the opposite. Consider a number 0x1234 declared as a
short int, which consists of two bytes. Its first byte
stored in the big-endian system is 0x12, but 0x34 in the
little-endian system.

Different endianess methods may apply for
different machine’s architecture, and may cause
problems when application runs across different
systems. The reason why the bit-field packing structure
of C language is lack of portability between platforms
is also caused by the endianness difference.

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 293

2.3 Field Dependency and Dynamic Typing
A data type is a name or label for a set of values and
some operations can be performed on that set of values
[4]. Some formats and especially some protocol
headers can contain fields whose values or sizes depend
on the value of a previous field. For instance, the
Options field in the IP header can occupy between 0 to
40 bytes depending on the value of the previous field
IHL (Internet Header Length) [3]. These fields cannot
be defined using static types in C struct. Since static
types cannot represent variable-sized fields. We need to
use dynamic typing to solve this problem.

2.4 System-Dependent Word Size
Another problem concerns the system dependent
computer word size. The length of an integer (type
‘int’) traditionally depends on the length of the
computer word. For instance, it is 16 bits long in
MSDOS, whereas in 32-bit systems (like Windows
9x/2000/NT) it is 32 bits long (4 bytes). The ambiguous
type size may produce different results.

Before proceeding with the idea of developing a
new language, some people may ask why other existing
technologies are not used. The question arises as to
whether existing libraries can be used. Firstly it costs
time and labour to learn the library interface but it may
lack the necessary features we need since the former
developers did not foresee a need for different features.
On the other hand, it may not be possible to find the
library needed for those non-standard or user-defined
data format. This frequently occurs in new data format
development, and especially when developing and
testing new networking protocols.

The problems brought up thus far are all related to
the C language. Why other high-level languages are not
used (especially those support polymorphic type, such

as Haskell, Standard ML)? The reason is that it takes
time to learn a new programming language and the user
may just need to use a fraction of its functions and a
running environment.

Another frequently asked question is why not using
XML alone. XML (eXtensible Markup Language) is a
meta-language that is a way to define tag sets [5]. To
access an XML document file from a program, you can
either parse the tag structure in your own code or using
one of two standard APIs to invoke parsers to do it for
you. The two APIs are DOM (Document Object
Model) and SAX (Simple API for XML) [6]. These
APIs are still based on byte type system and so far they
did not focus on bit field’s specification.

3 Method Prototype
The architecture of our system is depicted in Figure 2.
The Specified Data Format on the most left can be any
user-defined data format or standardized data format,
which is usually described in a human-understandable
language.

The Data Format Scripting Language (DFSL) has
been developed. This language can be used to translate
the documented data format into Data Format Script,
which is the interface between the users and the
computer.

Then we have the Data Format Script and the
Binary raw data. They are the two actual inputs for our
generic Data Parsing Application, which is the main
component of our project.

The parsing application can parse the Data Format
Script and execute any command in the script. The
output is Data Interpretation, which includes the
meaning of each bit field and its value and a XML
documentation of the data structure.

Figure 2. Data interpreting method prototype

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 294

This method is not limited to any particular data
format. Once the data format is established, all the data
with that format can be parsed.

4 Data Format Scripting Language
Data Format Scripting Language has been developed as
a scripting language to interpret a binary data stream.
DFSL has special features that can simplify a user’s
specification and some simple commands that can
facilitate bit field operations. We introduce these items
in this section by examples.

4.1 Lexical Elements
Lexical elements are basic building blocks of
programming languages. The basic elements are:
• Number token: a number token can be an unsigned

integer in decimal notation, e.g., 2, 77, 2356 or in
hexadecimal notation, e.g., 0x3, 0x b3f5; or a real
number, e.g., 123.45, 0.023e-5.

• Word token: the word token is case insensitive. A
word token can be an identifier, e.g., aaa, number;
or a reserved word, e.g., if, switch.

• Domain token: a domain token starts with a dollar
sign ($) followed by letters, underscores or digits,
e.g., $IP_Packet.

• Sub-Domain token: a sub-domain token starts with
a percent sign (%) followed by letters, underscores
or digits, e.g., %height.

• String token: a string token consists of a sequence of
characters enclosed by a pair of quotation marks,
e.g., “A string literal”.

• Comment: they are started with double slash “//”
and goes to the end of the line. Comments and
white-space characters are bypassed during the
scanning process.

• Operators : most special tokens are used as
operators, such as “+”, “*”, “>=”.

• Expressions: expressions are composed of one or
more constants, variables or function calls and zero
or more operators.

• Selection statements: if and switch statements.
• Loop statements: while, do-while, and for

statements.

4.2 Layered Architecture Specification
When describing the layout of the data format, people
usually use a tabular form, which represents a layered
architecture (or called as hierarchical architecture). In
our language, we use grouping and sequencing to

specify the layered structure of the data format.
Grouping can gather all the component members in the
structure body, and the sequence of individual fields
indicates the physical layout of the bit stream.

The basic concepts of layered architecture can be
summarized as following:
• The data format is considered as a layered structure.
• All the data with the same data format are in one

general domain and can be represented by one
domain name.

• Top-down point of view: the top-most domain is
called the root domain that has a set of lower-level
domains.

• The lower-level domains are known as sub-domains
and have their own structure.

• A sub-domain can be further divided into even
lower-level sub-domains or elementary
components.

• The elementary component in a domain or a
sub-domain can be one bit or a fixed size array of
bits.
A representative example is parsing an ICMP

(Internet Control Message Protocol) packet. The
hexadecimal dump in Figure 3 is an ICMP ECHO
response message (packet) [7].

 0: 0800 2086 354b 00e0 f726 3fe9 0800 4500
16: 0054 aafb 4000 fc01 fa30 8b85 e902 8b85
32: d96e 0000 45da 1e60 0000 335e 3ab8 0000
48: 42ac 0809 0a0b 0c0d 0e0f 1011 1213 1415
64: 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425
80: 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435
96: 3637

Figure 3. Hex dump of ICMP ECHO response packet

The packet can be broken into the following
protocol elements: Ethernet header, IP header and
ICMP datagram as shown in Table 1:

Table 1. ICMP packet structure

Ethernet Header
IP Header

ICMP datagram

The first part is the Ethernet header, which includes
three fields (see Table 2):

Table 2. Ethernet header structure
MAC Destination Address (0 - 5): six bytes
MAC Source Address (6 - 11): six bytes
Ethernet Type Field (12 - 13): two bytes

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 295

The second part is the IP header whose structure is
shown in Figure 4. We can see some of the fields are
not integer multiple of one byte: Version is 4 bits; IHL
(Internet Header Length) is 4 bits; Flags (Various
Control Flags) is 3 bits; FragmentOffset is 13 bits and
the detailed definitions are in RFC 791 [8]. The last part
is the ICMP datagram, which is the ICMP header
followed by the payload data.

Figure 4. IP header structure

DFSL language can be used to parse such layered

data structures without resorting to complicated
programming. The user only needs to write a simple
script to describe the layout of the packet and leaves the
data parsing task to the DFSL application.

As shown in Figure 5, the domain structure
definition has the form $domain_variable := { … }. All
the components of an ICMP response packet structure
are defined and grouped using a pair of matched braces
under the domain variable $ICMP_response. The
sequence of the components indicates the position of
those fields in the real data stream.

Sub-domain variables (starts with %) are used to
store the value of the elementary component or the link
to other domain. An assignment statement with the
form %sub-domain = right_value is used to define the
sub-domain variable. The righ_ value can be a standard
command or another domain structure definition. As is
seen from the sample code, most variables in the IP
header domain (which is labelled with $IP_header) get
the bits or byte value (e.g. %version = getBit 4) and
they were called elementary component; else wise,
some components are assigned to other domain
structure (e.g., %source = $ipAddress).

The layered architecture means that we can use
grouping to specify the data structure and sequencing to
describe the layout of the data. The sequence of items
determines the execution order. When the parser finds a
sub-layer label, it traverses the sub-layer and resolves
the fieldnames before returning, subsequently it
executes the next entry.

Figure 5. Script for ICMP packet

4.3 Bits Operation Solution

One of the advantages of using our language is that
it hides the tedious bit operations from the user. In C
programming language, the bit field is limited to the
boundaries of the underlying object that is of the
fundamental C type. That means the bit field may not
be wider than the underlying object and no bit field
should overlap the underlying variable boundaries.
Thus the C structure cannot be used to extract some
boundary-crossing bit field in an arbitrary binary
record. More complicated operations to extract both
ends of such a bit field and put them back together are
necessary [9].

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 296

 DFSL language regards the data stream as an
unsigned character array of arbitrary length. Its routines
extract a bit field of specified arbitrary length at a
certain location, independent of the char boundaries
along the array. So we avoided byte-alignment and
byte-order problem when read the bits. Its
straightforward use achieves the desired bit fields by
using command getBit, getByte, seeBit and seeByte.
Those commands return integer value of the bit field.

The syntax of this series command is as follows:
• getBit count
Semantic: Read the number of count bits from the
current position in the bit stream. If offset is not given,
default read one bit. The count can be a numeric
number or an existing variable’s value, e.g., getBit 4.
• getBit @position , count
Semantic: Read the number of count bits from the
specified position that is indicated by @position. If
offset is not given, default read one bit. The count can
be a numeric number or an existing variable’s value,
e.g., getBit @15, 3.
• getBit start ~ stop
Semantic: Read bits from start position to stop
position, e.g., getBit 15 ~ 9.
• getByte count
Semantic: Read the number of count bytes from the
current position. The count can be a numeric number or
an existing variable’s value, e.g., getByte 3.
• seeBit
Semantic: seeBit shares the same syntax as getBit. It
can only preview the bits without moving the bit
pointer from the current position.
• seeByte
Semantic: seeByte shares the same syntax as getByte.
It can only preview the bytes without moving the bit
pointer from the current position.

A pointer was assigned to keep the current bit
position in the binary data stream. Originally it will
point to the first bit of the stream. After the parsing
process begins, the program will extract certain number
of bits from the bit sequence whenever it encounters
one of these commands. And the pointer moves the
next position depending on the command. We bring in
seeBit function that shares the same function as getBit
but protects the continuity of the original data stream.

4.4 Constraint and Control
As long as the bit stream is not exhausted, the data
stream can be chopped and assigned to a field variable.
However, there are always constraints on the data, and
the extracted data field may also be operated.

We use a keyword where to follow the current layer

structure definition, and the statements braced in the
where clause can do the real job, either be applying
constraints on bit field or performing operations on the
extracted data fields while having no effect on the data
layout.

An example for parsing a PMD (Performance
Motion Device) device register follows. Eight serial
bit-fields appear in a 16-bits binary record and each
bit-field occupies several digit places (see Table 3).

Table 3. PMD structure

PMD Configuration 3
15 ~ 11 10 ~ 9 8 7

Tx
Power

Cutback
Value

Tx
Power

Cutback
Mode

SBM
Disable

Single
Upstream
Disable

6 5 4 3~0
China
loop

OL
Disable

ROL
Disable

Hybrid
Select

The binary digits change in real time under different
circumstances. DFSL language is used to specify the
arbitrary binary records in a C type-independent and
type boundary-independent way. The eight variables
grouped under the $PMD3 domain get the bit sequence
from the data stream according to their sequence. A
sample code is shown in Code 1.
$PMD3 = 0x9351 ;
$PMD3 := {
 %TxPowerValue = getBit 15 ~ 11 ;
 %TxPowerMode = getBit 10 ~ 9 ;
 %SBM = getBit @8 , 1 ;
 %SUpstream = getBit @7 , 1 ;
 %ChinaLoop = getBit @6 , 1 ;
 %OLDisable = getBit @5 , 1 ;
 %ROLDisable = getBit @4 , 1 ;
 %HybridSelect = getBit @3 , 4 ;
} where {
 println ("Tx Power Cutback Value = ",%TxPowerValue);
 print ("Tx Power Cutback Mode = ", %TxPowerMode);
 switch (%TxPowerMode) {
 case 0: println(" -- No Tx Power"); break;
 case 1: println(" -- Manual Tx Power Cutback");
 break;
 case 2: println(" -- Automatic Tx Power Cutback");
 break;
 default: println(" -- Reserved");
 };
 print ("SBM Disable = ", %SBM);
 if (%SBM == 0)
 { println(" -- Enable SingleBitMap"); }
 else
 { println(" -- Disable SingleBitMap"); };

 print ("HybirdSelect = ", %HybridSelect);
 switch(%HybridSelect) {
 case 0: println(" -- Default"); break;
 case 1: println(" -- GPIO in tri-state mode");
 break;
 default: println(" -- Reserved");
 };
}

Code 1. Script segment for PMD register

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 297

Figure 6. Output of PMD script

The output for this script is illustrated in Figure 6.
The data is parsed according to the data format and
interpreted based on the extracted data value.

4.5 Casual Interpretation
We use the concept of domain and sub-domain to
construct the layered architecture for complicated data
format. However, for some straightforward formats, it
is more practical to interpret the result right after
getting the bit field’s value. So we allow the output
routine be placed within the structure definition. Users
are free to add operational code once they get the
values they need. This is suitable for simple and
straightforward format, and will not cause much
trouble for future reading.

Thus far we have briefly exposed the main feature
of the DFSL language. As a scripting language still in
development, the DFSL project is an open-ended
project where we try to describe more and more data
formats. The associated application is a generic
software needed to parse this language. Using the
application and the script, users can easily interpret a
bit stream.

5 Implementation
We have implemented an interpreter for DFSL. The
DFSL interpreter works in four steps:
1. It takes in the input domain definitions and produces

a parse tree consisting of a node for each item.
2. It performs semantic processing to resolve domain

variable and propagate the parse tree, so that
structures of fixed size can be recognized.

3. It produces an elaborated intermediate presentation
for each node in the definition.

4. It interprets the elaborated intermediate
representation and generates output.
The first step is carried out by the scanner. It reads

in the textual script written in DFSL breaking it into
tokens. A basic parse tree consisting of a node for each
item (domain and sub-domain) is constructed and each
node contains important attribute information of the
item.

The second and third steps are both part of the
syntax semantic analysis which is controlled by the
parser. The parser performs bottom-up “node
propagation” using depth-first traversal, so that the
domains of fixed size are annotated with their size.

A domain has a fixed size if:
• It is a bit,
• It is a fixed size array of bits,
• It is a binary string literal,
• It is a definition list (:=) consisting only of fixed

size member.
The parser resolves the sub-domain variable if it is a

fix-sized field or is linked to a domain which only
consists fix-size member. If the sub-domain node meets
these requirements, the children-leaves of the linked
domain will become the children of this sub-domain.
Meanwhile the elaborated intermediate presentation for
each node is produced.

In the last step, the executor traverses all the
terminal leaves in depth first order. It extracts the
binary digits from the data stream and interprets the
intermediate presentation on each node. The XML
document of the data structure is generated as well as
the interpreted output.

At the present time, the DFSL language focuses on
parsing the binary data stream and providing facilities
to manipulate data fields and user-defined variables.
The aim is to give users the flexibility to put the
integral-constraints on the data field. It has been tested
with several data formats but further extension might
be required to prove its effectiveness for extremely
complicated data formats.

A number of experiments were conducted on
various data format to test and validate the proposed
approach and the tool. Some were popular or historical
data formats and some were just used in special field.
The experiments showed some limitations of the
system, but overall the system proved to be applicable
to solve a wide range of problems dealing with data
stream.

Transactions on Information Science and Applications, Volume 3, Issue 2, pp. 291-298, February 2006.

 298

6 Conclusions
After investigating problems in a real-world industry
environment, a practical solution has been achieved to
interpret raw data: regarding any kind of data as
bit-stream, using a scripting language to describe the
data format, and applying a software application to
interpret the raw data according to the script.

This solution is relatively new and no similar
application presently exists. The main contributions of
our work are:
• The approach solves some existing problems when

C language is used, such as byte-alignment
constraints, byte-order difference, field dependency
and dynamic typing difficulty, and
system-dependent word-size problem.

• The approach can be applied widely, anywhere
involving raw data, including hardware device
development/debugging, network protocol
processing or binary file analysis.

• The DFSL language is readable non-specialist and
easy to learn.

• The system reduces the complexity of low-level
program.

• XML document can be generated for data sharing
between applications.

• The most valuable usage of this language is in
interpreting data format that is not standardized or at
least not defined in public, such as developing or
testing new hardware.

The DFSL system can assist the interpretation of

machine-level binary digits without complicated
programming. As a result, it frees programmers from
the tedious task of coding input/output routines, and
eliminates the distractions from architecture-dependent
problems thus making it possible to achieve higher
development productivity.

References

[1] K. Fisher and R. E. Gruber, “PADS: Processing

Arbitrary Data Stream”, Proceedings of Workshop
on Management and Processing of Data Streams,
June 2003.

[2] G. Back, “DataScript – A Specification and
Scripting Language for Binary Data”, Proceedings
of the ACM Conference on Generative
Programming and Component Engineering (GPCE
2002), vol. 2487, pp. 66-77, October 2002.

[3] P. J. McCann and S. Chandra, "Packet Types:
Abstract Specification of Network Protocol
Messages", ACM SIGCOMM Computer
Communication Review, vol. 30, issue 4, pp.
321-333, October 2000.

[4] J. Rentzsch, “Data Alignment: Straighten up and
Fly Right”, IBM DeveloperWorks, March 2005.
<http://www-128.ibm.com/developerworks/library/pa-d
align/>

[5] W3Schools, XML Tutorial, 1999.
<http://www.w3schools.com/xml/default.asp>

[6] EDIKT, edikt::BinX Developer’s Guide, University
of Edinburg, April 2005,
<http://www.edikt.org/binx/docs/BinXDevGuide.pdf>

[7] G. Fairhurst, Example Packet Decodes, March
2004.
<http://www.erg.abdn.ac.uk/users/gorry/course/inet-pag
es/packet-decode.html>

[8] Information Science Institute, Internet Protocol,
RFC: 791, September 1981.
<http://asg.web.cmu.edu/rfc/rfc791.html>

[9] R. Hogaboom, “A generaic API Bit Manipulation in
C”, Embedded Systems, vol. 12, No. 7, July 1999.
<http://www.embedded.com/1999/9907/9907feat2.htm>

	Western University
	Scholarship@Western
	2-2006

	A Binary Data Stream Scripting Language
	Luiz Fernando Capretz
	Lihua Wang
	Citation of this paper:

	Microsoft Word - Lihua-Journal.doc

