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Executive Summary 

Assessment of climate change impact on hydrology at watershed scale incorporates 

downscaling of global scale climatic variables into local scale hydrologic variables and 

computations of risk of hydrologic extremes in future for water resources planning and 

management. Atmosphere-Ocean General Circulation (AOGCM) models are designed to 

simulate time series of future climate responses accounting for enthropogenically induced 

green house gas emissions. The climatological inputs obtained from several AOGCMs 

suffer the limitations due to incomplete knowledge arising from the inherent physical, 

chemical processes and the parameterization of the model structure. This study explores 

the methods available for quantifying uncertainties from the AOGCM outputs by 

considering  fixed weights from different climate model means for the overall data 

lengths and provides an extensive investigation of the variable weight nonparametric 

kernel estimator based on the choice of bandwidths for investigating the severity of 

extreme precipitation events over the next century. The results of this study indicate that 

the variable width method is better equipped to provide more useful information of the 

uncertainties associated with different AOGCM scenarios. This study further indicates an 

increase of probabilities for higher intensities and frequencies of events. The applied 

methodology is flexible and can be adapted to any uncertainty estimation studies with 

unknown densities. 
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Introduction 

1.1 Problem Definition 

Hydrologic research and modeling is largely dependent on climatological inputs due 

to the inextricable link of water with climate. Water is the most vulnerable resource to 

climate change (Minville et al., 2008; Srikanthan and McMohan, 2001; Xu and Singh, 

2004) resulting in an increased evaporation due to higher temperatures, changes in 

amount, variability, and frequency of regional precipitation. Studies related to the impact 

of climate change on water resources have shown a significant impact on the mean 

annual discharge with changes in the intensity and frequency of precipitation (Whitfield 

and Cannon, 2000; Muzik, 2001), larger changes in reservoir storage because of a modest 

change in the natural inflow or even a changed effect in the energy production and flood 

control measure due to any effect in the hydrologic cycle (Xu and Singh, 2004).  

Climate modeling studies involving anthropogenic increase in the concentration of 

greenhouse gases have suggested an increase in the frequency and intensity of climatic 

extremes in a warmer world (Cubasch et al., 2001). The evidence of an altered climate 

has already become noticeable. Recent studies related to the Canadian climate have 

indicated a 12% increase of precipitation in southern Canada during the twentieth century 

(Zhang et al., 2000; Vincent and Mekis, 2006). This provides the justification of over a 

decade long effort to determine the impacts of anthropogenic climate change in water 

resources. However, most efforts have focused on studying the changes of means, 

although extremes usually have the greatest and most direct impact on our everyday lives, 
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community and environment. Study on the detection of changes in extremes is limited 

and hence require further investigation. 

Assessment of climate change impacts on hydrology incorporates projection of 

climate variables into a global scale, downscaling of global scale climatic variables into 

local scale hydrologic variables and computations of risk of future hydrologic extremes 

for purposes of water resources planning and management. Global scale climate variables 

are commonly projected by Coupled Atmosphere-Ocean Global Climate Models 

(AOGCMs), which provide a numerical representation of  climate systems based on the 

physical, chemical and biological properties of  their components and feedback 

interactions between these  (IPCC, 2007). These models are currently the most reliable 

tools available for obtaining the physics and chemistry of the atmosphere and oceans and 

for deriving projections of meteorological variables (temperature, precipitation, wind 

speed, solar radiation, humidity, pressure, etc). They are based on various assumptions 

about the effects of the concentration of greenhouse gases in the atmosphere coupled with 

projections of CO2 emission rates (Smith et al., 2009). 

There is a high level of confidence that AOGCMs are able to capture large scale 

circulation patterns and correctly model smoothly varying fields, such as surface 

pressure, especially at continental or larger scales. However, it is extremely unlikely that 

these models properly reproduce highly variable fields, such as precipitation (Hughes and 

Guttorp, 1994), on a regional scale, let alone for small to medium watershed. Although 

confidence has increased in the ability of AOGCMs to simulate extreme events, such as 

hot and cold spells, the frequency and the amount of precipitation during intense events 

are still underestimated.  
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1.2 Definition and Types of Uncertainty 

A proper understanding of the uncertainties resulting from human induced climate 

change will help decision makers to interpret different projected hydrologic impacts with 

confidence. Three broad areas of uncertainties have been identified by Colglazier (1991):   

 Predicting future climate 

 Predicting future impacts 

 Assessing costs and benefits of policy responses 

The first two areas, related to the present research, are described here. 

Predictions of the timing and magnitude of any future global warming are associated 

with  uncertainties in estimating future anthropogenic emissions of greenhouse gases; 

understanding the resulting changes in the carbon cycle, especially the uptake of carbon 

in the oceans; understanding the dynamic climatic response with all the relevant feedback 

mechanisms, such as those from clouds and Ocean currents; projecting regional 

variations; and estimating the frequency of severe events such as hurricanes and droughts 

(Colglazier, 1991). Although the basic theory of the enhanced green house gas effect is 

now well established, and the rise in carbon dioxide concentrations since the industrial 

revolution has also been well documented, there is still much debate regarding the timing 

and quantity of warming. For decades AOGCMs have been used to predict these values; 

however there is continued uncertainty even with the improvements of the resolution of 

GCMs. 

The interpretation of uncertainties from climate models can be described from five 

sources. ‘Forcing uncertainty’ consists of using the future elements/aspects that are not a 
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part of the climate system, but have the potential to affect it. One possible form of forcing 

uncertainty arises from using climate model simulations based on different scenarios of 

future concentrations of atmospheric GHGs, which depend entirely on the actions taken 

to control the GHG emissions (Cubasch et al., 2001).  

‘Initial condition uncertainty’ involves uncertainty arising from an initial state or 

ensemble of states (Stainforth et al., 2007) applied to the climate models. It can be 

‘macroscopic’ and found in state variables with relatively large slowly mixing scales, 

such that the predicted distribution is effected by the imprecise knowledge of the current 

state of the system. ‘Microscopic’ uncertainty, on the other hand, has no significant effect 

on the targeted climate distribution; the effects are only identified during weather 

forecast.   

‘Model imperfection’ describes the uncertainty that results from a limited 

understanding and ability to simulate the Earth’s climate. It is sub-divided into two types: 

‘uncertainty’ and ‘inadequacy’. ‘Model uncertainty’ describes uncertainties in the most 

relevant parameter values to be used in the model (Murphy et al., 2004). It characterizes 

the impact of known uncertainties and can be large at regional scales. Climate models, in 

this respect, are considered rather complicated. Extending this from parameter values to 

parameterizations enables an improved representation of various processes within the 

model and makes model uncertainty an extended form of the ‘parameter 

uncertainty’(Kennedy and O’Hagan, 2001). ‘Model inadequacy’ results from the limited 

ability of the climate models to represent natural systems. These models provide no 

information on important processes related to climate change on decadal to centennial 

time scales, such as the carbon cycle, atmospheric and oceanic chemistry and 
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stratospheric circulation. They further suffer from limited spatial resolution, inadequate 

representation of hurricanes, the diurnal cycle of tropical precipitation, characteristics of 

El Nino Southern Oscillation (ENSO) and the inter tropical convergence zone (Trenberth 

et al., 2003).  

1.3 Organization of the Report 

The report is organized as follows: literature relevant to the development of methods 

for assessing climate change impacts are presented in chapter 2. The development of 

proposed uncertainty estimation methodology is presented step by step in Chapter 3, 

including the model and parameter set up. Finally, the performances of the variable 

weight and fixed weight methods for quantification of AOGCM uncertainties in extreme 

precipitation events are presented. Finally, the findings of the results are discussed in 

Chapter 4. 
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2. Literature Review 

In recent years, quantifying uncertainties from AOGCM choice and scenario 

selections used for impact assessments has been identified as critical for climate change 

and adaptation research. Climate change impact studies derived from AOGCM outputs 

are associated with uncertainties due to “incomplete” knowledge originating from 

insufficient information or understanding of the relevant biophysical processes, or a lack 

of analytical resources. Examples of uncertainty include the simplification of complex 

processes involved in atmospheric and oceanographic transfers, inaccurate assumptions 

about climatic processes, limited spatial and temporal resolution resulting in a 

disagreement between AOGCMs over regional climate change, etc. Uncertainties also 

emerge due to “unknowable” knowledge, which arises from the inherent complexity of 

the Earth system and from our inability to forecast future socio-economic and human 

behavioral patterns in a deterministic manner (New and Hulme, 2000; Allan and Ingram, 

2002; Proudhomme et al., 2003; Wilby and Harris, 2006; Stainforth et al., 2007; IPCC, 

2007, Buytaert et al, 2009). Selection of the most appropriate AOGCM for the realization 

of future climate depends on user’s ability to assess the model’s strengths and 

weaknesses, the inability of which  is recognized as one of the major sources of 

uncertainty (Wilby and Harris, 2006, Ghosh and Mujumdar, 2007; Tebaldi and Smith, 

2010). It has been established that the accuracy of AOGCMs decrease at finer spatial and 

temporal scales; a typical resolution of AOGCMs ranges from 250 km to 600 km, but the 

need for impact studies conversely increases at finer scales. The representation of 

regional precipitation is distorted due to this coarse resolution and thus it cannot capture 

the subgrid-scale processes required for the formation of site-specific precipitation 
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conditions. While some models are parameterized, details of the land-water distribution 

or topography in others are not represented at all (Widmann et al., 2003). Studies have 

found that the models failed to predict the high variability in daily precipitation and could 

not accurately simulate present-day monthly precipitation amounts (Trigo and Palutikof, 

2001; Brissette et al., 2006).  

2.1 Downscaling of AOGCM Outputs 

In order to estimate uncertainties at smaller spatial scales, output from climate models 

are scaled down to a suitable level. Statistical and dynamic downscaling represents two 

common branches for the development of climate scenarios depending on regions, time 

periods and the variables of interest. The approaches for dynamic downscaling involve (i) 

running a regional scale limited area model with coarse GCM data as geographical or 

spectral boundary conditions, (ii) performing global-scale experiments with high 

resolution Atmosphere-GCM (AGCM), with coarse GCM data as initial (as partially and 

boundary) conditions, and (iii) the use of a variable-resolution global model with the 

highest resolution over the area of interest (Rummukainen, 1997). The most common 

technique for dynamic downscaling involves utilizing Regional Climate Models (RCMs), 

which perform  at a much higher resolution and can simulate climatic variables more 

accurately for any region (Brissette et al., 2006). AOGCM output variables are used as 

boundary inputs for the RCMs, and provide a more accurate representation of the local 

climate than the coarsely gridded AOGCM data alone. The works of Vidal and Wade 

(2008), Wood et al. (2004) and Schmidli et al. (2006) compared dynamic downscaling to 

other methods. A limitation of the dynamic approach is the scale of RCM’s 

(approximately 40 km x 40 km according to Brissette et al., 2006), which is still too 
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coarse for application to smaller basins. The computational effort required for the 

dynamic approach makes it impractical where several AOGCMs and emissions scenarios 

are used (Maurer, 2007). Furthermore, RCMs have only been produced for selected 

areas; moving to a slightly different region requires repeating the experiment (Kay and 

Davies, 2008).  

The second approach, namely statistical downscaling, is more popular in climate 

change impact assessments due to its computational ease and its ability to produce 

synthetic datasets of any desired length. In statistical downscaling statistical relationships 

are developed to transfer large-scale features of the predictors (AOGCM) to regional 

scale predictands (variables). Hewitson and Crane (1992) pointed out three underlying 

assumptions related to statistical downscaling: (i) the predictors are variables of relevance 

and are realistically modeled by the host AOGCM; (ii) the empirical relationship is also 

valid under altered climate conditions; and (iii) the predictors employed fully represent 

the climate change signal.  

Several methods of statistical downscaling can be broadly divided into three 

categories: Transfer function, weather typing and weather generator. Transfer functions 

rely on the direct quantitative relationship between the global large scale and local small 

scale variables obtained from different choices of mathematical transfer functions, 

predictors or statistical fitting processes. Applications of neural networks, regression 

based methods, least square methods, support vector machines, empirical orthogonal 

functions (Zorita and von Storch, 1999), etc., fall in this category.  
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Weather typing involves grouping local meteorological variables with respect to 

different classes of atmospheric circulation. Future regional climate scenarios are 

constructed either by resampling from the observed variable distribution or by first 

generating synthetic sequences of weather patterns using Monte Carlo techniques and 

resampling from the generated data. The relative frequencies of the weather classes are 

weighted to derive the mean or frequency distribution of the local climate. Climate 

change is then determined from the changes of the frequency of the weather classes.  

Stochastic weather generators simulate weather data to assist in the formulation of 

water resource management policies. They are essentially complex random number 

generators, which can be used to produce a synthetic series of data. This allows the 

researcher to account for natural variability when predicting the effects of climate 

change. Weather generators have an advantage over other downscaling methods because 

by producing long duration rainfall series, it is possible to examine rare events and 

extremes in the river basin (Brissette et al., 2007; Diaz-Nieto and Wilby, 2005; Wilks and 

Wilby, 1999). The underlying assumption of weather generator is that the past (control 

experiment) would be a representative of the future. It is, however, difficult to guarantee 

that the statistical relationship derived from current climate will remain same for future in 

the presence of climate change (Hewitson and Crane, 1996; Schulze, 1997; Joubert and 

Hewitson, 1997).  

Parametric, empirical or semi-parametric, and non-parametric (Brissette et al., 2007) 

weather generators are commonly used by the scientific community. In most parametric 

weather generators, a Markov chain is used to determine the probability of a wet or dry 

day and a probability distribution is assumed to determine the amount of precipitation 
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(Kuchar, 2004; Hanson and Johnson, 1998). Most of the parametric weather generators 

are extensions of Richardson’s WGEN, which was developed in 1981 (Richardson, 

1981). Some examples of the parametric weather generators successfully employed using 

the Richardson approach are CLIGEN, WGENK, GEM, WXGEN, and SIMMENTO 

(Kuchar, 2004; Schoof et al., 2005; Hanson and Johnson, 1998; Soltani and 

Hoogenboom, 2003). Hanson and Johnson (1998) compared outputs from GEM to 

historical data using the means and standard deviations. Results from that study showed 

that simulated total precipitation values were significantly underestimated for some 

months, and annual precipitation values were considerably less than the historical record 

(Hanson and Johnson, 1998). A study employing the SIMMENTO weather generator 

found that the variability (standard deviations) of wet fractions and amounts were 

significantly overestimated by the synthetic historical series (Elshamy et al., 2006). A 

major drawback of the parametric approach is that the Markov chain does not take into 

account the previous days’ weather. As a result of this, the rare events, such as droughts 

or wet spells are not adequately produced (Sharif and Burn, 2007; Semenov and Barrow, 

1997; Dibike and Coulibaly, 2005). Another limitation of the parametric weather 

generators is that an assumption must be made about the probability distribution of 

precipitation amounts, and different distributions do not give similar results (Sharif and 

Burn, 2007). Furthermore, the weather generators cannot be easily transferred to other 

basins as their underlying probability assumptions would change (Sharif and Burn, 2006). 

The computational effort is also significantly higher than other methods since many 

parameters must be estimated and statistically verified (Mehrotra et al., 2006). Parametric 
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weather generators are less easily applied to multiple sites as simulations occur 

independently and thus spatial correlations would have to be assumed.  

Semi-Parametric or Empirical weather generators include LARS-WG and the Wilks 

model, SDSM (Semenov and Barrow, 1997; Wilks and Wilby, 1999). LARS-WG differs 

from the parametric approaches described above because it employs a series-approach in 

which the wet and dry spells are determined by taking into account the observed values 

and assuming mixed-exponential distributions for dry/wet series as well as precipitation 

amounts (Semenov and Barrow, 1997). The wet/dry day status is first chosen, and then 

the amount is chosen conditional on the status. As such, the LARS-WG was able to 

satisfactorily reproduce wet and dry spells, unlike the parametric weather generators 

(Dibike and Coulibaly, 2005). Wilks (1998) improved on the parametric models of 

Richardson (1981) by introducing Markov-chains of higher order that have a better 

“memory” of the preceding weather. The Richardson (1981) model was further extended 

for multi-site applications by using a collection of single site models in which a 

conditional probability distribution is specified and thus spatially correlated random 

numbers can be generated (Mehrotra, 2006; Wilks, 1998). A drawback to these empirical 

approaches is that there is still a subjective assumption about the type of probability 

distribution for precipitation amounts and spell lengths, and the spatial correlation 

structure is empirically estimated for use with multiple sites.  

Non-parametric weather generators are computationally simple and do not require 

any statistical assumptions to be made. They work by using a nearest-neighbor 

resampling procedure known as the K-NN approach (Sharif and Burn, 2007; Brandsma 

and Buishand, 1998; Beersma et al., 2002; Yates et al., 2003). The nearest neighbor 
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algorithm works by searching the days in the historical record that  have similar 

characteristics to those of the previously simulated day, and then randomly selecting one 

of these as the simulated value for the next day (Beersma et al., 2002). This approach is 

easily used in multi-site studies because the values are simulated concurrently, thus 

spatial correlation is preserved (Mehrotra et al. 2006). The K-NN algorithm has been 

successfully used for multi-site hydrological impact assessments in the Rhine Basin, 

accurately preserving spatial correlation and climatic variability (Beersma et al., 2002; 

Brandsma and Buishand, 1998). Apipattanavis et al. (2007) compared a K-NN to a semi-

parametric weather generator. Box plots of wet-spell lengths showed that for some 

months the semi-parametric model could not reproduce maximum wet spell lengths, and 

average spell lengths were underestimated for the traditional K-NN model. A major 

limitation to the K-NN approach is that the values are merely reshuffled, thus no new 

values are produced (Sharif and Burn, 2007). Climatic extremes are essential in 

predicting flooding events in response to climate change, thus Sharif and Burn (2007) 

modified the K-NN algorithm to produce unprecedented precipitation amounts by 

introducing a perturbation component in which a random component is added to the 

resampled data points (Sharif and Burn, 2007). Monthly total precipitation and total 

monthly wet day box plots were used to evaluate the performance of the Modified K-NN 

algorithm. The algorithm was able to satisfactorily reproduce the statistics of the original 

dataset while adding variability, which is crucial in hydrologic impact assessments 

(Sharif and Burn, 2007). Prodanovic and Simonovic (2006) altered the Modified K-NN 

algorithm of Sharif and Burn (2007) to account for the leap year. In order to allow for 

more variables for an improved selection of nearest neighbor, principal components are 
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added in the weather generator (WG-PCA).  With the inclusion of more variables and 

perturbations, the updated model is expected to more accurately define both present day 

climate conditions and also to produce estimates of future climate scenarios.  

However, studies have indicated that the task of downscaling can sometimes become 

challenging due to the absence of proper station measurements. Gridded databases, such 

as the National Center for Environmental Prediction – National Center for Atmospheric 

Research (NCEP-NCAR) Global Reanalysis – NNGR (Kalnay et al., 1996) and the North 

American Regional Reanalysis – NARR (Mesinger et al., 2006) can be viable alternatives 

for alleviating these limitations of missing data and spatial bias resulting from uneven 

and unrepresentative spatial modelling (Robeson and Ensor, 2006; Ensor and Robeson, 

2008). The reanalysis data are advantageous in impact studies because they are based on 

the AOGCMs with a fixed dynamic core, physical parameterizations and data 

assimilation systems (Castro et al., 2007).  

Global (NNGR) and regional (NARR) reanalysis databases are also gaining use in 

uncertainty assessment studies. In many of their applications, however, the NNGR 

resolution (250 km × 250 km) is not satisfactory, especially in regions with a complex 

topography (Choi et al., 2009; Tolika et al, 2006; Rusticucci and Kousky, 2002; 

Haberlandt and Kite, 1998; Castro et al., 2007). The NARR dataset (Mesinger et al., 

2006) is a major improvement upon the global reanalysis datasets in both resolution and 

accuracy. Literature related to an inter-comparison between the global and regional 

datasets (Nigam and Ruiz-Barradas, 2006; Woo and Thorne, 2006; Castro et al., 2007; 

Choi et al., 2007 and 2009) shows better agreement of NARR data. More recently, 

Solaiman and Simonovic (2010a) conducted a rigorous assessment of the NARR and 
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NNGR database for application in the Upper Thames river basin (Ontario, Canada),  for 

hydrological modeling and/or climate change impact studies. 

2.2 Multi-Model Ensembles for Uncertainty Research  

In most of the climate change impact assessment studies, single AOGCMs have been 

used for predicting future climate. It is well understood that in the current context of huge 

uncertainties, the utilization of a single AOGCM may only represent a single realization 

out of a multiplicity of possible realizations, and therefore cannot be representative of the 

future. So, for a comprehensive assessment of future changes in climate conditions, it is 

important to use collective information by utilizing all available models and by 

synthesizing the projections and uncertainties in a probabilistic manner. 

Studies that used multiple climate model information are, however, cannot be found 

in abundance. Of the literatures available, one of the common approaches is the use of 

reliability estimates to multi-model ensembles. The earliest research, to our knowledge, 

to consider a multimodel ensemble approach was conducted by  Raisanen and Palmer 

(2001), who treated the ensemble members as equally probable realizations and 

determined probabilities of climate change by computing the fraction of ensemble 

members in which the differential properties of models, such as bias and rate of 

convergence, were disregarded.  

Giorgi and Mearns (2003) confronted the approach undertaken in Raisanen and 

Palmer by introducing the “Reliability Ensemble Averaging (REA)” technique, which 

considered the reliability-based likelihood of realization by models to calculate the 
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probability of regional temperature and precipitation change. They found this technique 

to be more flexible in the assessment of risk and cost in regional climate change studies.  

Tebaldi et al. (2004; 2005) used Bayesian statistics to estimate a distribution of future 

climates through the combination of past observational data and the corresponding 

AOGCM simulated climates. This technique was motivated by the assumption that an 

AOGCM ensemble represents a “sample of the full potential climate model space 

compatible with the observed climate using probability distributions (PDFs)” at a 

regional scale.  

Recently, Smith et al. (2009) extended the work of Tebaldi et al. by introducing the 

univariate approach to consider one region at a time. They are still using a multivariate 

approach, including cross validation, to confirm the resemblance of the Bayesian 

predictive distributions. Other literature on Bayesian methods in multi-model ensembles 

includes work from Allan et al. [2000], Benestad [2004], Stone and Allan [2005], and 

Jackson et al. [2004].  

Another class of new but promising uncertainty estimation methods incorporates the 

downscaling of AOGCM scenarios and quantifying uncertainties by separately weighting 

outputs from different AOGCMs in each time step based on their performances. The 

results can be presented in a probabilistic framework. Wilby and Harris [2006] developed 

a probabilistic framework to combine information from four AOGCMs, two greenhouse 

scenarios where the AOGCMs were weighted to an index of reliability for downscaled 

effective rainfall. A Monte Carlo approach was adopted to explore components of 

uncertainty affecting projections for the river Thames for 2080s. The resulting cumulative 
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distribution functions appeared to be most sensitive to uncertainty in (i) the selection of 

climate change scenarios, and (ii) the downscaling of different AOGCMs.  

Ghosh and Mujumdar (2007) used NNGR to develop a methodology capable of 

assessing AOGCM uncertainty due to different AOGCMs by considering different 

probability density functions for each time step. They used the information on uncertainty 

in examining future drought scenarios in a nonparametric manner. Samples of drought 

indicators were generated with results from downscaled precipitation using a statistical 

regression approach from available AOGCMs and scenarios. The severity of droughts 

was presented in a nonparametric kernel estimation and orthonormal approach.  

The implications of uncertainties in estimating the severity of extreme precipitation 

events is an area of research not yet fully explored. The present study aims to compare 

the uncertainties of precipitation change on a watershed scale by using two very different 

methods: the Bayesian Reliability Ensemble Average (BA-REA) by Tebaldi et al. (2004; 

2005) and the nonparametric kernel estimator. A classification scheme for investigating 

the severity level of extreme precipitation indices is addressed. Finally, the nonparametric 

data driven kernel density estimation methods are investigated to quantify uncertainties 

associated with AOGCM and scenario outputs for extreme precipitation events.  
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3. Methodology 

3.1 Study Area 

The Upper Thames River (UTR) basin (Figure 1) (42
0
35’24’’N, 81

0
8’24’’W), located 

in  Southwestern Ontario, Canada, is a 3,500 km
2
 area nested between the Great Lakes of 

Huron and Erie. The basin often experiences major hydrologic hazards, such as floods 

and droughts. The basin has a well documented history of flooding events dating back to 

the 1700s (Prodanovic and Simonovic 2006).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Upper Thames River Basin 
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High flows mostly take place in early March after snowmelt, and again in July and 

August as a result of summer storms. Khaliq et al (2008) reported that in the Canadian 

regime, low flow conditions follow a seasonal behavioral pattern: summer low flow 

occurs between June to November and winter low flow during the December and May 

periods.  The UTR basin experiences frequent low flow conditions between June and 

September (Prodanovic and Simonovic 2006).  

The population of the basin is approximately 450,000 (2006), of which 350,000 are 

the residents of the City of London. The Thames river basin consists of two majors 

tributaries of the river Thames: the North Branch (1,750 km
2
), flowing southward 

through Mitchell and St. Mary’s, and eventually into London, and the South Branch 

(1,360 km
2
), flowing through Woodstock, Ingersoll, and east London. The Upper Thames 

River basin receives about 1,000 mm of annual precipitation, 60% of which is lost 

through evaporation and/or evapotranspiration, stored in ponds and wetlands, or 

recharged as groundwater (Prodanovic and Simonovic 2006).  

3.2 Database 

3.2.1 Selection of Predictors 

Daily precipitation and temperature are the most important atmospheric forcing 

parameters required for any hydrologic impact study for a larger river basin (Salathe Jr., 

2003). However, climate models do not resolve important mesoscale and surface features 

that control precipitation in an area. The choice of appropriate predictors or 

characteristics from the large-scale atmospheric circulation is one of the most important 

steps in downscaling. Rainfall can be related to air mass transport and thus related to 
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atmospheric circulation, which is a consequence of pressure differences and anomalies 

(Bardossy, 1997). Mean sea level pressure is the basis of derived variables such as 

surface vorticity, airflow strength, meridional and zonal flow components and divergence 

(Wilby and Wigley, 2000). Specific humidity is recognized as significant for AOGCM 

precipitation schemes (Hennessy et al., 1997). Considering all the above factors, 

predictor variables mentioned in Table 1 are initially chosen to generate precipitation in 

this study.  

Table 1: Definition of Predictor Variables 

Predictors Abbreviations 

Precipitation (mm/day) Precip 

Maximum temperature (
0
C) Tmax 

Minimum temperature (
0
C) Tmin 

Mean sea level pressure (Pa) MSL 

Specific humidity (Kg/ Kg) SPFH 

Zonal (eastward) wind velocity component (m/s) at 10 m UGRD 

Meridional (northward) wind velocity component (m/s) at 10 m VGRD 

 

Daily observed precipitation (precip), maximum and minimum temperature (Tmax 

and Tmin) data from 22 stations covering the UTR basin for the period of 1979-2005 is 

collected from Environment Canada 

(http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html) (Table 2).  

The rest of the atmospheric variables are collected from the NARR reanalysis dataset 

for the period of 1979 – 2005. Precipitation values less than 0.5 mm day
-1

 are considered 

zero as suggested by Reid et al. (2001) and Choi et al. (2007).  NARR data for this study 

has been made available through the Data Access Integration of the Canadian Climate 

Change Scenarios Network of Environment Canada.  

http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html
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Table 2: Weather Stations used for Uncertainty Estimation 

 

Serial Station Name 

Location 

Correlation Latitude 

(
0
N) 

Longitude 

(
0
W) 

Elevation 

(m) 

1 Blyth 43.72 81.38 350.50 0.42 

2 Brantford 43.72 81.38 196.00 0.65 

3 Chatham 42.38 82.20 180.00 0.49 

4 Delhi 42.87 80.55 231.70 0.66 

5 Dorchester 43.00 81.03 271.30 0.79 

6 Embro 43.25 80.93 358.10 0.70 

7 Exeter 43.35 81.50 262.10 0.57 

8 Fergus 43.73 80.33 417.60 0.56 

9 Foldens 43.02 80.78 328.00 0.73 

10 Glen Allan 43.68 80.71 400.00 0.57 

11 Hamilton A 43.17 79.93 237.70 0.67 

12 Ilderton 43.05 81.43 266.70 0.70 

13 London A 43.03 80.15 278.00 0.56 

14 Petrolia Town 42.86 82.17 201.20 0.52 

15 Ridge Town 42.45 81.88 205.70 0.68 

16 Sarnia 43.00 82.32 180.60 0.63 

17 Stratford 43.37 81.00 345.00 0.61 

18 St. Thomas 42.78 81.17 209.10 0.68 

19 Tilsonburg 42.86 80.72 213.40 0.73 

20 Waterloo A 43.46 81.38 317.00 0.72 

21 Woodstock 43.14 80.77 281.90 0.49 

22 Wroxeter 43.86 81.15 335.00 0.42 

Data source: National Climate Data and Information Archive of Environment Canada                              

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html, Retrieved 14/11/2007) 

 

 

 

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
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3.2.2 Future Climate Change Scenarios 

The Canadian Climate Change Scenarios Network (CCCSN) provides access to 

several AOGCM models and emissions scenarios. The website allows the user to specify 

the range of geographical co-ordinates required, as well as the climatic variable and time 

period of interest. For the purpose of this study, the time slices collected were 1960-

1990 (baseline), 2011-2040 (2020’s) and 2071-2100 (2080s). Seven variables were 

chosen: minimum temperature, maximum temperature, precipitation, specific humidity, 

northward wind component, southward wind component and mean sea level pressure. 

Six AOGCM models were collected, each with two to three emissions scenarios, as 

specified by the IPCC’s Special Report on Emissions Scenarios (Nakicenovic et al, 

2000). Full descriptions of the emissions scenarios can be found in Appendix A. Table 3 

lists the AOGCM’s along with the emissions scenarios available and their origin. 

Appendix B provides descriptions of each AOGCM. 

Both NARR and the AOGCM datasets are processed to conform to the station’s grid 

points.  

3.3 Multi-Model Uncertainty Estimation Methods 

Two approaches based on fundamentally different assumptions are applied to 

estimate uncertainty in climate model projections of future precipitation under different 

forcing scenarios. First, a Bayesian statistics approach is applied to estimate a distribution 

of future climates from the combination of past observed and corresponding AOGCM-

simulated data.  Next, a methodology combining statistical downscaling using a PCA-

based weather generator approach and nonparametric kernel density estimation technique 

is developed to quantify the uncertainties from AOGCMs. The difference between these 
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two approaches lies in the fact that the BA-REA method combines uncertainties from 

different AOGCMs based on its mean bias, so a single weight for different models is 

present; whereas the nonparametric kernel estimator is capable of providing weights for 

any point of interest.  

Table 3: AOGCM Models and Emission Scenarios used for Uncertainty Estimation 

GCM Models Sponsors, Country 
SRES 

Scenarios 

Atmospheric 

Resolution 

Lat Long 

CGCM3T47, 2005 Canadian Centre for Climate 

Modelling and Analysis, Canada 

A1B, A2, B1 3.75° 3.75° 

CGCM3T63, 2005 A1B, A2, B1 2.81° 2.81° 

CSIROMK3.5, 

2001 

Commonwealth Scientific and 

Industrial Research Organization 

(CISRO) Atmospheric Research, 

Australia 

A2, B1 1.875° 1.875° 

GISSAOM, 2004 

National Aeronautics and Space 

Administration (NASA)/ Goddard 

Institute for Space Studies (GISS), 

USA 

A1B, B1 3° 4° 

MIROC3.2HIRES, 

2004 

Centre for Climate System 

Research (University of Tokyo), 

National Institute for 

Environmental Studies, and Frontier 

Research Centre for Global Change 

(JAMSTEC), Japan 

A1B, B1 1.125° 1.125° 

MIROC3.2MEDR

ES, 2004 
A1B, A2, B1 2.8° 2.8° 

Data source: Canadian Climate Change Scenario Network Website, (http://cccsn.ca/?page=dd-

gcm, Retrieved 9/20/2008) 

 

 

 

http://cccsn.ca/?page=dd-gcm
http://cccsn.ca/?page=dd-gcm
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3.3.1 The Bayesian Reliability Ensemble Average (BA-REA) Method  

The methodology developed by Tebaldi et al. (2004; 2005) consists of a formal 

Bayesian implementation and extension of the reliability ensemble averaging (REA) 

approach of Giorgi and Mearns (2002; 2003). It combines data from observations and a 

multi-model ensemble of AOGCMs to compute PDFs of future temperature and 

precipitation change over large regions under different forcing scenarios. Three 

components constitute the model structure: prior, likelihood, and posterior. The 

assumption is that the variability of present and future climate from different AOGCMs 

are random quantities and have different variances which are priori unknown. Although 

uninformative prior distribution has been chosen, both model-generated and 

observational data are applied for calculating meaningful posterior distributions.  

The choice of an uninformative prior distribution has the advantage of selecting 

parameter estimates similar to non-Bayesian approaches, such as maximum likelihood. In 

cases where there is no sufficient agreement between experts to determine a specific prior 

and no data from previous studies could be incorporated, ( a situation similar to wide 

range of future climate scenarios), selection of an uninformative prior is justified.  

The choice of the likelihood or distribution of the data as a function of any random 

parameters constitutes the second parameter. The AOGCM responses are assumed to 

have a symmetric distribution whose center is the ‘true value’ of the variable of interest, 

but maintains an individual variability to be a measure of how well each AOGCM depicts 

the natural variability. 

The prior and posterior distributions are combined into a joint posterior distribution 

using the Bayes’ theorem. The empirical estimate of the posterior distribution is obtained 
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using the Markov Chain Monte Carlo (MCMC) simulation by simulating samples from 

the posterior distribution.   

Likelihoods 

 The likelihoods for the observations of current mean precipitation    , simulations 

of present      and future      mean precipitation by the i
th

 model can be written as: 

    [      
  ]  , the likelihood of the observations of current climate 

Or 

alternately, 

        

    [      
  ]                                                                                                                              

 Or alternately, 

        (assuming a common Gaussian distribution for the error terms)      

    [       
  ] 

Or alternately, 

              
  

√ 
⁄    (assuming a common Gaussian distribution for the error 

terms) 

Where,   and   are random variables presenting the (unknown) true present and 

future mean precipitations respectively.     
   and     

   can be considered as a 

measure of i
th 

AOGCM precision, and the estimates of natural observed variability, which 
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depends on the season, region and time average of the observation. The parameter    is 

fixed as the reciprocal of the squared value of the standard deviation of the observations. 

Random variable   allows for the possibility of the future and present precipitations 

having different variances by a multiplicative factor and is common to all AOGCMs.  

The alternate forms of equation 3.1 links    and    through a linear regression 

equation equivalent to assuming that         are jointly normal when parameter values 

are given and the correlation coefficient is relaxed to vary between -1 and + 1. For 

      the modified equation for    will create a direct (if positive) or inverse (if 

negative) relation between      and     . The value of    is also significant for 

representing the correlation: a value of 1 denotes the conditional independence of the 

signal of precipitation change produced by any AOGCM and     , the model bias for 

current precipitation. Values greater or smaller than 1 imply a positive or negative 

correlation between them.  

Prior Distribution 

The prior distributions are chosen for the following precision parameters: 

             have Gamma prior densities (Ga(a,b)): 

  

    
  
                                                                                                                                         

                                                                        

Where,   and   are known. Similarly for       are assumed to be known. For the 

model,               are chosen. 
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 The true climate means μ and ν for present and future precipitation have uniform prior 

densities so that even in case of improper priors (do not integrate to one) they are 

assumed to have a proper posterior density function.  

Posterior Distribution 

Bayes’ theorem is applied to the likelihood and propers. The resulting joint posterior 

distribution is given by: 

∏ [  
           

 
 ⁄    { 

  

 
                }]              { 

  

 
      

   

   }                                                                                                                                                                               

 

The above distribution does not represent any specific known parameter family. The 

posterior distribution fixes the parameters and considers a conditional posterior for others 

to synthesize the data and the prior assumptions. For example, the distribution of µ for 

fixing all other parameters is Gaussian with  

Mean:                                 

 ̃  
(∑     

  
   )

(∑   
  
   )

⁄                                                                                                                           

Variance:                       

(∑  

  

   

)

  

                                                                                                                                          

Similarly, the conditional distribution of   is Gaussian with 
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Mean:                             

 ̃  
(∑     

  
   )

(∑   
  
   )

⁄                                                                                                              

Variance:   

( ∑  

  

   

)

  

                                                                                                                                      

      

Equations 3.4 and 3.6 are comparable to the REA results as the weighted means of 

the 15 different AOGCMs with their scenarios and the observation with weights 

              respectively. These weights are derived by assuming parameters with 

random quantities and hence can be used for uncertainty estimation. This uncertainty will 

inflate the width of the posterior distributions of     and also the precipitation change, 

  .  

The mean of the posterior distribution of the     for            is approximated as: 

    |{                     }  
   

  
 
 
     μ̃   θ    ν̃   

                               

     Equation 3.8 expresses how the bias and convergence criteria are built  into the model 

implicitly since the precision parameter or the weights    for each AOGCM are large 

provided the bias |    | and convergence |    | or the distance of the i
th

 model future 

response from the overall average response  are small. So the results are strictly 

constrained by their convergence into future projections determined by the weighted 
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ensemble of mean. For this study, a=b=0.001 is chosen as per Tebaldi et al. (2004, 2005) 

to ensure that the contribution of the prior assumption to equation 3.8 is negligible.  

Using the approximation similar to equation 3.1 the posterior mean can be written as: 

    |{                     } 

 
   

  
 
 (     ̃    (    ̃         ̃ )

 
)
                                   

       

     Next, the marginal posterior distribution is derived using the MCMC approach. A 

large number of sample values are generated by applying the Gibbs Sampler using 

equation 3.3 for all parameters.   

MCMC Approach: The Gibbs Sampler  

The joint posterior distribution derived from assuming different distributions such as 

Gaussian, Uniform and Gamma in different stages, does not represent any known 

parametric family of distributions. Because they are conjugate, they allow for a closed-

form deviation of all full conditional distributions.  

Auxiliary randomization parameters    and                  are used to ensure an 

efficient simulation from student’s t distribution within the Gibbs sampler. Fixing 

            , returns the full conditionals to the prior parameters. 

  |         (      
  
 
        

   
 

{             } )                  
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      Simplifying, 
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  ̃  
∑     {             }

∑            
                                                                                               

                                                                                 

From this sequence of full conditional distributions, the Gibbs sampler is coded to 

simulate iteratively. After a series of iterations, the MCMC process ignores the arbitrary 

set of initial values for parameters. Values sampled at each iteration represents a draw 

from the joint posterior distribution of interest, and any summary statistic can be 

computed to a degree of approximation that is a direct function of the number of the 

sampled values available, and an inverse function of the correlation between successive 

samples.   

The reliability of any AOGCM is measured by two criteria to form the shape of the 

posterior distribution as a consequence of assumptions formulated in the statistical 

model: mean bias of present climate and rate of convergence of the future climate models 

to weighted ensemble mean. 

Model parameters 

For this study, the area averaged precipitation response from all 15 AOGCMs and 

scenarios, averaged for the London station, is considered to compare with the PDFs 

generated by the methodology presented in Section 3.3.1.  

Data and model setup 

To generate PDF of precipitation affected by climate change, simulated present (1961-

1990) and future (2041-2070) precipitation (Xi, Yi) are considered for the winter 

(December-January-February) and summer (June-July-August) seasons. The outputs 
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from 15 different sets of experiments and from 6 AOGCMs for the two time slices are 

extracted for the 22 stations and averaged for the London station using the nearest 

neighbor approach. The natural variability is expressed as the inverse of the variance of 

observed precipitation for 1961-1990 (X0). It is calculated as the inter-annual variance on 

the basis of the observed record (X0). The computer codes used in this study can be 

downloaded from the website of the National Centre for Atmospheric Research 

(http://www.image.ucar.edu/~nychka/REA/). 

3.3.2 Nonparametric Kernel Estimators 

Downscaling 

Stochastic weather generators simulate weather data to assist in the formulation of 

water resource management policies. The basic assumption for producing synthetic 

sequences is that the past will be representative of the future. These sequences are 

essentially complex random number generators, which can be used to produce a synthetic 

series of data. This allows the researcher to account for natural variability when 

predicting the effects of climate change. 

In order to reduce multi-dimensionality and collinearity associated with the large 

number of input variables, a principal component analysis has been integrated within the 

weather generator. The process requires selecting the appropriate principal components 

(PCs) that will adequately represent most of the information of the original dataset.  

The WG-PCA algorithm with   variables and   stations works through the following 

steps: 

1) Regional means of    variables for all   stations are calculated for each day of the 
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observed data:  

 ̅   ⌊ ̅     ̅        ̅   ⌋                 {        }                                                               

     Where,  

 ̅    
 

 
∑    

 

 

   

                       {        }                                                              

  2)  The user-set parameters are as follows: potential neighbors,   days long where  

              for each of   individual variable with   years of historic 

record, and a temporal window of size  . The days within the given window are all 

potential neighbors to the feature vector.   data which correspond to the current day 

are deleted from the potential neighbors so the value of the current day is not repeated. 

3)   Regional means of the potential neighbors are calculated for each day at all   

stations. 

4)   A covariance matrix,    of size     is computed for day  . 

5)  The first time step value is randomly selected for each of   variables from all 

current day values in the historic record. 

6) Next, using the variance explained by the first principal component, Mahalanobis 

distance is calculated with equation 3.33. 

   √
          

       ⁄              {        }                                                  

 where, 

    is the value of the current day; 
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    is the nearest neighbor transferred by the Eigen vector.  

        is the variance of the first principle component is for all  nearest neighbors.  

7) The selection of the number of nearest neighbors,  , out of   potential values using 

  √ . 

8) The Mahalanobis distance    is put in order of smallest to largest, and the first K 

neighbors in the sorted list are selected (the K Nearest Neighbors). A discrete probability 

distribution is used that weights closer neighbors highest in order to resample out of the 

set of K neighbors. Using equations 3.34 and 3.35, the weights,  , are calculated for each 

  neighbor. 

   

 
 

∑
 
 

 
   

                                     {         }                                                          

Cumulative probabilities,   , are given by: 

   ∑  

 

   

                                                                                                                                   

 9) A random number        is generated and compared to the cumulative probability 

calculated above in order to select the current day’s nearest neighbor. If         , 

the day   for which   is closest to    is selected. However, if      , then the day that 

corresponds to   is chosen. For     , the day that corresponds to day    is selected. 

Upon selecting the nearest neighbor, the K-NN algorithm chooses the weather of the 

selected day for all stations in order to preserve spatial correlation in the data (Eum et al, 
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2009). 

10) In order to generate values outside the observed range, perturbation is used. A 

conditional standard deviation for   nearest neighbors is estimated. For choosing the 

optimal bandwidth of a Gaussian distribution function that minimizes the asymptotic 

mean integrated square error (AMISE), Sharma et al. (1997) reduced Silverman’s 

(Silverman 1986, pp. 86-87) equation of optimal bandwidth into the following form for a 

univariate case: 

         
 
                                                                                                                              

Using the mean value of the weather variable     
 

 
obtained in step 9 and 

variance    
 
  , a new value     

 
 can be achieved through perturbation (Sharma et al. 

1997). 

    
 

     
 

    
 
                                                                                                                         

where, 

   
 
is a random variable, distributed normally (zero mean, unit variance) for day  . 

Negative values are prevented from being produced for precipitation by employing a 

largest acceptable bandwidth (Sharma and O’Neil, 2002): 

    
    

 

      
 ⁄                                                                                                                    

where, 
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 * refers to precipitation.  

If again a negative value is returned, a new value for    is generated (Sharif and Burn, 

2006). 

Kernel based Nonparametric Uncertainty Estimator 

A practical approach to deal with AOGCM and scenario uncertainties initiating from 

inadequate information and incomplete knowledge should: (1) be robust with respect to 

model choice; (2) be statistically consistent in a uniform application across different area 

scales such as global, regional or local/watershed scales; (3) be flexible enough to deal 

with the variety of data; (4) obtain the maximum information from the sample; and (5) 

lead to consistent results. Most parametric methods do not meet all these requirements. 

The Probability Density Function (PDF) is commonly used to describe the nature of 

data. In applications an estimate of the unknown          based on random sample 

            from      is calculated in the form of    ̂   ̂   . Probability distribution 

functions estimated by any nonparametric method without prior assumptions are suitable 

for quantifying AOGCM and scenario uncertainties. Several approaches, such as kernel 

methods, orthogonal series methods, penalized-likelihood methods, k-nearest neighbor 

methods, Bayesian-spline methods, and maximum-likelihood or histogram like methods, 

are used throughout the  the relevant literature (Adamowski, 1985).  

A Kernel density estimation method has been widely used as a viable and flexible 

alternative to parametric methods in hydrology (Sharma et al., 1997; Lall, 1995), flood 

frequency analysis (Lall et al., 1993; Adamowski, 1985), and precipitation resampling 

(Lall et al., 1996) for estimating a probability density function.  
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A kernel density estimate is formed through the convolution of kernels or weight 

functions centered at the empirical frequency distribution of the data. A kernel density 

estimator involves the use of the kernel function (K(x)) defined by: 

∫         
 

  

                                                                                                                            

                                                                                        

A PDF  can thus be used as a kernel function. The Parzen-Rosenbalt kernel density 

estimate       at x, from a sample of {               } of sample size n is given by: 

  ̂    
 

 
∑

 

 
  (

    

 
)

 

   

                                                                                                    

                                                                           

Where   (
    

 
) and       is a weight or kernel function required to satisfy criteria 

such as symmetry, finite variance, and integrates to unity. Successful application of any 

kernel density estimation depends more on the choice of the smoothing parameter or 

bandwidth (h) than it does on the type of kernel function K(.), to a lesser extent. 

The bandwidth for kernel estimation may be evaluated by minimizing the deviation of 

the estimated PDF from the actual one. Assuming a normal distribution for the bandwidth 

estimation, the optimal bandwidth for a normal kernel can be given by (Polansky and 

Baker, 2000): 

           ̂  
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Where  ̂ is the sample standard deviation measured by Silverman [1986]: 

 ̂     {  
   

     ⁄ }                                                                                                          

                                                                 

    Where S is the sample standard deviation and IQR is the interquartile range. 

This methodology is applied to derive the PDF of the mean monthly precipitation at 

different time steps. 

Data preprocessing and experimental setup 

A schematic of estimating the PDFs combining uncertainties using downscaling 

technique is presented in Figure 2. For this study, daily input variables from NARR, as 

indicated in Table 2, are collected at the nearest grid points and spatially interpolated to 

the stations (Table 1) surrounding the Upper Thames River basin.  

While the direct downscaling of minimum and maximum temperature has produced 

good results, precipitation values are not well reproduced directly from AOGCM data  
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 Figure 2: Flow Chart of Uncertainty Estimation using Nonparametric Method 
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(Brissette et al., 2006). For selection of appropriate conditioning variables, several 

combinations of predictors, which are listed in Table 3, are used to generate synthetic 

versions of the historic dataset. A multi-objective Compromise Programming tool is then 

used to find an optimal set of predictors. Assessment of trade-offs between different 

combinations of variables (considered as alternatives) is done according to four 

variability measures (considered as criteria): mean, standard deviation, maximum and 

minimum values for each month. The rank of each combination is measured by the 

compromise programming distance metric, which is calculated as the distance from the 

ideal solution for each alternative. Table 4 presents the ranks obtained for each 

combination of predictors. It is clear that a combination of all seven predictors is closest 

to the ideal solution in most months, and is therefore selected for the purposes of  further 

analysis. 

Table 4: Rank Table of Different Combinations of Predictors 

Cases 
Months 

1 2 3 4 5 6 7 8 9 10 11 12 

P, Tmax, Tmin, PRMSL 7 6 5 6 3 1 1 5 7 4 6 1 

P, Tmax, Tmin, PRMSL, SPFH 4 1 7 5 4 2 7 7 6 1 3 7 

P, Tmax, Tmin, PRMSL, SPFH, 

UGRD, VGRD 
5 2 2 4 2 4 3 3 1 6 4 2 

P,Tmax,Tmin,PRMSL,UGRD,VGRD 6 4 1 7 7 5 2 1 4 2 5 6 

P, Tmax, Tmin, SPFH 3 7 4 1 5 3 6 2 5 3 7 4 

P, Tmax, Tmin, SPFH, UGRD, VGRD 2 3 6 3 1 7 5 6 3 5 2 5 

P, Tmax, Tmin, UGRD, VGRD 1 5 3 2 6 6 4 4 2 7 1 3 

* P: Precipitation, Tmax: Maximum temperature, Tmin: Minimum temperature, PRMSL: Mean sea level 

pressure, SPFH: Specific humidity, UGRD: Eastward wind component, VGRD: Northward wind 

component 
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Next, the monthly information from each of the AOGCM emission scenarios (Table 

3) is collected for four time slices: 1961-1990, 2011-2040, 2041-2070 and 2071-2100. 

Because of the limited quality and unavailability of daily inputs from many AOGCMs, 

monthly inputs should be used. Climate variables taken from the nearest grid points are  

interpolated to provide a dataset for each of the stations of interest in the same way as the 

NARRs. In order to generate future climate data, the difference between the base climate 

and the AOGCM outputs (2041-2070 or 2050s) are computed for all predictors. The 

change factors are then used to modify the historic dataset collected for each station, 

thereby creating a future dataset. The differences between current and future climate are  

used to calculate the monthly change factor and then added to  the predictors to generate 

a modified time series. This modified dataset is used as input into the weather generator 

to produce synthetic datasets of any length for the time period of interest.  

In order to reduce multi-dimensionality and collinearity associated with the large 

number of input variables, a principal component analysis is integrated with the weather 

generator. The process requires the selection of the appropriate principal components 

(PCs) that will adequately represent most information in the original dataset. It is found 

that the first PC is able to explain over 95% of the variations associated with the inputs. 

Hence, only the first PC is considered for the weather generator. 

The daily future data, downscaled using WG-PCA, are averaged to a monthly value 

in order to draw a PDF for comparison with the BA-REA approach. The average monthly 

total values for winter (DJF) and summer (JJA) for each scenario are considered. Values 

from each AOGCM for any specific year are considered as an independent set of 

realization and are used to draw PDFs.  
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3.4 Indexing Extreme Precipitation Events  

Simulation of extreme precipitation is dependent on resolution, parameterization and 

the selected thresholds. Sun et al. (2006) found that most AOGCM models tend to 

produce light precipitation (<10mm day
-1

) more often than observed, too few heavy 

precipitation events and much less precipitation during heavy events (>10 mm day
-1

) 

(Randall et al., 2007). The situation gets worse in the absence of any extreme 

precipitation indices. In the IPCC (2007), several indices explaining extreme temperature 

and precipitation are proposed but most literature reports investigations of percent change 

in the occurrences of such indices without any acceptable definition of their severity 

level.   

Three precipitation indices have been used for comparing the performance of the 

AOGCMs in generating extreme precipitation amounts. These indices describe 

precipitation frequency, intensity and extremes. The highest 5 day precipitation, number 

of very wet days and the number of heavy precipitation days express extreme features of 

precipitation. For very wet days, the 95
th

 percentile reference value has been obtained 

from all non-zero total precipitation events for the base climate. Heavy precipitation days 

are those days that experience more than 10 mm of precipitation. 

For Canada, due to large variation of precipitation intensities in various regions, a 

fixed threshold may not be good to assess the severity level (Vincent and Mekis, 2006). 

Accordingly, in this study an attempt has been made to classify the severity level of these 

indices based on percentile values. The percentile method has several advantages. It is 

simple and computationally inexpensive. It is completely data driven and does not follow 

any specific distribution, so can be used at any location with different precipitation 
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patterns. Table 5 presents the classification scheme used for the summer and winter 

season. They can be easily used to assess the impact of climate change on extreme 

precipitation events. 

Table 5: Classification of Extreme Precipitation Indices based on Percentile Approach 

Serial Description 

1 <= 25th percentile of 1961-1990 observed  precipitation 

2 25th – 50th percentile of 1961-1990 observed precipitation 

3 50th –75th percentile of 1961-1990 observed precipitation 

4 75th – 95th percentile of 1961-1990 observed precipitation 

5 >95th percentile of 1961-1990 observed precipitation 

 

3.5 Extended Kernel Estimators 

Nonparametric estimators are erroneously considered to be less accurate with small 

sample sizes (Lall et al., 1993). With the increase in sample size, the choice of estimator 

selection (parametric or nonparametric) can only be more accurately identified. 

Nonparamtric kernel estimators based on (i) normal kernel estimator (Silverman, 1986), 

and (ii) the Orthonormal method (Efromovich, 1999) have been applied by Ghosh and 

Mujumder (2007) for assessing AOGCM and scenario uncertainties of future droughts. In 

the present study, the application of a normal kernel estimator is extended with the 

commonly used bandwidth selection methods for estimating densities and addressing 

model choice and scenario choice uncertainties.  
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3.5.1 Definition 

The nonparametric kernel density estimation described in section 3.3.2 is based on the 

conventional method of assuming a normal distribution function for unknown PDFs. 

Because of an uncertain future climate, it is not justifiable to assume a normal 

distribution of the PDFs. Allowing an extension for the kernel estimator by replacing the 

normal bandwidth for a data-driven procedure can better quantify the inherent 

uncertainties arising from different AOGCMs.  

The behavior of the estimator (equation 3.28) may be analyzed mathematically under 

the assumption that the data sets represent independent realizations from a probability 

density f(x). The basic methodology of the theoretical treatment aims to discuss the 

closeness of estimator  ̂ to the true density,  . Successful application of the estimator 

depends mostly on the choice of a kernel and a smoothing parameter or bandwidth.  the 

relevant literature shows  that the choice of bandwidth is more critical. A change in 

kernel bandwidth can dramatically change the shape of the kernel estimate (Efromovich, 

1999). For each x,  ̂    can be thought as a random variable because of its dependence 

on            .  Except otherwise stated,  will refer to a sum for          and ∫ to 

an integral over the range       . 

The discrepancy of the density estimator  ̂ from its true density   can be measured by 

mean square error (MSE): 

    ( ̂)   [  ̂        ]                                                                                                  

By standard elementary properties of mean and variance,  

    ( ̂)  { [  ̂        ] }       ̂                                                                         
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     The sum of the squared bias and the variance at  . In many applications a trade-off is 

applied between the bias and the variance in equation 3.32; the bias can be reduced by 

increasing the variance and vice versa by adjusting the degree of smoothing.  It can be 

obtained by minimizing the mean integrated squared error (MISE), a widely used 

measure of global accuracy of  ̂ as an estimator of   (Rosenblatt, 1956; Adamowski, 

1985; Scott et al., 1981, Jones et al., 1996) and defined as:  

     ( ̂)   ∫[  ̂        ]                                                                                         

Or in alternative forms, 

    ( ̂)  ∫      ̂    

     ∫[  ̂        ]    ∫      ̂                                                                                 

      which gives the      as the sum of the integrated square bias and the integrated 

variance. 

Asymptotic analysis provides a simple way of quantifying how the bandwidth h 

works as a smoothing parameter. Under standard assumptions, MISE is approximated by 

the asymptotic mean integrated squared error (AIMSE) (Jones et al., 1996): 

                       (  ) (∫   
 ⁄ )

 

                                                          

     Where      ∫        and∫     ∫         , n is sample size, h is 

bandwidth. The first term (integrated variance) is large when h is too small, and the 

second term (integrated squared bias) is large when h is too large. 

The minimizer of          is easily calculated as: 
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         [
    

       ∫     
]

   

                                                                                      

                  

3.5.2 Methods for Bandwidth Selection 

Data driven estimation methods are broadly classified as first generation and second 

generation methods by Jones et al (1996).  

First Generation Methods 

First generation methods used for the selection of smoothing parameter include those 

proposed before 1990. These include the rule of thumb, least square cross validation and 

biased cross validation methods. 

The most basic method is the ‘rule of thumb’ used by Silverman (1986). The idea 

involves replacing the unknown part of hAMISE,  (  ), in equation 3.34 with  an estimated 

value based on a parametric family such as a normal distribution        . However, this 

method is known to provide an over-smoothed function (Terrell and Scott, 1985; Terrell, 

1990) and has been proven to be unrealistic in many applications. In the present study, 

     is used to denote the bandwidth based on the standard deviation in Silverman 

(1986).  

The idea of ‘least squared cross validation’, first used by Bowman (1984) and 

Rudemo (1982), incorporates integrated squared error (ISE) as  

        ∫   ̂       ∫  ̂ 
   ∫  ̂   ∫                                                            
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     The minimizer of the ISE is the same as the minimizer of the first two terms of the 

final form. The first term is known while the second term can be estimated by 

     ∑  ̂     
 
   , where  ̂  is the leave-out kernel density estimator with    removed. 

The largest minimizer is denoted by     Hall and Marron (1991).  

The biased cross validation (BLCV) proposed by Scott and Terrell (1987) seeks to 

directly minimize the AMISE by estimating the unknown       in equation 3.34. It 

proceeds by selecting another bandwidth treated as the dummy variable of minimization. 

The smallest local minimizer of 

                      [ ( ̂ 
 
 

     

  
)] (∫   

 ⁄ )
 

                              

   is denoted by     . 

Second Generation Method 

     Second generation methods comply with those developed after 1990, such as the 

solve-the-equation-plug-in approach, the smoothed bootstrap approach, etc. In this study, 

only the solve-the-equation-plug-in approach is used, and hence is described below. 

The main thought behind the ‘solve the equation plug in’ approach is to plug an 

estimate of the unknown       in the equation 3.40. The major challenge is to estimate a 

pilot bandwidth. The ‘solve the equation’ approach proposed by Hall (1980), Sheather 

(1983, 1986) and later refined by Sheather and Jones (1991) is used in this study. The 

smallest bandwidth, hSJPI, is considered as the solution of the fixed point equation 

  [
    

  ( ̂    
 ) ∫      

]
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The major difference between the BLCV and SJPI approaches lies in the expression of the 

form g(h), which provides a better representation of      . It is done by estimating an 

analogue of         for estimating       by  ( ̂ 
 ). 

The minimizer of the asymptotic mean squared error (AMSE) is expressed as:  

        {       }      
  
                                                                                                  

                                                             

for suitable functional    and   . The expression of   in terms of  comes from solving 

the representation of        for   and substituting to get 

       {              }      
 
                                                                                          

   For appropriate functionals   ,   . The unknowns        and         are estimated by 

   ̂    and    ̂    , with bandwidths chosen by reference to a parametric family, as for 

    .  

While many variations have been tested for the treatment of     ̂    and    ̂    , the 

major contribution has been to try to reduce the influence of the normal parametric family 

even further by using pilot kernel estimates instead of normal interference (Jones et al., 

1996). Park and Marron (1992) has shown the improvements in terms of the asymptotic 

rate of convergence up to a certain point.     
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4. Results and Discussion 

The performances of all methods and comparison results described in Chapter 3 are 

presented here. First, the BA-REA method and non-parametric weather generator are 

evaluated for assessing AOGCM uncertainties. The indices for estimating the severity of 

extreme precipitation events are developed and compared for future climate. Finally, the 

probabilities of extreme precipitation events are assessed with associated AOGCM and 

scenario uncertainties. 

4.1 Fixed Weight (BA-REA) Method  

The performance of the Bayesian reliability method can be assessed by model bias 

and convergence. Table 6 presents the values of the bias from six different AOGCMs. 

Bias is calculated as the difference between each AOGCM’s response to the present 

climate and the present climate as generated by the model. 

Table 6: Biases from AOGCM Responses to Present Climate (1961-1990) in London 

  

Figure 3 presents posterior distributions of precipitation change     for London 

during the winter and summer seasons. For purposes of reference, the response of 15 

models and the scenarios’ individual responses      , for i=1, 2, ….,15, are plotted  

 

Season 

Model Bias (%) 

CGCM3 

T47 

CGCM3 

T63 

CSIRO 

MK3.5 

GISS 

AOM 

MIROC 

3.2HIRES 

MIROC 

3.2MEDRES 

Summer 22.50 -2.12 6.50 12.07 -14.92 -14.10 

Winter 2.18 -1.68 11.46 -0.04 -26.24 -5.64 
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Figure 3: Posterior Distributions of DP= ν – μ in London for Winter and Summer 

 

along the x axis (dots) together with the REA estimate of mean change (triangles). A 

measure of convergence can be assessed using the relative position of the individual 

responses. The relative position is used in the identification of the outlier models and the 

models that reinforce each other. The comparison of densities in Figure 3 and the bias 

measure in Table 7 identify the models that provide higher biases (Table 7) and act as 

outliers (Figure 3). Models with smaller biases receive larger weights. The cases that 

respect both criteria are the ones where the probability density is concentrated. 
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Table 7: Relative Weighting of the 15 AOGCM Scenarios (2050s) for London  

Models/Scenarios DJF JJA 

CGCMT47_A1B 2.22 4.07 

CGCMT47_A2 1.11 1.09 

CGCMT47_B1 7.76 2.80 

CGCMT63_A1B 4.30 31.83 

CGCMT63_A2 11.06 36.56 

CGCMT63_B1 1.32 0.41 

CSIROMK35_B1 2.46 1.10 

CSIROMK35_A2 3.37 2.77 

GISSAOM_A1B 18.21 2.66 

GISSAOM_B1 24.25 4.10 

MIROC32HIRES_A1B 0.07 4.28 

MIROC32HIRES_B1 0.09 4.51 

MIROC32MEDRES_A1B 8.75 1.26 

MIROC32MEDRES_B1 8.44 0.69 

MIROC32MEDRES_A2 6.57 1.86 

 

Figure 4 summarizes the posterior distributions for the precision parameters λj. It is 

considered as a random variable. The scoring of the AOGCM scenarios should be 

evaluated through the relative position of the boxplots, rather than by comparing point 

estimates. Comparison of their distributions across the models for a single region and any 

specific season provides the ordered performances of those scenarios in simulating future 

climate. Large λj values indicate that the distributions of the AOGCM responses are more 

concentrated to the true climate response, i.e. the posterior distributions which are shifted 

towards right indicate AOGCM’s better performances than those shifted to the left. 

However, large overlaps among these distributions are evident indicating substantial 

uncertainty in the relative weighting of the models.  
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Figure 4: Posterior Distribution of λj , the Precision Parameter for Winter (Top) and 

Summer (Bottom) 

 

So the posterior mean of each λj is calculated and the results are presented as 

percentages in Tables 6 and 7. The tables clearly indicate the varying result of the model 
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performances for different seasons, thereby suggesting a differential skill in reproducing 

present day climate and a different level of agreement among the models for different 

signals of precipitation change.  Table 7 presents an overall measure of reliability for the 

AOGCMs by summing up the weights from each model through relative weighting. The 

results are ranked based on performances for summer (JJA) and winter (DJF) seasons 

separately. A difference in the relative weighting of the AOGCMs and scenarios can be 

seen.  

Next, the posterior distribution of the inflation/deflation parameter θ is  presented in 

Figure 5 to compare the simulations of the present day to future climate scenarios. A 

value below one represents a deterioration of the degree of the precision of the model 

performances.  

 

 

 

 

 

Figure 5: Posterior Distribution of θ, the Inflation/Deflation Parameter 

 

From Figure 5, it is seen that for summer and winter, the models and scenarios show 

improved performances, however with varying degree; the agreements are better 

represented during summer than winter. The figure presents an overall degree of 
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performance for the REA method by considering a common value for all AOGCMs, 

which can limit the real representation of future climate.  

4.2 Variable Weight (Kernel Estimator) Method 

The variable weight method involves downscaling the AOGCM responses for future 

climate scenarios and estimating the uncertainties using nonparametric density estimator 

by considering different weights at each time interval.  

This study uses 22 stations for the period of 1979-2005 (N=27) to simulate 

precipitation scenarios using seven meteorological variables. Employing the temporal 

window of 14 days (w=14) and 27 years of historic data (N=27), 404 days are considered 

as potential neighbors (L=(w+1) x N-1=404) for each variable. 12 different runs, each 

comprising  27 years of daily precipitation are generated. Errors in the estimates of mean 

and variance of generated precipitation are evaluated using a statistical hypothesis test at 

95% confidence level.  

The performance of WG in representing the present climate is tested by using the 

nonparametric Wilcoxon-rank test and Levene’s test (Levene, 1980). Table 8 presents the 

statistical significance test results (p values) in the estimate of daily precipitation for 

summer (JJA) and winter (DJF) for 1979-2005 in London. The p values at 95% 

confidence level for all runs are above the threshold (0.05), which clearly indicates that 

there is no evidence of different means between the observed and generated 

precipitations. The results of the Levene’s test for the equality of variances of observed 

and simulated precipitation at 95% confidence level are presented in Table 8. The p 

values appear above 0.05 thresholds, indicating equal variability of the simulated 
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precipitation with the observed precipitation. So, the observed and the simulated 

precipitation can be assumed to have equal variances. 

Table 8: Test Results (p values) of the Wilcoxon Rank Test and Levene’s Test  

Runs 
Wilcoxon Rank Test Levene’s Test 

Summer Winter Summer Winter 

1 0.46 0.48 0.61 0.55 

2 0.76 0.61 0.72 0.58 

3 0.64 0.67 0.56 0.99 

4 0.93 0.37 0.98 0.18 

5 0.60 0.98 0.87 0.59 

6 0.59 0.53 0.96 0.99 

7 0.91 0.95 0.64 0.20 

8 0.91 0.95 0.64 0.20 

9 0.76 0.67 0.98 0.84 

10 0.48 0.63 0.91 0.19 

11 0.77 0.80 0.41 0.66 

12 0.76 0.29 0.76 0.30 

 

Frequency distributions of wet-spell lengths for winter and summer months are 

plotted in Figure 6. A comparison of observed and simulated values for wet-spell lengths 

shows very close agreement between the frequency distributions. The frequency of wet-

spell lengths in the simulated data for summer is almost identical to the observed values, 

except for the one day lengths where the simulated data show a slight overestimation. 

The same is the case for the winter months. The performance of the weather generator in 

reproducing wet-spell lengths is very good. 

Using the synthetic data set created from the change factors from several AOGCMs, 

324 years of data set is generated for each case. In order to investigate the intensity of wet  
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Figure 6: Frequency Plots of Wet Spell Lengths for Summer (Top) and Winter (Bottom) 

 

spells for future climate, bar charts are made showing the percent change in wet spell 

intensity from the historical values to the future values. Intensities are calculated using 

the total amount of rain that fell during the spell over the length of the spell. The percent 

changes in wet spell intensities are determined for 3, 5 and 7 day wet spells. The plots are 

made for summer (June, July, August) and winter (December, January February) in both 

time periods. Figures 7 (a), (b) and (c) show the bar charts for the summer and winter 
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months of the 2050s, respectively.  

 

 

 

 

 

Figure 7 (a): Change in 3-Day-Spell Intensities for Summer, 2041-2070 

 

 

 

 

 

 

Figure 7 (b): Change in 5-Day-Spell Intensities for Summer, 2041-2070 

 

For summer wet spells, all models, except the MIROC3.2HIRES A1B, project an 

increase in 3-day intensities. The most significant increase in intensity is predicted by 

MIROC3MEDRES A2 (100%) and CSIROMK3.5 A2 (47%). For 5-day wet spells, all 

models predict an increase, with CSIROMK3.5 A2 and MIROC3MEDRES B1 predicting 

the highest intensities over 100%. The smallest increase is predicted by 
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MIROC3.2MEDRES A1B and MIROC3HIRES A1B with below 20% of changes. The 

average change from all the models and scenarios is approximately between 35-70%.  

 

 

 

 

 

 

Figure 7 (c): Change in 7-Day-Spell Intensities for Summer, 2041-2070 

 

Except for CGCM3T63 B1, CGCM3T47 B1 and A2, and MIROC3MEDRES B1, most 

models predict a decrease in intensity for 7-day spells. Increases of 6-25% are predicted 

by these models. The remaining models predict a decrease in intensity of 7 to 38% for the 

2050s, with the highest being generated by GISSAOM B1. Overall, the general trend for 

summer in the future as predicted by several AOGCM’s is that shorter wet-spell 

intensities will increase as longer wet-spell intensities decrease.  

In the next section, a comparison between both uncertainty estimation methods is 

presented. The mean precipitation obtained from each AOGCM and scenario is assumed 

to be an independent realization of future. Using this concept, climate density curves are 

generated by combining the information from all AOGCMs during the 2050s, the results 
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of which are presented in section 4.3.  

4.3 Fixed vs. Variable Weight Method  

This section presents a comparison of uncertainty estimation methods explained in 

sections 3.3.1 and 3.3.2 using density estimators. Figures 8 (a) and (b) present density 

estimates of precipitation change for the winter and summer seasons with the results 

obtained from the WG combined kernel density estimates and the BA-REA method for 

London station using 2050s (2041-2070) time slice.  

 

 

 

 

Figure 8 (a): Density Estimate of the Mean Precipitation Change in London using BA-

REA Method for Winter and Summer 

The density estimate of the posterior distribution of the precipitation change during 

summer using BA-REA method is under-smoothed, many spurious bumps especially at 

the tails for both winter and summer can be seen which makes it harder to understand the 

structure of the data. The estimates calculated by the kernel estimator show evidence of a 

smoothed structure.  

The extended benefit of kernel estimators is that unlike BA-REA, the generated 

outputs can be modified into indices of interest and the probabilities can be calculated for 

any frequency of data, monthly, daily, or yearly, while the BA-REA method only 
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provides the mean change by combining the AOGCM scenarios. Moreover, the BA-REA 

method does not provide a single relative weight applicable to the overall data length. 

Instead, the weight/kernel function (K(.) in equation 3.29 can be calculated at any points 

of interest within the range of data.    

 

 

 

 

 

 

 

 

Figure 8 (b): Density Estimate of the Mean Precipitation Change using Kernel Estimator 

for Winter (Top) and Summer (Bottom) 

 

4.4 Uncertainty Estimation of Extreme Precipitation Events 

4.4.1 Changes in Future Extreme Precipitation Events 

Changes in the precipitation indices compared to the historic observed 1979-2005 

values are computed from the downscaled precipitation for three time slices (2020s, 

2050s, and 2080s) and presented in Table 9. Both summer and winter show different 
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changing patterns. For summer, half of the scenarios show a decrease in number of heavy 

precipitation and very wet days for all three time slices, while  most models show an 

increase in 5 day maximum precipitation amount.  

Table 9: Percent Changes in Extreme Precipitation Events for 2020s, 2050s and 2080s 

Models/Scenarios Models/Scenarios 
Heavy Precip Days Very Wet Days 5 Day Precip 

2020 2050 2080 2020 2050 2080 2020 2050 2080 

Summer 

CGCM3T47_A1B 3.89 2.86 1.37 8.19 5.96 1.87 5.64 0.75 2.49 

CGCM3T47_A2 1.87 3.45 -2.51 5.34 5.07 -1.33 5.88 3.03 -0.55 

CGCM3T47_B1 7.26 -2.93 -1.56 13.97 0.44 5.87 8.27 1.96 2.45 

CGCM3T63_A1B -2.38 -6.56 -1.18 6.23 -3.91 2.05 12.17 -2.54 1.16 

CGCM3T63_A2 -10.78 3.30 -1.56 -11.57 9.70 -0.71 -4.73 6.70 5.25 

CGCM3T63_B1 -7.51 -6.85 -7.50 -5.60 -6.85 -7.12 -2.80 2.83 -4.70 

CSIROMK3.5_A2 18.44 29.73 26.84 39.68 57.92 52.05 26.98 37.51 35.18 

CSIROMK3.5_B1 5.61 19.57 16.37 14.77 39.68 29.00 9.81 30.38 18.45 

GISSAOM_A1B 1.03 6.38 15.91 3.56 14.59 32.38 3.64 9.59 20.15 

GISSAOM_B1 5.06 5.57 8.15 11.92 16.01 22.42 8.76 9.19 16.53 

MIROC3HIRES_A1B -25.84 -24.38 -26.72 -35.32 -38.26 -39.59 -19.41 -23.08 -26.93 

MIROC3HIRES_B1 -14.55 -25.70 -16.82 -18.68 -31.94 -24.82 -11.64 -19.30 -15.91 

MIROC3MEDRES_A1B -13.31 -23.24 -33.12 -16.28 -31.58 -41.28 -12.08 -20.45 -27.70 

MIROC3MEDRES_A2 -13.09 -12.50 -40.01 -15.75 -16.81 -56.41 -14.01 -9.18 -38.89 

MIROC3MEDRES_B1 -14.85 -20.38 -15.57 -17.53 -27.05 -20.82 -10.23 -17.58 -13.58 

Winter 

CGCM3T47_A1B 26.15 38.60 47.13 40.00 59.88 76.66 19.40 27.09 29.02 

CGCM3T47_A2 28.88 32.80 60.11 43.08 48.13 91.86 23.07 20.54 38.96 

CGCM3T47_B1 25.31 48.85 45.16 33.38 73.36 66.94 21.49 27.87 25.75 

CGCM3T63_A1B 19.57 23.31 35.05 22.77 26.50 54.55 10.54 9.52 20.76 

CGCM3T63_A2 10.07 26.04 33.66 12.77 40.45 47.66 9.82 15.14 20.14 

CGCM3T63_B1 20.32 7.21 19.52 16.62 5.65 29.00 11.21 1.30 10.26 

CSIROMK3.5_A2 22.44 31.12 38.55 30.00 40.45 62.55 12.24 24.71 26.66 

CSIROMK3.5_B1 20.04 39.51 21.30 23.54 60.51 21.17 12.65 25.41 12.75 

GISSAOM_A1B 6.87 10.70 27.38 6.31 4.08 41.54 5.80 -0.94 15.45 

GISSAOM_B1 17.03 11.66 18.71 19.23 16.62 23.05 12.55 5.30 6.26 

MIROC3HIRES_A1B -4.80 6.73 6.10 -9.38 7.22 11.76 -0.15 2.02 -2.13 

MIROC3HIRES_B1 -4.09 -2.91 18.66 -18.92 -5.64 18.97 -7.27 -7.47 2.61 

MIROC3MEDRES_A1B -7.67 0.64 -0.41 -14.77 -11.12 -2.35 -9.68 -7.52 -1.02 

MIROC3MEDRES_A2 -6.26 -1.61 5.58 -12.31 -7.67 10.35 -8.40 -5.01 -0.84 

MIROC3MEDRES_B1 -9.64 -2.95 6.63 -16.92 -11.91 -0.15 -5.64 -10.02 -3.02 

 

This clearly indicates a higher intensity of precipitation during extreme 

precipitation events. However, ranges of change are very high, indicating higher 

uncertainties in model projections during summer. For winter, most of the models are in 
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agreement over the increasing trend of extreme precipitation indices for three time slices. 

In this case also, the uncertainty range is higher.  

 

4.4.2 Distribution Fitting  

In the presence of uncertainties in AOGCM models, there is still concern over the 

choice of a unique distribution for the future climate responses. The comparison of the 

optimal distribution of different AOGCM data based on probability plots and goodness of 

fit test provides an insight into the level of inherent uncertainties. The performances of 

different distributions during summer and winter are evaluated using three goodness-of –

fit-tests: Kolmogorov-Smirnov test, Anderson-Darling estimate, and Chi-Squared test.  

Kolmogorov-Smirnov Test 

 The Kolmogorov-Smirnov test is used to decide whether the sample comes from a 

hypothesized continuous distribution. The samples             are assumed to be 

random, originating from some distribution with Cumulative Distribution Function 

(CDF)     . The Kolmogorov-Smirnov statistic (D) is based on the largest vertical 

difference between the theoretical and the empirical CDF: 

     
     

(      
   

 
 
 

 
      )                                                                                      

Anderson-Darling Estimate 

  The Anderson-Darling procedure compares the fit of an observed CDF to an expected 

CDF. The method provides greater weight to the tail distribution than the Kolmogorov-

Smirnov test. The Anderson-Darling statistic    is expressed as: 
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Chi Squared Test 

 

The Chi –squared test is used to determine if a sample comes from a specific 

distribution. The test statistic is expressed as: 

   ∑
       

 

  

 

   

                                                                                                                   

where, 

    is the observed frequency; 

    is the expected frequency calculated by: 

               

Where, 

   is the CDF of the probability distribution being tested; and 

           are the limits of the     bin.  

In terms of hypothesis tests, the distributional form is rejected at the chosen 

significance level α if the test statistic is greater than the critical value defined as: 

  
       , representing the Chi-squared inverse CDF with     degrees of freedom 

and a significant level of α.  

The performance of any specific distribution is ranked based on the goodness of fit 

values. The optimum parameters for the best fitted distribution function are summarized 

in Appendix C. From the tabulated results it can be observed that for extreme 

precipitation events, most models are fitted with the Generalized Extreme Value 

distribution with varying value of the shape (k), location (µ) and scale (σ) parameters. 
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However, the distribution of wet days with >95
th

 percentile precipitation during the 

winter season fits a well defined Frechet distribution, indicating a distribution different 

than the historical perturbed/no change scenario.  

The GEV distribution unites the type I, type II and type III extreme value distributions 

into a single family, thereby allowing a continuous range of possible shapes. For k < 0, 

the GEV is equivalent to the type III extreme value (Weibull). For k > 0, the GEV is 

equivalent to type II distribution (Frechet). As k approaches 0, the GEV becomes the type 

I (Gumbel). Although most of the models and scenarios show the best fit with extreme 

value distributions, to be more precise, with the Type II (Frechet) and Type III (Weibull) 

distributions with shape parameters greater and smaller than 0 respectively, the shape 

parameter values (k) appear close to 0. However, the differences in the k values show 

extent of the variations among the distributions for each index. The tables further point 

out the limitations of the parametric methods for quantification of uncertainties assuming 

any specific distribution and parameter values.  

4.4.3 Comparison of Extended Kernel Estimators 

Selection of bandwidth 

To measure how well the bandwidth selection methods perform, this section proceeds 

with the comparison of various bandwidth selectors by applying them in the assessment 

of extreme precipitation indices. Figure 9 presents kernel density estimates with statistics 

constructed using several bandwidth selectors:  (i) the rule of thumb (ROT; by Silverman, 

1986) as explained in section 3.3.2), (ii) likelihood cross validation (LCV), which 

searches for bandwidth based on likelihood (by Terrell and Hall, 1990, as explained in 

section 3.5) and (iii) the plug in estimator that selects the bandwidth using the pilot 
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estimator of the derivatives refined by Sheather and Jones, 1991 (SJPI; named after 

Sheather-Jones plug in estimator (section 3.5)).  

 

The choice of kernel is strictly limited to examining two of the most widely used 

types: Gaussian and Epanetchnikov kernels, the functions of which are expressed as: 

Gaussian:                            
 

√  
  

 

 
  

 

Epanechnikov:                   
 

 
       

 The ‘original’ estimate is created by mixing the inputs, and 1000 samples are 

generated from the mixtures without any estimation of bandwidth. It is created for 

assessing how different techniques respond to the original data type. By comparing the 

generated estimators, it can be seen that the density estimate using ROT is highly 

oversmoothed, which may have missed important features of the generated data. For both 

kernel types, it failed to capture the multimodality. In the case of LCVs, there are 

suggestions of multiple modes in the density curve. However, it is still severely 

undersmoothed; the small bumps occurring from the uncertainties of different AOGCM 

types make it harder to understand the structure of real data. The bandwidth by SJPI 

seems to be in a better agreement with the ‘original’ estimate and provides a strong 

indication of multimodal distribution. From Figure 9, it is also evident that the choice of 

kernel merely plays a role in the estimation of density. So, for the present study the 

Gaussian kernel with Sheather-Jones plug in estimator was used to calculate the 

bandwidth for estimating density of the extreme precipitation indices.  
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Figure 9: Comparison of Various Bandwidths of Extreme Precipitation Indices 
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Uncertainty estimation 

To examine uncertainties in future extreme precipitation events, the yearly values of the 

indices from each AOGCMs and scenarios are taken as a set of independent realizations. 

This set is then used at each time step to establish a PDF by applying the bandwidth 

values. The CDF values at the upper and lower ranges of each severity class are 

calculated by numerical integration. The difference between the upper and lower value 

can thus be considered as the probability of that specific class of extreme precipitation 

indices for future. Figures 10 through 12 present the probability of heavy precipitation 

days, very wet days, and 5 day precipitation for three time slices.  Both indices show 

somewhat similar results for the summer and winter seasons. For <25
th

 percentile values, 

heavy precipitation days show an increase in probability for the later part of the century. 

For the 25
th

-50
th

 and 50-75
th

 percentile ranges, probabilities decrease slightly while 

approaching 2100. However, the higher probability of precipitation days over the time is 

observed for >75
th

 and >90
th

 percentile range. This trend is supported by the probabilities 

of very wet day and 5 day precipitation for the summer season. In summary, the 

increased probability of the high end extreme precipitation events indicates larger chance 

of high intensity events during the later part of the century. The method explained in this 

section can be seen as a major improvement over the ‘normal’ kernel (Silverman, 1986) 

method applied in other AOGCM and scenario uncertainty studies. The SJPI based kernel 

estimation method proposed here overcomes the limitations associated with the 

assumptions of normality in the case of unknown densities/distributions. It is completely 

data driven; hence, not only is it more robust, flexible, and independent, but and the 

methodology has been extensively revised by statisticians. 
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Figure 10 (a): Probability of Heavy Precipitation Days during Summer 
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Figure 10 (b): Probability of Heavy Precipitation Days during Winter 
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Figure 11 (a): Probability of Very Wet Days during Summer  
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Figure 11 (b): Probability of Very Wet Days during Winter  
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Figure 12 (a): Probability of 5 Day Precipitation during Summer  
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Figure 12 (b): Probability of 5 Day Precipitation during Winter  
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The Orthomornal method (Efromovich, 1999) proposed by Ghosh and Mujumder 

(2007) to estimate uncertainties of future droughts provides another important segment of 

the nonparametric uncertainty estimation technique. However, one major limitation of the 

orthonormal method is the use of a subset of the Fourier series, which consists of cosine 

functions without proper justification. The additional benefit of kernel density estimators 

for estimating AOGCM and scenario uncertainties derives  from the fact that the 

scientific community is now highly confident that the trends in precipitation over future 

periods are not going to follow the same distribution as in the past. However, it is true for 

any statistical method that larger samples provide better estimates of any data 

distribution. It is our expectation that with the advance of more sophisticated global 

climate models, the kernel method will be applied with more confidence for uncertainty 

estimation problems. 
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5. Conclusions 

This study deals with the approaches for quantifying AOGCM and scenario 

uncertainties from the modeled outputs of extreme precipitation events for London, 

Ontario, Canada. This work is strictly limited to the uncertainties of the outputs from 

several AOGCMs and scenarios and does not consider the uncertainties due to 

parameterization or structure of the models.  

Two very different multi-model ensemble methods namely, the Bayesian reliability 

ensemble average (BA-REA) and the downscaling based kernel density estimator are 

used for uncertainty estimation. A comparison of these two methods reveals that while 

the BA-REA method can be a good alternative for predicting mean changes in 

precipitation in any region, it cannot be used in estimating uncertainties of different 

extreme events occurring at a daily time scale. The capability of the BA-REA method to 

analyze the climate responses is fairly limited; whereas the downscaled outputs can be 

obtained in any frequency according to the need of the user. The data-driven kernel 

estimator is capable of assuming data values at each time step as an independent 

realization, instead of calculating weights based on the means. It has a significant 

implication for estimating uncertainties of extreme precipitation events; calculating 

weights based on the mean can ignore the higher or lower values which may cause an 

unrealistic representation of climate extremes, such as floods, droughts, etc. However, the 

kernel estimator has it’s limitations too, from the extended chance of over or under-

smoothing resulting from wrong selection of bandwidth.   The comparison of the best fit 

curves for different AOGCM scenarios for extreme precipitation indices shows varying 

agreement and thereby the limited benefits of parametric distribution approach. 
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The choice of an appropriate bandwidth selection method is a significant step for 

kernel estimation. The shape of the distribution function is important in determining the 

performance of the bandwidth. The comparative results of different bandwidth selectors 

show that the rule of thumb (ROT) method assuming normal kernel suffers from over-

smoothing for both indices while the least square cross validation (BLCV) method results 

in under-smoothed distributions. The SJPI estimator offered a useful compromise 

between the ROT and the BLCV methods. This trade-off between the distributions of the 

bandwidths seems to be an intrinsic criterion for assessing the performance of data-driven 

bandwidth selectors. Using the bandwidths calculated by the SJPI method, the CDFs for 

different severity classes are calculated for the extreme precipitation indices. This is 

estimated by the assumptions that the outputs from different AOGCMs are independent 

realizations; hence, indices have a different PDF at each time step and are not limited to 

any specific type of distribution. The nonparametric methods can be seen as a major 

improvement over the parametric methods, which otherwise assume specific distributions 

for estimating uncertainties. Considering the probabilities obtained, it can be said that the 

probability of severe and extreme events are going to increase for both summer and 

winter due to the changes in climate over the next century. 

The future scope of the study includes generating probabilistic intensity-duration-

frequency (IDF) curves for future extreme precipitation events by incorporating 

associated uncertainties from AOGCM and scenario outputs for decision making.  
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APPENDIX A: SRES Emission Scenarios 

 

 

 

 

 

 

 

 

Figure A1: SRES Emission Scenarios (Nakicenovic et al, 2000)  

A1B: In scenario A1B, the storyline includes rapid economic expansion and 

globalization, a population peaking at 9 billion in 2050, and a balanced emphasis on 

a wide range of energy sources (Nakicenovic et al, 2000).  

B1: The storyline for the B1 scenario is much like A1B in terms of population and 

globalization; however there are changes toward a service and information 

economy with more resource efficient and clean technologies. Emphasis is put on 

finding global solutions for sustainability (Nakicenovic et al, 2000).  

A2: For scenario A2, the storyline consists of a world of independently operating nations 

with a constantly increasing population and economic development on a regional 
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level. Technological advances in this storyline occur more slowly due to the 

divisions between nations (Nakicenovic et al, 2000). 
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APPENDIX B: Comparison of Different Distributions of 

AOGCM Models and Scenarios for Extreme Precipitation 

Events 
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APPENDIX C: Distribution Fit of Extreme Precipitation 

Indices 

 

Table G-1: Heavy Precipitation Days for 2050s Summer 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ α β γ 

Historical Perturbed GEV III 0.14  2.48 7.511 - - - 

CGCM3T47 A1B GEV III 0.15  2.58 7.34 - - - 

CGCM3T47 A2 GEV III 0.30 2.81 7.72 - - - 

CGCM3T47 B1 GEV III 0.16 2.75 6.99 - - - 

CGCM3T63 A1B Gamma 3P - - - 24.78  0.52  -4.94 

CGCM3T63 A2 GEV III 0.32 2.84 7.75 - - - 

CGCM3T63 B1 GEV III  -0.20 2.37 6.88 - - - 

CSIROMK3.5 A2 Gamma - - - 11.68 0.92 11.68 

CSIROMK3.5 B1 GEV III 0.26 2.75 9.13 - - - 

GISSAOM A1B Gamma 3P - - - 58.56 0.38 -13.51 

GISSAOM B1 Log-Pearson 3 - - - 9.27 0.11 3.18 

MIROC3HIRES A1B GEV III 0.21  2.26 5.53  - - - 

MIROC3HIRES B1 GEV III 0.24 2.23   5.41 - - - 

MIROC3MEDRES A1B Log-Pearson 3 - - - 8.72  0.14 2.97 

MIROC3MEDRES A2 Gamma 3P - - -  36.94  0.39  7.32 

MIROC3MEDRES B1 GEV III 0.23 2.46 5.75 - - - 
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Table G-2: Heavy Precipitation Days for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ 

Historical Perturbed Normal - 2.64 6.68 

CGCM3T47 A1B GEV Type II 0.62 4.46 8.19 

CGCM3T47 A2 GEV Type II 0.59 4.58 7.85 

CGCM3T47 B1 GEV Type II 0.60 4.81 8.86 

CGCM3T63 A1B GEV Type II 0.61 4.35 7.27 

CGCM3T63 A2 GEV Type II 0.63 4.41 7.43 

CGCM3T63 B1 GEV Type II 0.64 4.26 6.36 

CSIROMK3.5 A2 GEV Type II 0.66 5.13 7.95 

CSIROMK3.5 B1 GEV Type II 0.66 5.09 8.38 

GISSAOM A1B GEV Type II 0.64 4.40 6.58 

GISSAOM B1 GEV Type II 0.67 4.58  6.59 

MIROC3HIRES A1B GEV Type II 0.60 3.84 6.06 

MIROC3HIRES B1 GEV Type II 0.65 3.76 5.64 

MIROC3MEDRES A1B GEV Type II 0.58 3.91 5.71 

MIROC3MEDRES A2 GEV Type II 0.63 3.83 5.68 

MIROC3MEDRES B1 GEV Type II 0.62 3.63 5.64 
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Table G-3: Very Wet Days for Summer 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

α Β k σ µ 

Historical Perturbed GEV III   0.06 1.24 1.40 

CGCM3T47 A1B Frechet 0.99 2.57 - - - 

CGCM3T47 A2 Frechet 0.92 2.14 - - - 

CGCM3T47 B1 Frechet 0.99   2.74 - - - 

CGCM3T63 A1B Frechet 0.89   1.80 - - - 

CGCM3T63 A2 Frechet 0.90  2.02 - - - 

CGCM3T63 B1 Frechet 0.82   1.43 - - - 

CSIROMK3.5 A2 Frechet 0.83  1.98 - - - 

CSIROMK3.5 B1 Frechet 0.90 2.45 - - - 

GISSAOM A1B Frechet 0.81 1.43 - - - 

GISSAOM B1 Frechet 0.84  1.66 - - - 

MIROC3HIRES A1B Gen. Pareto - - 0.63 3.52  -0.15 

MIROC3HIRES B1 Gen. Pareto - - 0.68 3.41 -0.29 

MIROC3MEDRES A1B Gen. Pareto - - 0.64 3.33 -0.33 

MIROC3MEDRES A2 Frechet 0.83   1.29 - - - 

MIROC3MEDRES B1 Gen. Pateto - - 0.65 0.85 0.25 
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Table G-4: Very Wet Days for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

K σ µ α β 

Historical Perturbed GEV II -0.070  1.52 2.59 - - 

CGCM3T47 A1B Gumbel Max - 2.17 3.40 - - 

CGCM3T47 A2 GEV II 0.10 2.04 3.34 - - 

CGCM3T47 B1 Gamma - - - 2.61 1.81 

CGCM3T63 A1B GEV III -0.14 1.58 2.61 - - 

CGCM3T63 A2 GEV III 0.14 1.72 2.99 - - 

CGCM3T63 B1 GEV III 0.15 1.53 2.55 - - 

CSIROMK3.5 A2 Weibull - - - 2.57 6.09 

CSIROMK3.5 B1 GEV III -0.16 1.98 3.98 - - 

GISSAOM A1B GEV III -0.17 1.77 3.20 - - 

GISSAOM B1 GEV III -0.22 1.82 3.32 - - 

MIROC3HIRES A1B GEV III -0.03 1.18 1.5 - - 

MIROC3HIRES B1 Gumbel Max - 1.16 1.69 - - 

MIROC3MEDRES A1B Gumbel Max - 1.15 1.68 - - 

MIROC3MEDRES A2 GEV III -0.20 1.46 2.30 - - 

MIROC3MEDRES B1 GEV III -0.09 1.30 1.88 - - 
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Table G-5: Maximum 5 Day Precipitation for Summer 

 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ 

Historical Perturbed GEV II 0.026 23.30 54.71 

CGCM3T47 A1B Gumbel Max - 23.14  55.98 

CGCM3T47 A2 GEV II 0.11 21.71 55.99 

CGCM3T47 B1 GEV II 0.038 23.40 57.89 

CGCM3T63 A1B GEV II 0.036 21.57 54.43 

CGCM3T63 A2 GEV II 0.07 24.55 57.71 

CGCM3T63 B1 GEV II 0.061 21.66 57.58 

CSIROMK3.5 A2 GEV II 0.093 30.01 75.01 

CSIROMK3.5 B1 GEV II 0.097 27.75 70.83 

GISSAOM A1B GEV II 0.20 21.75 58.17 

GISSAOM B1 GEV II 0.044 24.6 60.57 

MIROC3HIRES A1B GEV II 0.10 16.78 41.65 

MIROC3HIRES B1 GEV II 0.09 19.07 42.95 

MIROC3MEDRES A1B GEV II 0.02 18.77 43.61 

MIROC3MEDRES A2 GEV II 0.061 20.83 49.79 

MIROC3MEDRES B1 GEV II 0.09 17.3 45.12 

 

 

 

 

 

 

 

 

 



147 

 

 

Table G-6: Maximum 5 Day Precipitation for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

K σ µ α β γ 

Historical Perturbed GEV II 0.07 15.85 42.45 - - - 

CGCM3T47 A1B GEV II 0.07 18.93 54.03 - - - 

CGCM3T47 A2 GEV II 0.08 18.64 50.48 - - - 

CGCM3T47 B1 GEV II 0.09 18.14 54.38 - - - 

CGCM3T63 A1B GEV II 0.04 17.46 46.26 - - - 

CGCM3T63 A2 GEV II 0.05 18.58 48.35 - - - 

CGCM3T63 B1 GEV II 0.05 15.65 43.05 - - - 

CSIROMK3.5 A2 GEVII 0.098 21.17 50.56 - - - 

CSIROMK3.5 B1 GEV II 0.13 18.57 52.01 - - - 

GISSAOM A1B GEV II 0.07 15.24 41.70 - - - 

GISSAOM B1 Frechet 3P - - - 6.25 97.63 -54.53 

MIROC3HIRES A1B Gamma 3P - - - 3.01 13.28 13.23 

MIROC3HIRES B1 GEV II 0.1 13.83 38.85 - - - 

MIROC3MEDRES A1B Gamma 3P - - - 2.27 13.45 17.68 

MIROC3MEDRES A2 Gamma 3P - - - 3.26 10.843 14.15 

MIROC3MEDRES B1 Gumbel Max - 14.12 38.78 - - - 
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