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Abstract 

With increasing accidental and intentional explosions and blast events inflicting life loss and 

economic damage to civil infrastructure, greater attention is given to the analysis and design 

of blast-resistant structures. Accordingly, this thesis introduces state-of-the-art machine 

learning models dedicated to predicting the structural behavior of various reinforced concrete 

(RC) members under blast loading, including slabs, columns, and beams. Moreover, extended 

prediction models were developed for RC members that employ fiber-reinforced polymer 

(FRP) retrofitting and steel fiber-reinforced concrete as blast mitigation strategies. For each 

model, extensive validation was conducted through statistical performance measures and 

comparisons to existing prediction methods. Additionally, feature importance analyses were 

performed to investigate the extent to which each proposed model captured its respective 

application. Overall, the developed prediction models achieved accurate and computationally 

efficient performance for the complex application of blast-loaded structures. 

 

Keywords 

Blast loading; Reinforced concrete; Column; Beam; Fiber-reinforced polymer; Steel fiber; 

Machine learning; Random Forests; Gradient boosted regression trees; Gaussian process 

regression. 
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Summary for Lay Audience 

In the event of an accidental or intentional explosion, reinforced concrete structures are highly 

susceptible to structural damage that may lead to severe consequences for both the structure 

and its occupants. Therefore, appropriate analysis and design considerations should be adopted 

to provide a desired level of protection. A part of this procedure is to accurately predict the 

response of structural members to different blast loading scenarios. Current simplified 

response prediction approaches are laborious and produce limited responses, whereas more 

detailed approaches require competent skills in finite element modeling and are 

computationally intensive. 

To expand the state-of-the-art in predictive modeling for structures under blast loading, this 

thesis explores the use of machine learning methods towards developing more simplified and 

flexible approaches. Throughout the thesis, structural behavior prediction models were 

developed for reinforced concrete (RC) members including slabs, columns, and beams exposed 

to blast loading. The performance of each model was thoroughly investigated and found to be 

competitive with existing approaches. The use of machine learning for developing behavior 

prediction models was also extended to complex members which considered strategies for 

mitigating blast-induced damage. These include RC slabs with fiber-reinforced polymer 

surface retrofits and RC beams designed incorporating steel fibers. The resulting extensions 

showed that the adoption of ML methods was highly effective in considering exceedingly 

complicated design considerations. Overall, the proposed models throughout this thesis 

provided a simplified, accurate, and time-efficient approach for structural blast applications. 

With the expressed convenience and applicability of these models, further future developments 

of these models are encouraged. 
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Chapter 1  

  

1 Introduction 

 

1.1 Background 

Numerous past events of explosions causing severe structural damage have demonstrated 

that buildings are far from immune to such overwhelming loading conditions. One of the 

most devastating examples of such events is the bombing of the Alfred P. Murrah Federal 

Building in Oklahoma in 1996. The explosion resulted from 3000 kg of ammonium nitrate 

and fuel oil (ANFO) causing 168 deaths and injuring another 680 individuals. The 

destruction sustained by the blast is illustrated in Figure 1-1 in which critical localized 

damages can be observed. 

 

Figure 1-1. Bombing of the Alfred P. Murrah Building. 
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Another disturbing event of structural blast loading is the bombing of the Ufundi Building 

at the US Embassy in Kenya in 1998 where the explosive was generated from 900 kg of 

trinitrotoluene (TNT) and ANFO. The blast inlicted 213 deaths and over 4000 injured 

individuals. Additionally, the structural damage caused by the explosion brought about the 

total collapse of the building, as depicted in Figure 1-2. 

 

Figure 1-2. Bombing of the Ufundi Building. 

Only recently in 2020, the Port of Beirut in Lebanon was exposed to one of the largest 

accidental explosions in the world produced from nearly 2700 tons of ammonium nitrate 

that had ignited within a materials facility. In the aftermath of the blast, 215 deaths and 

over 7500 wounded individuals were accounted for. Also, the applied pressure caused by 

the blast induced damage to over 6000 surrounding buildings in which most of the 

structural damage was witnessed throughout steel structure warehouses closest to the blast, 

as can be observed in Figure 1-3. The different events of structural blast loading presented 

herein highlight the importance of considering effective measures of blast-resistant design 

in modern day building and infrastructure developments. 
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Figure 1-3. Damage resulting from the explosion at the Port of Beirut. 

With the increasing development of structures in densely populated communities, there 

exists growing demand for implementing protective measures against accidental or 

intentional explosions. Considering the associated risks of such events, the proactive 

development of resilient infrastructures to mitigate structural vulnerabilities has been 

continuously investigated.  

Existing studies of blast-resistant design for reinforced concrete (RC) structures have been 

mostly concerned with the local and global behaviors of individual structural elements. 

This may be attributed to the nature of blast loading, which is more inclined to inflict 

extreme local building damage, as opposed to inducing global behaviors of an entire 

structure. Towards this notion, experimental studies have investigated the individual 

response of RC slabs, columns, and beams through their resulting displacements, cracking 

patterns, and failure modes considering varying element detailing [1]. Moreover, available 

design codes require specific response limits that consider the behavior of single structural 

components under varying magnitudes of blast loading [2]. Thus, in several cases, the 

analysis of buildings exposed to such loading may be sufficiently conducted on an element-

wise basis. 
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Two primary response prediction methods are utilized to analyze the behavior of structural 

elements subjected to blast loading. The first is a simplified dynamic single degree of 

freedom (SDOF) model, which implements a dynamic equation of motion with 

assumptions for the equivalent mass, loading, and stiffness of an element. This approach 

is also dependent on assuming a deformed shape based on a flexural response mode. 

Additionally, a resistance function derived from an element’s section analysis may be 

incorporated, which can account for an element’s static and dynamic material properties 

[3]. Although further modifications to the approach may be implemented to achieve more 

accurate responses, the structural response produced from this approach is limited to an 

element’s maximum displacement. As a result, further responses or analyses such as crack 

analysis, spalling analysis, or failure mode prediction would require more advanced 

methods [4].  

An alternative and more detailed modeling approach consists of using numerical methods. 

Using advanced material properties, accurate blast load implementations, and accurate 

element representations, numerical models can capture a range of both local and global 

behaviors for the complex application of blast-loaded elements. However, competent 

modeling efforts, availability of material models, and a profound understanding of the 

application are pertinent to the development of reliable numerical models. Moreover, this 

method is associated with significant computational demand and substantial duration of 

run-time [5]. The limitations or complexities presented by each method are sufficiently 

apparent when analyzing conventional RC elements. 

When more advanced materials are introduced as a means of blast mitigation strategy for 

RC elements, an increase in modeling complexity is also observed. Two commonly 

adopted strategies of blast mitigation are the use of fiber-reinforced polymers (FRP) 

retrofits and the incorporation of steel fibers in concrete mixtures. The application of FRP 

retrofitted RC elements has demonstrated favorable blast resistant characteristics through 

increased energy absorption and reduced fragmentation. Additionally, this technique may 

be applied on both developing and existing structures, while also being convenient in 

transporting, handling, and applying [6]. Conversely, the inclusion of steel fibers in RC 

elements offers an inherent increase in ductility to a naturally brittle material, while 
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contributing to improved shear and flexural capacities. When subjected to blast loading, 

steel fiber-reinforced concrete (SFRC) elements demonstrate significantly enhanced blast 

resistance by mitigating displacements, crack development, and shear failure modes [7].   

Using simplified SDOF models for maximum displacement predictions of blast loaded 

FRP retrofitted RC elements [8] or SFRC elements demonstrated relatively acceptable 

performance but is a highly involved approach. Moreover, limitations of existing SFRC 

material models have been observed to noticeably affect the accuracy of SDOF predictions 

[9]. Similarly, SDOF models are incapable of being expanded to identify more detailed 

responses attributed to these advanced materials. Such responses would entail their 

qualitative failure modes, as well as the quantitative local degree of damage [6,10]. 

Conversely, the use of numerical methods for modeling advanced material behaviors are 

highly efficient yet are further characterized by the aforementioned complexities of 

implementation. With the reported limits and sophistications of existing prediction 

methods, considerations for a simplified and accurate approach that can encompass 

multiple responses would contribute to the state-of-the-art of blast engineering modeling. 

A field of study that has gained remarkable influence across various disciplines over the 

past few years is Machine Learning (ML). The inspiration for such interdisciplinary studies 

has been fueled by innovation as well as its flexibility and compatibility. In more recent 

years, the integration of ML in civil engineering has seen significant growth throughout 

branches of structural analysis, structural health monitoring, and construction materials 

science [11]. The advancements in civil engineering resulting from ML implementations 

provide a strong motivation towards its adoption. 

 

1.2 Research need and objectives 

With the apparent complexities and limitations associated with existing response prediction 

methods for blast-loaded RC elements, there is need for investigating alternative methods 

of modeling such applications. Thus, the objective of this thesis is to investigate the 

applicability of ML methods in developing reliable and time-efficient models for predicting 
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the behavior of various structural elements under blast loading. The different ML models 

considered for conventional elements are maximum displacement prediction models for 

RC slabs, columns, and beams. Additionally, a cracking pattern and failure mode 

classification model was investigated for RC beams. When considering elements with 

advanced materials, maximum displacement prediction models were also studied for FRP 

retrofitted RC slabs and SFRC beams.  

The relatively wide scope of research presented acts towards setting a strong precedent for 

the integration of ML in the complex and sensitive field of blast engineering. Efforts 

towards this outcome are expressed partly by demonstrating the performance of global and 

local behavior of conventional RC elements, and partly by demonstrating the capability of 

extending such performance towards advanced material variations and additional structural 

responses. 

 

1.3 Original contributions 

The current study investigates the potential of developing modern ML models to predict 

the structural response of RC elements under blast loading as a simplified, accurate, and 

time-efficient alternative to existing prediction methods. The contributions of this study 

consist of the following: 

1. Introducing, for the first time, a comprehensive integration of machine learning 

methods in the field of structural blast design as a novel approach for member 

response predictions. 

2. Identifying and compiling consistent application datasets from the existing 

literature for multiple structural elements under blast loading. 

3. Developing independent maximum displacement prediction models for RC slabs, 

columns, and beams subjected to blast loading using ML methods. 
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4. Conducting a comprehensive investigation of the relative importance of application 

parameters for RC slabs, columns, and beams under blast loading, considering 

extensive parameter ranges and validated by existing experimental results. 

5. Developing a failure mode and cracking pattern classification model for normal-

strength and high-strength RC beams subjected to varying blast load magnitudes. 

6. Developing a displacement prediction model for FRP retrofitted RC slabs subjected 

to blast loading and investigating the effects of slab and fiber parameters compared 

to non-retrofitted RC slabs. 

7. Developing a displacement prediction model for SFRC beams of varying strengths 

subjected to far-field blast loading and conducting a critical parametric study of the 

effects of different steel fiber types and fiber contents on blast resistance. 

 

1.4 Thesis structure 

This thesis has been structured in compliance with the integrated-article format as per the 

guidelines and regulations of the School of Graduate and Postdoctoral Studies (SGPS) at 

Western University. The thesis comprises eight chapters, which focus on the development, 

validation, and evaluation of ML models to predict the response of various RC elements 

under blast loading. They are as follows: 

Chapter 1 briefly describes the background of the current application, the dedicated scope 

of research, and the original contributions emanating from the present work. 

Chapter 2 provides an overall perspective of the blast phenomenon, details of existing 

approaches in modeling the structural behavior under blast loading, and the different 

parameters considered for each RC element based on previous experimental studies. An 

overview of structural blast mitigation techniques is also presented with respect to existing 

studies. Lastly, recent advancements of ML methods in structural engineering are reported. 
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Chapter 3 discusses the details of the maximum displacement prediction model of RC 

slabs under blast loading. It includes the sources of data collection, discussion on the hybrid 

classification-regression random forests algorithm, and discussion on the feature 

importance analysis validated by experimental data. Model prediction comparisons to 

existing analytical and numerical models are also reported. 

Chapter 4 reports the details of the maximum displacement prediction model of RC 

columns under blast loading. Discussions on the sources of data collection, gradient 

boosted regression trees algorithm, and feature importance analysis validated by 

experimental data are provided. An analysis of the effects of column parameters under 

near-field and far-field blast loading is also conducted and prediction comparisons to 

existing models are presented.  

Chapter 5 discusses the details of the maximum displacement prediction model as well as 

the crack pattern and failure mode classification model of RC beams under blast loading. 

Descriptions of the sources of data collection, a hybrid gradient boosted regression trees 

algorithm, and feature importance analysis validated by experiment are reported. 

Prediction comparisons to existing analytical and numerical models are also provided. 

Chapter 6 describes the development of the maximum displacement prediction model of 

FRP retrofitted RC slabs subjected to blast loading. Details on the source of data collection, 

gaussian process regression implementation, and feature importance analysis validated by 

experimental data are reported. Prediction comparisons to existing models are also 

provided. 

Chapter 7 provides the details of the maximum displacement prediction model of SFRC 

beams of varying strengths under blast loading. A discussion on the data collection process 

and gaussian process regression implementation is provided. Also, comparisons with 

respect to existing prediction methods are given. A critical parametric study on the effect 

of steel fiber parameters on blast resistance is also conducted. 

Chapter 8 summarizes the results of the developed models and sets forth recommendations 

for their improvement. Extensions of the current study are elaborated for future research. 
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Chapter 2  

  

2 Literature Review 

 

2.1 Blast phenomenon 

When an explosive material is detonated, it instantaneously generates extremely high 

temperatures and pressure. The gas surrounding the material is consequently compressed 

and expands radially from the source. As it expands, the compressed air forms a shock 

wave front, also known as a blast wave, with considerable pressure, which decays as it 

covers a larger volume. Moreover, as the initial air expansion occurs and forms the positive 

pressure wave, a vacuum is created at the center of the detonation region. The resulting 

vacuum region creates a negative pressure wave that expands with the positive wave while 

trailing behind it. In terms of pressure magnitudes, the positive pressure wave is 

significantly greater than its negative counterpart, which is often disregarded in structural 

analysis. Additionally, the positive pressure shock wave is characterized by a positive 

phase duration, which is considerably less than the corresponding negative phase duration. 

 If the positive pressure shock wave expands without interacting with any surfaces, the 

wave front pressure will eventually decay until it reaches a value below atmospheric 

pressure before reclaiming equilibrium [1]. A graphical representation of the pressure-time 

history of an idealized shock wave is shown in Figure 2-1. However, in the case where the 

initial shock wave (or incident wave) interacts with a surface, the pressure wave front 

reflects and produces an applied reflected pressure. The resulting reflected pressure is 

significantly greater than the initial shock wave pressure due to the air particles being 

compressed at the surface, leading to an increase in pressure [2].  

The different types of blast waves may be classified with respect to the setting in which 

detonation occurs and are labeled as confined or unconfined explosions. A confined 

explosion is formed when material detonation is initiated within an enclosed space or 
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structure. This type of explosion produces blast waves that are significantly amplified with 

the occurrence of reflected waves on nearby surfaces. Based on the degree of confinement, 

a build-up of quasi-static gas pressure and temperature is produced and possesses a duration 

longer than the initial shock wave. The different degrees of confinement are fully vented, 

partially confined, or fully confined in which gas pressure build-up increases with 

confinement. Conversely, the second type of blast wave is produced from unconfined 

explosions, which are characterized by the height of detonation from the ground and 

labeled as free-air burst explosions, air burst explosions, and surface burst explosions [3]. 

The current thesis primarily deals with unconfined explosions, which are discussed in detail 

in subsequent sections. 

 

Figure 2-1. Pressure-time profile of a shock wave. 
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2.1.1 Blast wave parameters 

The two primary components that affect the parameters of a blast wave are the weight of 

the explosive charge, W, and its standoff distance, R. Using the cube-root scaling law, a 

relationship between the two components and a scaled distance, Z, is presented in Eq. (1). 

This relationship was proposed by Hopkinson in 1915 after it was observed that two 

explosions of varying weights produced the same effect for some common scaled distance 

[4]. Furthermore, the use of scaling laws allows for the investigation of large-scale blasts 

using proportionate small-scale charge weights and standoff distances [5]. The 

implementation of a scaled distance has been conveniently used to form pertinent 

relationships between a blast’s charge weight and standoff distance with numerous blast 

parameters, as will be described within this section. It should be noted that the charge 

weight, W, is often taken in terms of TNT, in which weights of alternative explosive 

materials are converted with respect to their corresponding TNT equivalence. 

𝑍 = 
𝑅

𝑊1/3      (1) 

The idealized pressure-time history of a shock wave presented in Figure 2-1 is a 

meaningful representation of both the behavior of a shock wave, as well as its parameters. 

As shown in the figure, Po, Pso, and Pso
- are the ambient atmospheric pressure, peak positive 

overpressure, and peak negative overpressure, respectively. Similarly, the quantities of the 

positive phase duration and the negative phase duration are denoted as td and td-, 

respectively. Throughout this thesis, direct investigations were conducted only with respect 

to the positive phase of blast loading, while considerations for the negative phase were 

disregarded. The positive phase pressure profile can be represented by the modified 

Friedlander equation given in Eq. (2) [6], where b is a waveform parameter that 

characterizes the decaying pressure and is empirically obtained as a function of the scaled 

distance [7]. 

𝑃(𝑡) =  𝑃𝑜 + 𝑃𝑠𝑜(1 +
𝑡

𝑡𝑑
)𝑒

−𝑏𝑡

𝑡𝑑     (2) 
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In addition to the parameters observed from the pressure-time history, two additional 

parameters that are used to characterize a blast wave are its positive-phase specific impulse, 

is, and its negative-phase specific impulse, is- which are quantified as the area under each 

respective curve. The values of is may be taken as the integration of the positive pressure 

over the positive phase duration, as shown in Eq. (3), where ta is the blast’s time of arrival. 

𝑖𝑠 = ∫ 𝑃(𝑡)𝑑𝑡 
𝑡𝑎+𝑡𝑑
𝑡𝑎

     (3) 

To obtain the appropriate pressure profile considering a given charge weight and standoff 

distance, the quantities of Pso and td are required. In determining the peak positive 

overpressure, various researchers have proposed appropriate formulations as a function of 

the scaled distance. By analyzing the differential equations of gas motion, Brode developed 

an analytical expression with respect to different ranges of scaled distance, which are 

presented in Eq. (4) with the pressure units in bar scaled distances given as m/kg1/3 [9].  

𝑃𝑠𝑜 =
6.7

𝑍3
+ 1   (𝑃𝑠𝑜 > 10 𝑏𝑎𝑟)    (4a) 

𝑃𝑠𝑜 =
0.975

𝑍
+

1.455

𝑍2
+

5.85

𝑍3
− 0.019  (0.1 < 𝑃𝑠𝑜 < 10 𝑏𝑎𝑟)   (4b) 

Similarly, Henrych proposed expressions for peak positive overpressures following the 

similarity ratio formula based on experimental data and considering free-field air 

explosions for varying ranges of scaled distances [10]. These expressions are shown in Eq. 

(5) with pressures given in bar and scaled distances in m/kg1/3. 

𝑃𝑠𝑜 =
14.072

𝑍
+

5.540

𝑍2
−

0.357

𝑍3
 +

0.00625

𝑍4
  (0.05 < 𝑍 < 0.3 )   (5a) 

𝑃𝑠𝑜 =
6.194

𝑍
−

0.326

𝑍2
+

2.132

𝑍3
  (0.3 < 𝑍 < 1 )    (5b) 

𝑃𝑠𝑜 =
0.662

𝑍
+

4.05

𝑍2
+

3.228

𝑍3
  (1 < 𝑍 < 10 )    (5c) 

A computationally efficient formula was proposed by Kinney and Grahm [7] based on a 

chemical explosive of 1 kg TNT considering scaled distance values between 0.1 and 20 

m/kg1/3 with pressure units in bar, as presented in Eq. (6). 
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𝑃𝑠𝑜 =
808𝑃𝑜[1+(

𝑍

4.5
)
2
]

{[1+(
𝑍

0.048
)
2
][1+(

𝑍

0.32
)
2
][1+(

𝑍

1.35
)
2
]}
0.5    (6) 

Another expression based on explosion data analysis was proposed by Sadovskiy and is 

given by Eq. (7) with pressure units in MPa [10]. 

𝑃𝑠𝑜 = 0.085(
𝑊1/3

𝑅
) + 0.3 (

𝑊1/3

𝑅
)
2

+ 0.8 (
𝑊1/3

𝑅
)
3

   (7) 

The same authors have also proposed different empirical expressions to determine the 

positive phase duration of a blast wave as functions of the scaled distance, standoff 

distance, and charge weight. The corresponding expressions of Henrych [9], Kinney and 

Grahm [7], and Sadovskiy [10] are presented in Eqs. (8) - (10), respectively. 

𝑡𝑑 = 𝑒(−2.75+0.27𝑙𝑜𝑔𝑍)+𝑙𝑜𝑔𝑊
1/3

     (8) 

𝑡𝑑 =
980𝑊1/3[1+( 𝑍

0.54
)
10
]

[1+( 𝑍
0.02

)
3
][1+( 𝑍

0.74
)
6
][1+( 𝑍

6.9
)
2
]

0.5     (9) 

𝑡𝑑 = 1.2√𝑊
6

√𝑅       (10) 

Empirical expressions for the positive-phase specific impulse have also been extensively 

developed and are collected in [11], but the underlying impulse derivation shown in Eq. 

(3) is well-established, nonetheless. Although the literature includes an extensive effort for 

developing empirical expressions for peak positive overpressures, the application of blast 

wave and structure interactions is heavily dominated by magnitudes of the reflected 

pressures. It has previously been stated that pressures of reflected blast waves are several 

times greater than the pressure of its incident wave. As a result, an analytical equation to 

express reflected pressure as a function of peak positive overpressure was derived from the 

conservation of momentum and energy by Rankine and Hugoniot [2] as given by Eq. (11). 

𝑃𝑟 = 2𝑃𝑠𝑜 + (𝛾 + 1)𝑞𝑠      (11) 
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The constant γ is the specific heat ratio of a real gas and qs is the dynamic pressure 

expressed as Eq. (12), where ρs  is the density of air and us is the particle velocity behind 

the shock wave front.  

𝑞𝑠 =  
1

2
𝜌𝑠𝑢𝑠

2      (12) 

The expression for the wave front velocity is presented in Eq. (13), where ao is the speed 

of sound in ambient conditions.  

𝑢𝑠 =
𝑎𝑜𝑃𝑠𝑜

𝛾𝑃𝑜
[1 + [

𝛾+1

2𝛾
]
𝑃𝑠𝑜

𝑃𝑜
]
−0.5

     (13) 

When choosing the γ value for air equal to 1.4 and substituting Eqs. (12) and (13) in Eq. 

(11), the final expression is given in Eq. (14).  

𝑃𝑟 = 2𝑃𝑠𝑜 [
7𝑃𝑜+4𝑃𝑠𝑜

7𝑃𝑜+𝑃𝑠𝑜
]      (14) 

Based on this expression, it can be observed that in the case of a very small theoretical 

incident overpressure, the reflected pressure reduces to a lower limit corresponding to twice 

the incident overpressure. Conversely, if the incident overpressure was considerably 

greater than the ambient pressure, then the expression indicates the reflected pressure can 

be up to eight times the incident overpressure. Although the theoretical ratio between the 

reflected and incident pressures, Cr, is shown to be between 2 and 8, actual recorded ratios 

have reached up to 12 due to effects of gas dissociation [2]. It should be noted that this 

expression assumes the reflected pressure is acting normal to a surface with an angle of 

incidence of zero.  

In the case that the incident pressure is reflected with an angle of incidence, α, a chart 

provided by UFC 3-340-02 [3] may be adopted to compute the resulting reflected pressure. 

This is depicted in Figure 2-2 which relates the ratio between the reflected and incident 

pressures, Cr, to the angle of incidence. Based on this chart, it can be observed that the 

value of Cr decreases as the angle of incidence deviates from being normal to the surface 

and reduces to a value of 1 when acting parallel to a surface. Additionally, a jump in 
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reflected pressure is observed for angles of incidence between 40 and 50 degrees. This 

phenomenon is a unique characteristic of air burst explosions and is described in the 

subsequent section.  

 

Figure 2-2. Reflected pressure factor for different angles of incidence [3]. 

Overall, it can be noted that analytical methods for computing positive incident 

overpressures and positive phase durations are readily available and may be used to 

characterize an expression for shock wave pressure-time histories. Furthermore, 

expressions for additional blast parameters such as positive-phase specific impulses and 

reflected pressures are also accessible. However, charts or graphical adaptations have been 

developed based on extensive experimental testing and may be used as an alternative to 

obtain multiple blast parameters. These charts conveniently present both positive phase and 

negative phase parameters as well as parameters pertaining to reflected blast waves as 

functions of the scaled distance. Moreover, independent charts are provided for blast waves 

occurring from free air burst explosions and surface burst explosions. The alternative types 

of unconfined explosions as well as their respective blast parameter charts are discussed in 

the subsequent section. 
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2.1.2 Unconfined explosions 

The first type of unconfined explosions is free air burst explosions, which occur at a 

sufficient height above the ground, such that the resulting shock wave interacts with a target 

structure before reaching the ground. Figure 2-3 depicts a typical free air bust explosion 

with a given charge weight and standoff distance. Upon interacting with the target 

structure, the incident waves reflect and apply an amplified pressure [2,3]. In addition to 

the parameters obtained through the empirical expressions in the previous sections, 

alternative critical parameters are graphically obtained using the chart in Figure 2-4, which 

is only compatible with free air burst explosions. As a function of the scaled distance, this 

chart provides the parameters of pressures, impulses, and durations of incident and 

reflected shock waves considering positive and negative phases. The chart also considers 

the wavelength and wave front velocity of the shock wave. When an angle of incidence 

greater than zero is considered, pressure values from Figure 2-4 may be adapted using the 

chart shown in Figure 2-2.  

 

Figure 2-3. Free air burst explosion on a structure. 
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Figure 2-4. Positive-phase shockwave parameters for a free air burst explosion [3]. 
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The second type of unconfined explosions is air burst explosions and occurs when a 

detonation is initiated at a distance above and away from a target, such that the incident 

wave interacts with the ground before reaching the target. As the incident wave approaches 

the ground, it generates a reflected pressure wave that travels outwards with an amplified 

pressure magnitude. As the shock waves propagate, the initial incident wave and the 

generated reflected wave interact and form a Mach front, which may be idealized as a plane 

wave front. The concept of an assumed plane wave is made based on the condition that the 

blast is at a sufficient scaled distance from the target structure. The point at which the 

incident wave, reflected wave, and Mach front meet is labeled as the triple point whose 

height increases with increasing distance from the blast source [2,3]. Figure 2-5 depicts 

the formation of a Mach front resulting from an air burst explosion. It should be noted that 

the pressure profile for a Mach front resembles that of an incident pressure wave. 

 

Figure 2-5. Air burst explosion on a structure. 

Two noteworthy parameters of the air burst explosion are the blast height and angle of 

incidence. Smith and Hetherington [2] speculated that reflected pressures have a limiting 

angle of incidence value after which incident waves no longer create traditional reflections 

but instead form Mach reflections. This angle of incidence produces a reflected pressure 

(Mach pressure) greater than the reflected pressure produced at a zero angle of incidence. 

The aforementioned limiting angle of incidence varies with varying blast magnitudes but 

is found to be greater than 40 degrees. This is also observed in Figure 2-2, which depicts 
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the discrepancy (jump) in reflected pressure at angles of incidence greater than 40 degrees. 

Although direct blast parameters for air bursts cannot readily be obtained from Figure 2-

4, an adaptive approach is used instead as proposed by [3]. For a given blast height (scaled 

by the charge weight) and angle of incidence, the blast’s reflected pressure (Pra) may be 

obtained using the chart in Figure 2-6. By inputting the resulting reflected pressure in 

Figure 2-4 as the incident pressure (Pra = Pso), an equivalent scaled distance value may be 

obtained, which is then used to acquire the remaining blast parameters. A similar approach 

is taken to identify the reflected impulse (ira) based on the blast height and angle of 

incidence using a similar chart in [3] and inputting it as the incident impulse, (ira = is),  in 

Figure 2-4. It can also be observed from Figure 2-6 that as the height of blast increases, 

the effect of reflected pressure variations with respect to varying angles of incidence 

becomes less apparent. 

 

Figure 2-6. Reflected pressures for varying scaled heights and angle of incidence [3]. 



 

 

21 

The third type of unconfined explosions is surface burst explosions, which occurs when a 

blast wave is initiated from or near a ground surface. Due to the proximity of the reflective 

ground surface, reflected waves are generated upon detonation and merge with the incident 

waves to form a single high-magnitude pressure wave at the point of detonation, as 

described in Figure 2-7. The development of the merged waves in surface bursts follows 

a similar concept as the Mach waves from air bursts but forms hemispherical waves with 

respect to the blast source. When the propagating waves of a surface burst reflect off a 

target structure, the blast loading may be idealized as a plane wave [2,3].  

 

Figure 2-7. Surface burst explosion on a structure. 

A similarity between surface bursts and free air bursts is that the generated blast waves are 

uniformly propagated albeit at different blast magnitudes. It has previously been 

demonstrated that the parameters for surface bursts correlate to free air burst parameters 

with an applied enhancement factor to the source charge weight (i.e. blast energy) [2]. 

When assuming a perfect ground reflection, an enhancement factor of 2 is taken, however, 

a more practical value of 1.8 is used due to energy dissipation during crater formation. 

Although this approach yields acceptable parameter values, a dedicated chart similar to 

Figure 2-4 was developed for obtaining several positive phase surface burst parameters as 

a function of the scaled distance and is provided in Figure 2-8 [3].  
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Figure 2-8. Positive-phase shockwave parameters for a surface burst explosion [3]. 
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2.2 Existing modeling methods 

2.2.1 Equivalent dynamic SDOF models 

A single degree of freedom (SDOF) model is among the most implemented approaches in 

predicting the dynamic response of an element under blast loading. The dynamic equation 

of motion that characterizes a SDOF system is given in Eq. (15) where m, c, and K are the 

mass, damping coefficient, and stiffness with their terms of acceleration, velocity and 

displacement, respectively. 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝐾𝑢 = 𝐹(𝑡)     (15) 

The damping term is often neglected due to the minor effect of damping forces in structural 

blast applications. Additionally, the stiffness term Ku is often replaced with a more general 

resistance function term, R(u). Lastly, the force as a function of time, F(t), may be replaced 

with a more compatible expression in terms of the reflected blast pressure over the applied 

area, APr(t). The quantities shown in Eq. (15) may be acceptably taken as their actual values 

if the entire mass experiences a load that causes the system to move as a unit. However, in 

the case where motion varies along the length of a member, the resulting displacements 

would be produced with considerable error. For such a continuous system, the variable 

motion of a distributed mass under a distributed load may be ideally characterized by an 

infinite degree of freedom. However, this system may be conveniently represented by an 

equivalent SDOF through the introduction of transformation factors. The equivalent 

system can capture the dynamic response of a desired point with respect to an assumed 

deflected shape [2,3,12]. 

The three types of transformation factors are the load factor, KL, mass factor, KM, and 

stiffness factor, KS, where each factor is derived through the total work done, kinetic 

energy, and strain energy, respectively. When considering an appropriate deflected shape, 

φ(x), the equivalent load, mass, stiffness, and resistance expressions along a member are 

shown in Eqs. (16) – (19) [3,12].  

𝐹𝑒𝑞 = ∫ 𝐹(𝑥)𝜑(𝑥)𝑑𝑥
𝐿

0
     (16) 
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𝑀𝑒𝑞 = ∫ 𝑀(𝑥)𝜑2(𝑥)𝑑𝑥
𝐿

0
     (17) 

𝐾𝑒𝑞 = ∫ 𝐸𝐼(𝑥)[𝜑′′(𝑥)]2𝑑𝑥
𝐿

0
     (18) 

𝑅𝑒𝑞 = ∫ 𝑅(𝑢)𝜑(𝑥)𝑑𝑥
𝐿

0
     (19) 

The ratio of each equivalent quantity to the corresponding actual quantity will produce 

each respective transformation factor as expressed in Eq. (20). It should be noted that the 

resistance transformation factor is very similar to the load transformation factor and can be 

considered the same [2]. 

𝐾𝐿 =  
𝐹𝑒𝑞

𝐹
  ;  𝐾𝑀 =  

𝑀𝑒𝑞

𝑀
 ;  𝐾𝑠 = 

𝐾𝑒𝑞

𝐾
 ;   𝐾𝑅 =  𝐾𝐿    (20) 

By implementing these factors to the original SDOF equation in Eq. (15), an equivalent 

system may be developed. It is also worth mentioning that different factors may be derived 

with respect to varying deflected shapes that reflect the element’s boundary conditions or 

loading. Lastly, since both the resistance term and the loading term in the SDOF equation 

use the load factor, KL, a load-mass factor KLM is introduced to simplify the expressions 

and is merely a ratio of the mass factor and load factor. The developed equivalent SDOF 

expression is presented in Eq. (21). 

𝐾𝐿𝑀𝑚𝑢̈ + 𝑅(𝑢) = 𝐴𝑃𝑟(𝑡)     (21) 

Although several methods may be used to solve the equivalent SDOF equation, a common 

approach is the average acceleration method, which employs an iterative numerical 

solution [2,12]. Using this method, values for acceleration, velocity, and displacement are 

computed at numerous small-time increments, Δt. Initially, the acceleration value at t = 0 

is denoted as 𝑢̈𝑜 and computed using the rearrangement of Eq. (21) in which both the 

displacement and velocity are zero (𝑢𝑜 = 𝑢̇𝑜 = 0). The loading value of APr(t=0) and the 

resistance value of R(uo) are extracted from an assumed blast pressure profile and resistance 

function. Therefore, the formulation of the initial acceleration as well as its general form 

for every time step ti = ti-1 + Δt are shown in Eq. (22).  
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𝑢̈𝑜 =  
𝐴𝑃𝑟(0) − 𝑅(𝑢𝑜)

𝐾𝐿𝑀𝑚
   ;    𝑢̈𝑖 = 

𝐴𝑃𝑟(𝑡𝑖) − 𝑅(𝑢𝑖)

𝐾𝐿𝑀𝑚
       (22) 

For computing the velocity as a function of the average acceleration across a time step, the 

expression in Eq. (23) is used. Similarly, the corresponding displacement at every time step 

is computed using Eq. (24). 

𝑢̇𝑖 = 𝑢̇𝑖−1 + 1/2( 𝑢̈𝑖 +  𝑢̈𝑖−1)𝛥𝑡     (23) 

𝑢𝑖 = 𝑢𝑖−1 + 1/2(𝑢̇𝑖 + 𝑢̇𝑖−1)𝛥𝑡     (24) 

When computing the values of displacement and velocity for t > 0, the approach consists 

of a prediction pass and a correction pass. The prediction pass assumes  𝑢̈𝑖 =  𝑢̈𝑖−1 in order 

to obtain the predicted velocity, 𝑢̇𝑖, and displacement, 𝑢𝑖, values using Eqs. (23) and (24) 

and the corresponding resistance R(ui) from an appropriate resistance function. Afterwards, 

the acceleration, 𝑢̈𝑖, is computed using the predicted values and is then inputted in Eqs. 

(23) and (24) to compute the corrected velocity, 𝑢̇𝑖, and displacement, 𝑢𝑖, at a given time 

ti. Once the corrected values are computed, the time interval is updated and both passes are 

reiterated [3,13]. 

A notable feature of the equivalent SDOF model is its ability to account for more elastic 

and inelastic responses. This may be addressed through both the predefined resistance 

function of the element, as well as the derivation of the load-mass factor based on an 

inelastic deflected shape. Additionally, more detailed parameters pertaining to an element’s 

static and dynamic material properties may be accounted for through the element’s 

developed resistance function. Examples of such implementations can be found in various 

studies [14,15,16].  

2.2.2 Numerical models 

An alternative modeling method is the use of numerical simulations that can accurately 

capture significantly more complex structural behaviors under various blast loading 

scenarios. For the application of blast-loaded structures, commercial software such as LS-

DYNA [17], ABAQUS [18], and ANSYS [19] are widely used in developing such 
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numerical models. Although several different modeling techniques exist to produce 

reliable results, two general approaches are briefly described herein. 

The first approach employs a purely Lagrangian formulation in which only the structure is 

explicitly modeled, and the model’s mesh deforms with the structure under loading. In this 

case, the blast loading is applied directly on the structure based on semi-empirical functions 

of blast parameters using the built-in CONWEP algorithm [20,21]. As a result, the 

explosive material, blast wave propagations, and fluid-structure interactions are not 

explicitly modeled. This leads to reduced computational demand but also produces less 

accurate responses when compared to more detailed approaches [5]. Furthermore, one of 

the drawbacks of the Lagrangian model is its susceptibility to mesh distortion at high strain-

rates and large deformations. A means of mitigating mesh distortions is remeshing at 

various time-steps, which also leads to an increase in computational time [22]. Generally, 

this approach yields acceptable results for non-complex structures under moderate 

deformations. 

The second approach uses a multi-material arbitrary Lagrangian-Eulerian (MMALE) 

formulation. The inclusion of the Eulerian formulation eliminates the event of mesh 

distortions of the Lagrangian formulation by implementing an overlapping fixed mesh 

through which the material deforms [23]. Moreover, the MMALE formulation allows for 

multiple materials to be defined for a single element and uses an interface tracking 

algorithm to track the different materials within an element [24]. This advantage can 

increase the flexibility and accuracy of the model. As opposed to the previous modeling 

approach, the MMALE formulation requires the explicit modeling of the explosive 

material, the air through which the blast propagates, as well as the structure. Moreover, the 

interaction between the resulting blast wave and the structure is accounted for throughout 

the model [21]. Details pertaining to each approach along with additional numerical 

modeling methods can be found in [5,21,25]. 
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2.3 Previous research on RC members under blast loads 

2.3.1 General 

The primary response of a RC member is dependent on the positive phase blast load 

duration, td, with respect to a its fundamental period of vibration, T. The ratio of these 

durations, td/T, can be used as an indication to the resulting structural behavior. When an 

explosive material is detonated directly on or near a surface, the resulting td/T ratio will be 

very small, and the corresponding structural response is governed by local damage modes 

of concrete crushing or spalling. Moreover, the applied loading is remarkably concentrated 

at the point of detonation. For greater ratios of td/T, the resulting structural behavior may 

exhibit either direct or diagonal shear responses. At such ratios, the detonation occurs at a 

distance far enough that an applied non-uniform loading is induced along the member in 

which the loading may be labeled as near-field. At relatively large td/T ratios due to distant 

detonations, the applied blast loading may be considered uniform and labeled as far-field 

in which the resulting structural response is primarily governed by flexural behavior [25, 

26]. The contrasting pressure distributions of far-field and near-field loading can be 

observed in Figure 2-9.  

 

Figure 2-9. Shock-wave interaction and resulting pressure distribution on target 

structural member. 
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This generalized classification of behaviors with respect to varying blast load scenarios is 

applicable across RC slabs, columns, and beams. Throughout the thesis, both shear and 

flexural responses are investigated with a greater focus on the latter. The current section 

provides a discussion on each RC member through existing studies exploring their unique 

parameters and resulting behaviors. 

2.3.2 Reinforced concrete slabs 

An analytical study by Low and How [27] investigated the effects of slab thickness, 

reinforcement ratio, and boundary conditions of RC slabs under blast loading. An increased 

blast capacity was observed for greater slab thicknesses and reinforcement ratios. It was 

also reported that slabs having fixed boundary conditions were more susceptible to failure 

than simply supported slabs under greater blast magnitudes. Furthermore, Tai et al. [28] 

developed a numerical model using LS-DYNA to investigate RC slab parameters subjected 

to blast loading. When considering a large reinforcement ratio, the maximum displacement 

at the slab center was mitigated, but the damage at the supports increased with blast 

magnitude. Conversely, slabs with lower reinforcement ratios produced greater maximum 

displacements while showing little or no damage at the supports. It was posited that the 

slab’s structural response was altered from bending failure to shear failure with increasing 

reinforcement ratio and at high magnitudes of blast loading. 

A more recent numerical study by Lin et al. [29] implemented LS-DYNA to analyze the 

effect of slab thickness and reinforcement ratio of RC slabs under blast loading. It was 

reported that increasing the slab thickness had a remarkable effect on reducing maximum 

displacements. The influence of the reinforcement ratio was also observed to improve the 

blast capacity of RC slabs but having a lower effect than the slab thickness. 

A limited experimental study investigated the effects of concrete compressive strength and 

steel yield strength in RC slabs under blast loading [30]. A blast load simulation device 

was used to load four one-way RC slabs. It was observed that both parameters contributed 

to mitigating maximum displacements with a greater influence reported from an increase 

in compressive strength.  
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Furthermore, Yao et al. [31] implemented both experimental testing and numerical 

modeling in analyzing RC slabs under blast loading. During both implementations, two 

major observations were reported. First, an increase in reinforcement ratio resulted in a 

reduced maximum displacement, which is consistent with previously reported studies. 

Secondly, the magnitude of localized spalling damage was reduced with an increase in the 

reinforcement ratio. 

2.3.3 Reinforced concrete columns 

Astarlioglu et al. [32] performed an analytical study to investigate various features of RC 

columns under blast loading. It was observed from numerous comparisons that an increase 

in the axial load resulted in greater capacity of columns to resist shear failure under intense 

magnitudes of loading. Moreover, an increase in the longitudinal reinforcement ratio 

produced a positive effect in reducing maximum displacements for all ranges of loading. 

It was also noted that a tension membrane behavior was exhibited in columns under greater 

axial loads, which deterred its post-blast axial load carrying capacity. 

An extensive experimental investigation was conducted by Braimah and Siba [33] using 

an explosive material in which the effects of column detailing on high magnitude blast 

loading were studied. It was observed that increasing the transverse reinforcement 

improved the concrete confinement and led to improved blast performance. The study also 

reported that for lower blast magnitudes, an increase in the axial load improved the 

column’s stiffness against loading, whereas the opposite was observed at greater 

magnitudes of loading. This was reportedly due to crushing in the compression zone as the 

column underwent lateral displacements and led to a reduction in stiffness. 

Moreover, a numerical model using LS-DYNA was developed by Kyei and Braimah [34] 

as an extension of the work [33] to further investigate the response of conventionally and 

seismically detailed RC columns subjected to blast loading. The effect of transverse 

reinforcement ratio was reported to be relatively insignificant at lower degrees of blast 

loading but was more pronounced at greater blast magnitudes. Conversely, for all 

magnitudes of loading, an increase in axial load resulted in greater blast resistance. 
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However, the effect of axial loading was found to have a limiting influence at larger axial 

loads, which resulted in an adverse response. 

In evaluating the behavior of blast-loaded RC columns, Bao and Li [35] conducted a 

comprehensive evaluation using numerical models in LS-DYNA and considered multiple 

application parameters. The influence of axial load was shown to improve the column’s 

capacity when having sufficient confinement and under low blast magnitudes. This 

conclusion is consistent with previously reported findings.  Similarly, an increase in 

longitudinal reinforcement ratios generally resulted in an increase in a column’s 

performance. However, it was also observed that when longitudinal reinforcement 

exceeded a certain limit, the column’s flexural resistance may exceed its shear resistance, 

thus resulting in a shear failure for poorly confined columns. When assessing the effect of 

the transverse reinforcement ratio, it was found that increased ratios allowed for a greater 

blast capacity, while significantly influencing the resulting failure mode. 

2.3.4 Reinforced concrete beams 

An experimental study by Li et al. [36] evaluated the behavior of RC beams under blast 

loading using a blast simulation device. The study consisted of numerous test specimens 

and the effects of several application parameters were investigated. When considering the 

effect of the longitudinal reinforcement ratio, a mitigated maximum displacement was 

observed at higher ratios, but the resulting element failure was consequently more critical 

than that observed at lower ratios. Moreover, the influence of the transverse reinforcement 

ratio showed a remarkable contribution towards resisting brittle shear failure modes, while 

having a relatively minimal effect on reducing maximum displacements. It was also 

reported that an increase in the concrete compressive strength produced a minor effect on 

both the maximum displacement and resulting failure mode. 

An evaluation of RC beams under high magnitude blast loads was experimentally 

conducted by Yao et al. [37] using an explosive material. It was reported that an increase 

in the transverse reinforcement ratio produced a notable reduction in the maximum 

displacement and contributed to mitigating local damages. The local damage included 

damage to the concrete core, as well as damage through concrete spall radius and depth.  
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Furthermore, Liu et al. [38] experimentally investigated the degree of damage to RC beams 

under various weights of explosive materials. Considering similar beam configurations, the 

variations in element damage due to different blast magnitudes consisted of large tensile 

cracking or compressive crushing due to flexural behavior, local concrete spalling, or a 

combination of both.  

In a more recent study, Rao et al. [39] performed an experimental investigation on RC 

beams under high-intensity cylindrical charge weights. A subsequent numerical model was 

developed using ANSYS based on experimental validation and the effect of longitudinal 

reinforcement was analyzed. It was observed that an increase in the ratio led to an increase 

in blast performance through reducing the maximum and residual displacements. It was 

also qualitatively reported that when lower and intermediate ratios were used, the beam 

exhibited flexural-shear behavior, while a direct shear response was observed at very high 

reinforcement ratios. These findings are consistent with previously stated observations. 

2.4 Structural blast mitigation strategies 

2.4.1 General 

With the escalation in both intentional and accidental blast events on infrastructures, the 

availability of feasible and effective implementations towards reducing risks has become 

increasingly pertinent. One of the most reliable approaches to significantly reduce blast-

related structural damage is to increase the event’s potential standoff distances. This may 

be achieved through the deployment of barriers or perimeters surrounding the structure 

[40]. However, this approach is highly inapplicable in populated or urban regions where 

the available space is limited. Thus, structural blast-mitigation strategies have resorted to 

focusing on element-specific modifications. These strategies fall under two major 

categories being design or retrofit [41]. Design strategies consider the implementation of 

efficient composite members such as concrete-filled steel tube components, prestressed 

components, or components built with advanced fiber-reinforced concrete mixtures. Such 

strategies are effective for newly developed structures, which consider protective 

measures. On the other hand, the use of retrofitting strategies may be adapted to both new 
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and existing structures. These strategies consider attaching or fitting innovative materials 

such as fiber-reinforced polymer (FRP) sheets, or metal cladding on structural members 

[41]. Despite the remarkable blast resistant contribution of such strategies, existing design 

codes have yet to provide dedicated guidance on their widespread applications [42]. The 

two blast-mitigation strategies, along with their element-specific application, that have 

been considered in this thesis are the use of external FRP retrofitting for RC slabs and the 

incorporation of steel fibers in RC beams. Therefore, the current section provides a brief 

description of each approach’s advantages and disadvantages, along with discussions on 

their parameters through existing studies. Moreover, the details of blast-mitigation 

techniques for conventional RC members discussed in this section sets the underlying 

importance and motivation towards the development of Chapters 6 and 7 of this thesis. 

2.4.2 External FRP retrofitting for RC slabs 

The different types of materials considered throughout existing studies on FRP retrofitting 

are carbon fiber (CFRP), glass fiber (GFRP), and aramid fiber (AFRP) reinforced 

polymers. During application, these materials are in the form of sheets or strips that are 

either bonded to a member’s surface or wrapped around it. The surface bonding process 

requires competent workmanship and is often achieved using a polymer resin [43]. 

Furthermore, the installation of FRP retrofits may be applied to consider multiple 

orientations to resist loading based on the type of member and may also consist of several 

independent layers. 

The major advantage of using FRP retrofitting stems from the material’s remarkable tensile 

resistance that is imparted to an adjoined RC member. Extended features include 

improvements to flexural strength, energy absorption, and inherent material durability. A 

secondary advantage of having an external cover on a RC member is the reduction in 

fragmentation and flying debris caused by blast loading [43]. Conversely, FRP retrofitted 

members are susceptible to debonding under extreme loading. To counter such a response, 

the FRP material is “anchored” into the member [44]. Another unfavorable response of the 

significant gain in flexural strength is a consequent change in the failure mode from pure 

bending to flexural-shear, which calls for additional attention to be directed to the 
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element’s shear capacity [41]. Lastly, for FRP retrofitted slabs and panels, a “rebounding” 

response occurs upon reaching the maximum displacement, which leads to significant 

damage. Although costly, the mitigation of such unfavorable responses may be achieved 

by implementing FRP retrofitting on either side of the element [14]. The following studies 

report on the behavior of FRP retrofitted slabs exposed to blast loading. 

Tanapornraweekit et al. [45] conducted a thorough experimental study on the effect of 

different FRP retrofitting materials and layout schemes. Both CFRP and GFRP sheets were 

used in the study considering one-sided single layer, two-sided single layer, and two-sided 

double layer schemes. Compared against a non-retrofitted slab under the same magnitude 

of loading, a one-sided single layer GFRP retrofitted slab could reduce maximum 

displacement and prevent concrete spalling. However, it was reported that the retrofitted 

slab exhibited strong rebounding, which resulted in significant damage and displacement 

on the slab’s loading face. When considering the two-sided single layer scheme with GFRP 

sheets, a greater improvement to displacement control was observed. The effect of element 

rebounding was eliminated, and the element’s behavior was reportedly characterized by 

elastic oscillations. Under a second independent blast load, the retrofitted slab remained 

sufficiently capable of resisting loading without reaching failure. The third loading event 

involved a two-sided double layer scheme to study the effect of multiple layering, where 

each side consisted of a GFRP layer and a CFRP layer. Under the same two blast 

magnitudes as the previous single-layer double sided scheme, the double layer scheme 

resulted in slightly improved blast-resistant performance. Overall, it was concluded that 

FRP retrofitting was successful for blast-mitigation in which a double-sided scheme 

provided most favorable results with the implementation of double layering offering only 

marginal improvements. 

A recent study by Maazon et al. [46] investigated the effect of CFRP strips on the blast 

resistance of RC slabs. The different layout schemes considered one, two, and four strips 

on a single side and two strips on either side of the slab. It was reported that the application 

CFRP strips on the slab significantly improved blast performance when compared to a non-

retrofitted slab. When comparing the resulting maximum displacements between the single 

sided retrofitting schemes, it was observed that an increase in strips provided only minor 
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improvements. Moreover, the rebounding deflection was measured for the two-strip and 

four-strip layouts and was found to be greater with an increase in strips. Thus, a double 

sided two-strip scheme was tested and resulted in the successful mitigation of rebound 

deflection. These results are effectively consistent with previous studies. 

To conduct a more flexible investigation of FRP-retrofitted slabs, Kong et al. [47] 

performed a comprehensive numerical study using LS-DYNA. The notable features 

evaluated in the study were the FRP material type, the number of layers, and the bond 

strength to the RC slab surface. For the materials of CFRP, GFRP, and AFRP, the 

performance of FRP retrofitting was observed to correlate directly to the material’s tensile 

strength. This led to CFRP exhibiting the highest blast performance followed by AFRP 

then GFRP. Moreover, the effect of FRP layers was studied considering up to five layers. 

It was reported that using two layers provided minor contribution to improving the blast 

capacity as opposed to one layer, whereas three or more layers resulted in relatively 

insignificant improvements. Lastly, when considering different bond strengths in the range 

of commercially available resins, the consequent behaviors presented very similar results 

implying a marginal effect. 

2.4.3 Steel fiber incorporation in RC beams 

Traditional concrete is well characterized by very low tensile resistance and brittle failure 

modes. The use of steel fiber-reinforced concrete (SFRC) is one of the most effective 

approaches in controlling the member behavior and even more so under blast loading. Steel 

fibers in concrete introduce improved shear, flexural, and tensile strengths, while leading 

to ductile response. Another advantage of SFRC is its ability to mitigate cracking by means 

of fiber bridging. When subjected to blast loading, SFRC members exhibit reliable aptitude 

in mitigating concrete fragmentation, debris, and spalling. Moreover, the inclusion of steel 

fibers strongly contributes to a shift of the failure mode from brittle shear to flexural [48]. 

The limitations of this approach are primarily due to issues relating to the distribution of 

fibers within the concrete mixture. In some cases, the selection of the fiber size or dosage 

in the concrete mixture may affect fiber distribution, alignment, and concrete flowability 

[49]. Lastly, it should be noted that even minimal fiber incorporation has resulted in 
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noteworthy improvements in concrete behavior, which further supports the cost-

effectiveness of this approach [41]. Several studies on the behavior of SFRC beams and 

their parameters under blast loading are presented herein. 

Magnusson and Hansson [50] conducted an experimental investigation on the effect of 

fiber reinforcement in various RC beams. The two types of RC beams considered were 

high-strength reinforced concrete (HSRC) beams and high-strength steel fiber-reinforced 

concrete (HSRFRC) beams having a volumetric fiber content of 2.4%. Under intermediate 

and lower magnitudes of blast loading, it was reported that the HSFRC beams exhibited 

fewer cracks and reduced maximum deflections. When subjected to higher magnitudes of 

loading, the HSRC beams suffered brittle shear failure, whereas their fiber-reinforced 

alternatives incurred a flexural failure mechanism. It was thus concluded that the use of 

steel fibers successfully improved the blast capacity of RC beams. 

In a more recent experimental investigation, Lee et al. [51] used a blast simulation device 

to test SFRC beams under repeated blasts considering fiber contents of 0.5% and 1%. 

Fiber-reinforced beams without stirrups were able to mitigate displacements and cracks as 

opposed to conventional RC beams. Moreover, SFRC beams could withstand more blasts 

than RC beams before reaching shear failure, while an increased capacity was observed at 

higher fiber content. Similarly, for beams having stirrups, the incorporation of steel fibers 

contributed to improved blast performance and greater capacity to resist repeated blasts, 

while reaching flexural failure. 

Using a similar blast simulation device, a more thorough investigation of SFRC beams was 

conducted by Castonguay [16] and considered various fiber types with fiber volumes of 

0.5%, 0.75%, 1% and 1.5%. Consistent with the previous study, the use of steel fibers 

successfully contributed to increasing the beam’s blast capacity. It was also reported that 

the use of steel fibers may be used to completely replace stirrups in RC beams owing to 

the observed enhancement in shear resistance. Lastly, the SFRC beams exhibited an 

excellent ability in reducing blast fragments.  
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2.5 Machine learning in structural engineering 

2.5.1 General 

When considering the available obstacles, uncertainties, and difficulties across the field of 

civil engineering, a means of overcoming such widespread hurdles based on simplified and 

data-driven methods is highly prevalent. This has motivated a multitude of studies to 

investigate the extent to which engineers can integrate machine learning (ML) methods 

throughout various disciplines of the field [52]. The flexibility of such methods may be 

adopted in applications of design, analysis, decision making, health monitoring, material 

testing, and construction management. Moreover, the underlying development of ML does 

not rely on the theories, proofs, and principles that heavily make up such applications, but 

instead attempts to “learn” or identify the correlations among the parameters that 

characterize each application. Although this can lead to “black-box” types of models, such 

methods have the potential to convert a highly complex application to a simplified input-

output relationship. However, it should be noted that with the increased usage of ML 

methods is civil engineering applications, notable efforts have been made to adapt practical 

empirical formulations from ML models to eliminate unknown prediction mechanisms 

[53,54]. The use of ML methods in structural engineering has therefore gained popularity. 

The following section describes some examples of implementations for ML in structural 

engineering conducted in 2020. 

2.5.2 Recent studies  

Tran et al. [53] developed a comprehensive dataset on the axial compression capacity of 

circular concrete-filled steel tube columns using ABAQUS and consisting of 768 data 

points. Considering multiple instances, the numerical model was validated against existing 

experimental studies before generating a large number dataset of the application. An 

artificial neural network (ANN) algorithm was used to develop the ML model, which 

produced remarkable performance through measures of root mean squared error (RMSE), 

mean absolute percent error (MAPE) and coefficient of determination (R2), yielding values 
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of 150.36 kN, 0.46%, and 99.9%, respectively. The predictions of the developed model 

were compared to four different design code formulas and were found to outperform them. 

Zhou et al. [54] considered the application of interfacial bond strength between FRP and 

concrete. A well-rounded dataset was compiled from the existing literature consisting of 

969 data points and considering the parameters of the concrete compressive strength, 

concrete width, FRP elastic modulus, FRP thickness, FRP width and FRP bond length. 

Furthermore, an ANN algorithm was adopted in developing the ML prediction model and 

resulted in an R2 of 92.8%. They also compiled twenty existing empirical prediction 

formulas of the application that have been developed since 2000. When compared to the 

existing models, the ANN model produced superior performance, while being developed 

considering a greater range of parameters. 

Charalampakisa et al. [55] studied the application of predicting the fundamental period of 

vibration for masonry infilled RC frame structures. Considering the parameters of structure 

height, bay length, wall opening ratio, and masonry wall stiffness, a set of 4026 data points 

were obtained from the literature. Both M5rules decision trees and ANN algorithms were 

considered in the development of the ML model in which both achieved R2 values of 

99.9%.  

Marani et al. [56] investigated the application of concrete compressive strength for ultra-

high-performance concrete. A total of 810 data points was accumulated from the existing 

literature considering fifteen application parameters. Furthermore, a Tabular Generative 

Adversarial Networks (TGAN) algorithm was implemented as a means of generating 

synthetic data for improved ML model development. Towards developing the ML model, 

the algorithms of Random Forests (RF), Extra Trees (ET), and Gradient boosted 

Regression Trees (GBRT) were considered in the study. The optimal resulting performance 

measures were observed in the GBRT model yielding a mean absolute error (MAE), RMSE, 

and R2 of 6.72, 8.41, and 95%, respectively.  
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Chapter 3  

 

3 Machine learning model for predicting structural 
Response of RC slabs exposed to blast loading  

 

3.1 Introduction and background 

When an explosive event occurs, whether due to accidents or caused by intentional 

detonation, it can generate an enormous amount of pressure that can cause irreparable 

damage to the surrounding structures while threatening the lives of their occupants. 

Therefore, structural mitigation strategies are required to reduce the implications of such 

events. Recent research has been conducted to investigate different approaches for 

modeling the overall damage in structural components exposed to blast loading. 

Thiagarajan et al. [1] studied the response of high-strength and normal-strength concrete 

slabs reinforced with steel and vanadium bars exposed to blast loading. To numerically 

model the slabs and loading scheme, they used the non-linear finite element software LS-

DYNA considering both the Winfrith Concrete Model (WCM) and the Concrete Damage 

Model Release 3 (CDMR3). They also used a Blast Load Simulator to apply dynamic 

loading to the studied slabs to obtain experimental results emulating actual blast events. 

The differences of peak deflections between numerical model predictions and experimental 

results were 5.9%-37.5% using the WCM and 0%-35.6% using the CDMR3 with 25.4 mm 

mesh size, and 10.4%-58.8% using the WCM and 2.3%-68.6% using the CDMR3 with 

12.5 mm mesh size. The results of the numerical model were thus considered reasonably 

good for predicting maximum deflections.  

Similarly, Mao et al. [2] studied the performance of ultra-high-performance fiber-

reinforced concrete (UHPFRC) slabs subjected to close-in blasts. A numerical model was 

developed to simulate the event using LS-DYNA considering the Karagozian & Case 

(K&C) concrete model, while field blast tests were also conducted. UHPFRC slabs were 

found to have greater resistance to blast loading, and the numerical model showed 
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reasonable peak deflection prediction accuracy showing differences of peak deflections 

between the numerical model and experimental results of 0%-66% considering slabs with 

2%, 4%, and 6% fiber volume. 

In addition to developing an experimentally-validated numerical model to study the 

behavior of reinforced concrete slabs under blast loading, Zhao et al. [3] also developed an 

empirical equation to calculate the peak displacement of a conventional reinforced concrete 

(RC) slab with fixed parameters as a function of the slab thickness, h, and the blast scaled 

distance, Z. The empirical formula was found to have a prediction error of 1.9% but was 

limited within the range of 40 mm < h < 60 mm and 0.218 m/kg1/3 < Z < 0.517 m/kg1/3. 

Based on such previous studies, there is evidence that using finite element modeling for 

modeling structural elements subjected to blast loading is associated with several 

limitations including mesh size sensitivity, constitutive models and other simplifying 

assumptions [1, 2].  

Furthermore, analytical approaches for predicting the behavior of structures exposed to 

blast loading have been explored [4, 20, 21]. For instance, Maazoun et al. [4] studied the 

efficiency of using externally bonded reinforcements of carbon fiber reinforced polymer 

(CFRP) on RC slabs exposed to blast loading. Their results showed that using CFRP 

significantly improved the flexural capacity and stiffness of the RC slabs. A simplified 

single degree of freedom (SDOF) approach was adopted to predict the maximum 

displacements of the slabs. The results of the analytical approach were tested against 

experimental results and showed excellent accuracy in predicting maximum displacements, 

with only 2%-14% differences.  

Additionally, Oesterle [21] used a Frangible Panel Wall Analysis (FWPA) code, which 

applies a multiple degree of freedom (MDOF) model, to predict the impulse and peak mid-

span displacement of wall panels exposed to blast loading. The FPWA was compared to 

experimental data and was found to predict both impulse and displacement with very good 

accuracy having displacement differences between experimental and analytical models of 

0.6%-22.7% 

Existing prediction approaches such as numerical methods require a competent background 
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in computer modeling as well as extensive modeling effort and computational cost. 

Similarly, analytical models are dependent on assumptions based on the complex 

understanding of the application.  Hence, in the present chapter, a machine learning model 

is developed to predict the maximum displacement of RC slabs subjected to blast loading 

requiring much less computational time, effort, and complexity of implementation. The 

dataset used for the model, the learning algorithm adopted, and the selection of features are 

described below. The results of the model predictions are discussed through measures of 

the coefficient of determination, R2, goodness-of-prediction, VEcv, mean absolute error 

(MAE), and compared to results of alternative models found in the literature. Moreover, 

the effect of each input feature on the output is measured through permutation feature 

analysis along with comparisons of feature importance with existing parametric studies. 

Furthermore, a detailed analysis of the model’s discrepancies is discussed and an approach 

for an improved model is proposed. 

 

3.2 Machine learning in civil engineering 

Machine learning (ML) is the use of programmed algorithms to optimize a performance 

standard based on previously accumulated data. Essentially, the act of learning involves 

training an algorithm using existing data (pairs of inputs and outputs), and having the 

trained algorithm provide an efficient inference. A machine learning model can also be 

used to recognize and extract important relationships between inputs and outputs. By 

allowing a model to learn about an application through relevant data, it can arrive at an 

inference without being explicitly programmed [5]. The use of machine learning has gained 

popularity across several disciplines. In a survey conducted by Kish [6], state-of-the-art 

research in machine learning has been listed in the fields of engineering, mathematics, 

medicine, neuroscience, and public health among others. The survey shows that the amount 

of research being conducted in machine learning has been increasing rapidly since 2015.  

In the field of civil and infrastructure engineering, using machine learning has proven to 

be effective in several recent applications.  For instance, Cao et al. [7] compared the 

performance of three types of ensemble machine learning models to predict the unit price 
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bids of highway resurfacing using a dataset collected from over 1400 projects considering 

57 features. The proposed model was found to provide accurate cost forecast. Spencer Jr. 

et al. [8] presented an overview of recent developments in the use of computer vision in 

monitoring and inspecting civil infrastructure through non-contact methods. The inspection 

applications consisted of characterizing local and global visible damage, detecting changes 

from a reference image, and recognizing structural components, whereas the monitoring 

aspects consisted of both static applications such as the static measurement of displacement 

and strain, and dynamic applications such as displacement measurements for modal 

analysis. Moreover, a study comparing different machine learning models for predicting 

concrete compressive strength was reported by Chopra et al. [9]. They investigated the 

predictive accuracy of using decision tree, random forests, and neural networks. It was 

found that neural networks had the highest accuracy followed by random forests in 

predicting concrete compressive strength. Such applications have shown reliable 

advancements in the field of civil engineering through machine learning. 

 

3.3 Data collection and description 

The database used in this chapter was compiled from numerous research articles across 

several journals in addition to research theses, which specifically studied the behavior and 

mitigation techniques of RC slabs exposed to blast loading.  Data was retrieved from both 

results of experimental programs and numerical models validated by experiments. Only 

consistent data among all the studied articles and theses was included. Whenever required 

information was missing, it was obtained from the appropriate authors through personal 

correspondence. When this was not feasible, incomplete data was discounted from the 

database.  

Experimental investigations exploring blast loading applications require sensitive 

instrumentation to measure the responses of structural components [10, 17]. It also requires 

extreme precaution to be undertaken upon setting up detonations near structures, as well as 

in detonating the charge. Unlike computer simulations, experimental studies are associated 

with high costs, and thus tend to be limited in scope and in repetitions of experiments. A 
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typical experimental setup for slabs exposed to blast loading consists of the slab specimen, 

a steel support frame, an explosive charge, and instrumentation for data acquisition.  The 

slab specimen is clamped on to the support frame and may act in the form of a simple, 

pinned, or fixed support in two opposite sides of the slab to simulate one-way bending or 

all four sides to simulate two-way bending. The slab specimen is then equipped with the 

relevant instrumentation such as Linear Variable Displacement Transducers (LVDT), 

pressure transducers, strain gauges (previously installed in specimen), and accelerometers 

to capture separate responses. Afterwards, an explosive charge is positioned with the 

desired standoff distance above the specimen and detonated to induce a spherical 

shockwave acting on the slab, during which relevant data to the blast’s parameters and 

specimen’s response are recorded [15, 16, 18, 23]. A total of 22 data points [10-15, 23] 

were taken from articles and theses that have collected experimental data on RC slabs 

exposed to blast loading.  

Devices such as the Blast Load Simulator [19] or the Blast Simulator [21] generate and 

apply pressure on a specimen like that of a detonated charge. This method reduces risk, 

cost, and mitigates potential damage to instrumentation, while it can be conducted in 

laboratory facilities to obtain near-identical results. However, these devices do not 

explicitly provide the equivalent blast weight, blast distance, or scaled distance being 

simulated. Oesterle [21] presented a method to use blast parameters obtained from blast 

simulations for extracting the equivalent scaled distance of blasts through charts provided 

by the TM5-1300 [14]. This method was adopted to extract the equivalent scaled distances 

of the simulated blasts from articles and theses that used such devices. Overall, 26 data 

points [1, 19-21] were collected from articles and theses that utilized these devices on RC 

slabs.  

The use of finite element modeling (FEM) software to simulate blast load applications has 

been shown to provide relatively good predictions of structural behavior. Using FEM 

eliminates cautionary and monetary aspects related to blast loading, and it allows for a 

great deal of flexibility in modeling, while offering a wide range of detailed analyses. A 

total of 102 points [22-29] were collected from articles that used FEM, validated by 

experiments, for applications of RC slabs exposed to blast loading. The sources from which 
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data was collected contained information on several nonconventional RC slabs, such as 

those with external retrofits, fiber-reinforced concretes, or novel rebar orientation, but also 

included conventional RC slabs as control or reference specimens. The database used in 

the present chapter was created considering only conventional RC slabs. It should also be 

noted that both one-way and two-way slabs were considered in the dataset in which 84 

were one-way slabs and 66 were two-way slabs. The dataset also considered the slab’s 

boundary conditions in which 70 slabs were simply supported, 75 slabs were fixed, and 5 

slabs were simply supported on one end and fixed on the other end. 

Table 3-1. Mean, standard deviation, and range of model features 

Notation Feature/Output Mean/Count Standard 

Deviation 

Range/Categories 

X1 Length (m) 1.85 0.91 0.75 – 3.6 

X2 Width (m) 1.4 0.818 0.44 - 3 

X3 Thickness (m) 0.109 0.046 0.03 - 0.305 

X4 Concrete compressive 

strength (MPa) 

51.13 35.89 16 - 140 

X5 Steel yield strength 

(MPa) 

450.9 105.2 235 - 630 

X6 Steel reinforcement ratio 0.0117 0.0086 0 - 0.0612 

X7 Scaled distance 

(m/kg1/3) 

2.15 3.58 0.345 - 25.4 

X8 Reflected Impulse (MPa-

msec) 

2.82 2.86 0.0247 - 7.71 

X9 One-way / Two-way 84 / 66 - 2 

X10 Simple / Fixed / Simple-

Fixed 

70 / 75 / 5 - 3 

Y Maximum displacement 

(mm) 

33.38 32.16 0.6 - 140 

 

The parameters that effect the behavior of RC slabs under blast loading include the slab 

type and dimensions, the quantities and properties of materials used, and the parameters of 

the blast. These aspects were common among nearly all the studies associated with the 

dataset. Eight of the features were based on continuous (quantitative) data and two of the 

features were based on categorical data. Therefore, the features considered in this chapter 
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are the length, width, and thickness of the slab, concrete compressive strength, reinforcing 

steel yield strength, steel reinforcement ratio, the blast’s scaled distance, the blast’s 

reflected impulse, type of slab, and slab support. Every data point collected consisted of all 

ten features without any missing information, with every data point being unique to the 

dataset. Additional features could have been considered, however the availability of 

information that was consistent across the entire dataset was relatively limited and 

presented through these ten features. Table 3-1 lists the mean or count, standard deviation, 

and range/categories of each input feature. Figures 3-1 and 3-2 display the distributions of 

the continuous features and output, as well as the scatter plot of the relationship of each 

normalized feature with the normalized output, respectively. The statistics provided for the 

categorical features are simply the frequency of each category and the number of categories 

provided in Table 3-1. 

 

Figure 3-1. Distribution plots of features and output. 
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Figure 3-2. Scatter plots of normalized features. 

 

3.4 Model development 

3.4.1  Preliminary assessment of regression models 

To identify which regression learning algorithm was best suited for the dataset, a 

preliminary analysis was conducted in which several learning algorithms were tested using 

the MATLAB Regression Learner (MRL) as well as the Random Forests algorithm coded 

using MATLAB [30]. The assessed models in the MRL consisted of linear regression 

models, regression trees, support vector machines (SVM), and ensembles of trees. A k-fold 

cross-validation of 10 folds was applied to all models. Also, each model retained its default 

settings and parameters, while comparisons were done based on the resulting mean 

absolute errors and R2. The preliminary analysis of the models was only based on the eight 

continuous features due to the limitation of the MRL to include categorical data. Table 3-

2 lists the models tested along with their performance measures. The MRL is a convenient 

method of thoroughly investigating several learning algorithms for a dataset, however, in 
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this study it was only used to gain a general overview of the performance of several models 

after which a more detailed approach was executed. Based on the results, the random 

forests model achieved the highest performance in both MAE and R2 followed by the 

ensemble model of boosted trees with the remaining models showing less suitable 

performances with respect to the given dataset. In addition to the random forests model 

having the highest performance, it is also favorable due to being nonparametric and its 

ability to prevent overfitting.  

Table 3-2. MATLAB Regression Learner and Random Forest results. 

Regression Models Mean Absolute Error R2 

Linear Regression 21.41 0.26 

Regression Tree, fine 8.88 0.83 

Linear SVM 21.4 0.2 

Quadratic SVM 13.85 0.42 

Cubic SVM 12.1 -0.06 

Ensemble, bagged trees 12.4 0.73 

Ensemble, boosted trees 8.14 0.86 

Random Forest, 

regression 

6.68 0.92 

 

3.4.2 Random Forests algorithm 

The use of the Random Forests (RF) algorithm for this application was motivated by the 

capabilities attributed to the algorithm. RF acts to reduce the variance of prediction while 

keeping low bias, which acts to provide an appropriate fit for the data. Furthermore, 

prediction performance is assessed through a type of cross-validation while the training 

step is occurring (which further acts to prevent overfitting) [32]. Among others, these 

qualities make the use of RF attractive for this application. It has also been shown in Table 

3-2 that other types of learning algorithms were less appropriate for the current application. 

The RF algorithm is essentially an ensemble of decision trees in which each tree is grown 

using a bootstrap (random) sample, with replacement, from the training set. At each node 
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of the tree, a randomly chosen subset of features is used to create the best partitioning. The 

training process continues until each point in the sample is assigned to a terminal node 

from previously partitioned nodes and is repeated until the desired number of trees have 

been grown. By creating trees from bootstrap samples, the created trees will generally be 

less correlated with each tree producing a prediction. In regression, the final prediction is 

the average of individual predictions. For classification, the final predicted class is the most 

common class among the individual predictions [31]. A depiction of the Random Forests 

algorithm for both regression and classification problems is given in Figure 3-3. 

 

Figure 3-3. Diagram of regression and classification Random Forests. 

The probability that a data point in the original data set is not chosen by a single tree’s 

bootstrap sample is given by (1-1/N)N, where N is the total number of data points in the 

training set. This expression approaches a limit of 1/e, approximately 0.37, as N approaches 

infinity. Therefore, 37% of the data is not included in a single tree’s bootstrap sample and 

is referred to as the out-of-bag data. It can also be understood that a single data point is not 

included in the bootstrap sample of 37% of the total number of trees. This out-of-bag data 

can be used by each tree to act as an internal validation set, resulting in a fair assessment 

of the RF prediction performance [33]. 
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3.4.3 Hybrid classification-regression Random Forests algorithm   

The use of Random Forests classification algorithms to make predictions on continuous 

datasets have been previously shown to yield accurate results [34,35]. The approach 

considers a continuous output variable to be discretized and treats the output as though it 

were a multi-class classification problem. Additionally, recent studies have explored the 

simultaneous use of both classification and regression algorithms to establish an effective 

machine learning model. Wang et al. [36] developed a hybrid classification-regression 

neural network for the application of model pose estimation. The model was found to 

mitigate errors caused by data imbalance while also yielding improved accuracy compared 

to previous models of the same application. Furthermore, Chen et al. [37] implemented 

joint classification and regression learning using neural networks for age predictions on 

social media. The model was shown to have better results when compared individual 

regression or classification models. In the current chapter, the use of a hybrid classification-

regression approach using the Random Forests algorithm is considered. Through this 

approach, a regression model and classification model are trained independently while 

testing, validation, and performance measures are based on a robust linear fit of their 

predicted outputs. 

3.4.4 Model overview   

The RF model development, including training and testing, cross-validation, performance 

measures, feature importance analysis, and graphic representations, was carried out using 

MATLAB 2019a. The sections below provide further detail on each aspect of the model 

development. 

 Cross-validation  

To develop a reliable model, training an algorithm on a dataset alone does not suffice. The 

model must also be validated by external data that was not included as part of the model 

development [38]. Therefore, cross-validation (CV) was implemented such that the dataset 

was divided into a training subset through which the model was trained, and a testing subset 

used to evaluate the model’s performance. The division of training and testing subsets was 

based on k-fold CV where the data is divided into k equal subsets, such that for every subset 
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being tested, the remaining k-1 subsets were used to train the model. The training and 

testing cycle of k-fold CV was repeated until every subset was tested once, with 

performance measures computed through the testing subsets. This approach prompts a 

more robust conclusion [33]. A common value of folds for k-fold CV is 5 or 10 [39], 

therefore 10-fold CV was adopted herein. Additionally, before every run of dividing the 

data into training and testing subsets through CV, the dataset was randomly permuted such 

that no two runs have the same data points in the training and testing subsets, with every 

run computing a value of performance measures. The final performance measures were 

taken from the average of 100 repetitions for the purpose of stabilizing results and 

statistical assurance. 

 Selected performance measures 

The performance of a prediction model is based on the difference between the actual values 

and the predicted values [40]. There are several different approaches to measuring a 

model’s performance based on the nature of the data [40, 41]. The measures chosen for the 

current study are the mean absolute error (MAE), variance explained by cross validation 

(VEcv), and coefficient of determination (R2).  The use of MAE is a common error metric 

in analyzing model performance [41-43]. The value of the MAE does not penalize the 

presence of outliers as heavily as the mean squared error or root mean squared error do, 

making it robust to outliers and equally sensitive to different frequency distribution of 

errors. MAE is given by: 

     𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1    (1) 

where 𝑦  is the predicted output, 𝑦 is the actual output for every ith entry in the set, and 

where n is the number of items in the set [42].  By using the predicted values obtained 

through cross-validation, the measure of a model’s prediction accuracy can also be 

represented using VEcv, which is given by 

    𝑉𝐸𝑐𝑣 = (1 − 
∑ (𝑦𝐶𝑉𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝐶𝑉𝑖−𝑦̅)2
𝑛
1

) ∗ 100%   (2) 
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where 𝑦  is the predicted output, 𝑦CV is the actual output for every ith entry in the validation 

(or testing) subset, 𝑦̅ is the mean of the actual values, and n is the number of items in the 

validation subset. It should also be noted that the value of VEcv can be negative and has a 

maximum value of 100%, implying ideal accuracy [43-45]. 

A correlation between the actual outputs and the predicted outputs can be measured through 

the coefficient of determination, R2, also referred to as the goodness-of-fit or coefficient, 

given by 

    𝑅2 = (1 − 
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̅)2
𝑛
1

) ∗ 100%   (3) 

where 𝑦  is the predicted output, 𝑦 is the actual output for every ith entry in the dataset, 𝑦̅ 

is the mean of the actual values, and n is the number of items in the dataset. The value of 

R2 is always positive and ranges between 0 and 1 [43, 45]. Although R2 has often been 

misinterpreted as a measure of accuracy, it is in fact a measure of correlation and is related 

to the fit of the data [43]. As mentioned in the previous section, the three performance 

measures discussed were computed for every repetition and averaged for the final values. 

 Permutation feature importance 

In several applications, it is desirable to understand the effect that an input variable (or 

feature) has on an output variable. By implementing variable importance measures, 

investigated variables can be compared based on the degree to which they influence the 

output [46]. In random forests, a common variable importance measure used is permutation 

feature importance (PFI), which is both effective and easy to implement. PFI is based on 

the understanding that if there exists an association between an input variable Xi and an 

output Y, then by randomly permuting Xi and using it to predict Y, while keeping all other 

input variables non-permuted, the prediction accuracy will decrease significantly. The 

value of PFI for a single variable is given by the difference in error measures between the 

original accuracy and the accuracy resulting from having that variable randomly permuted 

[46-48]. All input features used in this chapter have been considered for PFI with the error 

measure being MAE. The closer the PFI value is to zero, the less impact it has on the output, 

while greater values of PFI signify a higher impact on the output [47]. Furthermore, the 
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approach of PFI may conveniently be implemented on several ML algorithm due to the 

simplicity of capturing the change in errors produced from permuting a feature. This 

assumes, however, that a given dataset is sufficiently capable of describing the variations 

of an applications features. Thus, in order to validate the PFI outcomes of the current 

model, experimental correlations were thoroughly investigated. 

 

3.5 Results and discussion 

This section applies the methodology outlined in the previous section and thoroughly 

presents and discusses the results of the ML model in five subsections: the first and second 

present the performance measures of the model and compare the predicted outputs to other 

predicted outputs of different models for the same application found in the literature; the 

third and fourth present the importance of each feature through their PFI values and relate 

the importance of each feature obtained from the ML model to parametric studies of the 

same features found in the literature. The final subsection discusses the model’s 

discrepancies through several sources of variability and proposes an improved model. 

3.5.1 Performance measures of the ML model  

As shown in Table 3-1, the data of each feature can be considered widely spread given that 

the value of the standard deviation is relatively close to the mean value, as opposed to 

having a small standard deviation implying the data is clustered around the mean. This can 

also be observed in Figure 3-1, which also shows that none of the features follows a normal 

distribution. Additionally, the scatter plots in Figure 3-2 show that there is no clearly 

defined relationship between each feature and the output. The work done by Tsanas and 

Xifara [34] indicated similar results for their data and suggested that traditional learning 

algorithms such as linear regression may be unable to accurately relate the input features 

to the output. Such plots therefore encourage the use of more sophisticated regression 

learning algorithms, such as RF. This suggestion agrees with the results obtained by the 

MRL shown in Table 3-2, which also indicates the inability of several learning algorithms 

to accurately predict the output. 
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The performance measures of the RF regression model resulted in a MAE value of 6.68 

0.24 biased upward, a VEcv value of 85.5% 7.4%, and an R2 value of 92% 0.9%, 

averaged from 100 repetitions with an input of 100 trees. Generally, MAE values are 

scale/unit dependent; therefore, only models prepared by the same dataset can be compared 

through MAE. Since this dataset was compiled by the authors and no other models have 

yet been developed, then comparisons to MAE can only currently be done with the values 

acquired by the MRL. With the results of the MRL in Table 3-2, RF outperformed the 

tested regression models in both MAE and R2. A summary of learner comparisons based 

on MAE are shown in Table 3-3. The RF regression model results compared to the MRL 

results only consider continuous features for the sake of valid comparison. When 

considering all the features, the RF regression model resulted in a MAE value of 6.51 0.23 

biased upward, a VEcv value of 87.6% 6.8%, and an R2 value of 92.6% 0.92%. 

The performance measures of the hybrid classification-regression RF model resulted in a 

MAE value of 4.38 0.22 biased upward, a VEcv value of 94.4% 3.5%, and an R2 value 

of 96.2% 0.6%. The results of the RF hybrid model are shown to be considerably greater 

than those of the RF regression model in all three performance measures. According to 

[43], the performance of a predictive model is considered to have good accuracy if VEcv is 

between 50% and 80%, and excellent accuracy if above 80%. The importance of accuracy 

is dependent on the type of application considered, and the resulting VEcv in this chapter 

is found to be highly acceptable for the given application. The R2 representation of the 

hybrid model is presented through Figure 3-4, which displays the actual response versus 

predicted response plot. An ideal case would be if all the points fell on the line, implying 

that all predicted values are the same as the observed values. Figure 3-4 shows the points 

scattered relatively close to the line, with minimal outliers scattered further from the line, 

indicating a good fit. The figure also includes a 40% difference bounds that included 121 

points. Furthermore, additional bounds were considered to report on the data points lying 

in certain ranges of difference bounds such that for 30%, 20%, 10%, and 5% bounds 

the number of points included within each bound were 108, 93, 72, and 42, respectively 

based on a total of 150 data points. Furthermore, Figure 3-5 presents the comparison 

between actual and predicted responses. It can be observed that the predicted responses 
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had an overall good agreement with the actual responses but tended to slightly over-predict 

lower outlier values. Based on the results of the three performance measures, the 

comparisons shown in Table 3-3, as well as the prediction outputs in Figures 3-4 and 3-5, 

the current ML model is shown to provide acceptable results. 

Table 3-3. Summary of learner comparison. 

 

 

Figure 3-4. Actual versus predicted responses with a 40% error bound. 

Learner MAE Difference (%) 

Random Forests, regression 6.68 Base 

Ensembles, boosted trees 8.14 21.8 

Ensembles, bagged trees  12.4 85.6 

Regression tree, fine 8.88 32.9 

Linear SVM  21.4 220.4 

Quadratic SVM 13.85 107.3 

Cubic SVM 12.1 81.1 

Linear Regression 21.41 220.5 



 

 

59 

 

Figure 3-5. Comparison between actual and predicted responses. 

3.5.2 Comparative study of ML model to alternative models 

To further elaborate on the performance of the ML model, comparisons between different 

models predicting the maximum displacement of RC slabs to blast loading and the current 

model are shown in Table 3-4. The points in this Table were taken from studies that 

compared their model predictions to corresponding experimental results. Therefore, using 

such results as a baseline, the current model was compared to alternative models utilized 

for the same application.  

The model details provided are the software, concrete model, and mesh size, or the 

analytical method. Additional details of each model and their results can be found at their 

respective reference. As stated in the previous section, the ML model tended to generally 

over-predict very few lower outlier values, which agrees with the current comparisons as 

shown through comparison numbers 10, 11, and 23 in Table 3-4. Additionally, the ML 

model has proven to outperform both software-based models and analytical models in most 

cases while in the remaining cases, the ML model’s performance was lower than that of 

alternative models (comparison numbers 10, 15, 18,19, 22, 23, 24, 25), but still providing 

acceptable predictions. In comparisons 10, 23, and 25, the ML model poorly predicted the 

actual value, and the reason for this lacking accuracy along with the reasons for the 

prediction discrepancies in the overall model are discussed in detail. 
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Table 3-4. Comparisons of hybrid RF model to alternative models. 
Entry 

# 

Source Alternative 

Model 

Detail 

Experimental 

result (mm) 

Alt. 

Model 

Prediction 

(mm) 

ML 

model 

prediction 

(mm) 

Alt. 

Model 

Error 

(%) 

ML 

Model 

Error 

(%) 

1 [1] LS-DYNA, 

WCM, 

25.4mm 

mesh size 

122 76 118.9 37.5 2.5 

2 LS-DYNA, 

CDMR3, 

25.4mm 

mesh size 

122 101 118.9 16.7 2.5 

3 LS-DYNA, 

WCM, 

12.5mm 

mesh size 

122 109 118.9 10.4 2.5 

4 LS-DYNA, 

CDMR3, 

12.5mm 

mesh size 

122 180 118.9 47.5 2.5 

5 LS-DYNA, 

WCM, 

25.4mm 

mesh size 

140 124 129 10.9 7.85 

6 LS-DYNA, 

CDMR3, 

25.4mm 

mesh size 

140 121 129 12.7 7.85 

7 LS-DYNA, 

WCM, 

12.5mm 

mesh size 

140 124 129 10.9 7.85 

8 LS-DYNA, 

CDMR3, 

12.5mm 

mesh size 

140 180 129 29.1 7.85 

9 [20] Dynamic 

SDOF 

model 

6.9 8.9 7.41 29 7.4 

10 Dynamic 

SDOF 

model 

0.6 0.35 3.5 41.6 483 

11 Dynamic 

SDOF 

model 

3.5 7.7 6.7 120 91.4 

12 Dynamic 

SDOF 

model 

6.7 11.4 9.1 70.1 35.8 
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13 Dynamic 

SDOF 

model 

12.6 17 9.8 35 22.2 

14 [21] LS-DYNA, 

K&C, 
80 66 76.7 17.5 4.1 

15 LS-DYNA, 

K&C, 
114.8 111.76 100.7 2.6 12.3 

16 LS-DYNA, 

K&C, 
118.6 114.3 114.8 3.6 3.2 

17 LS-DYNA, 

K&C, 
76.7 71.12 80 7.3 4.3 

18 FPWA 

(MDOF 

model) 

80 82.8 76.7 3.5 4.1 

19 FPWA 

(MDOF 

model) 

114.8 104.14 100.7 9.7 12.3 

20 FPWA 

(MDOF 

model) 

118.6 106.7 114.8 10 3.2 

21 FPWA 

(MDOF 

model) 

76.7 63.5 80 17.2 4.3 

22 [23] LS-DYNA, 

CDMR3, 

3mm mesh 

size 

9 8.4 12.3 6.6 36.6 

23 LS-DYNA, 

CDMR3, 

3mm mesh 

size 

5.1 5.7 9 11.7 76.4 

24 LS-DYNA, 

CDMR3, 

3mm mesh 

size 

23.1 21.3 20.3 7.8 12.1 

25 LS-DYNA, 

CDMR3, 

3mm mesh 

size 

9.9 10.5 18.3 6.1 84.8 

 

3.5.3 Results of PFI for input features 

A thorough study of the impact of each feature was conducted through PFI. The MAE of 

ten different models were recorded to assess the mean absolute error of each model having 

a single feature permuted. Furthermore, a comparison between each of the ten models with 



 

 

62 

the original non-permuted model was made through MAE. Table 3-5 presents the results 

of the ten models along with the comparisons of the original model. Greater values of MAE 

suggest a corresponding feature has a higher impact on the output, whereas MAE values 

closer to the original model’s MAE has less of an impact on the output. The PFI values 

presented in the fourth column show that the ranking of feature importance based on MAE 

from highest to lowest impact is X8, X3, X7, X6, X4, X1, X2, X5, X10, X9. This ranking 

indicates that the features for which the output is most sensitive to are the blast impulse, 

blast scaled distance, the slab’s thickness, and the slab’s steel reinforcement ratio, followed 

by less sensitive features including the slab’s length and width, with the least sensitive 

feature shown to be the concrete compressive strength and steel yield strength. 

Additionally, the two categorical features of slab type and slab support type were shown to 

have a very small impact on the output of the model when assessed through PFI. However, 

this may be due to the reduced effect of permutation for such features in which several data 

points may still retain their original categorical value even when permuted. 

Table 3-5. PFI values of permuted features. 

Permuted 

Feature 

MAE PFI = MAEperm - MAEorig 

X1 4.78 0.4 

X2 4.8 0.42 

X3 5.68 1.3 

X4 5.17 0.79 

X5 4.69 0.31 

X6 5.29 0.91 

X7 5.43 1.05 

X8 6.14 1.76 

X9 4.57 0.19 

X10 4.6 0.22 
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3.5.4 Comparative study of PFI values to existing parametric 
studies 

To validate the results reported in the previous section, a comprehensive investigation of 

the relation between each feature and the output was performed based on several parametric 

studies found in the open literature. Afterwards, the impact of each feature was analyzed 

and compared to the results obtained from PFI. The investigated features, in which 

sufficient parametric studies were found, are the scaled distance, slab thickness, 

reinforcement ratio, concrete compressive strength, and steel yield strength. For the 

features of slab length, width, and steel yield strength, PFI values could not be compared 

to parametric studies due to insufficient information in the open literature relating to the 

effect of each parameter. 

 Effect of reflected impulse 

A blast’s reflected impulse is a function of the blast’s reflected pressure and positive 

duration while also relating to the standoff distance and charge weight of the blast through 

a R/W2/3 relation [14]. For near-field blasts having a scaled distance of less than 1.2 m/kg1/3, 

the blast’s duration becomes less than the time it takes to reach the maximum response of 

the structure, therefore the reflected impulse load becomes essential to assess the exposed 

structure [53].  

Table 3-6 shows two sources of comparisons between the change in reflected impulse and 

the corresponding change in maximum displacement. For each source of comparison, all 

remaining parameters were kept constant aside from the analyzed parameter. This approach 

was also adopted in the subsequent subsections and additional information pertaining to 

each slab, as well as the model used for analysis, can be found at their respective sources. 

Based on Table 3-6, the rate at which the maximum displacement increases becomes 

significantly higher for greater values of impulse. This result coincides with the PFI values 

expressing the critical importance of this feature in the model. 
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Table 3-6. Effect of reflected impulse on maximum displacement. 

Source Reflected 

Impulse (kPa-

ms) 

Maximum 

Displacement 

(mm) 

Change in 

Reflected 

Impulse 

Corr. Change 

in Max Disp. 

[21] a 103 4.83 Base Base 

164 8.13 59.2% 68.3% 

232 15.11 125.2% 212.8% 

386 36.32 274.5% 652% 

[21] b 103 1.65 Base Base 

164 2.92 59.2% 79% 

232 4.19 125.2% 154.5% 

386 8.28 274.5% 401.8% 

563 14.86 446.6% 800.6% 

 

Table 3-7. Effect of scaled distance on maximum displacement. 

Source Scaled 

Distance 

(m/kg1/3) 

Maximum 

Displacement 

(mm) 

Change in 

Scaled Dist. 

Corr. Change in 

Max Disp. 

[22] a 0.756 4.6 Base Base 

0.6 10.5 20.6% 128.3% 

0.524 16.9 30.8% 267.4% 

[22] b 0.936 8.9 Base Base 

0.782 12 16.5% 34.8% 

0.626 23 33.1% 158.4% 

[49] a 1.48 4.14 Base Base 

1.11 5.99 25% 44.7% 

0.59 26.92 60.1% 550.2% 

[49] b 1.3 5.97 Base Base 

0.97 9.51 25.4% 59.3% 

0.52 38.84 60% 550.6% 

[50] 0.684 10 Base Base 

0.592 15 13.4% 50% 

0.518 35 24.3% 250% 
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 Effect of scaled blast distance 

In the application of structural elements exposed to blast loading, the primary load that the 

structure withstands is the reflected pressure caused by the explosion. Based on the blast 

parameters provided by [14], the reflected pressure increases significantly as the scaled 

distance decreases. Moreover, the structural response of an element is also significantly 

affected by a change in scaled distance. Table 3-7 lists several scaled distances with their 

corresponding output of maximum displacement, along with the change in maximum 

displacement resulting from the change in scaled distance.  

The maximum displacement was shown to increase significantly with decreasing scaled 

blast distance, which is consistent in all five sources listed in Table 3-7. It should be noted 

that the scaled distance is the standoff blast distance divided by the cubic root of the charge 

weight. Therefore, changes in either the standoff distance or the charge weight will 

contribute to a change in the scaled distance. A set of three points were taken from each 

source in which the first point acts as a base of comparison for the second and third points. 

The rate at which the maximum displacement increased was significantly greater as the 

value of scaled distances approached smaller values, as shown in Table 3-7. The values of 

the corresponding changes of maximum displacement with respect to changing scaled 

distances reflect the high importance of this feature in the application. 

 Effect of slab thickness 

The effect of slab thickness was analyzed through parametric studies listed in Table 3-8. 

Similarly, all points of comparison maintained constant parameters with varying slab 

thicknesses. It can be observed that decreasing the thickness of the slab considerably 

decreased its ability to resist deformation when subjected to blast loading. Also, for similar 

rates of change in thickness and blast impulse, the rate at which the maximum deformation 

changed was lower for changes in slab thickness. Therefore, the results of the PFI value 

for slab thickness being less than that of the blast impulse is strongly supported through 

this comparison. 
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Table 3-8. Effect of slab thickness on maximum displacement. 

Source 
Slab 

Thickness 

(mm) 

Maximum 

Displacement 

(mm) 

Change in 

Slab 

Thickness 

Corr. 

Change in 

Max Disp. 

[22] 200 8.4 Base Base 

180 10.7 10% 27.4% 

150 22.6 25% 169% 

[51] 600 9.6 Base Base 

500 11.8 16.7% 23% 

400 14 33.3% 45.8% 

[52] a 400 4.1 Base Base 

300 6.9 25% 68.3% 

200 13.31 50% 224.6% 

[52] b 400 20.92 Base Base 

300 25.62 25% 22.5% 

200 36.7 50% 75.4% 

[21] 355.6 10.41 Base Base 

254 15.24 28.6% 46.4% 

152.4 27.7 57.1% 166.1% 

 

 Effect of reinforcement ratio 

For similar changes in the value of the feature, the reinforcement ratio had lower 

corresponding changes to the maximum displacement than that of the slab thickness and 

the scaled distance, as shown in Table 3-9. Furthermore, the results in Table 3-9 show that 

decreasing the reinforcement ratio, while keeping the remaining parameters constant, 

caused a relatively adequate increase of maximum displacement. The comparison of the 

effect of reinforcement ratio with respect to the effect of both scaled distance and slab 

thickness accurately followed the results obtained by PFI.  
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Table 3-9. Effect of reinforcement ratio on maximum displacement. 

Source Reinforcement 

Ratio 

Maximum 

Displacement 

(mm) 

Change in 

Reinforcement 

Ratio 

Corr. Change 

in Max Disp. 

[49] a 0.013 26.92 Base Base 

0.00975 28.41 25% 5.5% 

0.0078 29.09 40% 8.1% 

[49] b 0.013 38.84 Base Base 

0.00975 43.3 25% 11.5% 

0.0078 47.24 40% 21.6% 

[22] 0.0109 43.6 Base Base 

0.00818 48.4 25% 11% 

0.00655 53.9 40% 23.6% 

[21] a 0.0251 13.17 Base Base 

0.01255 17.18 50% 30.4% 

0.00354 33.53 90% 154.6% 

[21] b 0.0251 8.65 Base Base 

0.01255 12.5 50% 44.5% 

0.00354 21.84 90% 152.5% 

 

Table 3-10. Effect of compressive strength on maximum displacement. 

Source Compressive 

Strength (MPa) 

Maximum 

Displacement 

(mm) 

Change in 

Compressive 

Strength 

Corr. Change 

in Max Disp. 

[19] a 103.4 98.8 Base Base 

34.5 109 66.63% 10.3% 

[19] b 103.4 86.4 Base Base 

34.5 91.4 66.63% 5.8% 

[19] c 103.4 85.8 Base Base 

34.5 80.5 66.63% 6.2% 

[52] a 140 12.99 Base Base 

35 13.31 75% 2.5% 

[52] b 140 17.6 Base Base 

35 18.1 75% 2.8% 

[3] 60 7.8 Base Base 

50 9.6 16.7% 23.1% 

30 14 50% 79.5% 
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 Effect of concrete compressive strength 

An increase in compressive strength corresponded to minor changes of maximum 

displacement, as shown in Table 3-10. Additionally, the rate of change for maximum 

displacement was much smaller than those of previously analyzed features. This shows 

how little compressive strength affected the output with respect to previous four features, 

especially considering that the rate of change for compressive strength was higher than that 

of the previously analyzed features. Such results agree with the PFI ranking in which the 

feature of compressive strength had a lower effect on impact on maximum displacement 

due to blast loading than the features previously discussed. 

 

3.6 Analysis of model discrepancies  

As shown in both Figure 3-4 as well as Table 3-4, there are instances of large differences 

between the values of the predicted output and the actual output. This lack of model 

accuracy is attributed to the variations existing among the original data points and are 

summarized through the following aspects. 

3.6.1 Variations between numerical and experimental methods 

The methods of implementing the application of RC slabs exposed to blast loads featured 

in the dataset are composed of experimental, numerical, or blast simulation methods. 

Although numerical methods are efficient in imitating an equivalent experimental event, 

there are still aspects relating to the modeling parameters as well as the blast parameters 

that cause numerical results to deviate from experimental results.  

For instance, there are several different constitutive material models to characterize the 

behavior of concrete under high strain rates in numerical methods. The results for two 

similar numerical models having different concrete material models may vary significantly 

while also differing from the experimental results [1,21,23,53]. 

Furthermore, numerical approaches such as LS-DYNA and ABAQUS, as well as the 

ConWep program, consider the shockwave parameters based on the semi-empirical charts 
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and relations provided by UFC-3-340 which are essentially high order polynomials based 

on the experimental programs conducted by Kingery & Pannill [54]. In several cases, the 

parameters obtained through numerical methods differ from the parameters recorded from 

experimental events [15-17].  

Additionally, in numerical methods, the equations of state (EOS) used to represent the 

relation between pressure, volume, and internal energy (or any state variables) for each 

material are considered and are used to calculate the pressure throughout a mesh for every 

time step. These EOS are derived from thermodynamic relations while relying on 

experimental measurements with several EOS existing for both concrete as well as 

explosive materials [53]. Zhou et al [55] presented different concrete EOS for both tension 

and compression while comparing them to concrete EOS found in the literature in which 

considerable differences were shown. Baker et al [56] showed the error of two EOS for 

explosive materials tested against experimental data in which both EOS exhibited minor 

errors. Also, the EOS constants for several explosive materials are based on a cylinder of 

explosions confined by copper-like metal, which may show slightly different values for 

constants of alternative set-ups [53].  

For RC subjected to blast loading, very high strain rates are achieved in which the strength 

of concrete increases significantly. To account for this increase in strength, a dynamic 

increase factor (DIF) is implemented and is a ratio of the concrete’s dynamic to static 

strengths as a function of strain rate. Malvar & Crawford compared several DIF for 

concrete in tension from several sources and based different sets of experimental data found 

in the literature, different values of DIF were reached [57]. 

Another discerning aspect of numerical methods is the model’s mesh size based on 

sensitivity analyses. For different sized mesh, the numerical model’s assessment of peak 

pressures and reflected impulses are shown to vary [58, 59, 29]. Also, the extent of the 

structure’s response considering different mesh sizes will also differ [1]. 

When considering the dataset used in the present chapter, there were 102 data points taken 

from numerical methods validated by experiment. The results of these data points may be 

varying from equivalent experimental results due to the five aspects discussed and will 
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therefore tend to exhibit minor variabilities with the remaining 48 experimental data points 

in the model. There will also exist inconsistencies among the 102 numerical data points 

due to different material models, mesh sizes, and modelling methods. However, even when 

considering such discrepancies of the dataset, the ML model was still able to perform very 

well. 

3.6.2 Variations in blast load characteristics 

In addition to the differences in the method used, there are also differences in the 

characteristics of the blast load. For free air bursts, the blast occurs above or adjacent to a 

structure in which the initial shockwave consists of only the incident wave travelling 

radially outwards with no augmentation. Conversely, surface bursts occur near or at the 

ground surface in which the initial shockwave is reflected by the ground, causing the 

reflected wave and the incident wave to form a strengthened initial wave acting outward in 

a hemispherical form. The blast parameters for a surface blast are found to be much greater 

than those of free air blasts for the same standoff distance and explosive weight [14]. 

Although this aspect of blast load exhibits large variations between both cases, the current 

dataset is primarily made up of free air bursts and therefore does not contain discrepancies 

caused by this blast characteristic. Another characteristic of blast loading consists of the 

range of scaled distance. Near-field blasts and far-field blasts exhibit different behaviors 

on a target surface and are characterized by scaled distances of less than or greater than 1.2 

m/kg1/3 [60]. The resulting blast load of near-field blasts is distributed nonuniformly in both 

space and time on a target surface while also subjecting the surface to a high temperature 

fireball, whereas far-field blasts act uniformly on a target surface while exceeding the 

proximity of a surface making the effect of the explosive fireball insignificant [53, 60]. In 

terms of the present dataset, there were a total of 95 near-field blasts and 55 far-field blasts. 

Also, among the far-field blasts there were 7 data points that were considered outliers 

having very large scaled distances and very small reflected impulses as compared to the 

remaining data points. 
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3.6.3 Variations unique to the present dataset 

In cases where data points consisted of features being extreme outliers, the model would 

show poor prediction accuracy as presented in comparison 10 in Table 3-4. The cause of 

this was mostly dependent on the data point having the largest scaled distance and smallest 

reflected impulse, 25.4 m/kg1/3 and 0.0247 MPa-ms, which were both extreme outliers of 

the features. To further elaborate on this, the features of scaled distance and reflected 

impulse were found to have among the greatest PFI values, causing them to have a very 

high impact on the model’s prediction accuracy.  

Also, considering the importance of the reinforcement ratio through PFI, the reinforcement 

ratio was only provided for one direction due to limitations of data availability. The given 

information on reinforcement is sufficient for one-way slabs but may affect data points of 

two-way slabs. 

It can also be shown that providing additional features that are pertinent to the application 

may have a great effect on the overall performance of the model. For instance, the resulting 

performance measures of the existing model with the feature of reflected impulse 

eliminated result in a MAE value of 9.62, a VEcv value of 52.46%, and an R2 value of 

77.29% while also requiring over 1000 repetitions of the model to stabilize results. This 

major change in performance suggests that missing relevant features for the existing model 

may lead to the loss of accuracy. However, the limit of features is based solely on the 

availability of data. 

As previously stated, the differences between the actual values and predicted values are 

due to discrepancies that have been discussed in detail. The degree in which these 

discrepancies affect each predicted value is difficult to assess and would require a 

meticulous parametric study considering the effect of each major discrepancy individually. 

Also, by understanding the reasons that cause the model to underperform, an improved 

model may be achieved. 
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3.6.4 Suggestion for improved ML model and its practical 
applications 

After quantifying the effect of major discrepancies, the effect of each feature’s range and 

standard deviation should be analyzed to understand how these statistics affect the model’s 

performance along with their relation to the importance of each feature. Based on the 

analyses of feature statistics and discrepancies, for both existing and additional features, a 

reliable dataset may be created.  Also, the model should consider additional quantitative 

features such as reinforcement ratios for both directions of the slab as well as the blast’s 

reflected pressure. In an ideal case, the dataset would be compiled through a dedicated blast 

program of numerous slab specimens, however this requires substantial cost and resources. 

An appropriate alternative would be to implement both numerical and experimental 

approaches together in which the numerical dataset would be verified in intervals by 

experimental data. 

In terms of practical application, the improved dataset may be used to develop a ML model 

to identify if RC slabs conform with the design limits set forth by both ASCE 59-11 and 

CSA S850-12. The result obtained from the model would require an insignificant amount 

of time and minimal technical background to achieve an accurate result, after which a more 

detailed approach may be taken for further assessment. Additionally, the codes relate the 

design limit to the maximum allowable support rotation which may be related to the 

maximum displacement predicted by the model through simple calculations.  Both codes 

state that the support rotation for flexural elements should not exceed 2 which keeps the 

element in a repairable state and assures life safety. For flexural elements designed for 

collapse prevention, the element suffers significant permanent damage while avoiding 

failure in which the maximum support rotation should not exceed 6 [60,61].  

 

3.7 Conclusions 

This chapter introduces a machine learning model to predict the maximum displacement 

of reinforced concrete slabs subjected to blast loading. A dataset of 150 points was 

compiled upon a thorough search through pertinent literature. The consistent dataset 
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included ten features, namely the length, width, and thickness of slab, concrete 

compressive strength, reinforcing steel yield strength, reinforcement ratio, blast scaled 

distance, blast reflected impulse, type of slab, and slab support along with one output:  the 

maximum displacement.  

The Random Forests algorithm along with k-fold cross-validation was used to develop the 

validated hybrid classification-regression RF model, which resulted in performance MAE 

value of 4.38 0.22, a VEcv value of 94.4% 3.5%, and an R2 value of 96.2% 0.6%. The 

learning model used was compared to several other learning models and exhibited superior 

performance measures, which affirms the effectiveness of Random Forests in complex 

applications. Additionally, the current developed model was compared to alternative 

models for the same application and was found to outperform them in some cases, while 

approaching reasonable results in other cases. A variable importance measure was 

conducted to assess the model’s ability in recognizing the importance of each feature 

through permutation feature importance. The effect of each feature was appraised. Four of 

the features were compared to parametric studies found in the literature, which accurately 

reflected the results of the model’s PFI values. Additionally, variations relating to the 

dataset, method of application, and blast characteristics were discussed and an improved 

ML model was proposed along with its practical application. 

Overall, the machine learning model achieved good performance in terms of predicting 

maximum displacements of RC slabs exposed to blast loading. It also proved to be a strong 

contender against existing methods in modeling blast applications of structures and 

demonstrated excellent ability in identifying the effect of each input feature, while saving 

computational time and effort. 
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Chapter 4  

 

 

4 Machine learning model for predicting structural 
response of RC columns subjected to blast loading  

 

4.1 Introduction 

Due to the risk of exposure to explosions and blast events, reinforced concrete (RC) 

structures are susceptible to severe magnitudes of damage that may result in considerable 

economic loss and casualties. Among the most vulnerable structural elements that could 

induce greatest damage, load-bearing columns are notable. Their sudden failure may 

trigger progressive partial or total collapse of the structure [1]. Therefore, improving the 

capability of predicting the structural behavior of columns subjected to blast loading would 

allow for more accurate proactive measures to be taken against such catastrophic events. 

The current state-of-the-art in predicting the response of RC columns exposed to blast 

loading has shown the competence of both analytical and numerical models. For instance, 

Lloyd [1] conducted an experimental study using a shock tube to simulate blast loading on 

14 unique RC  columns in which the magnitude of shock waves produced was equivalent 

to far-field blasts. An analytical single degree of freedom (SDOF) model was used to 

predict the dynamic response of the columns and was compared to the experimental results 

through maximum displacement, with prediction errors ranging from 0.53-222% 

considering 24 comparisons.  Using a similar experimental loading mechanism, Lloyd [2] 

tested RC columns with several retrofitting techniques, such as via fiber-reinforced 

polymer (FRP), transverse prestressing, and lateral bracing. A total of 16 unique columns 

were tested. The results were compared to an analytical SDOF model through maximum 

displacement at various heights along the column, and yielded prediction errors of 14.9-

323% considering 10 comparisons of conventional columns only. 
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In an experimental study conducted by Kadhom [3], a similar shock tube system was used 

to simulate far-field blasts on 32 unique RC columns considering external FRP retrofits 

with various configurations. Two analytical SDOF models were used to predict the 

dynamic column behavior with and without considering the P-delta effect based on the 

applied axial load. When compared to the experimental results through maximum 

displacement, the model ignoring and considering the P-delta effect produced prediction 

errors of 32.1-51% and 3.5-25.2%, respectively. 

Furthermore, Liu et al [4] conducted an experimental study on 11 RC columns subjected 

to near-field blasts of TNT. Their experimental results were compared to an improved 

SDOF model, which considered section and member analyses to develop nonlinear 

resistance functions. The comparison was made through maximum displacement and 

yielded prediction errors of 3.2-16.3%. A numerical model using LS-DYNA [5] 

considering smooth particle fluid dynamics was also developed and compared to the 

experimental values. This resulted in prediction errors of less than 5% considering 3 

comparisons. 

Additionally, Al-Bayti [6] developed a numerical model through LS-DYNA to investigate 

the response of RC columns against various magnitudes of blast loading based on 

numerous blast threat scenarios. The numerical model was shown to generate an error of 

7.9% when compared to an experimental data point considering a 25 mm mesh size.  Kyei 

[7] also implemented a numerical model using LS-DYNA to conduct analyses on RC 

columns subjected to near-field blast loading. The model was validated using limited 

experimental data through maximum displacement. It yielded a prediction error of 14% 

considering a 15 mm mesh size and 46.6 minutes of run time, and an error of 3% 

considering a 10 mm mesh and 361.7 minutes of run time. Similarly, a numerical model 

developed using LS-DYNA presented a prediction error of 9.3% considering a 30 mm 

mesh and 548 minutes of run time and an error of 1.7% considering a 15 mm mesh and 

12000 minutes of run time for RC columns subjected to near-field blasts [8]. 

The literature discussed above indicates good accuracy, for both analytical and numerical 

models, in predicting the response of RC columns exposed to far-field and near-field blasts. 
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However, both approaches demand a strong understanding of the application to implement, 

while the numerical method further require a great deal of modeling effort and 

computational run time. A simplified machine learning (ML) model was introduced by 

Almustafa and Nehdi [9], which accurately predicted the maximum displacement of RC 

slabs subjected to blast loading, resulting in MAE of 4.38, VEcv of 94.4%, and an R2 of 

96.2%, while also forming validated correlations between the influential parameters. The 

ML approach also eliminated the need for an in-depth understanding of the application, 

mitigated modeling complexity, and effectively reduced the computational time. 

Therefore, the present chapter introduces a machine learning model to predict the response 

of RC columns subjected to both near-field and far-field blast loading. Tree-based 

ensemble algorithms were used to develop the model, which is validated through various 

statistical performance metrics, direct comparisons to existing models, and the ability of 

the model to recognize the importance of parameters for varying blast scenarios. 

Furthermore, a critical feature analysis was conducted to directly observe the variations in 

the effect of application parameters between near-field and far-field blast loading while 

being validated by existing studies. The limitations and future improvements of the 

proposed model were discussed, while presenting the model’s practical implementation 

with respect to the limits set forth by guidelines of ASCE 59-11 [10] and CSA S850-12 

[11].  

 

4.2 Data collection and description 

The dataset used to develop the prediction model was obtained from numerous papers and 

theses pertinent to RC columns subjected to blast loading, comprising a total of 420 data 

points. The source of the data includes experimental studies based on live blasts [4,12-15], 

experimental studies using shock tube simulated blasts [1-3], numerical methods validated 

by experiments [6-8,16,17], and analytical methods validated by experiments [4], 

producing 12, 29, 210, and 169 data points, respectively. All column specimens in the data 

set have fixed boundary conditions and conform to design standards in accordance with 

CSA-A23.3-04 [18]. Furthermore, the dataset contains both conventional and seismically 
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designed columns, while also consisting of near-field and far-field loading scenarios. It 

also takes into account the applied axial load and the height of detonation along the height 

of the column for near-field blasts. The mean, standard deviation, and range of the data are 

given in Table 4-1. The statistics presented show that the dataset covers a wide range of 

both column and blast parameters, which should allow for a holistic interpretation of the 

application. Also, the frequency distribution of each feature is presented in Fig. 4-1. 

Table 4-1. Mean, standard deviation, and range of model features. 

Feature/Output Mean Standard 

Deviation 

Range 

Length (mm) 303.26 64.48 150 – 450  

Width (mm) 301.83 68.31 100 – 450  

Height (mm) 3087.77 431.49 1700 – 4000  

Concrete compressive strength 

(MPa) 34.69 9.79 27.6 – 120  

Long steel yield strength (MPa) 413.51 32.15 400 – 571  

Long steel reinforcement ratio 2.16 0.99 0.67 – 4.88  

Tran steel yield strength (MPa) 423.6 50.84 400 – 604  

Tran steel reinforcement ratio 1.298 0.742 0.19 – 3.04  

Axial load ratio 0.24 0.226 0 – 0.8  

Reflected Pressure (MPa) 19.92 24.84 0.013 – 118.76 

Reflected Impulse (MPa-msec) 4.62 3.04 0.12 – 16.27 

Blast height (mm) 1360.79 413.1 0 – 1830  

Displacement height (mm) 1563.01 303.06 666 – 2540  

Maximum displacement (mm) 44.55 38.98 2.42 – 169.8  

 

4.2.1 Feature description  

A total of thirteen (13) input features were determined to characterize RC columns 

subjected to blast loading. The features relating to the element are the column’s length, 

width, height, concrete compressive strength, longitudinal steel yield strength, longitudinal 

steel reinforcement ratio, transverse steel yield strength, transverse steel volumetric 

reinforcement ratio, and the axial load ratio (ALR). The features relating to the blast are 

the reflected pressure, reflected impulse, height of the blast along the column, and height 

of the recorded maximum displacement. The volumetric reinforcement ratio was defined 

as the total volume of transverse steel over the total volume of the column. Also, the ALR 
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was taken as the applied axial load over the unfactored axial capacity of the column’s cross-

section, taking into account the capacity provided by the longitudinal steel. There were 

instances in the dataset where the height of the blast was different from the height of the 

recorded maximum displacement. Therefore, appropriate modifications to the blast 

parameters were considered with respect to its angle of incidence, as specified by UFC-3-

340-02 [19]. All mentioned features were consistent among the entire dataset with no 

missing information. Also, the selection of these features was limited by the consistency 

of the available information throughout the literature.  

 

Figure 4-1. Distribution plots of features and output. 

 

4.3 Model development 

The algorithms used for the development of the prediction model and analysis of the 

application features were Gradient Boosted Regression Trees (GBRT) and Random Forests 

(RF), both being tree-based regression ensembles. The learning process and development 
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of each algorithm for the current chapter are discussed in the following sections. 

Additionally, the statistical performance measures adopted as well as their validation 

procedure are also provided. The development of the models in this study were done using 

Matlab’s Statistics and Machine Learning ToolboxTM [20] 

4.3.1  Gradient boosted regression trees  

Gradient boosting is an approach for developing an accurate prediction model by 

combining multiple weak models to minimize a given loss function through a stage-wise 

procedure. The use of regression trees as a base model for applying gradient boosting 

produces a robust model that also incorporates the inherent qualities of decision trees [21]. 

The unique stage-wise learning procedure is illustrated in Figure 4-2. For GBRT, the first 

stage fits the data to a single regression tree and the model residuals are obtained and used 

to fit a new tree in the following stage. At every stage, the residuals of the overall model 

are computed and fit to a new tree which becomes added to the model of the subsequent 

stage and contributes to minimizing the loss function. To limit the contribution of each tree 

and avoid overfitting, a learning rate parameter is introduced into the model [22]. The 

process continues until the maximum number of iterations, or stages, is reached, and the 

resulting ensemble model produces an output as the sum of all the trees’ output multiplied 

by the learning rate. Additional details on the procedure are provided in [22].  

 

Figure 4-2. Stage-wise learning process of the gradient boosted regression trees 

algorithm. 
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The stability and predictive performance of a finalized GBRT model is highly dependent 

on the parameters of the gradient boosting process, being the number of stages and learning 

rate, and the parameters characterizing the added regression trees [21,22]. Therefore, a 

tuning process is required to identify the optimal parameter values that yields the highest 

performance for a given dataset. With respect to the current application, the tuned 

parameters of the GBRT model used in this chapter are number of learning cycles, learning 

rate, maximum number of branch splits, minimum leaf size, and number of variables to 

sample being 491, 0.18, 7, 2, and 13, respectively.  

4.3.2  Random Forests and feature importance 

In contrast to GBRT, the RF algorithm functions through forming an ensemble of decision 

trees in which each tree is trained on a random subset of training data. Furthermore, each 

tree is comprised of nodes with splitting criteria through which the input feature space is 

split into successively smaller regions with each node split along the decision tree. The 

process of region splitting is based on selective ranges of an input feature. It continues until 

a terminal node is reached and a decision is made [23-25]. The random nature of selecting 

subsets of training data for each decision tree allows the RF algorithm to produce 

generalized predictions while also avoiding overfitting of the data [25]. Also, 

approximately one-third of the randomly selected subset of data is left out of the training 

process for each tree. This allows each tree to possess an internal validation set which 

eliminates the necessity of a dedicated external validation set [25]. The decision output of 

the RF algorithm is produced differently from GBRT in that it is based on the average of 

individual predictions. For the RF model used in this chapter, a number of trees of 250 

were used with the remaining parameters remaining as default values. 

Tree-based ML algorithms are also capable of conducting feature importance analysis. The 

analysis is performed through an interaction-curvature test, which primarily depends on 

hypothesis testing as a node splitting criterion. For each node, the residuals of each 

prediction with respect to the weighted average of all predictions in that node are computed. 

This is followed by the partitioning of the values for a continuous feature into four quartiles, 

where the corresponding predictions of each quartile are counted, and the chi-square 

statistic and p-value are computed. The features which produce the smallest p-value in a 
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node will be selected to split the node, known as the curvature test. The interaction test 

adopts a similar methodology but considers a pair of features whose values are divided into 

four quadrants by splitting the value ranges into two halves at their median [20,26]. 

Additional details describing each test are provided in [26]. The presented statistical 

procedure of node splitting is used to estimate the unbiased importance of each feature by 

considering the summation of changes in the output due to node splits for each feature over 

the number of branched nodes [20]. Therefore, the interaction-curvature test was adopted 

herein for investigating the importance of features in the current application.  

4.3.3  Performance measure  

A robust machine learning model should be able to yield accurate predictions when 

provided with new test data previously unseen to the model. Therefore, significant efforts 

were made to train and test the model through numerous instances of testing and training 

data partitions based on cross-validation as well as data permutation. Through k-fold cross 

validation, the dataset is divided into k equally sized subsets such that the learning model 

is trained on k–1 subsets and tested on the remaining subset. The learning model’s 

performance is then taken as the average of the performance measures resulting from k 

instances of training and testing. A k value of 10 is implemented in the current study where 

commonly selected k values are 5-fold and 10-fold cross-validation for assessing a learning 

model’s performance.  

Furthermore, applying cross-validation on multiple permuted instances of the dataset 

allows the final performance to account for significantly more combinations of training 

and testing. In the current study, 100 permuted iterations were taken considering cross-

validation with the final performance measures taken as the average of all iterations.  The 

statistical performance measures used for model evaluation are the mean absolute error 

(MAE), coefficient of determination R2, and the variance explained by cross-validation 

(VEcv). MAE is a common error metric for evaluating the predictive accuracy of a model 

while being robust to outliers, but it is also unit dependent, such that comparisons can only 

be made for similar applications [27]. Additionally, the measure R2 is an effective 

representation of the correlation between predicted values and actual values considering 

the entire dataset. A measure of the predictive accuracy of a model may be obtained through 
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VEcv, which considers the variation in the validation subset that is explained by the 

predicted values obtained by the model through cross-validation [27]. The formulation for 

each measure is given as follows: 

                                                𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1     (1) 

where  y ̂ is the predicted output, y is the actual output for every ith entry in the set, and 

where n is the number of datapoints in the set. 

                                           𝑅2 = (1 − 
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̅)2
𝑛
1

) ∗ 100%    (2) 

where  y ̂ is the predicted output, y  is the actual output for every ith entry in the dataset, 𝑦̅ 

is the mean of the actual values, and n is the number of points in the dataset. The value of 

R2 is always positive and ranges between 0 and 1. 

                                    𝑉𝐸𝑐𝑣 = (1 − 
∑ (𝑦𝐶𝑉𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝐶𝑉𝑖−𝑦̅)2
𝑛
1

) ∗ 100%     (3) 

where y ̂ is the predicted output, yCV  is the actual output for every ith entry in the 

validation subset, 𝑦̅ is the mean of the actual values, and n is the number of items in the 

validation subset. It should also be noted that the value of VEcv can be negative and has a 

maximum value of 100%, implying ideal accuracy [27].  

 

4.4 Results and discussion 

Using the features pertaining to the columns and blast load properties presented in Table 

4-1, GBRT and RF models were developed for predicting the maximum displacement of 

blast loaded columns. The response prediction models were capable of accounting for a 

wide range of column designs, such as slender, short, conventionally reinforced, or 

seismically reinforced columns, while also covering both near-field and far-field blast 

applications. Furthermore, the models could predict the maximum displacement at varying 

heights along the column with a blast load having an angle of incidence of zero or different 

than zero. These diverse considerations of the application make the proposed model 
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effective for an extensive range of scenarios while minimizing limitations. To validate the 

models, statistical performance metrics were used to provide an unbiased representation of 

the model’s predictive ability. Additionally, comparisons were made between predictions 

of the GBRT model and existing analytical and numerical models with respect to the 

available experimental data. Based on feature importance analyses conducted, the model 

was also assessed through its ability to capture the relation between the maximum 

displacement and various application parameters under separate blast loading categories. 

The following subsections provide details on the results of each validation approach.  

4.4.1  Model validation through performance criteria  

Predictions of the GBRT model resulted in a MAE of 3.63 ± 0.13, an R2 of 97.4% ± 0.3%, 

and VEcv of 96.83% ± 1.6% whereas the RF model yielded results of MAE of 6.7 ± 0.12, 

an R2 of 93% ± 0.3%, and VEcv of 92% ± 3.9%  These results were based on the average 

values and standard deviations from undergoing 100 permuted instances of the dataset. The 

standard deviation of each measure shows that the model was highly capable of 

generalizing and producing stable and consistent results. Furthermore, the correlation 

between the predicted and actual values represented by the R2 measure can be visualized in 

Fig. 4-3 for the GBRT model and Fig. 4-4 for the RF model. An error bound of 20% was 

also included in both figures to support the evaluation of the predictions’ applicability. 

Additional error bounds were considered to provide better insight into the model’s 

predictive ability for varying thresholds of error. For bounds of 5%, 10%, 20%, and 30% 

error, the average percentage of predicted points within each bound was 40.7%, 64.3%, 

84.3%, and 92.5% for the GBRT model and 18.5%, 36.2%, 65.75%, and 80.4% for the RF 

model, respectively. Furthermore, for VEcv values between 50% and 80%, the performance 

of a predictive model was considered to have good accuracy, while values greater than 

80% demonstrate excellent accuracy [27].  

As shown by the statistical performance measures, the GBRT model exhibited higher 

prediction capabilities than the RF model. This observation may also be visualized in Figs. 

4-3 and 4-4 which shows that fewer predictions are correlated to their actual values for the 

RF model than the GBRT model. The RF model is also observed in Fig. 4-4 to overpredict 

several data points for the outputs ranging between 0 and 20 mm. Furthermore, the 
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percentage of predictions within lower error bounds were noticeably greater for the GBRT 

model than the RF model. Thus, although both models showed effective performance 

measures, the GBRT model exhibited strong predictive capability for this complex 

application and produced exceedingly acceptable results compared to the RF model. A 

similar observation was made between the RF and GBRT algorithms in a different study 

which employed such methods to predict the concrete compressive strength of ultra-high-

performance concrete [24]. It can also be inferred that the GBRT algorithm, with properly 

tuned parameters, exceeds the performance of the RF algorithm.  

Another noteworthy observation of model performance is the ability to account for both 

near-field and far-field blast cases in a single predictive model. Far-field blast loads 

produce a uniform load acting on a member whereas near-field blast loads are non-uniform 

and behave as a high-magnitude concentrated load, where each type similarly elicits 

different structural responses [28]. Thus, the ML model, namely the GBRT model, can 

interpret the advanced distinction in loading by implicitly identifying major variations 

within the given pressure and impulse information without being given any explicit label 

of near or far loading. 

 

Figure 4-3. Actual versus predicted responses with a 20% error bound. 
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Figure 4-4. Actual versus predicted responses with a 20% error bound. 

4.4.2  Model validation through comparisons of existing methods  

In order to establish a comprehensive assessment of the proposed model, comparisons to 

existing analytical and numerical approaches were carried out with respect to the GBRT 

model which was shown to have a higher performance than the RF model. Table 4-2 lists 

the recorded maximum displacement of 56 specimens from several experimental studies, 

along with its adopted prediction approach and resulting outputs. The 56 comparisons were 

divided into 7 sets where each set represents the source of the experimental data. Sets 1 to 

4 were based on studies investigating RC columns subjected to far-field blasts, whereas 

sets 5 to 7 primarily studied near-field blasts for the same application. Furthermore, sets 1 

to 5 adopted analytical prediction methods, while sets 6 to 7 implemented numerical 

modeling methods with results for varying mesh sizes provided.  

The dynamic SDOF approach used in sets 1 to 5 is based on the average acceleration 

method described in UFC 3-340-02 [19]. Briefly described, the maximum displacement of 

a member is obtained through taking discrete time increments for velocity and acceleration 

and substituting them into an equation of motion in multiple iterations. The equation of 
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motion considers the member’s resistance function as well as the load-mass transformation 

factor, which is the idealization of an equivalent lumped mass and concentrated load based 

on the member’s shape function [19]. Although UFC 3-340-02 provided simplified 

resistance functions, improved results were obtained using nonlinear resistance functions 

based on section and member analyses [29]. This improved approach was adopted in the 

analytical analyses of sets 1 to 5 [1-4,15]. For the numerical models in sets 6 and 7, details 

on modeling, constitutive material parameters, and complete results are available at their 

respective sources. 

For the experimental results of far-field blasts in sets 1 to 4, the ML model was able to 

accurately predict the actual displacements, while also proving to be more effective than 

the alternative analytical model throughout several comparisons. Also, there were a number 

of comparisons in which the ML model displayed less accurate results than the alternative 

analytical model, while still remaining close to the actual value. A notable observation is 

that a few predictions were overpredicted by the ML model as shown by comparisons 5, 8, 

10, 14, 20, and 23 in set 1. This loss of accuracy was a result of the model’s inability to 

capture the response of small displacement values caused by very low intensity blast 

loading and was only apparent in a limited number of comparisons. Additionally, for the 

experimental results of near-field blasts in sets 6 and 7, the ML model predictions indicated 

a highly acceptable relation to the actual values, while showing improved or similar 

accuracy to the alternative numerical models.  

For the ML model displacement predictions of near-field blasts in set 5, the accuracy of 

results displayed lower performance compared to the previously described sets. This 

reduced accuracy is due to the minor variation of the axial load among the specimens. To 

further elaborate, the specimens for comparisons 5-4 to 5-9 all exhibit the same geometric, 

material, and blast properties and only vary slightly in their applied axial loading. As a 

result, the output prediction values of the ML model were remarkably similar for such 

comparisons. A similar description applies to comparisons 5-1 to 5-3 and 5-9 to 5-11. 

Therefore, the loss of accuracy was caused by the ML model’s difficulty in capturing the 

slight changes in axial load among these specimens. Overall, the ML model was shown to 



 

 

92 

yield favorable results when compared to existing analytical and numerical methods, thus 

making it a strong contender for this application. 

Table 4-2. Comparisons of the GBRT model to alternative models for near-field and 

far-field blast scenarios 

Entry 

set 

Source Alternative 

model  

Experimental 

result (mm) 

Alt. model 

prediction 

(mm) 

ML model 

prediction 

(mm) 

Alt. 

model 

error 

(%) 

ML 

Model 

Error 

(%) 

1-1 [1] Dynamic 

SDOF 

13.9 14.2 14.47 2.16 4.1 

1-2 20.8 18.7 12.42 10.1 40.29 

1-3 24.2 28.5 14.81 17.77 38.8 

1-4 15 15.6 14.5 4 3.33 

1-5 7.5 13.4 12.26 78.67 63.47 

1-6 13.5 15.1 13.75 11.85 1.85 

1-7 18.2 19.8 19 8.79 4.4 

1-8 3.5 11.3 13.1 222.86 274.29 

1-9 19.4 25.4 20.05 30.93 3.35 

1-10 5.1 8.4 11.9 64.71 133.33 

1-11 22 18.2 19.55 17.27 11.14 

1-12 15 13.3 19 11.33 26.67 

1-13 24 21 20.4 12.5 15 

1-14 2.2 6.7 11.4 204.55 418.18 

1-15 16.8 18 19.7 7.14 17.26 

1-16 14.4 10.7 13.6 25.69 5.56 

1-17 10.8 8.5 10.1 21.3 6.48 

1-18 21.4 17.3 22.1 19.16 3.27 

1-19 18.4 11.5 18.47 37.5 0.38 

1-20 9.6 13.1 17.8 36.46 85.42 

1-21 18.8 18.7 17.46 0.53 7.13 

1-22 30.2 24.4 24.74 19.21 18.08 

1-23 5.5 8.7 12.66 58.18 130.18 

1-24 20.8 34.3 34.4 64.9 65.38 

2-1 [2] Dynamic 

SDOF 

8.2 4.5 11.91 45.12 45.24 

2-2 36.5 25.6 27.8 29.86 23.84 

2-3 4.7 5.7 8.03 21.28 70.85 

2-4 37.3 28.9 43.57 22.52 16.81 
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2-5 6.4 17.4 5.6 171.88 12.5 

2-6 5.8 17.4 5.69 200 1.9 

2-7 3.9 16.5 5.76 323.08 47.69 

2-8 20 16.3 18.83 18.5 5.85 

2-9 18.8 16 20.15 14.89 7.18 

2-10 12.6 16.4 19.03 30.16 51.03 

3-1 [15] Dynamic 

SDOF 

6.4 6.23 5.82 2.66 9.06 

3-2 29.9 23.1 29.7 22.74 0.67 

3-3 6.6 6.11 14 7.42 112.12 

3-4 25 22.66 25.08 9.36 0.32 

4-1 [3] Dynamic 
SDOF 

125.3 119.2 125.7 4.87 0.32 

4-2 114.9 98.5 111.8 14.27 2.7 

5-1 [4] Dynamic 

SDOF 

21.73 20.8 37.8 4.28 73.95 

5-2 6.22 6 31.6 3.54 408.04 

5-3 13.52 11.3 39.8 16.42 194.38 

5-4 28.34 25 29.2 11.79 3.03 

5-5 48.57 42.7 26.9 12.09 44.62 

5-6 37.8 34.3 25.3 9.26 33.07 

5-7 13.3 12 25.2 9.77 89.47 

5-8 5.81 5.1 26.8 12.22 361.27 

5-9 28.78 26.3 27.9 8.62 3.06 

5-10 26.4 23.9 26.8 9.47 1.52 

5-11 43.68 37.7 35.64 13.69 18.41 

6-1 [8] LS-DYNA 

60mm mesh 

size 

16.1 20.8 13.84 29.19 14.04 

6-2 LS-DYNA 

30mm mesh 

size 

16.1 17.6 13.84 9.32 14.04 

6-3 LS-DYNA 

15mm mesh 

size 

16.1 15.8 13.84 1.86 14.04 

7-1 [14] ANSYS 

10mm mesh 

size 

67.2 105.3 80.4 56.70 19.64 

7-2 10.6 17.12 16.47 61.51 55.38 
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4.4.3 Feature importance analysis of near-field and far-field blast  

Based on the model validation discussion in sections above, it was observed that the ML 

models displayed strong prediction capabilities with the GBRT model outperforming the 

RF model. The GBRT model also demonstrated similar or improved efficacy with respect 

to existing prediction methods. To further signify the aptitude of the ensemble models, 

feature importance analyses were conducted, measuring the effects of various parameters 

on the columns’ maximum displacement. The first and second analysis considered the 

importance of features for the applications of near-field and far-field blast loading, 

respectively. A near-field blast is classified on having a scaled distance of less than 1.18 

kg/m1/3 whereas scaled distances exceeding this value are considered to produce far-field 

blasts [10]. The purpose of investigating separate loading scenarios originates from the 

considerable variations found in each application’s structural response, as well as from 

their research significance [4,12,14,28].  Furthermore, each feature’s importance obtained 

from the analysis of both applications was validated through existing parametric studies. 

The correlations between several features and maximum displacement from the literature 

are presented in Figs. 4-6 to 4-10. For each figure, apart from Fig. 4-9, every line is 

independent and based on a fixed scaled distance, while portraying variations of a selected 

feature and its consequent variation in maximum displacement, provided that all remaining 

features are kept constant. Additionally, each point on the line represents a single 

displacement output for a given feature value, while the slope between two consecutive 

points represents the effect of changing the feature’s value. Figure 4-9 follows a similar 

description, but primarily assesses correlations between the scaled distance and maximum 

displacement but does not consider any fixed scaled distances. Due to the availability of 

such parametric studies, only the features of concrete compressive strength, longitudinal 

reinforcement ratio, transverse reinforcement ratio, axial load ratio, reflected pressure, 

reflected impulse, and blast height could be validated by the literature and were thus 

considered in the analysis for each application. The importance measures of these features 

are presented in Fig. 4-5. 
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Figure 4-5. Feature importance estimates for selected features in near-field and far-

field blasts. 

 

4.4.4 Importance measure of column parameters 

 Concrete compressive strength 

According to Fig. 4-5, the feature of concrete compressive strength was observed to have 

a greater effect on the maximum displacement of columns in near-field blasts than in far-

field blasts. The observation is associated with the vulnerability of the column’s 

compression zone undergoing blast loading. Initially, the compression zone of an axially 

loaded column is the entirety of its cross-section. For near-field blasts causing large lateral 

displacements, a significant drop in the axial load causes the column to behave similar to 

a beam having a cross-section primarily in tension, while inducing substantial flexural 

compression in the greatly reduced compression zone [1,2,3,12]. The described 

phenomenon would cause compression zones having lower compressive strengths to 
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exhibit very large strains or even complete crushing, both resulting in greater maximum 

displacement of the column [7]. This observation strongly corroborates the high 

importance of compressive strength in columns exposed to near-field blasts. However, for 

far-field blasts causing smaller lateral deflections, compression zones are less susceptible 

to high strains or crushing caused by a major shift in the neutral axis [12]. This also supports 

the reduced importance measure for compressive strength in columns subjected to far-field 

blasts. It is also hypothesized that if there existed a separate feature representing 

compression steel in the column, it would also exhibit higher importance in near-field 

blasts than far-field blasts. However, distinguishing between the effects of longitudinal 

reinforcement under compression and that under tension is beyond the scope of the current 

study due to the limitations of the current dataset, which only considers the longitudinal 

reinforcement of the entire cross-section. Additionally, there is very little experimental data 

that considers the effects of compression and tensile steel on axially loaded members 

subjected to blast loading. Therefore, a feature analysis of these two parameters through an 

ML model could not be validated by experimental data. 

 

Figure 4-6. Effect of longitudinal reinforcement ratio on maximum displacement 

where Z has units of m/kg1/3. 
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 Longitudinal reinforcement ratio 

Furthermore, the feature of the longitudinal reinforcement ratio was more pronounced in 

columns in near-field blasts than in far-field blasts as shown in Fig. 4-5. This observation 

is supported by the comprehensive parametric study conducted by Liu et al. [4], which 

found that the effect of varying the longitudinal reinforcement ratio on the maximum 

displacement became more noticeable as the blast’s scaled distance decreased. 

Consequently, for larger scaled distances, a change in the longitudinal reinforcement 

yielded similar maximum displacements. The effect of the longitudinal reinforcement on 

the maximum displacement from a previous study is illustrated in Fig. 4-6.  It can be 

observed that for the scaled distance of 0.37 m/kg1/3, changes in the longitudinal 

reinforcement ratio resulted in a relatively large change in maximum displacement. In 

contrast, minimal changes in maximum displacement were produced for the same changes 

in longitudinal reinforcement ratio when subjected to a larger scaled distance of 1.36 

m/kg1/3. Such findings agree with the importance measure of the feature for far-field and 

near-field blasts. 

 Transverse reinforcement ratio 

Figure 4-5 shows that for both near-field and far-field blasts, the feature of transverse 

reinforcement ratio carries a minimal effect on the resulting maximum displacement. The 

feature of transverse reinforcement ratio on the behavior of RC columns under blast loading 

has been widely investigated. For instance, Braimah and Siba [12] conducted a thorough 

experimental study on RC columns subjected to varying magnitudes of blast loading. They 

concluded that increasing the transverse reinforcement ratio improved the column’s blast 

resistance for smaller scaled distances, whereas for larger scaled distances, the response of 

the column remained the same regardless of the transverse reinforcement ratio. Additional 

experimental, numerical, and analytical studies also found that the effect of the transverse 

reinforcement was only evident in high magnitude blast loads resulting from near-field 

blasts or low scaled distances, while the effect of the transverse reinforcement ratio was 

insignificant for far-field blasts or large scaled distances [1,4,7,8]. The results of these 

studies and the consequent effect of the transverse reinforcement on the maximum 
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displacement are shown in Fig. 4-7. It can be observed in Figs. 4-7(a) and 4-7(c) that for 

equal changes in the transverse reinforcement ratio, slightly larger changes in maximum 

displacement were produced in near-field blasts than in far-field blasts. Similarly, it can be 

observed from Fig. 4-7(b) that larger changes in the transverse reinforcement ratio resulted 

in minimal changes of the maximum displacement in far-field blasts. Therefore, extensive 

literature strongly supports the results observed in Fig. 4-5, which indicates that the effect 

of the transverse reinforcement ratio was relatively minor although being more significant 

in near-field blasts than in far-field blasts. 

 

Figure 4-7. Effect of transverse reinforcement ratio on maximum displacement 

where Z has units of m/kg1/3. 

4.4.5  Axial load ratio 

It can be observed in Fig. 4-5 that the feature of ALR had a significant effect on both the 

far-field and near-field blasts, with the latter being more dominant. The ALR was 
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considered of high importance due to its variable influence on the column’s structural 

response, which either magnifies or mitigates the P-delta effect induced on the column 

[4,16]. For far-field blasts, a greater ALR increased the stiffness of the column, resulting 

in lower maximum displacement. However, increasing the ALR for columns in near-field 

blasts introduced the risk of reducing a column’s stiffness because of concrete crushing 

due to the increased flexure in the compression zone, as previously described [12]. 

Furthermore, a numerical parametric study showed that the effect of ALR was more 

pronounced in near-field blasts due to increased second-order moments, which 

consequently affected the resulting maximum displacement [6,30]. The resulting 

maximum displacements for various blast magnitudes and ALR are shown in Fig. 4-8. 

Figure 4-8(a) shows that minimal changes in the axial load ratio at very small scaled 

distances resulted in significant change of the maximum displacement. Conversely, Fig. 4-

8(b) shows that relatively larger changes in the axial load ratio were required to cause 

substantial changes in the maximum displacement for greater values of scaled distance. 

These studies support the observation that the ALR was a pertinent feature for both of blast 

applications, while having greater influence in near-field blasts.  

 

Figure 4-8. Effect of axial load ratio on maximum displacement where Z has units of 

m/kg1/3. 
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4.4.6 Importance measure of blast parameters 

 Reflected pressure and reflected impulse 

The features with highest importance for both near-field and far-field blasts were the 

reflected pressure and reflected impulse, as displayed in Fig. 4-5. Both features are a 

function of the blast’s scaled distance, which is commonly used to represent the magnitude 

of the blast [19]. Furthermore, various studies have found that the maximum displacement 

of RC columns was strongly dependent on the blast’s scaled distance, regardless of the 

column’s dimensions or reinforcement ratios [4,8,12,31]. The extent to which the scaled 

distance affected the maximum displacement is visualized in Fig. 4-9. It can be observed 

in Fig. 4-9(a) that the maximum displacement was greatly affected by the scaled distance 

at lower ranges. A similar observation may be made in Fig. 4-9(b) where changes in the 

value of the scaled distance at lower ranges caused larger changes in the maximum 

displacement, while also showing that the effect of the scaled distance reduced as its range 

increased. A similar conclusion was drawn from a feature importance analysis on RC slabs 

in which blast parameters retained the highest feature importance measure [9]. Therefore, 

the importance measure of the blast parameters resulting from the analysis were consistent 

with existing studies. 

For both near-field and far-field blasts, the reflected impulse had greater effect on the 

maximum displacement than the reflected pressure, as depicted in Fig. 4-5. Recent studies 

indicated that due to a near-field blast’s period being relatively shorter than the natural 

period of a column or the time to reach a maximum response, such members should be 

analyzed based on reflected impulse [28,31]. Such reasoning clearly agrees with the 

observation in Fig. 4-5 that the reflected impulse had greater effect on the maximum 

displacement than the reflected pressure in near-field blasts, while also being more 

pronounced in near-field blasts than far-field blasts. Furthermore, there exists more 

variability in the reflected impulse than reflected pressure for the same scaled distance. 

This is due to the reflected pressure being directly proportional to the scaled distance, while 

the reflected impulse being proportional to the scaled distance times 1/W1/3 where W is the 

weight of the charge [19,32]. Additionally, the effect of the blast’s reflected impulse, and 

therefore its charge weight, on the maximum displacement is illustrated in Fig. 4-10 based 
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on existing studies. It can be observed in both Figs. 4-10(a) and 4-10(b) that for a fixed 

scaled distance, and therefore a fixed reflected pressure, the maximum displacement was 

significantly affected by the weight of the charge, which is directly correlated with the 

blast’s reflected impulse. This shows that variations in maximum displacement subjected 

to constant scaled distances was primarily caused by the effect of the reflected impulse. 

Such observations further support that the effect of the reflected impulse was greater than 

the effect of reflected pressure, both for near-field or far-field blast loading, as shown in 

Fig. 4-5. 

 

Figure 4-9. Effect of scaled distance on maximum displacement. 

 Blast height along the column 

Figure 4-5 shows that the effect of the blast height on maximum displacement was greater 

in near-field blasts than in far-field blasts. Far-field blasts typically produced a uniform 

load on the face of the member in which the resulting maximum displacement was located 

at the member’s mid-height. Additionally, when changing the height of the charge weight 
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along the column’s height, there was only a minor change in the magnitude of blast 

parameters due to a trivial angle of incidence between the charge weight and the column’s 

mid-height [19]. However, near-field blasts produced a non-uniform or concentrated load 

in which the greatest magnitude was applied to the location closest to the charge weight 

where the maximum displacement occurred [28]. Since the magnitude of the blast loading 

was uniform in far-field blasts, the maximum displacement occurred where the column’s 

stiffness was lowest, being at mid-height. Conversely, the maximum displacement in near-

field blasts occurred at the height of detonation in which a lower displacement was incurred 

as the blast moved closer to the supports where the stiffness of the column increased [33]. 

The described blast loading and column response phenomena for near-field and far-field 

blasts effectively support the observation made on the effect of the blast height on the 

maximum displacement.  

 

Figure 4-10. Effect of reflected impulse from changing charge weights on maximum 

displacement where Z has units of m/kg1/3. 
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4.5 Practical implementation and model improvement 
considerations 

The proposed ML models have been thoroughly validated based on its statistical 

performance, competence against existing prediction methods, and ability to capture 

complex relationships between pertinent features and their output. However, there were 

very few inconsistencies in predictions as stated in a previous section. The current section 

focuses on identifying limitations and discussing future improvements for the proposed 

model. Also, practical implementations of the proposed model are discussed and 

descriptions for supplementary models which encompass more detailed predictions of local 

and global structural responses pertinent to the application are provided.  

4.5.1  Model improvement through added features  

Although the features in Table 4-1 were used to characterize the application of RC columns 

exposed to blast loading, additional features may be included to resolve the discrepancies 

found in the developed model and improve its predictive performance. The first 

improvement could be made within the parameter of transverse reinforcement ratio. In the 

current model development, although this feature was considered, it did not consider 

variable spacing, such as that implemented in seismic columns. Therefore, non-uniform 

transverse spacing could be considered in a future model improvement. Additionally, the 

feature of axial load ratio was proven to have a high effect on the output. However, 

variations in the column behavior due to the applied axial load were also a function of 

additional characteristics. These include the loss of axial load caused by large 

deformations, the magnification or mitigation of deflections caused by the P-delta effect, 

and the corresponding change in the cross-section’s neutral axis. By quantifying these 

characteristics and including them as features, a future model would be able to better 

capture the complex behavior associated with axially loaded columns undergoing blast 

loading with greater accuracy than the current model. Moreover, numerical studies have 

shown that the column’s behavior was greatly affected by its boundary conditions [16,17]. 

Consequently, a future model may consider a qualitative feature of alternative column 

boundary conditions as opposed to having primarily fixed boundary conditions as in the 

current model.  The current model only accounted for square and rectangular columns. 
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Thus, considerations for circular columns could be included in a future model. Another 

consideration for model improvement is the inclusion of additional data that addresses 

specific model limitations. This would resolve the prediction discrepancies observed by 

the model in Table 4-2. In addition, there were minor inconsistencies in the training dataset 

primarily related to variations among the various numerical methods from which some data 

was collected.  

4.5.2 Practical usage in accordance with code and future model 
development 

Both the American and Canadian codes for blast design of structures provide displacement 

limits for flexural members in the form of maximum support rotations [10,11]. In order to 

maintain a repairable state for RC members subjected to blast loading, a maximum support 

rotation of 2o is required. However, a rotation of 6o may be used for less stringent demand 

of building protection such that element failure is not reached, and potential building 

collapse is avoided. The current model may be used to provide accurate preliminary 

displacement results, and therefore rotation results, while incorporating various essential 

RC column and blast parameters. It can also be used in the iterative design process of RC 

members where each iteration can provide an accurate response estimate by simply 

inputting trial parameters and receiving an immediate output. Therefore, the proposed 

model carries significant potential to help practicing blast engineers in improving the 

design process.  

In further terms of practical usage, although the current model accounts for a variety of 

column and blast configurations as shown in Table 4-1, additional efforts are required to 

account for a wider range of feature values. Such efforts should be directed specifically 

towards the inclusion of more distinct and larger column cross-sections. Moreover, the 

response prediction of maximum displacement for the current application is practically 

effective for far-field and near-field blast-loaded columns. However, applications of the 

near-field variant also evaluate local responses and damage criteria. Thus, this study 

provides motivation for the development of future ML models towards capturing additional 

element responses of near-field blast applications and would strongly compliment the 

currently developed model. 
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4.6 Conclusions 

A machine learning based structural response prediction model for RC columns subjected 

to blast loading was developed in the current chapter. Based on the available literature, a 

dataset of 420 test columns was compiled, considering both seismic and non-seismic 

columns, as well both near-field and far-field blast loads. The features used to characterize 

the complex application were the column dimensions, concrete compressive strength, steel 

yield strength for both transverse and longitudinal reinforcement, as well as their 

reinforcement ratios, axial load ratio, reflected pressure, reflected impulse, and the height 

of detonations and displacement along the column. The developed model was trained on 

ensemble tree-based algorithms, which considered dataset permutation, cross-validation, 

and feature importance. Based on this work the following conclusions can be drawn:  

 

• Both the GBRT and RF algorithms were considered for model development in 

which the GBRT model presented a greater aptitude in modeling the application of 

blast-loaded RC columns 

• Based on thorough investigation and validation, the proposed GBRT model was 

proven to provide accurate, generalized, and stable predictions of maximum 

displacement, as shown through its statistical performance measures of MAE, R2, 

and VEcv with results of 3.63, 97.4%, and 96.83%, respectively.  

• The GBRT model was also validated through direct comparison to existing 

prediction methods based on experimental benchmarks and was proven to 

outperform numerical and analytical methods in several cases. 

• Predictions of the proposed model were made within seconds. They require 

minimal user intervention and little computational effort. 

• Conversely, existing numerical methods are associated with high computational 

demand and require several minutes to several hours to yield results. 

• Model validation was further conducted through comprehensive feature importance 

analyses, which confirmed the model’s ability to capture and quantify the 
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relationships between design parameters and their output for both near-field and 

far-field blast scenarios.  

• The features having the greatest effect on the maximum displacement were the 

reflected impulse, reflected pressure, blast height, axial load ratio, and concrete 

compressive strength. Results of feature importance analyses strongly correlated 

well with findings in the literature. 

• The model was observed to outperform existing prediction methods in several 

cases. 

• The model’s performance based on accuracy, time, and complexity make it 

favorable for practical implementation in preliminary design processes.  

• However, model improvements to mitigate minor prediction discrepancies are 

recommended and can be achieved via consideration of axial load changes, P-delta 

effects, changes to the neutral axis location throughout loading, along with 

consideration of the column’s varying boundary conditions, alternative column 

geometry, and non-uniform tie spacing.   

• Overall, the GBRT model achieved excellent performance offering a promising 

new approach to the field of blast engineering as a practically effective tool for 

preliminary design stages, while also motivating future complementary models. 
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Chapter 5  

 

 

5 Hybrid machine learning model for predicting 
structural response of RC beams under blast loading 

 

5.1 Introduction and background 

Being able to accurately predict the response of structural elements subjected to explosions 

and detonations is paramount for designing resilient and blast-resistant structures. 

Furthermore, prediction methods that can account for the properties of advanced materials 

such as high-strength concrete (HSC) and high-strength reinforcement (HSR) can improve 

the versatility of design practice. In recent years, substantial research efforts have been 

devoted to investigating the behavior of reinforced normal-strength concrete (NSC) and 

HSC beams under blast loading. Additionally, similar efforts have been made to develop 

response prediction models for such elements, including both analytical and numerical 

methods. 

For instance, an experimental study by Guertin-Normoyle [1] investigated NSC, HSC, and 

ultra-high-performance concrete (UHPC) beams under simulated blast loads at the 

University of Ottawa’s Shock-tube Simulator. The study indicated the extent to which HSC 

and UHPC can improve the blast performance of beams in comparison to beams made with 

NSC and normal-strength reinforcement (NSR). A dynamic single degree of freedom 

(SDOF) analytical model was evaluated based on maximum displacement predictions. 

When compared to experimental results, the SDOF model resulted in errors of 3.21% to 

35.29% with an average of 19.41% considering 9 NSC beams. Similarly, Algassem [2] 

studied the behavior of high-strength fiber-reinforced concrete (HSFRC) beams along with 

HSC and NSC beams under the same simulated blast loading scheme. It was found that the 

addition of fibers improved the beam’s blast performance by increasing its shear capacity, 

reducing fragmentation, and mitigating maximum and residual displacements. A SDOF 
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model was evaluated as an analytical prediction method based on maximum displacement 

and was found to yield prediction errors of 6.22% to 26.96% with an average of 13.58% 

considering 10 NSC and HSC beams. 

Another experimental investigation on HSC beams under simulated blast loading was done 

by Charles [3], considering the effects of reinforcement detailing and steel fiber content. 

Results showed that the use of compression reinforcement led to improved blast resistance 

and controlled displacements, while steel fibers allowed for increased stirrup spacing 

without disrupting the beam’s blast performance. The study also evaluated a SDOF model 

for maximum displacement predictions which produced errors between 10% and 28% with 

an average of 16.44% considering 9 HSC beams. Furthermore, Nassr et al [4] conducted 

an experimental study on the dynamic response of NSC beams under various ammonium 

nitrate-fuel oil (ANFO) charge weights. Using the recorded maximum displacement values 

as a reference, an analytical Timoshenko Beam Model (TBM) was evaluated and yielded 

errors of 0.75% to 21.45% with an average of 7.8% considering 6 NSC beams. 

Along with analytical methods, numerical methods have also been widely adopted to model 

blast loaded NSC and HSC beams. For instance, Magnusson et al. [5] investigated different 

modelling considerations for NSC and HSC beams subjected to blast loading using Ansys 

Autodyn. These considerations included the use of linear concrete strain softening, strain 

rate effects for tensile reinforcement, and the effect of concrete-reinforcement bonding. 

Results of the numerical models were compared to experimental findings on corresponding 

specimens for both NSC and HSC beams through maximum displacement, which resulted 

in errors of 4.57% to 23%, with an average of 11% considering 6 comparisons.  Moreover, 

an experimental study was conducted by Yao et al [6] on NSC beams of varying stirrup 

ratios exposed to different TNT charge weights. A corresponding numerical study using 

LS-DYNA was implemented to assess the simulated dynamic responses of the beam 

specimens considering perfect concrete-reinforcement bonding and strain-rate sensitive 

material models. Comparisons of maximum displacement were made and yielded errors of 

2.9% to 8%, with average of 5% considering 4 comparisons. A similar numerical modelling 

configuration was implemented using ABAQUS in which two NSC beams subjected to 
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blast loading were evaluated against experimental displacements and resulted in errors of 

6% and 9.25% [7]. 

Extensive literature survey shows that both analytical and numerical methods produced 

predictions of the behavior of NSC and HSC beams under blast loading with reasonable 

accuracy. However, each of these methods is generally associated with complex 

requirements for effective execution. For instance, analytical methods require dedicated 

background of the application to account for pertinent components within each method’s 

derived formulations. Similarly, for numerical methods, a reliable understanding of 

material models, as well as competent modeling efforts and computational resources are 

required for producing accurate predictions. To potentially eliminate such complexities and 

demands of existing displacement prediction methods of blast-loaded structural elements, 

Almustafa and Nehdi [8] introduced a machine learning (ML) model for predicting the 

maximum displacement of reinforced concrete (RC) slabs under blast loading. The 

simplified model was assessed via statistical performance measures of mean absolute error 

(MAE), R2, and variance explained by cross-validation (VEcv), achieving values of 4.38, 

96.2%, and 94.4%, respectively. The model was also thoroughly validated against existing 

methods and was found to be a strong contender for the application.  

In a complementary effort, the present chapter introduces a ML model to predict the 

maximum displacement of NSC and HSC beams reinforced with NSR or HSR subjected 

to blast loading. A hybrid gradient-boosted regression trees algorithm is implemented for 

the model’s development while adopting a Henry Gas Solubility optimization algorithm 

for parameter tuning. The developed model was validated through the statistical 

performance measures MAE, R2, and VEcv, while also being evaluated against existing 

analytical, numerical, and empirical models through direct output comparisons. The 

proposed model is also validated through its ability to identify the importance of each 

application feature via comparisons to experimental findings. Furthermore, this chapter 

introduces a classification model of blast loaded NSC and HSC beams, which is able to 

identify element failure modes, as well as crack pattern formations. The classification 

model is validated through measures of accuracy, precision, and recall, while being further 

corroborated with feature importance analysis supported by experimental studies. Lastly, 
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the elimination of modeling complexities is discussed for both models, along with 

highlighting their potential practical implementations. 

 

5.2 Model development 

5.2.1 Hybrid gradient-boosted regression trees 

The maximum displacement prediction model development was based on a hybrid 

gradient-boosted regression trees (GBRT) algorithm. Traditional GBRT is an ensemble 

learning algorithm that takes advantage of many individual weak models to produce a 

robust prediction model. Towards this development, GBRT implements a stage-wise 

process of creating and incorporating single regression trees. Initially, a first regression tree 

is created which attempts to fit the data, albeit with large error. During the second stage, 

the residuals of the first tree are then fit onto a second tree as a means of mitigating the 

initially produced error. For every subsequent stage, a new tree is created to fit the errors 

of the previous tree and is added to the collection of existing trees. The process continues 

until a performance criterion with respect to a loss function is met or until a stopping 

criterion is reached [9]. The parameters that characterize the GBRT algorithm are the 

number of trees, the contribution of each tree through a learning rate, and the depth of each 

regression tree. Since the performance of the GBRT is highly dependent on its parameters, 

it becomes pertinent to identify the most optimal values. Thus, a novel optimization 

algorithm is implemented towards tuning the model parameters. 

Henry Gas Solubility Optimization (HGSO) is a novel metaheuristic algorithm inspired by 

the behavior of gasses governed by Henry’s Law. It states that the amount of a given gas 

that dissolves in a volume of liquid is directly proportion to the partial pressure of the gas 

in equilibrium with the liquid at constant temperature. For the HGSO algorithm, several 

gases (agent population size) are initialized and are divided into equal clusters. Each gas is 

a potential solution to the problem being optimized. At every time step, the gases are 

evaluated so that the best and worst candidates are collected. Afterwards, the parameters 

of the optimization process are updated to expand the gases’ search. The updated 

parameters include the Henry’s coefficient (H), which is a function of temperature, 
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solubility (S) being a function of pressure and H, and lastly, the position of the gas, which 

depends on S, the best gas of the previous time step, and a variable defining the 

quantification of gas interactions. Moreover, the position of the worst solution gases is 

drastically updated by introducing a random-valued variable. These mechanisms have been 

proven to be effective in updating the position of agents throughout a solution search to 

obtain a global optimum [10]. The HGSO algorithm was successfully integrated into the 

GBRT algorithm as a means of fine-tuning the model parameters.   

Furthermore, the classification model developed herein implements a classification 

Random Forests algorithm RF. RF is composed of an ensemble of decision trees in which 

a random subset of training data is used to train each tree. The training process for each 

tree is achieved through successively splitting the input training data into smaller subsets 

of data by splitting criteria at each node. Once each node identifies the condition for 

splitting based on the ranges of input data, the training process is completed, and a 

prediction may be obtained by a terminal node. By utilizing numerous decision trees 

trained with random subsets of data, the RF algorithm can take advantage of the multiple 

node conditions of data splitting that produce a generalized and unbiased output [11]. The 

final output of the model is obtained through taking the majority vote of the discrete outputs 

produced by individual trees. 

Moreover, the feature importance analysis used in this study is based on the node-splitting 

criterion of a random forests (RF) algorithm, known as the interaction-curvature test. It 

tests the null hypothesis that there is no interaction between a pair of input features and the 

output. Initially, the curvature test is conducted in which the residual value of each 

prediction in a node is computed with respect to the weighted average of all predictions in 

that node. Afterwards, the values of a continuous feature are partitioned into four quartiles 

for both positive and non-positive residuals, where the corresponding predictions of each 

quartile are counted. This forms a 2x4 contingency table in which the chi-square statistic 

and p-value are obtained. Consequently, the best input feature used to split a node is the 

one which minimizes the p-value with respect to curvature tests between each input feature 

of the node and the data point’s output [12]. The approach for the curvature-interaction test 

uses a similar methodology, but instead computes statistics based on a pair of features 



 

 

115 

whose values are divided into four quadrants by splitting the value ranges into two halves 

at their median. Additional details describing each test are provided in [12]. The unbiased 

importance of each feature is obtained by considering the summation of changes in the 

output due to node splits for each feature over the number of branched nodes. Based on 

this procedure, the importance of each feature is obtained for the current application and is 

used for detailed investigation in subsequent sections of this chapter. 

5.2.2 Performance measures and cross-validation 

 Cross-validation 

Generally, a ML model requires a dataset to be able to learn information and correlations 

within a given application and produce practical predictions, while also requiring “unseen” 

data to measure its predictive performance. Therefore, by partitioning an available dataset 

into training and testing sets, a ML model can be objectively evaluated. A widely adopted 

data partitioning approach is the k-fold cross-validation (CV) in which the dataset is 

divided into k equally sized subsets in which the training process is done on k – 1 subsets, 

while the remaining subset is reserved for testing [8]. This allows for model performance 

to be evaluated as an average of k models, while accounting for standard deviation. When 

considering k to be the number of points in a dataset N, this becomes “Leave-One-Out” 

(LOO) CV, in which performance measures are based on n models having been trained on 

N–1 data points. Upon successful validation of a model using k-fold CV, LOO CV may be 

implemented to further evaluate a model’s performance when supplied with additional 

training data. Both LOO CV and 10-fold CV were considered in the current model 

development. In addition to CV, the dataset was permuted to achieve more generalized 

performance measures through additional combinations of training and testing.  

 Performance measures for displacement prediction model 

The statistical performance measures used for evaluating the displacement prediction 

model are the mean absolute error (MAE), coefficient of determination R2, and the variance 

explained by cross-validation (VEcv). MAE is a common error metric for evaluating the 

predictive accuracy of a regression model. While being robust to outliers, it is unit 
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dependent, such that comparisons can only be made for similar applications [13]. 

Additionally, the measure R2 is an effective representation of the correlation between 

predicted values and actual values considering the entire dataset. A measure of the 

predictive accuracy of a model may be obtained through VEcv, which considers the 

variation in the validation subset that is explained by the predicted values obtained by the 

model through cross-validation [13]. It should be noted that VEcv is applied only through 

k-fold CV in this study, and not LOO CV, whose validation set only consists of a single 

data point. The formulation for each measure is given as follows: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1     (1) 

𝑅2 = (1 − 
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̅)2
𝑛
1

) ∗ 100%    (2) 

𝑉𝐸𝑐𝑣 = (1 − 
∑ (𝑦𝐶𝑉𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝐶𝑉𝑖−𝑦̅)2
𝑛
1

) ∗ 100%    (3) 

where  𝑦̂  is the predicted output, y  is the actual output for every ith entry in the dataset, 𝑦̅ 

is the mean of the actual values, n is the number of points in the dataset; and yCV  is the 

actual output for every ith entry in the validation subset. The value of R2 is always positive 

and ranges between 0 and 1, while VEcv can be negative and has a maximum value of 

100%, implying ideal accuracy [13].  

 Performance measures for multi-class classification model 

A classification model is fundamentally evaluated on its ability to label an output to its 

correct class, (true positive, TP), its ability to recognize that an output does not belong to 

other classes (true negative, TN), its tendency to label an output to an incorrect class (false 

positive, FP), and its tendency to mislabel an output for a given class (false negative, FN) 

[14,15]. The count of each classification scenario for a model may be conveniently 

visualized through a 2x2 confusion matrix for binary classification problems. For multi-

class classification problems with k classes, a k x k confusion matrix may be adapted, as 

shown in Fig. 5-1.  
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Figure 5-1. Confusion matrix representation for multi-class classification problems. 

Through a confusion matrix, a classification model’s precision and recall may be obtained 

through relations (4) and (5). The precision of a class expresses the degree to which the 

predicted output labels agree with the true class label, whereas the recall presents the 

effectiveness of a model in correctly labeling outputs for a particular class [15]. These two 

performance measures may be obtained for each class individually, or as an average for the 

entire model. A classification model can also be evaluated through its accuracy, or simply 

the number of correctly predicted outputs over the total number of outputs. Although 

accuracy is a suitable representation of a classification model’s performance, it is sensitive 

to imbalanced data and can be biased towards the majority class. Therefore, two 

classification models may produce the same accuracy, yet demonstrate varying 

performances for different classes [16]. To mitigate such bias and achieve a more robust 

interpretation of the model, both recall and precision were used in the present chapter 

alongside accuracy to thoroughly evaluate the failure mode and cracking pattern 

classification model. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (5) 

 

5.3 Data collection and description 

The datasets for both models introduced in this chapter were compiled from numerous 

research articles and theses found in the literature. The development of both the 

displacement prediction model and the failure mode and crack pattern classification model 

were based on data from experimental studies that employed a blast simulation device, 

experimental studies that utilized explosive materials, and numerical studies verified by 

experiments. The following sections provide a detailed description of each model’s dataset 

through its sources, statistics, distributions, and application considerations.  

5.3.1 Feature descriptions 

A total of eleven (11) features were considered for characterizing RC beams under blast 

loading. The selection of features was based on the availability of consistent data across 

the existing pertinent literature. Thus, the continuous features used to characterize the beam 

element are its height, width, length, concrete compressive strength, longitudinal steel yield 

strength, tension reinforcement area, compression reinforcement area, stirrup spacing, and 

a categorical feature labeling the beam’s support conditions. Additionally, the features used 

to associate blast loading are the reflected pressure and reflected impulse. In cases where 

the explosive charge weight and standoff distance were provided instead of blast 

parameters, charts provided by UFC 3-340-02 [17] were utilized to obtain any required 

values. Therefore, values for both datasets were collected consistently across all features 

such that there were no instances of missing data. 

5.3.2 Displacement prediction model 

The dataset used for developing the displacement prediction model consisted of 150 data 

points of which 52 were from studies that utilized simulated blast loading [1-3,18-20], 33 

were from studies that implemented explosive material detonations [4-6,21,22], and 65 
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were from numerical studies [6,23-25]. Table 5-1 provides the mean, standard deviation, 

and range of features for the dataset, whereas Fig. 5-2 presents their statistical distribution. 

While investigating the literature for relevant data, it was observed that blast-loaded RC 

columns with only corner reinforcement and no applied axial load strongly resembled 

blast-loaded RC beams. As a result, 49 numerical data points were obtained from such 

elements [24,25]. The compiled dataset considered NSC, HSC, NSR, and HSR beams 

subjected to both near-field and far-field blast loading, all of which contribute to creating 

a comprehensive dataset for the application. It should be noted that although a few of these 

studies had investigated additional types of beam specimens, only the ones relevant to the 

scope of this study were retained.  

5.3.3 Failure mode and cracking pattern classification model 

For the failure mode and cracking pattern classification model, a total of 108 data points 

was retrieved in which 70 were from studies that utilized simulated blast loading [1-3,18-

20] and 38 were from studies that implemented explosive material detonations [4-6,21,22]. 

Similar considerations for NSC, HSC, NSR, and HSR beams under near-field and far-field 

blasts were included in the dataset. The mean, standard deviation, and range of features are 

listed in Table 5-2, while feature distributions are displayed in Fig. 5-3. Upon careful 

inspection of the compiled beam data and their respective state of damage, the beams were 

consistently categorized into four discrete classes. Two classes were concerned with crack 

pattern predictions for beams that did not reach failure, and two classes were allocated for 

predicting modes of failure. The four classes are labeled as flexural crack formation, 

bending failure, flexural-shear crack formation, and crushing failure, denoted as class 1, 2, 

3, and 4, respectively. The beams resulting in flexural crack formation were associated with 

few to several hairline cracks perpendicular to the length of the beam. Beams identified 

with flexural-shear cracks developed both perpendicular cracks along the middle of the 

beam and 45o cracks towards the support. Bending failures were identified by the presence 

of large cracks at the beam’s midspan associated with large plastic deformations, while 

crushing failures were primarily recognized by severe crushing of the compression zone. 

Post-blast images of each class can be found at the dataset’s listed sources. 
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Table 5-1. Data statistics for displacement prediction dataset. 

Feature/Output Mean / 

Count 

Standard 

Deviation 

Range / 

Categories 

Height (mm) 250.97 65.55 100 – 400 

Width (mm) 205.83 81.53 100 – 300 

Length (mm) 2402.19 555.46 1100 – 3000 

Concrete compressive strength 

(MPa) 

58.44 30.15 30 – 200 

Steel yield strength (MPa) 473.19 156.61 235 – 929 

Tension steel reinforcement ratio 1.43 0.66 0.36 – 4.1 

Compression steel reinforcement 

ratio 

0.65 0.58 0 – 1.4 

Stirrup spacing (mm) 127.63 73.2 0 – 300 

Reflected Pressure (MPa) 16.72 27.19 0.0198 – 95.55 

Reflected Impulse (MPa-msec) 3.2 3.54 0.184 – 15.93 

Support condition (simple / fixed) 80 / 70 - 2 

Maximum displacement (mm) 35.85 33.7 3.01 – 210.6 

 

Table 5-2. Data statistics for failure mode and crack pattern classification dataset. 

Feature/Output Mean / 

Count 

Standard 

Deviation 

Range / 

Categories 

Height (mm) 238.7 61.50 100 – 250 

Width (mm) 161.05 55.45 100 – 300 

Length (mm) 2210 421.62 1100 – 2425 

Concrete compressive strength 

(MPa) 

66.27 30.67 30 – 160 

Steel yield strength (MPa) 507.45 192.70 395 – 929 

Tension steel reinforcement ratio 1.48 0.77 0.36 – 4.1 

Compression steel reinforcement 

ratio 

0.29 0.32 0 – 1.2 

Stirrup spacing (mm) 116.5 56.59 0 – 200 

Reflected Pressure (MPa) 11.6 22.90 0.0198 – 56.77 

Reflected Impulse (MPa-msec) 20.4 2.78 0.0776 – 9.58 

Maximum displacement (mm) 39.23 30.14 7-185.4 

Failure mode or crack pattern 

(1,2,3,4) 

40/17/29/22 - 4 
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Figure 5-2. Histograms of features and output for displacement prediction dataset. 

 

Figure 5-3. Histograms of features and output for classification dataset. 
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5.4 Displacement prediction model 

The first model introduced in this chapter acts to produce maximum displacement 

predictions for blast-loaded RC beams. To conduct a detailed investigation on the 

effectiveness of the proposed model, various means of validation were employed. Initially, 

statistical performance measures were obtained by the ML model to assess the degree of 

correlation between actual and predicted values, as well as the overall magnitude of errors 

produced. Additionally, the proposed model was directly compared against several existing 

displacement prediction methods through output values found in the literature. Lastly, a 

feature importance analysis was conducted to evaluate the model’s ability to capture 

relationships between input parameters and the predicted output. 

5.4.1 Model validation through performance criteria  

The optimized parameters for the number of trees, learning rate, and number of splits are 

552, 0.43, and 63, respectively. Based on these values, the optimized HGBRT model for 

the displacement prediction model yielded a MAE of 5.3 ± 0.32, R2 of 92.1% ± 0.96%, and 

VEcv of 88.1% ± 6.38% when considering 10-fold CV. When considering LOO CV, the 

model produced MAE of 4.48 and R2 of 93.4%. It has been reported that values for VEcv 

of 50% to 80% are considered to have good accuracy, whereas values exceeding 80% 

signify excellent accuracy [13]. It can be observed from each measure’s standard deviation 

that there was minimal variation among the results of each permuted instance, which 

strongly indicates the model’s ability to generalize by providing stable results for different 

instances of training. The improved performance obtained through LOO CV is attributed 

to a larger dataset used to train the model as opposed to 10-fold CV. For both models, the 

correlation between the actual and predicted values with 20% error bounds are depicted in 

Figs. 5-4 and 5-5 for 10-fold CV and LOO CV, respectively. It can be observed that the 

model expresses a strong agreement between actual and predicted values with LOO CV, 

reflecting improved performance measures. For further elaboration on the model’s 

prediction capability, the average percentage of predictions within several thresholds of 

error bounds are provided in Table 5-3, which shows that nearly half of the predicted 

values were within a 10% error bound, with only few predictions exceeding the 30% error 
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bound. Table 5-3 portrays the relatively improved performance obtained through LOO 

CV. As a result of these performance measures, the model demonstrated a strong aptitude 

for predicting maximum displacements within acceptable bounds.  

Table 5-3. Average percentage of predictions within different error bounds 

respective of the dataset 

Error bound 10-fold CV LOO CV 

±5% 22% ± 2.9% 26% 

±10% 47% ± 3.4% 50.7% 

±20% 71.56% ± 2.9% 78.66% 

±30% 86.7% ± 2.1% 93.3% 

 

 

Figure 5-4. Actual versus predicted responses with a 20% error bound considering 

10-fold CV. 
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Figure 5-5. Actual versus predicted responses with a 20% error bound considering 

LOO CV. 

5.4.2 Model validation through comparisons with existing methods 

In addition to validation through model-specific performance measures, comparisons 

against predictions of alternative models were made to provide a more holistic evaluation 

of the proposed ML model. A total of 62 comparisons were made in which 48 were with 

analytical methods and 14 with numerical methods. The comparisons were divided into 

predictions for NSC beams and HSC beams, as given in Tables 5-4 and 5-5, respectively. 

Furthermore, each table provides the source, alternative model details, and errors resulting 

from the investigated models against experimental measurements. These comparisons not 

only show how well the ML model competes against existing models, but also underline 

its superior predictive capability for each beam type.  

The different analytical models considered in this section include an equivalent SDOF 

model that applies an Acceleration Impulse Extrapolation Method through the program 

UOResistance [1] and an equivalent SDOF model that implements an Average 

Acceleration Numerical Integration Method using the program RCBlast [26]. The two 
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methods for solving the equivalent SDOF equation of motion are outlined in UFC 3-340-

02 [17]. An additional model used in the comparisons was the TBM, which explicitly 

incorporates the effects of shear deformation and rotational inertia, making it suitable for 

the current application [4].  

Furthermore, the various numerical models considered accounted for material strain-rate 

effects, strain softening effects, and reinforcement bonding effects. The model used for 

each comparison entry is assigned in Tables 5-4 and 5-5, and additional information for 

each model can be found at their respective sources provided herein for each entry. 

For displacement predictions of NSC beams in Table 5-4, the ML model demonstrated 

similar performance in a few instances (entries 1, 5, 14, 18, 21), while producing more 

accurate predictions in several other instances (entries 2, 4-7, 9, 10, 14-16, 18 ,19, 22) when 

compared to analytical models. Similarly, the ML model achieved comparable accuracy to 

numerical methods in some instances (entries 31, 34, 37, 39), while attaining slightly less 

accurate results in other instances. It should be noted that most of the experimental 

measurements for entries 1-17 were collected from beam specimens that were subjected to 

repeated simulated blast loads, which has previously been reported to be a source of 

analytical prediction error [1-3]. Thus, it can be appropriately stated that although the ML 

provided mostly accurate predictions for these entries, the minor loss of accuracy for such 

entries can be attributed to the beams having already been subjected to loading. 

Additionally, the errors produced in entries 29 and 36 were inspected and found to be 

caused by marginal variations among features that could not completely be captured by the 

ML model. To clarify, the beams of entries 29 and 31 were from the same experimental 

study and possess identical beam and blast properties with only slightly varying stirrup 

spacings, which caused the model to predict the displacement of entry 29 to be similar to 

the prediction of entry 31. A similar discrepancy is observed in entries 27, 36, and 38  with 

respect to entries 26, 37, and 39. It should also be noted that entries 27, 29, 36, and 38 were 

not only observed to have highly similar features as beams within their respective study, 

but were also found to be outliers for several features. This contributed to the ML model’s 

difficulty in distinguishing such beams and providing relatively inaccurate predictions. As 

a result of the displacement comparisons of models for NSC beams, the ML demonstrated 
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improved overall performance against several analytical models, while displaying 

comparable performance to some numerical models.  

Likewise, Table 5-5 presents displacement predictions for HSC beams with comparisons 

between alternative models and the proposed ML model. Based on these comparisons, the 

ML model predictions were highly capable of surpassing both analytical and numerical 

predictions (entries 1, 5, 7, 13, 14, 19, 22, 23), while also yielding predictions of similar 

accuracy (entries 3, 4, 16, 17, 21). Similar to the previously stated discrepancy, the ML 

model’s prediction error for some instances can be attributed to the HSC beams being 

subjected to repeated loading. The results of these comparisons support the ML model’s 

capability of accurately predicting maximum displacement for HSC beams. 

In addition to both analytical and numerical models, the literature also includes empirical 

formulations for predicting the maximum displacement of blast-loaded RC beams. Upon 

conducting an experimental investigation on NSC beams under blast loading, Yao et al. 

[6] observed that the beam’s stirrup reinforcement ratio (longitudinal cross-sectional area 

of stirrup steel to longitudinal cross-sectional area of the beam) highly influenced the 

resulting maximum displacement. In addition to experimental data, numerical models were 

developed to further examine the effect of the stirrup ratio. As a result, an empirical 

relationship to obtain the central deflection thickness ratio (δ/h) was fit using 4 

experimental and 8 numerical data points as shown in Equation (6). It was reported that the 

relation was only suitable within the scaled distances of 0.44 m/kg1/3 < Z < 0.5 m/kg1/3 and 

stirrup ratios of 0.251% < r <1.51%, which adapts to 30 mm–180 mm stirrup spacing for 

a 125x125x1350 mm RC beams. 

δ

ℎ
=  0.064𝑍−1.717 ∙ 𝑟−0.75        (6) 

Table 5-4. Comparisons of ML model to alternative models for NSC beams. 

Entry 

# 

Source Alternative 

model details 

Experimental 

result (mm) 

Alt. model 

prediction 

(mm) 

ML 

model 

prediction 

(mm) 

Alt. 

model 

error 

(%) 

ML 

Model 

Error 

(%) 

1 [1] 

 

 

UOResistance 

11.8 11.46 12.4 2.88 5.08 

2 27.3 21.02 26.1 23 4.4 

3 10 10.5 12.62 5 26.2 
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4 19.3 16.39 21.91 15.08 13.52 

5 42 28.31 29.76 32.6 29.14 

6 10.7 9.11 10.74 14.86 0.37 

7 17.3 14.17 16.8 18.09 2.89 

8 29.5 21.61 18.8 26.75 36.27 

9 [2] RCblast 12.65 14.96 12.3 18.26 2.77 

10 29.53 33.12 28.7 12.16 2.81 

11 [18] 

 

RCblast 13.44 13.25 11.54 1.41 14.14 

12 24.32 23.57 28.97 3.08 19.12 

13 37.3 32.82 28.01 12.01 24.91 

14 [19] 

 

RCblast 11.5 13.7 13.38 19.13 16.35 

15 11.6 12.3 11.18 6.03 3.62 

16 22.8 25.2 22.46 10.53 1.49 

17 41.5 41.7 31.9 0.48 23.13 

18 [4] TBM 

 

28.15 29.15 26.9 3.55 4.44 

19 24 29.15 25.5 21.46 6.25 

20 16.02 15.9 16.68 0.75 4.12 

21 15.74 15.9 15.89 1.02 0.95 

22 67 62.39 54.74 6.88 18.3 

23 55.14 62.39 59.76 13.15 8.38 

24 [21] 

 

SDOF using 

Average 

Acceleration 

Method 

26.5 26.9 28.5 1.51 7.55 

25 33.6 32.5 37.35 3.27 11.16 

26 64.6 62.8 71.34 2.79 10.43 

27 97.2 93.3 65.14 4.01 32.98 

28 [6] 

 

LS-DYNA 

5mm mesh 

Perfect 

bonding 

36 33 43.5 8.33 20.83 

29 44 41.9 61.7 4.77 40.23 

30 55 52.5 50.56 4.55 8.07 

31 62 63.8 62.92 2.9 1.48 

32 [27] 

 

Autodyn 

4mm mesh 

size 

Strain 

softening 

17.5 16.5 20.07 5.71 14.69 

33 17.5 16.7 20.07 4.57 14.69 

34 Autodyn 

4mm mesh 

size 

Bond-slip 

effect 

17.5 14.1 20.07 19.43 14.69 

35 17.5 16.3 20.07 6.86 14.69 

36 [7] Abaqus 

5mm mesh 

size 

Perfect 

bonding 

25 23.5 36.4 6 45.6 

37 40 36.3 37.6 9.25 6 

38 [28] LS-DYNA 

5mm mesh 

9 9.83 33.3 9.2 270 

39 40 44 37.6 10 6 
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Table 5-5. Comparisons of ML model to alternative models for HSC beams. 

Entry 

# 

Source Alternative 

model 

details 

Experimental 

result (mm) 

Alt. model 

prediction 

(mm) 

ML 

model 

prediction 

(mm) 

Alt. 

model 

error 

(%) 

ML 

Model 

Error 

(%) 

1 [2]  

RCblast 

13.15 14.15 12.93 7.6 1.67 

2 30.44 28.51 25.15 6.34 17.38 

3 11.5 10.18 13.12 11.48 14.09 

4 21.4 18.86 18.83 11.87 12.01 

5 10.44 8.38 11.5 19.73 10.15 

6 15.12 13.44 18.31 11.11 21.1 

7 32.91 24.03 29.24 26.98 11.15 

8 [18] RCblast 10.17 13.46 14.06 32.35 38.25 

9 22.39 25.87 27.05 15.54 20.81 

10 33.78 34.85 37.75 3.17 11.75 

11 9.08 9.35 10.49 2.97 15.53 

12 17.72 18.46 19.88 4.18 12.19 

13 10.91 8.39 10.1 23.1 7.42 

14 16.59 13.21 18.5 20.37 11.51 

15 26.15 20.8 32.9 20.46 25.81 

16 [3] RCblast 17.7 19.8 19.73 11.86 11.47 

17 33.1 36.4 36.2 9.97 9.37 

18 11.5 14.7 17.8 27.83 54.78 

19 34.6 38.8 33.23 12.14 3.96 

20 26.5 20.3 40.28 23.4 52 

21 45.1 34.6 33.21 23.28 26.36 

22 [27] Autodyn 

4mm mesh 

size 

Bond-slip 

effect 

24.1 22.4 24.21 7.05 0.46 

23 22.6 27.8 26.6 23.01 17.7 
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Similarly, Liu et al. [21] proposed an empirical expression to calculate the scaled maximum 

displacement (2δ/L) of blast loaded NSC beams that accounts for the effect of charge mass 

and scaled distance using dimensional analysis. The proposed expression was fit to 4 

experimental data points to obtain the relationship as shown in Equation (7), where M is 

the charge mass, and M0 is taken as a benchmark of 0.4 kg. It was noted that the expression 

only applied to scaled distances of 0.5 m/kg1/3 < Z < 0.68 m/kg1/3 with standoff distances 

greater than or equal to 0.5 m. 

2δ

𝐿
=  0.01264𝑍−2.49 ∙ (

√𝑀
3

√𝑀0
3 )2.56           (7) 

For both Equations (6) and (7), their respective studies have successfully validated the 

proficiency of the formulations within the limits of their specified range. However, the 

reported limiting ranges only account for a small number of application scenarios, beyond 

which the expressions become inaccurate. Also, the parameters that encompass the 

application of RC beams under blast loading exceed the ones accounted for in those 

empirical expressions. The following section provides a detailed analysis of the extent to 

which pertinent application parameters have on the response of a RC beams. 

5.4.3 Model validation through feature importance 

As previously stated, the displacement prediction model accounts for eleven features of the 

application to provide an accurate output as presented in Table 5-1. A feature importance 

analysis was conducted to evaluate the ML model’s effectiveness in identifying the extent 

to which these input features influence the output. Furthermore, the importance estimate of 

input features was validated through evidence of correlations observed by experimental 

studies found in the literature. On account of the limitations of such studies, only the 

features of concrete compressive strength, steel yield strength, tension reinforcement ratio, 

compression reinforcement ratio, stirrup spacing, reflected pressure, and reflected impulse 

were considered in the current analysis.  

Figure 5-6 depicts the feature importance estimates of the investigated input features. The 

estimates were acquired from the interaction-curvature test performed by means of the 

random forests algorithm as described in detail earlier. It can be observed in Fig. 5-6 that 
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the two blast parameters had the highest effect on the output, followed by the steel yield 

strength, tension reinforcement ratio, concrete compressive strength, stirrup spacing, and 

compression steel reinforcement ratio. The following sections individually discuss each 

feature with supporting evidence from corresponding experimental correlations provided 

in Tables 5-6 – 5-12. The tables are arranged in increasing displacement order to obtain 

the percentage of increase and remain consistent among all comparisons. Additionally, 

comparisons between each two feature values were made while all other features remain 

constant. 

 

Figure 5-6. Feature importance estimates for selected features of the displacement 

prediction model. 
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 Reflected pressure and reflected impulse 

The two blast parameter features, i.e. reflected pressure and reflected impulse, are shown 

in Fig. 5-6 to be the most significant when considering maximum displacement as the 

output. This observation has been widely concluded from numerous studies of both near-

field and far-field blasts on RC beams [1-4, 21-23]. Tables 5-6 and 5-7 list multiple 

instances of the two features from different studies, along with their corresponding 

maximum displacements. The percent of change in maximum displacement caused by the 

percent of change of each feature are also provided for each feature. It can be observed that 

there is a significant change in maximum displacement for relatively smaller changes in 

reflected pressure and impulse. Furthermore, smaller changes in both features cause a 

noticeably greater change in maximum displacement in near-field blasts, as shown in entry 

4 in Tables 5-6 and 5-7 compared to far-field blasts in entries 1-3. Therefore, the 

significance of both features on the output evidently supports the results obtained by the 

feature importance analysis. Moreover, when comparing the percent of change between the 

two features, it can be observed that a smaller change in reflected impulse is required to 

cause the same change in maximum displacement than the change in reflected pressure. 

This indicates that the resulting displacement is more sensitive to the reflected impulse than 

to pressure, which also strongly supports the difference in the features’ importance measure 

depicted in Fig. 5-7. 

 Steel yield strength and concrete compressive strength 

According to Fig. 5-6, the effect of steel yield strength on maximum displacement is 

observed to be greater than the effect of the concrete compressive strength. The 

corresponding experimental study that reflects on this comparison was conducted by Li 

[18] who investigated both HSC and HSR in beams subjected to simulated blast loading. 

Tables 5-8 and 5-9 list the effects of both steel yield strength and concrete compressive 

strength on the maximum displacement. It can be interpreted that the rate of change for 

steel yield strength resulted in greater changes in maximum displacement when compared 

to the rate of change of concrete compressive strength. It was also reported from the 

experimental investigation [18] that the use of HSR led to significant improvement of blast 
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resistance and displacement reduction, whereas HSC was comparatively found to have a 

moderate effect [18]. A numerical investigation using LS-DYNA also found that the effect 

of steel yield strength was effective in improving the blast performance of HSC beams 

[29]. These observations corroborate the accuracy of the feature importance analysis, 

which deems the steel yield strength to be more influential than the concrete compressive 

strength. 

Table 5-6. Effect of reflected pressure. 

Source Reflected 

Pressure 

(MPa) 

Maximum 

Displacement 

(mm) 

Change in 

Reflected 

Pressure (%) 

Corr. Change 

in Max Disp. 

(%) 

[1] 0.0198 10 Base Base 

0.0353 19.3 78.3 93 

0.0515 42 160.1 320 

[5] 0.68 8.7 Base Base 

1.186 13.8 74.4 58.6 

1.907 26.6 180.4 205.7 

[4] 0.077 16 Base Base 

0.251 28.15 226 75.9 

0.348 67 351.9 318.8 

[22] 23.16 9 Base Base 

27.53 25 18.9 177.8 

40.1 40 73.1 344.4 

 

Table 5-7. Effect of reflected impulse. 

Source Reflected 

Impulse (MPa 

msec) 

Maximum 

Displacement 

(mm) 

Change in 

Reflected 

Impulse (%) 

Corr. Change 

in Max Disp. 

(%) 

[1] 0.232 10 Base Base 

0.354 19.3 52.6 93 

0.486 42 109.5 320 

[5] 4.54 8.7 Base Base 

6.83 13.8 50.4 58.6 

9.5 26.6 109.3 205.7 

[4] 0.369 16 Base Base 

0.558 28.15 51.2 75.9 

0.872 67 136.3 318.8 

[22] 0.873 9 Base Base 

1.05 25 20.3 177.8 

1.59 40 82.1 344.4 
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Table 5-8. Effect of steel yield strength. 

Source Steel yield 

strength 

(MPa) 

Maximum 

Displacement 

(mm) 

Change in Steel 

yield strength 

(%) 

Corr. Change 

in Max Disp. 

(%) 

[18] 

(a) 

904 24.32 Base Base 

449 29.53 50.3 21.4 

[18] 

(b) 

904 37.2 Base Base 

449 47.96 50.3 28.9 

[18] 

(c) 

904 10.17 Base Base 

449 13.15 50.3 29.3 

[18] 

(d) 

904 22.39 Base Base 

449 30.44 50.3 36 

[18] 

(e) 

904 33.78 Base Base 

449 44.53 50.3 31.8 

[18] (f) 929 17.72 Base Base 

471 21.4 49.3 20.8 

[18] 

(g) 

855 26.15 Base Base 

460 32.19 46.2 23.1 

 

Table 5-9. Effect of concrete compressive strength. 

Source 

Concrete 

Compressive 

Strength 

(MPa) 

Maximum 

Displacement 

(mm) 

Change in 

Concrete 

Compressive 

Strength (%) 

Corr. 

Change in 

Max Disp. 

(%) 

[18] 

(a) 

96 10.17 Base Base 

62 13.44 35.4 32.2 

[18] 

(b) 

96 22.39 Base Base 

62 24.32 35.4 8.6 

[18] 

(c) 

96 33.78 Base Base 

62 37.3 35.4 10.4 

[18] 

(d) 

96 52.74 Base Base 

62 64.52 35.4 22.3 
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Additionally, a more detailed evaluation was made to further explain and support the high 

importance of steel yield strength depicted in Fig. 5-6 and was expressed through material 

dynamic increase factors (DIF). A DIF for a material is used to identify its increased 

dynamic strength caused by high-rate loading such as blast or impact loads relative to the 

materials static strength [1-3]. In a sensitivity analysis conducted by Li [18] to investigate 

the discrepancy of SDOF model predictions for blast-loaded RC beams, various DIF for 

concrete and steel were analyzed. It was found that minor variations in the DIF of steel 

yield strength resulted in significant changes of analytical predictions when compared to 

the effect of variations caused by different DIF for concrete compressive strength. Thus, it 

was reported that the analytical predictions were more sensitive to the DIF of steel than to 

the DIF of concrete. In relation to the current ML model, the sensitive variations of DIF in 

steel yield strengths for various data points of both near-field and far-field blast loading 

rates for a range of different steel yield strengths were implicitly captured by the model as 

reflected through its high feature importance shown in Fig. 5-6. Moreover, the relatively 

less influential effect of concrete DIF was also implicitly obtained and portrayed through 

its corresponding importance estimate. Additional details on the model’s implicit learning 

of the application is discussed in a subsequent section in this chapter. Overall, the 

experimental results describing the effect of both the steel yield strength and concrete 

compressive strength show a good relationship with the results of the feature importance 

analysis. 

 Tension and compression reinforcement ratios 

As shown in Fig. 5-6, the model recognizes the tension reinforcement ratio to have a 

relatively high effect on maximum displacement, while having a greater influence than the 

compression reinforcement ratio. Tables 5-10 and 5-11 provide the effects of both the 

tension and compression reinforcement ratios on the maximum displacement taken from 

their respective sources. It can be observed in Table 5-10 that the tension reinforcement 

ratio has a considerably greater effect on the maximum displacement at smaller ratios, 

while having a seemingly minor effect at larger ratios. Accordingly, the feature of tension 

reinforcement ratio was found to have less effect than the steel yield strength as shown in 

Table 5-8. However, the rate of change of the tension reinforcement ratio still resulted in 
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higher corresponding changes in the maximum displacement than for the concrete 

compressive strength, as shown in Table 5-9. These experimental correlations agree with 

the ML model feature importance estimates for the tension reinforcement ratio with respect 

to the previously evaluated features. Furthermore, Fig. 5-6 indicates that the feature of 

compression reinforcement ratio is the least influential when compared to all other features.  

A similar observation may be inferred in Table 5-11, which depicts minor changes in 

maximum displacement for moderate changes in the feature, while also presenting the 

lowest changes in maximum displacement when compared to Tables 5-6 to 5-9. Therefore, 

it can be concluded that the feature importance of both tension and compression 

reinforcement ratios agree with experimental correlations. 

Table 5-10. Effect of tension reinforcement ratio. 

Source Tension 

Reinf. Ratio 

(%) 

Maximum 

Displacement 

(mm) 

Change in Tension 

Reinf. Ratio (%) 

Corr. Change in 

Max Disp. (%) 

[1] 2.4 17.34 Base Base 

1.5 19.32 37.5 11.4 

1 27.39 58.3 58 

[2] 2.4 15.12 Base Base 

1.5 21.4 37.5 41.5 

1 30.44 58.3 101.3 

[18] 

(a) 

2.4 16.59 Base Base 

1.5 17.72 37.5 6.8 

1 22.39 58.3 35 

[18] 

(b) 

2.4 26.15 Base Base 

1.5 26.77 37.5 2.4 

1 52.74 58.3 101.7 

[5] 2.5 18.6 Base Base 

1.12 22.9 55.2 23.1 
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Table 5-11. Effect of compression reinforcement ratio. 

Source Compression 

Reinf. Ratio 

(%) 

Maximum 

Displacement 

(mm) 

Change in 

Compression Reinf. 

Ratio (%) 

Corr. Change 

in Max Disp. 

(%) 

[3] (a) 0.8 12.1 Base Base 

0.25 10.6 68.8 12.4 

[3] (b) 0.8 37.4 Base Base 

0.25 40.1 68.8 7.2 

 Stirrup spacing 

Likewise, Fig. 5-6 indicates moderate importance for the feature of stirrup spacing, while 

being comparable to the importance of concrete compressive strength. Table 5-12 lists 

multiple experimental cases that consider both the effect of transverse reinforcement and 

varying the stirrup spacing. When compared to the change in maximum displacement 

caused by changing the tension reinforcement ratio in Table 5-10, the effect of changing 

stirrup spacings produces smaller changes in maximum displacement. This correlation 

agrees with the importance estimates of both features given in Fig. 5-6.  

 

Table 5-12. Effect of stirrup spacing. 

Source Stirrup 

Spacing 

(mm) 

Maximum 

Displacement 

(mm) 

Change in Stirrup 

Spacing (%) 

Corr. Change in 

Max Disp. (%) 

[2] (a) 100 10.44 Base Base 

None 12.55 - 20.2 

[2] (b) 100 15.12 Base Base 

None 19.31 - 27.7 

[20] 

(a) 

125 7.67 Base Base 

None 9.03 - 17.7 

[20] 

(b) 

125 12.05 Base Base 

None 17.85 - 48.1 

[4] 125 55.14 Base Base 

200 67 60 21.5 

[6] (a) 60 36 Base Base 

120 55 100 52.8 

[6] (b) 60 44 Base Base 

120 62 100 40.9 



 

 

137 

5.5 Failure mode and cracking pattern classification model  

The second model introduced in this chapter was developed to classify crack patterns and 

failure modes of RC beams subjected to blast loading. The development of this model was 

based on classification RF, as opposed to the hybrid GBRT of the previous model. As 

previously mentioned, the classification model is tailored to distinguish between beams 

that have resulted in flexural crack formation, flexural-shear crack formation, bending 

failure, or crushing failure. This model also accounts for the maximum displacement of the 

beam as an input feature and may be considered an extension of the displacement 

prediction model. Similar to the displacement prediction model, the classification model 

was evaluated through several performance measures to assess both its strengths and 

weaknesses. A feature importance analysis was conducted to identify the most and least 

influential factors affecting the output. Limited experimental findings were further used to 

support and validate the model’s evaluation of each input feature’s significance. 

5.5.1 Model validation through performance criteria  

To conduct an in-depth evaluation of the classification model, a multi-class classification 

confusion matrix was developed through which measures of accuracy, precision, and recall 

were extracted, as shown in Fig. 5-7. A confusion matrix is a visual representation for the 

number of correctly predicted classes given by the matrix diagonal, and the class allocation 

of misclassified predictions [15]. The matrix was first assessed as a binary classifier in 

which the two classes for crack formation and two classes for failure modes were viewed 

as two distinct groups. The extracted accuracy for the binary classification should display 

the model’s ability to classify whether a blast-loaded RC beam was within a state of 

cracking or has reached failure. The binary accuracy was computed as the sum of correctly 

classified outputs and incorrectly classified outputs, which were still within the same group 

(such as flexural cracks incorrectly classified as flexural shear cracks or bending failure 

incorrectly classified as crushing failure, and vice versa) over the total number of 

predictions. Afterwards, the multi-class classification accuracy was computed as the sum 

of correctly classified predictions, being the diagonal of the confusion matrix over the total 

number of predictions and expresses the model’s ability to correctly classify the output as 
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one of the four classes. The resulting binary and multi-class classification accuracies were 

found to be 93.1% ± 0.6% and 83.74% ± 0.9%, respectively.  

 

Figure 5-7. Multi-class confusion matrix for classification model. 

In order to evaluate the classification capability for each class, the precision and recall for 

the four classes were computed using Equations (4) and (5), along with Fig. 5-1 as a guide 

for each class. The precision for a class expresses the percentage of predictions for a given 

class belonging to its true class. For instance, the average total number of predictions for 

the class of flexural cracking was 38.32 (34.14+1.01+2.17+1) where 34.14 predictions 

belonged to its true class producing a precision of 89.1% for the class. Similarly, a class 

recall reports the percentage of correct class predictions with respect to the total items 

within the class. For example, an average of 34.14 correct predictions were made for the 

class of flexural cracking with respect to 40 true class items from the dataset, resulting in 

a recall of 85.35%. The precision and recall for each class, as well as for the overall model, 

are given in Table 5-13. It can be observed that the precision of the two crack formation 
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classes was higher than that of the two failure mode classes, with the class of flexural 

cracking exhibiting the highest precision. Similarly, the recall of the two crack formation 

classes was higher than the two failure mode classes, yet with the highest recall exhibited 

by the class of flexural-shear cracking. These comparisons indicate that the model was 

proficient in yielding correct predictions for the classes of crack formation, while having 

moderate capability in failure mode class predictions. Furthermore, Fig. 5-7 shows that for 

all four classes, the majority of predictions that were not assigned to its true class were 

instead assigned to the alternative class of the same group, such that crack formation 

predictions remained in true crack formation classes and failure mode predictions remained 

in true failure mode classes. This observation supports the notion that the model exhibited 

an effective understanding of the application. 

Table 5-13. Precision and recall for each class and overall model. 

Class Precision Recall 

Flexural Cracking 89.1% ± 1.82% 85.35% ± 1.75% 

Bending Failure 78.5% ± 2.78% 78.1% ± 2.76% 

Flexural-Shear Cracking 83.7% ± 1.23% 89.1 ± 1.31% 

Crushing Failure 78.5% ± 1.78% 78.14% ± 1.77% 

Overall Model 82.45% ± 1.9% 82.65% ± 1.9% 

 

Similar to the displacement prediction model, a source of classification error resulted from 

RC beams that had undergone repeated loading. Such RC beams resulted in failure modes 

or crack patterns that were influenced by the plastic deformations incurred in previous 

simulated blasts. This form of discrepancy resulted in misclassification between the classes 

of flexural cracking and flexural-shear cracking. Additionally, a second source of 

prediction error was observed by a few RC beams that were subjected to near-field blasts 

of very low scaled distances, which caused misclassifications between the classes of 

flexural cracking and bending failure. Based on these two primary forms of classification 

discrepancies, an average of 17.56 incorrect predictions were observed from a total of 108 
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predictions. Overall, the classification model achieved good performance for predicting 

different crack and failure scenarios, while displaying limited misclassifications but within 

a shared response group. 

  Model validation through feature importance  

A similar feature importance analysis was conducted on the classification model, which 

implemented the interaction-curvature test to obtain feature importance estimates. Unlike 

the continuous output of maximum displacement whose variations can be quantitatively 

discerned based on variations of input features, the effect of input features on the discrete 

outputs of crack formations and failure modes were only supported through qualitative 

experimental observations. The features considered for the importance analysis of the 

classification model were the same as those in the previous importance analysis and their 

estimates are provided in Fig. 5-8. It can be observed that the features of reflected pressure 

and reflected impulse had the highest influence on the discrete output. A similar 

observation was made in Fig. 5-6, which also deemed the features of blast parameters to 

have the highest effect on the maximum displacement model output. Furthermore, several 

experimental studies using far-field simulated blasts demonstrated clear variations in crack 

patterns and failure modes for varying blast parameters. Such variations were based on a 

variety of RC beams having NSC, HSC, NSR, and HSR [1-3,18]. Similar findings were 

obtained from near-field blasts of NSC beams in which failure modes were majorly 

affected by variations in the scaled distance, which correlates directly to reflected pressure 

and impulse [4]. Thus, the high feature importance estimate of the two blast parameters 

was strongly supported by a wide range of corresponding experimental outcomes. 

Moreover, the feature of tension reinforcement ratio was observed to greatly influence the 

resulting crack formation or failure mode of RC beams, as shown in Fig. 5-8. This was 

strongly corroborated by experimental studies in which varying the tension reinforcement 

ratio produced different RC beam responses under a range of far-field simulated blasts [1, 

2, 18]. It was also reported that the effect of tension reinforcement was a primary factor for 

changes in the failure mode of NSC and HSC subjected to explosive materials [5].  
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Figure 5-8. Feature importance estimates for selected features of the classification 

model. 

Figure 5-8 further depicts that the features of steel yield strength and compression 

reinforcement ratio had limited influence on the output. The reduced effect of both features 

was apparent in corresponding experimental observations [3,18]. Under far-field simulated 

blasts, the effect of changing the steel yield strength produced changes in the output for 

larger tension reinforcement ratios and higher magnitudes of blast loading. However, at 

lower ratios of reinforcement and magnitudes of loading, the effect of steel yield strength 

attained insignificant changes in the output [18]. A similar trend was observed for the effect 

of compressive steel ratio, in which output variations were only reported at larger blast 

magnitudes, whereas no changes were recorded at lower magnitudes [3]. The limitations 

to the effect of both features reported from experiments correlate to their relatively low 

importance estimate. 
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The least influential features in Fig. 5-8 are the concrete compressive strength and stirrup 

spacing. According to studies of both simulated and actual far-field blast loading, the effect 

of varying the concrete compressive strength achieved almost no change in the crack 

formation or failure mode of RC beams [2, 5, 18]. Moreover, the insignificant effect of 

stirrup spacing on the discrete outputs was demonstrated in studies of both far-field and 

near-field blasts [3,4]. Therefore, it can be concluded that the trivial estimates provided by 

the analysis correctly coincide with corresponding experimental results. For the seven 

features evaluated in Fig. 5-8, accurate correlations were investigated from existing 

studies, which evidently support the feature importance analysis conducted for the 

classification model. Overall, the thorough validation of the model both via performance 

measures and feature importance adequately delineate its predictive capability as well as 

its understanding of the application.  

 

5.6 Implicit feature learning and elimination of modeling 
complexities 

The two proposed models of displacement prediction and crack and failure classification 

demonstrated highly acceptable predictive capability for such a complex application of 

blast-loaded RC beams. In addition to measuring performances and identifying pertinent 

relationships, the extent to which the models implicitly learn features of the application 

was further investigated. The simplicity of the proposed models was reflected through the 

effect of the implicitly learned variations within the application. The models’ implicit 

learning was expressed through material dynamic increase factors and constitutive material 

models as discussed in the subsequent sections. 

5.6.1  Dynamic increase factors  

The dynamic material properties of structural elements are greater than their static values 

when subjected to high strain rate, such as explosive or impact loading [1]. Thus, DIFs are 

applied to account for material strength improvements and are obtained through empirical 

methods. Guidelines such as the UFC-3-340-02 [17], CEB-FIP Code Model [30], and 

Saatcioglu et al. [31] provide DIF relationships for both concrete compressive strength and 
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steel yield strength (i.e. NSC and NSR). Additionally, a recent study was conducted to 

obtain DIF values for HSC [32]. To evaluate the discrepancy among the available DIF 

models for both concrete compressive strength and steel yield strength, several sensitivity 

analyses were conducted through analytical SDOF computations for RC beams [1,3,18]. 

The resulting variations for different combinations of material DIF models were assessed 

through the average ratio of predicted to actual displacements. When considering three 

separate combinations of DIFs varying in both steel and concrete, displacement ratios of 

0.82, 0.86, and 0.99 were produced [1]. Furthermore, displacement ratios of 0.988, 1.007, 

and 1.01 were obtained from three different DIFs for concrete compressive strength, 

whereas displacement ratios of 0.988, 1.039, and 1.063 resulted when considering three 

DIFs for steel yield strength [18]. The presented variations in prediction accuracy for 

different DIF models of the same material demonstrate the influence of the feature for this 

application. 

In the proposed ML displacement prediction model, the concrete compressive strength and 

steel yield strength were taken as their static values and presented in Table 5-1. However, 

when an attempt was made to develop the model using dynamic values, which accounted 

for material DIFs, the resulting performance metrics of MAE, VEcv, and R2 remained 

practically unchanged. This led to the conclusion that the model implicitly accounted for 

variations within the features of concrete compressive strength and steel yield strength. 

More specifically, the model identified differences among the effects of individual values 

through which the variations within the feature were implicitly learned. Moreover, this 

observation encourages simplicity of modeling in two ways. First, assessing multiple DIF 

models for different materials becomes irrelevant to the modeling process, and second, 

estimating material strain-rate values used in empirical formulations for DIFs would no 

longer be required. As a result, the ML model demonstrates ease of modeling without 

compromising accuracy and predictive capability. 

5.6.2  Constitutive material models 

Another aspect that is integrated into both analytical and numerical modeling methods is 

the use of constitutive material models. Minor variabilities in the structural response of 

numerical models due to different material models of blast-loaded RC elements have been 
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reported in the literature. Using LS-DYNA, Thiagarajan et al. [33] evaluated two different 

concrete models, the Winfrith Concrete Model (WCM) and the Concrete Damage Model 

Release 3 (CDMR3), on reinforced HSC and NSC slabs subjected to near-field blast 

loading. When compared to four experimental values of maximum displacement, the 

numerical model produced average errors of 12.8% using WCM and 37% using CDMR3, 

considering a 12.5 mm mesh size. Additional concrete material models that have been 

considered in modeling blast-loaded RC elements include the Continuous Surface Cap 

Model [24], the Brittle Damage Model [34], and the RHT Concrete Model [25, 27]. 

Similarly, the development of analytical SDOF models also require the definition of 

material models based on previously developed stress-strain models. The different concrete 

models used in previous studies [1-3, 18] include the Hognestad Model [35] for NSC, and 

the Popovics [36], Cusson and Paultre [37], and Mander et al. [38] models for HSC. As 

opposed to previous methods, the current ML models extract the relationships between the 

values of material properties without explicitly pre-defining the material’s behavior. 

Although the use of different material models produced minimal discrepancy in both 

numerical and analytical methods, the elimination of this modeling component further 

supports the proposed approach in mitigating complexity for this application.  

5.6.3  Practical implementation 

The proposed ML models not only reduce the intricacies of modeling the application, but 

also present an ease of usage during execution. By inputting the desired element parameters 

and blast loading magnitudes, results of maximum displacement and crack patterns or 

failure modes are produced immediately. Previous sections have elaborated on the high 

accuracy of such instant results, which make the proposed models reliable for preliminary 

assessment. Furthermore, the datasets used to develop the present models are expansive in 

considerations, which account for both NSC and HSC beams reinforced with NSR or HSR. 

By implementing the proposed models in the preliminary iterative design process, results 

that satisfy blast design guidelines provided by ASCE 59‐11 [39] and CSA S850-12 [40] 

may be obtained. These guidelines relate allowable rotation limits to the state of element 

damage in which a flexural element with a maximum support rotation of 2o remains in a 

repairable state, whereas a rotation limit of 6o would prevent element failure. 
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5.7 Conclusions 

In order to develop a simplified model for the structural response of RC beams under blast 

loading, a hybrid machine learning model was developed to predict peak displacements. 

This model was developed using 150 data points from pertinent studies in the literature. It 

was evaluated using various performance measures, competitiveness with respect to 

existing numerical and analytical methods, and ability to capture relationships between 

input features and the output. Both NSC and HSC beams reinforced with NSR or HSR 

were considered in the model development. Furthermore, a classification model was 

developed to predict the post-blast crack pattern or failure mode of RC beams. The 

classification model was validated through a multi-class confusion matrix from which 

measures of accuracy, recall, and precision were extracted. It was also assessed via feature 

importance analysis, which correlated to qualitative experimental findings. The proposed 

models displayed favorable predictive capabilities and a constructive understanding of the 

application. The findings of this chapter further support the value of ML in advanced civil 

engineering applications to assist in paving the path for future innovation and automation. 

Based on this work, the following conclusions can be drawn: 

 

• The use of the hybrid GBRT and classification RF models proved to be highly 

effective in modeling moderate sized datasets of a complex application. 

• The displacement prediction model displayed a strong aptitude for peak 

displacement predictions with performance measures of MAE = 4.56, an R2 = 

94.36%, and VEcv = 90.65% using 10-fold CV, and MAE = 4.24 and R2 = 95.15% 

using LOO CV. 

• When compared to widely used analytical and numerical models, the displacement 

prediction model proved to be highly competitive, with minor discrepancies 

identified for future improvements. 

• The feature importance analysis deemed the features of reflected impulse, reflected 

pressure, steel yield strength, and tension reinforcement ratio to have the highest 
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influence on peak displacement, which was corroborated by existing experimental 

studies. 

• The classification model was proficient in classifying whether post-blast RC beams 

were in a state of cracking or failure, with a binary classification accuracy of 93.1%. 

• The multi-class classification for identifying more detailed crack patterns and 

failure modes produced an acceptable accuracy of 83.74%, while yielding similar 

average model precision and recall values of 82.45% and 82.65%, respectively. 

• For the classification model, the feature importance analysis was strongly 

supported by experimental findings. It was found that the features of reflected 

impulse, reflected pressure, and tension reinforcement ratio have the greatest effect 

on the discrete outputs, whereas the features of stirrup spacing and concrete 

compressive strength resulted in the least effect. 

• Both models were found to implicitly account for material DIF, which highlights 

simultaneous sophistication and simplicity of the proposed models. 

• Similarly, both models permitted the mitigation of modeling complexity by 

eliminating the explicit consideration of both material DIF and constitutive material 

models. 
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Chapter 6  

 

6 Machine learning prediction for structural response 
of FRP retrofitted RC slabs subjected to blast 
loading  

 

6.1 Introduction and background 

Devastating events such as the August 4, 2020 explosion in Beirut, which killed more than 

200 people, injured over 6500, and made another 300,000 homeless is a dreadful warning 

that civil infrastructure assets are vulnerable to accidental and deliberate blast loadings and 

explosion scenarios by stored chemicals, gas leaks, fuel tanks, and other material 

detonations. Thus, the requirement for protecting vulnerable structures carries paramount 

importance. Among the limited techniques of improving the resistance of reinforced 

concrete (RC) structures against blast loading, the use of fiber reinforced polymer (FRP) 

retrofits produces favorable results. Several experimental studies have demonstrated that 

FRP retrofits improved flexural capacity, increased strength and stiffness, reduced 

maximum displacements, and reduced steel reinforcement strains [1-4]. Furthermore, the 

presence of FRP retrofits acted to confine harmful fragments and debris resulting from 

blast loaded elements [4]. 

In order to model FRP retrofitted RC structures subjected to blast loading, both analytical 

and numerical models have previously been deployed. Jacques [1] conducted an extensive 

experimental study on RC slabs retrofitted with carbon fiber-reinforced polymer (CFRP) 

using a Shock Tube Testing Facility. A total of 13 different specimens exposed to sixty 

simulated explosions were investigated considering one-way and two-way elements, 

simple and fixed boundary conditions, and different fiber layout schemes. Additionally, 

the experimental data was used to validate an analytical single-degree-of-freedom (SDOF) 

method to predict the maximum displacement which resulted in a mean absolute error 

(MAE) of 9.93 and R2 value of 86.5% based on 57 data points.  
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Likewise, Tolba [2] subjected eighteen two-way RC slabs, five being un-retrofitted control 

slabs and thirteen being retrofitted with either glass fiber-reinforced polymer (GFRP) or 

CFRP to 33.4 kg and 22.4 kg charges of ANFO (Ammonium Nitrate Fuel Oil). An 

analytical SDOF model was used to simulate the experimental program and the results of 

the maximum displacement for four slabs were compared with analytical results producing 

errors of 11.9%-40%. Similarly, Maazoun et al [3] investigated the blast response of one-

way RC slabs retrofitted with varying numbers of CFRP strips. A total of five slabs were 

loaded via an explosive driven shock tube (EDST) with a detonation resulting from 40 g 

of C4. Analysis based on the SDOF method was done to predict the maximum 

displacement of each specimen and comparisons were made to the experimental results 

with errors ranging from 5% to 14% for retrofitted slabs. 

In addition to using analytical approaches for predicting maximum displacements of FRP 

retrofitted RC slabs, some numerical approaches have also been implemented. For 

instance, Lin and Zhang [5] used the finite element modeling (FEM) software LS-DYNA 

to investigate the efficiency of retrofitting RC slabs with GFRP against blast loading. The 

numerical model was validated on two experimental data points which used GFRP retrofits, 

resulting in maximum displacement errors of 0.8% and 14.8%. The numerical model was 

further used to conduct a parametric study on GFRP retrofitted slabs considering factors 

such as top and bottom FRP layer thickness, standoff distance, and charge weight.  

In another numerical study of FRP retrofits of RC slabs exposed to blast loading, 

Tanapornraweekit et al. [6] considered the effects of two different concrete material 

models, MAT 72R3 and MAT84, while exploring numerical models with and without 

strain rate effects using LS-DYNA. The developed model was used to study the behavior 

of GFRP and CFRP reinforced slabs subjected to two independent and consecutive blast 

loads. Numerical model predictions were compared to experimental data and the resulting 

differences in maximum displacement ranged from 2.6% to 44.5% considering six 

comparisons of slabs subjected to single blast before being loaded a second time. In a study 

by Nam et al. [7], a numerical model was developed using LS-DYNA for GFRP retrofitted 

RC slabs exposed to blast loading considering high strain-rate dependency as well as 

debonding failure. An existing experimental data point was used to validate the model 
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through maximum displacements as well as material strains for a GFRP retrofitted slab. 

The resulting difference in maximum displacement between numerical model and 

experimental data was 7.2%. 

Using robust analyses for modelling the response of FRP retrofitted RC elements subjected 

to blast loading provides a unique opportunity to replace costly and hazardous structural 

blast experiments [7]. Currently, both analytical and numerical approaches have been used 

to model structures under blast loading. Although these approaches mitigate the associated 

cost and safety aspects of experimental blast loading, they require considerable theoretical 

competence, modelling effort, computational time, and continuous validation. Recently, a 

new approach introduced by Almustafa and Nehdi [8] implemented a machine learning 

model to predict the maximum displacement of RC slabs subjected to blast loading. The 

proposed model resulted in MAE of 4.38, an R2 of 96.2%, and variance explained by cross-

validation (VEcv) of  94.4%. Additionally, the model was compared to existing analytical 

and numerical results and found to be a strong contender. The use of such a model reduced 

the complexity of the application and eliminated the need for computationally costly 

modelling.  

The current chapter develops a machine learning (ML) model to predict the maximum 

displacement of FRP retrofitted RC slabs subjected to blast loading. A detailed description 

of the dataset, selected features to model the application, and learning algorithm are 

provided. The use of synthetic data was investigated to improve model performance. 

Furthermore, a feature importance analysis using interaction-curvature tests was 

conducted, along with a comprehensive investigation of the importance of each feature. 

The model was also validated through error metrics including MAE, MAPE, and R2 as well 

as through comparisons to existing analytical and numerical methods. Additionally, 

practical application with respect to design codes such as ASCE 59-11 [9] and CSA S850-

12 [10] are described along with a discussion on model discrepancies. 
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6.2 Data collection and description 

6.2.1 Feature description 

The influential features used to model FRP retrofitted RC slabs under blast loading are 

categorized into three groups having a total of thirteen features. The first includes the 

features related to the slab specimen, namely the slab’s length, width and thickness, 

concrete compressive strength, steel yield strength, steel reinforcement ratio, and a 

categorical feature distinguishing one-way and two-way slabs. The second considers the 

features associated with the FRP retrofit, including the fiber tensile strength, the bond 

strength between the retrofit and the concrete, the cross-sectional area of the retrofitted 

layer, and a categorical feature representing the arrangement of the FRP layer with respect 

to the slab. 

 

Figure 6-1. Configurations of FRP retrofit layers considered in the dataset. 

The different configurations of FRP include retrofitting in one direction on the tensile side, 

retrofitting in two directions on the tensile side, retrofitting in one direction in both the 
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tensile side and blast side, and retrofitting in both directions on both sides, denoted by 

configurations 1, 2, 3 and 4, respectively. Figure 6-1 illustrates the four configurations in 

which the black strips are placed on the tensile side, whereas the grey strips are placed on 

the blast side. The third group includes the features characterizing the blast load, which are 

given by the reflected pressure and reflected impulse. It should be noted that each data 

point used in this chapter contained all mentioned features without any missing values. The 

subsequent text describes the sources of data collection used to develop the dataset. 

6.2.2 Experimental and numerical data 

The dataset used in this chapter comprises data retrieved from several theses and articles 

available in the open literature. A total of 70 data points of various FRP retrofitted RC slabs 

exposed to blast loading were collected. The sources of data were based on experimental 

studies involving detonated charges [2,3,11-13], experimental programs using blast 

simulation facilities [1], and numerical models validated by experiments [7,14-16], 

yielding 18, 25, and 27 data points, respectively. The dataset covers both one-way and two-

way slabs that were primarily simply supported with different types of FRP including 

CFRP, GFRP, and aramid fiber-reinforced polymer (AFRP). Furthermore, both near-field 

and far field blasts were considered in the dataset. The mean and standard deviation of each 

of the thirteen features along with the displacement output for non-synthetic data are given 

in Table 6-1, while their frequencies and distributions are shown in Figure 6-2.  

Generally, experimental programs included preparing RC specimens through formwork, 

rebar placement along with strain gage installation, and concrete pouring and curing. 

Afterwards, the RC specimens were retrofitted with FRP laminates. A layer of primer 

coating was first applied to the cured concrete surface after being cleaned and lightly 

scratched and left to cure for thirty minutes. Subsequently, a layer of epoxy was applied to 

the surface via a roller, followed by full impregnation of the FRP sheets into the epoxy 

layer within the workable time of the epoxy (usually fifteen minutes). Lastly, after the 

epoxy and FRP sheet had cured, the surface was coated by a second layer of epoxy and left 

to cure. After specimens had been fully prepared, the appropriate instrumentation to 

capture the blast and response of the specimen was installed. The instrumented specimen 
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was then mounted on a durable support frame that simulates the required boundary 

conditions and was often constructed of steel.  

Table 6-1. Mean, count, standard deviation, and range of features for real data. 

Feature/Output Mean/Count Standard 

Deviation 

Range/Categories 

Slab Length (mm) 1822.9 489.05 1000-2640 

Slab Width (mm) 1006.3 561.19 300-2640 

Slab Depth (mm) 100.8 30.2 60-152 

Concrete compressive strength 

(MPa) 

46.08 11.48 24-60 

Steel yield strength (MPa) 512.3 81.6 356-580 

Steel reinforcement ratio 0.008 0.0065 0.002-0.0317 

Fiber tensile strength (MPa) 1540.8 910.3 560-3790 

Bond strength (MPa) 46.69 18.6 5-72.4 

Fiber cross section (mm2) 538.4 447.38 15.4-1785.6 

Reflected Pressure (MPa) 16.19 25.14 0.011-122.4 

Reflected Impulse (MPa-msec) 1.46 1.29 0.0836-5.747 

One-way / Two-way  49 / 21 - 2 

FRP configuration (1, 2, 3, 4) 33 / 12 / 12 / 

13 

- 4 

Maximum displacement (mm) 28.44 19.18 6-85.5 

 

Figure 6-2. Distribution of features for real data. 
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6.2.3 Synthetic data 

The acquisition of large experimental blast loading data is difficult due to the significant 

costs, stringent regulations, safety considerations, and extensive labor involved. Also, 

using numerical methods to generate numerous additional datapoints requires substantial 

computational time, modelling efforts, and continuous validation. Therefore, a novel 

method to generate synthetic data known as generative adversarial network (GAN) was 

adopted to create a larger and more robust dataset [17]. GAN operates by learning the 

probability distribution of inputs and outputs in a dataset and generating new samples of 

synthetic data, which are of similar quality to the real data. This is achieved through two 

opposing neural networks labeled as the generator and the discriminator. A brief workflow 

of a typical GAN is provided in Figure 6-3. The generator is tasked with implicitly 

identifying the original data’s probability distribution and generating a new set of data, 

while the discriminator attempts to separate between the synthetic data and the real data. 

Additionally, the generator acts to minimize the variation between synthetic and real data, 

whereas the discriminator acts to maximize the probability of the generated data being real. 

Both networks compete back and forth until the discriminator is no longer able to 

distinguish between the generated data and the real data, implying that the generator has 

successfully matched the quality of the real dataset [17,18,19].  

 

Figure 6-3. General workflow of a generative adversarial network. 
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A recently developed GAN, known as tabular GAN or TGAN, has been shown to 

successfully generate data based on continuous or discrete variables [19]. TGAN 

implements a long short-term memory (LSTM) network and multilayer perceptron (MLP) 

for the generator and discriminator, respectively. Additional details pertaining to each 

network’s development, such as data transformation approaches and network loss 

functions can be found in [19]. The performance of TGAN has been thoroughly evaluated 

by existing tabular datasets available in the literature, which contained both discrete and 

continuous variables [19]. A recent implementation of TGAN was presented by Marani et 

al. [20] in which data for ultra-high-performance concrete mixture parameters was 

generated and used for the development of ML models. The study showed that the use of 

synthetic data to train ML models yielded performance that outperformed similar models 

that were only based on limited real data. Therefore, the current model development 

implemented TGAN through the TGAN library in python developed by Xu and 

Veeramachaneni [19]. 

A total of 200 synthetic data points was generated using the 70 data points accumulated 

from existing studies. Table 6-2 presents the statistical description of the synthetic data, 

while each variable’s frequency distribution is given in Fig. 6-4. From the fourteen 

variables of the dataset, two were discrete variables, with the remaining being continuous 

variables. However, during the data synthesis process, the continuous variables of concrete 

compressive strength, steel yield strength, fiber tensile strength, and bond strength were 

considered discrete to account for practical and commercially available values of each 

material. Additional considerations were made to the generated continuous variables such 

that they remained true to the application and within acceptable ranges. These 

considerations include keeping the L/W ratio of the slab greater or equal to one, keeping 

the reinforcement ratio greater than the minimum allowable ratio given by CSA A23.3-14 

[21], and avoiding unreasonably small or large values of reflected pressure and impulse.  
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Table 6-2. Mean, count, standard deviation, and range of features for synthetic data. 

Feature/Output Mean/Count Standard 

Deviation 

Range/Categories 

Slab Length (mm) 1845.79 447.21 670 – 2580 

Slab Width (mm) 720.12 235.18 14 – 1230 

Slab Depth (mm) 127 34.83 66.61 – 205.4 

Concrete compressive strength 

(MPa) 
46.35 11.55 24.36 – 75.71 

Steel yield strength (MPa) 573.85 61.48 430.93 – 766 

Steel reinforcement ratio 0.0117 0.0077 0.0033 – 0.0329 

Fiber tensile strength (MPa) 1684.91 760.17 529.67 – 5308 

Bond strength (MPa) 55.02 10.37 4.92 – 90.82 

Fiber cross section (mm2) 732.74 387.99 7.82 – 3400 

Reflected Pressure (MPa) 22.87 24.09 0.52 – 185.15 

Reflected Impulse (MPa-msec) 1.26 0.88 0.01 – 5.74 

One-way / Two-way 122 / 78 - 2 

FRP configuration (1, 2, 3, 4) 79 / 40 / 34 / 47 - 4 

Maximum displacement (mm) 22.62 8.5 4.57 – 53.12 

 

 

Figure 6-4. Distribution of features for synthetic data. 
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6.3 Model development and assessment 

6.3.1 Gaussian process regression 

Gaussian process regression is a probabilistic ML model developed based on a joint 

distribution of a Gaussian process (prior) and an application dataset. By definition, a 

Gaussian process (GP) is a set of random variables such that any finite collection of which 

can be expressed as a Gaussian distribution [22]. A GP is defined by its mean function m(x) 

and a covariance function k(x,x′) and may be expressed as per Eq. (1). When considered 

independently, a GP (prior) may be used to draw output samples for a given subset. 

However, with a broadly defined mean value and covariance, such samples would simply 

be random [23].  

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))      (1) 

To incorporate “domain knowledge” of a given application such that meaningful sampling 

may be achieved, a joint distribution between known inputs, X, and outputs, y, is formed 

considering the prior. The resulting joint multivariate Gaussian distribution is presented in 

Eq. (1), where K(X,X), K(X, X*), K(X*, X), and K(X*, X*) are the covariance matrices 

between all training and testing input pairs, and f is the desired sampling output variable 

[22,23]. The inherent noise present within the known dataset may be modeled as a Gaussian 

distribution having a mean of zero and a variance of σn
2 and is also assumed to be additive 

independent.  

[
𝑦
𝑓] ~ 𝒩 ([

𝑚(𝑋)
𝑚(𝑋∗)

] , [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])  (2) 

By conditioning the joint multivariate distribution on the inputs and outputs of a given 

dataset X, y, as well as the desired inputs, X*, a predictive multivariate Gaussian distribution 

may be developed. The resulting distribution is given by Eq. (3) and is characterized by a 

predictive mean, f̅, and covariance [22].  

𝑓|𝑋, 𝑦, 𝑋∗ ~ 𝒩(𝑓̅ , 𝑐𝑜𝑣(𝑓))     (3) 
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The expressions for the predictive mean and variance are obtained based on fundamentals 

of multivariate conditioning properties and are expressed in Eqs. (4) and (5). These outputs 

make up the resulting GP regression model considering an application-specific dataset 

[22]. 

𝑓̅ = 𝑚(𝑋∗) + 𝐾(𝑋∗, 𝑋)[𝐾(𝑋,𝑋) + 𝜎𝑛
2𝐼]−1(𝑦 − 𝑚(𝑋))   (4) 

𝑐𝑜𝑣(𝑓) = 𝐾(𝑋∗, 𝑋∗)−𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗)   (5) 

The variations of a GP regression model are brought forth based on the initially selected 

mean function and covariance function. In some cases, a mean function may be taken as 

zero or kept as a constant value. However, a fixed valued mean may not always correctly 

represent the application’s predictive distribution and it may appear more convenient to 

allow multiple mean values. Such an implementation may be achieved using a fixed basis 

function H(X)β and H(X*)β for both known input data and testing input data, where β is a 

set of tuning parameters that is estimated based on the given dataset [22,23]. Moreover, 

there exists a wide range of covariance functions to develop the GP model, such as Squared 

Exponential and Rational Quadratic [24,25]. The covariance acts to quantify the extent of 

similarity between the input value data based on the selected covariance functions. For n 

number of test inputs, each covariance matrix term in Eq. (2) is an n-by-n matrix whose 

evaluation may be represented by Eq. (6). Subsequently, each term in the covariance matrix 

is given by the covariance of any two inputs such that the matrix diagonal is always 1 [22]. 

𝐾(𝑋∗, 𝑋∗) = [

𝑘(𝑥1
∗, 𝑥1

∗) 𝑘(𝑥1
∗, 𝑥2

∗)
𝑘(𝑥2

∗, 𝑥1
∗) 𝑘(𝑥2

∗, 𝑥2
∗)

    ⋮        ⋮   
𝑘(𝑥𝑛

∗ , 𝑥1
∗) 𝑘(𝑥𝑛

∗ , 𝑥2
∗)

     ⋯ 𝑘(𝑥1
∗, 𝑥𝑛

∗ )

     ⋯ 𝑘(𝑥2
∗, 𝑥𝑛

∗ )

    
⋱
⋯   

   ⋮
  𝑘(𝑥𝑛

∗ , 𝑥𝑛
∗ )

]    (6) 

For the current model, a non-isotropic exponential covariance function was implemented 

based on an exploration of multiple selections. The non-isotropic nature of the function 

designates a characteristic length scale, σm, for each feature m up to d features of the input 

data. Conversely, an isotropic function would define only a single length scale for the entire 

input data. The non-isotropic exponential covariance function is provided in Eq. (7), where 



 

 

161 

θ is a d+1 hyperparameter vector comprised of the d length scales and the signal standard 

deviation, σf [22]. 

𝑘(𝑥, 𝑥′|𝜃) =  𝜎𝑓
2𝑒−𝑟  ;  𝑟 = √∑

(𝑥𝑚−𝑥𝑚
′ )2

𝜎𝑚
2

𝑑
𝑚=1    (7) 

Upon appropriate selection of a mean and covariance functions, the GP regression model 

acts to optimize the model hyperparameters being the noise variance, σn, the coefficients 

of the basis functions, β, and the covariance function hyperparameters θ. This is achieved 

through maximizing the log marginal likelihood of the model, as shown in Eq. (8), where 

K symbolizes K(X,X) [22,24,25]. 

log 𝑃(𝑦|𝑋, 𝜎𝑛, 𝛽, 𝜃) =  −
1

2
(𝑦 − 𝐻𝛽)𝑇[𝐾 + 𝜎𝑛

2𝐼]−1(𝑦 − 𝐻𝛽) −
1

2
log|K + 𝜎𝑛

2𝐼| −
𝑛

2
log 2𝜋   

(8) 

It can be observed that the optimization of the model hyperparameters only depends on the 

training input data. A quasi-Newton optimization is used to obtain the hyperparameter 

values based on Eq. (8) [26]. Upon the completion of model development, output 

predictions may be sampled based on new input data considering Eqs. (4) and (5).  

6.3.2 Performance criteria and cross-validation 

An effective ML model should be able to produce accurate results for new inputs not used 

in the learning dataset, and thus unfamiliar to the model. Therefore, data should be 

partitioned such that a portion is used to train the model, while the remaining data is used 

to test and validate the learning model. Using k-fold cross-validation (CV), the data is 

partitioned into k equally sized subsets and the learning model is trained on k–1 subsets 

and tested on the remaining subset. The training and testing processes conclude when each 

subset is used for testing once with the model’s performance taken as the average of k 

evaluations [27,28]. The current model adopts a k value equal to the number of points in 

the dataset, n, also known as the Leave-One-Out (LOO) CV. The final performance 

measures are computed by taking the average value produced from n evaluated models. 

Furthermore, an alternative training and testing method is adopted, which acts to train on 
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synthetically produced data and test on real data. Both approaches are compatible with the 

evaluation of a ML model considering a small dataset [20].  

The statistical performance metrics used to assess the developed model are the mean 

absolute error (MAE), mean absolute percent error (MAPE), and the coefficient of 

determination R2. The use of MAE is a common error metric for evaluating the predictive 

accuracy of models, but is known to be unit dependent, so comparisons can be made only 

for similar applications [29]. Unlike MAE, the metric of MAPE provides a scale-

independent performance measure that is easily interpreted between 0 and 100%. Also, R2 

is a commonly used measure to assess the correlation between predicted and actual values 

considering the entire dataset. The formulation for each measure is given as follows: 

    𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1      (9) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ∗ 100% 𝑛

1     (10) 

𝑅2 = (1 − 
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̅)2
𝑛
1

) ∗ 100%    (11) 

where  𝑦̂ is the predicted output, y is the actual output for every ith entry in the dataset, 𝑦̅ 

is the mean of the actual values, and n is the number of points in the dataset. The value of 

R2 is always positive and ranges between 0 and 1. 

6.3.3 Feature importance using Interaction Test 

In addition to evaluating a model’s performance through error metrics, it is also important 

to assess the effect which each feature has on the model’s output. With the understanding 

of each feature’s importance, it would be possible to know the extent to which a model will 

change with alterations to different features. Furthermore, this assessment would be able 

to identify unimportant features that may be discarded without affecting the model’s 

performance. A common feature importance measure is Permutation Feature Importance 

(PFI), which operates by randomly permuting a single feature and obtaining the model’s 

new error metrics. The difference in the model’s performance before and after permutation 

would be the measure of importance for the permuted feature. The feature importance 
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measure would be obtained for every feature in the model, with greater values implying a 

larger effect on the model [30]. 

Another approach to measure feature importance is through an Interaction Test, which 

implements hypothesis testing as a node splitting criterion as part of the Random Forests 

Algorithm and is used as an unbiased feature importance measure. Briefly explained, for a 

given node in a decision tree, the residuals of each prediction with respect to the weighted 

average of all predictions in that node are computed. The values of a continuous feature in 

the node are partitioned into four quartiles, where the corresponding predictions for each 

quartile are counted and the chi-square statistic and its p-value are computed. The smallest 

p-value resulting from the considered features in a node will be selected to split the node. 

This is known as the curvature test. The interaction test follows the same approach, but 

considers a pair of variables, which are divided into four quadrants by splitting the range 

of each variable into two halves at their median [31, 32]. A detailed explanation of each 

test can be found in [31]. The node splitting criterion presented is used to assess the 

importance of each feature by considering the summation of changes in the output due to 

node splits for each feature over the number of branched nodes [32]. This feature 

importance measure is used herein to assess the model features in the current chapter. 

6.4 Displacement behavior prediction model 

The model developed in this chapter acts to predict the maximum displacement of FRP 

retrofitted RC slabs when subjected to blast loading, while considering the continuous and 

categorical features listed in Table 6-1. The proposed model’s performance measures, 

feature importance, and comparisons to existing methods are discussed. Furthermore, a 

comprehensive investigation on the effects of input features on the displacement of normal 

RC slabs versus retrofitted RC slabs was conducted.  

6.4.1 Model validation through performance criteria 

The performance metrics of the behavior prediction model considered two approaches for 

training the GP regression model; the first using only real data (GPR), and the second 

adopting both real and synthetic data for training, while testing on real data (GPR-Syn). 
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Furthermore, for each approach, a moving average filter implementation was considered 

to sequentially smooth the resulting predictive distributions. Table 6-3 shows the MAE, 

MAPE, and R2, for each approach considered. It should be noted that the evaluation of the 

performance metrics considered only real data (70 data points) in the testing sets for all 

cases. 

Table 6-3. Performance metrics for various model considerations. 

Model MAE (mm) MAPE (%) R2 (%) 

GPR 3.63 19.82 92.6 

GPR Smooth 2.28 14.26 97.8 

GPR-Syn 3.5 18.4 94.1 

GPR-Syn Smooth 2.28 13.2 97.7 

 

It can be observed from Table 6-3 that the performance metrics of the model were 

improved when the additional synthetic data generated by TGAN are considered in the 

training process. Moreover, when analyzing the predictive distributions based on Figure 

6-5, the adoption of synthetic data significantly improved the stability of the predictive 

variance presented through the 95% confidence intervals. When considering the effect of 

smoothing the predictive distributions, the observed noise was mitigated, and the resulting 

predictive mean and variance were enhanced. Similarly, the incorporation of synthetic data 

acted to improve the predictive variance but attained minimal contribution towards the 

predictive mean. 
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Figure 6-5. Actual versus prediction response plots for different model 

considerations. 

In addition to the performance metrics, Table 6-4 presents the percentage and number of 

data points that were predicted within several error bounds based on a total of 70 

predictions. The resulting accuracies for each approach were consistent in that the 

implementation of smoothing improved the model’s accuracy, yet the use of synthetic data 

was shown to be less effective. With the smoothed GPR-Syn approach yielding the highest 

overall performance, a visual representation of the predicted versus actual values for the 

model approach is also depicted in Figure 6-6 considering 10% and 20% error bounds. 

Overall, the effect of incorporating synthetic data in the current model’s development 

assisted in developing a more focused confidence interval, while minimally supporting the 

resulting predictive mean. On the other hand, the application of smoothing the predictive 

distribution successfully improves the model’s performance through both the resulting 
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mean and variance. Thus, the performance criteria presented show that the model can 

produce superior predictive results.  

 

Figure 6-6. Actual response versus predicted scatter plot with error bounds. 

 

Table 6-4. Percent and number of data points within each error bound for various 

considerations of training data and cross-validation 

Error bound GPR GPR Smooth GPR-Syn GPR-Syn 

Smooth 

± 5% 25.7% (18) 35.7% (25) 18.6% (13) 34.3% (24) 

± 10% 48.6% (34) 61.4% (43) 42.8% (30) 62.9% (44) 

± 20% 74.3% (52) 84.28% (59) 71.4% (50) 81.4% (57) 

± 30% 87.1% (61) 87.1% (61) 81.4% (57) 87.1% (61) 

6.4.2 Model Validation through comparisons of existing methods 

A common analytical method to assess the behavior of structural members under blast 

loading is the dynamic SDOF approach based on an average acceleration method [33]. The 
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maximum displacement of a member is obtained through taking discrete time increments 

for velocity and acceleration and substituting them into a single-degree-of-freedom 

equation of motion to calculate displacement at each increment until a maximum is 

reached. Furthermore, the approach considers a mass factor, which converts a member with 

distributed mass into an equivalent lumped mass based on the member’s shape function. It 

also implements a load factor, which transforms the total load on the member into an 

equivalent concentrated load by further considering the member’s shape function [33].  

Table 6-5 reports comparisons of predicted displacement values by SDOF versus the 

proposed machine learning model. It also compares predictions of the proposed model to 

that of a more detailed dynamic SDOF analysis used in [2]. Based on these comparisons, 

it can be observed that the model developed in this chapter yielded predictions that are 

more accurate than or similar in accuracy to existing analytical models. Furthermore, the 

reduced accuracy of the results from [1] in Table 6-5 may have been due to the multiple 

loading scheme of specimens, which was not captured by the analytical model. However, 

the results of the ML model showed accurate predictions, despite the multiple load scheme, 

which suggests that implicit patterns were identified by the model beyond the explicit 

feature data provided. Such ML qualities further inspire the use of ML in complex 

engineering applications. 

Based on the predictions shown in Table 6-5, the ML model was proven to outperform the 

analytical model through multiple comparisons (entries 3-6, 8, 9, 13-16, 20, 22-27), while 

producing similar accuracy in few other cases (entries 7, 18). Although direct comparisons 

to numerical methods were not feasible due to limited pertinent literature or missing 

information, indirect comparisons were stated instead. When using numerical methods to 

predict the structural response of FRP retrofitted slabs, the current literature has 

investigated modelling aspects, such as varying concrete material models [6], material 

strain rate dependency [6, 7], retrofit bonding failure [7], and perfect FRP bonding [5]. The 

numerical models developed in these studies were verified with experimental results and 

found differences in maximum displacement of 0.8% and 14.8% in [5], 2.6%, 4.2%, 7.5%, 

11.75%, 23.9%, and 44.5% in [6], and 7.2% in [7]. When compared to the errors of 

numerical models, the developed ML model attained comparable accuracy. 
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Table 6-5. Comparison of displacement prediction model and analytical methods. 

Entry  

# 

Source Alternative 

Model 

Detail 

Experimental 

result (mm) 

Alt. Model 

Prediction 

(mm) 

ML model 

prediction 

(mm) 

Alt. 

Model 

Error 

(%) 

ML 

Model 

Error 

(%) 

1 [1] Dynamic 

SDOF 

11.6 11.2 11.03 3.45 4.91 

2 8.1 9.36 12.4 15.56 53.09 

3 42.5 51.7 41.3 21.65 2.82 

4 40.4 62.8 38.1 55.45 5.69 

5 62.6 75.9 59.45 21.25 5.03 

6 84.6 94.3 80 11.47 5.44 

7 9.4 13 12.8 38.30 36.17 

8 42.3 53.4 38.43 26.24 9.15 

9 68.4 83.2 67.1 21.64 1.9 

10 83.6 82.4 74.4 1.44 11 

11 85.5 88 79.62 2.92 6.88 

12 7 5.7 10.5 18.57 50 

13 31.4 34.2 31.9 8.92 1.59 

14 42.9 38.6 43.9 10.02 2.33 

15 6.1 10 7.5 63.93 22.95 

16 29.1 30.2 28.86 3.78 0.82 

17 38.7 37.9 41.86 2.07 8.17 

18 45.9 44.7 44.11 2.61 3.9 

19 6 7.3 5.87 21.67 2.17 

20 6.6 9.31 7.66 41.06 16.06 

21 10 13.6 13.62 36 36.2 

22 33.4 41 31.84 22.75 4.67 

23 35.1 40.5 33.11 15.38 5.67 

24 35.9 25 35.32 30.36 1.62 

25 25.3 13.8 25.15 45.45 0.59 

26 [2] Dynamic 

SDOF 
11.58 10.85 12.6 6.3 8.81 

27 13.85 10.85 12.3 21.6 11.19 

 

6.4.3 Model validation through feature importance 

After assessing the model’s performance measures and comparing its prediction accuracy 

to existing methods, the evaluation of each model feature importance is discussed. The 

relevance of conducting a feature importance analysis for a machine learning model is that 

it can be compared to existing experimental or numerical parametric analyses to further 

evaluate the model’s overall ability to assess a given application. 
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Figure 6-7. Feature importance estimates for FRP retrofitted slabs and conventional 

slabs. 

In order to provide a benchmark on which discussions are based, the current application’s 

feature importance is compared to the feature importance of normal RC slabs exposed to 

blast loading, which has already been thoroughly validated by experimental results [8]. 

Consequently, this will not only assess the importance of each feature for FRP retrofitted 

slabs exposed to blast loads but will also assess how the addition of FRP retrofits affects 

the relevant features of a normal RC slab for the same application. Lastly, the comparisons 

made will be explained via existing experimental results. The bar chart in Figure 6-7 

depicts the importance of each feature for retrofitted slabs and the importance of slab depth, 

concrete compressive strength, yield strength, and reinforcement ratio for conventional 

slabs exposed to blast loading.  
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 Features of slab properties 

6.4.3.1.1 Slab depth 

As shown in Fig. 6-7, the effect of the slab depth on FRP retrofitted slabs is considerably 

less significant than that on a conventional RC slab. This is supported by the rates of 

changing depths and their corresponding change in displacements for retrofitted and 

conventional slabs in experimental and numerical studies. Pantelides et al [11] investigated 

fiber-reinforced concrete, FRP bars, and fiber laminates as damage mitigation techniques 

for two-way RC slabs, which were subjected to bursts of C4 or ANFO. Among the tested 

slabs, three were retrofitted with GFRP laminates having depths of 14” (356 mm), 10” (254 

mm), and 6” (152 mm). The corresponding recorded maximum displacement for each slab 

was 45.47 mm, 37.54 mm, and 35.48 mm, respectively. Therefore, a decrease of 28.65% 

and 57.2% in the slab’s depth resulted in 5.8% and 28.15% increase in the maximum 

displacement, respectively. Also, in the experimental study by Jacques [1], CFRP 

retrofitted one-way slabs having depths of 120 mm and 80 mm were subjected to simulated 

blasts. For two separate magnitudes of loading, the 120 mm slab resulted in deflections of 

31.4 mm and 42.9 mm, whereas the 80 mm slab resulted in deflections of 42.4 mm and 

62.6 mm. Consequently, for a 33.3% decrease in the slab depth, the corresponding increase 

in displacements was 35% and 46%. In terms of conventional slabs, a numerical parametric 

study by Lin et al. [34] showed that for a 10% and 25% increase in the slab depth, the 

increase in displacements was 27.4% and 169%, respectively. In another parametric study 

for conventional slabs conducted by Oesterle [35], it was found that a decrease of 28.65% 

and 57.2% in the slab depth resulted in an increase of 46.4% and 166.1% in maximum 

displacement, respectively. Based on these findings, it can be inferred that the rate of 

change for displacements for changing depths was greater in conventional slabs than in 

FRP retrofitted slabs. Therefore, the reduced feature importance of slab depth for FRP 

retrofitted slabs compared with conventional slabs agreed with the experimental and 

numerical comparisons. 
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6.4.3.1.2 Concrete compressive strength and steel yield strength 

For the features of concrete compressive strength and steel yield strength, Fig. 6-7 shows 

that the displacement for FRP retrofitted slabs were slightly more affected than that of 

conventional slabs. Evidence of this observation may be obtained by analyzing the strain 

rates of concrete and steel for retrofitted and conventional slabs. The value of a material’s 

strain rate is correlated to its compressive or yield strength through a dynamic increase 

factor (DIF).  In the experimental study by Jacques [1], two cases were observed for steel 

strain rates of FRP retrofitted slabs compared to conventional slabs. In some specimens, 

steel strain rates were lower for the retrofitted slabs than in conventional slabs, while in 

other specimens, they were found to be greater. In the first case, conventional slab 

specimens were found to have mid-span tension steel strain rates of 0.023 s-1, 0.051 s-1, and 

0.062 s-1, while the corresponding FRP retrofitted slabs recorded strain rates of 0.005 s-1, 

0.022 s-1, and 0.033 s-1, respectively. Conversely, for the second case, the steel strain rates 

of conventional slabs were 0.016 s-1 and 0.045 s-1
, while the FRP retrofitted slabs recorded 

values of 0.047 s-1 and 0.067 s-1, respectively. 

It was also observed that the steel strain rates for retrofitted slabs were larger than that for 

conventional slabs when the L/W ratio was greater than 1; and smaller than that of 

conventional slabs when the L/W ratio was equal to 1 [1]. Similar variations in the steel 

strain rate could also be observed in the experimental results of Guo et al. [12]. Their results 

showed that the central steel strain rates of a conventional slab in both direction were 

0.1563 s-1 and 0.1652 s-1, while the strain rates for retrofitted slabs were 0.1072 s-1 and 

0.1073 s-1 for one specimen; and 0.121 s-1 and 0.148 s-1 for a second specimen. All 

comparisons were made under the same magnitude of near-field blast loading in which the 

L/W ratio of the slabs was 1 [12]. These values further support the variation in steel strain 

rates between conventional and retrofitted slabs. Similarly, central concrete strain rates for 

FRP retrofitted slabs were observed to be less than those of conventional slabs. In the same 

study [12], central concrete strain rates in both directions for FRP retrofitted slabs were 

recorded as 0.01875 s-1 and 0.03 s-1, while the strain rate values for the corresponding 

conventional slab were 0.05 s-1 and 0.044 s-1.  
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The variations in compressive strength and yield strength of conventional and FRP 

retrofitted slabs under blast loading are due to the relation between strain rate and concrete 

compressive strength and steel yield strength through dynamic increase factors (DIF). The 

DIF for concrete and steel is the ratio between the dynamic stress and the static stress, while 

being nonlinearly related to the material’s strain rate [33]. Also, the dynamic concrete 

compressive strength and steel yield strength are given by their static value multiplied by 

the material’s DIF in which greater strain rates yield greater DIF values. Therefore, 

variations between FRP retrofitted slabs and conventional slabs are presented through 

strain rates of both steel and concrete. This implies that there were variations in their DIF 

and consequently in their compressive and yield strengths, which are reflected in the 

feature importance analysis. 

6.4.3.1.3 Steel reinforcement ratio 

The last feature relating to the slab properties is the steel reinforcement ratio. Fig. 6-7 

indicates that the FRP retrofitted slabs were less affected by variations in the reinforcement 

ratio than conventional slabs. This reduced effect of the reinforcement ratio has been 

observed in experimental studies [12]. It can be shown through experimentally recorded 

steel strains, that the steel reinforcement of retrofitted slabs was less engaged than in 

conventional slabs. In CFRP retrofitted slabs tested by Ha et al. [13], the recorded 

maximum tension steel strains were 9683  and 7434 , whereas the conventional slabs 

produced strains of 15998  and greater than 28113 . Furthermore, experiments by Guo 

et al. [12] indicated that GFRP retrofitted slabs produced strains of 1150  and 2155 , 

while corresponding conventional slabs resulted in strains of 1595  and 2532 . Lastly, 

tension steel strain values of 80 , 1800 , 400 , and 590  were obtained from CFRP 

retrofitted slabs in the experimental study of Jacques [1], where conventional slabs yielded 

values of 900 , 1900 , 1020 , and 1800 , respectively. It should be noted that all 

comparisons between retrofitted slabs and their corresponding conventional slabs were 

made under similar detonated blast loads or simulated blast loads. Based on these results 

of strain comparisons, the conclusions drawn via comparison of feature importance were 

further supported by experimental results. As demonstrated, the use of feature importance 
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analysis for machine learning models can accurately capture the extent of meaningful 

relationships between features and the output for a given dataset. 

 Features of FRP properties 

6.4.3.2.1 FRP tensile strength 

Feature importance analysis was also conducted on the FRP properties, namely its tensile 

strength, bonding strength, and cross-section, as shown in Fig. 6-7. The effects of these 

features on the displacement were compared to the corresponding observed effects in 

experimental and numerical studies. The feature of FRP tensile strength had low effect. 

Variations in the feature produced small variations in output compared to features with 

greater significance. Similar conclusion can be drawn from the numerical parametric study 

of Kong et al. [14]. For AFRP and CFRP retrofitted slabs, the maximum displacements 

were 36.9 mm and 33.9 mm, respectively, which indicates a reduction of only 8.1% when 

the tensile strength decreased by 28.5% from 2083 MPa (CFRP) to 1490 MPA (AFRP) 

[14]. Additionally, in the experimental study by Tolba [2], both CFRP and GFRP were 

used as slab retrofits to resist blast loading. It was concluded that both materials provided 

similar resistance and that the preferred material should be chosen based on cost. These 

conclusions support the low effect of the FRP tensile strength obtained by the feature 

analysis of the ML model. 

6.4.3.2.2 Bond strength 

Similarly, the bond strength between the FRP retrofit and the concrete surface was shown 

to have relatively low effect on the maximum displacement (Fig. 6-7). Through numerical 

parametric study, bond strengths of 5 MPa and 10 MPa had large effect on the 

displacement, whereas bond strengths of 30 MPa and 50 MPa produced nearly the same 

results. It was concluded that for a given magnitude of blast load, values of bond strength 

beyond the required strength to prevent debonding will have little to no effect on the output 

[14]. It should be noted that practical values of bond strength range between 30 MPa and 

75 MPa. Furthermore, for the numerical model presented by Nam et al. [7], a strain rate 

dependent GFRP failure model with perfect bonding yielded a displacement of 10.23 mm, 

while a similar model with debonding yielded a comparable displacement of 10.56 mm. 
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This comparison further supports that with enough bond strength, the displacement was 

unaffected by further increasing the bond strength. Numerical results support the results of 

the ML model feature importance analysis, which indicate that variations in bond strength 

produced small variations in displacement. 

6.4.3.2.3 FRP cross-sectional area 

The feature effect of the FRP cross-section (displayed in Fig. 6-7) can be discussed based 

on the number of FRP layers or layer thickness, as well as the width of the FRP retrofit. In 

a numerical parametric study [14], 1, 2, 4, and 5 AFRP layers yielded displacements of 48 

mm, 42.1 mm, 37.4 mm, and 36.9 mm, respectively. These results show that increasing the 

thickness of the retrofit by increasing AFRP layers provided only slight reduction in the 

displacement, and this beneficial effect decreased with increasing AFRP layers.  Moreover, 

an experimental study conducted by Maazon et al [3] tested one-way slabs with varying 

number of CFRP strips, which can also be perceived as varying width of retrofit. The 

different cases considered were slabs having 1, 2, or 4 strips of CFRP, which corresponds 

to 15 mm, 30 mm, and 60 mm width with resulting displacements of 21 mm, 20 mm, and 

18 mm, respectively. It is to be noted that the conventional control slab recorded a 

maximum displacement of 34.2 mm [3]. Although the response of the slab was 

significantly improved by the retrofitting material, increasing the strips or width of the 

material produced little benefit [3]. Both the numerical and experimental conclusions on 

the FRP thickness and width support the results of the feature analysis of the ML model, 

which indicated that the FRP cross-section has relatively low effect. 

Therefore, the investigation of features relating to FRP properties were accurately reflected 

in the limited numerical and experimental results found in the open literature. For both slab 

properties and FRP properties, the feature importance analysis was able to capture the 

influence of each feature and how it relates to the output of the application. 
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6.5 Practical implementation and recommendations 

6.5.1 Prediction model for displacement  

The model developed in this chapter uses features related to the RC slab, FRP properties, 

and blast properties to predict the slab’s resulting maximum displacement. When compared 

to existing approaches for the same application, the current model has minimal complexity 

and computes more accurate results at trivial computational cost. Therefore, by providing 

a reliable preliminary prediction of the retrofitted slab behavior under blast load, it could 

assist in the iterative design process for selecting appropriate parameters with respect to 

imposed limits on displacement. A more involved analysis may be conducted thereafter for 

finalizing designs. Imposed design limits set forth by ASCE 59-11 [9] and CSA S850-12 

[10] state maximum allowable support rotations for different degrees of element damage. 

Both codes state that for the life safety level of protection of flexural elements, a maximum 

allowable support rotation of 2o should be considered, whereas a collapse prevention level 

of protection requires a maximum support rotation of 8o. Additionally, it should be noted 

that the dataset only considered maximum displacements in the direction of loading and 

did not consider rebounding deflection, which is a pertinent design consideration for FRP 

retrofitted flexural elements. Therefore, an additional model that predicts maximum 

rebounding displacements should be coupled with the proposed model.  

6.5.2 Dataset discrepancies 

The model developed in the present chapter were based on the most comprehensive dataset 

that could be retrieved from state-of-the art open literature. However, this dataset included 

a few minor discrepancies that could be eliminated with further research to generate a more 

comprehensive, future database. First, the FRP debonding phenomenon was not considered 

in any analysis and data points that exhibited large debonding failure modes were not 

included in the model. The current dataset of 70 points contains 12 points that displayed 

minor debonding, but no feature(s) was allocated for this behavior. Additionally, the 

dataset did not consider cases of retrofitting schemes with unique strip spacing, which were 

instead simplified into a single strip for each relevant direction. Fewer than 10 points 

contained such retrofitting schemes. These aspects may be considered as causes of the 
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minor errors measured. Although the dataset included these minor simplifications, the 

developed model achieved adequate accuracy. 

 

6.6 Conclusions 

The present chapter introduced a machine learning model for predicting the behavior of 

FRP retrofitted reinforced concrete slabs exposed to blast loading. The developed model 

was trained and tested using a GP regression algorithm and a dataset of 70 real points 

retrieved from the open literature, along with 200 synthetic data points obtained using a 

state-of-the-art tabular GAN. LOO CV was implemented in evaluating the model in which 

the training process was considered, once with only real data, and once with real and 

synthetic data. Model validation included statistical performance metrics, direct and 

indirect prediction comparisons to existing analytical and numerical methods, and feature 

importance analysis supported by both experimental and numerical studies. Lastly, 

practical implementations were discussed and suggestions for improved models based on 

the discrepancies of the current dataset were made. The main conclusions drawn from the 

current chapter are as follows: 

• The displacement prediction model yielded MAE, MAPE, and R2 of 2.28, 13.4%, 

and 97.7%, respectively, considering real and synthetic data. 

• When compared to existing SDOF model predictions, the ML model was able to 

predict the maximum displacement more accurately and with significantly fewer 

technical considerations. 

• The prediction errors of the ML model were well correlated with numerical model 

errors through indirect comparisons of maximum displacement, while 

demonstrating considerably less computational cost. 

• The feature importance analysis through an interaction-curvature test evidently 

displayed the proposed model’s ability in recognizing and identifying critical slab, 

FRP, and blast load features and their correlation to the output. 
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• The importance of features of RC slab properties for both FRP retrofitted and 

conventional slabs were thoroughly investigated, and pertinent quantitative 

comparisons were provided. 

• The practical implementation of the proposed models is characterized by favorable 

accuracy, simplified use, and trivial computational demand. 
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Chapter 7  

 

 

7 Machine learning prediction of structural response 
for steel fiber-reinforced concrete beams subjected 
to far-field blast loading 

 

7.1 Introduction and background 

The use of steel fiber-reinforced concrete (SFRC) for developing protective structures has 

become exceptionally favorable owing to its unique engineering properties. In 

compression, SFRC is characterized by the improved performance of its post-peak 

behavior, which induces ductility to the brittle cement-based materials. For instance, in 

high strength concrete (HSC), which exhibits a markedly brittle post-peak response, the 

inclusion of steel fibers significantly improves ductility [1]. Moreover, SFRC achieves 

much enhanced tensile strength both in direct tension testing [2] and splitting tensile testing 

[3] when compared to conventional concrete. The behavior of SFRC under dynamic 

loading has also been thoroughly investigated. Under high strain rates, SFRC exhibits 

increased compressive strength and greater ductile response. Similarly, an increase in the 

steel fiber content results in a higher peak compressive strength [4,5].  

Recently, several experimental studies have been devoted to investigating the response of 

SFRC beams under far-field blast loading simulated using a Shock-Tube Facility. Guertin-

Normoyle [6] studied various configurations of ultra-high-performance fiber reinforced 

concrete (UHPFRC) beams having high strength reinforcement (HSR). Two different types 

of steel fiber contents at dosages of 1%, 2%, and 3% by volume fraction were considered. 

Using UHPFRC and HSR were both found effective in mitigating maximum and residual 

displacements and minimizing member debris. However, using UHPFRC with normal 

strength reinforcement caused the failure mode to shift from the concrete crushing 
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observed for normal strength concrete (NSC), to tensile rebar rupture. Moreover, the usage 

of fibers reduced cracking and displacement, especially for fibers with greater aspect ratio. 

Similarly, Algassem [7] explored the effects of two different steel fiber types and contents 

in high strength fiber-reinforced concrete (HSFRC) beams. HSFRC beams achieved 

greater control of damage and displacement compared to HSC beams. In several cases, 

HSFRC beams with 1% fiber content prevented shear failure and induced a ductile 

response despite the absence of stirrups. The blast performance of HSFRC beams with 

stirrups did not improve with increasing fiber content and insignificant variations were 

observed beyond 0.5% fiber content. Moreover, at the same fiber volume, shorter steel 

fibers performed better than the longer ones. The effect of steel fibers in HSC beams with 

HSR was studied by Li [8] using one fiber type at 1% fiber content. The steel fibers 

significantly improved the blast performance of HSC beams reinforced with HSR. 

Castonguay [9] assessed NSC beams without stirrups having normal strength 

reinforcement (NSR), while considering three different types of steel fibers at various fiber 

contents. The inclusion of steel fibers prompted an enhanced blast performance, reducing 

the overall  damage and displacements, while maintaining effective control of crack 

development. Using 1% fiber content was adequate in replacing stirrups and preventing 

shear failure. The beneficial effect of fiber addition was observed to be limited to 1% fiber 

content, with minimal improvements observed beyond this threshold level. Larger aspect 

ratio steel fibers led to greater increase in the performance of SFRC beams.  

In contrast to the experimental studies above, Charles [10] examined the effects of the 

reinforcement detailing in HSFRC beams. Using 0.75% steel fiber content with a stirrup 

spacing of half the beam’s depth better improved the blast performance than using a stirrup 

spacing of a quarter of the beam’s depth without steel fibers. Therefore, it was posited that 

reduced stirrup spacing in design may be adopted in the presence of steel fibers. It was also 

observed that increasing the tension reinforcement in HSFRC beams improved blast 

performance, yet exceeding certain limitations resulted in loss of ductility and overall 

reduced performance under blast loading.  
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The properties of the steel fibers used in the above studies are given in Table 7-1. It can be 

observed that the use of steel fibers generally improved blast resistance and structural 

response of beams subjected to far-field blast loading. However, when inspecting the effect 

of fiber content on structural response, discrepancies were observed throughout the 

literature. Guertin-Normoyle [6] reported that no discernable maximum displacement trend 

was observed for fiber contents between 1% and 3% in UHPFRC beams. Furthermore, 

while using 1% steel fiber content in HSFRC beams with stirrups reduced the maximum 

displacement, no clear correlation could be obtained when using 0.5% fiber content [7]. 

Therefore, various studies have identified the need for further investigation on the effect of 

the fiber content on SFRC beams under far-field blast loading [6,7,8] and for elucidating 

the effect of the various steel fiber types [6,8]. 

Table 7-1. Steel fiber properties. 

ID Reference  
Fiber 

Name 

Length 

(mm) 

Diameter 

(mm) 

Aspect 

Ratio 

(mm/mm) 

Tensile 

Strength 

(MPa) 

F1 [6][10] OL 13/.20 13 0.2 65 2750 

F2 [6] 

BELM-

0.3/13-

3150 

13 0.3 43 3150 

F3 [9] BP-80/30 30 0.38 79 2300 

F4 [7][8][9][10] ZP 305 30 0.55 55 1350 

F5 [7][9] 5D 60 0.92 65 2350 

 

For each of the experimental studies surveyed herein, a dynamic single degree of freedom 

(SDOF) model was developed to analytically predict the displacement under blast load 

results for the respective beam configuration. The material models, dynamic increase factor 

(DIF) models, and analysis procedure for each SDOF model were appropriately 

implemented and may be found in the respective sources discussed above. The results from 

each analytical study based on the maximum displacement produced a mean absolute error 

of 16.2% considering 41 comparisons [6], 13.6% considering 20 comparisons [7], 9.7% 

considering 12 comparisons [8], 20% considering 25 comparisons [9], and 10.6% 
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considering 8 comparisons [10]. It should be noted that these values only consider the 

response prediction of beam specimens that incorporate steel fibers. Additional discussion 

on these comparisons is provided in subsequent sections. Although the analytical models 

yield acceptable results, dedicated DIF models for UHPFRC, and DIF tension models for 

HSFRC and HSR have yet to be developed. Moreover, there is need for simplified and 

robust predictive methods which can effectively produce structural responses for such 

members under blast loading [6,7,8]. 

We stand on the brink of a fourth industrial revolution, where automated design, building 

information modeling, additive manufacturing and smart materials and structures could 

dominate future infrastructure developments. Resilience to blast loading could become part 

of this automated process. Given the available experimental data and existing numerical 

simulations, developing intelligent and simplified models for blast loading have become 

increasingly conceivable. Therefore, the present chapter develops a machine learning (ML) 

model to predict the maximum displacement of various SFRC beam configurations under 

far-field blast loading. Using both intelligently generated synthetic data and gaussian 

process regression modeling, the developed model is evaluated through numerous 

statistical performance measures. Furthermore, an in-depth comparison between the 

proposed model and existing predictive methods is provided. The simplicity of the 

proposed model is elaborated through its ability to implicitly account for complex 

application considerations as well as eliminating complex technical and computational 

demand. After thorough development and validation, the proposed model is used to 

develop comprehensive trends for varying steel fiber contents and types across several 

pertinent SFRC beam configurations presented in the literature.  

 

7.2 Model development 

7.2.1 Gaussian process regression 

A Gaussian Process (GP) is defined as a set of random variables, from which any finite 

subset exhibits a joint (multivariate) Gaussian distribution. A GP is also considered a 

distribution over functions and is characterized by a mean function m(x) and a covariance 



 

 

184 

function k(x,x′) [12]. The mean function m(x) defines the expected function value at input 

x given by Eq. (1) and represents the average of every function evaluated at input x within 

the distribution. The covariance function k(x,x′) signifies the dependence between the 

function values at every input pair (x,x′) and is given by Eq. (2). As a result, a GP, f(x), is 

represented in Eq. (3) [12]. 

𝑚(𝑥) =  𝔼[𝑓(𝑥)]      (1) 

𝑘(𝑥, 𝑥′) =  𝔼[(𝑓(𝑥) −𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]    (2) 

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))      (3) 

Sampling output values of f(x) given a finite subset X*={x1
*, x2

*,…, xn
*} from a GP is 

achieved through sampling from a multivariate Gaussian distribution. For an assumed 

mean function m(x) = 0, and a covariance function K(X*, X*), f(x) is represented by Eq. (4), 

where computing K(X*, X*) is given by Eq. (5) [13]. 

𝑓(𝑥) ~ 𝒩(0, 𝐾(𝑋∗, 𝑋∗))     (4) 

𝐾(𝑋∗, 𝑋∗) = [

𝑘(𝑥1
∗, 𝑥1

∗) 𝑘(𝑥1
∗, 𝑥2

∗)

𝑘(𝑥2
∗, 𝑥1

∗) 𝑘(𝑥2
∗, 𝑥2

∗)
    ⋮        ⋮   

𝑘(𝑥𝑛
∗ , 𝑥1

∗) 𝑘(𝑥𝑛
∗ , 𝑥2

∗)

     ⋯ 𝑘(𝑥1
∗, 𝑥𝑛

∗ )

     ⋯ 𝑘(𝑥2
∗, 𝑥𝑛

∗ )

    
⋱
⋯   

   ⋮
  𝑘(𝑥𝑛

∗ , 𝑥𝑛
∗ )

]     (5) 

When a training dataset having X inputs and y outputs is introduced with the desire of 

sampling predictions f for new (test) inputs X*, the joint distribution of the training outputs 

y and the sampled outputs f with respect to the prior is represented in Eq. (6). Furthermore, 

to model the inherent noise (ε) of the training dataset, the noise is assumed to be additive 

independent having a gaussian distribution with a mean of zero and a variance of σn
2 

denoted by ε ~ N(0, σn
2). Thus, the covariance of the training inputs K(X,X) becomes K(X,X) 

+ σn
2I as considered in Eq. (6), where I is an identity matrix (having ones in the diagonal 

and zeros everywhere else) [12]. 

[
𝑦
𝑓] ~ 𝒩 ([

𝑚(𝑋)

𝑚(𝑋∗)
] , [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
])   (6) 
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The terms K(X,X), K(X, X*), K(X*, X), and K(X*, X*) are the covariance matrices between 

training inputs, training and testing inputs, and testing inputs, respectively, and are 

similarly represented by Eq. (5). Since the goal of GP regression is to obtain samples of f 

given the training dataset and the testing inputs, then the joint Gaussian distribution is 

conditioned on X, y, and X* to formulate the predictive distribution, as shown in Eq. (7). 

The predictive mean, f̅, and covariance of the distribution are presented in Equations (8) 

and (9) [12,14]. A step-by-step example of how a single test point is predicted using a GP 

regression model is provided in [13].  

𝑓|𝑋, 𝑦, 𝑋∗ ~ 𝒩(𝑓̅ , 𝑐𝑜𝑣(𝑓))      (7) 

𝑓̅ = 𝑚(𝑋∗) + 𝐾(𝑋∗, 𝑋)[𝐾(𝑋,𝑋) + 𝜎𝑛
2𝐼]−1(𝑦 − 𝑚(𝑋))    (8) 

𝑐𝑜𝑣(𝑓) = 𝐾(𝑋∗, 𝑋∗)−𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗)    (9) 

In some cases, the mean function is specified as a fixed value, however, introducing a basis 

function to represent a mean at every observation becomes more convenient in modeling a 

given application. The fixed basis function with coefficients β, given as H(X)β, provides a 

value for every observation in which β is hyperparameter vector whose values are inferred 

from the data. Similarly, H(X*)β represents the mean values for the set of new observations 

[12]. A constant basis function is adopted in this chapter and is incorporated into Eq. (8). 

Furthermore, the choice of covariance (kernel) function is pertinent in developing an 

efficient GP regression model. As previously described, the covariance function measures 

the dependency between output values as a function of their input values. In other words, 

the extent to which input values are similar indicates the similarity of their expected output 

values. In such context, similarity is commonly expressed through the distance between 

input values. Several different kernel functions are available in the literature, such as the 

Squared Exponential Kernel, Rational Quadratic Kernel, Matern class of kernels, etc. [14]. 

Upon thorough investigation, the Rational Quadratic Kernel was selected to model the GP 

regression model in this chapter and is represented in Eq. (10), where θ represents the 

hyperparameters of characteristic length scale, σl, positive-valued scale-mixture parameter, 

α, and  the signal standard deviation, σf [12]. 
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𝑘(𝑥, 𝑥′|𝜃) =  𝜎𝑓
2 (1 +

(𝑥−𝑥′)𝑇(𝑥−𝑥′)

2𝛼𝜎𝑙
2 )

−𝛼

    (10) 

The development of the GP regression model has been shown to depend on the noise 

variance, σn, the coefficients of the basis functions, β, and the kernel hyperparameters 

θ={σl, α, σf}. Towards identifying their optimal values, a commonly adopted approach is 

through the maximization of the log marginal likelihood of the model presented in Eq (11), 

which only considers information from the training dataset [12,13]. It should be noted that 

K(X,X) is denoted as K in Eq. (11).  

log 𝑃(𝑦|𝑋, 𝜎𝑛, 𝛽, 𝜃) =  −
1

2
(𝑦 − 𝐻𝛽)𝑇[𝐾 + 𝜎𝑛

2𝐼]−1(𝑦 − 𝐻𝛽) −
1

2
log|K + 𝜎𝑛

2𝐼| −
𝑛

2
log 2𝜋   

(11) 

The optimization of Eq. (11) is achieved using a quasi-Newton optimizer [15], which is 

conveniently integrated into MATLAB’s Statistics and Machine Learning Toolbox [16]. 

Once the optimized hyper parameters of the GP regression model are achieved for a given 

dataset, Eqs. (8) and (9) are utilized for predicting the mean output value for new data 

points along with its variance. 

7.2.2 Generative adversarial networks 

Due to the labor, high cost, and safety concerns associated with experimental studies of 

structural blast loading, the possibility of establishing a large-scale comprehensive dataset 

is rather limited. Accordingly, implementing state-of-the-art synthetic data generators can 

provide a novel means to develop larger and improved synthetic datasets without 

depreciating the original application. This can be achieved for instance using generative 

adversarial networks (GAN) [17]. By learning the complex distribution of a dataset, GAN 

can generate synthetic data, while retaining the quality of the real data. The development 

of a GAN is based on two neural networks, the generator, and the discriminator, in which 

one acts to generate synthetic data, while the other attempts to distinguish between the real 

and generated data. As the generator feeds data into the discriminator, its objective is to 

minimize the variation between the real and generated data. Conversely, the discriminator’s 

target is to maximize the probability that the synthetic data is real. Once the generator is 
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capable of synthesizing data that the discriminator is unable to distinguish as real or 

synthetic, the GAN is successfully developed and may be used to generate quality data 

[17,18]. In the present chapter, a novel conditional tabular GAN (CTGAN) is implemented. 

It introduces an improved method for representing continuous data having complex 

distributions, while accounting for imbalance of discrete data [18]. CTGAN was based on 

the development of tabular GAN (TGAN) [17], which adopts the use of long short-term 

memory (LSTM) neural network for GAN development, whereas CTGAN is implemented 

based on fully connected neural networks. The network architecture, loss functions, and 

benchmark performances for each GAN are detailed in their respective sources. 

7.2.3  Statistical performance measures 

The evaluation of the proposed model is based on two different training approaches. The 

first approach considers k-fold cross validation, where the data is divided into k equal 

subsets in which the model is tested on every subset having been trained on the remaining 

k-1 subsets. Model performance is then taken as the average performance measure of each 

training and testing set to obtain a reliable evaluation of the model, where the number of 

folds currently taken is 10. The second approach implements a “train on synthetic data, test 

on real data” method, which utilizes synthetic data to obtain the required hyperparameters 

leading to the development of the model, after which performance measures are acquired 

with respect to the real data. The performance measures considered for each approach of 

model evaluation are the mean absolute error (MAE), mean squared error (MSE), mean 

absolute percent error (MAPE), and the coefficient of determination (R2) as presented in 

Eqs. (12)-(15) below. 

                                                𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1     (12) 

                                                𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
1     (13) 

                                                𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ∗ 100% 𝑛

1    (14) 

                                           𝑅2 = (1 − 
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̅)2
𝑛
1

) ∗ 100%    (15) 
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where y ̂ is the predicted output, y  is the actual output for every ith entry in the dataset, 𝑦̅ 

is the mean of the actual values, and n is the number of points in the dataset. Both MAE 

and MSE are widely used for measuring model performance in which MSE is more 

sensitive to outlier predictions than MAE [19]. Furthermore, MAPE is a popular scale-

independent measure, which is easily interpreted between 0 and 100%. It should be noted, 

however, that MAPE is inappropriate for datasets having zero or near-zero outputs since 

this results in infinite or undefined MAPE [20]. Lastly, the measure of a model’s R2 

provides an indication of how well predictions correlate to actual values [21]. The 

statistical performance measures are therefore reported for each of the training approaches. 

 

7.3 Data collection 

This section provides details on the sources of the dataset used throughout this chapter, 

along with a brief description of their respective experimental programs. Details of the 

dataset are provided along with a discussion on the choice of the features selected. 

Similarly, the data synthesis process using CTGAN is described and details of the synthetic 

dataset are provided.  

7.3.1  Description of shock wave simulation device 

The original data used in this chapter was retrieved from six extensive experimental 

programs conducted at the University of Ottawa Shock Tube Facility (UOST). These 

studies investigated various parameters of SFRC beams subjected to far field blast loading 

as briefly discussed earlier in the introductory section. The UOST Facility can simulate a 

wide range of far-field blast loads of high explosives. The main components of the device 

are a variable-length driver, spool section, and expansion chamber. The driver section 

generates the source of the shock wave in which varying driver pressures will result in 

varying magnitudes of reflected pressures, whereas the alternative driver section lengths 

control the duration of the shock wave. The spool section consists of two aluminum 

diaphragms and is pressurized such that the pressure differential between the spool section 

and the driver section is less than the rupture strength of the diaphragms. Once the desired 

pressure in the driver is reached, the pressure in the spool section is released causing the 
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diaphragms to rupture and generating a shock wave in the expansion section. Additional 

technical details pertaining to the operation of the device are available in [22]. When 

considering a driver length of 2743-mm, the average generated shock wave parameters for 

a selection of driver pressures are provided in Table 7-2 where the equivalent scaled 

distance assumes a standoff distance of 50-m. 

7.3.2 Data from UOST and feature description  

A total of 117 data points was collected from [6-11], which accounts for SFRC beams with 

configurations of NSC, HSC, UHPC, NSR, and HSR. Also, five different steel fiber types 

as displayed in Table 7-1 at six alternative fiber contents (0.5%, 0.75%, 1%, 1.5%, 2%, 

3%) were considered within the dataset. Additionally, 50 data points of non-fiber beams 

having similar design properties were collected from the same sources. All the tested 

specimens adhered to the design criteria set forth by CSA A23.3-14 [24]. The limiting 

design characteristics throughout the dataset are the beam dimensions (all of which were 

250 x 150 x 2440 mm with a shear span of 740 mm) and the absence of compression steel. 

Although there exists a limit to beam dimension considerations, the importance of this 

dataset is apparent through its holistic consideration of a multitude types of concrete, 

reinforcement, and fibers, while the effect of dimension is beyond the current scope. 

After careful investigation, the dataset was developed considering the features of fiber 

content, fiber aspect ratio, fiber tensile strength, concrete compressive strength, steel yield 

strength, tension reinforcement ratio, transverse reinforcement ratio, reflected pressure, 

and reflected impulse. Table 7-3 provides the mean, standard deviation, and range of each 

feature in the dataset, while Figure 7-1 depicts their distributions.  
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Table 7-2. Average shock wave parameters produced by UOST Facility. 

Blast 

ID 

Driver 

Pressure 

(kPa) 

Reflected 

Pressure 

(kPa) 

Reflected 

Impulse (kPa 

msec) 

Scaled 

Distance 

(m/kg1/3) 

Equivalent 

Charge 

Weight (kg) 

B-1 207 41 379.7 8.4 212 

B-2 276 49.6 461.8 7.4 304 

B-3 345 57.7 547.8 6.8 399 

B-4 483 75.9 744.4 5.8 635 

B-5 621 79.4 891.4 5.7 683 

B-6 690 84.5 921.1 5.5 755 

 

Table 7-3. Statistics of real data. 

Feature Mean Standard Deviation Range 

Fiber content (%) 0.887 0.791 0 - 3 

Fiber aspect ratio 41.294 27.531 0 - 78.95 

Fiber tensile strength (MPa) 1400.602 1102.380 0 - 3150 

Concrete compressive 

strength (MPa) 
91.386 39.454 34 - 160 

Steel yield strength (MPa) 568.078 188.699 430 - 929 

Tension reinforcement ratio 

(%) 
1.808 0.599 1 - 4.1 

Transverse reinforcement 

ratio (%) 
0.147 0.130 0 – 0.458 

Reflected pressure (MPa) 0.045 0.017 0.0198 - 0.0942 

Reflected impulse (MPa 

msec) 
0.422 0.194 0.184 - 1.313 

Maximum displacement 

(mm) 
21.240 11.948 4.55 - 54.7 
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Figure 7-1. Distribution of features for real data. 

The transverse reinforcement ratio was taken as the steel stirrup area over the area of the 

shear span and beam height. This allows for easier interpretation where lower ratio implies 

less reinforcement, with absence of reinforcement at zero. This contrasts with using stirrup 

spacings, which leads to more reinforcement at smaller values, but eliminating 

reinforcement at zero. It should be noted that the experimental studies conducted at UOST 

tested beam specimens under repeated blast loads. Therefore, during the data collection 

process, specimens that were reported to have reached element failure because of 

accumulated damage from multiple consecutive blast loading were discounted from the 

dataset. Additionally, specimens exhibiting behavioral anomalies that were reportedly due 

to issues with fiber concrete mixing were also disregarded. 
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7.3.3  Data from CTGAN 

The 117 data points of SFRC beams and 50 data points of non-fiber RC beams were used 

to generate 300 synthetic data points using CTGAN. Each feature was considered 

continuous, which allowed for new feature values to be introduced, while remaining within 

an acceptable range of the original feature. Also, efforts were made towards maintaining 

consistency between the reflected pressure and reflected impulse pairs such that the shock 

wave parameters of the synthetic data resembled realistic pairs resulting from the UOST 

device. The mean, standard deviation, and range of the synthetic data are presented in 

Table 7-4 along with their distributions shown in Figure 7-2. From a preliminary statistical 

assessment, it can be observed that both the real and synthetic data exhibit similar 

distributions with respect to their mean and standard deviation. Further evaluations of 

implementing synthetic data for ML model development are discussed in subsequent 

sections. 

Table 7-4. Statistics of synthetic data. 

Feature 
Mean Standard deviation range 

Fiber content (%) 1.173 0.749 0 - 2.86 

Fiber aspect ratio 56.4 31.59 0-133 

Fiber tensile strength (MPa) 1452.3 938.35 15-5105 

Concrete compressive 

strength (MPa) 
116.1 43.42 35-234 

Steel yield strength (MPa) 595.2 218.64 68 - 1184 

Tension reinforcement ratio 

(%) 
2.04 0.918 0 - 5 

Transverse reinforcement 

ratio (%) 
0.23 0.187 0 – 0.786 

Reflected pressure (MPa) 0.048 0.017 0.013 - 0.107 

Reflected impulse (MPa 

msec) 
0.468 0.16 0.152 - 1.025 

Maximum displacement 

(mm) 
24.1 11.04 2.6 - 62.8 
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Figure 7-2. Distribution of features for synthetic data. 

 

7.4 Results and discussion of model validation 

This section explores the performance of the proposed model considering the different 

aforementioned training approaches using both graphical representations and statistical 

measures. Furthermore, the proposed model’s implicit consideration of pertinent 

application parameters is reflected through constitutive material modeling and dynamic 

increase factor modeling. Lastly, a thorough comparison between the performance of 

existing analytical models and the proposed ML model is investigated. 

7.4.1 Evaluation of model performance 

The performance of the GP regression model was evaluated based on MAE, MSE, MAPE, 

and R2 considering the training approach of cross-validation on only real data (GPR-CV), 

in addition to the approach of training on synthetic data and testing on real data (GPR-Syn). 

The response predictions were observed to exhibit a degree of noise. Accordingly, a 
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moving average smoothing approach was implemented [25]. Figure 7-3 compares the 

actual and predicted responses (mean and variance) of the 117 data points pertaining to 

only those specimens incorporating steel fibers for the different modeling considerations. 

Similarly, Table 7-5 reports the performance measures of each model consideration. Upon 

initial inspection, it can be observed that an overall acceptable fit of predicted values to the 

corresponding actual values is produced throughout the various considerations. 

The effect of implementing smoothing is observed when comparing Fig. 7-3(a) and Fig. 

7-3(b) as well as Fig. 7-3(c) and Fig. 7-3(d) in which relative outliers are mitigated, which 

resulted in improved model performance. The performance measures shown in Table 7-5 

also indicate significant reduction in the prediction error when smoothing was applied to 

both the GPR-CV and GPR-Syn models. It should be noted that predictions of new data 

points considering the smoothed model response were made with respect to the existing 

testing dataset. Therefore, every new data point prediction also requires predicting the 

existing test set, which is noted to be computationally trivial.  

Table 7-5. Performance measures for different model considerations. 

Model MAE 

(mm) 

MSE (mm) MAPE (%) R2 (%) 

GPR-CV 3.26 20.7 16.47 87.06 

GPR-CV Smooth 2.29 9.72 10.58 93.9 

GPR-Syn 2.75 15.5 13.8 90.32 

GPR-Syn Smooth 1.87 6.74 8.71 95.8 
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Figure 7-3. Actual versus prediction response plots for different model 

considerations. 

Additionally, the effect of adopting synthetic data for model training, while testing on real 

data, as opposed to using traditional CV on only real data is depicted in Fig. 7-3(a) and 

Fig. 7-3(c), as well as Fig. 7-3(b) and Fig. 7-3(d). Synthetic data is not only shown to 

improve model performance, but also to reduce prediction variance. This improvement is 

also quantitatively represented in Table 7-5 in which an increased correlation between 

actual and predicted responses through R2 and reduced prediction errors through MAE, 

MSE, MAPE are observed. The approach of the GPR-Syn model is remarkably practical 

for developing ML models using smaller datasets due to the independence of model 

development (training) from the real testing data, without sacrificing model performance, 

as demonstrated herein as well as in other studies [26,27]. 
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The use of smoothing as well synthetic data both led to improved model performance when 

considered either independently or collectively. The best model performance was achieved 

by the GPR-Syn Smooth model, which attained superior predictive performance with 

minimal variance. To illustrate the aptitude of the GPR-Syn Smooth model, a scatter plot 

of actual and predicted values considering two error bounds is presented in Fig. 7-4. The 

figure shows that 64.1% (75) of the 117 data points were predicted within 10% error, while 

nearly 95% (111) of predictions were within a 20% error bound. Overall, the performance 

of the smoothed GP regression model trained with synthetic data was proven to effectively 

produce accurate predictions considering the complexity of the application. 

 

Figure 7-4. Actual versus prediction scatter plot with 10% and 20% error bounds. 
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7.4.2  Implicit application considerations 

One of the most notable characteristics of the proposed model is its ability to capture 

implicit patterns of the application with respect to the limited explicitly defined features 

provided. The extent of these implicit patterns for the current application are primarily 

described through the static and dynamic behaviors of the materials considered in the 

dataset. As previously stated, the dataset is comprised of SFRC, HSFRC, and UHPFRC, 

which are characterized solely by their corresponding concrete compressive strength, steel 

fiber content, fiber aspect ratio, and tensile strength. Such information would be 

remarkably insufficient for predicting the behavior of these materials under blast loading 

by the diverse pertinent models that exist in the open literature. This is highlighted in the 

subsequent section in this text, which provides a brief description of empirically derived 

compression and tension material models that represent the behavior of SFRC, HSRFC, 

and UHPFRC, as well as strain-rate dependent models that characterize the dynamic 

behavior of such materials. 

 Compressive and tensile behavior of steel fiber concrete 

A simplified compressive strength model for SFRC was developed by Ou et al. [28]. It was 

adapted from an existing stress-strain model for plain unconfined concrete as shown in Eq. 

(16), in which σc and εc are the stress and strain of SFRC, fc′ and εco  are the compressive 

strength and strain at peak stress of plain concrete, and β is a material property [29]. The 

compressive strength model introduces a reinforcing index RIv which accounts for the 

volumetric fiber content, fiber length, and fiber diameter as given by Vf, φ, and l in Eq. 

(17), respectively. Hence, fcf′, εcf, and β were empirically defined as functions of RIv as 

provided by Eqs. (18)-(16). The empirical model was developed based on forty cylindrical 

test specimens with an fc′ in the range of 36 to 47 MPa and RIv in the range of 0 to 1.7.  

𝜎𝑐

𝑓𝑐𝑓
′ = 

𝛽(
𝜀𝑐𝑜
𝜀𝑐𝑓

)

𝛽−1+(
𝜀𝑐𝑜
𝜀𝑐𝑓

)𝛽
       (16) 

𝑅𝐼𝑣 = 𝑉𝑓(𝑙/𝜑)      (17) 

𝑓𝑐𝑓
′ = 𝑓𝑐

′ + 2.35(𝑅𝐼𝑣)    (18) 
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𝜀𝑐𝑓 = 𝜀𝑐𝑜 + 0.0007(𝑅𝐼𝑣)    (19) 

𝛽 =  0.71(𝑅𝐼𝑣)
2 − 2(𝑅𝐼𝑣) + 3.05   (20) 

Similarly, an experimental study by Mansur et al. [1] investigated the compressive 

behavior of HSFRC for the characterization of a stress-strain model. The compressive 

strength of the cylindrical specimens considered were between 70 and 120 MPa, with steel 

fiber contents of 0.5% or 1%. The developed stress-strain model was a modified version of 

Eq. (16) and introduced two correction factors k1 and k2 which are valued at 1 for the 

ascending branch, but account for the influence of fiber parameters affecting the 

descending branch. The empirical expression for k1 and k2 is presented in Eq. (22), where 

RIv is the same expression shown in Eq. (17). Also, the material property β is given by Eq. 

(23) in which Et is the tangent modulus estimated by Eq. (24).  

𝜎𝑐

𝑓𝑐
′ = 

𝑘1𝛽(
𝜀

𝜀𝑜
)

𝑘1𝛽−1+(
𝜀

𝜀𝑜
)𝑘2𝛽

       (21) 

𝑘1 = (
50

𝑓𝑐
′)

3
[1 + 2.5(𝑅𝐼𝑣)

2.5]  ; 𝑘2 = (
50

𝑓𝑐
′)
1.3
[1 − 0.11(𝑅𝐼𝑣)

−1.1]     (22) 

𝛽 =
1

1−
𝑓𝑐
′

𝜀𝑜𝐸𝑡

      (23) 

𝐸𝑡 = (10300 − 400𝑉𝑓)𝑓𝑐
′0.33    (24) 

Furthermore, Hosinieh et al. developed a simplified quadrilinear stress-strain model to 

describe the unconfined compressive behavior of UHPFRC [30]. A limited number of 

cylindrical specimens were tested having a steel fiber content of 2.5% and producing 

compressive strengths between 124.6 and 137.8 MPa. The quadrilinear model defines four 

principle stress and strain values in which each strain expression is given in Eqs. (25)-(28). 

The ascending branch of the model reaches the first principal stress, σ1 = fc′, with a 

predefined modulus of elasticity, Ec, of 50 GPa. A constant stress branch is observed 

between ε1 and ε2, after which a descending branch leads to ε3 with a corresponding stress 
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value of σ3 = 0.5fc′. The incorporation of the steel fiber properties Vf, φ, and l in the model 

is observed in the final descending branch leading towards ε4 with a stress value of zero. 

𝜀1 = 𝑓𝑐
′/𝐸𝑐      (25) 

𝜀2 =  𝜀1 + 0.002     (26) 

𝜀3 =  𝜀2 + 0.002     (27) 

𝜀4 =  𝜀3 + 0.00007(𝑉𝑓𝑙/𝜑)     (28) 

Moreover, a trilinear stress-strain model for representing the tensile behavior of SFRC was 

developed by Lok and Pei [31]. The model accounts for the pre-cracking and post-cracking 

stages of SFRC in which the pre-cracking stage exhibits the same slope or elastic modulus 

in compression until the cracking stress,  fct′, is reached. Upon cracking, the behavior is 

represented by two descending branches. The first branch decreases to a stress value of f2* 

with a corresponding strain of ε2
*, followed by a second branch decreasing to a stress of 

zero with an approximated strain of 0.02 mm/mm. The value of fct′ is estimated by Eq. (29) 

where σ2
*  and ε2

* are given by Eqs. (30) and (31) in which τd is the dynamic bond stress 

assumed to be 3.5 MPa and Efp is the elastic modulus of the steel fiber. 

 𝑓𝑐𝑡
′ = 0.33√𝑓𝑐′      (29) 

𝜎2
∗ = 

1

2
 𝑉𝑓𝜏𝑑

𝑙

𝜑
      (30) 

𝜀2
∗ = 𝜏𝑑

𝑙

𝜑

1

𝐸𝑓𝑝
       (31) 

 Strain-rate dependent behavior of steel fiber concretes 

The rate at which the material is loaded, either in tension or compression, is a significant 

factor that affects measured material strengths. To account for such effects, dynamic 

increase factors (DIF) are employed alongside static strengths to determine a materials 

respective dynamic strength [4]. Multiple experimental studies have reported the strain-
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rate sensitivity of SFRC in both tension and compression [4, 32]. Consequently, 

comprehensive DIF models have been developed to accommodate such loading. 

A recent study by Yang et al. [32] established a well-rounded compression DIF (CDIF) 

model for SFRC considering static compressive strengths between 120 and 165 MPa, steel 

fiber contents between 0.5% and 6%, and diverse fiber shapes. The analytical formulation 

for the model is shown in Eq. (32). The values of δ and β are given by Eq. (33), where K is 

a constant representing the fiber shape, fc is the static compressive strength of concrete, and 

fco is 10 MPa. Also, 𝜀𝑠̇ is the static strain rate being 3x10-5 s-1, 𝜀𝑡̇ is the transition strain rate, 

and i is a factor representing the fiber content. 

𝐶𝐷𝐼𝐹 = {
(
𝜀̇

𝜀̇𝑠
)1.026𝛿                 , 𝜀̇ < 𝜀𝑡̇

0.6608𝛽(
𝜀̇

𝜀̇𝑠
)
1+0.05𝑖

3 , 𝜀̇ ≥ 𝜀𝑡̇

    (32) 

 𝛿 =  
1

5+9
𝑓𝑐
𝑓𝑐𝑜

 ; 𝑙𝑜𝑔𝛽 =  6.156𝐾𝛿 − 2.33    (33) 

Within the same study [32], an equivalent tension DIF (TDIF) model was developed for 

SFRC, which accounts for specimens having static compressive strengths between 56 and 

190 MPa, steel fiber contents between 1% and 3%, and varying fiber shapes. The resulting 

analytical formulation is presented in Eq. (34), with corresponding expressions of δ and β 

given by Eq. (35). The value for 𝜀𝑠̇ is given as 1x10-6 s-1 and m is a factor representing the 

fiber content. 

𝑇𝐷𝐼𝐹 = {
(
𝜀̇

𝜀̇𝑠
)𝐾𝛿     , 𝜀̇ ≤ 𝜀𝑡̇

𝑚𝛽(
𝜀̇

𝜀̇𝑠
)
1

3, 𝜀̇ > 𝜀𝑡̇
     (34) 

 𝛿 =  
1

1+8
𝑓𝑐
𝑓𝑐𝑜

 ; 𝑙𝑜𝑔𝛽 =  7𝐾𝛿 − 2.141    (35) 

Based on the material models and DIF models presented above, which characterize the 

complex behavior of steel fiber concretes, it can be notably realized that, in the absence of 

such analytical behavior representations, the proposed ML model was still able to 
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accurately incorporate such materials in blast load applications. This indicates an 

underlying capacity of ML models to learn implicit correlations within a given dataset of 

explicitly defined features. As a result, this quality strongly motivates the implementation 

of ML in modeling highly complicated applications.  

To further support such motivation, a recent study by Yang et al. [33] used a novel ML 

approach to model the CDIF and TDIF of SFRC, as opposed to developing an analytical 

formula. A Random Forests algorithm was implemented in developing each model, in 

which model hyperparameters were optimized using the Firefly Algorithm, which is a well-

known metaheuristic algorithm. Using 193 and 314 data points for developing the CDIF 

and TDIF models, the resulting R2 values were 87.4% and 90%, respectively. The 

noteworthy performance of the models considered the features of fiber content, fiber aspect 

ratio, fiber tensile strength, fiber shape, concrete compressive strength, and strain rate. The 

range of each feature along with details on model development are available in [33]. 

Additionally, a more recent study developed an ML model to predict the maximum 

displacement of RC slabs subjected to both near-field and far-field blast loading [34]. 

Considering ten application features and 150 data points compiled from the literature, a 

classification-regression Random Forests model was developed yielding an R2 value of 

96.2%. The model was proven to be highly proficient in recognizing the importance of 

features which correlated well to experimental findings. The predictive performance of the 

model was also found to be competitive with the performance of several existing analytical 

and numerical models. The limitations and discrepancies of the model were also 

investigated, which identified opportunities for further improvements. 

7.4.3  Comparisons to existing prediction methods 

To appraise the performance of the proposed model with respect to existing prediction 

methods, this section compiles the predictions of several alternative models in the 

literature. Comparisons of consistent data points between the ML model and the alternative 

models are made with respect to experimental results and are divided into seven sets (Sets 

A-G). The different alternative models considered are various dynamic SDOF models and 

a 2D numerical model using the finite element software VecTor2 [35]. Each comparison 
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set is shown in Table 7-6, which lists the alternative model, number of predictions 

compared, and the respective model reference. Additionally, the beam material types 

(concrete; reinforcement) and fiber details (type; content) used by each model are provided 

in which the fiber types are based on Table 7-1. It should be noted that Sets F and G use 

the same comparison data as Sets B and C but consider different prediction models. 

Table 7-6. Comparisons between the ML model and alternative prediction models. 

Set Alt. 

Model 

# of 

tests 

Beam 

details 

Fiber type 

& content 

Alt. 

model 

MAPE 

(%)  

ML 

model 

MAPE 

(%) 

Alt. 

model 

R2 

ML 

model 

R2 

A 
[6] 

SDOF 
41 

UHPSFRC; 

NSR,HSR 

F1, F2; 

1%, 2%, 

3% 

16.24 9.92 91.88 97.33 

B 
[7] 

SDOF 
20 

HSFRC; 

NSR 

F4, F5; 

0.5%, 1% 
13.65 6.61 96.1 98.14 

C 
[8] 

SDOF 
12 

HSFRC; 

HSR 

F4; 

1% 
9.76 7.96 95.85 90.68 

D 
[9] 

SDOF 
25 

SFRC; 

NSR 

F3,F4,F5;0.

5%,0.75%,

1%, 1.5% 

19.97 9.51 75.08 94.49 

E 
[10] 

SDOF 
8 

HSFRC; 

NSR 

F1, F4; 

0.75% 
10.62 5.53 96.94 99.52 

F 

[36] 

SDOF 

with AD 

20 
HSFRC; 

NSR 

F4, F5; 

0.5%, 1% 
9.64 6.61 96.8 98.14 

G 
[23] 

VecTor2 
12 

HSFRC; 

HSR 

F4; 

1% 
7.82 7.96 97.3 90.68 

 

Based on the results of the comparisons for Sets A-E in Table 7-6, it can be observed that 

the ML model outperformed the dynamic SDOF model in both MAPE and R2 for all 

comparison sets except Set C. Although the ML model produced better MAPE than Set C, 

the lower R2 value indicated a reduced correlation between the prediction and experimental 

values, which was due to Set C having fewer outliers in this case. It can also be observed 

that the SDOF model displayed favorable performance when limited fiber variations are 

considered, as shown for Sets B, C, and E. Conversely, the SDOF model attained lower 

performance for Sets A and D, likely because of a relatively larger range of fiber variations. 

Moreover, the alternative prediction model in Set F utilized an improved SDOF, which 

accounted for the accumulated damage (AD) imposed on the test specimens [36]. The 
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extent of this improvement is observed when comparing Sets F and B in which a lower 

MAPE and higher R2 are produced. Similarly, Set G implements a numerical prediction 

model, VecTor2, which led to more favorable prediction when compared to the SDOF 

model in Set C for the same data. In Set F, the ML model was shown to yield better results 

than the improved SDOF model, whereas in Set G the ML model produced similar MAPE 

but lower R2 value, which was similarly observed in Set C. 

A graphical representation for the comparisons of Sets A-G considering the correlation 

coefficient, RMSE, and standard deviation for each set is provided by the Taylor Diagram 

depicted in Fig. 7-5 generated using the tool in [37]. It can be observed in Fig. 7-5 that the 

proposed ML model produces more accurate predictions (lower RMSE) and higher 

correlation to the actual experimental data than the alternative models for almost all the 

considered datasets, while performing comparably to the numerical model of Set G. 

It is noteworthy that the ML model was more competent in considering different fiber types 

and fiber contents, which is a product of implicitly learning the underlying effects of such 

features through the provided dataset. It should also be noted that this flexibility in 

accounting for the features of the application may only be achieved given the availability 

of sufficiently reliable data. In the current model, the entire dataset was sourced from the 

same testing facility, which allowed for reduced variability due to consistent workmanship, 

experimental procedure, and data collection strategy, thereby improving the quality of the 

dataset. However, since the dataset is comprised of several different materials with 

significantly varying behaviors, the observed error of the ML mode is primarily caused by 

the degree of its inability to capture certain application behaviors. A solution for this 

discrepancy would be to identify these behavioral gaps from the existing dataset and 

obtaining new authentic data explaining such gaps, thus reducing the degree of error. 

Nonetheless, the proposed ML outperformed existing models despite that it only relies on 

simplified inputs, while eliminating the high degree of modeling complexity associated 

with SDOF or finite element based existing models. 
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Figure 7-5. Taylor Diagram representing model comparisons for Sets A-G. 

 

7.5 Parametric analysis  

It was demonstrated above that the developed ML model attained highly acceptable results, 

while acquiring a favorable comprehension of the relevant application parameters. Model 

predictions were made without any predefinition of complex material models or strain-rate 

sensitive DIFs. Instead, the model learned correlations between and interactions of features 

resulting from experimental findings. Thus, an extensive parametric analysis is conducted 

to elucidate the behavior of steel fiber-reinforced concrete behavior subjected to far-field 

blast loading. 
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Figure 7-6.  Effect of fiber parameters on maximum displacement of SFRC beams 

with NSR. 

The parametric analysis primarily investigates the effects of different fiber types at varying 

contents for beams of SFRC with NSR, UHPFRC with NSR, and UHPFRC with HSR. The 

compressive strengths of SFRC and UHPFRC are taken as 40 MPa and 150 MPa, while 

the steel yield strengths of NSR and HSR are taken as 420 MPa and 900 MPa, respectively. 

The different fiber types considered are listed in Table 7-1 and fiber contents range from 

0.5% to 3%. The tension and transverse reinforcement ratios for all cases remained constant 

at 2.4% (two 20M bars) and 0.244% (equivalent to stirrup spacing of 100 mm), 

respectively. Figures 7-6 to 7-8 represent each beam type and are divided into parts (a) to 

(d), which refer to different magnitudes of far-field blast loading (B-1, B-2, B-3, and B-4) 

corresponding to Table 7-2.  
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The first parametric evaluation considers SFRC beams with NSR, as shown in Fig. 7-6. It 

can be observed that an increase in the fiber content produces a reduction in the maximum 

displacement for all loading cases. However, a clearly limiting effect is noted for lower 

and intermediate magnitudes of loading as shown in Figs. 7-6(a) to 7-6(c), which indicates 

no further enhancement beyond 2% fiber content. An alternative response is shown in Fig. 

7-6(d), which suggests that at higher magnitudes of blast loading, an increase in the fiber 

content enhance performance under blast loading. Similar response was observed in [9] 

where a limiting fiber content was reported when considering 0.5%, 0.75%, 1%, and 1.5% 

fiber contents at lower and intermediate blast magnitudes using the UOST Facility. For 

higher blast magnitudes, a decrease in maximum displacement at higher fiber contents was 

also observed, but a clear trend was hindered by element failures, which were reportedly 

caused by issues in concrete mixing and placement. Additionally, the study considered 

different fiber types (F3, F4, F5) where F5 produced the lowest displacement in multiple 

instances, whereas F3 and F4 resulted in the lowest displacement in fewer instances. This 

comparison of fiber types coincides with the response shown in Fig. 7-6, which also 

indicates that fiber type F5 achieved greatest performance. Using the same testing facility, 

a second study which utilized fiber contents of 0.5% and 1% for SFRC beams reinforced 

with NSR also concluded that increased structural performance was directly related to an 

increase in fiber content [11]. These supporting studies indicate that Fig. 7-6 accurately 

captures the responses for the given beam type. Although using steel fibers improves the 

blast performance of SFRC beams, a crucial complementary analysis is the identification 

of the corresponding failure mode. While such analyses are beyond the scope of current 

study, a brief pertinent discussion is provided below. 

 



 

 

207 

 

Figure 7-7. Effect of fiber parameters on maximum displacement of UHPFRC beams 

with NSR. 

For UHPFRC beams with NSR, Fig. 7-7 depicts significantly different behaviors than the 

previously evaluated for SFRC beams. It can be observed from Figs. 7-7(a) to 7-7(c) that 

the maximum displacement follows a U-shaped trend with an optimal fiber content that 

decreases with increased blast magnitude. This implies that the addition of steel fibers 

improves the structural performance of UHPFRC with NSR until a certain threshold limit, 

after which a reduction in performance occurs with added fibers. It can also be observed in 

Fig. 7-7(d) that at a higher blast magnitude, the provision of steel fibers produces an 

adverse effect, which results in greater maximum displacements.  

Limited experimental findings suggest that a similar response was observed when testing 

a similar beam type with 1%, 2%, and 3% fiber content (although without stirrups) using 

the UOST facility [6]. For several blast magnitudes, an increase in maximum displacement 
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resulted from 2% fiber content compared to using 1%; however, using 3% fiber content 

resulted in a reduction of displacement. This result is partially inconsistent with the 

responses shown in Fig. 7-7. An additional study at the same facility considered fiber 

contents of 0.5% and 1% for HSFRC (100 MPa) with NSR [7]. For all instances of 

comparison at high blast magnitudes, incorporating greater fiber content resulted in a 

greater maximum displacement, which concurs with the trends provided in Fig. 7-7. 

To further support the trends in Fig. 7-7, additional context for fiber-reinforced concrete 

and additional experimental findings are provided. A unique material property of high-

performance fiber-reinforced concrete is its ability to induce a deflection-hardening 

behavior, resulting in the production of multiple cracks, which translates into higher energy 

dissipation. This is observed upon the development of the first crack and continues until 

the maximum post-cracking stress is applied. Exceeding this stress value produces a critical 

crack that signifies the onset of crack localization, where additional deformation will no 

longer produce new cracks, but instead will widen the critical crack. The widening of the 

critical crack is then characterized by a deflection-softening behavior [38]. For high-

performance fiber-reinforced concrete under dynamic loading, a similar behavior is 

observed [39]. Conversely, normal fiber-reinforced concrete exhibits crack localization 

and thereby deflection-softening behavior upon reaching the first crack [38]. Furthermore, 

for SFRC beams reinforced with NSR, the crack localization has recently been 

experimentally investigated and found to be more pronounced at larger fiber contents [40]. 

In another study, UHPFRC beams were tested under flexure and it was reported that beams 

which exhibited crack localization induced localized deformation on the tension 

reinforcement. This resulted in significantly higher stresses of the tension bars and resulted 

in rebar rupture (at smaller reinforcement ratio of 0.94% and 1.5%) [41]. 

Accordingly, it could be posited that increased fiber content may result in more dominant 

localized crack, which in turn induces greater stress (and therefore strain) on the tension 

bars at greater blast magnitudes. Provided that sufficient tension reinforcement is in place 

and rebar rupture does not occur, the induced localized strain would develop into increased 

maximum displacement during blast loading. This would ultimately result in a fiber pullout 

failure mode due to the increasing width of the localized crack. Such a failure mode was 
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evidently reported by blast loaded UHPFRC and HSFRC beams at more significant blast 

magnitudes with varying fiber contents in [6] and [7]. Based on this overall discussion of 

material properties, observed behaviors, and experimental findings, it can be stated that the 

behavior observed in Fig. 7-7 depicts acceptable trends.  

Figure 7-8 illustrates the behavior of UHPFRC beams made with HSR considering various 

blast magnitudes. Similar to the previous section, the behavior with respect to fiber content 

follows a U-shaped trend. However, considering the material property of HSR having a 

notably greater yield strength than NSR, strains due to crack localization of UHPFRC 

would result in less displacement. This reduced effect of fiber content on maximum 

displacement can be observed in Figs. 7-8(a) to 7-8(d) when compared to Figs. 7-7(a) to 

7-7(d). Another major variation between the two beam types is that under higher 

magnitudes of blast load, the failure mode of UHPFRC with HSR would result in rebar 

rupture instead of fiber pullout, which was also observed in [6]. This failure mode is further 

supported by the strains, where HSR ruptures at 0.06 mm/mm strain, while NSR ruptures 

at 0.17 mm/mm [6]. Thus, the behavior of this beam type expands on the previous section 

and is appropriately depicted in Fig. 7-8. 

Considering the overall effect of fiber types among different beam types in Figs. 7-6 to 7-

8, it can be observed that the fibers having shortest length, F1 and F2, attained the highest 

blast performance. Considering fibers F1 and F2 alone, a similar conclusion was reached 

in [6]. Although using alternative fiber types, another study [9] reported that higher blast 

performance resulted from using larger aspect ratio fibers. Similarly, the use of shorter 

steel fibers led to enhanced blast resistance than longer fibers in [7]. Therefore, it can be 

concluded that both greater aspect ratio and shorter steel fibers provide highest 

performance with respect to both experimental studies as well as the parametric study. 
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Figure 7-8. The effect of fiber parameters on UHPFRC beams with HSR. 

The proposed ML model predicts only the global maximum displacement of beams in the 

current application. However, to better capture the response of such beam types, a 

complementary local damage prediction model is required. As a result, additional 

considerations have been made as part of an ongoing study for developing a classification 

model to predict the local damage response of steel fiber-reinforced concrete subjected to 

blast loading. This failure mode classification model, paired with the currently developed 

displacement prediction model, would provide exceedingly simplified and meaningful 

response predictions of steel fiber-reinforced concrete beams under blast loading. 
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7.6 Conclusions  

The present chapter develops a simplified machine learning model to predict the maximum 

displacement of SFRC, HSFRC, and UHPFRC beams subjected to far-field blast loading. 

A GP regression model was implemented alongside CTGAN and considered the features 

of fiber content, fiber aspect ratio, fiber tensile strength, concrete compressive strength, 

steel yield strength, tension reinforcement ratio, transverse reinforcement ratio, reflected 

pressure, and reflected impulse. Multiple performance measures were used to assess the 

proposed model, which was trained considering either real data or synthetic CTGAN data. 

Both static and dynamic material models for each SFRC were provided and used to reflect 

on the proposed model’s implicit considerations. Lastly, a comprehensive parametric study 

was conducted, which considered the effect of varying fiber types and contents for the 

different beam configurations considered in this chapter. The following conclusions can be 

drawn: 

 

• The use of GP regression was highly appropriate in modeling this complex 

application despite the limited data available. The model attained higher 

performance when synthetic CTGAN generated data was used for model training, 

while the entire real dataset is used for model testing. 

• The statistical performance metrics for the proposed model resulted in a MAE of 

1.87, a MSE of 6.74, an R2 of 95.8%, and a MAPE of 8.71%.  

• The proposed model was highly competent in capturing variations among different 

steel fiber-reinforced concretes and steel reinforcement types, while not requiring 

the provision of material models or DIF models. 

• When compared to existing analytical models, the proposed model effectively 

produced more accurate predictions, while achieving similar performance to a 

numerical predictive model. 

• Based on the parametric analysis, it was observed that the performance of SFRC 

beams with NSR increased with increasing fiber content at higher magnitudes of 

blast loading. 
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• For UHPFRC concrete beams with NSR, the increase of the fiber content produced 

a lower blast performance at higher blast magnitudes, while producing a limiting 

effect at lower magnitudes. 

• For UHPFRC concrete beams with HSR, an enhanced blast performance was 

observed with an increase in the fiber content until a critical threshold content was 

reached. Exceeding this critical content resulted in reduced blast performance. 

• In terms of fiber types, the use of shorter steel fibers with larger aspect ratio was 

most effective in improving blast resistance. 

• Overall, the proposed model effectively captures both the behavior of various fiber-

reinforced concrete beams subjected to blast loading and yielded favorable 

accuracy in predicting their maximum displacements. 

• Future development of a failure mode classification model, paired with the 

currently developed displacement prediction model, would provide a highly 

simplified response prediction model for steel fiber-reinforced concrete beams 

under blast loading. 
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Chapter 8  

 

 

8 Conclusions and future research 

 

8.1 Summary and conclusions 

Extensive research was carried out in this study focusing on integrating various machine 

learning (ML) algorithms in the field of structural blast engineering. The main objective 

was to investigate the feasibility of developing state-of-the-art response prediction models 

for reinforced concrete (RC) structural members under blast loading. The motivation of 

this goal stems from the need to develop simple, reliable, and accurate predictive models 

that are competitive with the existing more complex and computationally costly methods. 

The contributions and summary of each thesis chapter are outlined below. 

The second chapter provided a comprehensive review of the literature on the blast 

phenomena and pertinent blast parameters. Empirical relations for obtaining blast 

parameter values were presented along with corresponding graphical solutions. 

Furthermore, an overview of existing behavior prediction methods was provided including 

the equivalent single degree of freedom (SDOF) models as well as numerical models. 

Subsequently, several existing studies for conventional RC members under blast loading 

were listed along with discussion of the structural blast mitigation strategies. Lastly, recent 

studies that incorporated ML in various structural engineering applications were described. 

The third chapter investigated the development of a ML model for predicting the maximum 

displacement of RC slabs under blast loading. Development of the model was based on a 

hybrid classification-regression random forests algorithm considering 150 data points. The 

ten (10) features defining the application were the length, width, and thickness of the slab, 

concrete compressive strength, reinforcing steel yield strength, steel reinforcement ratio, 

the blast’s scaled distance, the blast’s reflected impulse, type of slab, and slab support. The 
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following conclusions of this chapter were reached considering multiple analyses of the 

proposed model: 

• Performance measures of the RC slab displacement prediction model were 

presented through the mean absolute error (MAE), variance explained by cross-

validation (VEcv), and coefficient of determination (R2) producing results of 4.38, 

94.4%, and 96.2%, respectively.  

• Twenty-five direct comparisons to existing analytical and numerical models were 

made based on references of experimental results in which the ML model was 

proven to outperform the alternative models in several instances, while producing 

comparable results in other instances.  

• A feature importance analysis was conducted through permutation feature 

importance (PFI). It was observed that the features pertaining to the blast load 

exhibited the highest influence, followed by the slab’s thickness and reinforcement 

ratio. The results of the analysis were corroborated with several experimental 

results.  

• Overall, the developed model achieved very promising results for its specific 

application where existing discrepancies within the model’s dataset were 

thoroughly explored. 

The fourth chapter explored the development of a ML model for predicting the maximum 

displacement of RC columns under blast loading. The gradient boosted regression trees 

(GBRT) ML algorithm was adopted for model development. A dataset consisting of 420 

columns was collected from the open literature based on experimental studies and 

numerical and analytical models validated by experiments. Towards developing the ML 

model, thirteen (13) application features were defined being the column’s length, width, 

height, concrete compressive strength, longitudinal steel yield strength, longitudinal steel 

reinforcement ratio, transverse steel yield strength, transverse steel volumetric 

reinforcement ratio, axial load ratio (ALR), reflected pressure, reflected impulse, height of 

the blast along the column, and height of the recorded maximum displacement. 
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Considering several different analyses conducted as a means of model validation, the 

resulting conclusions of this chapter are as follows: 

• The resulting performance measures of the proposed RC column displacement 

prediction model yielded values of MAE, VEcv, and R2 of 3.63, 96.83%, and 97.4%, 

respectively.  

• A total of fifty-six direct comparisons to existing prediction methods were made 

based on experimental references in which the proposed model exhibited highly 

acceptable performance.  

• A small number of comparative discrepancies were observed, and the sources of 

error were clearly identified with respect to certain application variations existing 

in the data.  

• A comprehensive feature importance analysis was conduction through an 

interaction-curvature test (ICT) in which the most prominent features were those 

related to blast parameters (reflected impulse and reflected pressure).  

• Furthermore, the most influential column parameters were observed to be the 

applied axial load ratio and the concrete compressive strength, followed by the 

longitudinal reinforcement ratio. The results of the feature importance analysis 

were strongly supported by available experimental correlations.  

• Overall, the ML model displayed competent predictive ability as well as a strong 

aptitude for capturing the extent to which different application features affected the 

application.  

The fifth chapter investigated the applicability of developing a maximum displacement 

prediction model for RC beams using ML methods. The model development was built on 

a hybrid GBRT algorithm that employed a novel Henry Gas Solubility Optimization 

algorithm for hyperparameter tuning. A total of 150 data points were collected from the 

available literature in which eleven (11) features were selected to characterize the 

application including the beam height, width, length, concrete compressive strength, 
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longitudinal steel yield strength, tension reinforcement area, compression reinforcement 

area, stirrup spacing, support conditions, reflected pressure and reflected impulse. The 

conclusions drawn from various analyses and model developments in this chapter are 

presented:  

• The statistical performance metrics of the RC beam displacement prediction model 

resulted in MAE of 5.3, VEcv of 88.1%, and R2 of 92.1%.  

• When direct comparisons to existing methods were made, two alternative sets were 

defined. The first consisted of thirty-nine comparisons and considered normal-

strength concrete beams, while the second considered high-strength concrete beams 

and captured twenty-three comparisons. The proposed model achieved satisfactory 

performance compared to that of existing methods for both comparison sets.  

• A feature importance analysis was conducted based on ICT in which the parameters 

of reflected pressure and reflected impulse had the highest influence, followed by 

the beam parameters including steel yield strength, tension reinforcement ratio, and 

concrete compressive strength.  

• A secondary ML model was developed within the chapter, which focused on the 

classification of failure modes and crack patterns for blast-loaded RC beams. The 

various class outputs considered were flexural cracking, bending failure, flexural-

shear cracking, and crushing failure.  

• The proposed classification model presented a binary classification accuracy of 

93.1% and a multi-class classification accuracy of 83.74%. Using the same feature 

importance analysis, the features of reflected impulse, reflected pressure, and 

tension reinforcement ratio were found to have the greatest effect on the resulting 

qualitative behavior. 

• Consequently, the overall performance of both ML models for RC beams was 

favorable in which both local and global member response predictions were 

demonstrated. 
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The sixth chapter investigated the development of a ML model considering fiber-reinforced 

polymer (FRP) retrofitting as a blast mitigation strategy. The developed model aimed to 

predict the maximum displacement of FRP retrofitted RC slabs under blast loading and 

adopted a Gaussian process (GP) regression algorithm with a non-isotropic exponential 

kernel function. Additionally, a Tabular Generative Adversarial Network (TGAN) was 

considered to generate synthetic data. The model development considered a total of 70 real 

and 200 synthetic data points having thirteen (13) features of slab length, width, thickness, 

concrete compressive strength, steel yield strength, steel reinforcement ratio, slab type, 

FRP tensile strength, surface bond strength, FRP cross-sectional area, FRP configuration, 

reflected pressure, and reflected impulse. Based on a number of model investigations 

within this chapter, the following conclusions were reached: 

• The performance metrics of mean absolute percent error (MAPE), MAE, and R2 

were utilized to evaluate the FRP retrofitted RC slab displacement prediction model 

yielding values of 13.2%, 2.28, and 97.7%, respectively.  

• Twenty-seven direct comparisons to existing analytical models were performed in 

which the ML model achieved superior performance. Similarly, indirect 

comparisons were made with respect to nine predictions of numerical models in 

which comparable predictive capabilities were remarked.  

• Based on ICT, the most influential features were observed to be the reflected 

pressure, reflected impulse, FRP configuration, and the steel reinforcement ratio.  

• A comparative feature analysis was also made with respect to non-retrofitted RC 

slabs for the features of slab depth, concrete compressive strength, steel yield 

strength, and reinforcement ratio. Based on these features, variations between FRP 

retrofitted and non-retrofitted RC slabs were investigated. 

• Considering the overall model evaluation, the proposed ML model attained highly 

acceptable predictive performance and was proven to be a strong competitor for 

displacement prediction of composite FRP retrofitted members. 
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The seventh chapter evaluated the feasibility of developing a ML model considering the 

blast mitigation strategy of incorporating steel fibers. Towards such development, a ML 

model was designed and evaluated to predict the maximum displacement of steel fiber-

reinforced concrete (SFRC) beams of varying strengths under blast loading. A GP 

regression algorithm was implemented considering an isotropic rational quadratic kernel 

function, while implementing a conditional TGAN for generating synthetic data. A total of 

117 real and 300 synthetic data points were used, which considered nine (9) features 

including the fiber content, fiber aspect ratio, fiber tensile strength, concrete compressive 

strength, steel yield strength, tension reinforcement ratio, transverse reinforcement ratio, 

reflected pressure, and reflected impulse. The following conclusions were obtained with 

respect to thorough model evaluations and further analyses conducted in this chapter: 

• The statistical performance measures used to evaluate the SFRC beam 

displacement prediction model were mean squared error (MSE), MAE, MAPE, and 

R2
, which yielded values of 6.74, 1.87, 8.71%, and 95.8%, respectively.  

• Implicit application considerations were thoroughly discussed with respect to static 

and dynamic material models for materials of SFRC, HSFRC, and UHPFRC. 

• Considering seven independent sets of comparison, the ML model was evaluated 

with respect to 138 instances of both analytical and numerical model predictions 

and was observed to produce superior performance for nearly all comparative sets.  

• A parametric analysis was conducted to evaluate the effects of the fiber content and 

fiber type on the maximum displacement of SFRC under varying magnitudes of 

blast loading. The different types of SFRC beams considered were SFRC with 

normal strength steel reinforcement (NSR), ultra-high performance SFRC 

(UHPFRC) with NSR, and UHPFRC with high strength steel reinforcement (HSR). 

• From the parametric study, it was observed that for both SFRC with NSR and 

UHPFRC with HSR, an increase in the fiber content resulted in an increase in the 

blast performance. However, for UHPFRC with NSR, an increase in the fiber 

content resulted in reduced blast performance at higher blast magnitudes.  
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• Also, it was inferred from the parametric study that shorter steel fibers having larger 

aspect ratio produced the highest blast resistance. This observation was also found 

to concur with experimental findings. 

• Overall, the proposed model achieved an exceptional predictive performance with 

a proficient comprehension of the application parameters. Considerations for an 

extended local response prediction model for SFRC beams were also proposed. 

 

8.2 Future research 

Based on the limited model discrepancies identified within each of the proposed models, it 

can be inferred that a source of predictive error resulted from the model’s lacking ability 

to form ideal associations among features. This may either result from the quality or 

quantity of the data. As a result, a primary extension of this work is to identify the gaps in 

each model’s performance by conducting a detailed analysis of the data used for model 

development. Such an analysis would also identify the feature space in which the model is 

weak, such that efforts can be made to reinforce the dataset. Furthermore, although the 

developed models considered a wide range of features (some more than others), it is also 

pertinent to identify the extent to which such ranges are practical. This may refer to member 

dimension sizes, reinforcement ratios, and the inclusion of additional design features. Once 

investigated, the dataset may be augmented with new data that accounts for practical use. 

Towards this end, new data may be considered with respect to experimental work, or 

numerical models validated by experiment. It should be noted that such investigations are 

considered to be non-trivial tasks. 

Another consideration for future research is the development of analytical expressions that 

signify the proposed models. This should be considered only after the aforementioned 

investigation is conducted. The availability of accurate analytical expressions with 

generalizing capabilities would eliminate both the ML interface and the “black-box” 

predictions. However, such expressions would need to be carefully developed such that 

accuracy is not sacrificed from the original ML model. 
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Although most of the developed models throughout this thesis deal with the global member 

behavior of maximum displacement, an attempt to investigate local behaviors was made 

through the failure mode and crack pattern classification model in Chapter Five. The 

classification model was shown to produce good accuracy, while capturing the influence 

of application parameters. Thus, possible extensions for the models in Chapters Three and 

Four would be the development of models which can predict the local condition of each 

member. Similarly, more complex extensions may be adapted for Chapters Six and Seven 

to capture the local behavior considering the respective blast-mitigation strategy. 
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