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Abstract 
Renal Cell Carcinoma (RCC) is the most common and fatal type of kidney cancer. Over 30% of 

patients that are diagnosed with RCC exhibit metastases. Almost 88% of patients with distant 

metastases succumb to the disease within 5 years of diagnosis. Kidney Injury Molecule-1 (KIM-

1) is a cell surface glycoprotein that is not expressed in a healthy kidney but becomes highly 

expressed on proximal tubular epithelial cells (PTECs) following injury. Data from the Cancer 

Genome Atlas (TCGA) reveals that >90% of RCC tumours express KIM-1 mRNA and that 

higher expression levels correlate with increased overall survival rates of patients. The 

pathophysiological role of KIM-1 in RCC is not well understood. Using human (786-O) and 

murine (RENCA) models, we recently uncovered that KIM-1 may inhibit the metastatic 

properties (invasion and extravasation) of RCC cells using in vivo and in vitro systems. The aim 

of this thesis work was to elucidate the mechanism by which KIM-1 regulates RCC tumour 

progression using syngeneic and pre-clinical orthotopic RENCA models. 

 

Transcriptomic analysis of RENCA cells lacking or overexpressing KIM-1, and The Cancer 

Genome Atlas (TCGA), revealed significant upregulation of genes involved in extracellular 

matrix (ECM) interactions in association with KIM-1 expression.  In vivo, subcutaneous 

implantation of RENCA tumours resulted in the development of thick, collagen dense, stromal 

capsules surrounding the tumours. This was observed in both immune-competent and immune-

deficient mice. In a pre-clinical (orthotopic) model, KIM-1 expression inhibits primary RENCA 

tumour growth within the kidneys. Lastly, significant phenotypic differences in primary tumour 

growth, and histology were observed in between subcutaneous and orthotopic implantation of 

RENCA tumours.  

Lay Summary 
Kidney cancer comprises almost 4% of all adult malignancies and is the 8th most common type 

of cancer in humans. Renal Cell Carcinoma (RCC) is the most common and lethal type of kidney 

cancers. RCC is most lethal when it spreads to distant sites because it is resistant to many forms 

of anti-cancer therapy including chemo-, radio- and even modern immunotherapies. Over one 

third of patients have cancer that has spread at the time of diagnosis. Kidney Injury Molecule-1 

(KIM-1) is a normal protein that is found in injured human kidneys and is aberrantly present in 

over 90% of RCC tumour samples obtained from cancer patients. Patients whose tumours have 

high amounts of KIM-1 seem to survive longer (due to cancer spread likely) but the reason for 

this is not known.  The objective of my thesis was to determine how KIM-1 may protect patents 

with RCC from dying using genetic techniques and animal models of kidney cancer.   

 

My work suggests that the role of KIM-1 in RCC greatly depends on the tumour model used. 

Overall, KIM-1 may protect patients with RCC by slowing the growth of tumours, and 

potentially, the spread of cancer cells to distant sites from the primary tumour. Our genetic 

studies suggest that KIM-1 may achieve this by altering the genes produced by the kidney 

tumours to produce a thick, collagen dense “capsule” around them.  Further studies of these 

“protective” genes may help us to develop treatments for patients with RCC and potentially other 

cancers. 
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Chapter 1 

1. Introduction 

1.1 Cancer 

Cancer is defined as a group of diseases that is caused by abnormal cells undergoing 

uncontrolled proliferation within any part of the human body that has the potential to invade 

nearby tissues or spread to distant tissues. Tumours consist of a (solid) collection of cells which 

can be benign or malignant.  Malignant tumours are made up of cancerous cells which can cause 

death by infiltrating or destroying normal (local or distant) tissues (World Health Organization, 

2018). Globally, cancer is the second leading cause of death – 1 in 6 deaths are caused by cancer 

(World Health Organization, 2018). According to the American Cancer Society in 2020, 

1,806,590 new cancer cases were reported, with a total of 606,520 deaths (Siegel, Miller and 

Jemal, 2020). The Canadian Cancer Society, in 2019, estimated that nearly 1 in 2 Canadians will 

be diagnosed with cancer within their lifetime. In 2019 alone, it was estimated that 220, 400 new 

cases of cancer were expected to be diagnosed in Canada. Out of these expected cases, males 

have a slightly higher incident rate than females, with numbers at 113,000 cases vs 107,400 cases 

respectively. The risk of developing cancer in Canada has increased significantly with our aging 

population (Canadian Cancer Statistics Advisory Committee, 2019). Genetic alterations to 

cellular DNA and/or environmental effects are believed to be central to the development of many 

types of cancer. Unhealthy diets, physical inactivity, drug and alcohol abuse are all 

environmental factors that have been linked to an increased incidence of cancer worldwide. 

Various chronic infections can increase the risks of cancer development. For example, chronic 

infections such as with Helicobacter pylori and human papillomavirus (HPV) can result in the 
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development of pyloric and cervical cancer, respectively. One of the most common causes of 

death from cancer is the process of metastasis (World Health Organization, 2018). Metastasis is 

the process by which cells within a primary tumour break away from their originating boundary 

of growth, travel and inhabit local (neighboring) or distant tissues, resulting in the growth of a 

secondary tumour.  

Hanahan and Weinberg famously proposed the six characteristics needed for cancer progression. 

These have been coined the hallmarks of cancer (Hanahan and Coussens, 2012). The six 

fundamental hallmarks of cancer include: sustained cell proliferation signaling, evading tumour 

and/or growth suppressors (e.g., immune system), invasion and metastasis, immortal replication, 

induction of angiogenesis and lastly resisting cell death.  All of the listed hallmarks are key 

characteristics present in the vast majority of human cancers. These hallmark properties allow 

cancers to promote site specific inflammation, genetic instability leading to additional mutations, 

and evasion of immune destruction. These processes also allow for the cancerous cells to recruit 

non-neoplastic cells to the site of malignancy (e.g., macrophages), in order to benefit the cancer's 

progression. Critically investigating these mechanisms for specific cancers, allows us to have a 

better understanding of pathogenesis of that cancer and, to in turn, create higher efficacy 

treatments. 
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Figure 1. Hallmarks of Cancer  

The six original hallmarks of cancer (Hanahan and Weinberg) along with newly found 

mechanisms that contribute to progression and metastasis (adapted with permission from 

Hanahan and Weinberg, 2011). Diagram including potential cancer therapeutics that can help 

combat the above mechanisms to benefit cancer treatment.  

 

1.2 Renal Cell Carcinoma  

Kidney cancer has been identified as the 8th most common form of cancer, causing 179,386 

deaths globally in 2020 alone (Globocan, 2020). Renal cell carcinoma (RCC) is the most 

common form of kidney cancer, compromising up to 85%-90% of all cases (Chang et al., 2016). 

RCC has the highest mortality rate out of all genital and urinary cancers. The Canadian Cancer 
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Statistics 2019 found from the approximate 100,000 new cases of cancer, renal and pelvic 

cancers have affected 4.2% and 2.3% of males and females, respectively (Canadian Cancer 

Statistics Advisory Committee, 2019). RCC is characterized as being a highly immunogenic 

cancer – where RCC tumours are recognized  as foreign and elicit a strong adaptive immune 

response against it. By definition, the occurrence of RCC implies that these tumours evade the 

host’s immune system. The survival rates vary greatly depending on the progression and 

presence of metastasis. If RCC is detected early while still being localized to the affected kidney 

(contained within the Gerota’s fascia), surgical resection can be curative, although recurrence 

occurs in 20%-40% of those who have undergone surgical management (Chin et al., 2006).  

Patients with distant metastases (metastatic RCC) have significantly reduced survival rates 

(American Cancer Society, 2016). Specifically, approximately 12% of patients with advanced 

disease die within 5 years of initial diagnoses (Choueiri and Motzer, 2017). 

1.2.1 RCC Subtypes and Histological Properties 

Histological analysis of RCC tumours is extremely important in determining patient prognosis as 

it aids not only in the diagnosis but also provides information about the histopathological type of 

RCC. Nephrectomy is used to make a tissue diagnosis before embarking on treatment. On rare 

occasions, percutaneous biopsy of small renal masses is undertaken if there is a high degree of 

suspicion of a metastatic lesion to the kidney from another type of cancer (Sahni and Silverman, 

2009).  

RCC is classified using histology into subtypes; Clear Cell Carcinoma (ccRCC) compromising 

~75%, Papillary RCC (pRCC) compromising ~10%, Chromophobe RCC compromising ~5%, 

and lastly Collecting Ducts and Medullary RCC compromising each ~1% (Cairns, 2011; Li and 
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Kaelin, 2011). Up to 5% of RCC remain unclassified. The cellular morphology of ccRCC is 

characterized by cells with a lipid-rich cytoplasm. For pRCC, subtype 1 consists of spindle-

shaped cells surrounding a basal membrane, and subtype 2 consists of spindle-shaped cells with 

visually prominent nuclei and an eosinophilic granular cytoplasmic space. Collecting Duct RCC 

histologically will present abnormal cells infiltrating the walls of the collecting ducts, causing a 

significant desmoplastic reaction. Lastly, Medullary RCC represents neoplasms localized to the 

distal nephron, characterized by hyperchromatic nuclei (Muglia and Prando, 2015). 

1.2.2 Staging  

Staging studies are crucial to developing a therapeutic plan for affected patients.  A variety of 

imaging modalities are used to determine the size of the tumour as well as the extent of local and 

regional involvement. The most widely used is the (The American Joint Committee on Cancer 

(AJCC), 2017) Tumour, Node, Metastasis (TNM) (anatomic) staging system and it is used for 

staging all histological variants of RCC.  The anatomic extent of disease is the most consistent 

predictor of prognosis in patients with RCC. In early stages – classified as either stage I or II - 

tumours can be any size (<7cm stage I, >7cm stage II) in diameter but are localized to the 

affected kidney only. Stage III is characterized by tumours of an undefined size within the 

affected kidney and metastasis to regional lymph nodes and/or into the major veins or 

perinephric tissues (but not beyond the Gerota’s fascia of the kidney or into the ipsilateral 

adrenal gland) (Reznek, 2004). Lastly, stage IV is characterized by tumours that have spread 

beyond the Gerota’s fascia to nearby tissues including the ipsilateral adrenal gland (Sandock, 

Seftel and Resnick, 1997). When metastatic disease is suspected at initial presentation, 

pathologic confirmation is obtained prior to starting therapy. The most common sites of 

metastasis are the lungs (29-54%), bones (16-31%), liver (8-30%), renal fossa and brain (2-10%) 
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(Shao et al., 2019). Although approximately 65% of tumours are limited to the kidney (Stage I-

III) at initial diagnosis, over 20% of these patients will experience a relapse after receiving 

definitive treatment (Shao et al., 2019).   

1.2.3 Risk Factors and Causes  

A number of established risk factors exist for the development of RCC and include both genetic 

and environmental factors. A number of hereditary kidney cancer syndromes have been 

described including autosomal dominant polycystic kidney disease, Tuberous Sclerosis Complex 

and Von Hippel-Lindau disease (Gnarra et al., 1994; Keith et al., 1994; Yang et al., 2014). The 

most common genetic alteration found in patients with sporadic RCC is the mutation of the von 

Hippel-Lindau tumour suppressor gene, also known as the VHL gene. Similar to many genes, 

VHL is co-dominantly expressed. In familial RCC, gene alterations of one inherited allele causes 

patients to exhibit VHL disease predisposing them for RCC tumour growth. In sporadic RCC, 

both alleles of the VHL gene are functional at birth, yet bi-allelic gene alterations occur 

postnatally causing the spontaneous development of RCC (Ma et al., 2001).  

The VHL gene is located on chromosome 3p region and encodes for the VHL protein. VHL 

protein acts as a tumour suppressor gene by regulating cellular division and preventing increased 

proliferation (Gnarra et al., 1994). The VHL protein is mostly commonly known to form a stable 

protein complex with elongin C and B, as well as proteins Cul-2 and RBX-1 (Pause et al., 1997). 

This VHL protein complex functions as a ubiquitin-protein ligase, that has many downstream 

effector targets. In normoxic, healthy conditions - where the VHL gene is unaltered – the VHL 

protein complex is able bind to the hydroxylated form of hypoxia inducible factor 1-alpha (HIF-

1α) or hypoxia inducible factor 2-alpha (HIF-2α) and target the subunit for degradation via 
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ubiquitination. Under conditions of hypoxia, HIF-2α escapes ubiquitination by VHL as it is not 

hydroxylated by oxygen-dependent prolyl hydroxylases (Groulx and Lee, 2002). Under 

conditions where the VHL gene is altered and non-functional, the VHL protein complex is 

unable to bind to hydroxylated HIF-1α and thus unable to target the complex for destruction. 

Due to this, HIF-1α becomes continuously expressed on cells leading to the enhancement of 

downstream HIF transcription factors, also acting as a positive feedback loop. Overall, increased 

HIF transcripts result in cellular dysregulation. For example, HIF-2α enhancement mimics 

hypoxic cellular conditions activating apoptotic and glycolytic pathways, while increased HIF-2α 

enhances angiogenesis and cell proliferation. Inactivation of VHL results in upregulation of 

VEGF, which results in increased metabolism and angiogenesis (Verine et al., 2010). Overall, 

the HIF-2α transcripts together with the malignant tumour microenvironment (TME) resulting 

from excess VEGF drive the development and progression of RCC (Rechsteiner et al., 2011).   

1.2.4 Treatments for RCC    

1.2.4.1 Surgery 

As of today, there is no therapy for RCC that is guaranteed to be curative, but some patients have 

experienced complete and permanent remission. The field has seen many advancements in 

therapeutics owing to recent breakthroughs in cancer immunology. Treatments options for RCC 

range from surgical resection to non-targeted (older) drugs, to molecular targeted therapies, to 

novel immunotherapies and various combinations of these which are currently being tested in 

clinical trials. The most successful and tried form of treatment for localized RCC (stage I-III) is 

surgical resection, either through partial or radical nephrectomy. This consists of the removal of 

only a portion of the kidney containing the tumour, removal of one affected kidney, or removal 

of the affected kidney along with nearby lymph nodes and adrenal gland, respectively (National 
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Cancer Institute, 2020). Unfortunately, surgery has major limitations as a primary treatment. 

Nephrectomy is indicated for patients with tumours contained within the kidney’s Gerota’s fascia 

(stages I-III) (Reznek, 2004). Radical or partial nephrectomy have been found to improve 

patients' 5-year survival rate. However, in patients that present with metastatic RCC, surgery 

alone is not a feasible form of treatment, and is only used in order to reduce painful symptoms or 

as cytoreductive treatment in combination with systemic therapy (De Vivar Chevez, Finke and 

Bukowski, 2014).  

1.2.4.2 Targeted Therapies 

Decades of research into the pathogenesis of clear cell RCC (the most common subtype), 

including the discovery of the roles of HIF-2 and VEGF, have led to the development of a 

myriad of molecular targeted therapies for patients with RCC (Cho et al., 2016; Choueiri and 

Kaelin, 2020). Instead of enhancing mechanics of the immune system to combat disease, 

molecular targeted therapies attack or inhibit mechanisms that assist directly in cancers 

progression (see hallmarks of cancer above). These include inhibiting processes such as 

angiogenesis and increased proliferation. The knowledge of the crucial role of mammalian target 

of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) (or its receptor) in the 

progression and metastases of RCC have greatly improved treatments of metastatic RCC (Heng, 

Kollmannsberger and Chi, 2010). mTOR is a highly conserved protein kinase that regulates cell 

proliferation, apoptosis, along with various signaling biological pathways within the body. 

mTOR is a downstream effector of the PI3-K/Akt/mTOR pathway. This signaling pathway is 

activated in RCC tumours, playing a significant role in cell proliferation, tumour metabolism, 

and immune cell differentiation also creating a positive feedback loop. Initiating the PI3-

K/Akt/mTOR pathway is caused by the extracellular binding of growth factors which initiate 
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activation of tyrosine kinase receptors (Porta, Paglino and Mosca, 2014). This interaction 

mediates intracellular PI3-K to phosphorylate PIP2 into PIP3. PIP3 then binds to the activated 

PDK1/2 complex which downstream binds to Akt at its PH domain, allowing activation through 

phosphorylation (Battelli and Cho, 2011). When Akt is in its activated state, it has the ability to 

inhibit the tumour suppressor complex TSC1/TCS2. Downstream, this complex inhibits Rheb 

GTPase – a crucial player in the inhibition of mTOR signaling pathway in cancer. With 

inhibition of the tumour suppressor TSC1/TCS2 complex and Rheb, mTOR signaling allows for 

anabolic proliferation and dysregulation of cellular functions (Huang and Manning, 2008). 

Allosteric inhibitors of mTOR such as temisirolimus and everolimus, have shown significant 

anti-tumour effects in patients with advanced staged RCC. Combination strategies also increase 

efficacy and overall patient response.  

Another targeted therapy commonly used in RCC treatment is anti-VEGF. VEGF is identified as 

an important mediator in the development and progression of RCC, as it greatly impacts tumour 

vascularity and thus metabolism (Stitzlein, Rao and Dudley, 2019).  Specifically, HIF 

transcription factors target genes such as VEGF, PDGF, IGF, and TGF- which directly 

implicate alterations in angiogenesis, glucose transport, apoptosis, cell signaling, and pH 

regulation. Various multi-kinase inhibitors such as sorafenib, are able to inhibit VEGF, PDGF, c-

Kit receptor tyrosine kinases and show positive results in reduction of disease in metastatic RCC 

patients, with feasible toxicity (Larkin and Eisen, 2006).  

1.2.4.3 Immunotherapies  

Other forms of treatment involve the use of immunotherapies. Immunotherapy is a form of 

treatment which uses the patient’s own immune system to target and potentially destroy the 
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cancer. Immunotherapies are an integrated form of therapy for RCC yet have shown positive 

results due to RCCs immunogenic nature. In the early 1990’s, Interleukin-2 (IL-2) and IFNγ 

were the first cytokine specific treatments used to treat metastatic RCC. These two cytokines 

were chosen because: IL-2 promotes T-cell activation and effector function; and IFNγ triggers 

activation of T-cells, enhances antigen presentation by antigen-presenting cells and promotes 

activation of macrophages (Tau and Rotherman, 2001). In 1992 the FDA approved high-dose IL-

2 as a treatment for advanced RCC (Rosenberg, 2007). Patients experienced overall response 

rates of up to 25%, although IL-2 was not well-tolerated amongst patients due to its toxicity at 

high doses.  Later on, IFNγ was tested as a monotherapy for metastatic RCC patients. Clinical 

trials began using low-to-moderate doses of IFNγ – as they were deemed more biologically 

effective in previous in vivo experiments rather than higher doses. Early-stage clinical trials 

consisted of doses at 100g/patient administered once per week, resulting in promising outcomes 

where the total response rate was 30%, and well tolerated by patients (Aulitzky et al., 1989). In 

trials with patients with later stage disease, there was found to be no significant difference 

between both response and survival rates when comparing placebo to treatment. Hence, IFNγ as 

a monotherapy was not further investigated for RCC treatment. With these promising results, 

combination therapy of IL-2 and IFNγ began to be administered to RCC patients. Although these 

results were positive, only a small fraction of patients responded to the therapy, albeit 

incompletely (Escudier et al., 1993). 

More recently, the field has seen the emergence of ground-breaking immunotherapies that target 

T cell checkpoints (e.g. programmed cell death ligand-1 (PDL-1) and programmed cell death-1 

(PD-1) and/or CD80/CD86 and cytotoxic lymphocyte antigen 4 (CTLA-4)). The agents are 

primarily monoclonal antibodies that block inhibitory signaling by the ligand-receptors pairs.  
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PD-1 is a receptor expressed on antigen presenting cells of the immune system, and when bound 

by its ligand PDL-1 – commonly found on antigen presenting cells and some cancer cells 

(Weinstock and McDermott, 2015) – suppresses T cell activation, allowing the tumour to escape 

immune destruction primarily through the exhaustion of cytotoxic CD8+ T cells (Lu et al., 2019). 

These immunotherapies have shown favorable results in in clinical trials when delivered as a 

monotherapy or in combination with other immunotherapies (anti-CTL-4) (Motzer et al., 2018). 

Therapy was associated with an increase in intratumoural T-cell tracking, reduced 

immunosuppressive cytokines and T-regulatory cells, as well as an increase in anti-angiogenic 

properties (Weinstock and McDermott, 2015). In the process of T cell activation/priming, two 

positive activating signals must take place between T cell and antigen presenting cells (APCs) to 

allow for the success of T-cell priming. Stimulatory signal consists of the T-Cell Receptor (TCR) 

to the Major Histocompatibility Complex (MHC) presenting the unknown peptide, along with 

CD28 engagement on T-cells to CD80/CD86 on the APC. During times of autoreactivity 

(Boehncke and Brembilla, 2019), CTLA-4 on T-cells will bind to CD80/CD86 on the surface of 

APCs sending a inhibitory signal, rendering the T cell to become inactive (Buchbinder and 

Desai, 2016). CTLA-4 - an inhibitory molecule binds to CD80/CD86 (B7-1/B7-2) with much 

greater affinity than CD28 on T cells, and when engaged delivers an inhibitory signal to 

activated T cells (Pardoll, 2012). In cancer, blocking the inhibitory signal between CTLA-4 and 

CD80/CD86 has been found to enhance both priming and activation of T cells and various 

immune cells (Tang et al., 2018). Thus, using monoclonal agonist antibody anti-CTLA-4 

(Ipilimumab) as an immunotherapy in RCC, has been shown to increase T cell effector functions 

resulting in enhanced anti-tumour immunity (Seidel, Otsuka and Kabashima, 2018). 

Combination therapy with both anti-PD1 and anti-CTLA-4 antibodies was shown to have 
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synergistic effects on anti-tumour immunity, being able to increase overall response rates against 

malignancies (Motzer et al., 2018). Although this therapy has been shown to cause progression-

free outcomes with increased overall survival, there is still a major limitation of patient-patient 

variation in response (Cairns, 2011). Also, the overall response rates have been low (Weinstock 

and McDermott, 2015). 

1.2.5 Patient Immune Profile or Immune Microenvironment 

To enhance potential treatments, patient profiles have been examined to comprehend the 

immunological mechanisms throughout the clinical stages of RCC. Many clinical studies have 

evaluated patient serum for cytokine levels, indicative of the immune phenotype and tumour 

microenvironment present. A recent clinical study aimed to find differences in tumour-associated 

interleukins (IL) and cytokines from collected metastatic RCC patients treated with IL-2 

immunotherapy and compare the results of serum from healthy donors. This study aimed to find 

differences in immunomodulatory cytokines such as IL-10, IL-6, IL-12, IL-8, and IL1β, as well 

as tumour necrosis factor-alpha (TNFα). Results found higher levels of cytokines that implement 

an immunosuppressive effect; increased IL-8, IL-6, and c-reactive protein. Patients found to have 

an immunosuppressive cytokine profile correlated directly with an overall reduced survival rate 

(Guida et al., 2007).  

1.2.6 The Tumour Microenvironment (TME) 

The tumour microenvironment (TME) is made up of cancer cells, stromal tissue, and 

surrounding extracellular matrix. The immune system plays a fundamental role in shaping the 

TME. Intense study of the complex interactions between cancer cells and the host immune 

response has led to novel therapies that serve to block tumour progression. This interaction often 
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creates an environment that promotes tumour progression throughout all stages of malignancy. In 

immunogenic cancers, similar to RCC, the TME contains a vast variety of immune cells such as 

CD8+ T cells, γδ T cells, along with fibroblasts, and endothelial cells (Hanahan and Coussens, 

2012). The types of immune cells (e.g. T cells, innate lymphoid cells, macrophages etc.) within 

the TME are believed to be dependent on cell-cell communications between the RCC cells, the 

extracellular matrix and immune cells. Various studies investigating the transcriptomic profile of 

human RCC tumours have allowed for a clearer understanding of the components within RCC 

TME. This information has helped us to understand why RCC is able to evade immune 

destruction, despite being a highly immunogenic cancer. Immune signatures that are commonly 

observed in RCC are the expression of tumour promoting checkpoint inhibitors PD1, PDL1, and 

CTLA-4. Histopathologic and transcriptomic analysis  of RCC tumours has identified three 

distinct immune profiles : 1) T cell enriched tumours that are infiltrated with an abundant 

quantity of T-Lymphocytes; 2) Non-infiltrated tumours that have a scarcity of infiltrating 

immune cells, and 3) Heterogenous tumours that are composed of diverse amounts of immune 

cells alongside the malignant cells. RCC tumours follow the phenotype of 1) or 3) – being a 

cancer with one of the highest T cell infiltrates and/or having tumours with heterogenous 

immune profile containing diverse types immune cells. Despite this immunogenic feature of 

RCC tumours – many patients succumb to the disease. A majority of RCC patients present with a 

heterogenous immune profile – although seemingly beneficial to patients - outcomes of this 

TME result in the poorest survival. The abundance of antigen presenting machinery also does not 

have clear correlations with tumour progression.  Thus, analyzing specific immune cell effector 

functions along with their abundance can better help understand why these highly infiltrated 

tumours are able to evade immune destruction immunogenic. RCC tumour immune infiltrates 
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contain vast levels of mainly CD8+ T cells, neutrophils, macrophages, and plasmacytoid 

Dendritic Cells (pDC). Higher frequencies of cytotoxic cells such as CD8+ T cells within the 

TME is a characteristic that would seem to be extremely beneficial to patients, yet with RCC, 

high correlations of CD8+ T cells alone do not correlate to increased survival. Instead, a higher 

ratio between cytotoxic and immune regulatory cells improve survival; specifically, the balance 

between CD8+ T cells and T regulatory cells (Tregs) is shifted to CD8+ T cells. Tregs are a 

specialized immune cell able to suppress T cell proliferation and activity; known to inhibit 

autoimmunity, yet in cancer are able to suppress anti-tumour T cell immunity (Romano et al., 

2019). Heterogenous RCC tumours have significant changes when compared to T cell enriched 

profiles, suggesting that the T cell enriched tumours have distinct gene alterations that cause this 

unique immune profile (Şenbabaoğlu et al., 2016). The enhancement of the T cell enrichment in 

RCC tumours could be due to genomic alterations that generate neoantigens or make existing 

antigens more immunogenic (Germano et al., 2017) .  

Another common phenotype observed in the TME of multiple cancer types is the abundance of 

extracellular matrix (ECM). ECM is a crucial component of the TME – able to influence tumour 

cell activity and biosynthesis (Xu et al., 2019). A major component of the ECM are the collagens 

present (Nissen, Karsdal and Willumsen, 2019). Several mutated genes influence the interaction 

between cancer cells and the elements compromising the ECM, which can contribute to 

increased production of collagen (Xu et al., 2019). Collagen activity such as degradation and re-

deposition within a tumour can affect several processes in cancer progression such as infiltration, 

invasion, migration, and angiogenesis. The role of collagen in cancer has been found to have a 

paradoxical effect by both promoting and inhibiting tumour progression throughout cancer 

development (Fang et al., 2014). In vitro studies have shown that collagen deposition is able to 
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inhibit lymphocyte locomotion in both human melanoma and RCC (Applegate, Balch and Pellis, 

1990). In human lung tumours, collagen deposition is directly related to decreased intratumoural 

cytotoxic CD8+ T cells – specifically, collagen is found to induce CD8+ T cell exhaustion 

through collagen receptor interaction of LAIR1. More importantly, this study also revealed that 

increased collagen deposition is able to promote immune checkpoint blockade PD-1/PDL-1 

resistance (Peng et al., 2020). On the other hand, hypermethylation thus inactivation of specific 

collagen genes such as collagen type 1  2 (COL1A2), increase invasive capabilities of human 

bladder cancer (Mori et al., 2009). Specifically, the role of collagen on RCC tumour progression 

is not fully understood. Using both TCGA database and histological analysis of ccRCC human 

tumours have revealed that collagen type 23   (COL) correlates with larger tumour sizes 

and decreased overall survival, respectively (Xu et al., 2017). Tumour tissue bank analysis has 

also implicated collagen type 6   (COL6A1) to be a predictive marker for overall survival of 

ccRCC patients (Wan et al., 2015). Although RCC immune profiles and TME associated genes 

of interest (COL23A1 and COL6A1) have been classified, the mechanisms that occur to 

differentiate these microenvironments are not well understood. In order to combat this disease, 

we must elucidate the cellular mechanisms that cultivate a malignant TME in RCC tumours.  

1.2.7 Murine Models for Renal Cell Carcinoma  

 

A variety of murine models are used to study the in vivo progression and metastasis of RCC. 

Murine models of RCC have been found to accurately reflect human disease and can be used 

widely in experiments investigating primary and secondary tumour progression, as well as 

therapeutic treatment evaluation (Murphy and Hrushesky, 1973). Three types of animal models 



 

 

 

 

16 

 

that are widely used in the in vivo research of RCC are syngeneic models, xenograft models, and 

genetically engineering mouse models (GEM).  

1.2.7.1 Syngeneic & Genetically Engineered Mouse (GEM) Models of RCC 

 

The two major types of cancer models are the spontaneous and transplanted tumour models. 

Recent breakthrough in our understanding of genetic defects in clear cell RCC has led to the 

development of new spontaneous models of murine RCC (Harlander et al., 2017).  However, the 

vast majority of RCC research has relied on transplant models in mice (Sobczuk et al., 2020).  

Syngeneic models are the transplantation of a cancer cell line that has the same genetic 

background as the host (mouse). One of the most widely used murine syngeneic models of RCC 

is the Renca model where the murine RCC cell line is transplanted into BALB/c Wild-type mice. 

This mouse model is syngeneic because Renca is a murine RCC cell line that was derived from a 

BALB/c mouse that spontaneously developed a renal malignancy (Murphy and Hrushesky, 

1973). There are many advantages to using the syngeneic mouse model – they are more 

economical and simplistic. Syngeneic models have been crucial to developing and studying the 

mechanism of novel immunotherapeutics for RCC, including immune check-point inhibitors. For 

instance, this model allows for the investigation of how the immune system interacts with the 

cancer – this has permitted investigations of tumour immune profiling as well as tumour 

microenvironmental changes that occur in RCC. Another commonly used murine model is 

genetically engineered mouse (GEM) models. The GEM models are created by introducing 

genetic alterations of possible genes of interest thought to be involved in the progression of 

disease. This can include one or more genes that can be deleted, mutated, or overexpressed 

(Sobczuk et al., 2020). 
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1.2.7.2 Xenografts 

 

Another tumour transplant mouse model that is commonly used is the xenograft model. Here 

human derived cell lines or tissues are implanted into either humanized or immune deficient 

mice. These models can be differentiated in two forms of experimental use: xenografts using 

conventional cell lines, or xenografts using patient derived specimens. Commonly used mice for 

xenograft implantation are Rag1-/- deficient mice, severely compromised immunodeficient 

(SCID) mice, or nude mice (lack thymi and hence T cells). Each murine model has an 

insufficient adaptive immune response, allowing for neo-antigens of the human derived 

transplanted cell lines to pass immune surveillance and create a tumour (Richmond and Yingjun, 

2008). Xenografts are more clinically relevant because they utilize human cells, yet are limiting 

due to genetics and histology poorly reflecting human cancers (Becher and Holland, 2006).  

 

1.2.7.3 Limitations of Murine Models 

 

Each tumour model has its advantages and disadvantages, but as a whole, they have aided 

scientists to better understand the biology of RCC. Some are more clinically relevant and better 

suited for testing potential therapies. Unfortunately, a vast majority of kidney cancer cell lines 

are not compatible with syngeneic and GEM murine models. Many syngeneic models are used 

within rodents such as mice and rats, yet poorly reflect the development and progression of 

human cancers.  The mouse models that correlate best with clinical findings in patients are the 

xenograft and GEM models as they mimic the genetic alterations and/or histological properties 

of human RCC (Sobczuk et al., 2020). Although, GEM models often poorly predict human 

tumour response to therapy (Richmond and Yingjun, 2008). Another major pitfall of the 

syngeneic mouse model is that the stromal component of TME observed within the tumour 
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model is made of mouse cells. Due to this, tumour microenvironmental studies may not 

accurately represent that of the human RCC TME. 

1.2.7.4 Subcutaneous vs. Orthotopic (pre-clinical) Models of RCC 

 

Syngeneic, xenograft, and GEM models can all undergo cancer cell line injections using 

different methods of implantation. Subcutaneous delivery is the most common form of cancer 

cell line implantation – it is the process of injecting cancer cells in the space underneath the skin 

and above the muscle, commonly within the flanks of mice. Although this model allows for the 

easy establishment and monitoring of tumours over the skin using calipers, this mode of 

implantation does not reflect the natural microenvironment of human RCC. A more clinically 

relevant model of RCC is the orthotopic model – here RCC cell lines are implanted into the 

kidney (where RCC originates in the human body). Orthotopic injections can be performed with 

syngeneic, xenograft, and GEM mouse models (Richmond and Yingjun, 2008). Orthotopic 

implantations have been shown to mimic primary tumour progression, local invasion and 

spontaneous metastases to distant organs such as the lymph nodes, lungs and liver as observed in 

human RCC (Salup, Herberman and Wiltrout, 1985).  

1.3 Kidney Injury Molecule-1 

 

Kidney injury molecule-1 (KIM-1), also known as hepatitis A virus cellular receptor 1 

(HAVCR1) or T cell immunoglobulin receptor mucin domain 1 (TIM-1) , is a cell-surface 

receptor (Han et al., 2002). KIM-1 belongs to the TIM family of glycoproteins which are type-1 

transmembrane proteins consisting of an extracellular immunoglobulin like IgV domain, a hyper-

glycosylated mucin domain, a transmembrane domain and an intracellular cytoplasmic domain. 

KIM-1 is expressed on various human tissues and cell types including the kidney, liver, lung, 
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spleen, T cells and B cells– possessing multiple functions including its involvement in acute 

kidney injury and repair, hepatitis A virus infection, T cell trafficking and autoimmunity 

(Bonventre, 2009; Zheng et al., 2019). In the kidney, KIM-1 is not expressed during a healthy 

state but is the most upregulated protein following acute kidney injury (Ichimura et al., 1998). 

KIM-1 is specifically expressed on the apical surface of proximal tubule epithelial cells (PTECs) 

immediately following kidney injury (Bonventre, 2008; Ajay et al., 2014). Interestingly, KIM-1 

undergoes spontaneous and accelerated (with more injury) ectodomain shedding releasing the 

cleaved or soluble KIM-1 into the lumen of the kidney, ultimately ending up in the blood and 

urine of affected patients (Gandhi et al., 2014). This makes KIM-1 a sufficient clinical biomarker 

for kidney injury in the urine and plasma of humans, mice, and rats (Sabbisetti et al., 2014). 

1.3.1 Function of KIM-1 in the Kidney 

 

The IgV portion of KIM-1 contains an ion-dependent ligand binding domain that forms an active 

site for recognition of the membrane phospholipid, phosphatidylserine (PtdSer) (Santiago et al., 

2007) – “eat me” signal - that is expressed on the outer surface of early necrotic and apoptotic 

cells. KIM-1 is a scavenger receptor that is able to recognize other “eat me” signals on apoptotic 

cells such as oxidized low-density lipoproteins (LDL) (Ichimura et al., 2008). Thereby, KIM-1 

enables PTECs to engulf apoptotic cells, promoting repair and regeneration of the renal tubules 

following acute kidney injury (Yang et al., 2015; O. Z. Ismail et al., 2016). Binding of KIM-1 to 

apoptotic cells triggers intracellular signaling via its cytosolic domain to inhibit NF-kB activation 

and downregulate  Toll-like receptor 4 expression (Yang et al., 2015). The clearance of necrotic 

cells, which predominate after acute kidney injury, is also facilitated by KIM-1 expressing 

PTECs, but this requires the opsonin, Apoptosis Inhibitor of Macrophages (AIM), which is 

appears in the tubules through glomerular filtration of blood. Within the tubules, AIM opsonizes 
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necrotic debris and cells, subsequently allowing KIM-1 to bind to AIM and engulf the debris via 

KIM-1/PTEC mediated phagocytosis (Arai et al., 2016).  This rapid clearance of dead cells 

prevents excess inflammation build up and the release of danger associated molecular patterns 

(DAMPs) from the apoptotic cells (Kobayashi et al., 2007). 

1.3.2 KIM-1 in RCC 

 

KIM-1 expression is elevated in approximately 80%-90% of human RCC patients, specifically 

expressed in both clear cell RCC and papillary RCC – two of the most common forms of RCC 

(Han et al., 2005; Lin et al., 2007). Both of these subtypes of RCC have allowed for the non-

invasive surveillance and early detection of RCC development through detectable levels of 

soluble/shed KIM-1 in patients plasma and urine (Han et al., 2002). Urinary KIM-1 is 

significantly upregulated in RCC patients prior to surgical nephrectomy, and subsequently 

reduced either with notable reduction or complete absence of urine KIM-1 post-nephrectomy 

(Zhang et al., 2014). Recent studies have also shown that as early as 5 years before initial 

diagnosis of RCC, KIM-1 is upregulated in the plasma of patients (Scelo et al., 2018). 

The pathophysiological role of KIM-1 in human RCC is not well known. There have been 

several studies that have proposed conflicting roles for KIM-1 in RCC.  Research by Scelo and 

Muller et al., 2018 found that increased plasma concentrations of KIM-1 were associated with 

worse survival rates in RCC patients (Scelo et al., 2018). Another study by Cuadros et al., 2014, 

studied intrinsic mechanisms involved in the progression of RCC. Specifically, this study 

analyzed the human RCC cell line, 769-P where KIM-1 is basally overexpressed, by silencing its 

expression and reported  that KIM-1 directly activates IL-6/STAT-3/HIF-1 axis, in turn 

possibly driving angiogenesis and tumour progression.  Moreover, this study found that KIM-1 



 

 

 

 

21 

 

activation of IL-6/STAT-3/HIF-1, is dependent on KIM-1 ectodomain shedding (Cuadros et al., 

2014).  

 

1.4 Rationale, Objective and Hypothesis  

1.4.1 Rationale  

 

Renal cell carcinoma (RCC) is the most common and lethal type of kidney cancer (Cohen and 

McGovern, 2005). RCC originates within the proximal convoluted tubules of the kidney, and can 

metastasize to the adrenal gland, nearby lymph nodes, and distant organs such as the lungs. 

Despite the fact that RCC is characterized as a highly immunogenic cancer, >30% of patients 

present with (local or distant) metastatic disease at initial diagnosis, with >88% of these patients 

dying within 5 years (Decastro and McKiernan, 2008; Choueiri and Motzer, 2017). As of today, 

there is no cure for RCC, and the current treatments are inadequate.  

The primary form of treatment for localized RCC is surgical resection of the tumour. Although 

this treatment is very common, the method is problematic for metastatic RCC. Current 

treatments for metastatic RCC include immunotherapies (Motzer et al., 2019) and targeted 

therapies (e.g. sunitinib) that focus on immune checkpoints (Motzer et al., 2013). There is a 

strong demand for novel therapeutics for metastatic RCC, as the cancer is highly resistant to 

many existing therapies. Immunotherapies such as anti-PDL-1/PD1 (Weinstock and McDermott, 

2015), anti-CTLA-4  (Seidel, Otsuka and Kabashima, 2018), and targeted therapies such as 

mTOR (Everilimus (Donskov et al., 2020)) and VEGF (Sunitinib (Ravaud et al., 2016)) 

inhibitors, have been shown to reduce tumour progression and overall survival of patients with 

RCC (Vachhani and George, 2016). The most promising treatment to date for metastatic RCC 
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are blocking antibodies targeting the immune checkpoints aimed at enhancing anti-tumour 

immunity in patients: PDL-1 (Nivolumab), PD-1L (Avelumab) and CTLA-4 (Ipilimumab) 

(Motzer et al., 2015, 2018). Unfortunately, response rates and major improvement in overall 

survival have been limited.  

A characteristic of RCC is the cell surface expression of Kidney Injury Molecule-1 (KIM-1). 

KIM-1. Although KIM-1 is known to play an anti-inflammatory and reparative role in acute 

kidney injury, its specific role in RCC (including metastasis) are unclear. Analysis of The Cancer 

Genome Atlas (TCGA) database has shown that >90% of all patients with RCC express KIM-1, 

additionally correlating with overall increased survival (Lee and Gunaratnam, 2019).  

 

Recent findings from our team have demonstrated that tumour associated KIM-1 inhibits 

metastasis. Specifically, we found that KIM-1 expression on murine Renca, and human 786-O 

cells inhibits extravasation and invasion in vitro. KIM-1 expressing human 786-P cells were 

found to have a significant reduction in extravasation capability in an in vivo CAM model. 

Moreover, using an experimental metastasis model, we found that KIM-1 expressing Renca, and 

786-O cells had significantly reduced metastasis to the lungs, independent of adaptive immunity. 

Lastly, we identified two pro-metastatic, invasion, and adhesion genes, Rap1 and RAB27b, that 

may be downregulated by KIM-1. Overall, our findings reveal a novel inhibitory role of KIM-1 

in the metastatic cascade of RCC (Lee and Gunaratnam, 2019). These previous findings suggest 

that KIM-1 may be playing a beneficial role for RCC patients. Further determining the 

pathophysiological role of KIM-1 in RCC progression, may provide new insights into its 

pathogenesis and potentially identify KIM-1 as a therapeutic target.  
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1.4.2 Objective and Hypothesis  

 

The objective of this study was to further understand the pathophysiological role of KIM-1 in 

RCC tumour progression. Based on preliminary clinical findings from TCGA database, we 

hypothesized that KIM-1 expression on RCC inhibited tumour growth and progression. To study 

this, we generated murine RCC Renca cell lines to overexpress KIM-1 (KIM-1pos) or to not 

express KIM-1 (KIM-1neg) through lentiviral transduction, and further investigate in vitro and in 

vivo effects.  

1.4.3 Specific Aims  

 

The aims outlined in the work of this thesis are: 1) To evaluate whether KIM-1 expression alters 

Renca tumour growth within immune competent syngeneic BALB/c mice. 2) Characterize the 

TME of KIM-1pos vs KIM-1neg Renca tumours. And 3) Investigate potential mechanisms and 

downstream targets of KIM-1.  We hypothesize that KIM-1 inhibits primary tumour growth in 

our subcutaneous immune competent model, that KIM-1 alters the TME allowing for a greater 

anti-tumour immune response, and lastly that KIM-1 expression is able to inhibit primary tumour 

growth through downstream targets similar to those found within human RCC.  
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Chapter 2 

2. Methods and Materials 

2.1 Generation of KIM-1 Expressing Stable Cell Line Using Lentiviral 

Particles 

 

A previous master’s student from our laboratory generated our mouse cell lines utilized for the 

aims of this thesis. The mouse Renca adenocarcinoma cell line (Murphy and Hrushesky, 1973)  

known as Renca (CRL-2947) was purchased from American Type Culture Collection (ATCC) 

and transduced with Lentiviral Open Reading Frames (ORF) particles containing empty vector or 

encoding the mouse KIM-1 gene,  Havcr1. The generation of these cell lines are described in 

detail elsewhere. Briefly, lentiviral ORF particles containing a vector coding the mouse KIM-1 

gene transcript (MR203831L3V; Origene, Rockville, MD), was used to implement the 

overexpression of KIM-1 to generate Renca KIM-1pos cells.  Control Lentiviral ORF particles 

containing the same vector without the presence of the mouse KIM-1 gene transcript 

(PS100092V; Origene, Rockville, MD), was used as a control to generate Renca KIM-1neg cells. 

The lentiviral particle concentration used for transduction was determined using multiplicity of 

infection (MOI) ratios. The desired MOI refers to the number of virion infectious particles to the 

number of cells that are needed for stable transduction. The total number of cells per well was 

multiplied by the desired MOI to get the total transducing units (TU). The TU was then divided 

by the viral titre, known as the total TU/ml that is specific to the purchased virus. This 

calculation provided us with an optimal volume of virus to use for the desired MOI on our Renca 

cells.  
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Methods for the following were performed previously by our team and was essential to the 

success of this project. Renca cells were seeded in a 6-well plate and incubated for 24h at 37°C 

and 5% (v/v) CO2  in complete Dulbecco's Modified Eagle Medium (DMEM; Lonza, 

Walkersville, MD) with 10% (v/v) fetal bovine serum (FBS; Cat No. 12483020, Thermo Fisher 

Scientific, Waltham, MA), 1% (v/v) 200uM L-glutamine (Cat No. 25-030-081, Thermo Fisher 

Scientific, Waltham, MA), 1% (v/v) 100X sodium pyruvate (Cat No. 11360070, Thermo Fisher 

Scientific, Waltham, MA), 1% (v/v) 100X non-essential amino acids (Cat No. 11-140-050, 

Thermo Fisher Scientific, Waltham, MA) until 75% confluency had been reached. After 24 h, 

complete DMEM was aspirated and replaced with fresh complete DMEM, supplemented with 8 

ug/mL polybrene solution (Santa Cruz Biotechnology), along with either mouse-KIM-1 encoded 

lentiviral ORF particles and/or control lentiviral ORF particles. Cells were incubated with 

polybrene solution and lentiviral ORF particles for 24h at 37°C and 5% (v/v) CO2. After 24h, 

medium was aspirated and replaced with fresh complete DMEM. After 72h post-transduction the 

complete DMEM was aspirated and replaced with 1mL of complete DMEM supplemented with 

2ug/ml of puromycin dihydrochloride (Sigma-Aldrich, Oakville, CA) per well. Replacement of 

culture medium containing puromycin dihydrochloride occurred every 2-3 days for two weeks 

post-transduction. After sufficient replication and subculture of positively selected cells, both 

KIM-1pos and KIM-1neg Renca cells were trypsinized (Trypsin-EDTA [0.25%, Cat No. 

25200072, Thermo Fisher Scientific, Waltham, MA]) and collected to confirm KIM-1 gene and 

protein expression, respectively (Lee and Gunaratnam, 2019).  
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2.1.2 Cell Culture 

 

Renca cells ( KIM-1pos and KIM-1neg)  were maintained according to culture methods  

recommended by ATCC Renca cells in antibiotic free complete Dulbecco's Modified Eagle 

Medium (DMEM; Lonza, Walkersville, MD) as defined above. Stable cell lines were maintained 

with 2g/mL of puromycin dihydrochloride. Cell culture medium was aspirated and replaced 

every 2-3 days with fresh complete DMEM plus 2g/mL puromycin dihydrochloride where 

required. Renca cells were sub-cultured every 4-5 days using Trypsin-EDTA.  

2.2 Protein Extraction  

 

Cells were seeded in 10cm2 culture dishes (Cat No. 10062-880, VWR, Pennsylvania, USA) with 

complete cell culture medium. Cells were incubated at 37°C and 5% (v/v) CO2 for 24h until 

reaching ~90% confluency. Prior to cell lysis, Radioimmunoprecipitation assay buffer (RIPA 

[RIPA Lysis Buffer System; sc-24948; Santa Cruz Biotechnology]) was prepared by combining 

10ul of sodium orthovanadate, 10l of PMSF solution, and 10ul of protease inhibitor solution for 

every 1mL of complete RIPA buffer needed (sc-24948; Santa Cruz Biotechnology).  Once cells 

have reached ~90% confluency, cell medium was aspirated and cells were washed with cold 1 x 

PBS (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HOP4, 1.47 mM KH2PO4, pH 7.4) for 5 

minutes on ice. Cold 1 x PBS was aspirated, and cells were prepared lysed using. For 100mm 

culture dishes, 1mL complete RIPA buffer was evenly placed on the monolayer of cells while on 

ice for 5 minutes, gently agitating the solution occasionally. Using a cell scrapper, cells were 

collected from the dish and carefully transferred into microcentrifuge tubes. Lysates were then 

centrifuged at 4°C at ~12,000 x g for 20 minutes. After centrifugation was complete, protein 
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supernatants from samples were collected and isolated into fresh microcentrifuge tubes for 

further analysis.  

2.2.1 Western Blot  

 

Whole cell lysates were collected and analyzed for protein purity and concentration using the 

Pierce BCA Protein Assay Kit (Cat No. 23225, Thermo Fisher Scientific, Waltham, MA). 

Protein concentrations were determined and compared to the concentrations of protein standards 

provided with the kit. Lysate samples were diluted with appropriate amounts of H2O, to generate 

a total concentration of 50g of protein per sample. Loading dye was prepared by combining 

190l 6x sodium dodecyl sulphate (SDS) protein loading buffer (Laemmli buffer) with 10l 

of -mercaptoethanol. Subsequently, 6l of prepared loading dye solution were added to each 

sample to reduce disulphide bonds. Samples were then boiled for 5 minutes at 95°C to further 

denature protein structures. Samples were then loaded onto 10% SDS-polyacrylamide gels. 

Protein samples were then separated based on charge-to-mass ratio and then transferred onto a 

polyvinylidene difluoride membrane (Millipore, Billerica, MA) for 50 minutes at 90 V (Bio-Rad, 

Hercules, CA). After 50 minutes, membranes were blocked with a 3% (w/v) BSA (bovine serum 

albumin; Cat No. AD0023, Bio Basic, Markham, ON) solution made in 1 x TBST (Tris-buffered 

saline, in 1mL of 0.2% Tween-20Cat No. BP337-500, Fisher Bioreagents, Waltham, MA). 

Membranes were then incubated overnight at 4°C on a rotational shaker with either goat anti- 

mouse KIM-1 primary antibody (1:2000; Cat No. AF1817, R& D Systems, Minneapolis, MN) or 

anti-human KIM-1 (AKG;  [Han et al., 2002]) targeting the extracellular domain of KIM-1. 

Glyceraldehyde phosphate dehydrogenase (GAPDH) was used (loading control) was detected 

using anti-mouse GAPDH (65C) antibody (1:1500; Santa Cruz Biotechnology). After overnight 
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incubation, membranes were then washed 4 times on a rotational shaker in 1 x TBST with 

changes every 7 minutes. Membranes were then incubated with appropriate secondary antibodies 

conjugated with horseradish peroxidase (1:20000; Jackson Immunoresearch Laboratories, West 

Grove, PA) in 3% BSA blocking buffer for 1h in the dark, at room temperature. After secondary 

antibody incubation and washing in 1 x TBST for 5 minutes for 3 times, proteins were then 

visualized using Luminata Forte Western HRP Substrate (EMD Milipore) and developed on the 

Licor C-digital imaging device. Western blot images were captured using Image Studio Lite.  

2.3 RNA Isolation 

 

Cell and tissue RNA were extracted on ice using TriZol Isolation Reagent (Cat No. 15596018; 

Life Technologies) using approximately 500l-1mL per sample depending on cell confluency 

and/or tissue size, respectively. For every 500l of TriZol, 100l of chloroform was added to 

facilitate phase separation. Samples were briefly vortexed and incubated on ice for 10 minutes 

before centrifugation at ~ 12,000 x g for 20 minutes at 4°C. After centrifugation and phase 

separation had occurred, the aqueous layer was removed carefully and placed into a fresh 

microcentrifuge tube. For every 500l of TriZol, 100l of isopropanol was added to the aqueous 

layer to facilitate precipitation of RNA. Samples were briefly vortexed and incubated on ice for 

10 minutes before centrifugation at ~ 12,000 x g for 10 minutes at 4°C. Supernatants were 

removed from the samples and discarded. Pellets were washed with 70% ethanol (EtOH) diluted 

in Diethyl Pyrocarbonate (DEPC) -treated H2O (RNase free water) and centrifuged at ~ 7,500 x g 

for 5 minutes at 4°C. Supernatant was removed from samples and discarded. RNA pellets were 

resuspended in DEPC-treated H2O and heated in a water bath at 56°C for 10 minutes. RNA was 

quantified and analyzed for purity using a spectrophotometer (260nm and 280nm; 
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MulltishkanTM GO Microplate Spectrophotometer; Thermo Fisher Scientific, Waltham, MA). 

One microliter of total RNA was placed onto Microplate and absorbances were used to calculate 

purity and concentration of RNA. One microgram of total RNA was combined with 4L of 

qSCRIPT cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD) to synthesize cDNA. The 

reaction was facilitated using a MyCyclerTM Thermal Cycler (Bio-Rad, Hercules, CA). cDNA 

was further stored at -20°C until further analyzation.  

2.3.1 Real Time Quantitative PCR (RT-qPCR) 

 

cDNA samples were used to perform RT-qPCR using SYBR green reagents (Thermo Fisher 

Scientific, Waltham, MA). Reaction mixtures were placed in a v-shaped 96-well plate, each well 

containing 10L of SYBR green, 4.6L of DEPC-treated water, 5l of diluted cDNA in DEPC-

treated water (ratio 1:10), and 0.2L of both 10M forward and reverse strand primers made by 

myself. Various primers were used to detect varying gene transcriptions in both cell lines and 

tissues shown in Table 1. Target genes were normalized using GAPDH to counterbalance any 

PCR variations present. Relative gene expression was calculated using 2- CT method.  

2.3.2 RNA Sequencing   

 

Renca cell line preparation for RNA sequencing was performed by Brad Shrum. Previously 

generated data showing discrepancies between our Renca cells [ KIM-1pos and KIM-1neg] (Lee 

and Gunaratnam, 2019), was re-analyzed for this project. RNA sequencing was performed by 

London Genomics Centre with the help of Dr. Rob Hegele at the Robarts Research Institute at 

Western University. RNA was extracted and isolated, with subsequent cDNA synthesis 

performed as described above on both KIM-1pos and KIM-1neg Renca cell lines. Illumina 

sequencing adapter sequences were used, and libraries were sequenced using the Illumina 
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NextSeq 500 sequencer (Illumina Inc., San Diego, CA). All sequence data was generated and 

analyzed by Partek Flow Software (Partek Inc., St. Louis, MO). Stringencies for data analysis 

was instilled within the bioinformatic pipeline to only compare genes with a p-value < 0.05, and 

to exclude fold changes between 1.5 and -1.5. Differential genes were analyzed through gene 

enrichments; allowing for the grouping of like genes that comply to a specific cellular function, 

as well as gene pathways. Bioinformatic pipelines were further specified by exploring for 

functional cellular differences within both gene enrichments, and gene pathways.  

2.4 The Human Cancer Genome Atlas (TCGA) Database 

 

All raw TCGA patient data was extrapolated and organized into a working excel spreadsheet by 

colleague Audrey Champagne. KIPAN patient database was used to complete human RCC and 

KIM-1 analyses. KIPAN database contains patient information from those diagnosed with 

ccRCC (KIRC or Kidney Clear Cell Carcinoma), pRCC (KIRP or Kidney Papillary Carcinoma), 

and Chromophobe RCC (KICH or Chromophobe Carcinoma). Working spreadsheet was then 

filtered to select data based upon analyses needed. Data was then transferred into 

GraphPad/Prism 8 in order to perform statistical analyses and generate graphical representations.  

 

2.5 Mice  

Animal protocol (2018-147) outlining all the studies contained in this thesis were approved by 

Western University's Animal Care Committee and in compliance with the guidelines set by 

Canadian Council of Animal Care. Female wild-type (WT) BALB/c mice were purchased from 

Charles River Laboratory (Wilmington, MA). Female mice are the common model to use for 

oncological research (Lee et al., 2018), along with having a higher tolerance to kidney injury in 
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comparison to male mice (Hu et al., 2009). All mice were kept in shoebox cages with easy 

access to water and mouse chow pellets. Immune-deficient recombinase-activating gene (Rag 1-/-

) null mice were purchased from Jackson Laboratory (Bar Harbor, ME) and housed in the West 

Valley pathogen-free barrier facility at Western University. These mice were kept in shoebox 

microisolator cages with easy access to water and mouse chow pellets. Mouse holding rooms 

were maintained at a constant temperature of 22°C with timed 12 h light and 12 h dark periods.  

 

Experimental mice were monitored every 2-3 days for health and behavioral monitoring. All 

physiological and behavioral changes were monitored and recorded for all experimental animals. 

After experiments were complete, all mice were euthanized using CO2. Collection of samples 

needed per experiments occurred post-mortem. Mouse holding rooms were maintained at a 

constant temperature of 22°C with timed 12 h light and 12 h dark periods.  

 

2.6. Experimental Tumour Models  

2.6.1 Subcutaneous Model of RCC Tumours  

 

To study tumour growth of RCC cells with the overexpression of KIM-1 (Renca KIM-1pos) or 

the absent expression of KIM-1 (Renca KIM-1neg) – Renca cell lines were injected into immune 

competent BALB/c mice. Prior to injections, Renca cells were cultured in 15cm dishes at a 

seeding concentration of 1 x 106cells/mL in complete DMEM. Stable expression of the 

transduced cell lines was maintained with 2g/mL of puromycin dihydrochloride. Medium was 

aspirated and replaced with fresh complete DMEM and puromycin dihydrochloride every 2-3 

days until 80%-90% confluency had been reached. Once 80%-90% confluent, cells were washed 
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with 10mL of warmed 1xPBS, and subsequently replaced with 5mL of Trypsin-EDTA  for 5 

minutes in 37°C, 5% (v/v) CO2 incubator. 10mL of complete DMEM was then added to cells to 

neutralize trypsin. Cells were then spray washed to remove any adherent cells from the culture 

dish surface. Collected cells were then centrifuged at 21°C, 400 x g, for 3 minutes. After 

centrifugation, the supernatant was aspirated and discarded, and cell pellets were then 

resuspended in complete DMEM in preparation for cell counting. Cells were counted using a 1:1 

dilution; 10L of trypan blue (0.4%) (Cat No. 97063-702, VMR International) with 10L of 

suspended cells onto a hemocytometer (Fisher Scientific, Waltham, MA). Cell viability was 

assessed using Trypan blue exclusion and cell a viability of >95% was observed before injection. 

After determining the total cell number, cells were resuspended at a concentration of 1x106 

cells/100L in a 1:1 ratio of 1xPBS and Corning MatrigelTM growth factor reduced (GFR) 

Membrane Matrix (Cat No. CB-40230C, Thermo Fisher Scientific, Waltham, MA). Cells in PBS 

and MatrigelTM were kept on ice to avoid solidification of matrix solution. Mice were sedated 

using 2% isoflurane for medium depth anesthesia following standard operating procedures prior 

to and during injections. Renca cells were resuspended at 1 x 106 cells/100L in either 1 x PBS 

alone (No MatrigelTM) or in a 1:1 dilution of 1 x PBS with Corning (GFR) MatrigelTM Membrane  

at a volume of 100L/injection.  One hundred microliters of each cell line were placed into an 

intermediary microcentrifuge tube, and subsequently drawn up into an 1/2 inch 28-gauge insulin 

syringe (Becton Dickinson, Franklin Lakes, NJ). Cells were either injected bilaterally, where 

Renca KIM-1pos and Renca KIM-1neg cells were injected into opposite flanks of the same mouse, 

or cells were injected unilaterally where only one cell line was given per mouse. Prior to 

injection, needles were inserted bevel up under the skin, and gently moved around to remove 

facia. This allowed for cell suspension with MatrigelTM membrane to solidify in a more unified 
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shape. Mice were monitored every day for the first 72h post injection, and then every 3-4 days 

afterwards for a duration of 21 days. Mice were then euthanized using a CO2 chamber, and 

tumours were removed using sterile surgical instruments, and collected for further analysis.  

2.6.2 Renal Orthotopic Model 

 

To study tumour growth of Renca KIM-1pos vs Renca KIM-1neg cells in a clinically relevant 

model of RCC – Renca cells were injected directly into the kidney. Specifically, either Renca 

KIM-1pos or Renca KIM-1neg cells were injected orthotopically into the subcapsular region of the 

left kidney of 6-10-week-old female WT BALB/c mice. Prior to injections, Renca cells were 

cultured, collected, and counted using the methods as described above. After determining the 

total cell number, cells were resuspended at a concentration of 2.5 x 105 cells/100L in a 1:1 

ratio of 1xPBS and Corning MatrigelTM GFR Membrane Matrix. Cells in PBS and MatrigelTM 

were kept on ice to avoid solidification of matrix solution. Mice were given slow-release 

buprenorphine (0.6mg/kg, Chiron Compounding Pharmacy, Guelph, ON) analgesics, and 

subsequently isoflurane sedation prior to surgical injections. Mouse fur was then shaved at the 

region of interest on the left flank, and surgical area was sterilized with iodine solution and 70% 

ethanol. Skin barrier and muscle layer were incised using sterile surgical instruments. Left 

kidneys were exposed and 30l of cells in MatrigelTM suspension were injected into the 

subcapsular region of the left kidney. All incisions were closed using sutures and staples 

according to our standard operating procedures outlined in animal our protocol. Mice were kept 

under a heat lamp until conscious and monitored 24 h post-injection, and every 2 days following. 

After 21 days, mice were euthanized using a CO2 chamber, tumour bearing kidneys and lungs 

were removed for further analysis of primary and secondary tumour growth, respectively.  
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2.7 Tumour Immunofluorescence Microscopy 

2.7.1 Sample Preparation 

 

All tissue samples were fixed in Periodate-Lysine-Paraformaldehyde (PLP) solution, made one 

day before use. Solution was made by first preparing a phosphate buffer containing 3:1 parts 

monobasic sodium phosphate and dibasic sodium phosphate diluted in double distilled H2O 

(ddH2O). Phosphate buffer was autoclaved and cooled to room temperature prior to preparing 

complete fixative solution. Once phosphate buffer reached room temperature, L-Lysine (>98%, 

Cat No. L5501-25G, Sigma-Aldrich, Oakville, CA) and Paraformaldehyde (PFA, Cat No. 

PB0684.SIZE.500g, Bio Basic, Markham, ON) were diluted in ddH2O and combined. Sodium 

Periodate (>99.8%, Cat No. 311448-100G, Sigma-Aldrich, Oakville, CA) was then added to 

mixture. Using the prepared phosphate buffer, the total volume was then brought up to 500mL or 

1L depending on how much solution was needed. PLP was kept at 4°C, in the dark until use 

(Appendix A 2).  

 

Subcutaneous and renal subcapsular experimental tumours were both collected to analyze 

immune infiltration using immunofluorescence. After euthanization, tissues were collected in 

15mL Falcon Centrifuge tubes (Cat No. 14-959-49B, Thermo Fisher Scientific, Waltham, MA), 

containing 10mL of PLP. Samples incubated in PLP for a maximum of 24 h, on a rotational 

shaker at 4°C, in the dark. After 24 h, samples were removed from PLP and gently rinsed with 

phosphate buffer before subjecting tissues to a sucrose gradient. Sucrose solutions were prepared 

the same day to ensure no bacterial contaminations occurred. Sucrose gradients were prepared 

using phosphate buffer (3:1 monobasic, dibasic sodium phosphate) with (v/v) 10%, 20% and 
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30% sucrose (>99.5%, Cat No. S7903-250G, Sigma-Aldrich, St. Louis, MO). All samples were 

placed in each gradient beginning at 10%, then subsequently 20%, and 30%, for one hour at a 

time or until tissues sank. After completing the three sucrose gradient steps, tissues were 

removed from sucrose and pat dried. A freezing bath was prepared using a metal tray placed in a 

styrofoam box containing dry ice with 10mL of 95% (v/v) ethanol. Approximately  5mL of 2-

Methylbutane Reagent (>99%) (Cat No. M32631-4L, Sigma-Aldrich, Oakville, CA) was added 

to the metal tray and allowed to reach the appropriate freezing temperature. Tissues were then 

placed in OCT compound (Cat No. 23730571, Thermo Fisher Scientific, Waltham, MA) in tissue 

cassettes. Tissues completely submerged in OCT compound within cassettes were placed onto 

metal tray until OCT compound froze around tissues. Cassettes were then wrapped in cling wrap 

and covered with tin foil prior to storage in the -80°C to avoid samples drying out.  

2.7.2 Co-Immunofluorescence 

 

Frozen OCT blocks containing tissue samples were sent off to Weihua Liu in the Department of 

Pathology at The University of Western Ontario. Samples were removed from histology tissue 

cassettes and placed onto a cryostat and sliced at a size of 7-10 microns. Each sample is then 

placed onto a positively charged glass slide (Cat No. 22-037-246, Fisher Scientific, Waltham, 

MA) and mounted appropriately. Fluorophore conjugated antibodies were applied to samples - 

CD3+ (SP7) (1:200, Cat No. NB600-1441SS, Novus Biologicals), CD4+ (1:200, Cat No. 

MABF575, Millipore Sigma, Burlington, MA), and CD8+ (1:400, Cat No. 100727, Bio Legend, 

San Diego, CA) to analyze co-immunofluorescence (CD3+, CD3+CD4+, and CD3+ CD8+). 

Tumour samples were analyzed for immune infiltrate population frequency and distribution 

using Cell Counter plugin in Fiji (ImageJ) Software, normalized to measured areas of focus (per 

square micron of tissue).   
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2.7.3 Immunohistochemistry 

 

Tissue samples that were subjected to immunohistochemical staining were collected from mice, 

and directly placed into 15mL Falcon tubes (Cat No. 14-959-49B, Thermo Fisher Scientific, 

Waltham, MA) containing 10% formalin buffered solution (Cat No. HT501128-4L, Sigma-

Aldrich, Oakville, CA). Tissue samples were incubated in 10% formalin for 72 h for tissue 

fixation. After 72 h, samples were moved from 10% formalin to 70% ethanol prior to analysis. 

Samples were then embedded in paraffin blocks within tissue cassettes. After hardening 

occurred, embedded tissues were sliced at 7-10 microns, and placed onto a positively charged 

glass slide. Samples were mounted properly and stained with either hematoxylin and eosin 

(H&E) or Masson’s Trichrome staining for further analysis.  

 

Quantification of histological sections of KIM-1pos and KIM-1neg Renca tumour capsules were 

measured using brightfield microscope analyzing for distance width measurements using NIS-

Elements Nikon Software. All tumour capsules were measured at 100x and normalized to total 

visualized area imaged by the microscope software. Tumour capsule measurements were 

evaluated using distance between two points; from the inner-most to the outer-most collagen 

layer of the capsule. Capsules were measured at five randomized locations throughout each 

tumour sample, and widths were averaged for final measurements. 

2.8 Statistical Analysis   

All data is presented as a mean ± standard error of the mean (SEM). Normality was assessed 

using normality and lognormality tests.  Between group differences in standard error of the 

means (SEM) were assessed using Student’s t- or Kruskal-Wallis tests for parametric and 

nonparametric data, respectively. Survival was plotted using Kaplan Meir curves, and groups 
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compared with log-rank test. Normality Lognormality statistical analysis was used to compare 

matched normal vs adjacent tumour tissue from TCGA patient database. A two-tailed alpha 

<0.05 was considered statistically significant. Statistical analyses were performed using 

GraphPad Prism, version 8.  

2.9 Sample Size Calculation 

 

Sample size calculation for tumour growth studies was calculated prior to experiments to 

determine proper N to observe significance. N mice in each group would provide >=80% power 

to detect at least a 30% difference in tumour growth between groups, two-sided alpha = 0.05.  N 

mice per group would provide >=80% power to detect at least a difference of at least xx standard 

deviations, two-sided alpha = 0.05). 
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Chapter 3 

3. Results 

3. 1 KIM-1 (Havcr1) mRNA is expressed at all stages of RCC and increases 

overall patient survival  

 

To investigate how KIM-1 expression may impact the survival of patients diagnosed with RCC, 

we utilized The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). KIPAN 

patient database including data from ccRCC, pRCC, and Chromophobe RCC patients was 

extracted. For our analysis, the KIRC (Kidney Clear Cell Carcinoma) and KIRP (Kidney 

Papillary Carcinoma) databases were combined due to KIM-1 upregulation being found in only 

ccRCC and pRCC patients (Zhang et al., 2014). I analyzed ccRCC or pRCC patient data in 

correlation with tumour associated KIM-1 (Havcr1) mRNA expression. First, I analyzed 

differences of KIM-1 expression between affected RCC tumours, and adjacent unaffected or 

normal tissue. Results showed that KIM-1 mRNA expression was significantly increased within 

tumours compared to normal adjacent tissue (Fig 1A). I then stratified patients according to the 

American Joint Committee on Cancer (AJCC) tumour-node-metastasis (TNM) staging system 

(Stages 1 to 4) to determine if KIM-1 expression varied with stage (The American Joint 

Committee on Cancer (AJCC), 2017).  Compared to normal adjacent tissue, the KIM-1 mRNA 

expression level was significantly increased in tumours at all stages of RCC (Fig 1B). Finally, 

patients with tumours having KIM-1 expression in the top 50th percentile had significantly 

improved survival compared to patients with tumours having KIM-1 expression below the 50th 

percentile in a KIRC and KIRP combined analyses (median survival = 25% vs. 50%, 

respectively, p <0.0001) (Fig 1C). Separate analyses of overall survival of KIRC and KIRP alone 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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were completed to evaluate discrepancies between tumour types. KIM-1 expression was found to 

significantly increase overall survival of KIRC patients (Fig 1D), but not KIRP patients (Fig 1E).  

 

  

A.      B.  

 
 

C.  
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D.  

 
 

E.  

 
 

Figure 1. TCGA RNA Sequencing data reveals HAVCR1 (KIM-1) mRNA is expressed at all 

stages of RCC and increased expression correlates to increased survival of KIRC (Kidney Clear 

Cell Carcinoma) and KIRP (Kidney Papillary Carcinoma) patients. 

A. Comparison of KIM-1 mRNA expression within non-paired normal adjacent tissue vs tumour 

tissue of KIRC and KIRP RCC patients (Normal: n = 129, Tumour: n = 823) (****, P<0.0001, 

Mann-Whitney t-test). B. KIM-1 mRNA expression in KIRC and KIRP RCC tumour stages vs 

normal adjacent tissue (Normal: n = 129, I: n = 439, II: n = 78, III: n = 175, IV: n = 99) (****, 

P<0.0001, Kruskal-Wallis statistical analysis). C. Overall KIRC and KIRP patient survival vs 

KIM-1 mRNA expression using 50% low/high expression cut-offs (Low: n = 376, High: n = 

441) (**, p = 0.0059; Kaplan-Meier statistical analysis). D. Overall KIRC patient survival vs 

KIM-1 mRNA expression using 50% low/high expression cut-offs (Low: n = 259, High: n = 

272) (**, p = 0.0019; Kaplan-Meier statistical analysis). E. Overall KIRP patient survival vs 

KIM-1 mRNA expression using 50% low/high expression cut-offs (Low: n = 117, High: n = 

169) (NS, p = 0.5650, Kaplan-Meier statistical analysis).  
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3.2 Expression of several collagen genes is increased within human RCC 

tumour tissue, in comparison to normal adjacent tissue 

 

Extracellular matrix (ECM) and collagen properties are widely studied in terms of its effects on 

tumour progression and metastasis (Fang et al., 2014). Thus, I investigated the correlation 

between collagen and KIM-1 expression in RCC patients with ccRCC and pRCC from TCGA. 

Collagen genes of interest; COL1A1, COL1A2, COL6A1, COL6A2, and COL23A1 were selected 

based off previous research of collagen in RCC (Wan et al., 2015; Xu et al., 2017; Majo et al., 

2020).  First, I analyzed the expression of the above collagen genes and compared their 

expression in RCC tumour tissue vs normal adjacent tissue for each patient. Results showed that 

COL1A1, COL1A2, COL6A1, COL6A2, and COL23A1 mRNA expression were all significantly 

increased within RCC tumour tissues compared to matched normal adjacent tissues (Fig 2A-E). 

 

A.                              B. 
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C.              D. 

          
 

 

E. 

 
 

 

Figure 2. TCGA RNA Sequencing database reveals increased collagen mRNA expression in 

RCC tumour tissue vs normal adjacent tissue using KIRC (Kidney Clear Cell Carcinoma) and 

KIRP (Kidney Papillary Carcinoma) patient databases. 

Paired comparison of normal adjacent tissue vs matched patient tumour tissues reveals several 

collagen genes A. Col1A1, B. Col1A2, C. Col6A1, D. Col6A2 and E. Col23A1 mRNA 

expression increased in RCC tumour tissues (n=104/group) (****, P<0.0001; Normality 

Lognormality statistical analysis).  
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3. 3 mRNA expression of KIM-1 vs serval collagen genes, have no clear 

correlation in human RCC patients 

 

To investigate the relationship between KIM-1 and collagen gene mRNA expression within 

human RCC patients, I analyzed our previously used collagen genes of interest (COL1A1, 

COL1A2, COL6A1, COL6A2, and COL23A1) along with 29 genes selected from a group of 

genes termed tumour matrisome index (TMI) by Su Bin Lim and team (Lim et al., 2019). The 

TMI was previously used to perform a multi-component analysis of ECM genes in a pan-cancer 

study to elucidate differential tumour immune responses. Using our previous genes of interest as 

well as the 29 genes within the TMI from Su Bin Lim, I analyzed correlations between collagen 

genes vs KIM-1 mRNA expression within human RCC patients (Lim et al., 2019) (Fig 3A). 

TCGA RNA-seq data from KIPAN databases (KIRC, KIRP and KICH) were used in order to 

correlate comparative mRNA expression levels. Tumour KIM-1 expression in the top 25th 

percentile, and bottom 25th percentile were compared using Spearman’s rank order correlation 

co-efficient to elucidate whether each collagen gene had a negative or positive correlation to 

KIM-1 (Havcr1). Results showed many correlations between the signature and KIM-1, yet no 

clear correlation trends between KIM-1 (Havcr1) and the TMI signatures (Fig 3B).  
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A.                  

Tumour Matrisome Index (TMI) 

Genes (Su Lin Bim et al.,) 

ABI3BP 

ADAMTS8 

CD36 

CHRDL1 

COL10A1 

COL11A1 

COL6A6 

CPB2 

CTHRC1 

CXCL13 

CXCL2 

FCN3 

GREM1 

HHIP 

IL6 

LPL 

MAMDC2 

MMP1 

MMP12 

OGN 

PCOLCE2 

S100A12 

S100A2 

SFTPA2 

SFTPC 

SFTPD 

SPP1 

TNNC1 

WIF1 

 

B. 

 

 

 

Variables HAVCR1 ABI3BP ADAMTS8 CD36 CHRDL1 COL10A1 COL11A1 COL6A6 CPB2 CTHRC1 CXCL13 CXCL2 FCN3 GREM1 HHIP IL6 LPL MAMDC2 MMP1 MMP12 OGN PCOLCE2 S100A12 S100A2 SFTPA2 SFTPC SFTPD SPP1 TNNC1 WIF1 COL1A1 COL1A2 COL23A1 COL6A1 COL6A2

HAVCR1 1 0.428 -0.089 0.072 -0.068 -0.093 0.007 -0.173 -0.026 0.114 0.149 0.142 -0.029 -0.115 0.019 -0.133 -0.104 -0.061 -0.070 -0.122 -0.157 0.151 0.055 -0.364 -0.031 -0.100 -0.129 0.275 -0.391 -0.023 0.100 0.085 0.406 -0.203 0.096

ABI3BP 0.428 1 0.065 0.000 0.083 -0.022 0.104 -0.020 -0.034 0.135 -0.003 0.236 -0.083 -0.023 0.162 -0.017 -0.075 0.086 -0.096 -0.066 -0.045 0.062 0.050 -0.097 -0.035 -0.157 0.035 0.206 -0.183 0.033 0.073 0.107 0.314 -0.078 0.136

ADAMTS8 -0.089 0.065 1 -0.073 0.332 0.175 0.132 0.229 0.076 -0.072 -0.118 0.139 0.058 0.306 0.316 0.191 0.172 0.303 -0.032 -0.024 0.398 0.062 -0.007 0.304 0.122 0.013 0.289 -0.043 0.369 0.281 0.021 0.100 -0.027 0.017 0.122

CD36 0.072 0.000 -0.073 1 -0.213 0.163 0.254 0.005 0.024 0.493 0.421 0.140 0.708 0.161 -0.137 0.304 0.570 -0.102 0.452 -0.052 0.250 0.496 0.461 -0.540 -0.032 -0.258 0.268 -0.527 -0.394 -0.208 0.452 0.494 0.556 0.140 0.424

CHRDL1 -0.068 0.083 0.332 -0.213 1 0.362 0.240 0.242 0.071 0.006 0.001 0.112 -0.118 0.513 0.351 0.337 0.070 0.532 0.024 0.254 0.434 0.098 -0.017 0.374 0.057 0.032 0.072 0.127 0.436 0.349 0.059 0.146 -0.240 -0.018 0.020

COL10A1 -0.093 -0.022 0.175 0.163 0.362 1 0.719 0.239 0.044 0.491 0.336 0.083 0.238 0.596 0.233 0.469 0.149 0.256 0.283 0.281 0.522 0.229 0.161 0.090 0.048 -0.025 0.005 -0.074 0.103 0.192 0.607 0.614 0.025 0.354 0.427

COL11A1 0.007 0.104 0.132 0.254 0.240 0.719 1 0.125 0.079 0.619 0.370 0.218 0.275 0.541 0.196 0.507 0.101 0.193 0.365 0.293 0.368 0.224 0.205 -0.015 0.038 -0.131 0.065 -0.083 -0.063 0.043 0.715 0.687 0.207 0.428 0.584

COL6A6 -0.173 -0.020 0.229 0.005 0.242 0.239 0.125 1 -0.003 0.008 -0.019 -0.037 -0.013 0.285 0.208 0.158 0.121 0.213 0.054 0.090 0.327 0.045 -0.105 0.157 0.006 -0.029 0.039 -0.141 0.269 0.181 0.102 0.120 -0.172 0.102 0.051

CPB2 -0.026 -0.034 0.076 0.024 0.071 0.044 0.079 -0.003 1 0.127 0.122 0.104 0.050 0.067 0.063 0.065 0.039 0.015 0.046 0.037 0.054 0.062 0.023 0.029 0.059 -0.017 0.035 0.024 -0.040 0.019 0.057 0.091 0.078 -0.001 0.099

CTHRC1 0.114 0.135 -0.072 0.493 0.006 0.491 0.619 0.008 0.127 1 0.577 0.289 0.373 0.383 -0.008 0.456 0.080 -0.028 0.460 0.224 0.240 0.308 0.381 -0.282 0.026 -0.243 0.057 -0.179 -0.341 -0.155 0.779 0.732 0.484 0.446 0.721

CXCL13 0.149 -0.003 -0.118 0.421 0.001 0.336 0.370 -0.019 0.122 0.577 1 0.213 0.367 0.274 -0.079 0.334 0.029 -0.221 0.313 0.195 0.182 0.349 0.335 -0.343 -0.009 -0.175 -0.066 -0.224 -0.297 -0.111 0.537 0.492 0.439 0.275 0.512

CXCL2 0.142 0.236 0.139 0.140 0.112 0.083 0.218 -0.037 0.104 0.289 0.213 1 0.109 0.136 0.084 0.458 0.058 0.052 0.104 0.184 0.050 0.204 0.288 0.009 0.061 -0.161 0.129 0.087 -0.117 0.028 0.225 0.203 0.325 0.111 0.305

FCN3 -0.029 -0.083 0.058 0.708 -0.118 0.238 0.275 -0.013 0.050 0.373 0.367 0.109 1 0.132 -0.035 0.284 0.502 -0.105 0.313 -0.052 0.332 0.540 0.423 -0.327 -0.059 -0.161 0.307 -0.445 -0.238 -0.109 0.394 0.443 0.491 0.186 0.399

GREM1 -0.115 -0.023 0.306 0.161 0.513 0.596 0.541 0.285 0.067 0.383 0.274 0.136 0.132 1 0.299 0.542 0.217 0.364 0.361 0.324 0.635 0.200 0.169 0.160 0.126 -0.067 0.104 -0.115 0.243 0.217 0.483 0.530 -0.011 0.172 0.364

HHIP 0.019 0.162 0.316 -0.137 0.351 0.233 0.196 0.208 0.063 -0.008 -0.079 0.084 -0.035 0.299 1 0.179 0.119 0.308 -0.021 0.107 0.338 0.174 -0.013 0.216 0.041 -0.027 0.139 0.082 0.255 0.269 0.136 0.192 -0.030 0.019 0.127

IL6 -0.133 -0.017 0.191 0.304 0.337 0.469 0.507 0.158 0.065 0.456 0.334 0.458 0.284 0.542 0.179 1 0.243 0.206 0.386 0.345 0.351 0.327 0.314 0.096 0.110 -0.098 0.218 -0.094 0.040 0.105 0.474 0.490 0.104 0.253 0.400

LPL -0.104 -0.075 0.172 0.570 0.070 0.149 0.101 0.121 0.039 0.080 0.029 0.058 0.502 0.217 0.119 0.243 1 0.170 0.258 -0.023 0.376 0.379 0.254 -0.136 0.035 -0.076 0.304 -0.400 0.018 0.020 0.118 0.237 0.169 -0.068 0.100

MAMDC2 -0.061 0.086 0.303 -0.102 0.532 0.256 0.193 0.213 0.015 -0.028 -0.221 0.052 -0.105 0.364 0.308 0.206 0.170 1 -0.018 0.097 0.407 -0.006 -0.039 0.322 0.066 0.049 0.058 0.058 0.341 0.262 0.049 0.140 -0.269 -0.062 -0.020

MMP1 -0.070 -0.096 -0.032 0.452 0.024 0.283 0.365 0.054 0.046 0.460 0.313 0.104 0.313 0.361 -0.021 0.386 0.258 -0.018 1 0.204 0.246 0.294 0.303 -0.142 0.031 -0.147 0.166 -0.251 -0.118 -0.072 0.430 0.412 0.225 0.141 0.314

MMP12 -0.122 -0.066 -0.024 -0.052 0.254 0.281 0.293 0.090 0.037 0.224 0.195 0.184 -0.052 0.324 0.107 0.345 -0.023 0.097 0.204 1 0.109 0.054 0.108 0.160 0.027 0.055 -0.095 0.136 0.115 0.046 0.273 0.255 -0.084 0.214 0.161

OGN -0.157 -0.045 0.398 0.250 0.434 0.522 0.368 0.327 0.054 0.240 0.182 0.050 0.332 0.635 0.338 0.351 0.376 0.407 0.246 0.109 1 0.313 0.186 0.104 0.043 -0.076 0.150 -0.290 0.291 0.260 0.392 0.475 0.053 0.149 0.298

PCOLCE2 0.151 0.062 0.062 0.496 0.098 0.229 0.224 0.045 0.062 0.308 0.349 0.204 0.540 0.200 0.174 0.327 0.379 -0.006 0.294 0.054 0.313 1 0.401 -0.281 -0.036 -0.206 0.226 -0.236 -0.141 0.106 0.293 0.360 0.441 0.043 0.303

S100A12 0.055 0.050 -0.007 0.461 -0.017 0.161 0.205 -0.105 0.023 0.381 0.335 0.288 0.423 0.169 -0.013 0.314 0.254 -0.039 0.303 0.108 0.186 0.401 1 -0.189 0.038 -0.135 0.126 -0.205 -0.177 -0.081 0.317 0.342 0.410 0.103 0.325

S100A2 -0.364 -0.097 0.304 -0.540 0.374 0.090 -0.015 0.157 0.029 -0.282 -0.343 0.009 -0.327 0.160 0.216 0.096 -0.136 0.322 -0.142 0.160 0.104 -0.281 -0.189 1 0.068 0.158 0.038 0.258 0.585 0.323 -0.251 -0.247 -0.555 -0.024 -0.240

SFTPA2 -0.031 -0.035 0.122 -0.032 0.057 0.048 0.038 0.006 0.059 0.026 -0.009 0.061 -0.059 0.126 0.041 0.110 0.035 0.066 0.031 0.027 0.043 -0.036 0.038 0.068 1 0.168 0.126 0.051 0.012 0.049 -0.020 -0.028 -0.003 -0.047 0.027

SFTPC -0.100 -0.157 0.013 -0.258 0.032 -0.025 -0.131 -0.029 -0.017 -0.243 -0.175 -0.161 -0.161 -0.067 -0.027 -0.098 -0.076 0.049 -0.147 0.055 -0.076 -0.206 -0.135 0.158 0.168 1 -0.091 0.167 0.177 0.038 -0.164 -0.174 -0.299 -0.013 -0.226

SFTPD -0.129 0.035 0.289 0.268 0.072 0.005 0.065 0.039 0.035 0.057 -0.066 0.129 0.307 0.104 0.139 0.218 0.304 0.058 0.166 -0.095 0.150 0.226 0.126 0.038 0.126 -0.091 1 -0.182 0.057 0.019 0.027 0.094 0.191 -0.001 0.114

SPP1 0.275 0.206 -0.043 -0.527 0.127 -0.074 -0.083 -0.141 0.024 -0.179 -0.224 0.087 -0.445 -0.115 0.082 -0.094 -0.400 0.058 -0.251 0.136 -0.290 -0.236 -0.205 0.258 0.051 0.167 -0.182 1 0.056 0.089 -0.197 -0.224 -0.218 -0.130 -0.206

TNNC1 -0.391 -0.183 0.369 -0.394 0.436 0.103 -0.063 0.269 -0.040 -0.341 -0.297 -0.117 -0.238 0.243 0.255 0.040 0.018 0.341 -0.118 0.115 0.291 -0.141 -0.177 0.585 0.012 0.177 0.057 0.056 1 0.311 -0.249 -0.188 -0.495 -0.056 -0.282

WIF1 -0.023 0.033 0.281 -0.208 0.349 0.192 0.043 0.181 0.019 -0.155 -0.111 0.028 -0.109 0.217 0.269 0.105 0.020 0.262 -0.072 0.046 0.260 0.106 -0.081 0.323 0.049 0.038 0.019 0.089 0.311 1 -0.099 -0.047 -0.219 -0.132 -0.116

COL1A1 0.100 0.073 0.021 0.452 0.059 0.607 0.715 0.102 0.057 0.779 0.537 0.225 0.394 0.483 0.136 0.474 0.118 0.049 0.430 0.273 0.392 0.293 0.317 -0.251 -0.020 -0.164 0.027 -0.197 -0.249 -0.099 1 0.911 0.419 0.571 0.794

COL1A2 0.085 0.107 0.100 0.494 0.146 0.614 0.687 0.120 0.091 0.732 0.492 0.203 0.443 0.530 0.192 0.490 0.237 0.140 0.412 0.255 0.475 0.360 0.342 -0.247 -0.028 -0.174 0.094 -0.224 -0.188 -0.047 0.911 1 0.409 0.484 0.756

COL23A1 0.406 0.314 -0.027 0.556 -0.240 0.025 0.207 -0.172 0.078 0.484 0.439 0.325 0.491 -0.011 -0.030 0.104 0.169 -0.269 0.225 -0.084 0.053 0.441 0.410 -0.555 -0.003 -0.299 0.191 -0.218 -0.495 -0.219 0.419 0.409 1 0.107 0.509

COL6A1 -0.203 -0.078 0.017 0.140 -0.018 0.354 0.428 0.102 -0.001 0.446 0.275 0.111 0.186 0.172 0.019 0.253 -0.068 -0.062 0.141 0.214 0.149 0.043 0.103 -0.024 -0.047 -0.013 -0.001 -0.130 -0.056 -0.132 0.571 0.484 0.107 1 0.712

COL6A2 0.096 0.136 0.122 0.424 0.020 0.427 0.584 0.051 0.099 0.721 0.512 0.305 0.399 0.364 0.127 0.400 0.100 -0.020 0.314 0.161 0.298 0.303 0.325 -0.240 0.027 -0.226 0.114 -0.206 -0.282 -0.116 0.794 0.756 0.509 0.712 1
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Figure 3. Correlogram examining the correlation between tumour KIM-1 and collagen 

signatures mRNA expression using TCGA KIPAN patient databases. 

A. List of TMI genes extrapolated from Su Bin Lim and team used in correlation analysis (Lim 

et al., 2019), along with several collagen genes of interest (COL1A1, COL1A2, COL6A1, 

COL6A2 and COL23A1). B. Correlogram of Spearman’s correlation matrix comparing collagen 

and TMI signature and collagen genes to KIM-1 mRNA expression levels in human RCC 

patients. Correlation co-efficient ranging from +1 to -0.5 were plotted and used to create visual 

comparative heat map. Perfect correlations noted as +1 or -1, for both positive and negative 

correlations to KIM-1 expression, respectively. Each plot in correlogram represents a gene 

correlation to KIM-1, for each patient analyzed (KIPAN (total): n = 1019: KIRC: n = 606, KIRP: 

n = 321, KICH: n = 90, N/A: n = 2 – excluded from analysis due to non-matching). 

 

 

 

3. 4 KIM-1 expression on RCC cell does not alter their tumorigenic potential 

when injected bilaterally into BALB/c mice. 

 

To investigate the role of KIM-1 expression on the growth of RCC tumours, we injected 1 x 106 

KIM-1pos and KIM-1neg Renca cells into the flanks of 6-8-week-old female BALB/c mice for 21 

days. MatrigelTM incorporation into injection methods influences uniformity and reproducibility 

of Renca tumour models by maintaining the integrity of cells after subcutaneous injection (Yu et 

al., 2018). Cells were either resuspended in 100L of 1 x PBS alone and/or 1:1 dilution of 1 x 

PBS and Corning (GFR) MatrigelTM Membrane, subcutaneously into the right flanks of 6-8-

week-old female mice, to rule out any effects of MatrigelTM use on tumour development. 

Bilateral injection of Renca tumours allowed us to compare tumour growth between KIM-1pos 

and KIM-1neg tumours in the same host (i.e., same immune system). I did not observe any 

significant differences in tumour volume or mass between KIM-1pos and KIM-1neg tumours both 

without MatrigelTM (Fig 4A) or with MatrigelTM (Fig 4B). 
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A.   

       
 

 

B. 

      
   

Figure 4. Mass and volumes of KIM-1pos and KIM-1neg Renca tumours grown SQ-Bilat. 

A. KIM-1pos and KIM-1neg Renca tumour volume and mass, grown without MatrigelTM for 21 

days in 6–8-week-old female mice (n=11/group) (volume: NS, p=0.3080, mass: NS, p=0.3251). 

B. KIM-1pos and KIM-1neg Renca tumour volume and mass, grown with MatrigelTM for 21 days 

in 6–8-week-old female mice (n=24/group) (volume: NS, p=0.3673, mass: NS, p=0.4629). Data 

is represented as mean measurement of tumour size/volume (mm3), and mass (g) ± SEM 

(NS=not significant, Unpaired two-tailed t-test). 
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3.5 KIM-1 expression in Renca cells does not alter tumorigenic potential when 

injected unilaterally into BALB/c mice. 

 

Next, I investigated whether unilateral injection methods of KIM-1pos or KIM-1neg Renca cells 

into the flanks of BALB/c mice would change the results observed in the previous experiment. I 

argued that if KIM-1 expression in Renca cells had any effect on the anti-tumour immune 

response to Renca tumours, unilateral injection of the KIM-1pos and KIM-1neg cells into separate 

mice would result in differences between the two groups. Once again, I either suspended the 

Renca cells in a 1 x PBS alone or a 1:1 dilution of 1 x PBS with Corning (GFR) MatrigelTM 

Membrane. Again, I did not observe any differences between KIM-1pos and KIM-1neg Renca 

tumour volume or mass in our unilateral model both without MatrigelTM (Fig 5A) or with 

MatrigelTM (Fig 5B). Since I found no differences between SQ-Bilat or SQ-Unilat tumour 

volumes and masses, here on in I decided to analyze tumour specimens only with the 

incorporation of MatrigelTM for our various models. 
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A.          

    
 

B.          

    
 

Figure 5. Mass and volumes of KIM-1pos and KIM-1neg Renca tumours grown SQ-Unilat. 

A. KIM-1pos and KIM-1neg Renca tumour volume and mass, grown without MatrigelTM for 21 

days in 6–8-week-old female mice (KIM-1neg: n=10, KIM-1pos: n=11) (volume: NS, p=0.9071, 

mass: NS, p=0.1538). B. KIM-1pos or KIM-1neg Renca tumour volume and mass, grown with 

MatrigelTM for 21 days in 6–8-week-old female mice (n=8/group) (volume: NS, p=0.7854, mass: 

NS, p=0.3005). Data is represented as mean measurement of tumour size/volume (mm3), and 

mass (g) ± SEM (NS=not significant, Unpaired two-tailed t-test). 
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3.6 Tumour KIM-1 expression does not influence immune infiltration of 

lymphocytes in the subcutaneous Renca model. 

 

To investigate the effect of KIM-1 expression on the immune response against Renca tumours, I 

compared the immune infiltrate between KIM-1pos and KIM-1neg Renca tumours grown 

subcutaneously within female immune competent BALB/c mice using co-immunofluorescence 

staining for CD3+, CD3+CD4+, and CD3+ CD8+ cells. We examined tumours at 21 days post-

injection to allow for maximal infiltration of immune cells. There were no significant differences 

in tumour infiltrating CD3+, CD4+, or CD8+ immune cells between Renca KIM-1pos (Fig 6A) and 

KIM-1neg (Fig 6B) tumours (Fig 6C).  
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B. 

    
 

C.  

 
 

Figure 6. Co-immunofluorescence staining for CD3+, CD4+ and CD8+ invading lymphocytes in 

KIM-1pos and KIM-1neg Renca tumours 21 days after SQ-Bilat injection. 

A. KIM-1pos and B. KIM-1neg Renca tumour stained with CD3+ (green) CD4+ (blue) CD8+ 

(white) conjugated antibodies (n=4/group). C. Quantification of the various types of immune 

infiltrates counted within tumours. Designated arrows pointing to cell types [CD3+ (green) CD4+ 

(blue) CD8+ (white)] on inlet images. All images were taken via widefield microscopy using 

Leica Software at 10x and 100x magnification, respectively. Immune infiltrates were enumerated 

using Fiji manual cell counter software. Data is represented as mean measurement of number of 

immune infiltrates per tissue surface area ± SEM (CD4+. p= 0.218575, NS; CD8+, p= 0.999170, 

NS; CD3+, p = 0.859486, NS; CD3+CD8+, p=0.875091, NS. Unpaired two-tailed t-test).  
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3.7 KIM-1pos Renca tumours are enveloped in a collagen-rich capsule. 

 

Since I elucidated that various collagen genes are significantly upregulated in RCC patient 

tumours, I next examined differences in connective tissues within KIM-1pos and KIM-1neg Renca 

tumours at endpoint (21 d) by staining for collagen using Masson's Trichrome stain. KIM-1pos 

tumours were found to be surrounded by a significantly thicker collagen dense capsule compared 

to the KIM-1neg tumours (Fig 7A-C). Importantly, the collagen dense capsule was found to be 

prominent in Renca KIM-1pos regardless of whether the Renca cells were injected bilaterally into 

either flank of the same BALB/c mice or unilaterally into independent mice (MatrigelTM) (Fig 

8A-C). 
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C. 

 



 

 

 

 

52 

 

Figure 7. Collagen deposition in KIM-1pos and KIM-1neg Renca tumours injected SQ-Bilat in 

female BALB/c (WT) mice. 

 

Micrograph of A. KIM-1pos and B. KIM-1neg Renca tumour stained with Masson’s Trichrome 

elucidating the collagen stromal capsule (KIM-1neg: n=7, KIM-1pos: n=4). All images were taken 

at 100x magnification using brightfield microscopy and NIS-Elements Nikon software. C. Width 

(μm) quantification of collagen tumour capsule from KIM-1neg and KIM-1pos Renca tumours. 

Data is represented as mean measurement of tumour capsule width (μm) ± SEM (****, 

p<0.0001, Unpaired two-tailed t-test). 
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Figure 8. Collagen deposition in KIM-1pos and KIM-1neg Renca tumours grown SQ-Uni in 

female BALB/c mice. 

Micrograph of A. KIM-1pos and B. KIM-1neg Renca tumours stained with Masson’s Trichrome 

elucidating the collagen stromal capsule (KIM-1neg: n=7, KIM-1pos: n=8). All images were taken 

using brightfield microscopy and NIS-Elements Nikon software. C. Width (μm) quantification of 

collagen tumour capsule from KIM-1neg and KIM-1pos Renca tumours. Data is represented as 

mean measurement of tumour capsule width (μm) ± SEM (**, p = 0.0049, Unpaired two-tailed t-

test). 

 

 

 

3.8 The collagen-dense capsule surrounding KIM-1pos Renca tumours does not 

depend on the host adaptive immune system. 

 

To determine whether the differences in collagen dense capsule surrounding the Renca 

KIM-1pos tumours was dependent on an intact adaptive immune system of the host, I examined 

KIM-1pos and KIM-1neg Renca tumours growth in immune deficient Rag-1-/- mice on the BALB/c 

background. Once again, the tumours were collected 21 days post-injection and sections were 

stained with Masson’s Trichrome stain. KIM-1pos Renca tumours exhibited significantly thicker 

collagen dense capsules in comparison to KIM-1neg Renca tumours (Fig 9A-C). 

A.                 B.  
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C.  

 

Figure 9. Collagen deposition in KIM-1pos and KIM-1neg Renca tumours grown SQ-Bilat in 

Rag1 -/- mice. 

Micrograph of A. KIM-1pos and B. KIM-1neg Renca tumour stained with Masson’s Trichrome 

elucidating the collagen stromal capsule (n=5/group). All images were taken at 100x 

magnification using brightfield microscopy and NIS-Elements Nikon software. C. Width (μm) 

quantification of collagen tumour capsule from KIM-1pos and KIM-1neg Renca tumours. Data is 

represented as mean measurement of tumour capsule width (μm) ± SEM (*, p = 0.0120, 

Unpaired two-tailed t-test). 

 

 

3. 8 KIM-1 expression inhibits Renca tumour growth in an orthotopic model 

of RCC.  

 

RCC tumours arise from the proximal tubule of the kidney and can metastasize to distant sites 

such as the lung. To test the role of KIM-1 on tumour growth within the kidney and on 

metastasis to the lungs, I orthotopically injected KIM-1pos or KIM-1neg Renca cells into the renal 

subcapsular space of BALB/c mice. Previous studies have claimed that Renca cells are able to 

grow in the kidney and preferentially metastasize to the lungs within 2 weeks of intra-renal 

injection (Feldman et al., 2016). Renca cells were injected with MatrigelTM into the subcapsular 

region of the left kidney. The volume and weights of the KIM-1pos Renca tumours were 

significantly lower than KIM-1neg Renca tumours (Fig 10). Mice injected with KIM-1pos Renca 
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cells also had fewer metastatic lung nodules compared to mice injected with KIM-1neg Renca 

cells, albeit this was not significant (Fig 13A-C).  

 

   

     

Figure 10. Volumes and weights of KIM-1pos and KIM-1neg Renca tumour after orthotopic 

injection into BALB/c mice. 

Tumour bearing kidney volume and mass respectively, 21 days post orthotopic injections of 

KIM-1pos or KIM-1neg Renca cells (n=15/group). Data is represented as mean measurement of 

tumour size/volume (mm3), and mass (g) ± SEM (volume, **, p = 0.0024; mass, **, p = 0.0045, 

Unpaired two-tailed t-test).  

 

3. 9 KIM-1pos Renca tumours do not produce a collagen rich capsule when 

injected orthotopically into BALB/c mice. 

 

To investigate if orthotopic injection of KIM-1pos Renca cells produce tumours with a 

collagen rich capsule, both KIM-1pos and KIM-1neg Renca tumours grown orthotopically in 

female BALB/c mice were subjected to Masson's Trichrome staining. Analysis of kidney bearing 

tumours revealed no measurable differences in capsule size between both KIM-1pos and KIM-1neg 

kidney bearing tumours (Fig 11A and B).  
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A.       B. 

            
 

Figure 11. Collagen deposition in KIM-1pos and KIM-1neg Renca tumours grown orthotopically 

in BALB/c mice. 

Micrograph of A. KIM-1pos and B. KIM-1neg kidney bearing Renca tumours stained with 

Masson’s Trichrome elucidating the lack of collagen stromal capsule. All images were taken at 

100x magnification using brightfield microscopy and NIS-Elements Nikon software. 

 

 

3.10 Tumour KIM-1 expression does not influence immune infiltration of 

invading lymphocytes in the orthotopic Renca model. 

 

Next, I investigated whether KIM-1 expression on Renca tumours had any effects on 

tumour infiltrating T cells in our orthotopic model.  KIM-1pos and KIM-1neg tumour-bearing 

kidneys were stained for CD3+, CD3+CD4+, and CD3+ CD8+. We examined tumours at 21 days 

post-injection to allow for maximal infiltration by immune cells. There were no significant 

differences in tumour infiltrating CD3+, CD4+, or CD8+ T cells between Renca KIM-1pos and 

KIM-1neg tumours (Fig 12A-C).  
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A.  
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C. 

 

Figure 12. Co-immunofluorescence staining for CD3+, CD4+, and CD8+ invading lymphocytes 

in KIM-1pos and KIM-1neg Renca orthotopic tumours from BALB/c mice after 21 days. 

Micrographs of A. KIM-1pos and B. KIM-1neg Renca tumour stained for CD3+ (green) CD4+ 

(blue) CD8+ (white) (KIM-1pos: n=3, KIM-1neg: n = 2). C. Quantification of the various types of 

immune infiltrates counted within tumours. Designated arrows pointing to cell types [CD3+ 

(green) CD4+ (blue) CD8+ (white)] on inlet images. All images were taken via widefield 

microscopy using Leica Software at 10x and 100x magnification, respectively. Immune 

infiltrates were enumerated using Fiji manual cell counter software.  

 

 

3. 11 KIM-1 expression does not affect spontaneous metastasis from the 

kidneys to lungs in the orthotopic model of RCC. 

 

We next investigated whether KIM-1 expression had any impact on the process of 

metastasis from the kidney to the lungs by collecting the lungs at day 21 and examining them for 

metastatic nodules using microscopy.  Histological examination of the lung tissues revealed no 

statistically significant differences in the number of metastatic nodules, as well as no differences 

in collagen encapsulation between mice injected orthotopically with KIM-1pos or KIM-1neg Renca 

cells (Fig 13A-C).  
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A.       B.  

      
 

C.  

 
 

Figure 13. Number of metastatic lung nodules in BALB/c mice injected orthotopically with 

KIM-1pos or KIM-1neg Renca cells. 

Micrographs of H&E-stained sections of lung tissue excised from A. KIM-1pos and B. KIM-1neg 

Renca cell treated mice (n=8/group). C. Quantification of metastatic lung nodules formed within 

both KIM-1pos and KIM-1neg Renca cell treated mice. Nodules were enumerated by manually 

counting visualized metastases. Metastases are indicated using arrows. All images were taken 

using brightfield microscopy and NIS-Elements Nikon software. Data is represented as mean 

measurement of number of metastatic nodules per tissue surface area ± SEM (NS, p = 0.2073, 

Unpaired two-tailed t-test). 
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3.12 KIM-1 expression in Renca cells promotes transcription of genes involved 

in the formation and interaction with extracellular matrix.  

 

To understand how KIM-1 expression promotes the formation of collagen rich capsules by  

Renca tumours, I analyzed our previously generated RNA sequencing data from both KIM-1pos 

and KIM-1neg Renca cells (Lee and Gunaratnam, 2019). The most significant gene enrichment 

that was upregulated within the Renca KIM-1pos cells was in genes involved in Extracellular 

Matrix Interaction (p < 0.05, fold change 1.96) (Fig 14A and B). This enrichment contained 

genes involved in the interaction and deposition of extracellular matrix (ECM). Moreover, the 

most significantly upregulated collagen genes within KIM-1pos Renca cells was COL6A1 and 

COL6A2 (Fig 14C).   
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A.                           B.  
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Figure 14. Illumina RNA-Sequencing transcriptomic analysis of enriched Extracellular Matrix 

Genes between KIM-1pos and KIM-1neg Renca cell lines. 

A. Heat map generated from RNA Sequencing data of KIM-1pos and KIM-1neg Renca cell lines 

(n=3/group), displaying differential gene enrichment analysis of extracellular matrix (ECM) 

genes (p>/=0.05). Genes with increased numbers of transcripts are marked as red, while 

decreased are marked as green. B. List of ECM genes that have significant increased expression 

in KIM-1pos Renca cells, in comparison to KIM-1neg Renca cells. C. Collagen 6 A 1 and Collagen 

6 A 2 mRNA expression level within both KIM-1pos (red) and KIM-1neg (blue) Renca cells. 

 

 

 

Table 1. Mouse Oligonucleotide PCR primer sequences 

 

Primer Sequence (5’  3’) 

Gene  Forward Sequence Reverse Sequence  

mKIM-1 

(murine) 

TCAGCATCTCTAAGCGTGGT ATGTTGTCTTCAGCTCGGGA 

GAPDH 

(murine) 

AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 
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Chapter 4 

4. Discussion 

4.1 Major Findings 

4.1.1 KIM-1 (Havcr1) mRNA is expressed at all stages of RCC and increases 

overall patient survival 

 

Multiple studies have identified KIM-1 as a urine or blood biomarker for the early 

detection of RCC (Scelo et al., 2018).  This was made possible through sensitive detection of 

shed or soluble KIM-1 (sKIM-1) in the blood plasma and urine (Scelo et al., 2018) of RCC 

patients. Our laboratory previously showed that cell-surface KIM-1 is shed by ADAM17 or 

TACE in RCC cells (Gandhi et al., 2014). Using the TCGA KIPAN database, specifically 

analyzing KIRC (Kidney Clear Cell Carcinoma) and KIRP (Kidney Papillary Carcinoma) patient 

databases, I was able to show that increased KIM-1 mRNA is highly upregulated in human RCC 

patients (Fig 1). KIM-1 expression was found to be significantly increased as early as stage I 

disease, with persistent expression through stages I-IV. Given that KIM-1 is only upregulated 

during acute kidney injury (AKI) (Han et al., 2005), and the early detection of KIM-1 in the 

blood of RCC patients (Scelo et al., 2018), these data confirm that KIM-1 is likely upregulated in 

early RCC lesions (Han et al., 2002). The reason for this upregulation is unclear, but it is not due 

to VHL-loss of function (unpublished observations).  In addition, higher KIM-1 expression was 

associated with significantly increased overall survival rates in KIRC (ccRCC) patients, yet not 

KIRP (papillary RCC) patients (Fig 1C, D and E). These data are in contradiction to findings 

reported by Scelo and team (Scelo et al., 2018), that high plasma KIM-1 concentrations were 

associated with poorer survival. Our study, however, examined endogenous tumour KIM-1and 

not soluble (shed) KIM-1.  
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Many groups, including Dr. Gunaratnam’s,  have shown that during AKI, KIM-1 converts 

proximal tubular epithelial cells (PTECs) into semiprofessional phagocytes for clearance of 

apoptotic and necrotic cells of (Arai et al., 2016). KIM-1 recognizes and binds to 

phosphatidylserine (PtdSer) – a phospholipid abundantly expressed on early necrotic and 

apoptotic cells – via the metal ion-dependent ligand binding site within its IgV domain (Nagata 

et al., 2016). The clearance of dying cells leads to curtailment of inflammation and promotes 

tissue repair. The function of KIM-1 in RCC may be linked to its reparative role in the healthy 

kidney during acute injury, where an increase in KIM-1 expression reduces the amount of 

apoptotic or early necrotic cells formed in tumours, thereby significantly reducing tumour burden 

and promoting cell regeneration and repair (O. Z. Ismail et al., 2016). This in turn could explain 

why patients with higher levels of KIM-1 expression, exhibit more favorable outcomes.  

4.1.2 ECM signatures are upregulated in human RCC  

 

Previous studies have underscored the importance of tumour stroma and ECM components in 

tumour progression and metastasis (Yuzhalin et al., 2018). RCC is known to upregulate adhesion 

molecules (Chen et al., 2016), moreover, several collagen genes exhibiting increased mRNA 

expression have been found in human RCC tumours and linked to tumour grade (Best et al., 

2019). Collagen genes such as Collagen 1 (COL1) (Majo et al., 2020), Collagen 6 (COL6) (Wan 

et al., 2015), and Collagen 23A1 (COL23A1) (Xu et al., 2017) have been shown to be 

upregulated in RCC tumours. Collagen in cancer has been found to be both beneficial and 

detrimental to patients in terms of tumour progression (Fang et al., 2014), although the 

mechanistic role of collagen in RCC is not well understood. Furthermore, chronic KIM-1 

expression after AKI has been linked to kidney fibrosis in vivo (Humphreys et al., 2013). Our 

analysis of the TCGA using KIRC and KIRP patient cohorts revealed that various collagen genes 



 

 

 

 

65 

 

(i.e. COL1A1, COL1A2, COL6A1, COL6A2, and COL23A1) were all significantly upregulated in 

RCC tumour tissues vs adjacent normal tissues (Fig 2). A recent study found that Col6a1 

promotes metastasis and a poorer prognosis in pancreatic cancer patients (Owusu-Ansah et al., 

2019). Another study found Col23A1 is upregulated in RCC, and contributes to tumour 

progression (Xu et al., 2017). On the other hand, down-regulation of Col1A2 by methylation  

was found in both bladder (Mori et al., 2009), and melanoma cancer (Bonazzi et al., 2011). The 

role of these various collagen genes across multiple types of cancer remains controversial. When 

correlating KIM-1 expression to the TMI signature gene list (Lim et al., 2019), along with 

previous collagen genes of interest (COL1A1, COL1A2, COL6A1, COL6A2, and COL23A1), I 

found no clear correlation trends between these collagen signatures and KIM-1 expression in 

RCC patients (Fig 3). Although, when comparing KIM-1 expression to COL1A2, COL6A1, 

COL6A2, and COL23A1 - these were found to positively correlate to KIM-1 expression in RCC. 

Many of the genes within the TMI signature (Lim et al., 2019) had either a significant positive or 

negative correlation to tumour KIM-1 mRNA – although further investigation behind the specific 

genes must be completed before additional conclusions can be made. Previous research has 

shown that during AKI, KIM-1 expression is beneficial in early acute stages of injury but chronic 

expression of KIM-1 promotes renal fibrosis (Humphreys et al., 2013). Cell types implicated in 

the process of fibrosis are fibroblasts and myofibroblasts that aid in tissue remodeling and the 

secretion of extracellular matrix components such as collagen (Wynn, 2008). The positive 

correlation of collagen genes in KIM-1 expressing Renca cells may be a protective mechanism 

by the kidney. It may be possible that KIM-1 expression in renal malignancies causes similar 

effects. This would suggest that chronic KIM-1 expression leading to fibrosis, may be a 

dominant phenotype of KIM-1 not only in kidney injury, but possibly in RCC. However, the 
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exact interaction – if present – between KIM-1 and COL1A2, COL6A1, COL6A2, and COL23A1 

needs to be confirmed through more mechanistic studies.  

 

4.1.3 KIM-1 does not alter tumour growth in an immune competent 

subcutaneous Renca model  

 

Multiple studies have identified the subcutaneous model as a stable murine model to study RCC 

tumour biology (Sobczuk et al., 2020). Using the bilateral and unilateral subcutaneous models, I 

compared the growth of KIM-1pos and KIM-1neg Renca tumours in immune competent mice. The 

bilateral model is an ideal model to use as it minimizes the genetic heterogeneity between 

individual mice that could cause variations in response to the same treatment. Bilateral models 

are better suited to studying the effect of tumours on the host immune system (e.g. immune 

check-point blockade) (Zemek et al., 2020). I found that KIM-1 had no effect on tumour growth 

regardless of whether we used the bilateral or unilateral approach (Fig 4 and 5). Previous studies 

have found that Renca tumour growth in vivo had inconsistent tumour growth kinetics in the 

absence of MatrigelTM (Yu et al., 2018). Following this study, I revised my protocol to 

CDTRresuspend our Renca cells in growth factor reduced MatrigelTM prior to both bilateral and 

unilateral subcutaneous injection. My studies produced consistent tumour sizes and masses with 

smaller standard deviations. Therefore, I am confident of my findings showing that KIM-1 

expression does not alter the tumour size or mass produced by Renca cells implanted 

subcutaneously into immune competent mice.  
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4.1.4 KIM-1 expression promotes the formation of a collagen dense capsule 

around Renca tumours injected subcutaneously into both immune competent 

and immune deficient mice  

 

Dysregulated collagen production has been linked to a more malignant phenotype in various 

cancers (Seager et al., 2017). On the other hand, many benign tumours are known to be 

surrounded by a capsule consisting of connective tissue. My findings suggest that KIM-1 

expression promotes transcription of various collagen genes in human RCC tumours and 

formation of a collagen-rich capsule surrounding the Renca tumours. Interestingly, I observed 

the formation of the capsule around KIM-1pos Renca tumours only when injected subcutaneously 

but not orthotopically (Fig 7, 8 9, and 11). The use of MatrigelTM did not affect these results. 

Some studies have suggested that the collagen rich tumour capsule directly interacts with the 

host immune system, and thus, the ensuing interaction strongly impacts tumour progression 

(Seager et al., 2017). Given that the tumour capsule was present on KIM-1pos Renca tumours 

grown in wild type BALB/c and RAG1-/- BALB/c mice,  my data suggests that the formation of 

the capsule does not depend on the interaction of tumour cells and the adaptive immune system, 

yet is dependent on the site of injection (subcutaneous vs orthotopic). Specifically, we can 

assume that the collagen capsule is localized to the tumour stroma due to the interaction between 

tumour-associated KIM-1 and the surrounding cells of the subcutaneous microenvironment. 

Given that there were no differences in volume or mass between the subcutaneous KIM-1pos and 

KIM-1neg Renca tumours regardless of host immune status (WT BALB/c or Rag1-/- BALB/c 

mice), it could be argued that the capsule does not alter the T- or B cells responses against the 

tumours, in opposition to previous studies (Salmon et al., 2012).  
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4.1.5 KIM-1 expression does not alter frequency or distribution of invading 

lymphocytes in both subcutaneous and orthotopic Renca models 

 

The tumour microenvironment plays a key role in anti-tumour immunity (Applegate, Balch and 

Pellis, 1990). Intra- and extra-tumoral cell signaling, tumour and cell metabolism, and 

oxygenation are all factors that influence tumour progression and metastasis - can be determined 

by the surrounding tumour microenvironment (Henke, Nandigama and Ergün, 2020). Tumour 

microenvironment components can differ significantly between tumour types, but the main 

components are invading or surrounding immune cells, the vasculature, stromal cells and the 

tumour associated ECM (Anderson and Simon, 2020). In most cases, the tumour cells seem to 

orchestrate the surrounding cells to promote a microenvironment favorable for growth and/or 

metastasis (Walker, Mojares and Del Río Hernández, 2018). It is well known that tumour 

associated ECM (including collagen) is able to inhibit the invasion of immune cells into the 

tumour parenchyma and/or alter the phenotype of the invading immune cells to promote cancer 

progression (Maller et al., 2020). Also, depending on the density of tumour associated collagen, 

the ECM can inhibit the positioning and migration of T cells, resulting in possible T cell 

exclusion from the tumour periphery (Kuczek et al., 2019). Increased tumoral collagen has also 

been found to exhaust CD8+ T cells through direct contact with T cell markers, LAIR1 (Peng et 

al., 2020). This phenomenon has been observed in many cancers such as triple-negative breast 

cancer, pancreatic cancers (Kuczek et al., 2019) and lung cancer (Salmon et al., 2012). 

Organization and location of tumour associated ECM structures are commonly positioned around 

vasculature structures or the stromal interface. Specifically, research has shown that both 

perivascular and loose organized structures of the ECM in particular are where most of the intra-

tumoral T cell migration occurs (Salmon et al., 2012). I was able to elucidate that my KIM-1pos 
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Renca tumours develop significantly thicker collagen dense stromal capsules. Yet, I observed no 

significant differences in the distribution or frequencies of invading lymphocytes within 

subcutaneous KIM-1pos or KIM-1neg Renca tumours (Fig 6). CD4+ and CD8+ T cells were chosen 

for analysis due to the compelling research that: 1) T cells are fundamental to anti-tumour 

immunity; 2) known exclusion or inhibitory mechanisms via collagen deposition targets both T 

cell subsets.  

 

We have no concrete conclusions about the distribution or frequency of invading lymphocytes 

within KIM-1pos and KIM-1neg Renca tumours grown orthotopically (Fig 12). Due to the small 

sample size of my KIM-1neg group, additional experiments will be required to confirm whether or 

not there are any real differences. Further characterization of the immune infiltrate and 

evaluation of the effector function of invading lymphocytes in KIM-1pos vs. KIM-1neg Renca 

tumours, may help elucidate the mechanism responsible for inhibiting tumour growth in our 

orthotopic model.  

4.1.6 KIM-1 expression inhibits tumour growth in an orthotopic Renca model  

Subcutaneous tumour models are widely used for in vivo cancer studies and allows for growth of 

the tumour below the skin to become a highly vascularized area. This allows for rapid tumour 

growth that is easily monitorable using calipers, permitting a rapid assessment of growth kinetics 

overtime (Zhang et al., 2019). There are several limitations to the subcutaneous tumour model in 

comparison to other experimental cancer mouse models. Subcutaneous tumour models allow for 

the simple monitoring of biological staging yet are is not feasible for studying metastasis (Zhang 

et al., 2019) – as it is not often observed in subcutaneous models (Gomez-Cuadrado et al., 2017). 

Researchers have brought to light that the development of tumours in subcutaneous tissue may 
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not reflect the development of human cancers in native tissues (Zhang et al., 2019). Therefore, 

orthotopic mouse models are regarded as a more clinically relevant model for the study of human 

cancers including progression, metastasis and therapeutic intervention. Orthotopic models have 

been shown to better correspond to human cancer development in terms of histology, tumour 

vasculature, response to therapies/treatments, and of course the metastatic cascade to nearby and 

distant organs (Khanna and Hunter, 2005). A recent study evaluating BB3r-targeted therapy in 

both subcutaneous vs orthotopic mouse models of prostate cancer, found that orthotopic models 

had overall higher tumour uptake, increased vascular perfusion, and lower burden of hypoxia. 

Overall findings from this study concluded that the tumour microenvironmental differences 

between subcutaneous and orthotopic models differs greatly (Zhang et al., 2019). Another study 

recently compared the interactome profiles of gastric cancer – OE19 adenocarcinoma - using 

both subcutaneous and orthotopic xenograft models. Pathway analysis using RNA sequencing 

revealed various significantly enhanced pathways within orthotopic models in comparison to 

subcutaneous models.  More vascular invasion were found within orthotopic models - observing 

increased interactions between cancer and stromal cells – with orthotopic models thought to have 

higher interplay with the surrounding microenvironment (Nakano et al., 2018). Prior to our 

research, the discrepancies between subcutaneous vs orthotopic models in RCC was unknown. 

Overall, I am the first to uncover the major differences between subcutaneous and orthotopic 

mouse Renca tumour models and how they dictate the interaction between cancer cells and 

surrounding stromal cells. My results found that KIM-1pos Renca cells create significantly 

smaller primary tumours in - comparison to KIM-1neg Renca cells - when injected orthotopically 

into the subcapsular space of the kidney, but not subcutaneously, in immune competent mice 

(Fig 10). My results support previous evidence revealing KIM-1 as a potential protective player 
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in RCC (Lee and Gunaratnam, 2019), as patients with higher levels of KIM-1 expression resulted 

in an increased overall survival rate (Fig 1C). However, my findings also differ from that of 

(Cuadros et al., 2013), who  proposed that KIM-1 promotes tumour progression. In contrast to 

these studies, my findings suggest KIM-1 does not promote tumour progression, and in fact, 

inhibits tumour growth in my orthotopic studies.   

One study investigated the differences in membrane bound tissue KIM-1 as well as soluble 

cleaved KIM-1, in regard to their differential effects on RCC progression. Microvascular 

invasion – the invasion of cancer cells into the endothelium of blood vessels – was correlated 

with increased tissue KIM-1 expression in clear cell RCC (ccRCC) tumours. This study also 

found that increased levels of soluble KIM-1 detected in the urine correlated with increased 

TNM staging and overall exacerbated disease progression (Mijuskovic et al., 2018). Another 

study stated that when analyzing RCC patient plasma, higher concentrations of soluble KIM-1 

were associated with poorer survival rates (Scelo et al., 2018). On the other hand, the 

Gunaratnam laboratory has shown that KIM-1 expression on TECs is able to inhibit Gα12, 

subsequently inhibiting a small GTPase RhoA, which is found to increase metastatic progression 

of cancers (Z. O. Ismail et al., 2016). Although the mechanistic correlation between KIM-1 and 

Gα12 expression in RCC in vitro/in vivo work was not further investigated. Despite these 

findings, the clear role of KIM-1 expression in the pathogenesis and progression of RCC remains 

not well understood.  The discrepancy between my study and those discussed above may be 

explained by my studies involving multiple in vivo systems (subcutaneous vs orthotopic), and 

correlation of both in vitro and in vivo experimental data with TCGA patient database findings. 
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4.1.7 KIM-1 does not promote collagen capsule formation in an orthotopic 

Renca model  

 

As mentioned above, previous studies have shown that orthotopic tumour models better mimic 

the natural biology of tumour progression (Nakano et al., 2018). Surprisingly, my data showed 

no significant differences between KIM-1pos and KIM-1neg collagen capsules in our orthotopic 

model (Fig 11), yet in our subcutaneous model, KIM-1pos Renca tumours bared significantly 

thicker collagen dense capsules in both immune competent and deficient mice. This discrepancy 

may be explained by differences in the (tumour) surrounding cells (skin vs. kidney) which the 

Renca cells recruit to form the microenvironment. Conceivably, the skin may be a more 

permissive environment for the formation of a collagen rich matrix (Cox and Erler, 2011).  One 

study found that the adipose tissue of rats located within the subcutaneous space, strongly varied 

from visceral adipose tissue. This study observed subcutaneous adipose gene clusters strongly 

relating to ECM related genes involving collagen, cell adhesion, and proteases. Expression 

profiles revealed major fibril-forming collagen genes that were upregulated were Collagen I, 

Collagen III, Collagen V, and Collagen VI, along with the more common ECM related genes 

such as Lama, Fibronectin 1, and Collagen IV (Mori et al., 2014). Although this study was 

performed in rats, previous research on adipose tissue has suggested that both mice and rats are 

comparable to one another (National Human Genome Research Institute, 2004). Another study 

found that when comparing ECM of subcutaneous tumours and in vitro tumour spheroids (a 

three-dimensional cell culture model), the subcutaneous tumours had an increased collagen 

content (De L Davies et al., 2002) likely due to the proximity to cells within the adjacent 

connective and dermal adipose tissues (Wojciechowicz et al., 2013). These previous findings 
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may give reason as to why we observed a significantly thicker collagen capsule formation in 

KIM-1pos Renca tumours within our subcutaneous, but not orthotopic model.   

4.1.8 KIM-1 does affect spontaneous metastasis of Renca cells to the lungs in 

an orthotopic model 

 

Late stage RCC (III-IV) involves tumour growth into the renal vein, inferior vena cava, or to 

regional lymph nodes, each of which must pass the Gerota’s fascia – the fibrous envelope 

encapsulating the kidney. Common sites of metastasis in RCC include the lungs, adrenal glands, 

and bones – whilst the lungs being the most common site of metastasis, found in up to 50%-60% 

of autopsies (Reznek, 2004). Orthotopic injection of Renca cells are widely used as a model to 

study the metastatic cascade of RCC (Hillman, Droz and Haas, 1994; Gomez-Cuadrado et al., 

2017). Although our orthotopic experiments revealed that the KIM-1pos Renca tumours were 

considerably smaller than the KIM-1neg Renca tumours, the small sample size precluded 

determining whether there were significant differences in the metastatic potential to the lungs 

between the KIM-1pos or KIM-1neg Renca cells (Fig 13). My data showed significantly fewer 

metastatic nodules compared to other studies employing Renca cells (Feldman et al., 2016) 

where metastatic nodules compromised ~70% of lung tissue, whereas in my study both KIM-1pos 

and KIM-1neg Renca treated mice had only ~15 metastatic nodules observed per mouse. 

Secondary metastatic nodules also presented no differences in collagen encapsulation between 

groups. There are multiple potential explanations as to why I observed less metastasis in my 

experiments. I followed the protocol from Feldman Ret al., injecting 2 x 105 KIM-1pos or KIM-

1neg Renca cells into the subcapsular space of the left kidney. This study used an endpoint for the 

assessment of metastases at 14 days post-injection and this resulted in sufficient primary tumour 

growth as well as secondary metastases compromising up to ~70% of resected lung tissue 
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(Feldman et al., 2016). Another study by Murphy et al., injected Renca cells directly into the 

kidney – intrarenal implantation – to study metastatic RCC for the assessment of preclinical 

therapies (Murphy et al., 2017). At 23 days after injection of Renca cells into the renal 

cortex/medulla, using BLI to assess tumour burden, this study observed significantly more 

metastasis than I did with subcapsular injection. Potential explanations for the low numbers of 

metastatic nodules in my model could be: 1) Subcapsular vs. intra-renal injection of Renca cells; 

2) improper injection and leakage of cells outside the kidney; 3) reduced malignancy of our 

Renca cell lines upon transduction with Lentivirus. The use of luciferase expressing Renca cells 

may allow for more sensitive detection of metastatic foci when using real -time bioluminescent 

imaging (BLI).  

4.1.9 KIM-1 expression increases transcription of ECM related genes in 

Renca cells  

 

My data from the subcutaneous model of RCC revealed that KIM-1pos Renca tumours obtain a 

significantly thicker collagen dense stromal capsule in comparison to KIM-1neg Renca tumours, 

independent of adaptive immunity. Surprisingly, my orthotopic model of RCC revealed no 

significant differences in collagen stromal capsule formation between my tumour groups. In 

efforts to elucidate how KIM-1 expression may alter mechanistic pathways allowing for ECM 

production in our subcutaneous model, I interrogated the transcriptomic profile of KIM-1pos and 

KIM-1neg Renca cells using RNA sequencing and bioinformatic approaches. My data did not 

show many significant differences between our cell lines in terms of pathway analyses, yet we 

did detect a significant gene enrichment of genes involved in Extracellular Matrix Interactions 

(Fig 14). Many of the genes involved in this enrichment, are involved in extracellular matrix 

synthesis and deposition. These data suggests that KIM-1 expression in Renca cells may activate 
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a transcription factor which regulates multiple extracellular matrix related genes. I believe these 

findings correlate to the clinically relevant findings from TCGA between KIM-1 and collagen. 

Interestingly, two significantly upregulated genes that were found in the RNA Sequencing of the 

Renca cell lines – COL6A1, COL6A2 – are also found in my TCGA data where these collagens 

are significantly upregulated in RCC patient and positively correlate with KIM-1 expression. 

These findings further validate our KIM-1 overexpression Renca model, revealing the 

similarities between our Renca cell lines and RCC patient transcriptomic profiles.  

4. 2 Limitations  

4.2.1 Subcutaneous Mouse Model 

 

Although subcutaneous models are widely used in oncological research, there are major 

drawbacks of this method. Initially I had difficulties in trying to overcome the variability in 

tumour volume and weight differences between our KIM-1pos and KIM-1neg groups. As stated 

previously, there are many drawbacks of the model, most of which surround the 

microenvironment, and clinical relevance. Studies have found that subcutaneous models 

although non-invasive, the microenvironment implantation causes the tumour to behave as a 

benign tumour rather than malignant tumour, owing to the reduced propensity to form metastases 

(Sordat, 2017). One study found significant inconsistencies in tumour formation due to the vast 

variations in angiogenesis and tumour vasculature within the subcutaneous pocket where 

injections occur (Lwin, Hoffman and Bouvet, 2018). These studies could explain why we had 

difficulties obtaining consistent results with our subcutaneous model. Another study - 

investigating various tumour immune profiles of murine syngeneic tumour models - found that 

Renca cells were the only cell line within the study that needed to be injected with a growth 
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factor reduced basement membrane MatrigelTM, in order to facilitate consistent growth patterns 

(Yu et al., 2018). Following this protocol, I repeated my subcutaneous injections of 1 x 106 KIM-

1pos and KIM-1neg Renca cells this time in a 1:1 dilution of 1x PBS and growth factor reduced 

MatrigelTM. With this addition to my subcutaneous injection model, I was able to find data with 

tighter standard deviations in my tumour volumes and masses in both KIM-1pos and KIM-1neg 

tumour results. Although there was visibly less variability, incorporation of MatrigelTM did not 

cause uniformity in shape, resulting in abnormally shaped subcutaneous tumour growth still 

remaining an issue. These facts, coupled with my results, underscore the limitations of this 

model that are likely related to the microenvironment of the murine subcutaneous tissue.  

4.2.2 Orthotopic Experimental Model 

 

Although extremely useful and clinically relevant given the clinical cascade of human RCC, the 

orthotopic kidney tumour model is widely dependent on technique (Bibby, 2004). Subcapsular 

injections into the kidney are extremely difficult and can easily cause high variability between 

injections. A major drawback of orthotopic implantation is the high likelihood of leakage of the 

inoculate outside the kidney (Sasaki et al., 2015). Although my surgeries were performed by an 

experienced veterinary surgeon and implemented with the use of growth factor reduced 

MatrigelTM in order to minimize leaking, this process can still occur late after surgery, and in 

some cases are unavoidable. Overall, the orthotopic model remains the most clinically relevant 

one despite its technical limitations. 

4.2.3 Renca Cell Line 

 

Renca cells are perhaps the most commonly used murine cell lines for in vivo RCC studies. They 

are naturally derived from a spontaneous renal adenocarcinoma that arose in a BALB/c mouse, 
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making the cell line syngeneic when injected into BALB/c mice. Renca cell lines are known to 

not fully reflect the genetics of human RCC, although they importantly possess the VHL (Von 

Lippen Lindau) deletion – causing epithelial mesenchymal transition (EMT) and HIF-1 α 

stabilization – which accurately represent the biology of human RCC tumours (Wolf, Kimryn 

Rathmell and Beckermann, 2020). Despite the overall concrete research that supports the use of 

Renca cell lines, I experienced several problems with our subcutaneous models (as stated above) 

that could be due to our cell line of choice. Yu  et al. studied the tumour immune profiles of 

Renca tumours in different syngeneic mouse models and found Renca cells to be highly 

immunogenic - able to elicit an adaptive immune response (Yu et al., 2018). Renca tumours are 

known to be highly infiltrated by immune cells from both the myeloid and lymphoid lineages 

(Wolf, Kimryn Rathmell and Beckermann, 2020). Interestingly, they found that the tumour 

immune profile depended on the size of the tumours in vivo. Through RNA sequencing, they 

found that smaller tumours (~100mm3) had more immune cell infiltrates (including T cells, 

macrophages, and NK Cells), while larger tumours (~500mm3 – 2000mm3) contained more 

myeloid derived suppressor cells (MDSC) expressing NOS2/iNOS, and VEGFA. These 

transcriptomic changes have an impact on immunosuppression, decreased T cell numbers, and 

tumour vasculature. The researchers also stated that Renca cells had to be injected with growth 

factor reduced MatrigelTM to obtain consistent and uniform tumours. Taken together with my 

data, this suggests that tumour size may be predictive of their immune profiles. Yet, this can pose 

great difficulty when finding variability in volumes and weights within tumour groups.  
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4.3 Future Directions and Significance  

4.3.1 Significance  

 

Overall, our findings are somewhat contradictory to previous reports regarding the role of KIM-1 

in RCC. Although, preceding research has evidence to support both theories where KIM-1 can 

either be playing a protective role to patients or a harmful role by contribution to tumorigenicity. 

Some studies suggest that KIM-1 has oncogenic potential and is able to increase the invasiveness 

and progression of RCC tumours (Cuadros et al., 2013). However, clinical data from TCGA 

database demonstrates that higher levels KIM-1 (Havcr1) mRNA in RCC patients is associated 

with greater overall patient survival (Fig 1C). Many in vivo studies investigating the 

pathophysiology of RCC used the subcutaneous murine model,  due to ease of measuring the 

tumours and simplicity. The orthotopic model of RCC is a more clinically relevant model that 

mimics the natural environment (kidneys) of the tumours and their propensity to metastasize to 

the lungs. We have shown variance between Renca tumour phenotypes with respect to both 

growth kinetics and histological differences in our subcutaneous vs. orthotopic models, 

respectively. Despite previous research suggesting that orthotopic models allow for a greater 

cancer-stromal interaction (Nakano et al., 2018), my data suggests that the microenvironmental 

niche of subcutaneous injections allow for an increased production of collagen rich matrix. 

Furthermore, my research demonstrates that increased KIM-1 expression positively correlates 

with increased COL6A1 and COL6A2 mRNA expression in both clinical human RCC (TCGA) 

data, and our Renca murine cell line. In contradiction of the prevailing view that KIM-1 

promotes a more malignant phenotype of RCC, we have showed that KIM-1 expression inhibits 

orthotopic tumour growth in immune competent mice. This thesis work highlights the 

importance of the tumour model (subcutaneous vs orthotopic) in studying RCC and KIM-1. 
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Clinical TCGA data coupled with our data also indicates KIM-1 can possibly inhibit primary 

tumour growth within pre-clinical murine models of RCC.  

4.3.2 Future Directions  

 

The next phase of this project will focus on optimizing my pre-clinical orthotopic model. Results 

from my orthotopic - renal subcapsular RCC model – found significantly fewer lung metastatic 

nodules than expected within both KIM-1pos and KIM-1neg Renca cell injected mice. Optimizing 

this protocol will allow the proper analyses of whether KIM-1 is able to inhibit the process of 

spontaneous metastasis to the lungs in a clinically relevant model of RCC. Next, by subjecting 

KIM-1pos and KIM-1neg orthotopic Renca tumours to RNA sequencing, an analysis of identified 

genetic alterations could then be linked to KIM-1’s ability to inhibit primary tumour growth. My 

previous RNA sequencing showed that KIM-1pos Renca cells have significantly upregulated 

enriched genes involved in ECM receptor interaction. This cellular phenotype directly correlated 

to KIM-1pos subcutaneous Renca tumours obtaining significantly thicker collagen dense stromal 

capsules independent of adaptive immunity. RNA sequencing on KIM-1pos and KIM-1neg 

orthotopic Renca tumours, will also help to elucidate any genetic drivers that could be altering 

the TME, allowing for the phenotypic differences that I have observed in vivo. Lastly, in my 

orthotopic Renca tumour models, I have been able to observe a trending towards significance in 

the frequency of CD3+ immune cells – where KIM-1pos contains more in comparison to KIM-1neg 

Renca tumours. Although I analyzed the frequency and distribution of CD3+, CD3+CD4+, and 

CD3+CD8+ immune cells, I did not evaluate their effector function. Analysis of orthotopic Renca 

tumours using flow cytometry to investigate the presence of immunomodulatory cytokines such 

as IFNγ and IL-2, could give rise to the functionality of the immune cells present. This analysis 

may also elucidate the reasoning behind the significantly reduced size of orthotopic KIM-1pos 
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Renca tumours. These findings can also be elucidated by performing co-immunofluorescence 

staining for more specific immune markers such as T-cell exhaustion markers such CD44 or 

LY6C, to evaluate the activator state of T lymphocytes present.  

 

Once the orthotopic Renca model is optimized, it will be possible to test the effect of an agonist 

anti-KIM-1 antibody (RMT1-10) on the growth, dissemination and development of primary 

tumours and metastatic nodules within the orthotopic model (Ichimura, Brooks and Bonventre, 

2012). This may determine whether KIM-1’s seemingly inhibitory effect on primary and 

secondary tumour growth can be enhanced with RMT1-10 delivery. When treating RMT1-10, 

we would expect to see stimulation of KIM-1 which may enhance its anti-tumour growth effects 

in RCC cells previously observed by our group  (Lee et al., 2021). 

4.4 Conclusion  

 

My research has revealed novel insights into the role of KIM-1 in RCC. Moreover, it has 

highlighted the significant differences between subcutaneous and orthotopic models used for pre-

clinical oncological studies. The expression of KIM-1 in RCC tumours was associated with 

improved overall patient survival based on interrogation of the TCGA database. My pre-clinical 

orthotopic model suggests that KIM-1 may play a protective role in RCC. KIM-1 expression in 

RCC tumours positively correlated with transcripts for several collagen genes in human RCC 

patients. I observed significant discrepancies involving tumour progression and histological 

phenotypes between the subcutaneous and orthotopic murine RCC models. More research is 

required to fully discern the role of KIM-1 expression in RCC tumour progression, as KIM-1 

may serve as a potential therapeutic target.   
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Appendices 
Appendix 1. Confirmation of KIM-1 expression (KIM-1pos) and absence of KIM-1 expression 

(KIM-1neg) through total cell protein lysate, mRNA expression, and cell surface expression of 

KIM-1pos and KIM-1neg Renca cell lines. 

 

A.  

 

 

 

 

 

 

B.             C. 

                  

Supplementary Figure 1.  Renca RCC cell line protein, mRNA and surface level expression of 

KIM-1, respectively.  

Renca cells were transduced using a lentivirus carrying a vector encoding for murine KIM-1 

cDNA (KIM-1pos) or empty vector (KIM-1neg). A, Western blot to detect murine KIM-1 in KIM-

1pos and KIM-1neg Renca cells. B, Relative mRNA expression of KIM-1 (Havcr1) mRNA in 

KIM-1pos and KIM-1neg Renca cell lines normalized for expression of housekeeping gene 

GAPDH. C, KIM-1pos and KIM-1neg Renca cell line analysis of KIM-1 surface level expression 

by flow cytometry using anti-KIM-1 antibody.  
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Appendix 2. Periodate Lysine Paraformaldehyde Solution Protocol 

Materials for PLP Solution: 

• 0.1M Sodium Phosphate Buffer (Dibasic)  

● 14.18 g Na2HPO4 (Dibasic Sodium Phosphate) + 1L ddH2O 

• 0.1M Sodium Phosphate Buffer (Monobasic Sodium Phosphate)  

● 13.8g NaH2PO4 (Monobasic) + 1L ddH2O 

• 0.1M Phosphate Buffer (PB) – (stored RT) = 3:1 Dibasic buffer to Monobasic buffer 

• L-Lysine  

• Paraformaldehyde (PFA)  

• Sodium M-Periodate  

• Sucrose (10%, 20%, 30%) Dissolved in 0.1M Sodium Phosphate Buffer  

Freezing Tissue: 

● Dry Ice (store in Styrofoam box) 

● Ethanol (put within dry ice) 

● Isopentane (put in metal bin overtop of dry ice) 

● Optimal Cutting Temperature Compound (OCT)  

● Histology Tissue Cassettes 

● Cling Wrap and Tin Foil 
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