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Executive Summary

Assessment of climate change impact on hydrology at watershed scale incorporates
downscaling of global scale climatic variables into local scale hydrologic variables and
computations of risk of hydrologic extremes in future for water resources planning and
management. Atmosphere-Ocean General Circulation (AOGCM) models are designed to
simulate time series of future climate responses accounting for enthropogenically induced
green house gas emissions. The climatological inputs obtained from several AOGCMs
suffer the limitations due to incomplete knowledge arising from the inherent physical,
chemical processes and the parameterization of the model structure. This study explores
the methods available for quantifying uncertainties from the AOGCM outputs by
considering fixed weights from different climate model means for the overall data
lengths and provides an extensive investigation of the variable weight nonparametric
kernel estimator based on the choice of bandwidths for investigating the severity of
extreme precipitation events over the next century. The results of this study indicate that
the variable width method is better equipped to provide more useful information of the
uncertainties associated with different AOGCM scenarios. This study further indicates an
increase of probabilities for higher intensities and frequencies of events. The applied
methodology is flexible and can be adapted to any uncertainty estimation studies with

unknown densities.
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Introduction

1.1 Problem Definition

Hydrologic research and modeling is largely dependent on climatological inputs due
to the inextricable link of water with climate. Water is the most vulnerable resource to
climate change (Minville et al., 2008; Srikanthan and McMohan, 2001; Xu and Singh,
2004) resulting in an increased evaporation due to higher temperatures, changes in
amount, variability, and frequency of regional precipitation. Studies related to the impact
of climate change on water resources have shown a significant impact on the mean
annual discharge with changes in the intensity and frequency of precipitation (Whitfield
and Cannon, 2000; Muzik, 2001), larger changes in reservoir storage because of a modest
change in the natural inflow or even a changed effect in the energy production and flood

control measure due to any effect in the hydrologic cycle (Xu and Singh, 2004).

Climate modeling studies involving anthropogenic increase in the concentration of
greenhouse gases have suggested an increase in the frequency and intensity of climatic
extremes in a warmer world (Cubasch et al., 2001). The evidence of an altered climate
has already become noticeable. Recent studies related to the Canadian climate have
indicated a 12% increase of precipitation in southern Canada during the twentieth century
(Zhang et al., 2000; Vincent and Mekis, 2006). This provides the justification of over a
decade long effort to determine the impacts of anthropogenic climate change in water
resources. However, most efforts have focused on studying the changes of means,

although extremes usually have the greatest and most direct impact on our everyday lives,



community and environment. Study on the detection of changes in extremes is limited

and hence require further investigation.

Assessment of climate change impacts on hydrology incorporates projection of
climate variables into a global scale, downscaling of global scale climatic variables into
local scale hydrologic variables and computations of risk of future hydrologic extremes
for purposes of water resources planning and management. Global scale climate variables
are commonly projected by Coupled Atmosphere-Ocean Global Climate Models
(AOGCMs), which provide a numerical representation of climate systems based on the
physical, chemical and biological properties of their components and feedback
interactions between these (IPCC, 2007). These models are currently the most reliable
tools available for obtaining the physics and chemistry of the atmosphere and oceans and
for deriving projections of meteorological variables (temperature, precipitation, wind
speed, solar radiation, humidity, pressure, etc). They are based on various assumptions
about the effects of the concentration of greenhouse gases in the atmosphere coupled with

projections of CO, emission rates (Smith et al., 2009).

There is a high level of confidence that AOGCMs are able to capture large scale
circulation patterns and correctly model smoothly varying fields, such as surface
pressure, especially at continental or larger scales. However, it is extremely unlikely that
these models properly reproduce highly variable fields, such as precipitation (Hughes and
Guttorp, 1994), on a regional scale, let alone for small to medium watershed. Although
confidence has increased in the ability of AOGCMs to simulate extreme events, such as
hot and cold spells, the frequency and the amount of precipitation during intense events

are still underestimated.



1.2 Definition and Types of Uncertainty
A proper understanding of the uncertainties resulting from human induced climate
change will help decision makers to interpret different projected hydrologic impacts with

confidence. Three broad areas of uncertainties have been identified by Colglazier (1991):

e Predicting future climate
e Predicting future impacts
e Assessing costs and benefits of policy responses

The first two areas, related to the present research, are described here.

Predictions of the timing and magnitude of any future global warming are associated
with uncertainties in estimating future anthropogenic emissions of greenhouse gases;
understanding the resulting changes in the carbon cycle, especially the uptake of carbon
in the oceans; understanding the dynamic climatic response with all the relevant feedback
mechanisms, such as those from clouds and Ocean currents; projecting regional
variations; and estimating the frequency of severe events such as hurricanes and droughts
(Colglazier, 1991). Although the basic theory of the enhanced green house gas effect is
now well established, and the rise in carbon dioxide concentrations since the industrial
revolution has also been well documented, there is still much debate regarding the timing
and quantity of warming. For decades AOGCMSs have been used to predict these values;
however there is continued uncertainty even with the improvements of the resolution of

GCMs.

The interpretation of uncertainties from climate models can be described from five

sources. ‘Forcing uncertainty’ consists of using the future elements/aspects that are not a



part of the climate system, but have the potential to affect it. One possible form of forcing
uncertainty arises from using climate model simulations based on different scenarios of
future concentrations of atmospheric GHGs, which depend entirely on the actions taken

to control the GHG emissions (Cubasch et al., 2001).

‘Initial condition uncertainty’ involves uncertainty arising from an initial state or
ensemble of states (Stainforth et al., 2007) applied to the climate models. It can be
‘macroscopic’ and found in state variables with relatively large slowly mixing scales,
such that the predicted distribution is effected by the imprecise knowledge of the current
state of the system. ‘Microscopic’ uncertainty, on the other hand, has no significant effect
on the targeted climate distribution; the effects are only identified during weather

forecast.

‘Model imperfection’ describes the uncertainty that results from a limited
understanding and ability to simulate the Earth’s climate. It is sub-divided into two types:
‘uncertainty’ and ‘inadequacy’. ‘Model uncertainty’ describes uncertainties in the most
relevant parameter values to be used in the model (Murphy et al., 2004). It characterizes
the impact of known uncertainties and can be large at regional scales. Climate models, in
this respect, are considered rather complicated. Extending this from parameter values to
parameterizations enables an improved representation of various processes within the
model and makes model uncertainty an extended form of the ‘parameter
uncertainty’(Kennedy and O’Hagan, 2001). ‘Model inadequacy’ results from the limited
ability of the climate models to represent natural systems. These models provide no
information on important processes related to climate change on decadal to centennial

time scales, such as the carbon cycle, atmospheric and oceanic chemistry and
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stratospheric circulation. They further suffer from limited spatial resolution, inadequate
representation of hurricanes, the diurnal cycle of tropical precipitation, characteristics of
El Nino Southern Oscillation (ENSO) and the inter tropical convergence zone (Trenberth

et al., 2003).

1.3 Organization of the Report

The report is organized as follows: literature relevant to the development of methods
for assessing climate change impacts are presented in chapter 2. The development of
proposed uncertainty estimation methodology is presented step by step in Chapter 3,
including the model and parameter set up. Finally, the performances of the variable
weight and fixed weight methods for quantification of AOGCM uncertainties in extreme
precipitation events are presented. Finally, the findings of the results are discussed in

Chapter 4.



2. Literature Review

In recent years, quantifying uncertainties from AOGCM choice and scenario
selections used for impact assessments has been identified as critical for climate change
and adaptation research. Climate change impact studies derived from AOGCM outputs
are associated with uncertainties due to “incomplete” knowledge originating from
insufficient information or understanding of the relevant biophysical processes, or a lack
of analytical resources. Examples of uncertainty include the simplification of complex
processes involved in atmospheric and oceanographic transfers, inaccurate assumptions
about climatic processes, limited spatial and temporal resolution resulting in a
disagreement between AOGCMs over regional climate change, etc. Uncertainties also
emerge due to “unknowable” knowledge, which arises from the inherent complexity of
the Earth system and from our inability to forecast future socio-economic and human
behavioral patterns in a deterministic manner (New and Hulme, 2000; Allan and Ingram,
2002; Proudhomme et al., 2003; Wilby and Harris, 2006; Stainforth et al., 2007; IPCC,
2007, Buytaert et al, 2009). Selection of the most appropriate AOGCM for the realization
of future climate depends on user’s ability to assess the model’s strengths and
weaknesses, the inability of which is recognized as one of the major sources of
uncertainty (Wilby and Harris, 2006, Ghosh and Mujumdar, 2007; Tebaldi and Smith,
2010). It has been established that the accuracy of AOGCMs decrease at finer spatial and
temporal scales; a typical resolution of AOGCMs ranges from 250 km to 600 km, but the
need for impact studies conversely increases at finer scales. The representation of
regional precipitation is distorted due to this coarse resolution and thus it cannot capture

the subgrid-scale processes required for the formation of site-specific precipitation



conditions. While some models are parameterized, details of the land-water distribution
or topography in others are not represented at all (Widmann et al., 2003). Studies have
found that the models failed to predict the high variability in daily precipitation and could
not accurately simulate present-day monthly precipitation amounts (Trigo and Palutikof,

2001; Brissette et al., 2006).

2.1 Downscaling of AOGCM Outputs

In order to estimate uncertainties at smaller spatial scales, output from climate models
are scaled down to a suitable level. Statistical and dynamic downscaling represents two
common branches for the development of climate scenarios depending on regions, time
periods and the variables of interest. The approaches for dynamic downscaling involve (i)
running a regional scale limited area model with coarse GCM data as geographical or
spectral boundary conditions, (ii) performing global-scale experiments with high
resolution Atmosphere-GCM (AGCM), with coarse GCM data as initial (as partially and
boundary) conditions, and (iii) the use of a variable-resolution global model with the
highest resolution over the area of interest (Rummukainen, 1997). The most common
technique for dynamic downscaling involves utilizing Regional Climate Models (RCMs),
which perform at a much higher resolution and can simulate climatic variables more
accurately for any region (Brissette et al., 2006). AOGCM output variables are used as
boundary inputs for the RCMs, and provide a more accurate representation of the local
climate than the coarsely gridded AOGCM data alone. The works of Vidal and Wade
(2008), Wood et al. (2004) and Schmidli et al. (2006) compared dynamic downscaling to
other methods. A limitation of the dynamic approach is the scale of RCM’s

(approximately 40 km x 40 km according to Brissette et al., 2006), which is still too
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coarse for application to smaller basins. The computational effort required for the
dynamic approach makes it impractical where several AOGCMs and emissions scenarios
are used (Maurer, 2007). Furthermore, RCMs have only been produced for selected
areas; moving to a slightly different region requires repeating the experiment (Kay and

Davies, 2008).

The second approach, namely statistical downscaling, is more popular in climate
change impact assessments due to its computational ease and its ability to produce
synthetic datasets of any desired length. In statistical downscaling statistical relationships
are developed to transfer large-scale features of the predictors (AOGCM) to regional
scale predictands (variables). Hewitson and Crane (1992) pointed out three underlying
assumptions related to statistical downscaling: (i) the predictors are variables of relevance
and are realistically modeled by the host AOGCM; (ii) the empirical relationship is also
valid under altered climate conditions; and (iii) the predictors employed fully represent

the climate change signal.

Several methods of statistical downscaling can be broadly divided into three
categories: Transfer function, weather typing and weather generator. Transfer functions
rely on the direct quantitative relationship between the global large scale and local small
scale variables obtained from different choices of mathematical transfer functions,
predictors or statistical fitting processes. Applications of neural networks, regression
based methods, least square methods, support vector machines, empirical orthogonal

functions (Zorita and von Storch, 1999), etc., fall in this category.



Weather typing involves grouping local meteorological variables with respect to
different classes of atmospheric circulation. Future regional climate scenarios are
constructed either by resampling from the observed variable distribution or by first
generating synthetic sequences of weather patterns using Monte Carlo techniques and
resampling from the generated data. The relative frequencies of the weather classes are
weighted to derive the mean or frequency distribution of the local climate. Climate

change is then determined from the changes of the frequency of the weather classes.

Stochastic weather generators simulate weather data to assist in the formulation of
water resource management policies. They are essentially complex random number
generators, which can be used to produce a synthetic series of data. This allows the
researcher to account for natural variability when predicting the effects of climate
change. Weather generators have an advantage over other downscaling methods because
by producing long duration rainfall series, it is possible to examine rare events and
extremes in the river basin (Brissette et al., 2007; Diaz-Nieto and Wilby, 2005; Wilks and
Wilby, 1999). The underlying assumption of weather generator is that the past (control
experiment) would be a representative of the future. It is, however, difficult to guarantee
that the statistical relationship derived from current climate will remain same for future in
the presence of climate change (Hewitson and Crane, 1996; Schulze, 1997; Joubert and

Hewitson, 1997).

Parametric, empirical or semi-parametric, and non-parametric (Brissette et al., 2007)
weather generators are commonly used by the scientific community. In most parametric
weather generators, a Markov chain is used to determine the probability of a wet or dry

day and a probability distribution is assumed to determine the amount of precipitation
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(Kuchar, 2004; Hanson and Johnson, 1998). Most of the parametric weather generators
are extensions of Richardson’s WGEN, which was developed in 1981 (Richardson,
1981). Some examples of the parametric weather generators successfully employed using
the Richardson approach are CLIGEN, WGENK, GEM, WXGEN, and SIMMENTO
(Kuchar, 2004; Schoof et al., 2005; Hanson and Johnson, 1998; Soltani and
Hoogenboom, 2003). Hanson and Johnson (1998) compared outputs from GEM to
historical data using the means and standard deviations. Results from that study showed
that simulated total precipitation values were significantly underestimated for some
months, and annual precipitation values were considerably less than the historical record
(Hanson and Johnson, 1998). A study employing the SIMMENTO weather generator
found that the variability (standard deviations) of wet fractions and amounts were
significantly overestimated by the synthetic historical series (Elshamy et al., 2006). A
major drawback of the parametric approach is that the Markov chain does not take into
account the previous days’ weather. As a result of this, the rare events, such as droughts
or wet spells are not adequately produced (Sharif and Burn, 2007; Semenov and Barrow,
1997; Dibike and Coulibaly, 2005). Another limitation of the parametric weather
generators is that an assumption must be made about the probability distribution of
precipitation amounts, and different distributions do not give similar results (Sharif and
Burn, 2007). Furthermore, the weather generators cannot be easily transferred to other
basins as their underlying probability assumptions would change (Sharif and Burn, 2006).
The computational effort is also significantly higher than other methods since many

parameters must be estimated and statistically verified (Mehrotra et al., 2006). Parametric
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weather generators are less easily applied to multiple sites as simulations occur

independently and thus spatial correlations would have to be assumed.

Semi-Parametric or Empirical weather generators include LARS-WG and the Wilks
model, SDSM (Semenov and Barrow, 1997; Wilks and Wilby, 1999). LARS-WG differs
from the parametric approaches described above because it employs a series-approach in
which the wet and dry spells are determined by taking into account the observed values
and assuming mixed-exponential distributions for dry/wet series as well as precipitation
amounts (Semenov and Barrow, 1997). The wet/dry day status is first chosen, and then
the amount is chosen conditional on the status. As such, the LARS-WG was able to
satisfactorily reproduce wet and dry spells, unlike the parametric weather generators
(Dibike and Coulibaly, 2005). Wilks (1998) improved on the parametric models of
Richardson (1981) by introducing Markov-chains of higher order that have a better
“memory” of the preceding weather. The Richardson (1981) model was further extended
for multi-site applications by using a collection of single site models in which a
conditional probability distribution is specified and thus spatially correlated random
numbers can be generated (Mehrotra, 2006; Wilks, 1998). A drawback to these empirical
approaches is that there is still a subjective assumption about the type of probability
distribution for precipitation amounts and spell lengths, and the spatial correlation

structure is empirically estimated for use with multiple sites.

Non-parametric weather generators are computationally simple and do not require
any statistical assumptions to be made. They work by using a nearest-neighbor
resampling procedure known as the K-NN approach (Sharif and Burn, 2007; Brandsma

and Buishand, 1998; Beersma et al., 2002; Yates et al., 2003). The nearest neighbor
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algorithm works by searching the days in the historical record that have similar
characteristics to those of the previously simulated day, and then randomly selecting one
of these as the simulated value for the next day (Beersma et al., 2002). This approach is
easily used in multi-site studies because the values are simulated concurrently, thus
spatial correlation is preserved (Mehrotra et al. 2006). The K-NN algorithm has been
successfully used for multi-site hydrological impact assessments in the Rhine Basin,
accurately preserving spatial correlation and climatic variability (Beersma et al., 2002;
Brandsma and Buishand, 1998). Apipattanavis et al. (2007) compared a K-NN to a semi-
parametric weather generator. Box plots of wet-spell lengths showed that for some
months the semi-parametric model could not reproduce maximum wet spell lengths, and
average spell lengths were underestimated for the traditional K-NN model. A major
limitation to the K-NN approach is that the values are merely reshuffled, thus no new
values are produced (Sharif and Burn, 2007). Climatic extremes are essential in
predicting flooding events in response to climate change, thus Sharif and Burn (2007)
modified the K-NN algorithm to produce unprecedented precipitation amounts by
introducing a perturbation component in which a random component is added to the
resampled data points (Sharif and Burn, 2007). Monthly total precipitation and total
monthly wet day box plots were used to evaluate the performance of the Modified K-NN
algorithm. The algorithm was able to satisfactorily reproduce the statistics of the original
dataset while adding variability, which is crucial in hydrologic impact assessments
(Sharif and Burn, 2007). Prodanovic and Simonovic (2006) altered the Modified K-NN
algorithm of Sharif and Burn (2007) to account for the leap year. In order to allow for

more variables for an improved selection of nearest neighbor, principal components are
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added in the weather generator (WG-PCA). With the inclusion of more variables and
perturbations, the updated model is expected to more accurately define both present day

climate conditions and also to produce estimates of future climate scenarios.

However, studies have indicated that the task of downscaling can sometimes become
challenging due to the absence of proper station measurements. Gridded databases, such
as the National Center for Environmental Prediction — National Center for Atmospheric
Research (NCEP-NCAR) Global Reanalysis — NNGR (Kalnay et al., 1996) and the North
American Regional Reanalysis — NARR (Mesinger et al., 2006) can be viable alternatives
for alleviating these limitations of missing data and spatial bias resulting from uneven
and unrepresentative spatial modelling (Robeson and Ensor, 2006; Ensor and Robeson,
2008). The reanalysis data are advantageous in impact studies because they are based on
the AOGCMs with a fixed dynamic core, physical parameterizations and data

assimilation systems (Castro et al., 2007).

Global (NNGR) and regional (NARR) reanalysis databases are also gaining use in
uncertainty assessment studies. In many of their applications, however, the NNGR
resolution (250 km x 250 km) is not satisfactory, especially in regions with a complex
topography (Choi et al., 2009; Tolika et al, 2006; Rusticucci and Kousky, 2002;
Haberlandt and Kite, 1998; Castro et al., 2007). The NARR dataset (Mesinger et al.,
2006) is a major improvement upon the global reanalysis datasets in both resolution and
accuracy. Literature related to an inter-comparison between the global and regional
datasets (Nigam and Ruiz-Barradas, 2006; Woo and Thorne, 2006; Castro et al., 2007;
Choi et al., 2007 and 2009) shows better agreement of NARR data. More recently,

Solaiman and Simonovic (2010a) conducted a rigorous assessment of the NARR and
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NNGR database for application in the Upper Thames river basin (Ontario, Canada), for

hydrological modeling and/or climate change impact studies.

2.2 Multi-Model Ensembles for Uncertainty Research

In most of the climate change impact assessment studies, single AOGCMs have been
used for predicting future climate. It is well understood that in the current context of huge
uncertainties, the utilization of a single AOGCM may only represent a single realization
out of a multiplicity of possible realizations, and therefore cannot be representative of the
future. So, for a comprehensive assessment of future changes in climate conditions, it is
important to use collective information by utilizing all available models and by

synthesizing the projections and uncertainties in a probabilistic manner.

Studies that used multiple climate model information are, however, cannot be found
in abundance. Of the literatures available, one of the common approaches is the use of
reliability estimates to multi-model ensembles. The earliest research, to our knowledge,
to consider a multimodel ensemble approach was conducted by Raisanen and Palmer
(2001), who treated the ensemble members as equally probable realizations and
determined probabilities of climate change by computing the fraction of ensemble
members in which the differential properties of models, such as bias and rate of

convergence, were disregarded.

Giorgi and Mearns (2003) confronted the approach undertaken in Raisanen and
Palmer by introducing the “Reliability Ensemble Averaging (REA)” technique, which

considered the reliability-based likelihood of realization by models to calculate the
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probability of regional temperature and precipitation change. They found this technique

to be more flexible in the assessment of risk and cost in regional climate change studies.

Tebaldi et al. (2004; 2005) used Bayesian statistics to estimate a distribution of future
climates through the combination of past observational data and the corresponding
AOGCM simulated climates. This technique was motivated by the assumption that an
AOGCM ensemble represents a “sample of the full potential climate model space
compatible with the observed climate using probability distributions (PDFs)” at a

regional scale.

Recently, Smith et al. (2009) extended the work of Tebaldi et al. by introducing the
univariate approach to consider one region at a time. They are still using a multivariate
approach, including cross validation, to confirm the resemblance of the Bayesian
predictive distributions. Other literature on Bayesian methods in multi-model ensembles
includes work from Allan et al. [2000], Benestad [2004], Stone and Allan [2005], and

Jackson et al. [2004].

Another class of new but promising uncertainty estimation methods incorporates the
downscaling of AOGCM scenarios and quantifying uncertainties by separately weighting
outputs from different AOGCMs in each time step based on their performances. The
results can be presented in a probabilistic framework. Wilby and Harris [2006] developed
a probabilistic framework to combine information from four AOGCMs, two greenhouse
scenarios where the AOGCMs were weighted to an index of reliability for downscaled
effective rainfall. A Monte Carlo approach was adopted to explore components of

uncertainty affecting projections for the river Thames for 2080s. The resulting cumulative
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distribution functions appeared to be most sensitive to uncertainty in (i) the selection of

climate change scenarios, and (ii) the downscaling of different AOGCMs.

Ghosh and Mujumdar (2007) used NNGR to develop a methodology capable of
assessing AOGCM uncertainty due to different AOGCMs by considering different
probability density functions for each time step. They used the information on uncertainty
in examining future drought scenarios in a nonparametric manner. Samples of drought
indicators were generated with results from downscaled precipitation using a statistical
regression approach from available AOGCMs and scenarios. The severity of droughts

was presented in a nonparametric kernel estimation and orthonormal approach.

The implications of uncertainties in estimating the severity of extreme precipitation
events is an area of research not yet fully explored. The present study aims to compare
the uncertainties of precipitation change on a watershed scale by using two very different
methods: the Bayesian Reliability Ensemble Average (BA-REA) by Tebaldi et al. (2004;
2005) and the nonparametric kernel estimator. A classification scheme for investigating
the severity level of extreme precipitation indices is addressed. Finally, the nonparametric
data driven kernel density estimation methods are investigated to quantify uncertainties

associated with AOGCM and scenario outputs for extreme precipitation events.
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3.1 Study Area

3. Methodology

The Upper Thames River (UTR) basin (Figure 1) (42°35°24"°N, 81°8°24>°W), located

in Southwestern Ontario, Canada, is a 3,500 km? area nested between the Great Lakes of

Huron and Erie. The basin often experiences major hydrologic hazards, such as floods

and droughts. The basin has a well documented history of flooding events dating back to

the 1700s (Prodanovic and Simonovic 2006).
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Figure 1: The Upper Thames River Basin
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High flows mostly take place in early March after snowmelt, and again in July and
August as a result of summer storms. Khaliq et al (2008) reported that in the Canadian
regime, low flow conditions follow a seasonal behavioral pattern: summer low flow
occurs between June to November and winter low flow during the December and May
periods. The UTR basin experiences frequent low flow conditions between June and

September (Prodanovic and Simonovic 2006).

The population of the basin is approximately 450,000 (2006), of which 350,000 are
the residents of the City of London. The Thames river basin consists of two majors
tributaries of the river Thames: the North Branch (1,750 km?), flowing southward
through Mitchell and St. Mary’s, and eventually into London, and the South Branch
(1,360 km?), flowing through Woodstock, Ingersoll, and east London. The Upper Thames
River basin receives about 1,000 mm of annual precipitation, 60% of which is lost
through evaporation and/or evapotranspiration, stored in ponds and wetlands, or

recharged as groundwater (Prodanovic and Simonovic 2006).

3.2 Database
3.2.1 Selection of Predictors

Daily precipitation and temperature are the most important atmospheric forcing
parameters required for any hydrologic impact study for a larger river basin (Salathe Jr.,
2003). However, climate models do not resolve important mesoscale and surface features
that control precipitation in an area. The choice of appropriate predictors or
characteristics from the large-scale atmospheric circulation is one of the most important

steps in downscaling. Rainfall can be related to air mass transport and thus related to
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atmospheric circulation, which is a consequence of pressure differences and anomalies
(Bardossy, 1997). Mean sea level pressure is the basis of derived variables such as
surface vorticity, airflow strength, meridional and zonal flow components and divergence
(Wilby and Wigley, 2000). Specific humidity is recognized as significant for AOGCM
precipitation schemes (Hennessy et al., 1997). Considering all the above factors,

predictor variables mentioned in Table 1 are initially chosen to generate precipitation in

this study.
Table 1: Definition of Predictor Variables

Predictors Abbreviations
Precipitation (mm/day) Precip
Maximum temperature (°C) Tmax

Minimum temperature (°C) Tmin

Mean sea level pressure (Pa) MSL

Specific humidity (Kg/ Kg) SPFH

Zonal (eastward) wind velocity component (m/s) at 10 m UGRD
Meridional (northward) wind velocity component (m/s) at 10 m VGRD

Daily observed precipitation (precip), maximum and minimum temperature (Tmax
and Tmin) data from 22 stations covering the UTR basin for the period of 1979-2005 is
collected from Environment Canada
(http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html) (Table 2).

The rest of the atmospheric variables are collected from the NARR reanalysis dataset
for the period of 1979 — 2005. Precipitation values less than 0.5 mm day™ are considered
zero as suggested by Reid et al. (2001) and Choi et al. (2007). NARR data for this study
has been made available through the Data Access Integration of the Canadian Climate

Change Scenarios Network of Environment Canada.
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Table 2: Weather Stations used for Uncertainty Estimation

Location
Serial Station Name Latitude Longitude Elevation Correlation
N) (‘W) (m)
1 Blyth 43.72 81.38 350.50 0.42
2 Brantford 43.72 81.38 196.00 0.65
3 Chatham 42.38 82.20 180.00 0.49
4 Delhi 42.87 80.55 231.70 0.66
5 Dorchester 43.00 81.03 271.30 0.79
6 Embro 43.25 80.93 358.10 0.70
7 Exeter 43.35 81.50 262.10 0.57
8 Fergus 43.73 80.33 417.60 0.56
9 Foldens 43.02 80.78 328.00 0.73
10 Glen Allan 43.68 80.71 400.00 0.57
11 Hamilton A 43.17 79.93 237.70 0.67
12 Ilderton 43.05 81.43 266.70 0.70
13 London A 43.03 80.15 278.00 0.56
14 Petrolia Town  42.86 82.17 201.20 0.52
15 Ridge Town 42.45 81.88 205.70 0.68
16 Sarnia 43.00 82.32 180.60 0.63
17 Stratford 43.37 81.00 345.00 0.61
18 St. Thomas 42.78 81.17 209.10 0.68
19 Tilsonburg 42.86 80.72 213.40 0.73
20 Waterloo A 43.46 81.38 317.00 0.72
21 Woodstock 43.14 80.77 281.90 0.49
22 Wroxeter 43.86 81.15 335.00 0.42

Data source: National Climate Data and Information Archive of Environment Canada
(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html, Retrieved 14/11/2007)
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3.2.2 Future Climate Change Scenarios

The Canadian Climate Change Scenarios Network (CCCSN) provides access to
several AOGCM models and emissions scenarios. The website allows the user to specify
the range of geographical co-ordinates required, as well as the climatic variable and time
period of interest. For the purpose of this study, the time slices collected were 1960-
1990 (baseline), 2011-2040 (2020’s) and 2071-2100 (2080s). Seven variables were
chosen: minimum temperature, maximum temperature, precipitation, specific humidity,
northward wind component, southward wind component and mean sea level pressure.
Six AOGCM models were collected, each with two to three emissions scenarios, as
specified by the IPCC’s Special Report on Emissions Scenarios (Nakicenovic et al,
2000). Full descriptions of the emissions scenarios can be found in Appendix A. Table 3
lists the AOGCM’s along with the emissions scenarios available and their origin.
Appendix B provides descriptions of each AOGCM.

Both NARR and the AOGCM datasets are processed to conform to the station’s grid

points.

3.3 Multi-Model Uncertainty Estimation Methods

Two approaches based on fundamentally different assumptions are applied to
estimate uncertainty in climate model projections of future precipitation under different
forcing scenarios. First, a Bayesian statistics approach is applied to estimate a distribution
of future climates from the combination of past observed and corresponding AOGCM-
simulated data. Next, a methodology combining statistical downscaling using a PCA-
based weather generator approach and nonparametric kernel density estimation technique

is developed to quantify the uncertainties from AOGCMs. The difference between these
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two approaches lies in the fact that the BA-REA method combines uncertainties from
different AOGCMs based on its mean bias, so a single weight for different models is
present; whereas the nonparametric kernel estimator is capable of providing weights for

any point of interest.

Table 3: AOGCM Models and Emission Scenarios used for Uncertainty Estimation

Atmospheric

SRES .
GCM Models Sponsors, Country _ Resolution
Scenarios
Lat Long
CGCM3T47, 2005 | Canadian Centre for Climate AlB, A2,B1 | 3.75° 3.75°

CGCM3T63, 2005 | Modelling and Analysis, Canada AlB, A2, B1 | 2.81° |281°

Commonwealth Scientific and

CSIROMKS3.5, Industrial Research Organization
) A2, Bl 1.875° | 1.875°
2001 (CISRO) Atmospheric Research,
Australia
National Aeronautics and Space
Administration (NASA)/ Goddard
GISSAOM, 2004 ) i AlB, B1 3° 4°
Institute for Space Studies (GISS),
USA
MIROC3.2HIRES, | Centre for Climate System
o AlB, Bl 1.125° | 1.125°
2004 Research (University of Tokyo),

National Institute for
MIROC3.2MEDR | Environmental Studies, and Frontier
ES, 2004 Research Centre for Global Change
(JAMSTEC), Japan

Data source: Canadian Climate Change Scenario Network Website, (http://cccsn.ca/?page=dd-
gcm, Retrieved 9/20/2008)

AlB, A2,Bl1 | 2.8° 2.8°
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3.3.1 The Bayesian Reliability Ensemble Average (BA-REA) Method

The methodology developed by Tebaldi et al. (2004; 2005) consists of a formal
Bayesian implementation and extension of the reliability ensemble averaging (REA)
approach of Giorgi and Mearns (2002; 2003). It combines data from observations and a
multi-model ensemble of AOGCMs to compute PDFs of future temperature and
precipitation change over large regions under different forcing scenarios. Three
components constitute the model structure: prior, likelihood, and posterior. The
assumption is that the variability of present and future climate from different AOGCMs
are random quantities and have different variances which are priori unknown. Although
uninformative prior distribution has been chosen, both model-generated and
observational data are applied for calculating meaningful posterior distributions.

The choice of an uninformative prior distribution has the advantage of selecting
parameter estimates similar to non-Bayesian approaches, such as maximum likelihood. In
cases where there is no sufficient agreement between experts to determine a specific prior
and no data from previous studies could be incorporated, ( a situation similar to wide

range of future climate scenarios), selection of an uninformative prior is justified.

The choice of the likelihood or distribution of the data as a function of any random
parameters constitutes the second parameter. The AOGCM responses are assumed to
have a symmetric distribution whose center is the ‘true value’ of the variable of interest,
but maintains an individual variability to be a measure of how well each AOGCM depicts

the natural variability.

The prior and posterior distributions are combined into a joint posterior distribution

using the Bayes’ theorem. The empirical estimate of the posterior distribution is obtained
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using the Markov Chain Monte Carlo (MCMC) simulation by simulating samples from

the posterior distribution.
Likelihoods

The likelihoods for the observations of current mean precipitation(X,), simulations

of present (X;) and future (Y;) mean precipitation by the i model can be written as:

Xo ~ N[u, (A9)~1] , the likelihood of the observations of current climate
Or

alternately,

Xo=p+é€

X; ~Nw, (2D (3.1)
Or alternately,

X; = u + n; (assuming a common Gaussian distribution for the error terms)
Y; ~ N[v+(64)77]

Or alternately,

Yi=v+ B —w+ Szl'/\/a (assuming a common Gaussian distribution for the error

terms)

Where, u and v are random variables presenting the (unknown) true present and
future mean precipitations respectively. (1,)~! and (1;)~! can be considered as a

measure of i™ AOGCM precision, and the estimates of natural observed variability, which
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depends on the season, region and time average of the observation. The parameter A, is
fixed as the reciprocal of the squared value of the standard deviation of the observations.
Random variable 8 allows for the possibility of the future and present precipitations

having different variances by a multiplicative factor and is common to all AOGCMs.

The alternate forms of equation 3.1 links X; and Y; through a linear regression
equation equivalent to assuming that (X;,Y;) are jointly normal when parameter values
are given and the correlation coefficient is relaxed to vary between -1 and + 1. For
B # 0,the modified equation for Y; will create a direct (if positive) or inverse (if
negative) relation between X; — u and Y; —v. The value of B, is also significant for
representing the correlation: a value of 1 denotes the conditional independence of the
signal of precipitation change produced by any AOGCM and X; — u, the model bias for
current precipitation. Values greater or smaller than 1 imply a positive or negative

correlation between them.
Prior Distribution
The prior distributions are chosen for the following precision parameters:

A; = 1,2,3,....6 have Gamma prior densities (Ga(a,b)):

ﬁ q_lexp_bx (32)
r@"

Where, a and b are known. Similarly for 6, c,d are assumed to be known. For the

model, a = b = ¢ = d = 0.001 are chosen.
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The true climate means p and v for present and future precipitation have uniform prior
densities so that even in case of improper priors (do not integrate to one) they are

assumed to have a proper posterior density function.
Posterior Distribution

Bayes’ theorem is applied to the likelihood and propers. The resulting joint posterior

distribution is given by:
15 [A?"le‘bli/liel/zexp {— % X;—w?+0e3; - v)z}] .6¢1e=90 oxp {— % (X —

w2 (33)

The above distribution does not represent any specific known parameter family. The
posterior distribution fixes the parameters and considers a conditional posterior for others
to synthesize the data and the prior assumptions. For example, the distribution of u for

fixing all other parameters is Gaussian with

Mean:
15 2. X.
ﬁz( =0 LXL)/(ZLSOAJ (34)
Variance:
15 -1
(Zzi) (3.5)
i=0

Similarly, the conditional distribution of v is Gaussian with

26



Mean:

o (ZE v

= ) o
Variance:

15 -1

6 ) A 3.7)
(72

Equations 3.4 and 3.6 are comparable to the REA results as the weighted means of
the 15 different AOGCMs with their scenarios and the observation with weights
y PR Ais, Ao, respectively. These weights are derived by assuming parameters with
random quantities and hence can be used for uncertainty estimation. This uncertainty will
inflate the width of the posterior distributions of v, u and also the precipitation change,

AP.

The mean of the posterior distribution of the A;s fori = 1, 2, ....15 is approximated as:

a+1
E(Ail{XOH 'IX15I Y1P ey YlS}) ~

- (3.8)
b+ 5 ((X; — )2 +6(Y; —9)?)

Equation 3.8 expresses how the bias and convergence criteria are built into the model
implicitly since the precision parameter or the weights A; for each AOGCM are large
provided the bias |X; — u| and convergence |Y; — v| or the distance of the i model future
response from the overall average response are small. So the results are strictly

constrained by their convergence into future projections determined by the weighted
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ensemble of mean. For this study, a=b=0.001 is chosen as per Tebaldi et al. (2004, 2005)

to ensure that the contribution of the prior assumption to equation 3.8 is negligible.
Using the approximation similar to equation 3.1 the posterior mean can be written as:

EAil{Xo,, oo oo, X5, Y1, oo, Yis))

a+1
~ (3.9)

b+ (X — 2 +6(Y v — B, (X — )°)

Next, the marginal posterior distribution is derived using the MCMC approach. A
large number of sample values are generated by applying the Gibbs Sampler using

equation 3.3 for all parameters.
MCMC Approach: The Gibbs Sampler

The joint posterior distribution derived from assuming different distributions such as
Gaussian, Uniform and Gamma in different stages, does not represent any known
parametric family of distributions. Because they are conjugate, they allow for a closed-

form deviation of all full conditional distributions.

Auxiliary randomization parameters s; and ¢;,i = 1,2,3,.......15 are used to ensure an
efficient simulation from student’s t distribution within the Gibbs sampler. Fixing

s; =t; =1, B, = 0, returns the full conditionals to the prior parameters.

S 5 Qti 2
A o~ Ga (a FLb = )+ S = v = B — ) ) (3.10)
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<¢ +1 ¢+ 4(X; - ll)2>
.~ Ga

2 2
¢+1 ¢+04{Y;—v— B —w}
7] [ 17 > 5

-1

YIRS CACH WA I

Brel cve wve eve evewee e~ N(Br, (@t + (X, — ) 7Y)

Ol e e~ Ga(c + 2, d 2B 64 (Y — v — B (X — 1))
Simplifying,

- X SiAiXi — 0B XAt (Y; — v — B X;) + 10X
K T sA; + OBZY Ait; + 2q

XA tY — B (X; — )}
Xtid

Vv =

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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~_ Xt A{Y; —v) (X —w)}
x 2t (X; — w)?

(3.19)

From this sequence of full conditional distributions, the Gibbs sampler is coded to
simulate iteratively. After a series of iterations, the MCMC process ignores the arbitrary
set of initial values for parameters. Values sampled at each iteration represents a draw
from the joint posterior distribution of interest, and any summary statistic can be
computed to a degree of approximation that is a direct function of the number of the
sampled values available, and an inverse function of the correlation between successive

samples.

The reliability of any AOGCM is measured by two criteria to form the shape of the
posterior distribution as a consequence of assumptions formulated in the statistical
model: mean bias of present climate and rate of convergence of the future climate models

to weighted ensemble mean.

Model parameters

For this study, the area averaged precipitation response from all 15 AOGCMs and
scenarios, averaged for the London station, is considered to compare with the PDFs

generated by the methodology presented in Section 3.3.1.

Data and model setup

To generate PDF of precipitation affected by climate change, simulated present (1961-
1990) and future (2041-2070) precipitation (X;, Y;) are considered for the winter
(December-January-February) and summer (June-July-August) seasons. The outputs
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from 15 different sets of experiments and from 6 AOGCMs for the two time slices are
extracted for the 22 stations and averaged for the London station using the nearest
neighbor approach. The natural variability is expressed as the inverse of the variance of
observed precipitation for 1961-1990 (Xo). It is calculated as the inter-annual variance on
the basis of the observed record (Xp). The computer codes used in this study can be
downloaded from the website of the National Centre for Atmospheric Research

(http://www.image.ucar.edu/~nychka/REA/).

3.3.2 Nonparametric Kernel Estimators
Downscaling

Stochastic weather generators simulate weather data to assist in the formulation of
water resource management policies. The basic assumption for producing synthetic
sequences is that the past will be representative of the future. These sequences are
essentially complex random number generators, which can be used to produce a synthetic
series of data. This allows the researcher to account for natural variability when

predicting the effects of climate change.

In order to reduce multi-dimensionality and collinearity associated with the large
number of input variables, a principal component analysis has been integrated within the
weather generator. The process requires selecting the appropriate principal components

(PCs) that will adequately represent most of the information of the original dataset.

The WG-PCA algorithm with p variables and g stations works through the following

steps:

1) Regional means of p variables for all g stations are calculated for each day of the
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observed data:

Xe = %00 Xap oo Xt vt ={1,2,....T} (3.20)
Where,
1 .
Xit = az X, vt ={12,....p} (3.21)
j=1

2) The user-set parameters are as follows: potential neighbors, L days long where
L=W+1)x(N—1) for each of p individual variable with N years of historic
record, and a temporal window of size w. The days within the given window are all
potential neighbors to the feature vector. N data which correspond to the current day
are deleted from the potential neighbors so the value of the current day is not repeated.
3) Regional means of the potential neighbors are calculated for each day at all g

stations.

4) A covariance matrix, C; of size L X p is computed for day t.

5) The first time step value is randomly selected for each of p variables from all

current day values in the historic record.

6) Next, using the variance explained by the first principal component, Mahalanobis

distance is calculated with equation 3.33.

vk ={12,....K} (3.22)

g = \/(PCt—PCk)Z
k= Var(PC)

where,

PC; is the value of the current day;
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PC,, is the nearest neighbor transferred by the Eigen vector.

Var(PC) is the variance of the first principle component is for all Knearest neighbors.

7) The selection of the number of nearest neighbors, K, out of L potential values using

K =+L.

8) The Mahalanobis distance d; is put in order of smallest to largest, and the first K
neighbors in the sorted list are selected (the K Nearest Neighbors). A discrete probability
distribution is used that weights closer neighbors highest in order to resample out of the

set of K neighbors. Using equations 3.34 and 3.35, the weights, w, are calculated for each

k neighbor.
1
Wy = kk - vk ={1,2,...., K} (3.23)

i=1 1

Cumulative probabilities, p;, are given by:

pj= ZWL' (3.24)

9) A random number u(0,1) is generated and compared to the cumulative probability
calculated above in order to select the current day’s nearest neighbor. If p; < u < pg,
the day j for which u is closest to p; is selected. However, if p; > u, then the day that
corresponds to d,is chosen. For u = py, the day that corresponds to day dj is selected.
Upon selecting the nearest neighbor, the K-NN algorithm chooses the weather of the

selected day for all stations in order to preserve spatial correlation in the data (Eum et al,
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2009).

10) In order to generate values outside the observed range, perturbation is used. A
conditional standard deviation o for K nearest neighbors is estimated. For choosing the
optimal bandwidth of a Gaussian distribution function that minimizes the asymptotic
mean integrated square error (AMISE), Sharma et al. (1997) reduced Silverman’s
(Silverman 1986, pp. 86-87) equation of optimal bandwidth into the following form for a

univariate case:

1
A =1.0606K5 (3.25)

J_ obtained in step 9 and

i

Using the mean value of the weather variable x

variance(laij)z, a new value yi{t can be achieved through perturbation (Sharma et al.

1997).

Ve =x, +20/Z, (3.26)

where,

z; IS a random variable, distributed normally (zero mean, unit variance) for day t.
Negative values are prevented from being produced for precipitation by employing a

largest acceptable bandwidth (Sharma and O’Neil, 2002):

th
Ay = %// , 3.27
¢ 1.55¢7 (3:27)

where,
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* refers to precipitation.

If again a negative value is returned, a new value for z; is generated (Sharif and Burn,

2006).
Kernel based Nonparametric Uncertainty Estimator

A practical approach to deal with AOGCM and scenario uncertainties initiating from
inadequate information and incomplete knowledge should: (1) be robust with respect to
model choice; (2) be statistically consistent in a uniform application across different area
scales such as global, regional or local/watershed scales; (3) be flexible enough to deal
with the variety of data; (4) obtain the maximum information from the sample; and (5)

lead to consistent results. Most parametric methods do not meet all these requirements.

The Probability Density Function (PDF) is commonly used to describe the nature of
data. In applications an estimate of the unknown PDF = f() based on random sample
X1, Xp, e o X, from £ () is calculated in the form of PDF = £(). Probability distribution
functions estimated by any nonparametric method without prior assumptions are suitable
for quantifying AOGCM and scenario uncertainties. Several approaches, such as kernel
methods, orthogonal series methods, penalized-likelihood methods, k-nearest neighbor
methods, Bayesian-spline methods, and maximum-likelihood or histogram like methods,

are used throughout the the relevant literature (Adamowski, 1985).

A Kernel density estimation method has been widely used as a viable and flexible
alternative to parametric methods in hydrology (Sharma et al., 1997; Lall, 1995), flood
frequency analysis (Lall et al., 1993; Adamowski, 1985), and precipitation resampling

(Lall et al., 1996) for estimating a probability density function.
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A kernel density estimate is formed through the convolution of kernels or weight
functions centered at the empirical frequency distribution of the data. A kernel density

estimator involves the use of the kernel function (K(x)) defined by:

fooK(x)dx =1 (3.28)

A PDF can thus be used as a kernel function. The Parzen-Rosenbalt kernel density

estimate f,, (x) at x, from a sample of {x4, ....., x;, ...., x,} of sample size n is given by:
n

fin( )—lle (x_xi) 3.29

fh X) = n - h h h ( . )
=

Where t = (%) and k;, (t) is a weight or kernel function required to satisfy criteria

such as symmetry, finite variance, and integrates to unity. Successful application of any
kernel density estimation depends more on the choice of the smoothing parameter or

bandwidth (h) than it does on the type of kernel function K(.), to a lesser extent.

The bandwidth for kernel estimation may be evaluated by minimizing the deviation of
the estimated PDF from the actual one. Assuming a normal distribution for the bandwidth
estimation, the optimal bandwidth for a normal kernel can be given by (Polansky and

Baker, 2000):

1
h, = (1.587)6n73 (3.30)
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Where & is the sample standard deviation measured by Silverman [1986]:

& = min {5, IQR/1_349} (331)

Where S is the sample standard deviation and IQR is the interquartile range.

This methodology is applied to derive the PDF of the mean monthly precipitation at

different time steps.
Data preprocessing and experimental setup

A schematic of estimating the PDFs combining uncertainties using downscaling
technique is presented in Figure 2. For this study, daily input variables from NARR, as
indicated in Table 2, are collected at the nearest grid points and spatially interpolated to

the stations (Table 1) surrounding the Upper Thames River basin.

While the direct downscaling of minimum and maximum temperature has produced

good results, precipitation values are not well reproduced directly from AOGCM data
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Figure 2: Flow Chart of Uncertainty Estimation using Nonparametric Method
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(Brissette et al., 2006). For selection of appropriate conditioning variables, several
combinations of predictors, which are listed in Table 3, are used to generate synthetic
versions of the historic dataset. A multi-objective Compromise Programming tool is then
used to find an optimal set of predictors. Assessment of trade-offs between different
combinations of variables (considered as alternatives) is done according to four
variability measures (considered as criteria): mean, standard deviation, maximum and
minimum values for each month. The rank of each combination is measured by the
compromise programming distance metric, which is calculated as the distance from the
ideal solution for each alternative. Table 4 presents the ranks obtained for each
combination of predictors. It is clear that a combination of all seven predictors is closest

to the ideal solution in most months, and is therefore selected for the purposes of further

analysis.
Table 4;: Rank Table of Different Combinations of Predictors

Months
Cases

12 34 56 7 8 9 10 11 12
P, Tmax, Tmin, PRMSL 76 56 31 15 7 4 6 1
P, Tmax, Tmin, PRMSL, SPFH 4 1 75 4 2 77 6 1 3 7
P, Tmax, Tmin, PRMSL, SPFH,

52 2 4 2 4 33 16 4 2
UGRD, VGRD
P, Tmax,Tmin,PRMSL,UGRD,VGRD 6 4 17 75 21 4 2 5 6
P, Tmax, Tmin, SPFH 37 4 1 53 6 2 53 7 4
P, Tmax, Tmin, SPFH, UGRD, VGRD 2 3 6 3 17 56 35 2 5
P, Tmax, Tmin, UGRD, VGRD 15 32 6 6 4 4 27 1 3

* P: Precipitation, Tmax: Maximum temperature, Tmin: Minimum temperature, PRMSL: Mean sea level
pressure, SPFH: Specific humidity, UGRD: Eastward wind component, VGRD: Northward wind
component
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Next, the monthly information from each of the AOGCM emission scenarios (Table
3) is collected for four time slices: 1961-1990, 2011-2040, 2041-2070 and 2071-2100.
Because of the limited quality and unavailability of daily inputs from many AOGCMs,
monthly inputs should be used. Climate variables taken from the nearest grid points are
interpolated to provide a dataset for each of the stations of interest in the same way as the
NARRs. In order to generate future climate data, the difference between the base climate
and the AOGCM outputs (2041-2070 or 2050s) are computed for all predictors. The
change factors are then used to modify the historic dataset collected for each station,
thereby creating a future dataset. The differences between current and future climate are
used to calculate the monthly change factor and then added to the predictors to generate
a modified time series. This modified dataset is used as input into the weather generator

to produce synthetic datasets of any length for the time period of interest.

In order to reduce multi-dimensionality and collinearity associated with the large
number of input variables, a principal component analysis is integrated with the weather
generator. The process requires the selection of the appropriate principal components
(PCs) that will adequately represent most information in the original dataset. It is found
that the first PC is able to explain over 95% of the variations associated with the inputs.

Hence, only the first PC is considered for the weather generator.

The daily future data, downscaled using WG-PCA, are averaged to a monthly value
in order to draw a PDF for comparison with the BA-REA approach. The average monthly
total values for winter (DJF) and summer (JJA) for each scenario are considered. Values
from each AOGCM for any specific year are considered as an independent set of
realization and are used to draw PDFs.
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3.4 Indexing Extreme Precipitation Events

Simulation of extreme precipitation is dependent on resolution, parameterization and
the selected thresholds. Sun et al. (2006) found that most AOGCM models tend to
produce light precipitation (<10mm day™) more often than observed, too few heavy
precipitation events and much less precipitation during heavy events (>10 mm day™)
(Randall et al.,, 2007). The situation gets worse in the absence of any extreme
precipitation indices. In the IPCC (2007), several indices explaining extreme temperature
and precipitation are proposed but most literature reports investigations of percent change
in the occurrences of such indices without any acceptable definition of their severity

level.

Three precipitation indices have been used for comparing the performance of the
AOGCMs in generating extreme precipitation amounts. These indices describe
precipitation frequency, intensity and extremes. The highest 5 day precipitation, number
of very wet days and the number of heavy precipitation days express extreme features of
precipitation. For very wet days, the 95" percentile reference value has been obtained
from all non-zero total precipitation events for the base climate. Heavy precipitation days

are those days that experience more than 10 mm of precipitation.

For Canada, due to large variation of precipitation intensities in various regions, a
fixed threshold may not be good to assess the severity level (Vincent and Mekis, 2006).
Accordingly, in this study an attempt has been made to classify the severity level of these
indices based on percentile values. The percentile method has several advantages. It is
simple and computationally inexpensive. It is completely data driven and does not follow
any specific distribution, so can be used at any location with different precipitation
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patterns. Table 5 presents the classification scheme used for the summer and winter
season. They can be easily used to assess the impact of climate change on extreme

precipitation events.

Table 5: Classification of Extreme Precipitation Indices based on Percentile Approach

Serial Description

1 <= 25th percentile of 1961-1990 observed precipitation

2 25th — 50th percentile of 1961-1990 observed precipitation
3 50th —75th percentile of 1961-1990 observed precipitation
4 75th — 95th percentile of 1961-1990 observed precipitation
5 >95th percentile of 1961-1990 observed precipitation

3.5 Extended Kernel Estimators

Nonparametric estimators are erroneously considered to be less accurate with small
sample sizes (Lall et al., 1993). With the increase in sample size, the choice of estimator
selection (parametric or nonparametric) can only be more accurately identified.
Nonparamtric kernel estimators based on (i) normal kernel estimator (Silverman, 1986),
and (ii) the Orthonormal method (Efromovich, 1999) have been applied by Ghosh and
Mujumder (2007) for assessing AOGCM and scenario uncertainties of future droughts. In
the present study, the application of a normal kernel estimator is extended with the
commonly used bandwidth selection methods for estimating densities and addressing

model choice and scenario choice uncertainties.
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3.5.1 Definition

The nonparametric kernel density estimation described in section 3.3.2 is based on the
conventional method of assuming a normal distribution function for unknown PDFs.
Because of an uncertain future climate, it is not justifiable to assume a normal
distribution of the PDFs. Allowing an extension for the kernel estimator by replacing the
normal bandwidth for a data-driven procedure can better quantify the inherent
uncertainties arising from different AOGCMs.

The behavior of the estimator (equation 3.28) may be analyzed mathematically under
the assumption that the data sets represent independent realizations from a probability
density f(x). The basic methodology of the theoretical treatment aims to discuss the
closeness of estimator f to the true density, f. Successful application of the estimator
depends mostly on the choice of a kernel and a smoothing parameter or bandwidth. the
relevant literature shows that the choice of bandwidth is more critical. A change in
kernel bandwidth can dramatically change the shape of the kernel estimate (Efromovich,
1999). For each x, f(x) can be thought as a random variable because of its dependence

on X1, X5, ... ... X,. Except otherwise stated, X will refer to a sum for i = 1 ton and | to

an integral over the range (—oo, ).

The discrepancy of the density estimator f from its true density f can be measured by

mean square error (MSE):

MSE,(f) = E[(f(x) = f(0)]? (3.32)

By standard elementary properties of mean and variance,

MSE,(f) = {E[(f () = f(O1?} + var f(x) (3.33)
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The sum of the squared bias and the variance at x. In many applications a trade-off is
applied between the bias and the variance in equation 3.32; the bias can be reduced by
increasing the variance and vice versa by adjusting the degree of smoothing. It can be
obtained by minimizing the mean integrated squared error (MISE), a widely used
measure of global accuracy of f as an estimator of f (Rosenblatt, 1956; Adamowski,

1985; Scott et al., 1981, Jones et al., 1996) and defined as:

MISE (f) =E f [(f(x) = f(x)]%dx (3.34)

Or in alternative forms,

MISE(f) = j MSE, (f)dx

= E [[(f(x) = f(x)]?dx + [ var (f)dx (3.35)
which gives the MISE as the sum of the integrated square bias and the integrated

variance.

Asymptotic analysis provides a simple way of quantifying how the bandwidth h
works as a smoothing parameter. Under standard assumptions, MISE is approximated by

the asymptotic mean integrated squared error (AIMSE) (Jones et al., 1996):

AMISE(R) =n"*h™'R(K) + h*R(f") ( J x2 K /2) (3.36)

Where R(¢) = [ @?(x)dx and[x?K = [x*K(x)dx , n is sample size, h is
bandwidth. The first term (integrated variance) is large when h is too small, and the

second term (integrated squared bias) is large when h is too large.

The minimizer of AIMSE (h) is easily calculated as:
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1/5
R(k) l (3.37)

AMISE(R) = lnR(f")(f MToE

3.5.2 Methods for Bandwidth Selection

Data driven estimation methods are broadly classified as first generation and second

generation methods by Jones et al (1996).
First Generation Methods

First generation methods used for the selection of smoothing parameter include those
proposed before 1990. These include the rule of thumb, least square cross validation and

biased cross validation methods.

The most basic method is the ‘rule of thumb’ used by Silverman (1986). The idea
involves replacing the unknown part of hawise, R(f"), in equation 3.34 with an estimated
value based on a parametric family such as a normal distribution N (0, ). However, this
method is known to provide an over-smoothed function (Terrell and Scott, 1985; Terrell,
1990) and has been proven to be unrealistic in many applications. In the present study,
hror is used to denote the bandwidth based on the standard deviation in Silverman

(1986).

The idea of ‘least squared cross validation’, first used by Bowman (1984) and

Rudemo (1982), incorporates integrated squared error (ISE) as

isEw = [G-p2 = [fi-2 | fur+ [ r? (338)
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The minimizer of the ISE is the same as the minimizer of the first two terms of the
final form. The first term is known while the second term can be estimated by
—2n"t ¥ £ (X)), where f; is the leave-out kernel density estimator with X; removed.

The largest minimizer is denoted by h., Hall and Marron (1991).

The biased cross validation (BLCV) proposed by Scott and Terrell (1987) seeks to
directly minimize the AMISE by estimating the unknown R(f") in equation 3.34. It
proceeds by selecting another bandwidth treated as the dummy variable of minimization.

The smallest local minimizer of

2

( j X2 K/z) (3.39)

BLCV(h) =n*h 1R(K) + h* x
mh

=

is denoted by hgyp.

Second Generation Method

Second generation methods comply with those developed after 1990, such as the
solve-the-equation-plug-in approach, the smoothed bootstrap approach, etc. In this study,
only the solve-the-equation-plug-in approach is used, and hence is described below.

The main thought behind the ‘solve the equation plug in’ approach is to plug an
estimate of the unknown R(f") in the equation 3.40. The major challenge is to estimate a
pilot bandwidth. The ‘solve the equation’ approach proposed by Hall (1980), Sheather
(1983, 1986) and later refined by Sheather and Jones (1991) is used in this study. The

smallest bandwidth, hs;p; is considered as the solution of the fixed point equation

R(K)
R (fymy) ([ x2K)?

(3.40)

46



The major difference between the BLCV and SJPI approaches lies in the expression of the
form g(h), which provides a better representation of R(f"). It is done by estimating an

analogue of h,y;s; for estimating R(f ") by R(f;).

The minimizer of the asymptotic mean squared error (AMSE) is expressed as:

9aMsE = C1{R(fm)}cz (K)n%l (3.41)

for suitable functional C; and C,. The expression of g in terms of 2 comes from solving

the representation of hy;ysz for n and substituting to get

5
g(h) = Cs{R(f ), R(f )}IC4(K)R7 (3.42)
For appropriate functionals Cs, C,. The unknowns R(f") and R(f ") are estimated by

R(f™ and R(f'""), with bandwidths chosen by reference to a parametric family, as for

hROT'

While many variations have been tested for the treatment of R(f’") and R(f'"), the
major contribution has been to try to reduce the influence of the normal parametric family
even further by using pilot kernel estimates instead of normal interference (Jones et al.,
1996). Park and Marron (1992) has shown the improvements in terms of the asymptotic

rate of convergence up to a certain point.
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4. Results and Discussion

The performances of all methods and comparison results described in Chapter 3 are
presented here. First, the BA-REA method and non-parametric weather generator are
evaluated for assessing AOGCM uncertainties. The indices for estimating the severity of
extreme precipitation events are developed and compared for future climate. Finally, the
probabilities of extreme precipitation events are assessed with associated AOGCM and

scenario uncertainties.

4.1 Fixed Weight (BA-REA) Method

The performance of the Bayesian reliability method can be assessed by model bias
and convergence. Table 6 presents the values of the bias from six different AOGCMs.
Bias is calculated as the difference between each AOGCM’s response to the present

climate and the present climate as generated by the model.

Table 6: Biases from AOGCM Responses to Present Climate (1961-1990) in London

Model Bias (%0)
Season CGCM3 CGCM3 CSIRO GISS MIROC MIROC

T47 T63 MK3.5 AOM 3.2HIRES 3.2MEDRES
Summer  22.50 -2.12 6.50 12.07 -14.92 -14.10
Winter  2.18 -1.68 11.46 -0.04 -26.24 -5.64

Figure 3 presents posterior distributions of precipitation change AP for London
during the winter and summer seasons. For purposes of reference, the response of 15

models and the scenarios’ individual responses Y; — X;, for i=1, 2, ....,15, are plotted
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Figure 3: Posterior Distributions of DP=v — p in London for Winter and Summer

along the x axis (dots) together with the REA estimate of mean change (triangles). A
measure of convergence can be assessed using the relative position of the individual
responses. The relative position is used in the identification of the outlier models and the
models that reinforce each other. The comparison of densities in Figure 3 and the bias
measure in Table 7 identify the models that provide higher biases (Table 7) and act as
outliers (Figure 3). Models with smaller biases receive larger weights. The cases that

respect both criteria are the ones where the probability density is concentrated.
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Table 7: Relative Weighting of the 15 AOGCM Scenarios (2050s) for London

Models/Scenarios DJF JJA
CGCMT47_Al1B 2.22 4.07
CGCMT47_A2 1.11 1.09
CGCMT47_B1 7.76 2.80
CGCMT63_A1B 4.30 31.83
CGCMT63_A2 11.06 36.56
CGCMT63_B1 1.32 0.41
CSIROMK35_B1 2.46 1.10
CSIROMK35_A2 3.37 2.77
GISSAOM_A1B 18.21 2.66
GISSAOM_B1 24.25 4.10
MIROC32HIRES_A1B 0.07 4.28
MIROC32HIRES_B1 0.09 451

MIROC32MEDRES_A1B 8.75 1.26
MIROC32MEDRES_B1 8.44 0.69
MIROC32MEDRES_A2 6.57 1.86

Figure 4 summarizes the posterior distributions for the precision parameters A;. It is
considered as a random variable. The scoring of the AOGCM scenarios should be
evaluated through the relative position of the boxplots, rather than by comparing point
estimates. Comparison of their distributions across the models for a single region and any
specific season provides the ordered performances of those scenarios in simulating future
climate. Large A; values indicate that the distributions of the AOGCM responses are more
concentrated to the true climate response, i.e. the posterior distributions which are shifted
towards right indicate AOGCM’s better performances than those shifted to the left.
However, large overlaps among these distributions are evident indicating substantial

uncertainty in the relative weighting of the models.
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Figure 4: Posterior Distribution of 4j , the Precision Parameter for Winter (Top) and
Summer (Bottom)

So the posterior mean of each A; is calculated and the results are presented as
percentages in Tables 6 and 7. The tables clearly indicate the varying result of the model
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performances for different seasons, thereby suggesting a differential skill in reproducing
present day climate and a different level of agreement among the models for different
signals of precipitation change. Table 7 presents an overall measure of reliability for the
AOGCMs by summing up the weights from each model through relative weighting. The
results are ranked based on performances for summer (JJA) and winter (DJF) seasons
separately. A difference in the relative weighting of the AOGCMs and scenarios can be

seen.

Next, the posterior distribution of the inflation/deflation parameter 6 is presented in
Figure 5 to compare the simulations of the present day to future climate scenarios. A
value below one represents a deterioration of the degree of the precision of the model

performances.

Summer

HERR R KRR * * % ®

Winter 4

R

10 20 30 40 50
Theta
Figure 5: Posterior Distribution of 0, the Inflation/Deflation Parameter

oda-

From Figure 5, it is seen that for summer and winter, the models and scenarios show
improved performances, however with varying degree; the agreements are better
represented during summer than winter. The figure presents an overall degree of

52



performance for the REA method by considering a common value for all AOGCMs,

which can limit the real representation of future climate.

4.2 Variable Weight (Kernel Estimator) Method
The variable weight method involves downscaling the AOGCM responses for future
climate scenarios and estimating the uncertainties using nonparametric density estimator

by considering different weights at each time interval.

This study uses 22 stations for the period of 1979-2005 (N=27) to simulate
precipitation scenarios using seven meteorological variables. Employing the temporal
window of 14 days (w=14) and 27 years of historic data (N=27), 404 days are considered
as potential neighbors (L=(w+1) x N-1=404) for each variable. 12 different runs, each
comprising 27 years of daily precipitation are generated. Errors in the estimates of mean
and variance of generated precipitation are evaluated using a statistical hypothesis test at

95% confidence level.

The performance of WG in representing the present climate is tested by using the
nonparametric Wilcoxon-rank test and Levene’s test (Levene, 1980). Table 8 presents the
statistical significance test results (p values) in the estimate of daily precipitation for
summer (JJA) and winter (DJF) for 1979-2005 in London. The p values at 95%
confidence level for all runs are above the threshold (0.05), which clearly indicates that
there is no evidence of different means between the observed and generated
precipitations. The results of the Levene’s test for the equality of variances of observed
and simulated precipitation at 95% confidence level are presented in Table 8. The p

values appear above 0.05 thresholds, indicating equal variability of the simulated
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precipitation with the observed precipitation. So, the observed and the simulated

precipitation can be assumed to have equal variances.

Table 8: Test Results (p values) of the Wilcoxon Rank Test and Levene’s Test

Wilcoxon Rank Test Levene’s Test
Runs Summer Winter Summer  Winter

1 0.46 0.48 0.61 0.55
2 0.76 0.61 0.72 0.58
3 0.64 0.67 0.56 0.99
4 0.93 0.37 0.98 0.18
5 0.60 0.98 0.87 0.59
6 0.59 0.53 0.96 0.99
7 0.91 0.95 0.64 0.20
8 0.91 0.95 0.64 0.20
9 0.76 0.67 0.98 0.84
10 0.48 0.63 0.91 0.19
11 0.77 0.80 0.41 0.66
12 0.76 0.29 0.76 0.30

Frequency distributions of wet-spell lengths for winter and summer months are
plotted in Figure 6. A comparison of observed and simulated values for wet-spell lengths
shows very close agreement between the frequency distributions. The frequency of wet-
spell lengths in the simulated data for summer is almost identical to the observed values,
except for the one day lengths where the simulated data show a slight overestimation.
The same is the case for the winter months. The performance of the weather generator in

reproducing wet-spell lengths is very good.

Using the synthetic data set created from the change factors from several AOGCMs,

324 years of data set is generated for each case. In order to investigate the intensity of wet
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Figure 6: Frequency Plots of Wet Spell Lengths for Summer (Top) and Winter (Bottom)

spells for future climate, bar charts are made showing the percent change in wet spell
intensity from the historical values to the future values. Intensities are calculated using
the total amount of rain that fell during the spell over the length of the spell. The percent
changes in wet spell intensities are determined for 3, 5 and 7 day wet spells. The plots are
made for summer (June, July, August) and winter (December, January February) in both

time periods. Figures 7 (a), (b) and (c) show the bar charts for the summer and winter
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months of the 2050s, respectively.
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Figure 7 (a): Change in 3-Day-Spell Intensities for Summer, 2041-2070
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Figure 7 (b): Change in 5-Day-Spell Intensities for Summer, 2041-2070

For summer wet spells, all models, except the MIROC3.2HIRES A1B, project an
increase in 3-day intensities. The most significant increase in intensity is predicted by
MIROC3MEDRES A2 (100%) and CSIROMK3.5 A2 (47%). For 5-day wet spells, all
models predict an increase, with CSIROMK3.5 A2 and MIROC3MEDRES B1 predicting

the highest intensities over 100%. The smallest increase is predicted by
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MIROC3.2MEDRES A1B and MIROC3HIRES A1B with below 20% of changes. The

average change from all the models and scenarios is approximately between 35-70%.
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Figure 7 (c): Change in 7-Day-Spell Intensities for Summer, 2041-2070

Except for CGCM3T63 B1, CGCM3T47 B1 and A2, and MIROC3MEDRES B1, most
models predict a decrease in intensity for 7-day spells. Increases of 6-25% are predicted
by these models. The remaining models predict a decrease in intensity of 7 to 38% for the
2050s, with the highest being generated by GISSAOM BL1. Overall, the general trend for
summer in the future as predicted by several AOGCM’s is that shorter wet-spell

intensities will increase as longer wet-spell intensities decrease.

In the next section, a comparison between both uncertainty estimation methods is
presented. The mean precipitation obtained from each AOGCM and scenario is assumed
to be an independent realization of future. Using this concept, climate density curves are

generated by combining the information from all AOGCMs during the 2050s, the results
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of which are presented in section 4.3.

4.3 Fixed vs. Variable Weight Method

This section presents a comparison of uncertainty estimation methods explained in
sections 3.3.1 and 3.3.2 using density estimators. Figures 8 (a) and (b) present density
estimates of precipitation change for the winter and summer seasons with the results
obtained from the WG combined kernel density estimates and the BA-REA method for

London station using 2050s (2041-2070) time slice.
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Figure 8 (a): Density Estimate of the Mean Precipitation Change in London using BA-
REA Method for Winter and Summer

The density estimate of the posterior distribution of the precipitation change during
summer using BA-REA method is under-smoothed, many spurious bumps especially at
the tails for both winter and summer can be seen which makes it harder to understand the
structure of the data. The estimates calculated by the kernel estimator show evidence of a

smoothed structure.

The extended benefit of kernel estimators is that unlike BA-REA, the generated
outputs can be modified into indices of interest and the probabilities can be calculated for

any frequency of data, monthly, daily, or yearly, while the BA-REA method only
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provides the mean change by combining the AOGCM scenarios. Moreover, the BA-REA
method does not provide a single relative weight applicable to the overall data length.
Instead, the weight/kernel function (K(.) in equation 3.29 can be calculated at any points

of interest within the range of data.
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Figure 8 (b): Density Estimate of the Mean Precipitation Change using Kernel Estimator
for Winter (Top) and Summer (Bottom)

4.4 Uncertainty Estimation of Extreme Precipitation Events

4.4.1 Changes in Future Extreme Precipitation Events

Changes in the precipitation indices compared to the historic observed 1979-2005
values are computed from the downscaled precipitation for three time slices (2020s,

2050s, and 2080s) and presented in Table 9. Both summer and winter show different
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changing patterns. For summer, half of the scenarios show a decrease in number of heavy

precipitation and very wet days for all three time slices, while most models show an

increase in 5 day maximum precipitation amount.

Table 9: Percent Changes in Extreme Precipitation Events for 2020s, 2050s and 2080s

. Heavy Precip Days Very Wet Days 5 Day Precip
Models/Scenarios 2020 2050 2080 2020 2050 2080 2020 _ 2050 2080
Summer
CGCM3T47_AlB 389 286 137 819 596 187 564 075 249
CGCM3T47_A2 187 345 251 534 507 -133 58 303 -055
CGCM3T47 Bl 726  -293 -156 1397 044 587 827 196 245
CGCM3T63_AlB 238 656 -1.18 623 391 205 1217 254  1.16
CGCM3T63_A2 1078 330 -156 -1157 970 071 -473 670 525
CGCM3T63_B1 751 685 -750 -560 -6.85 -7.12  -280 283 -4.70
CSIROMK3.5_A2 1844 2973 2684 39.68 57.92 5205 2698 3751 3518
CSIROMK3.5_B1 561 1957 1637 1477 39.68 29.00 981 3038 1845
GISSAOM_A1B 103 638 1591 356 1459 3238 364 959 20.15
GISSAOM_B1 506 557 815 11.92 1601 2242 876 919 1653
MIROC3HIRES_A1B 2584 2438 -26.72 3532 -3826 -39.59 -19.41 -23.08 -26.93
MIROC3HIRES_B1 1455 2570 -16.82 -18.68 -31.94 -2482 -11.64 -19.30 -15.91
MIROC3MEDRES_A1B -13.31 -23.24 -33.12 -16.28 -3158 -4128 -12.08 -2045 -27.70
MIROC3MEDRES_A2  -13.09 -1250 -40.01 -15.75 -16.81 -56.41 -1401  -9.18 -38.89
MIROC3MEDRES Bl  -1485 -2038 -1557 -17.53 -27.05 -20.82 -1023 -17.58 -13.58
Winter

CGCM3T47_AIB 26.15 3860 4713 4000 5088 7666 1040 27.09 29.02
CGCM3T47_A2 28.88 32.80 60.11 4308 4813 91.86 2307 20.54 38.96
CGCM3T47 Bl 2531 4885 4516 3338 7336 6694 2149 2787 2575
CGCM3T63_ALB 1957 2331 3505 2277 2650 5455 1054 952 20.76
CGCM3T63_A2 10.07 2604 3366 1277 4045 47.66  9.82 1514 20.14
CGCM3T63_B1 2032 721 1952 1662 565 29.00 1121 130 10.26
CSIROMK3.5_A2 2244 3112 3855 3000 4045 6255 1224 2471  26.66
CSIROMK3.5_B1 2004 3951 2130 2354 6051 2117 1265 2541 12.75
GISSAOM_A1B 6.87 1070 2738 631 408 4154 580 -094 1545
GISSAOM_B1 17.03 1166 1871 1923 1662 2305 1255 530  6.26
MIROC3HIRES_A1B 480 673 610 938 722 1176 015 202 -2.13
MIROC3HIRES_B1 400 291 1866 -1892 564 1897  -7.27  -747 26l
MIROC3MEDRES_A1B  -7.67 064 -041 -1477 -1112 235 968 -752 -1.02
MIROC3MEDRES_A2 626 -161 558 -12.31 -7.67 1035 -840 -501 -0.84
MIROC3MEDRES_B1 064 295 663 -1692 -1191 -0.15 -564 -10.02 -3.02

This clearly indicates a higher intensity

precipitation events. However, ranges of change

of precipitation during extreme

are very high, indicating higher

uncertainties in model projections during summer. For winter, most of the models are in
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agreement over the increasing trend of extreme precipitation indices for three time slices.

In this case also, the uncertainty range is higher.

4.4.2 Distribution Fitting

In the presence of uncertainties in AOGCM models, there is still concern over the
choice of a unique distribution for the future climate responses. The comparison of the
optimal distribution of different AOGCM data based on probability plots and goodness of
fit test provides an insight into the level of inherent uncertainties. The performances of
different distributions during summer and winter are evaluated using three goodness-of —

fit-tests: Kolmogorov-Smirnov test, Anderson-Darling estimate, and Chi-Squared test.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is used to decide whether the sample comes from a
hypothesized continuous distribution. The samples x;, x,, ... ... , X, are assumed to be
random, originating from some distribution with Cumulative Distribution Function
(CDF) F(x). The Kolmogorov-Smirnov statistic (D) is based on the largest vertical

difference between the theoretical and the empirical CDF:

D = max (F(xi) — %,% — F(xl-)) (4.1)

1<isn

Anderson-Darling Estimate
The Anderson-Darling procedure compares the fit of an observed CDF to an expected
CDF. The method provides greater weight to the tail distribution than the Kolmogorov-

Smirnov test. The Anderson-Darling statistic A2 is expressed as:
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A? = —n— %Z(Zi — 1. [InFX) +In(1 - FXp_i11))] (4.2)

Chi Squared Test
The Chi —squared test is used to determine if a sample comes from a specific

distribution. The test statistic is expressed as:

k
0; — E;)?
X2 = z (‘Tl) (4.3)
i=1 !
where,

0; is the observed frequency;
E; is the expected frequency calculated by:
Ei = F(x2) = F(x1)
Where,
F is the CDF of the probability distribution being tested; and
x, and x, are the limits of the it" bin.
In terms of hypothesis tests, the distributional form is rejected at the chosen

significance level a if the test statistic is greater than the critical value defined as:

)(21_ ak—1 representing the Chi-squared inverse CDF with k — 1 degrees of freedom

and a significant level of a.

The performance of any specific distribution is ranked based on the goodness of fit
values. The optimum parameters for the best fitted distribution function are summarized
in Appendix C. From the tabulated results it can be observed that for extreme
precipitation events, most models are fitted with the Generalized Extreme Value

distribution with varying value of the shape (k), location (n) and scale (o) parameters.
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However, the distribution of wet days with >95™ percentile precipitation during the
winter season fits a well defined Frechet distribution, indicating a distribution different

than the historical perturbed/no change scenario.

The GEV distribution unites the type 1, type Il and type 11l extreme value distributions
into a single family, thereby allowing a continuous range of possible shapes. For k < 0,
the GEV is equivalent to the type Ill extreme value (Weibull). For k > 0, the GEV is
equivalent to type Il distribution (Frechet). As k approaches 0, the GEV becomes the type
I (Gumbel). Although most of the models and scenarios show the best fit with extreme
value distributions, to be more precise, with the Type Il (Frechet) and Type 111 (Weibull)
distributions with shape parameters greater and smaller than O respectively, the shape
parameter values (k) appear close to 0. However, the differences in the k values show
extent of the variations among the distributions for each index. The tables further point
out the limitations of the parametric methods for quantification of uncertainties assuming

any specific distribution and parameter values.

4.4.3 Comparison of Extended Kernel Estimators

Selection of bandwidth

To measure how well the bandwidth selection methods perform, this section proceeds
with the comparison of various bandwidth selectors by applying them in the assessment
of extreme precipitation indices. Figure 9 presents kernel density estimates with statistics
constructed using several bandwidth selectors: (i) the rule of thumb (ROT; by Silverman,
1986) as explained in section 3.3.2), (ii) likelihood cross validation (LCV), which
searches for bandwidth based on likelihood (by Terrell and Hall, 1990, as explained in
section 3.5) and (iii) the plug in estimator that selects the bandwidth using the pilot
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estimator of the derivatives refined by Sheather and Jones, 1991 (SJPI; named after

Sheather-Jones plug in estimator (section 3.5)).

The choice of kernel is strictly limited to examining two of the most widely used

types: Gaussian and Epanetchnikov kernels, the functions of which are expressed as:

1
Gaussian: K(u) = \/%3‘5“2
Epanechnikov: K(u) = %(1 —u?)

The ‘original’ estimate is created by mixing the inputs, and 1000 samples are
generated from the mixtures without any estimation of bandwidth. It is created for
assessing how different techniques respond to the original data type. By comparing the
generated estimators, it can be seen that the density estimate using ROT is highly
oversmoothed, which may have missed important features of the generated data. For both
kernel types, it failed to capture the multimodality. In the case of LCVs, there are
suggestions of multiple modes in the density curve. However, it is still severely
undersmoothed; the small bumps occurring from the uncertainties of different AOGCM
types make it harder to understand the structure of real data. The bandwidth by SJPI
seems to be in a better agreement with the ‘original’ estimate and provides a strong
indication of multimodal distribution. From Figure 9, it is also evident that the choice of
kernel merely plays a role in the estimation of density. So, for the present study the
Gaussian kernel with Sheather-Jones plug in estimator was used to calculate the

bandwidth for estimating density of the extreme precipitation indices.
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Uncertainty estimation

To examine uncertainties in future extreme precipitation events, the yearly values of the
indices from each AOGCMs and scenarios are taken as a set of independent realizations.
This set is then used at each time step to establish a PDF by applying the bandwidth
values. The CDF values at the upper and lower ranges of each severity class are
calculated by numerical integration. The difference between the upper and lower value
can thus be considered as the probability of that specific class of extreme precipitation
indices for future. Figures 10 through 12 present the probability of heavy precipitation
days, very wet days, and 5 day precipitation for three time slices. Both indices show
somewhat similar results for the summer and winter seasons. For <25™ percentile values,
heavy precipitation days show an increase in probability for the later part of the century.
For the 25"-50™ and 50-75" percentile ranges, probabilities decrease slightly while
approaching 2100. However, the higher probability of precipitation days over the time is
observed for >75" and >90™ percentile range. This trend is supported by the probabilities
of very wet day and 5 day precipitation for the summer season. In summary, the
increased probability of the high end extreme precipitation events indicates larger chance
of high intensity events during the later part of the century. The method explained in this
section can be seen as a major improvement over the ‘normal’ kernel (Silverman, 1986)
method applied in other AOGCM and scenario uncertainty studies. The SJPI based kernel
estimation method proposed here overcomes the limitations associated with the
assumptions of normality in the case of unknown densities/distributions. It is completely
data driven; hence, not only is it more robust, flexible, and independent, but and the

methodology has been extensively revised by statisticians.

66



<25th Percentile

25th-50th Percentile

0.36
>
£ 034 =)
2 0.32 _g
S 030 . o
o o
Q 0.28 a
2011-2040  2041-2070  2071-2099 2011-2040 20412070 2071-2099
Time Slices Time Slices
50th-75th Percentile 75th-90th Percentile
2017
§ 0.15 -
© 0.3 -
o
0.11 -
2011-2040 2041-2070 2071-2099 2011-2040 2041-2070 2071-2099
Time Slices Time Slices
> 90th Percentile
0.13
Z
= 012
]
s
° 0.11
a
0.10 -

2011-2040 2041-2070
Time Slices

2071-2099
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The Orthomornal method (Efromovich, 1999) proposed by Ghosh and Mujumder
(2007) to estimate uncertainties of future droughts provides another important segment of
the nonparametric uncertainty estimation technique. However, one major limitation of the
orthonormal method is the use of a subset of the Fourier series, which consists of cosine
functions without proper justification. The additional benefit of kernel density estimators
for estimating AOGCM and scenario uncertainties derives from the fact that the
scientific community is now highly confident that the trends in precipitation over future
periods are not going to follow the same distribution as in the past. However, it is true for
any statistical method that larger samples provide better estimates of any data
distribution. It is our expectation that with the advance of more sophisticated global
climate models, the kernel method will be applied with more confidence for uncertainty

estimation problems.
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5. Conclusions
This study deals with the approaches for quantifying AOGCM and scenario

uncertainties from the modeled outputs of extreme precipitation events for London,
Ontario, Canada. This work is strictly limited to the uncertainties of the outputs from
several AOGCMs and scenarios and does not consider the uncertainties due to

parameterization or structure of the models.

Two very different multi-model ensemble methods namely, the Bayesian reliability
ensemble average (BA-REA) and the downscaling based kernel density estimator are
used for uncertainty estimation. A comparison of these two methods reveals that while
the BA-REA method can be a good alternative for predicting mean changes in
precipitation in any region, it cannot be used in estimating uncertainties of different
extreme events occurring at a daily time scale. The capability of the BA-REA method to
analyze the climate responses is fairly limited; whereas the downscaled outputs can be
obtained in any frequency according to the need of the user. The data-driven kernel
estimator is capable of assuming data values at each time step as an independent
realization, instead of calculating weights based on the means. It has a significant
implication for estimating uncertainties of extreme precipitation events; calculating
weights based on the mean can ignore the higher or lower values which may cause an
unrealistic representation of climate extremes, such as floods, droughts, etc. However, the
kernel estimator has it’s limitations too, from the extended chance of over or under-
smoothing resulting from wrong selection of bandwidth. The comparison of the best fit
curves for different AOGCM scenarios for extreme precipitation indices shows varying

agreement and thereby the limited benefits of parametric distribution approach.
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The choice of an appropriate bandwidth selection method is a significant step for
kernel estimation. The shape of the distribution function is important in determining the
performance of the bandwidth. The comparative results of different bandwidth selectors
show that the rule of thumb (ROT) method assuming normal kernel suffers from over-
smoothing for both indices while the least square cross validation (BLCV) method results
in under-smoothed distributions. The SJPI estimator offered a useful compromise
between the ROT and the BLCV methods. This trade-off between the distributions of the
bandwidths seems to be an intrinsic criterion for assessing the performance of data-driven
bandwidth selectors. Using the bandwidths calculated by the SJPI method, the CDFs for
different severity classes are calculated for the extreme precipitation indices. This is
estimated by the assumptions that the outputs from different AOGCMs are independent
realizations; hence, indices have a different PDF at each time step and are not limited to
any specific type of distribution. The nonparametric methods can be seen as a major
improvement over the parametric methods, which otherwise assume specific distributions
for estimating uncertainties. Considering the probabilities obtained, it can be said that the
probability of severe and extreme events are going to increase for both summer and

winter due to the changes in climate over the next century.

The future scope of the study includes generating probabilistic intensity-duration-
frequency (IDF) curves for future extreme precipitation events by incorporating

associated uncertainties from AOGCM and scenario outputs for decision making.

75



Acknowledgement

The authors wish to gratefully thank the Canadian Foundation for Climate and
Atmospheric Sciences for providing financial assistance. The constructive comments
given by Dr. Claudia Tebaldi of the National Centre of Atmospheric Research for
improving the BA-REA methodology are greatly acknowledged. The constructive
comments of the reviewers of Water Resources Research Journal for improving the

manuscript (under review) from the present work are gratefully acknowledged.

76



References

Adamowski, K. (1985). Nonparametric kernel estimation of flood frequencies, Water
Resources Research, 21 (11), 1585-1590.

Allan, M. R., and W. J. Ingram (2002). Constraints on future changes in climate and the
hydrologic cycle, Nature, 419, 224— 232.

Apipattanavis, S., G. Podesta, P. Rajagopalan, R. W. Katz (2007). A semiparametric
multivariate and multisite weather generator. Water Resources Research 43, W11401.
Bardossy, A. (1997). Downscaling from GCM to local climate through stochastic

linkages, Journal of Environmental Management, 49, 7-17.

Benestad, R. E. (2004). Tentative probabilistic temperature scenarios for northern
Europe, Tellus, Ser. A, 56, 89— 101.

Bowman, A. W. (1984). An Alternative Method of Cross-Validation for the Smoothing
of Density Estimates, Biometrika, 71, 353-360.

Brandsma, T., T. A. Buishand, (1998). Simulation of extreme precipitation in the Rhine
basin by nearest-neighbour resampling. Hydrology and Earth System Sciences 2(2-3):
195-209.

Brissette, F., R. Leconte, M. Minville, R. Roy (2006). Can we adequately quantify the
increase/decrease of flooding due to climate change? EIC Climate Change Technology,
IEEE. Doi: 10.1109/EICCCC.2006.277254.

Brissette, F., R. Leconte, M. Khalili (2007). Efficient stochastic generation of multi-site
synthetic precipitation data. Journal of Hydrology, vol 345, n3-4, 2007, p 121-133.

Beersma, J. J., T. A. Buishand, R. Wojcik, (2001). Rainfall generator for the Rhine basin:

multi-site simulation of daily weather variables by nearest-neighbour resampling. In:

77


http://dx.doi.org/10.1109/EICCCC.2006.277254

Generation of Hydrometeorologicalreferenceconditionsfor the assessment of flood
hazard in largeriverbasins, P. Krahe and D. Herpertz (Eds.), CHR-Report No. 1-20,
Lelystad, p. 69-77.

Brown, M. B. and A. B. Forsythe (1974). Robust tests for the equality of variances.
Journal of the American Statistical Association, 69, 364-367.

Buytaert, W., R. Ce’lleri, and L. Timbe (2009). Predicting climate change impacts on
water resources in the tropical Andes: Effects of GCM uncertainty, Geophysical
Research Letters,36, L07406, doi:10.1029/2008GL037048.

Castro, C. L., R. A. Pielke Sr. and J. O. Adegoke (2007). Investigation of the summer
climate of the contiguous United States and Mexico using the Regional Atmospheric
modeling System (RAMS). Part I: Model Climatology (1950 - 2002). Journal of
Climate, 20, 3844-3864.

Choi, W., A. Moore, and P. F. Rasmussen (2007). Evaluation of temperature and
precipitation data from NCEP-NCAR Global and Regional Reanalyses for hydrological
modeling in Manitoba. In Proceedings of the CSCE 18" Hydrotechnical Conference on
Challenges for Water Resources Engineering in a Changing World, Winnipeg,
Manitoba. pp. 1-10.

Choi, W., S. T. Jim, P.F. Rasmussen, and A. R. Moore (2009). Use of the North
American Regional Reanalysis for Hydrologic Modelling in Manitoba, Canadian Water
Resources Journal, 34 (1), 17-36.

Colglazier, E. (1991). Scientific Uncertainties, Public Policy, and Global Warming: How

Sure on Sure Enough, Policy Studies Journal, Vol. 19 (2), pp.: 61-72.

78



Cubasch, U., G. A. Meehl, G. J. Boer, R. J. Stouffer, M. Dix, A. Noda, C. A. Senior, S.
Raper, and K. S. Yap (2001), The Scientific Basic. Contribution of working group 1 to
the Third Assessment Report of the Intergovernmental Panel of Climate Change,
Cambridge University Press, Cambridge, UK and New York, USA, 881 pp.

Diaz-Neito, J., R. L. Wilby (2005). A comparison of statistical downscaling and climate
change factor methods: Impacts on low flows in the River Thames, United Kingdom.
Climatic Change 69: 245-268.

Dibike Y. B. and P. Coulibaly (2005). Hydrologic impact of climate change in the
Saguenay watershed: Comparison of downscaling methods and hydrologic models.
Journal of Hydrology, 307(1-4), 145-163.

Efromovich, S. (1999). Nonparametric Curve Estimation: Methods, Theory, and
Applications, Springer, New York.

Elshamy, M. E., H.S. Wheater, N. Gedney and C. Huntingford, (2006). Evaluation of the
rainfall component of a weather generator for climate impact studies, J. Hydrol. 326: 1—
24.

Ensor, L. A. and S. M. Robeson (2008). Statistical Characteristics of daily precipitation:
comparisons of gridded and point datasets, Journal of Applied Meteorology and
Climatology, 47(9), 2468- 2476.

Eum, H-1., V. Arunachalam, S. P. Simonovic, (2009). Integrated Reservoir Management
System for Adaptation to Climate Change Impacts in the Upper Thames River Basin.
Water Resources Research Report 62, Facility for Intelligent Decision Support,
Department of Civil and Environmental Engineering, London, Ontario, Canada.

Furrer, E. M, R. W. Katz (2008). Improving the simulation of extreme precipitation

79


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1D-48B0H10-3&_user=940030&_coverDate=07%2F01%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1649253493&_rerunOrigin=google&_acct=C000048763&_version=1&_urlVersion=0&_userid=940030&md5=e1afa0adcf98e8b6702bf2c747a6e6b9&searchtype=a#bbib5

events by stochastic weather generators. Water Resources Research 44, W12439, doi:
10.1029/2008 WR007316.

Ghosh, S., and P. P. Majumdar (2007). Nonparametric methods for modeling GCM and
scenario uncertainty in drought assessment, Water Resources Research, 43, W07495,
19pp., doi:10.1029/2006 WR005351.

Giorgi, F., and L. O. Mearns, (2003), Probability of regional climate change calculated
using the reliability ensemble averaging (REA) method, Geophysical Research Letters,
30(12), 1629, doi: 10.1029/2003GL017130.

Haberlandt, U., and G. W. Kite (1998), Estimation of daily space-time precipitation series
for macroscale hydrologic modeling, Hydrological Processes, 12, 1419-1432.

Hall, P., and J. S. Marron (1991), Lower Bounds for Bandwidth Selection in Density Es-
timation, Probability Theory and Related Fields, 90, 149-173.

Hanson, C. L., and G. L. Johnson (1998). “GEM (Generation of weather Elements for
Multiple applications): its application in areas of complex terrain”. Hydrology, Water
Resources and Ecology in Headwaters IAHS 248: 27-32.

Hennessy, K. J., and J. F. B. Mitchell (1997), Changes in daily precipitation under
enhanced greenhouse conditions, Climate Dynamics, 13, 667-680.

Hewitson B. C, and R, G. Crane. (1992). Regional-scale climate prediction from the
GISS GCM. Palaeogeogr Palaeoclimatol Palaeoecol (Global Planet Change Sec) 97:
249-267.

Hughes J. P. (1993). A class of stochastic models for relating synoptic atmospheric

patterns to local hydrologic phenomena. Ph.D. thesis, University of Washington, US.

80



Hughes J.P, P. Guttorp, and S. P. Charles (1999). A non-homogeneous hidden markov
model for precipitation occurrence. Appl. Statist., 48 (1), 15-30.

Hughes, J. P., and P. Guttorp (1994). A class of stochastic models for relating synoptic
atmospheric patterns to regional hydrologic phenomena, Water Resources Research,
30(5), 1535-1546.

Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007:
Impacts, Adaptation and Vulnerability. Contribution of Working Group 11 to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by M.
Parry et al., Cambridge University Press, UK.

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of
working group 1 to the Fourth Assessment Report of the Intergovernmental Panel of
Climate Change, Annexes [Baede, A.P.M. (ed.)]. Cambridge University Press,
Cambridge UK and New York, USA, 48pp.

Jackson, C., M. K. Sen, and P. L. Stoffa (2004). An efficient stochastic Bayesian
approach to optimal parameter and uncertainty estimation for climate model
predictions, J. Climate, 17, 2828-2841.

Jones, M.C., J. S. Marron, and S. J. Sheather (1996). A brief survey of bandwidth
selection for density estimation, Journal of the American Statistical Association,
91(433), 401-407.

Joubert A. M, and B. C. Hewitson (1997). Simulating present and future climates of
southern Africa using general circulation models. Prog Phys Geog 21: 51-78.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S.

Saha, G. White, J. Woolen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W Higgins, J.

81



Janowiak, C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D.
Joseph (1996). The NCEP-NCAR Reanalysis Project, Bulletin of the American
Meteorological Society, 77 (3), 437-471.

Kay, A. L., Davies, H. N. (2008). Calculating potential evaporation from climate model
data: A source of uncertainty for hydrological climate change impacts. Journal of
Hydrology 358: 221-239.

Kennedy, M., and A. O’Hagan (2001). Bayesian Calibration of Computer Models, J. R.
tat. Soc. Ser. B—Stat. Methodol 63, 425-450.

Kilsby C.G., P. D. Jones, A. Burton, A. C. Ford, H. J. Fowler, C. Harpham, P. James, A.
Smith, R. L. Wilby (2007). A daily weather generator for use in climate change studies,
Environmental Modelling and Software, 22, 1705-17109.

Koutsoyiannis D. (2004). Statistics of extremes and estimation of extreme rainfall, 1,
Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575-590.

Kuchar, L. (2004). Using WGENK to generate synthetic daily weather data for modelling
of agricultural processes. Mathematics and Computers in Simulation 65: 69-75.

Lall, U. (1995). Nonparametric Function Estimation: Recent Hydrologic Contributions.
Reviews of Geophysics, Contributions in Hydrology, U.S. National Report to the IUGG
1991-1994, 1093-1099.

Lall, U., B. Rajagopalan and D. G. Tarboton (1996). A Nonparametric Wet/Dry Spell
Model for Daily Precipitation, Water Resources Research, 32(9), 2803-2823.
Levene, H. (1980). Contributions to Probability and Statistics. Stanford University Press,

USA.

82



Maurer, E.P., 2007, Uncertainty in hydrologic impacts of climate change in the Sierra
Nevada, California under two emissions scenarios, Climatic Change, Vol. 82, No. 3-4,
309-325, doi: 10.1007/s10584-006-9180-9 r

Mehrotra, R., Srikanthan, R., Sharma, A. (2006). A comparison of three stochastic multi-
site precipitation occurrence generators. Journal of Hydrology 331: 280-292.

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovic,
J. Wollen, E. Rogers, E. H. Berbery, M. B. EK, Y. Fan, R. Grumbine, W. Higgins, H.
Ki, Y. Lin, G. Mankin, D. Parrish, and W. Shi (2006), North American Regional
Reanalysis, Bulletin of the American Meteorological Society, 87(3), 343-360.

Minville, M., Brissette, F., and Leconte, R. (2008). Uncertainty of the impact of climate
change on the hydrology of a nordic watershed. Journal of Hydrology, 358, 70-83.

Murphy, J. M. et al. (2004). Quantifying uncertainties in climate change from a large

ensemble of general circulation model predictions. Nature 430, 768-772.
(doi:10.1038/nature02771).

Muzik, 1. (2001). Sensitivity of hydrologic systems to climate change. Canadian Water
Resources Journal 26 (2), 233-253.

Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., and co-authors. (2000).

IPCC Special Report on Emissions Scenarios. UNEP/GRID-Ardenal Publications.

New, M., and M. Hulme, (2000), Representing uncertainty in climate change scenarios: a
Monte-Carlo approach, Integrated Assessment, 1, 203-213.

Nigam, S. And A. Ruiz-Barradas (2006). Seasonal hydroclimate variability over North
American Global and Regional Reanalyses and AMIP simulations: varied

representation, Journal of Climate, 19 (5), 815-837.

83


http://www.engr.scu.edu/~emaurer/papers/reprints/maurer_uncertainties_ca_cc_2007.pdf

Polansky, A. M. and E. R. Baker (2000). Multistage plug-in bandwidth selection for
kernel distribution function estimates, Journal of Statistical Computation and
Simulation, 65, 63-80.

Prodanovic, P. and S. P. Simonovic, (2006). Inverse flood risk modelling of The Upper
Thames River Watershed. Water Resources Research Report no. 052, Facility for
Intelligent Decision Support, Department of Civil and Environmental Engineering,
London, Ontario, Canada, 163 pages. ISBN: (print) 978-0-7714-2634-6; (online) 978-0-
7714-2635-3.

Prudhomme, C., D. Jakob, and C. Svensson (2003). Uncertainty and climate change
impact on the flood regime of small UK catchments, Journal of Hydrology, 277, 1 — 23.

Raisanen, J., and T. N. Palmer (2001). A probability and decision-model analysis of a
multimodel ensemble of climate change simulations, J. Climate, 14, 3212— 3226.

Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A.
Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor,. (2007).
Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science
Basis. Contribution of Working Group | to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z.
Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

Reid, P. A., P. D. Jones, O. Brown, C. M. Goodess, and T. D. Davies (2001).
Assessments of the reliability of NCEP circulation data and relationships with surface

climate by direct comparisons with station based data, Climate Research, 17, 247-261.

84


http://www.eng.uwo.ca/research/iclr/fids/publications/products/EventModelReport2.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/products/EventModelReport2.pdf

Richardson, C.W. (1981). Stochastic simulation of daily precipitation, temperature, and
solar radiation. Water Resources Research 17: 182—90.

Richardson, C.W. (1981). Stochastic simulation of daily precipitation, temperature, and
solar radiation. Water Resources Research 17: 182—90.

Robeson, S. M. and L. A. Ensor (2006). Comments on “Daily precipitation grids for
South America”, Bulletin of American Meteorological Society, 87, 1095- 1096.

Rosenblatt (1956). Remarks on some nonparametric estimates of a density function. Ann.
Math. Statist. 27: 832-837.

Rudemo, M. (1982). Empirical Choice of Histograms and Kernel Density Estimators,
Scandinavian Journal of Statistics, 9, 65-78.

Rummukainen, M. (1997). Methods for statistical downscaling of GCM simulations,

RMK No. 80, SMHI, Norrkping.

Rusticucci, M. M. and V. E. Kousky (2002). A comparative study of maximum and
minimum temperatures over Argentina: NCEP-NCAR Reanalysis versus station data,
Journal of Climate, 15 (15), 2089-2101.

Salathe Jr., E. P. (2003). Comparison of various precipitation downscaling methods for
the simulation of streamflow in a rainshadow river basin, International Journal of
Climatology, 23, 887-901.

Scott, D. W., and G. R. Terrell, (1987). Biased and Unbiased Cross- Validation in
Density Estimation, Journal of the American Statistical Association, 82, 1131-1146.

Schoof, J. T., Arguez, A., Brolley, J., O’Brien, J. J. (2005). A new weather generator
based on spectral properties of surface air temperatures. Agricultural and Forest

Meteorology 135, 241-251.

85



Schmidli, J., C. Frei, and P. L. Vidale (2006). Downscaling from GCM precipitation: A
benchmark for dynamical and statistical downscaling methods, Int. J. Climatol. 26,
679- 689.

Schulze, R. E. (1997). Impacts of global climate change in a hydrologically vulnerable
region: challenges to South African hydrologists. Progress in Physical Geography 21,
113-136

Semenov, M. A, E. M Barrow (1997). Use of a stochastic weather generator in the
development of climate change scenarios. Climatic Change 35, 397-414.

Sharif, M., and D. H. Burn (2006). Simulating climate change scenarios using an
improved K-nearest neighbor model, Journal of hydrology, 325, 179-196.

Sharma, A., D. G. Tarbaton, and U. Lall, (1997). Streamflow simulation — a
nonparametric approach, Water Resources Research, 33 (2), 291-308.

Sheather, S. J. (1983). A Data-Based Algorithm for Choosing the Window Width When
Estimating the Density at a Point, Computational Statistics and Data Analysis, 1, 229-
238.

Sheather, S. J. (1986). An Improved Data-Based Algorithm for Choosing the Window
Width When Estimating the Density at a Point, Computational Statistics and Data
Analysis, 4, 61-65.

Sheather, S. J., and M. C. Jones (1991). A Reliable Data-Based Bandwidth Selection
Method for Kernel Density Estimation, Journal of the Royal Statistical Society, Ser. B,
53, 683-690.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs

on Statistics and Applied Probability, Chapman & Hall/ CRC., Washington, D.C.

86



Smith, R. L., C. Tebaldi, D. Nychka, and L. Mearns (2009). Bayesian modeling of
uncertainty in ensembles of climate models, Journal of the American Statistical
Association, 104 (485), 97-116., doi:10.1198/jasa.2009.0007.

Solaiman, T.A., S. P. Simonovic (2010a). National Centers for Environmental Predicton -
National Center for Atmospheric Research (NCEP-NCAR) Reanalyses Data for
Hydrologic Modelling on a Basin Scale, Canadian Journal of Civil Engineering, 37(4),
611-623.

Solaiman, T. A, L. M. King, and S. P. Simonovic (2010b). Extreme precipitation
vulnerability in the Upper Thames river basin: uncertainty in climate model projections,
International Journal of Climatology, (DOI: 10.1002/joc.2244).

Soltani, A., Hoogenboom, G. (2003). A statistical comparison of the stochastic weather
generators WGEN and SIMMETEO. Climate Research 24: 215-230.

Srikanthan, R., and T. A. McMahon (2001). Stochastic generation of annual, monthly and
daily climate data: a review. Hydrology and Earth Systems Sciences 5 (4), 653-670.

Stainforth, D. A., T. E. Downing, R. W. A. Lopez, and M. New (2007). Issues in the
interpretation of climate model ensembles to inform decisions, Philos. Trans. R. Soc.,
Ser. A, 365, 2163-2177.

Stone, D. A., and M. R. Allan (2005). The end-to-end attribution problem: From
emissions to impacts, Climate. Change, 77, 303— 318.

Sun, Y., S. Solomon, A. Dai, and R. Portmann (2006), How often does it rain? Journal of

Climate, 19, 916-934.

87


http://www.eng.uwo.ca/research/iclr/fids/publications/cfcas-quantifying_uncertainty/Papers/final_published_paper.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/cfcas-quantifying_uncertainty/Papers/final_published_paper.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/cfcas-quantifying_uncertainty/Papers/final_published_paper.pdf

Tebaldi,C., L. O. Mearns, D. Nychka, and R. L. Smith (2004). Regional probabilities of
precipitation change: A Bayesian analysis of multimodel simulations, Geophysical
Research Letters, 31.

Tebaldi, C., R. L. Smith, D. Nychka and L.O. Mearns (2005). Quantifying uncertainty in
Projections of Regional Climate Change: a Bayesian Approach to the Analysis of
Multimodel Ensembles, Journal of Climate, 18 (10), 1524-1540.

Tebaldi, C., and R. L. Smith (2010), Characterizing uncertainty of climate change
projections using hierarchical models, In The Oxford Handbook of Applied Bayesian
Analysis [eds. O’Hagan, T. and West, M.], Oxford University Press, UK, 896 pp.

Terrell, G. R. (1990). The Maximal Smoothing Principle in Density Estimation, Journal
of the American Statistical Association, 85, 470-477.

Terrell, G. R., and D. W. Scott (1985). Oversmoothed Nonparametric Density Estimates,
Journal of the American Statistical Association, 80, 209-214.

Tolika, K., P. Maheras, H. A. Flocas, and A-P. Imitriou (2006). An evaluation of a
General Circulation Model (GCM) and the NCEP-NCAR Reanalysis data for winter
precipitation in Greece, International Journal of Climatology, 26, 935-955.

Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. (2003). The changing
character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205-1217.
(doi:10.1175/BAMS-84-9-1205)

Trigo, R.M. and J.P. Palutikof (2001). Precipitation scenarios over lIberia: a comparison
between direct GCM output and different downscaling techniques. J. Climate 14, 4422-

4446.

88


http://www.agu.org/journals/gl/gl0424/2004GL021276/
http://www.agu.org/journals/gl/gl0424/2004GL021276/

Vidal J.-P. and Wade S. D. (2008). A framework for developing high-resolution multi-
model climate projections: 21st century scenarios for the UK. International Journal of
Climatology, 28(7): 843-858.

Vincent, L.A., and E. Mekis (2006). Changes in daily and extreme temperature and
precipitation indices for Canada over the twentieth century. Atmosphere-Ocean, 44(2),
177- 193.

Whitfield, Paul H., Cannon, Alex J., (2000). Recent variation in climate and hydrology in
Canada. Canadian Water Resources Journal 25 (1), 19-65.

Widmann M, Bretherton CS, Salathe-Jr EP. (2003). Statistical precipitation downscaling
over the North-western United States using numerically simulated precipitation as a
predictor. Journal of Climate 16(5), 799-816.

Wilby, R. L., and I. Harris (2006). A framework for assessing uncertainties in climate
change impacts: Low-flow scenarios for the River Thames, UK, Water Resources
Research, 42, W02419, doi: 10.1029/2005WR004065.

Wilby, R. L., and T. M. L. Wigley (2000). Precipitation predictors for downscaling:
observed and general circulation model relationships, International Journal of
Climatology, 20, 641-661.

Wilks D. S and R. L. Wilby (1999). The weather generation game: a review of stochastic
weather models, Progress in Physical Geography 23(3), 329-357.

Wilks, D.S. (1998). Multi-site generalization of a daily stochastic precipitation model.
Journal of Hydrology 210, 178-191.

Woo, M-K, and R. Thorne (2006). Snowmelt contribution to discharge from a large

mountainous catchment in subarctic Canada, Hydrologic Processes, 20, 2129-2139.

89



Wood, A. W., Leung, L. 5 R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
implications of dynamical and statistical approaches to downscaling climate model
outputs, Climatic Change, 62, 189-216, 2004.

Xu, Chong-Yu, Singh, V.P. (2004). Review on regional water resources assessment
models under stationary and changing climate. Water Resources Management 18, 591—
612.

Yates D, S. Gangopadhyay, B. Rajagopalan, and K. Strzepek (2003). A technique for
generating regional climate scenarios using a nearest-neighbour algorithm, Water
Resources Research 39(7), 1199-1213.

Zhang, X., L. A Vincent, W. D. Hogg, and A. Niitsoo (2000). Temperature and
precipitation trends in Canada during the 20" century, Atmosphere-Ocean 38, 395-429.

Zorita, E. and H. von Storch, 1999: The analog method - a simple statistical downscaling

technique: comparison with more complicated methods. J. Climate 12, 2474-2489.

90


http://coast.gkss.de/staff/storch/pdf/zorita_storch_1999.pdf
http://coast.gkss.de/staff/storch/pdf/zorita_storch_1999.pdf

APPENDIX A: SRES Emission Scenarios
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Figure Al: SRES Emission Scenarios (Nakicenovic et al, 2000)

Al1B: In scenario AlB, the storyline includes rapid economic expansion and
globalization, a population peaking at 9 billion in 2050, and a balanced emphasis on
a wide range of energy sources (Nakicenovic et al, 2000).

B1: The storyline for the B1 scenario is much like A1B in terms of population and
globalization; however there are changes toward a service and information
economy with more resource efficient and clean technologies. Emphasis is put on
finding global solutions for sustainability (Nakicenovic et al, 2000).

A2: For scenario A2, the storyline consists of a world of independently operating nations

with a constantly increasing population and economic development on a regional
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level. Technological advances in this storyline occur more slowly due to the

divisions between nations (Nakicenovic et al, 2000).
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APPENDIX B: Comparison of Different Distributions of
AOGCM Models and Scenarios for Extreme Precipitation

Events

Heavy Precipitation Days during Summer

Historical Perturbed

# Distribution Parameters

1 | Frechet 4=3.348 [=6.8878

2 | Frechet (3P) 4=2.8487 P=6.506 y=0.34122

3 | Gamma o=9.9513 P=0.8658

4 | Gamma (3P} ¥=22.302 [3=0.57851 y=-4.26

5 | Gen.Extreme Value | k=-0,13731 G=2.4781 W=7.5111
& | Gen.Pareto k=-0.6878 $=69672 |1=45138
7| Gumbel Max T=2,1327 |L=F.4107

8 | Log-Pearson 3 =4.6933 B=-0.1586 y=2.8469
9 | Maormal T=2.7353 U=B8.6418

10 | Pareto =0.47562 P=1

11 | Rayleigh O=(.8952

12 | Rayleigh (2P} 0=5.7624 y=0.96377

13 | weibull ¥=3.5805 (=0.5744

14 | Weibull (3P) =3.1727 PB=0.0058 y=0.5737

CGCM3T47 A1B
¢ Disuibuton | Smimev | Doring | Chsauared
Statistic | Rank | Statistic | Rank | Statistic | Rank
1 | Frechet 0.16987 11 12.018 9 44,102 9
2 | Frechet (3P} 0.15989 10 12,789 10 M
3 Gamma 0.10089 1 2.3797 3 37.705 4
4 | Gamma (3P} 0.10828 4 23482 2 24.241 3
5 | Gen. Extreme Walue | 0.10341 2 2.2592 1 34.222 2
6 | Gen. Pareto 0.11807 7 29.471 13 M
7 | Gumbel Max 0.10867 =] 4,1899 7 43,081 g
a Log-Pearson 3 0.11583 &} 72946 a T8
9 | Normal 0.12283 9 3.2854 2 42,033 7
10 | Pareto 049011 14 111.88 14 632.35 11
11 | Rayleigh 020474 12 20,491 12 12366 10
12 | Rayleigh (2P) 0.207 13 16,927 11 41.321 3
13 Weibull 0.1196 5] 3.4186 5] 41,997 5]
14 | Weibull (2P) 0.10682 3 29071 4 33.994 1
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CGCM3T47 A2
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# Distribution Parameters

1 Frechet =2,9855 B=E~.?3EI?

2 | Frechet (3P) =2.2972 [(=A.0813 Y=0.65067

3 | Gamma o=9.7743 [=0.2375

4 | Gamma (3F) @=109.49 B=0.26878 y=-20.752

5 | Gen. Extreme Value | k=-0.30128 ©=2.8071 U=7.7185

& Gen. Pareto k=-1.0392 o=9.,765 |L=3.8869

7 | Gumbel Max G=2.1636 WU=7.4267

8 | Log-Pearson 3 =3.0689 [(=-021174 y=2.7495

9 | Marmal o=2.775 W=8.6756

10 | Pareto c=0.4762 =1

11 | Rayleigh O=5.9221

12 | Rayleigh (2P) G=5.7961 y=0.9612

13 | weibull 0=3.3471 PB=0.6623

14 weibull (3R) @=3.5712 B=9.8453 y=-0.1866

Kulm!:rguruu AndEI_-sun Chi-Squared
Distribution Smirnov Darling
Statistic | Rank | Statistic | Rank | Statistic | Rank

Frechet 0.22307 13 18,936 11 77817 a
Frechet (3P) 0.19612 1z 20.119 1z I,
Gamma 0.1159a a 4.6346 &) 33,736 2
Gamma [3P) 0.08929 [&] 2.3485 3 42,6040 7
Gen. Extreme Walue 0.0779 3 1.9995 2 37.203 3
Gen. Pareto 0.10168 7 50,372 13 Il 2,
Gumbel Max 0.14056 a Q.8432 3 22,831 1
Log-Pearson 3 0.07553 1 5.9275 I 2,
mormmal 0.08222 4 2.1826 4 37,411 4
Pareto 046239 14 108.93 14 472.85 11
Rayleigh 0.1762a 10 183.678 10 129 .42 10
Rayleigh (2P} 0.19426 11 15.991 9 56.501 a
Weibull 008494 5 1.95 1 37,697 5]
VWeibull (3P 0.07658 2 20011 3 I7.5962 5
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CGCM3T47 B1

# Distribution Parameters

1 | Frechet ¥=2.6711 [=6.1063

2 | Frechet (3R) =1,7774 [=5.2249 v=0,86986

3 | Gamma ¥=7.5391 B=1.0856

4 | Gamma (3P} =28.546 [=0.55743 Y¥=-7.7270

5 | Gen, Extreme Value | k=-0.16418 oO=2.7476 [L=0.9878

& | Gen. Pareto k=-0.74304 ©=7.9912 |L=3.5999

7 | Gumbel Max T=2.3241 |L=56.243

8 | Log-Pearson 3 ¥=2.9593 B=-0.24412 y=2.7479

9 | Mormal T=2,9808 |L=8.1845

10 | Pareto ce=0.49371 (=1

11 | Rayleigh T=6.5303

12 | Rayleigh (2P} =5,5579 ¥=0,90973

13 | Weibull ¢=2.0553 [=9.1644

14 | Weibull (3F) ¥=2.8584 [=8.8268 y=0.25874

o Kejmagorov | Anderson | chi-squared

Statistic | Rank | Statistic | Rank | Statistic | Rank

Frechet 0.20181 | 13 | 16.684 | 11 | 24344 | 7
Frechet (3F) 0.17437 | 12 | 25,113 | 12 M
Gamma o.09222 | 3 2.3276 5 20.659 1
Gamma [3F) o.os619 | 2 1.7476 2 21.428 2
Gen, Extreme Walue | 0.02164 1 17271 1 21.53 3
Gen, Pareta 0.10658 | & S56.201 | 13 M
Gumbel Max 0.112907 | 2 4,154 7 67.104 | 8
Log-Pearson 3 011201 a 11.473 = M,
Marrmal 0.11099 | 7 24211 ] 22,582 &
Pareto 0.45395 | 14 | 104.15 | 14 | 569.27 @ 11
Rayleigh 0.16278 | 11 | 12,733 | 10 | 12273 10
Rayleigh (2P} 0.16101 | 10 8.975 110.06 9
weibull 0.09886 | 9 2.0816 4 | 21.707
weibull (2P} 0.09596 | 4 | 2.0187 21.611 4
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# Distribution Parameters

1 | Frechet =3.2482 [p=65.2219

2 | Frachet (3F) =1.0755 [=4.265 ¥=1,8425

3 | Gamma ¢=9.3653 [=0.84110

4 | Gamma (3P) =24784 [=051728 y=-4.0422

5 | Gen. Extreme Value | k=-0,16662 ¢=2.3807 [L=56.8454

& | Gen.Pareto k=-0.7481 0=06.9457 |1=3.0047

7 | Gumbel Max T=2.0071 W=6.7194

§ | Log-Pearson 3 =7.528 [(=-0.12050 ¥=20814

9 | Mormal G=2.,5743 W=7.878

10 | Pareto c=0.7618 [=2

11 | Rayleigh O=(.2857

12 | Rayleigh (2P) O=4.6318 ¥=1.8528

13 | Weibull c=3.4916 [=8.7332

14 | Weihull (3P} =2,7835 f=7.4764 v=1,2191

Lo Kemegorov | Andersen | chi-squared

Statistic | Rank | Statistic | Rank | Statistic | Rank

Frechet 0.19211 | 13 | 12,315 | 10 | 77.224 | 10
Frechet (3P} 0.17462 | 11 23.25 1z M
Gamma 0.0948 5 | 26004 | 5 20.408 1
Gamma (3P} 0.07a2 1 | 22261 | 2 21.726 2
Gen. Extreme Value | 0.07986 | 2 | 22087 1 27.509 &
Gen. Pareto 0.10597 | & | 323681 | 13 M,
Gumbel Max 0.12232 | 9 5.014 g 50.929 =
Log-Fearson 32 0.0g225 | 2 22662 | 3 26,82 4
Mormal 0.10072 | 7 | 27918 | 6 28.733
Pareto 0.42208 | 14 | 91914 | 14 | 581.04 | 12
Rayleigh 0.19086 | 12 | 18582 | 11 | 189.64 | 11
Rayleigh (2P} 0.14817 | 10 | 7.1643 | O 41.391 =
weibull 0.09798 2.8803 23.545 2
weibull {3P) 0.08577 | 4 2,305 4 | 36,917 5
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CGCM3T63 A2

# Distribution Parameters

1 | Frechet =2.7182 [=6.5802

2 | Frechet (3P} ¢=1.9167 [=5.8498 vy=0.80941

2 | Gamma ¥=9.6944 B=0.09644

4 | Gamma (3P) €=131.00 B=0.24761 ¥=-23.746

5 | Gen. Extreme Yalue | k=-0.31582 o=2.8364 |1=7.7402

& | Gen. Pareto k=-1.0721 o=10.062 |L=3.8345

7| Gumbel Max O=2.1762 WU=7.4343

& | Log-Pearson 3 ¢=1.5919 [=-0.31202 y=25341

8 | MNaormal 5=2.7011 [L=8.6005

10 | Pareto o=0.,47670 [3:1

11 | Rayleigh o=56.934

12 | Rayleigh (2P} $=5.8369 ¥=0,92057

13 | weibull €=3.1419 [=0.7467

14 | Weibull (3P) £=4,1389 [=11.237 y=-1.5097

Distribution Comimos. | Darimg | Chi-sauared

Statistic | Rank | Statistic | Rank | Statistic | Rank

Frechet 021083 | 13 | 22,399 | 10 F7.0%9 =
Frechet (3P) 0.19047 | 10 | 28417 | 11 M
Gamma 012634 | & 46775 45,526 7
Gamma (3P) 0.10215 | # 2.3258 4 | 28.857 5
Gen, Extremne Yalue | 0.087482 1 2.0688 a8.161 2
Gen. Pareto 0.10143 | 5 47.121 | 13 M
Gumbel Max 0.16505 | 9 9.3537 7 44,109 &
Log-Pearson 3 011238 | 7 29.959 | 12 M
Marmal 0.09475 | 4 | 2.2485 2 28.521 4
Pareta 0.45829 | 14 | 109.91 | 14 | 826.2 11
Rayleigh 0,19323 | 11 | 18.895 9 143.13 10
Rayleigh (2P) 0.20129 | 12 | 16.769 = £1.088 =
weibull 0.09143 | 3 2.6003 5 26.173 1
weibull (3P} o.0sges | 2 2.1759 2 38.287 2
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# Distribution Parameters
Frechet =3.1554 [=6.1602
2 | Frechet (3P) ¥=16822 [B=41423 ¥v=1.0163
3 | Gamma ®=9.7324 F=0.30548
4 | Gamma (3F) =58.132 [=0.32951 ¥=-11.316
5 | Gen. Extreme Value | k=-0.20451 o=2.3711 H=6.877
& | Gen. Pareto k=-0.82785 oO=7.2026 |L=3.B65
7 | Gumbel Max 3=1.9593 [l=H£.7084
8 | Log-Fearson 3 =4.766 P=-0.16441 ¥=2.7046
9 | Narmal G=2.5128 [L=7.8393
10 | Pareto =0.76459 =2
11 | Rayleigh T=h.2548
12 | Raylaigh (2P) T=4.5034 vy=1.8472
13 | weibull H=3.4661 [F=8.7019
14 | Waeibull [3F] =3.001 [=7.7787 y=0.88788
KuImPguruu A.ndel_'sun Chi-Squared
Distribution Smirnov Darling
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.2299z2 13 18.209 10 48,554 2
Frechet (3P} 0.20961 12 36.262 12 M
Garmma 0.122935 2 3.8471 7 32.087 1
Gamma (3P} 0.12383 3 2.0407 1 28.251 4
Gen, Extreme Value | 0,12203 1 3.0711 2 858.54 u]
Gen, Pareto 0,130935 4 62.463 13 M
Gumbel Max 0.1297 7 G6.8668 g 532.27 3
Log-Pearson 3 0.13816 ] 3.4832 105.86 10
Mormal 014117 9 3.3693 4 20,149 g
Pareto 0.41442 14 01.974 14 533.26 12
Rayleigh 0.2021 11 20.407 11 196.07 11
Rayleigh (2P} 0.18422 10 9.3306 9 98.603 9
Weibull 0.14038 a8 3.4351 5 29,432 7
Weibull (3P) 0.13235 3 3.238 3 28,401 5

CGCM3T63 B1
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# Distribution Parameters
Frechet ¥=3.694 [E=0.7778
2 | Frechet (3P) ¥=2.5098 [=7.2216 ¥=1.4716
3 | Gamma ¥=11.677 [=0.92035
4 | Gamma (3P) =332.62 p=0.54140 y=-7.4581
5 | Gen. Extreme Value | k=-0,16933 $=2.0056 =9.4027
& | Gen. Pareto k=-0.75372 G=8.5063 [L=5.8065
7| Gumbel Max 3=2.4521 [L=9.2316
8 | Log-Pearson 3 ¥=6.8046 [=-0.11973 ¥=3.1541
9 | Mormal 5=3,145 L=10.747
10 | Pareto ¥=0.61143 p=2
11 | Rayleigh O=8.,5740
12 | Rayleigh (2F) $=£.5998 ¥=1,9576
12 | Weibull ¥=2.9571 B=11.833
14 | Weibull (3P) ¥=3.187 [=10.387 y=1.4361
Kulm!:rgurou AndEI_-sun Chi-Squared
Distribution Smirnov Darling
Statistic | Ranle | Statistic | Ranl | Statistic | Rank
Frechet 018793 11 | 12,156 | 9 | 95525 O
Frechet (3P) 0.16632 10 | 16.03 | 10 M
Gamma 009118 | 3 1.752 3 10.88 1
Gamma (3P) 0.07621 0 1 15585 1 46738 7
Gen, Extreme value | 0.08156 | 2 | 15708 | 2 | 46776 8
Gen, Pareto 0.10622 @ 8 | 43982 13 M,
Gumbel Max 0.11581 9 | 42036 19,927
Log-Pearson 3 0.09174 4 | 20038 4 | 26005 4
Mormal 0.0980 & | 2.1559 26.542
Pareto 0.45941 14 | 10486 14 | 81054 12
Rayleigh 0.20406 13 | 25353 | 12 | 165986 11
Rayleigh (2P) 0.19355 12 | 16824 11 | 13351 10
weibull 0.10368 | 7 | 27228 7 26,24 5
weibull (3P 009458 5 | 21246 | 5 26042 3

CSIROMK3.5 A2
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# Distribution Parameters

1 | Frechet =3.4206 [f=5.1812

2 | Frechet (3P] ¢=1.7608 [=6.1828 y=1.8513
3 | Gamma ¥=12.8038 [=0.79146

4 | Gamma (3P} =135.82 [=0.24408 y=-23.017

5 | Gen. Extreme Walue | k=-0.26002 ©=2.7514 |1=0.1283

6 | Gen. Pareto k=-0.94944 5=0.0704 [1=5.4841

7| Gumbel Max o=2.2085 [=8.8621

8 | Log-Pearson 3 ¥=2.0536 [=-0.22513 ¥=2.7329

9 | Normal G=2 8325 W=10.137
10 | Pareto =0.563398 [=2
11 | Rayleigh F=2,0881

12 | Rayleigh (2P} 0=5,1453 ¥=1.0192

13 | weibull =3.8352 PB=11.217

14 | weibull (2P} =3.8147 B=10.917 v=0.24303

W = A R W M| e

Rl PR =
£ W M= O

Lo Kelmogorou | Andersen | cpy quared
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.19728 10 19571 g 69,622 7
Frechet (3P) 0.20293 11 35.098 11 Mo
GFamma 0.10677 & 3.106 & 14,328 B
Gamma (3P) 0.08475 4 2.0945 2 14.044 4
iGen. Extreme Walue | 0.07874 3 2.1919 3 13.689 1
Gen., Pareto 0.11163 2 24871 13 A
sumbel Max 0.13933 Q 6.8362 7 73,714 8
Log-Pearson 3 0.10893 7 4/.391 12 Il S
Mormal 0.07855 2 2.0705 1 14.071 b=l
Pareto 0.46771 14 105.84 14 | 930.58 11
Rayleigh 0.23z202 13 28.947 10 167.72 10
Rayleigh (2P} 0.22341 1z 20.94 g 132,38 9
W eibull 0.02627 3 2.6918 12.9 3
Weibull (3P 007339 1 24444 4 13.788 2
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Distribution

Frechet
Frechet (2P)
Gamma

Gamma [3P)

Gen. Extreme YWalue
Gen. Pareto

Gumbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Rayleigh (2P}
Weibull

wWeibull (3P)

Kolmogorov

Parameters
=3.0556 [=6.9725
¥=2.3748 [=6.3777 y=0.5978
=9.3055 [=0.96205
¥=58.561 [=0.38340 vy=-13.507

k=-0.21398 o=2.8177 LU=7.8276
k=-0.84778 0=8.7354 |1=4.22449

G=2.2882 WL=7.6316
G=3.7003 P=-0.19226 ¥=28422
$=2.0347 l=8.0524

c=0.46931 P=1

G=7.143

T=f.0196 y=0.95961

0=3,3572 P=0.9607

¥=3.2105 (=9.6171 ¥=0.33759

Anderson

Distribution Smir
Statistic

Frechet 0.18506
Frechet (3P} 0,16587
Famma 0.10012
Garmma (3P 0.07937
Gen. Extreme Yalue | 0.08202
Gen. Pareto 0.11135
Gurnbel Max 0.12662
Log-Pearson 3 0.10271
Harmal 0.0927
Pareto 0.47359
Rayleigh 0.17597
Rayleigh (2P) 0.19021
Weibull 0.09516
Weibull (3R] 0.0945

nov Darling Chi-Squared
Rank | Statistic | Rank | Statistic | Rank
12 15.263 10 27,7595 7
10 15,282 11 A2
=] 27804 7 29,172 9
1 1.9207 2 26.055 1
2 1.8425 1 26.216 3
2 73535 13 M
9 6.0212 2 28,892 g
7 23921 & 26.88 B
3 2.1654 3 26.228 2
14 109.59 14 497 .25 12
11 17.548 12 180.55 11
13 14462 77434 10
2.00z28 4 26.52
4 1.9353 26.4381 4
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# Distribution Parameters

1 | Frechet =3.3454 [=7.0438

2 | Frechet (3P} =17878 [(=4.0357 y=1.8744

3 | Gamma 4=9.7545 [(=0.90739

4 | Gamma (3P) %=26.701 [(=0.54915 ¥=-5.8116

S5 | Gen.Extreme Value | k=-0,18497 0=2.0619 [L=7.732

6 | Gen.Pareto k=-0.78637 o=7.9495 |l=4.4009

7 | Gumbel Max o=2.2097 W=7.5757

8 | Log-Pearson 3 =0.2752 (=-0,11282 y=3.1805

9 | Mormal o=2.834 |Ll=8.8512

10 | Pareto ci=0,60840 F=2

11 | Rayleigh =7 0622

12 | Rayleigh (2P} T=5.2707 ¥=1.,0552

12 | Weibull Ci=3.9938 [B=0.7008

14 | Weibull (3P} Ci=2.8003 [=8.249 ¥=1.5052

isination | oenes” | "Daiwa | Chi-Sauared

Statistic | Rank | Statistic | Rank | Statistic | Rank

Frechet 0.18407 | 12 | 13.051 | 10 @ 26.402 7
Frechet (3P} 0.17048 | 11 | 18957 11 | 15942 12
Gamma 0.10039 | 8 2.4382 20,540 =
Gamma (3P) 0.08756 | 4 1.9627 4 14.841 c
Gen, Extrems Value | 0.08382 3 1.9106 14.762 2
Gen. Pareto 0.09939 | 7 66.605 | 13 M
Gumbel Max 0.12689 | O 5.246 = 21.023 =
Log-Pearson 3 0.0784 1 1.8693 1 11.45 1
Marmal 0.09424 | 6 2.3481 5 17.766 &
Pareto 0.42862 | 14 | 91.73 14 | 5952 12
Rayleigh 0.19521 | 13 19.2a 12 15254 11
Rayleigh (2P} 0.14792 | 10 | 8.4294 = 23.443 | 10
weibull 0.09259 | 5 2.5338 7 16.084 @ 4
weibull (3P) 0.07g72 | 2 1.9019 2 17.254
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# Distribution Parameters

1 | Frechet ®=2.4777 [p=4.689

2 | Frechet (3F) =1.7435 [3=3.8917 Yy=0.90973

3 | Gamma =7.2445 [3=0.88819

4 | Gamma (3F) ¥=56.425 [(=0.31789 ¥=-11.503

S5 | Gen. Extreme Value | k=-0.21028 G=2.2625 L=5.5253

& | Gen.Pareto k=-0.83986 C=6.9811 Q=2.6402

7 | Gumbel Max o=1.864 |L=5.3586

8 | Log-Pearson 3 ¥=2.4681 [B=-0.28268 y=2.4758

9 | Mormal O=2,3906 |L=56.4345

10 | Pareto c=0.56241 [=1

11 | Rayleigh a=5.134

12 | Rayleigh (2F) T=4,3111 ¥=0.82442

13 | weibull =2.7933 [=7.2400

14 | weibull (3P) =2,09102 [=7.2376 y=-0.02721

L Kelmogorow | Anderson | chi-squared

Statistic Ranl; | Statistic | Ranle | Statistic | Rank

Frechet 0.23881 | 13 | 22,172 | 10 | 108.28 | 10
Frachet {3F) 0.19235 | 12 | 37938 11 M
Gamma 0.13338 = 4,2006 & 10534 | 2
Gamma (3F) 0.10256 2 2.5736 1 32.748 5
Gen. Extreme Value | 0.10398 3 2.6284 2 32,491 4
Gen. Pareto 0.11974 @ 7 64562 @ 13 WFE)
Gumbel Max 0.14994 @ g £.7204 7 40,173 7
Log-Pearson 3 0.1160a6 ] 37,995 1z I f
Marmal 0.11081 5 2. 7542 4 33.124 | 6
Pareto 0.4343 14 101.2 14 | 47365 | 11
Rayleigh 0.16931 10 12.43 9 82,33 9
Rayleigh (2P) 0.17129 | 11 | 8.2827 8 53,446 8
weibull 0.10424 | 4 29366 5 10,292 1
weibull (2P) 0.10125 1 2.7005 3 32,41 3
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# Distribution Parameters
Frechet o=2.4195 [=4.5386
2 | Frechet ¥=118535 [=4.6601
3 | Gamma =7.2847 [=0.36082
4 | Gamma =6.7116 [=0.93992
5 | Gen.Extreme Value | k=-0,23555 ¢=2,2361 p=54117
6 | Gen. Pareto k=-0.89415 ©=7.13 WU=2.5066
7 | Gumbel Max G=1.8115 |l=5.2252
g8 | Narmal G=2,3234 |=6.2708
9 | Rayleigh ¢=5.0034
10 | Rayleigh o=4.742
11 | Weibull =2 5268 [=7.1384
12 | wWeibull ¢=3.0055 [=7.0625
13 | Log-Pearson 3 Mo fit:
14 | Pareto Mo fit
itribation | amogoros | Andesen | chi-squared
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.23309 12 25.04 11 45.897 3
Frechet 0.19552 10 23.87 10 123.05 10
Gamma 0.13786 7 84441 B 63.19 2
Gamma 0.12945 B 2.0668 3 40,623 4
3en. Extreme Yalue | 0.10472 2 2.8504 1 2l.45 2
Gen, Pareto 0.12229 3 53.637 12 M
Gumbel Max 0.16022 2 7.3873 4 34.055 2
Marmal 0.10661 3 2.8943 2 31.71 7
Rayleigh 0.17z282 9 16.597 2 656.919 9
Rayleigh 02062 11 19,319 9 188.01 11
Weibull 0.11392 4 8.6176 7 29,909 1
Weibull 0.10057 6.73504 3 3l.612 B
Log-Pearson 3 Mo fit
Pareto Mo fit
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# Distribution

1 | Frechet
2 | Frechet (3P}

3 Gamma

Gamma (3P)

Gen. Pareto

4
5 | Gen. Extreme Walue
=]
7

Gumbel Max

3 Log-Pearsan 3

9 | Maormal
10 | Pareto
11 | Rayleigh

12 | Rayleigh (2P)

13 | weibull

14 | Weibull (3P

Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P]
Gen. Extreme Yalue
Gen, Pareto
Gurmbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Rayleigh (2P
Waibull
weibull [3P)

KD'I‘I‘IFIgDI‘D'H' Andm_'sun Chi-Squared
Smirnoy Darling

Statistic | Rank | Statistic | Rank | Statistic | Rank
0.20016 13 13.13 11 £3.707 10
0,1727 11 18.184 1z [
0.09935 4 3.2921 15,4321 2
0.03986 2 29241 4 15.544 3
003923 1 2.8894 15.605 3
0.10143 B 28.758 13 M
0.115615 8 5.2835 8 15.575 4
0.091s 3 2.7366 1 15.266 1
0.12315 9 2.7103 7 35.667 9
045741 14 06,511 14 486,33 1z
017821 12 12.563 10 B87.947 11
0.14546 10 5.8792 9 27581 ]
011249 7 24216 B 33,907 a2
0.099391 2 z2.8052 2 33.6 7

MEDRES A1B

Parameters
CE=2.8937 [=4.9312
=1.8484 [=3.9355 y=0.88703
=7.4721 [=0.26691

%=13.055 P=0.69882 ¥=-2.1236

k=-0.14005 T=2.152 [L=5.5003
k=-0693358 o=6.0712 L=2.8923

5=1.8477 U=5.4111
G=8.7192 B=-0.13518 y=2.974
5=23697 |l=6.4776
o=0.55702 P=1

5=5.1624

T=42441 ¥=0.96169
Ct=3.1052 P=7.2172

=25988 [=5.4638 v=0.73814
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MIROC3MEDRES A2

# Distribution

1 | Frechet
2 | Frechet (3P)
3 Gamma

Gamma (3P

Gen. Pareto

4
5 | Gen. Extreme Walue
[a]
7

Gumbel Max

g Log-Pearson 3

2 | Maormal
10 | Pareto
11 | Rayleigh

12 | Rayleigh (2P

13 | Weibull

14 | Weibull (3P}

Distribution

Frechet
Frechet (3R]
Gamma
Gamma [3P)
Gen, Extreme Value
Gen. Pareto
Gumbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3P)

Parameters

4=3,1545 [=5.7738

@=1.6139 f=3.6941 ¥=1,9367

2=0.2624 B=0.79506

o=1.8866 |L=6.2732

O=2.4197 W=7.3642

=0,80415 B=2

T=5.8758

T=42625 Y=1.8414

=3.4342 B=8.1688

C=36.941 P=0.39757 y=-7.3222

k=-0.18727 o=2.2484 |l=5.4235
k=-0.79121 ©=5.7347 |l=3.6043

a=6.2108 P=-0.14552 y=2.8405

o=2.7478 B=6.958 y=1.1657

Kolmogorov

Smirnov

Statistic | Rank
021834 1z
0.z23018 13
0.11756 7
0.10421 1
0.10616 2
0.14744 9
0.13297 8
0.11007 3
011278 5
0.40197 14
021226 11
0.18465 10
0.11066 4
011361
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Anderson
Darling

Statistic | Rank
18.41 10
37227 12
2.6693 7
2.218 1
2.895 2
72,449 13
G.386
3.1031 4
3.1248
87.423 14
19.288 11
79124 9
3.2003 5]
3.04035 3

Chi-Squared
Statistic | Rank
30.65 a8
e
34,813 3
34,705 4
34.631 3
M
40,535 9
34.612 1
39.611 7
507.78 12
123,35 11
6077 10
39,353 &
34.631 2
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# Distribution Parameters
1 | Frechet =2.4123 [=4.8275
2 | Frechet ¥=1.82 [=4.8753
3 | Gamma ¥=F.8235 [F=0.98255
4 Gamma ¢=6.1038 [(=1,1019
5 Gen Extreme Value | k=-023003 ©=2.4565 H=5.7513
& | Gen.Pareto k=-0,88223 ©=7.7765 |L=2,5729
7 | Gumbel Max ©=2.0012 |1=5.5433
2 | Mormal O=2.5666 H=6.7044
9 | Rayleigh =5.3493
10 | Rayleigh o=5.0832
11 | wWeibull =2,599 B=7.5794
12 | weibull =2.0534 [=7.544
13 | Log-Pearson 3 Mo fit
14 | Pareto Mo fit
Kulm!:lguru'.r Ande['sun Chi-Squared
Distribution Smirnov Darling
Statistic | Ranl | Statistic | Rank | Statistic | Rank
Frechet 0.23569 1z 22.183 11 05,587 9
Frechet 0.1863 11 20.501 10 197.18 11
Gamma 0.1267 7 6.1823 B 16.217 1
Gamma 0.12667 & 5.9103 5 25.332 7
Gen. Extreme Walue 0.o9 3 23211 2 16.326 2
Gen, Pareto 011812 5 57.296 1z M
Gumbel Max 0.14754 8 6.8164 7 20.414 3
Mormal 0.08673 1 2.2818 1 20.654 B
Rayleigh 0.15266 a 12,382 g 108.81 10
Rayleigh 0.18412 10 14.646 9 41.918 2
Weibull 0.10244 4 5.019 4 20.52
Weibull 0.08802 4.2661 3 20.485 4
Log-Pearson 3 Mo fit
Pareto Mo fit
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Very Wet Days for Summer

Distribution

Frechet
Frechet
Gamma
Garmma

Gen. Extreme Walue
Gen. Pareto
Gurnhel Max
Marmal
Rayleigh
Rayleigh
Waibull
Weibull
Log-Pearsan 3

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma

Gen. Extreme Yalue
Gen, Pareto
Gumbel Max
Mormal
Rayleigh
Rayleigh
Veeibull
Weibull
Log-Pearson 3

Pareto

Historical Perturbed

Kolmogorov Anderson
Smirnov Darling

Statistic | Rank | Statistic | Rank
0.23286 12 28.442 12
0.19049 11 24.034 10
0.12824 2 15,499 g
0.12866 & 15.632
012191 4 2.1633 1
0.140358 7 25.505 11
0.14076 8 6.4451 2
0.17149 10 6.822 3
0.12575 1 14,22 2
0.13223 2 14,237 &
0.12942 3 14,159 4
0.14726 9 15.001 7
Mo fit
Mo fit

CGCMB3T47 A1B

Kolmogorow Anderson

Smirnov Darling

Statistic | Rank | Statistic | Rank
0.23023 1z 37.67 11
017264 @ 11 32467 10
0.12654 = 21.661 4
0.12484 4 22.606
0.10974 1 3.6624
0.15023 E 110.95 1z
0.11063 2 3.5774 1
0.1517 10 8.6756 3
0.11528 3 21.941 b=
0.13733 7 23.801 =
0.14791 8 24,399 9
0.12739 & 22.849 7
Mo fit

Mo fit

108

Chi-Squared
Statistic | Rank
26.716 9
29.307 10
9.664 3
0.6502 3
8.7896 1
T
9.385 2
61.264 11
0.8852 7
0.8356 &
9.6508 4
20.071 8
Chi-Squared
Statistic | Rank
31.019 3
B6.38 10
32.257 2
29.14
38.203 4
M2

&0.989 =
78.852 11
29.047 b=
64.815 9
29.361 1
29.063 =}
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Statistic | Rank | Statistic | Rank | Statistic | Rank
1 | Frechet 0.21554 12 24,351 11 51.479 g
2 | Frechet 0.20147 11 19.203 10 22,116 |
3 | Gamma 0.11925 | 5 | 8.2887 42611 | 2
4 | Gamma 010511 2 g8.4582 4 49,422 3
S | Gen. Extreme Value | 0.10684 3 4,095 1 33.123 1
6 | Gen. Pareto 0.14593 =] 137.35 12 M8
7 | Gumbel Max 0.1048 1 4,293 2 50,999 7
8 | Normal 0.16972 10 | 12.114 | & | 10555 | 11
8 | Rayleigh 0.13442 7 11.116 7 49,452 5]
10 | Rayleigh 016082 0 9 | 13.252 | 9 | 71.4493 | 10
11 | Weibull 0.11340 4 02221 5 49,439
12 | weibull 012175 6 | 94191 | & | 49.426 @ 4
13 | Log-Pearson 3 Mo fit
14 | Pareto Mo fit
CGCM3T47 B1
etrbuion | Cmagoros | Avdersen o squared
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.20978 1z 20,078 11 23.118 1
Frechet 0.17391 11 2446 10 34,937 2
Gamma 0.1099 2 15.029 4 22,5287 7
Gamma 0.11188 4 15.655 52,473 B
Gen. Extreme Walue | 0.09735 1 3.7661 1 53,358 g
Gen, Pareto 0.132 7 137.09 12 R
Gumbel Max 0.1036 2 3.94258 2 24,723 9
Mormal 0.17201 10 10,751 3 100.3 11
Rayleigh 0.13595 g 17.528 2 40,442 3
Rayleigh 0.15908 9 20,835 9 55,227 10
Weibull 0.11303 3 15.667 B 45,113
Weibull 0.12857 & 15,157 7 45,387 4
Log-Pearson 3 Mo fit
Pareto Mo fit

CGCM3T47 A2
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Distribution

H

Frechet

Frechet

Gamma

Gamma

Gen, Extreme Value
Gen, Pareto
Gumbel Max

Mormal

L T T I e T o 3 I O R S

Raylzigh

-
o

Raylzigh
YWeibull

=
[

YWeibull

=~
LA ]

Log-Pearson 3

=
=

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma

Gen. Extreme Walue
Gen. Pareto
Gumbel May
Hormal
Rayleigh
Rayleigh
Weibull
Weibull
Log-Pearson 3

Pareto

CGCM3T63 Al1B

Kolmogoroy

Anderson

Smirnov Darling
Statistic Ranl | Statistic | Rank
0.24343 12 | 33.308 | 12
020718 | 11 | 27.636 10
0.13286 5 15.683 4
0.11189 1 16.415
0.12099 3 4,3168 2
0.15132 g Jz2.402 11
0.11331 2 4.262 1
0.1831 a 11.05 3
0.14453 | 7 | 20,144 | 8
0,18593 10 24,476 9
012873 | 4 | 15924 5
0,13361 16,256 =]
Mo fit
Mo fit

CGCM3T63 A2
Kolmogorov Anderson
Smirnowv Darling

Statistic | Rank | Statistic | Rank
0.19463 12 31.922 11
0.14991 10 2734 10
0.02687 1 17.821 4
0.11477 3 15.208
0.09915 2 3.2441 1
011421 4 109,29 12
010282 3 3.30326 2
0.1532 11 74317 3
0.12094 7 15,9328 2
0.14156 = 20,281 9
0.11975 a] 15.689 ]
012274 a 15.619 3
Ma fit

Ma fit

110

Chi-Squared

Statistic | Rank

40.525 3
93.343 &
60.615 11
11.49 2
10,044 1
()
47,507 4
28,701 8
26,485 7
29.572 E
60,372 10
20.241 3

Chi-Squared

Statistic
68.121
24,711
42,146
42,232
43.694
A
43.836
79,394
42,615
64,942
27,364
42,536

Ranlk
9
11
2

10
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Distribution

Frechet
Frechet
Gamma
Gamma

Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Rayleigh
Rayleigh
Weibull
Weibull
Log-Pearson 3

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma

Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Rayleigh
Rayleigh
Waibull
Weibull
Log-Pearson 3

Pareto

GISSAOM A1B

Kolmogoroy Anderson
Smirnov Darling

Statistic | Rank | Statistic | Rank
0.23238 12 31.59 11
0.12435 11 26.07 10
0.11952 7 13.073 4
0.10506 1 13.29
0.10999 3 3.2081
0.12926 2 116.96 12
0.10796 2 31522 1
0.1534 10 7.6059 3
0.11699 3 13,317 B
0.1344 9 14,221 9
0.11388 4 13.57 2
0.11767 B 13,337 7
Mo fit
Mo fit

MIROC3HIRES Al1B

Kolmogorow Anderson
Smirnoy Darling

Statistic | Rank | Statistic | Rank
0.22939 9 64,42 B
0.23789 10 74.635 10
0. 14483 2 35,361 4
0.22697 2 67,722 g
0.1314 1 6.2737 1
0.15269 3 13z2.08 1z
0.15526 4 F7.0954 2
0.20522 & 15,44 3
0.24408 11 73.619 9
0.33095 1z 105.05 11
0.17936 3 29.481 3
0.21876 7 64,425 7
Mo fit

Mo fit

111

Chi-Squared
Statistic | Rank
28.476 B
03.046 11
15.454 3
15421 2
21,703 4
Ffs)
21914 2
20,914 10
24,202 9
43,118 7
15.302 1
43,146 g
Chi-Squared
Statistic | Ranl
49,539 2
170.9 7
B6,348 4
190,36 9
65,394 3
M

F9.432 ]
217.13 10
2z28.01 11
185.79 a8
24.536 1
05,516 &
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MIROC3MEDRES A1B

Kolmogorow Anderson
Distribution Smirnov Darling

Statistic | Rank | Statistic | Rank
Frechet 0.2386 11 64.136 |
Frechet 0.20874 | 10 69,994 10
Gamma 0.14789 3 51.139 4
Gamma 0.z20614 =] 60,977
Gen, Extreme Walue | 0.12529 1 5.2489 2
Gen, Pareto 0.15837 4 121.24 1z
Gumbel Max 0.13189 2 9.0641 1
Harmal 0.178z28 = 11.264
Ravyleigh 0.20755 2 29,813 7
Ravyleigh 0.27254 | 12 78.674 11
Weibull 0.19493 & 26,712 5
Weibull 0.19324 7 928,239 =]
Log-Pearson 3 Mo fit
Pareto Mo fit

MIROC3MEDRES A2

Kolmogorow Anderson
Distribution Smirnov Darling
Statistic | Ranlk | Statistic | Rank

Frechet 0.23405 1z 45.73 11
Frechet 017101 10 42 477 10
Gamma 0.12285 3 20.764 4
Gamma 0.13243 4 32.49

Gen, Extreme Value | 0.10958 2 4.1611 2
Gen. Pareto 0.13479 3 51.943 1z
Gumbel Max 0.1044 1 4.0301 1
Marmal 0.16351 9 0.2052 3
Ravyleigh 0.14333 7 33.502 g
Rayleigh 0.19006 11 38973 a
Weibull 0.14833 8 31.669 &
Weibull 0.14247 & 31.525 3
Log-Pearson 3 Mo fit

Pareto Mo fit

112

Chi-Squared
Statistic | Rank
48.729
89,909 7
25.353 1
06.878 g
31.223 3
[
64,585 5]
20,251 9
95.9 10
141.06 11
26,189 2
96.894 9
Chi-squared
Statistic | Rank
57.296 7
S6.214 =]
34,443 3
29.534 10
20.642 2
s
28.008 1
68.93 11
47.171 b=l
47.169 4
58.827 B
29.52 9
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Maximum 5 Day Precipitation for Summer

Distribution

Frechet
Frechet (3P)
Famma
Gamma [(3P)
Gen. Extreme Value
5en, Pareto
Gumbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Ravyleigh (ZP)
Wheibull
wheibull (3P)

Distribution

Frechet
Frechet (3P)
Gamma
Gamrma (3P)
Gen, Extreme Yalue
5en. Pareto
Gurnbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Rayleigh (2P)
Weibiull
Weibull (3P]

Historical Perturbed

Kolmogorow Anderson
Smirnowv Darling

Statistic | Rank | Statistic | Rank
0.093865 12 4.8269 10
0.05439 & 081711 5
0.04901 4 0.86025 7
0.04438 3 0.2974 1
0.05473 7 0.71692 4
0.04147 1 45,115 13
0.05897 g 0.81934 =]
0.05053 = 0.58761 2
0.05427 11 4.9003 11
0.33278 14 60.52 14
0.11077 13 5.9558 1z
0.07316 E 2.0133 =
0.0821 10 44517 9
0.04149 2 0.67756 3

CGCM3T47 A1B
Kolmogorov Anderson

Smirnow Darling

Statistic | Rank | Statistic | Rank
0.11946 13 7.59539 12
0.03737 4 0.24738 3
0.03678 0.53383 &)
0.02802 2 0.29965 2
0.03425 2 0.30862 2
0.0&6748 10 28,927 13
0.03289 1 0.30772
0.02832 & 0.35633 4
0.02035 11 4.2416 10
0.32409 14 64,117 14
0.1024 12 7.3477 11
0.04727 2 1.1421 2
0.06073 9 3.1338 9
0.04529 7 0.79483 7

113

Chi-Squared
Statistic | Rank
25.889 10
11.666 5
17.876 7
7.8193 1
8.8665 2
[Fia)
11.212 4
0.2007 3
32.462 11
325.59 13
47.381 1z
18.495 g
25433 a
13.125 &
Chi-Squared
Statistic | Rank
47.569 1z
11.597 3
15.72 8
14,168 7
89775 4
)
8.1029 2
14,154 5]
158.3 E
376.45 13
37621 11
2.3338 3
7.578 1
15,483 10
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Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P
Gen. Extreme Walue
Gen, Pareto
Gumbel Max
Log-Pearson 3
Mormal

Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3P)

Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P)
Gen, Extreme Value
Gen. Pareto
Gumbel Max
Log-Pearson 3
Harmal

Pareto
Rayleigh
Rayleigh (2P)
Weibull
Wweibull (3P)

CGCM3T47 A2

Kolmogoroy Anderson
Smirnov Darling
Statistic | Rank | Statistic | Rank
0.06209 g 2.4964 g
0.03952 4 0.48276 4
0.06244 9 2.1445 7
0.02z02 1 0.29936 1
0.03361 2 0.48117 3
0.04003 2 49,37 14
0.04734 7 1.3596 B
0.03632 3 0.37449 2
0,10977 12 7.7881 11
0.27978 14 45,199 13
0.13418 13 2.6246 12
0.09352 10 44,8893 9
0.09655 11 7.42409 10
0.04432 B 0.852Z26 2

CGCM3T63 AlB
Kolmogoroy Anderson
Smirnov Darling
Statistic | Rank | Statistic | Rank
0.02453 11 5.8268 11
002235 1 017314 2
0.04727 & 0.9258 B
003472 3 0.2857 4
0.02474 2 015775 1
0.06174 g 64,652 13
0.0343 4 02923 3
0.02587 3 0.18835 3
0.10465 12 5.0577 10
033843 14 55,1809 14
0.11478 13 8.634 12
0.07414 9 1.5463 g
0.022385 10 37422 9
0.0505 7 1.1575 7

114

Chi-Squared
Statistic | Rank
13.594 7
4.9543 3
19,628 9
29673 1
6.5182 4
M

8.4505 2
30631 2
36,419 11
209.26 13
69.864 12
156,912 g
31.897 10

12.52 B
Chi-Squared
Statistic | Rank
21.308 10
2.1288 1
11.276 7
7.1087 &
20035 2

[Fia)

6.7601 3
47142 3
21.354 11
424,26 13
56,738 1z
62446 4
12.76 8
15.05 9
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Distribution

Frechet
Frechet (2P)
Gamma
Gamma (3P
Gen. Extreme Yalue
Gen, Pareto
Gumbel Max
Log-Pearson 3
Marmal

Pareto
Favyleigh
Rayleigh (2P)
Yeibull
Weibull (3P

Distribution

Frechet
Frechet (3P}
Gamma
Garrma (3P)
Gen, Extreme Walue
Gen, Pareto
Gumbel Max
Log-Pearsan 3
Marmal

Pareto
Fayleigh
Rayleigh (2P}
Weaibull
YWeibull (3P)

CGCM3T63 A2

Kolmogorov

Smiirnov
Statistic | Rank
0.07263 |
0.04458 3
0.05754 7
0.05041 =]
0.04597 4
0.04187 1
0.05741 5]
0.04291 2
0.11224 12
0.35929 14
0.11904 13
009121 10
010212 11
0.05978 g

Anderson
Darling
Statistic | Rank
3.1291 8
1.0827 2
l.2878 5]
1.1681 4
1.13 3
38,395 13
1.6183 5
0.9633 1
7.04 12
64.957 14
6.1874 10
35115 9
6.7765 11
1.9076 7

CSIROMK3.5 A2

Kolmogorowv

Smirnow
Statistic | Rank
007008 =
0.0z2958 1
0.05942 7
0.04044 4
0.020681 2
0.06068 =
004923 5
0.03087 3
0.11939 13
03279 14
0.10834 12
0.09a67 10
0.09932 11
005724 =]

115

Anderson
Darling
Statistic | Rank
3.8384 9
02117 2
1.773 7
0.5z2008 4
0.211 1
65.643 14
094475 =
0.23905 3
76916 11
57.908 13
793516 1z
37371 g
6.5248 10
14672 &

Chi-squared

Statistic | Rank

10.382 4
87403 1
22,413 7
14,589 2
09243 3
M
15.952 6
092111 2
S9.677 1z
374.26 13
22,139 11
26.57 Q
49,514 10
22.567 8
Chi-Squared
Statistic | Rank
12.694 9
5.8264 3
10,123 =]
9.8172 5
5.8188 Z
A
5.4315 1
6.243 4
40,995 11
3z21.52 13
31.577 1z
12,524 7
21.426 10
12.604 g
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GISSAOM A1B

Kolmogorov Anderson
Distribution Smirnov Darling
Statistic | Ranl | Statistic | Rank
Frechet 005892 4 1.822 4
Frechet (3P) 004533 3 0.50944 2
Gamma 009391 9 £.3198 g
Gamma {3P) 0.0s094 ] 2.2562 3
Gen, Extreme Yalue | 0.03517 1 043073 1
Gen, Pareto 007738 3 69,075 14
Gumbel Max 0.02234 7 5.1963 7
Log-Pearsaon 3 0.04406 2 0.63913 3
Marmal 015773 13 13.576 11
Pareto 034446 14 51,95 13
Rayleigh 0.11883 10 10.674 10
Rayleigh (2P} 0.15478 1z 0.3525 9
Weibull 0.1357 11 13.741 1z
wWeibull (3P) 003926 g 4,669 ]
MIROC3HIRES A1B
Kolmogorov Anderson
# Distribution Smirnov Darling
Statistic | Rank | Statistic | Rank
1 | Frechet 0.07265 9 4.0735 2
2 | Frechet (3P) o0z2e12 3 0.2488 2
3 | Gamma 0.05796 7 1.9909 7
4 | Gamma (3P) 0.02657 4 052474 4
3 | Gen. Extreme Value | 0.02312 1 0.22726 1
& | Gen.Pareto 0063248 =] 57.745 14
7 | Gumbel Max 0.04201 =] 1.1406 [u]
a Log-Pearson 3 0.0238 2 023019 3
9 | Mormal 0.11857 13 7.984 12
10 | Pareto 028151 14 43,8211 13
11 | Rayleigh 011242 12 77731 11
12 | Rayleigh (2P} 010081 11 4,3268 9
13 | Weibull 009701 10 6.324 10
14 | Weibull (3P) 004216 a] 1.035 5

116

Chi-Squared
Statistic | Rank
6.7421 1
2.68988 3
22.475 10
18.229 2
g.4709 2
M
40,608
g2.8179 4
96,852 12
355.9 12
20.728 11
47.601 9
46.941 g
36.916 5]
Chi-Squared

Statistic | Rank

21.772
7.3604
12,922
64062
7.8755
M2,
4,285
90,9934
34,437
216.28
45.612
17.774
24,338
9.0675

9

3
7
2
4

11
13
12

10
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Distribution

Frechet
Frechet (3P)
EFamma
Gamma (3P}
Gen. Extreme Yalue
Gen, Pareto
Gumbel Max
Log-Pearson 3
Marmal

Pareto
Rayleigh
Rayleigh (2P}
Waibull
Waibull (3P)

Distribution

Frechet
Frechet (3R]
Gamma
Gamma (3R]
Gen. Extreme Walue
Gen, Pareto
Gumbel Max
Log-Pearson 3
Morrmal

Pareto
Raylzigh
Rayleigh (2P}
Wdeibull
Waibull (3P)

MIROC3MEDRES A1B

Kolmogorow

Smirnow
Statistic | Rank
002928 11
012728 13
0.0z2819 2
002135 1
002855 3
0.04303 7
0.oz31z2 3
0.02907 4
002477 10
033277 14
0.09814 12
005614 g
0.06907 9
0.03215 B

Anderson
Darling

Statistic | Rank
5.5072 10
13.846 12
050191 2
0.1501 1
0.29943 3
49,826 13
035287 4
0.22374
46111 9
65,09 14
5.6451 11
1.442 7
3.6757 g
058351 B

MIROC3MEDRES A2

Kolmogorow

Smirnow
Statistic | Rank
0.09503 11
0.02072 1
0.06121 &
0.04693 4
0.0327 2
0.06131 7
0.04811 =
0.02703 3
0.11538 13
032259 14
0.09848 12
0.0sa32 10
0.07895 E
0.06474 =

117

Anderson

Darling
Statistic | Rank
5.2666 10
0.25289 2
1.156%2 =}
0456191 4
0.24722 1
51,907 14
0.54785 =]
0.28263 3
6.611 11
60,844 13
6.7472 1z
2.6526 =
5.2347 E
1.2337 7

Chi-Squared
Statistic | Rank
24.56 10
M
2.052 2
0.84473 1
1.2312 3
W
1.1646 2
1.2856 4
21.052
370.832 12
39.479 11
4.06326 7
10,1758 2
3.1704 ]
Chi-Squared
Statistic | Rank
19.971 10
B.ETFT 4
0.9615 5
74673 2
11.871 B
M
6.6364 1
76551 3
30.239 11
337.98 13
44,558 12
12.423 7
17.131 9
12,909 g
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Heavy Precipitation Days for Winter

Distribution

Frechet
Frechet (3P]
Gamma
Garmma (3P)
Gen. Extreme YWalue
Gen. Pareto
Gumbel Max
Mormal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3R]

Distribution

Frechet
Frechet (2P)
Famma
Gamma (3P)
Gen. Extreme Value
Gen. Pareto
Gumbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P)
Waibull
Weibull (3P)

Historical Perturbed

Kolmogorow Anderson
Smirnov Darling

Statistic | Rank | Statistic | Rank
0.23165 12 24,742 11
0.14206 2 4.8674 7
0.13962 7 4,8635 5]
0.10318 3 2.15361 2
0.09742 3 2.1851 3
011762 B 67,299 12
0.153958 11 7.2577 9
0.08881 1 2.1515 1
042406 13 07.26 13
0.14508 9 8.7659 10
0.14201 10 6.7126 g
0.10041 4 3.1013
0.09661 2.,1992 4

CGCM3T47 A1B

Kolmogorov Anderson

Smirnov Darling

Statistic | Rank | Statistic | Rank
0.13534 4 12,939 3
0.14421 2 10.269 2
0.35192 9 928.032 7
0.27363 & 35.363 4
0.14013 1 9.312 1
0.1403 2 70.841 10
0.3211 = 28.884 2
0.38843 11 71.269 11
0.37544 10 69.916 9
0.44165 13 157 .47 13
0.43642 12 24,198 12
0.29677 7 48.776 5]
0.2543 5 3656.566 3

118

Chi-Squared
Statistic | Rank
111.15 11
39.694 g
28.74 7
8.8333 1
23.497 4
MAL
28.738 B
23.76 =]
340.4 12
20,43 10
41.549 9
15.212 2
23.202 3
Chi-squared
Statistic | Rank
143.78 3
09,039 1
697,79 9
359.7 3
100.95 2
M/A,
79365 10
1043.9 11
449,21 7
381.94 5]
594,23 2
267.0 4
M
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Distribution

Frechet
Frechet (3P)
Gamma
Garmrma (3P
Gen. Extreme Walue
Gen, Pareto
Gumbel Ma:x
Marmal
Pareto
Rayleigh
Rayleigh (2P}
YWeibull
weibull [3F)

Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P)
i5en. Extreme WYalue
Gen. Pareto
Gumbel Max
Mormal
Pareto
Fayleigh
Rayleigh (2P)
Waibull
Weibull [3P)

CGCM3T47 A2

Kolmogorow

Smirnov
Statistic | Rank
0.1451 4
0.13322 1
0.31565 E
0.26404 =]
0.13201 2
0.14228 3
03112 2
037777 11
0.36251 10
0.42952 13
0.42147 12
02213 7
0.24055 =

Anderson
Darling

Statistic | Rank
11.31 3
9.3961 2
48,395 7
32.856 4
0.1502 1
34,405 12
24.46 g
63,334 10
66.862 E
145.64 13
31.435 11
46,728 5]
376881 9

CGCM3T47 B1

Kolmogorow

Smirnov
Statistic | Rank
0.16325 4
0.14561 1
033218 9
0.29632 ]
0.14954 3
014529 2
0.30993 g
0.3755 10
045159 13
044313 12
0.4265 11
0.30342 7
0.27473 3

119

Anderson
Darling

Statistic | Rank
13.571 3
13,2321 1
22,683 7
40,477 4
13,335 2
10562 1z
27114 g
71.433 9
o7 665 11
14357 13
84,163 10
49,581 B
42,027 3

Chi-Squared

Statistic | Rank

147 .41 3
55.982 1
526.62 7
262.6 4
56.342 2
[P
774.96 11
691.13 10
535.16 =]
354.85 5
639.77 a
399.65 &
[FFE
Chi-Squared

Statistic | Rank
11452 1
Mo
541.48 3
321.44 4
M
[
BG62.23
g79.0
030.01
315,89
800,31
257 .67
M
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Distribution

Frechet
Frechet (3P)
Gamma
Gamma (2P)
Gen. Extreme Value
Gen, Pareto
Gurmbel Max
Mormal
Pareto
Fayleigh
Rayleigh (2P)
Weibull
Weibull [3P)

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Marmal
Rayleigh
Rayleigh

Yy eibull
YWeibull

Pareto

CGCM3T63 Al1B

Kolmogorov

Anderson

Smirnov Darling Chi-Squared
Statistic | Rank | Statistic | Rank | Statistic | Rank
016266 4 12,808 3 140.59 3
016022 3 11.423 2 127,12 2
0.353138 10 27,697 7 616,12 g
0.24677 5] 32.536 4 256.329 =]
0,15749 2 10,709 1 11475 1
0.1543 1 63.316 9 W
031354 g 28.844 g 5820.36 10
038374 11 72,86 11 794,86 el
0.33807 9 69,994 10 585.34 7
046842 132 169.05 13 420.28 5]
043841 12 23.919 12 252.8 11
0,30132 7 47.211 a 25245 4
0.2329 a 26,338 a] ML

CGCM3T63 A2
Kulm!:rguruu Andm_’sun Chi-Squared

Smirnoy Darling
Statistic | Rank | Statistic | Rank | Statistic | Rank
0.16778 4 15,907 3 152.41 2
0.15324 1 12.19 1 B1.494 1
036313 9 62,245 =] 236.54 7
0.31903 7 47,092 5 209.87 4
0.15939 3 14.08 2 o
0.15479 2 109.96 10 MfA,
031966 2 61,299 7 1117.5 2
0.353436 10 73.791 9 1215.6 9
0435871 11 189.98 11 411.61 3
0.66019 12 34841 12 1317.4 10
0.30603 5] 48.677 265.5 3
028422 3 42.45 4 434,18 5]
Mo fit

120
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Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P
Gen. Extreme Value
Gen, Pareto
Gumbel Max
Hormal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3P

Distribution

Frechet
Frechet (3P)
Garmma
Garmma (3]
i3en. Extreme Walue
Gen., Pareto
Gumbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P)
YWaibull
Waibull (3P)

CGCM3T63 B1

Kolmogoroy

Smirnoy
Statistic | Rank
0.17778 3
0.14629 1
0.3606 9
0.3008 5]
0.18535 4

0.177 2
0.24256 g
0.40536 11
0.40445 10
0.52913 13
045311 1z
0.21752 7
0.27546 3

Anderson
Darling

Statistic | Rank
14,3296 2
22,365 3
99,657 7
46.718 3
12.73 1
08,528 1z
62,501 g
73216 g
70.5549 10
227.89 13
00,385 11
40.507 &
34061 4

CSIROMK3.5 A2

Kolmogorowv

Smirnov
Statistic | Rank
0.18636 4
0.15889 1
0.3896 10
0.32893 7
0.18415 3
017797 2
0.34955 9
0.412449 11
0.34924 g
0.24638 13
0.47071 12
0.32836 B
0.277035 2
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Anderson
Darling

Statistic | Rank
18.264 3
12,707 1
66,47 g
47.006 2
14,934 2
100,33 12
66,922 9
727 10
63,377 7
257.79 13
06,495 11
25,8635 B
37.963 4

Chi-Squared

Statistic | Rank

156.86 2
R
013.68 9
R
122.81 1
R
go4.02 g
g1g.82 7
G03.0a &
249,02 3
055.08 10
22295 3
30257 4
Chi-Squared

Statistic | Rank

159.45 3
89,102 1
945.04 12
374.03 s}
139,76 2
[FYa)

Q05,99 11
407,92 2
390.47 7
285.28 10
283.18

342,61 4
356.57
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itribaton | Camosorov | Andersen | chi-squared
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.17881 4 18.471 3 146.71 3
Frechet {3P] 0.16656 z 13.601 1 119.31 1
Gamma 0.37853 10 65.942 7 907 .57 10
Gamma (3P} 0,30533 & 40,182 3 ()
Gen. Extreme Yalue | 0,17328 3 14.017 2 120.03 2
Gen, Pareto 0.16627 1 74,783 10 M
Gurmbel Max 0.33582 g 66,332 g 951.43 11
Mormal 0.40139 11 | 79,123 11 453.3 &
Pareto 0,36675 Q 67,72 Q 352,63 7
Rayleigh 0.52836 13 | 241.28 13 583,94 g
Rayleigh (2F) 0.45593 12 | 95,746 12 609,36 9
Weibull 0.31605 7 53,599 417,51 3
Weibull (3P) 027292 5 39.152 4 30,58 4
GISSAOM Al1B
trbion | Cmagorov | Apdersen | chisquored
Statistic | Rank | Statistic | Rank | Statistic | Rank
Frechet 0.,17186 3 14.45 2 169.73 2
Frechet (3P) 0,15979 1 15.094 3 Mis
Gamma 037816 9 63,364 g 740,26 g
Gamma (3P) 0.,32393 7 47,821 2 Mis
3en, Extreme Walue | 0,17597 4 12,859 1 125.0 1
Gen, Pareto 0.17062 2 24,364 11 Mis
Gumbel Max 03461 g 53,3326 7 020,34 9
Mormal 0.41047 11 76,79 9 21457 4
Pareto 0.40974 10 79,568 10 702,41 B
Rayleigh 0.532116 13 226.77 13 526,96 2
Rayleigh (ZP) 045709 12 00,349 12 719,03 7
Weibull 0.31178 B 20,964 B 265,45 3
Weibull (3P) 0.26841 2 29,826 4 Mis
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Distribution

Frechet
Frechet (3P
Gamma
Gammma (3P
Gen, Extreme Walue
Gen, Pareto
Gumbel Max
Harmal
Pareto
Rayleigh
Rayleigh (2P
YWeibull
Wweibull [3F)

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Fayleigh
Rayleigh
Weibull
Weibull

Pareto

GISSAOM B1

Kolmogorow Anderson
Smirnov Darling

Statistic | Rank | Statistic | Rank
0.16703 4 15.139 2
0.1405 1 17.914
0.40043 10 69,335
0.30128 5] a0.667
0.16597 3 12,917
0.16282 2 94,809 11
0.34921 g 67,3581 7
0.412386 11 79,372 =
0.392865 E 79,917 10
0.54373 13 276.85 13
047115 12 95,907 12
0.30645 7 21.497
027014 9 45.694 4

| o W

MIROCS3HIRES Al1B

Kolmogorow Anderson
Smirnov Darling

Statistic | Rank | Statistic | Rank
0.15431 3 12,063 2
12,179 3
56.533 g
5
1

0.16128 4
9
0.289549 7 36.308
2
1
3

0.33971

0.14228 58.5059
0.13991 124.84 10
0,20077 55,568 7
0,26694 10 63,549 9
0442864 11 152.74 11
063022 12 308.6 12
0,27369 =] 38,002
0.2587 5 33647 4
Mo fit

MIROC3HIRES B1
123

Chi-Squared
Statistic | Rank
135.95 2
Mk
g60.4 9
M
126.15 1
Mk
79311 g
280,95 3
770,41 7
F00.42 6
483.3 4
202.88 3
M
Chi-Squared
Statistic | Rank
101.82 2
126.89 3
477.27 8
219.33 4
g0.98 1
M
794,51 10
696.17 9
379.77 7
1055.1 11
227.08 3
315.91 5]
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Distribution

Frechet
Frechet (3P)
Gamma

Gamma (3P)

Gen, Extreme Yalue

Gen, Pareto
Gumbel Max
Hormal
Pareto
Rayleigh
Rayleigh (2P}
YWeibull
Weibull (3P

Distribution

Frechet
Frechet (3P
GFamma

Garmma (3P

Gen., Extreme Yalue

Gen, Pareto
Gumbel Max
Marmal
FPareto
Rayleigh
Rayleigh (2P
Weibull
Waibull (3P)

Kolmogorow

Smirnov
Statistic | Rank
0.16940 4
016415 1
039112 10
0.,298945 &
0.16772 3
0.16465 2
033619 8
0.40024 11
0.22384 9
0.52406 13
0.46277 12
0.30747 7
026405 3

Kolmogorow

Smirnowv
Statistic | Rank
0.,12973 1
0.13577 2
0.,30573 9
0.23671 B
0.13866 4
0.13666 3
0.2997 g
0.36678 10
0.37219 11
0.42129 12
0.41216 12
0.26366 7
0.22653 2

Anderson
Darling

Statistic
12,723
11.226
69,309
36.846
10,922
72,544
64,507
77.304
73,966
226.1
29,856
47.007
32,283

MIROC3MEDRES A1B

Ran

3

b Y o I ) IR B (W

=
[y

13
12

k

Anderson
Darling

Statistic
73736
6.9739
45,37
37.483
G.9529
75,455
21,914
66,243
73.438
157.58
FH.634
36,965
36.106

MIROC3MEDRES A2

124

Rank

3

—
PP LI = L e O

W ad

Statistic
202.3 3
Q6,628 2
718.34 10
312.62 &
20,806 1

Chi-Squared

Rank

[RFfs)

B836.98 11
244,36 E
219.6 =
213.9 7
884,33 12
256.89 4
310,19 =)

Chi-Squared

Statistic | Rank
122,536 3
09,294 2
443,67 B
M
099,351 1
M
519.52 g
52342 9
474,86 7
2127 3
62656.05 10
20062 4
M



L7 T T T O | O o i B S R

[ =
LR I L e

L T w w N R o N 1) B O R T e

=2 e e
[ I L I o |

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gumbel May
Marmal
Rayleigh
Rayleigh
YWeibull
YWeibull

Pareto

Distribution

Frechet
Frechet
Gamma
Garmma
Gen. Extreme Yalue
Gen. Pareto
Gumbel Max
Marmal
Rayleigh
Fayleigh
Weaibull
Weibull

Pareto

Kolmogorov

Smirnov
Statistic | Rank
0.14444 2
0.14334 3
0.36173 |
0.30065 7
013213 4
014423 1
0.32663 g
039262 10
042376 11
0.66922 12
0.28095 5]
0.26916 a
Mo fit

Anderson

MIROC3MEDRES B1

Kolmogorow

Smirnov
Statistic | Rank
01623 3
0.1693 4
0.3509 9
021607 7
0.16047 2
0.15909 1
0.23105 g
039562 10
047772 11
065892 1z
029614 B
028474 3
Mo fit

Darling
Statistic | Rank
13.027 3
11.135 2
58.77 8
43.094 3
9.6001 1
52,39 7
59.853 9
72,879 10
204,44 11
371.6 1z
44,28
38.158 4

Anderson

Darling
Statistic | Rank
14,583 3
13.048 2
58.291 7
43,556 3
10.954 1
60,891 9
29,366 2
72,323 10
186.69 11
347,16 1z
45,428
29.12 4

Very Wet Days for Winter

125

Chi-Squared
Statistic | Rank
141.65 3
B6.251 1
400,51 7
372,95 ]
105,23 2
[
1016.7 10
682,59 9
525,36 g
1327.3 11
299,95 4
361.03
Chi-Squared
Statistic | Rank
189.85 3
120,37 2
5122 2
368 .44 B
50,514 1
Mo
1052.6 9
1201.7 10
246.87 4
1305.8 11
352.15 2
464,04 7
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Value
Gen, Pareto
Gumbel Max
Mormal
Rayleigh
Rayleigh
Waibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Yalue
Gen. Pareto
Gumbel Max
Marmal
Rayleigh
Rayleigh
weibull
Weibull

Pareto

Historical Perturbed

KuImPguruu Anden_-sun Chi-Squared
Smirnoy Darling
Statistic | Rank | Statistic | Rank | Statistic | Rank
0.25088 2 71,968 g 30441 3
0.31567 12 93.945 12 313.52 11
0.18065 9 63.069 5 23.644 1
0.29397 11 24,742 11 280.94 10
0.15165 2 76571 1 79,875 4
0.15143 1 48.424 4 M
0.15381 3 9.0244 3 107.39 7
0.17389 4 2.3467 2 105.76 9
02321 7 66,445 =] 109.85 9
0.27746 10 22.863 10 107,32 5]
0.20909 5] 69,704 7 37,359 2
0.26946 9 g20.181 E 107 .47 2
Mo fit
CGCM3T47 A1B
Kulm!:rguruu A.ndel_'sun Chi-Squared
Smirnov Darling
Statistic | Rank | Statistic | Rank | Statistic | Rank
0.17079 3 Z23.1049 3 61.424 2
0.126382 1 22.633 2 435,303 1
0.40027 10 21.6449 9 247.9 =]
0.28854 7 60.085 7 422,39 g
017611 4 16.527 1 122.67 3
0.16061 2 42.435 4 M2
0.34734 2 74.608 2 384.8 7
0.337386 9 87.268 10 2356.94 4
0.59198 11 470,31 11 1124.0 10
074098 12 79365 12 2118.6 11
0.23137 45.302 s} 289.65 a
023225 5] 47.329 3 290,58 5]
Mo fit
CGCM3T47 A2
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Yalue
Gen. Pareto
Gurmbel Max
Mormal
Fayleigh
Fayleigh
YWeibull
YWaibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
5en. Pareto
Gurnbel Max
Marrnal
Rayleigh
Rayleigh
Waibull
Weaibull

Paretao

Kolmogorov

Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
016601 3 38,947 2
012832 1 42,048 3
0.34622 9 77058 =]
0.29246 7 73.108 7
0.165638 4 15,252 1
0,15342 2 25.59 10
033311 (=] 70,022 a]
0,358194 10 85,359 9
0.58288 11 487.15 11
072779 12 811.86 12
0,12995 =] 53.865 4
0237353 a] 09,125
Mo fit

CGCM3T47 B1

Kolmogoroy Anderson

Smirnoy Darling
Statistic | Rank | Statistic | Rank
0.13173 2 21,728 3
0.11399 1 21.313 2
0.36639 9 72,977 2
0.29474 7 27,749 7
0.17328 4 15.281 1
0.15399 3 41.316 4
0.33354 3 73.002 9
0.38105 10 87,757 10
0.58295 11 453,69 11
072514 12 751,19 12
0.22758 3 46,296 5]

0.2393 6 45.408 3
Mo fit
CGCM3T63 A1B

127

Chi-Squared
Statistic | Rank
64,085 2
39.948 1
407.03 9
325.35 7
154.71 4
MAA
369.31 (=]
293.35 5]
1029.1 10
2073.5 11
123.42 3
180.25 a
Chi-Squared
Statistic | Rank
47.15 1
29.086 2
670.28 2
365.02 7
75.515 3
WFa
658.07 g
264.24 =
1345.1 10
2056.1 11
275.73 &
263.23 4
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen, Pareto
Gumbel Max
Harmal
Rayleigh
Rayleigh
Weibull
Wit

Paretao

# Distribution

Frechet

Frechet

Gamma

Gamma

Gen. Extreme Value
Gen. Pareto
Gumbel Max

Mormal

L e B R | R R L IR L A

Fayleigh

=
]

Fayleigh
Weibull
Weibull

= | e
[ R I o B

Pareto

Kolmogorow

Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
0.17306 2 48.691 3
016071 1 53,907 4
0.329763 10 96.203 10
032411 7 87.787 2
0.18614 4 17,731 2
017579 3 16.889 1
0.3596 g 76,51 7
0.39704 9 00,234 9
0.63607 11 263.6 11
076199 12 Q7773 12
0.20386 2 53,333 3
0.26298 5] 70.669 B
Mo fit

CGCM3T63 A2

Kolmogoroy Anderson

Smirnoy Darling
Statistic | Rank | Statistic | Rank
018423 4 21.387 2
0.14466 1 24,926 3
0.38217 9 08.184 9
0.32531 7 89.869 7
0.12408 3 16.34 1
0.17083 2 112.2 10
0.35763 g 77.351 =}
0.39557 10 90,281 g
0.62646 11 236.82 11
0.76054 | 12 9585 1z
0.z2o0092 = 65.281 4
0.26416 5] 72.641
Mo fit

CGCM3T63 B1

128

Chi-Squared
Statistic | Rank
49,754 1
111.81 2
241.51 7
248.11 g
138.53 3
179.04 B
293.23 10
274.07 9
1459.5 11
2278.9 12
173.62
160.48 4
chi-Squared

Statistic | Rank

104.75
78,882
508.48
327.98
166.17
M2
221.26
284.34
1376.1
2319.2
315.05
261.23

2

1
9
g
3

10
11
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Yalue
Gen. Pareto
Gurmbel Max
Mormal
Rayleigh
Rayleigh
Weibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen, Extreme WValue
Gen. Pareto
Gumbel Max
Marmal
Rayleigh
Rayleigh
YWaibull
Waibull

Pareto

Kolmogorov Anderson
Smirnov Darling

Statistic Rank | Statistic | Rank
0.1674 1 62,907 3

0.2168 4 24,448 5]
0,35503 =] 102.59 9
0.33825 7 117.94 10
0.,19504 3 20,092 2
0.17923 2 17.703 1
0.2653 e 78.417 4

040601 10 91.621
0.65204 11 642.0 11
0.78003 1z 1170.8 12
0.23668 5 20.216 3
0.27432 =] 95,229 g
Mo fit

CSIROMK3.5 A2

Kolmogorow Anderson
Smirnoy Darling

Statistic | Rank | Statistic | Rank
0.18854 2 51.702 3
0.15139 1 55,547 4
0.38249 9 Q6.676 10
033151 7 03,8326 9
0.21691 3 23.264 2
0.20006 3 20,298 1
0.36535 g 80,691 7
0.40958 10 03.698 8
0.66574 11 6557 11
0.78047 12 1099.3 12
0.20335 4 67.018 3
0.26783 & 74,665 ]
Mo fit

CSIROMK3.5 B1

129

Chi-Squared
Statistic | Rank
06,9746 1
164 46 &
154.8 3
180.4 7
122.7 4
11122 3
231,94 8
30772 10
15331 11
23636 1z
279,26 9
105.1 2
Chi-Squared
Statistic | Rank
86.859 2
69.868 1
476,97 10
351.86 9
313,95 g
142,74 3
212.68 4
303.4 6
1658.5 11
2303.6 12
306,22 7
232.18 3
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Distribution

Frechet
Frechet
Gamma
Eamma
3en, Extreme Value
Gen, Pareto
Gumbel Max
Marmal
Rayleigh
Rayleigh
Weibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen, Pareto
Gurmbel Max
Mormal
Rayleigh
Rayleigh
Weibull
Weibull

Pareto

Kolmogorov

Anderson

Smirnoy Darling
Statistic | Rank | Statistic | Rank
0.15501 2 24.578 3
011777 1 24.47 2
041214 10 23.2432 9
0.21018 7 4.9 7
0.19734 4 20916 1
0.17847 3 20,152 B
0.26054 =] 20.039 g
0.40135 9 93471 10
0.64286 11 603.43 11
0.76668 12 8956.49 12
022921 a 49.841
0.24312 5] 40,240 4
Mo fit

GISSAOM Al1B
Kolmogorov Anderson

Smirnow Darling
Statistic | Rank | Statistic | Rank
0.17333 1 68.339 3
0.20963 4 234 &
0.36817 = 104,86 =
0.33277 7 117 .47 10

0.201 3 21.791 2
0.18517 2 19,165
0.37097 g 70.081 4
0.40353 10 93.18
0.65329 11 BES5.67 11
0.78188 1z 1203.6 1z
0.23768 3 70.868 3
0.2717 & 94,619 =
Mo fit

GISSAOM B1

130

Chi-Squared
Statistic | Rank
55.888 2
53,799 1
431.56 =]
39193 (=]
91.016 3
M

21343 4
281.01
1671.5 10
2283.2 11
Z40.09 a
266.74 5]
Chi-Squared
Statistic | Rank
74764 1
169,13 &
112.55 2
180.96 7
150.79 3
132.85 4
213.97 8
303.35 10
1619.3 11
2329.7 1z
286.61 g
126.05 3
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Distribution

Frechet
Frechet
Garmma
Garmma
Gen. Extreme Value
Gen. Pareto
Gurmbel Max
Morrmal
Rayleigh
Rayleigh
Waibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Yalue
Gen, Pareto
Gumbel Max
Marmal
Ravyleigh
Rayleigh
Weibull
Weibull

Pareto

Kolmogoroy

Smirnov
Statistic | Rank
0.17607 2
0.16686 1
0.42833 10
0.33745 7
0.21466 4
0.19716 3
0.37794 8
0.41591 g
0.6843 11
0.79655 1z
0.2231 ]
0.26636 &
Mo fit

Anderson

Darling
Statistic | Rank
50.881 3
55.889 4
103,98 10
95.061 g
24.647 2
21.75 1
83.935 7
9656.163 9
711.68 11
1190.6 1z
67.313
74.754 5]

MIROCS3HIRES Al1B

Kolmogorow

Smirnov

Statistic | Rank
0.17447 3
0.20992 4
037036 9
0.31283 7
0.1574 2
0.14538 1
0.26247 2
0.38247 10
060331 11
075463 12
0.22627 3
0.25671 B
Mo fit

Anderson
Darling

Statistic | Rank
66.224 3
81.187 B
105.11 9
109.58 10
12,957 2
12,178
72962 4
g87.085
513.36 11
1023.1 12
76.38 5
80.692 2

MIROCS3HIRES B1

131

Chi-Squared

Statistic
70652
83.792
750,15
269,34
188.29
151.24
218.26
311.08
1865 .6
2355.0
174.0
402,78

Fank

Chi-Squared

Statistic
35.101
147 .77
503.44
201.14
130.65
02,446
202.9
252.18
1199.2
2203.7
293.44
128.57

Rank
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Marrnal
Rayleigh
Rayleigh
Waibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Yalue
Gen, Pareto
Gumbel Max
Marmal
Rayleigh
Rayleigh
YWeibull
YWaibull

Pareto

Kolmogorow

Smirnow
Statistic | Rank
0.16967 1
0.24072 4
0402083 10
0.33929 7
0.2031 3
0.18425 2
0.38199 2
0.40438 9
06632 11
07913 12
0.23037 3
0.27363 &
Mo fit

Anderson

Darling
Statistic | Rank
62.64 3
85.095 B
114,13 9
119,23 10
19.746 2
17.51 1
81.121 3
06.209 =
667,48 11
1250.7 12
80.185 4
95,417 7

MIROC3MEDRES Al1B

Kolmogorow

Smirnoy
Statistic | Ranl
0156191 1
0.253829 3
034113 g
0.33439 7
0.19154 3
017417 2
0.35729 9
0.38102 10
062851 11
073041 12
0.25163 4
0.27796
Mo fit

Anderson
Darling

Statistic | Rank
7291 3
95,879 7
101.27 g
125.64 10
18,145 2
15,952
73.989 4
B8.066 ]
592.07 11
1118.6 12
B3.725 3
102,93 9

MIROC3MEDRES A2

132

Chi-Squared

Statistic
26,348
265.62
413,56
237.83
170.6
B6.045
205.08
277.95
1785.7
2384.6
265.01
320,63

Rank

Chi-Squared

Statistic
12,575
293.7
387,71
233.0
121.41
118.63
228.58
252,71
1503.2
2177.8
120.84
268.84

Rank
1
=]
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Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Marmal
Ravleigh
Rayleigh
Weibull
Waibull

Pareto

Distribution

Frechet
Frechet
Gamma
Gamma
Gen. Extreme Walue
Gen. Pareto
Gurnbel Max
Maormal
Rayleigh
Rayleigh
Waibull
Weibull

Pareto

Kolmogorow
Smirnov

Statistic
0.16007
0242879
036222
0.34296
0.19904
0.17992
0.36662
039402
0.65336
0.77096
024344
0.28147
Ma fit

Rank

1

L I L ' I (R B )

11
1z

Anderson

Darling
Statistic | Rank
F0.757 3
90,274 5]
104.47 9
1zz2.22 10
18.673 2
16.493
77364 4
00,532
626,49 11
11749 1z
81.783 3
08911 g

MIROC3MEDRES B1

Kolmogorov

Smirnov
Statistic | Rank
017216 1
024068 4
037534 9
0.2467 7
0.19967 3
0.18189 2
0.3654 3
040169 10
0.65445 11
077534 12
023231 3
028421 5]
Mo fit

Anderson
Darling

Statistic | Rank
59,939 3
87.176 5]
105.16 9
119.51 10
20.265 2
17.953
F77a3 4
90.764
617.17 11
1146.1 12
21.259 =]
o7.068 g

Chi-Squared
Statistic | Rank
27.586 1
281.4 2
431.61 10
232.22 5]
150.87 4
98.552 2
196.14 3
283.34 E
1460.5 11
2267.7 1z
135,92 3
275.01 7
Chi-Squared
Statistic | Rank
15,313 1
25727 7
459.8 10
23171 5]
134.12 2
143.89 3
201.71 2
299.31 3
1532.4 11
2247 .4 12
18242 4
302.79

5 day Maximum Precipitation for Winter 2050s
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Distribution

Frechet
Frechet (2P
Gamma
Gamma (3P
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Marmal
Fareto
Rayleigh
Faylzigh (2P
WWaibull
Weibull (3P)

Distribution

Frechet
Frechet (3P
Gamma
Gamma (3P
Gen. Extreme Value
Gen, Pareto
Gumbel Max
Marmal
Pareto
Ravleigh
Ravyleigh (2P}
Weibull
Weibull (3P)

Historical Perturbed
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Kolmogorov Anderson
Smirnoy Darling
Statistic | Rank | Statistic | Rank
0.0793 3 4.2667 3
0.03326 2 0.39863 2
0.063032 7 1.7426 3
0.042632 4 0.89717 4
0.0285 1 0.25671 1
0.05803 3 61.224 13
0.04658 3 0.74695 3
0.1172 11 7.1049 10
0.33589 13 28.834 12
014119 12 10.511 11
0.08575 9 2.7994 7
0.09612 10 G.7304 9
0.06235 & 1.9024 &
CGCM3T47 A1B
Kolmogorov Anderson
Smirnov Darling
Statistic | Rank | Statistic | Rank
0.0963 11 3.9445 =
0.03342 4 0.158 2
0.05433 G 1.7396 &
0.03632 1 0.36309 3
0.03671 2 0.14603 1
0.05609 7 28.054 13
0.037388 3 0.61193 4
0.095835 10 6.27983 10
0.293388 13 49.97 1z
0.14446 12 13.009 11
0.07a67 g 2.5785 7
0.09114 9 5.8244 E
0.05094 = 1.1197 =
CGCM3T47 A2

Chi-squared
Statistic | Rank
10.82 4
6.7692 2
13.584 7
12,155 5
6.2318 1
e
10.428 3
21,529 10
3247 12
74,229 11
22,705 g
31.224 9
15.1949 =]
Chi-squared
Statistic | Rank
10,917 =}
4.6348 1
11.826 7
2.6521 3
2.2047 2
M
7.9889 4
3344 10
290.63 1z
84.356 11
9.3639 5
23.741 9
12,599 =
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Distribution

Frechet
Frechet (3P
Gamma
Gamma (3P)
Gen, Extreme Value
Gen., Pareto
Gumbel Max
Marmal
Fareto
Fayleigh
Fayleigh (2P)
Weibull
wWeibull (3P)

Distribution

Frechet
Frechet (3P)
Famma
Garmma (3P
Gen. Extreme Yalue
Gen. Pareto
Gumbel Max
Harmal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
Wwheibull [3P)

Kolmogorow

Anderson

Smirnov parling
Statistic | Rank | Statistic | Rank
0.06384 =] 4,263 2
0.03264 1 0.33948 1
006148 3 2.0395 s}
0.04732 3 0.73874 3
0.02293 2 024114 2
0.0655 =] 72,459 13
0.04794 4 0.97002 4
0.10848 11 7.1428 10
0.21874 13 20,909 12
0.13346 12 10.963 11
0.08225 9 3.2788 7
0,10079 10 6.1224 9
006516 7 1.3373 2

CGCM3T47 B1

Kolmogorow Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
0.07655 g 3.0899 7
0.02814 1 0.19282 1
0.06658 & 2.7103 5]
0.04305 3 0.63673 3
0.03049 2 0.19678 2
0.06963 7 61.135 13
0.04852 4 1.2171 4
011884 | 11 7.6352

0.302 13 31.289 12
016442 12 14761 11
0.09383 E 3.52 3
0.09638 10 9.1369 10
0.05599 = 1.8282 5

CGCM3T63 AlB
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Chi-Squared
Statistic | Rank
21.2 2
17522 1
12814 ]
6.6843 3
1.7558 2
(WL
0.2696 4
38.643 10
270.96 12
74,195 11
12,545 3
21.294 9
15.14 7
Chi-Squared
Statistic | Rank
15.156 5
3.5026 1
24,985 g
7.969 3
4.0029 2
M2
13.267 4
40.206 10
265.82 1z
94,968 11
18,714 &
258.35 g
1881 7
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Distribution

Frechet
Frechet (3P
Gamma
Gamma [(3F)
Gen. Extreme Yalue
Gen. Pareto
Gumbel Max
Marrmal
Pareto
Rayleigh
Rayleigh (2F)
Weibull
weibull (3P

Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3F)
Gen, Extreme Walue
Gen. Pareto
Gumbel Max
HMormal
Pareto
Rayleigh
Raylzigh (2P
Weibull
Weibull (3P)

Kolmogorow

Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
0.07169 2 3.9815 g
0.03747 2 0.39337 3
00493 7 1.0924 5]
00258 1 0.1345 1
0.0331 2 0.353071 2
0.04207 =] 27,5229 13
0.03934 4 0.5051 4
0.10334 11 2.3168

0204 13 21.716 12
0.12668 1z 0.9044 11
003171 E 2.2674 7
009622 10 2.5201 10
0.0401 = 0.51736 9

CGCM3T63 A2

Kolmogorow Anderson

Smirnoy Darling
Statistic | Rank | Statistic | Rank
0.08497 9 4,1957 8
0.031249 3 0.40418 3
0.04434 ] 1.0889 ]
0.0z29449 2 0.18221 1
0.02659 1 0.32555 2
0.05008 7 3364 13
0.03422 4 0.5079 3
0.09716 11 5.7404 10
0.276 13 30414 1z
0.1z2602 1z 0.2114 11
0.0784 8 2.6493 7
0.09004 10 9.6244
0.03803 3 0.4992 4

CGCM3T63 B1
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Chi-Squared

Statistic
12,372
2.1107
12,95
2.007
2.2295

Rank

M

73627
35.053
271.03
64.458
13.143
30,922
4.1031

Chi-Squared

Statistic
25,368
0.5201
12,294
34215
6.7966
()
6.5869
26.245
250,79
37.478
12,398
20,935
B3.6786

Rank
Q

3
&
1
3
2

10
12
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Distribution

Frechet
Frechet (3P)
Gamma
Garmma (3P)
Gen. Extreme Walue
Gen, Pareto
Gumbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3P)

Distribution

Frechet
Frechet (3P)
Gamma
Gamma (3P)
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
Weibull (3P)

Kolmogorowv

Smirnoy
Statistic | Rank
0.09261 E
0.03992 1
0.0569 5]
0.04931 4
0.04052 2
0.07941 7
0.04124 3
0.10996 11
0.2915 13
0.13307 12
002252 3
0.09953 10
0.05324 3

Anderson

CSIROMK3.5 A2

Kolmogorow

Smirnov
Statistic | Rank
0.09z92 9
0.03414 2
0.06874 7
004878 3
0.03207 1
0.05333 4
0.05779 3
012319 12
0.29729 13
0.09393 10
0.10069 11
0.0z002 g
006421 B

Darling
Statistic | Rank
5.2165 g
030604 2
1.2899 &
0.56625 4
0.30289 1
76.231 13
0.427a67 3
5.8454 10
40,003 1z
11.704 11
2,1923 7
5.5929 Q
1.0781 5

Anderson

Darling
Statistic | Rank

4,1955 2
0.25307 2
1.7735 B
0.41707 3
0.23262 1
58.352 13
1.0794 3
77614 11
51.381 12
6.6604 10
4,1297 7
5.BE62

1.0672 4

CSIROMK3.5 B1
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Chi-Squared

Statistic
21.422
8.0072
B.613
10.633
B.7138
WL
76241
28.914
257.89
B6.644
11,709
22.646
13.867

Ranl

g

4
2
3
3

Chi-Squared

Statistic
14.739
5.0096
13.424
06423
45815

Rank

M,

12.468
43.527
273.05
40,162
19.425
20.662
16.794

B

2
2
3
1

11
12
10
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Distribution

Frechet
Frechet (2P}
Gamma
Gamma (2P}
Gen. Extreme Value
Gen, Pareto
Gumbel Max
Mormal
Pareto
Fayleigh
Fayleigh (2P}
Waibull
Weibull (3P)

Distribution

Frechet
Frechet (2P
Gamma
Gamma (3P
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Pareto
Rayleigh
Rayleigh (2P)
Waibull
Waibull (3P)

Kolmogorov

Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
0.075044 B 2.0263 4
0.09697 2 9.7897 10
007017 3 3.8601 3
0.05796 3 1.2478 2
002771 1 0.19424 1
0.0&6202 4 75,416 13
0.05785 2 2.3822 3
0.12832 11 9.6111 9
028036 13 73,226 1z
013701 1z 12,239 11
0.10185 10 4.6407 7
0.09931 9 F.liez 2
0.072855 7 4.2016 B

GISSAOM Al1B

Kolmogorov Anderson

Smirnov Darling
Statistic | Rank | Statistic | Rank
0.07415 2 3.8331 2
002581 2 027328 2
0.06034 B 1.7303 B
0.03972 3 0.34032 3
002523 1 024202 1
006769 7 61.542 13
0.04373 4 071482 4
0.10438 11 6.5335 10
029422 13 22,343 12
0.13205 12 11.203 11
00429 9 2.9934 7
0.09274 10 6.0477 9
003719 2 1.0422 2

GISSAOM B1
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Chi-Squared
Statistic | Rank
12,129 3
MAA
25,124 3
G.6916 2
2.1058 1
M A8
16,977 4
62,004 a
319,86 11
g6.433 10
20,209 7
27.694 &
20,523 a2
Chi-Squared
Statistic | Rank
18,853 a2
5.4249 3
10,837 3
5.84 4
5.1837 2
M
44,3038 1
37.324 10
283.14 12
62.614 11
15.712 7
28.369 9
11.021 &
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Distribution

Frechet
Frechet (3P)
Famma
Gamma (3P
Gen. Extreme Walue
Gen. Pareto
Gumbel Max
Mormal
Pareto
Rayleigh
Rayleigh (2P}
Yy eibull
Weibull (3P}

Distribution

Frechet
Frechet (3P
Gamma
Garmma [3P)
Gen. Extreme Walue
Gen. Pareto
Gumnbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P)
Weibull
waibull (3P)

Kolmogorovw
Smirnov

Statistic | Rank

0.05055 2
0.04992 1
o.o¥1y 7
0.0e083 4
0.05243 3
0.06214 =]
0.07273 g
0.12735 11
0.31317 13
0.135892 12
0.12136 9
0.12363 10
0.06367 5]

Anderson

MIROC3HIRES A1B

Kolmogorovw
Smirnowv

Statistic Rank

002901 10
0.03419 3
0.04251 =]
0.0z247 1
0.0z2g32 2
003239 7
0.03708 4
0.09533 11
0.30858 13
0,10919 1z
0.07458 =]
0.08706 =
0.02843 b=l

Darling
Statistic | Rank
15675 4
0.56353 1
35031 7
12164 3
0.63434 2
60,788 13
24029 &
10.098 10
52.814 1z
10,454 11
G.5339 g
10,064
2.3893 3

Anderson

Darling
Statistic | Rank
4.8365 9
0.35314 3
067219 f
0.12343 1
0.28865 2
23,539 12
0.39158 4
4.9745 10

58.51 13
6.8961 11
1.8592 7
4,412 a2
049158 3

MIROCS3HIRES B1
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Chi-Squared

Statistic | Rank

0.5827 3
G.2295 1
33.37 7
14,583 4
7.9955 2
Y
22,665 5
72.959 10
254,22 1z
91.539 11
35.18 8
51.07 9
24,475 &
Chi-Squared
Statistic | Rank
19,474 9
5.6369 3
6.8235 3
4.4541 1
4.6348 2
M
3.7821 4
24,413 10
203.68 1z
42,012 11
8.19846 &
15,629 2
9.0492 7
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Distribution

Frechet
Frechet (2P)
Gamma
Gamma (3P
izen. Extreme Yalue
Gen, Pareto
Gumbel Max
Mormal
Pareto
Fayleigh
Rayleigh (2P)
wWaibull
Weibull (3P)

Distribution

Frechet
Frechet (3P)
Gamma
Gamma [3P)
Gen, Extreme Yalue
Gen. Pareto
Gumbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P
Weibull
Weibull (3P

Kolmogorov

Smirnov
Statistic | Rank
0.07056 9
0.062857 2
0.039138 3
0.04427 3
0.03z204 1
004664 4
004284 2
0.10626 11
0.39246 13
0.14202 1z
0.06646 7
009617 10
0.06591 &

Anderson

Darling
Statistic | Rank
2.5037 3
74849 10
2.3151 4
1.0111
0.253491 1
54,04 1z
1.1184 3
74386 9
78.362 13
11.954 11
3.2887 &
7.0287 8
2.3006 7

MIROC3MEDRES Al1B

Kolmogoroy

Smirnowv
Statistic | Rank
0.06738 g
0.0497a6 2
0.04405 3
0.03289 1
0.05002 5]
0.04438 4
0.05035 7
0.092z28 11
0.27006 13
0.12119 12
0.08084 9
0.0265 10
0.03509 2

Anderson
Darling

Statistic | Rank
2.4402 7
073236 4
1.4861 ]
0.2452 1
0.6325 3
53,438 13
0.905355 3
65,0297 9
42,438 12
0.616 11
2.4576 g
6.067 10
037392 2

MIROC3MEDRES A2
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Chi-Squared

Statistic | Rank

14,539 3
MAL
1161 4
10,991 2
9.74325 1
MAA
10,443 2
45,496 9
208,98 11
83,175 10
17,571 &
32,169 g
23.743 7
Chi-Squared
Statistic | Rank
18,196 3
13.246 3
26.074 g
0.2242 2
17,349 4
S
21.241 7
35,138 10
21497 12
60,515 11
21.016 6
32.082 9
5.8233 1
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Frechet
Frechet (2P)
Gamma

Gamma [3P)

Gen. Extreme Walue

Gen. Pareto
Gumbel Max
Marmal
Pareto
Rayleigh
Rayleigh (2P
Wieibull
Weibull (3F)

Distribution

Frechet
Frechet (3P)
Gamma

Gamma (3P)

Gen. Extreme Walue

Gen. Pareto
Gumbel Max
Mormal
Pareto
Fayleigh
Fayleigh (2P
Weibull
waibull (3P)

Kolmogorov

Smirnov
Statistic | Rank
0.028335 9
002423 2
004242 3
002621 1
002473 3
0.04409 7
0.0z919 4
0.09142 11
0.2z2019 12
0.14395 12
0.06552 8
0.08778 10
0.04314 B

Anderson

Darling
Statistic | Rank
2.9929 2
0.28007 3
093229 B
0.2370s8 1
0.234882 2
60,492 13
0.43606 4
48772
55.186 1z
10,795 11
1.6489 7
5.1108 10
0.63663 5

MIROC3MEDRES B1

Kolmogorov

Smirnov
Statistic | Rank
0.07368 g
0.15908 12
0.05494 5
0.02239 3
0.0278 1
0.043216 4

0.028 2
0.10601 10
0.24482 12
0.15294 11
0.06999 7
0.09268 Q
0.05594 5]
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Anderson
Darling

Statistic | Rank
2.9553 7
23277 11
1.2914 4
0.41503
0.29076 1
56.811 12
0.52042 3
5.8091 2
64,173 13
12.092 10
1.7907 B
5.518 9
1.4057% 3

Chi-Squared

Statistic | Rank
14,713 g

4,2913 2
13.051 &
5.3681 4
4 247 2

M

3.9414 1
27.9556 10
3158.09 12
70.0z28 11
13.54 7
27.841 9
72541 3

Chi-Squared

Statistic | Rank

9.2039 &
M

9.0745 4

3.8228

—

11.69
M
6.2876 2

=

42,222 Q
34281 11
74,21 10
2.9554 3
30,824 2
01681 3



APPENDIX C: Distribution Fit of Extreme Precipitation
Indices

Table G-1: Heavy Precipitation Days for 2050s Summer

AOGCM Models/Scenarios Distribution Fit Parameters

c H a p Y
Historical Perturbed GEV 1l 014 248 7511 - - -
CGCM3T47 A1B GEV 1l 015 258 734 - - -
CGCM3T47 A2 GEV 1l 030 281 772 - - -
CGCM3T47 B1 GEV 1l 016 275 699 - - -
CGCM3T63 A1B Gamma 3P - - - 2478 052 -4.94
CGCM3T63 A2 GEV IlI 032 284 775 - - -
CGCM3T63 B1 GEV IlI -0.20 237 6.88 - - -
CSIROMK3.5 A2 Gamma - - - 11.68 0.92 11.68
CSIROMK3.5 B1 GEV Il 026 275 913 - - -
GISSAOM A1B Gamma 3P - - - 58.56 0.38 -13.51
GISSAOM B1 Log-Pearson 3 - - - 9.27 011 3.18
MIROC3HIRES A1B GEV Il 021 226 553 - - -
MIROC3HIRES B1 GEV Il 024 223 541 - - -
MIROC3MEDRES A1B Log-Pearson 3 - - - 8.72 0.14 297
MIROC3MEDRES A2 Gamma 3P - - - 36.94 0.39 7.32
MIROC3MEDRES B1 GEV 1l 023 246 575 - - -
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Table G-2: Heavy Precipitation Days for Winter

AOGCM Models/Scenarios Distribution Fit Parameters .
()

Historical Perturbed Normal - 2.64 6.68
CGCM3T47 A1B GEV Type Il 0.62 4.46 8.19
CGCM3T47 A2 GEV Type Il 059 458 7.85
CGCM3T47 B1 GEV Type Il 060 481 8.86
CGCM3T63 AlB GEV Type Il 061 435 7.27
CGCM3T63 A2 GEV Type Il 0.63 441 743
CGCM3T63 B1 GEV Type Il 0.64 426 6.36
CSIROMK3.5 A2 GEV Type Il 0.66 5.13 7.95
CSIROMK3.5 B1 GEV Type Il 0.66 5.09 8.38
GISSAOM A1B GEV Type Il 0.64 4.40 6.58
GISSAOM B1 GEV Type Il 0.67 458 6.59
MIROC3HIRES Al1B GEV Type Il 0.60 3.84 6.06
MIROC3HIRES B1 GEV Type Il 0.65 3.76 5.64
MIROC3MEDRES A1B GEV Type Il 058 391 571
MIROC3MEDRES A2 GEV Type Il 0.63 3.83 5.68
MIROC3MEDRES B1 GEV Type Il 0.62 3.63 5.64
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Table G-3: Very Wet Days for Summer

AOGCM Models/Scenarios Distribution Fit Parameters

o B k G U
Historical Perturbed GEV 1l 0.06 124 1.40
CGCM3T47 A1B Frechet 099 257 - - -
CGCM3T47 A2 Frechet 092 214 - - -
CGCM3T47 B1 Frechet 099 274 - - -
CGCM3T63 A1B Frechet 089 1.80 - - -
CGCM3T63 A2 Frechet 090 202 - - -
CGCM3T63 B1 Frechet 082 143 - - -
CSIROMK3.5 A2 Frechet 083 1.98 - - -
CSIROMK3.5 B1 Frechet 090 245 - - -
GISSAOM A1B Frechet 081 143 - - -
GISSAOM B1 Frechet 0.84 1.66 - - -
MIROC3HIRES A1B Gen. Pareto - - 0.63 352 -0.15
MIROC3HIRES B1 Gen. Pareto - - 0.68 341 -0.29
MIROC3MEDRES Al1B Gen. Pareto - - 0.64 3.33 -0.33
MIROC3MEDRES A2 Frechet 083 129 - - -
MIROC3MEDRES B1 Gen. Pateto - - 0.65 0.85 0.25
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Table G-4: Very Wet Days for Winter

AOGCM Models/Scenarios Distribution Fit Parameters

c V] a B
Historical Perturbed GEV I -0.070 152 259 - -
CGCM3T47 A1B Gumbel Max - 217 3.40 - -
CGCM3T47 A2 GEV I 0.10 2.04 334 - -
CGCM3T47 B1 Gamma - - - 261 181
CGCM3T63 A1B GEV 1l -0.14 158 261 - -
CGCM3T63 A2 GEV 1l 0.14 172 299 - -
CGCM3T63 B1 GEV IlI 0.15 153 255 - -
CSIROMK3.5 A2 Weibull - - - 2.57 6.09
CSIROMK3.5 B1 GEV IlI -0.16 198 398 - -
GISSAOM A1B GEV IlI -0.17 177 320 - -
GISSAOM B1 GEV 1l -0.22 182 332 - -
MIROC3HIRES A1B GEV Il -0.03 118 15 - -
MIROC3HIRES B1 Gumbel Max - 116 169 - -
MIROC3MEDRES A1B Gumbel Max - 115 168 - -
MIROC3MEDRES A2 GEV Il -0.20 146 230 - -
MIROC3MEDRES B1 GEV 1l -0.09 130 1.88 - -
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Table G-5: Maximum 5 Day Precipitation for Summer

AOGCM Models/Scenarios Distribution Fit Parameters "
(9

Historical Perturbed GEV I 0.026 23.30 54.71
CGCM3T47 A1B Gumbel Max - 23.14 55.98
CGCM3T47 A2 GEV I 0.11 2171 55.99
CGCM3T47 B1 GEV I 0.038 23.40 57.89
CGCM3T63 A1B GEV I 0.036 21.57 54.43
CGCM3T63 A2 GEV I 0.07 2455 5771
CGCM3T63 B1 GEV I 0.061 21.66 57.58
CSIROMK3.5 A2 GEV I 0.093 30.01 75.01
CSIROMK3.5 B1 GEV I 0.097 27.75 70.83
GISSAOM A1B GEV II 0.20 21.75 58.17
GISSAOM B1 GEV II 0.044 24.6 60.57
MIROC3HIRES A1B GEV II 0.10 16.78 41.65
MIROC3HIRES B1 GEV II 0.09 19.07 42.95
MIROC3MEDRES Al1B GEV I 0.02 1877 4361
MIROC3MEDRES A2 GEV I 0.061 20.83 49.79
MIROC3MEDRES B1 GEV I 0.09 173 4512
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Table G-6: Maximum 5 Day Precipitation for Winter

AOGCM Models/Scenarios Distribution Fit Parameters

c H a p Y
Historical Perturbed GEV I 0.07 1585 4245 - - -
CGCM3T47 A1B GEV I 0.07 1893 54.03 - - -
CGCM3T47 A2 GEV I 0.08 18.64 50.48 - - -
CGCM3T47 B1 GEV I 0.09 18.14 5438 - - -
CGCM3T63 A1B GEV I 0.04 17.46 46.26 - - -
CGCM3T63 A2 GEV I 0.05 1858 48.35 - - -
CGCM3T63 B1 GEV I 0.05 15.65 43.05 - - -
CSIROMK3.5 A2 GEVII 0.098 21.17 50.56 - - -
CSIROMK3.5 B1 GEV I 0.13 1857 5201 - - -
GISSAOM A1B GEV I 0.07 1524 4170 - - -
GISSAOM B1 Frechet 3P - - - 6.25 97.63 -54.53
MIROC3HIRES A1B Gamma 3P - - - 3.01 1328 13.23
MIROC3HIRES B1 GEV II 0.1 13.83 38.85 - - -
MIROC3MEDRES A1B Gamma 3P - - - 227 1345 17.68
MIROC3MEDRES A2 Gamma 3P - - - 3.26 10.843 14.15
MIROC3MEDRES B1 Gumbel Max - 14.12 38.78 - - -
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