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Abstract
This thesis focuses on the problem of increasing reading motivation with machine learning

(ML). The act of reading is central to modern human life, and there is much to be gained by
improving the reading experience. For example, the internal reading motivation of students,
especially their interest and enjoyment in reading, are important factors in their academic suc-
cess.

There are many topics in natural language processing (NLP) which can be applied to im-
proving the reading experience in terms of readability, comprehension, reading speed, mo-
tivation, etc. Such topics include personalized recommendation, headline optimization, text
simplification, and many others. However, to the best of our knowledge, this is the first work to
explicitly address the broad and meaningful impact that NLP and ML can have on the reading
experience.

In particular, the aim of this thesis is to explore new approaches to supporting internal
reading motivation, which is influenced by readability, situational interest, and personal in-
terest. This is performed by identifying new or existing NLP tasks which can address reader
motivation, designing novel machine learning approaches to perform these tasks, and evaluat-
ing and examining these approaches to determine what they can teach us about the factors of
reader motivation.

In executing this research, we make use of concepts from NLP such as textual coherence,
interestingness, and summarization. We additionally use techniques from ML including super-
vised and self-supervised learning, deep neural networks, and sentence embeddings.

This thesis, presented in an integrated-article format, contains three core contributions
among its three articles. In the first article, we propose a flexible and insightful approach to
coherence estimation. This approach uses a new sentence embedding which reflects predicted
position distributions. Second, we introduce the new task of pull quote selection, examining a
spectrum of approaches in depth. This article identifies several concrete heuristics for finding
interesting sentences, both expected and unexpected. Third, we introduce a new interactive
summarization task called HARE (Hone as You Read), which is especially suitable for mobile
devices. Quantitative and qualitative analysis support the practicality and potential usefulness
of this new type of summarization.

Keywords: Natural language processing, machine learning, internal motivation, reading,
coherence, sentence embedding, attention, situational interest, pull quotes, interactive summa-
rization
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Lay Summary
Reading is an increasingly important human skill. The interest and enjoyment students

have in reading for example is an important factor in their academic success. This thesis is
concerned with how to apply techniques from machine learning (ML) and natural language
processing (NLP) in order to improve how readable, attention grabbing, or personally relevant
reading material is, especially in a digital setting. ML allows us to automatically identify
patterns and trends in large datasets, and NLP is concerned with the application of computer
science to naturally occurring language, such as news articles.

In this thesis, we consider three NLP problems which are related to reader enjoyment and
interest, and we propose new solutions to those problems. The first problem we consider is
related to determining the readability of a text based on how well its concepts are organized
(a property known as coherence). The solution we propose works by learning to look at each
sentence out of context and predicting where it should belong. Second, we propose a new
problem called pull quote (PQ) selection. PQs are often found in newspapers or online news
articles, and are sentences or quotations from the article placed in an eye-catching graphic.
They are intended to grab the reader’s attention and make them interested in reading more of
the article. We propose several methods for learning to choose good PQs from a text, and
learn about unexpected properties of PQs in the process. Third, we introduce a new type of
reading assistance tool suitable for mobile devices. This tool is based on the NLP problem
of interactive personalized summarization, and is intended to use low-effort feedback during
reading to understand reader preferences and provide them with personalized summaries. We
propose several approaches capable of predicting what parts of an article they will be interested
in reading and demonstrate the practicality of this type of tool.

Aside from topics in NLP, research completed during the course of this PhD (but not in-
cluded in thesis) touched on abstract visual reasoning problems and lifelong machine learning
(learning many tasks in sequence, especially without forgetting earlier tasks).
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Chapter 1

Introduction

1.1 Motivation
The ultimate goal of this thesis is to research novel computational approaches for improving
the reading experience. This is an experience that humans have now been engaged in for over
5000 years (since 3200 BC). The first readers, the Sumerians of Mesopotamia (present-day
Iraq), used a writing system known as cuneiform, which consisted of simple shapes impressed
on clay tablets [31, 96]. As far as we know, the original uses of written language were utilitar-
ian (e.g., recording financial transactions). However, by about 2500 BC, reading and writing
had developed to be capable of capturing and conveying almost any thought in the Sumerian
language [31, 96].

The presence of writing and the act of reading is now ubiquitous in modern life, taking on
all forms and contexts. We read for work, enjoyment, education, and ritual. We read road signs
and receipts. We read on paper, plastic, smartphones and smartwatches. We read everywhere
for all reasons. Reading is so central to our lives that literacy literally changes the organization
of our brains [20].

1.1.1 Importance of Improving the Reading Experience
As a function of its ubiquity, there is much to be gained by improving the reading experience.
Consider two application areas:

• Early education. Developing the reading comprehension skills of students is an impor-
tant problem in early education [69, 101, 53]. Several motivations for development in
this area were discussed by Catherine Snow almost two decades ago [101], with many
of the reasons still being applicable today. Two reasons are unacceptable gaps in read-
ing performance between children of different demographics and high school graduates
facing an increasing need for a high degree of literacy, but their education not keeping
pace with this increase. If the reading experience can be improved to increase student
motivation for example, then an increase of comprehension skills is expected to follow
[69]. In this way, by making reading more enticing, enjoyable, or interesting for students,
they, and the encompassing society, benefit in both the short and long term via a more
educated population.

1



2 Chapter 1. Introduction

• News outlets. Readership and revenue from printed newspapers has been steadily de-
clining in recent decades [46]. Increasingly, online news media sites are a primary source
of news [11]. In this ever more competitive online environment, there are a multitude
of ways a news site can improve traffic. While simply increasing site loading speed is
an effective and early discovered method [46], there are several proven methods which
rely on improving the reading experience. This includes improving the quality of the
writing (especially by increasing the quality of the lede at the very beginning of a news
article), producing more condensed, less “bloated” content, personalizing the content
recommended to users, optimizing headlines, and adding images and videos to accom-
pany the text [46]. When it comes to optimizing online news content, care must be taken.
For example, by optimizing headlines solely to maximize clicks, the result is so-called
“clickbait”, which can misrepresent the article and over time damage the newspaper’s
brand and reader trust [12, 46].

1.1.2 How the Reading Experience Can Be Improved

The reading experience is highly multifaceted. In studying how to improve the reading expe-
rience, there are many interconnected and overlapping directions one could consider. These
include reading speed [10], quality of comprehension [69], text readability [25], internal moti-
vation factors such as enjoyment [21] and interestingness [32], and factors of extrinsic motiva-
tion such as deadlines, tests, and social aspects [108]. For each of these directions, Figure 1.1
suggests relevant areas of natural language processing (NLP).

The work in this thesis focuses on the two internal motivation factors of enjoyment and
interest in particular. Several factors, including the following, have been found to influence
enjoyment and interest:

• Reading difficulty. Ease of comprehension, affected by such factors as vocabulary, or-
ganization, coherence, and grammar are important in supporting reader interest [97, 25].
The readability of social media posts has also been found to influence engagement, with
simpler texts having more likes, comments, and shares [84].

• Situational interest. Interest in a text can be broken down into situational interest and
personal (or “topic”) interest [32]. Situational interest is short-lived and depends on the
reading context and presentation of the text. It tends to be a result of novelty, curiosity,
and information saliency. A particular text tends to evoke a similar situational interest
level across individuals.

• Personal interest. This type of interest is generally stable over time and unique to in-
dividuals, influenced by their personal experiences and knowledge, and exists prior to
encountering a particular text. Consequently, ensuring personal relevance of reading
materials has been found to support student engagement and motivation [2, 41].

Next, we will outline how the goals of this thesis are aligned with these three aspects of
internal motivation.



1.1. Motivation 3

Aspect of the reading 
experience NLP Tasks Task description

Reading speed

Comprehension

Readability

Internal motivation 
(e.g. interest and 

enjoyment)

External motivation 
(e.g. tests)

Text simplification

Question generation

Question answering

Coherence modelling

Personalized 
recommendation

Automated essay scoring

Text-to-speech

Automated 
summarization

Headline optimization

Machine translation

Pull quote selection

Simplifying the grammar and 
words of a text to reach a wider 
audience.

Automatically generating 
questions based on knowledge in 
e.g. an article.

Automatically answering natural 
language questions, sometimes 
based on knowledge in an article.

Assessing or improving an 
article’s coherence, or “flow”, to 
allow for smoother reading.

Suggesting reading material 
personalized for users.

Scoring student essays based on 
e.g. concept coverage and 
coherence.

Converting text into speech, 
which can allow material to be 
consumed by a wider audience.

Distilling a document into the 
important parts. Personalized 
summarization also exists.

Creating article headlines which 
best capture attention and 
represent the article.

Automatically translating a 
document from a possibly 
unfamiliar language into another.

Identifying spans of text that are 
good at catching reader attention.

Figure 1.1: Several aspects of the reading experience, as well as the relevance of many NLP
tasks. The NLP tasks that may be used to influence a given aspect of reading are indicated
with links. The three NLP tasks which are the focus of this thesis are highlighted in blue: pull
quote selection (a new task), automated summarization (we propose a particular new type of
personalized summarization), and coherence modelling.



4 Chapter 1. Introduction

1.2 Research Aim and Objectives
Aim The aim of this thesis is to investigate novel approaches to supporting internal reading
motivation using machine learning. In particular, we will aim to apply concepts from machine
learning and the overlapping field of natural language processing (NLP) to improving text
readability, situational interestingness, and personal interestingness.

Objectives In order to achieve the aim, we will:

1. identify existing or new tasks in NLP whose solutions can be used to address reader
motivation;

2. devise novel machine learning approaches to these tasks;

3. and evaluate and examine these approaches to determine what they can teach us about
the various factors of reader motivation.

To lend concreteness to these objectives, the particular tasks we consider are 1) coherence
modelling (related to readability), 2) a new task called pull quote (PQ) selection (related to
situational interest), and 3) a new task called Hone as You Read (HARE) (related to personal
interest).

1.3 Contributions
The research contained in this thesis will focus on the three described factors affecting internal
motivation of readers: coherence, situational interestingness, and personal interestingness. We
show how the contributions in this thesis relate to these three factors in Figure 1.2.

Reading 
motivation

Situational 
interestingness

Readability

Personal 
interestingness

Coherence

Pull quotes

Personalized 
summarization

Chapter 3
Paper: Learning Sentence Embeddings for 

Coherence Modelling and Beyond
Proposes new approach to coherence 
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Chapter 4
Paper: Catching Attention with Automatic Pull 

Quote Selection
Introduces pull quote selection task and 

benchmarks approaches

Chapter 5
Paper: Hone as You Read: A Practical Type of 

Interactive Summarization
Introduces HARE task and benchmarks 

approaches

increases 
with...

which is 
influenced by...

which is a core 
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which is 
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Figure 1.2: Contributions in this work.

The contributions of this thesis can be classified into three types: the proposal of new tasks,
the development of new algorithms and techniques, and empirical results.

In terms of new tasks, we expand the reach of NLP into the reading experience by:
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• proposing the new task of automatic PQ selection and constructing a dataset for training
and evaluation of models for this task (Chapter 4);

• and we define the novel HARE task, describing a suitable evaluation technique to ac-
company it (Chapter 5).

In terms of algorithmic contributions,

• we propose a novel self-supervised approach to learn sentence embeddings, which we
call predicted position distributions (PPDs) (Chapter 3);

• we describe how PPDs can be applied to established coherence tasks using simple algo-
rithms amenable to visual approximation (Chapter 3);

• we describe several motivated approaches for the new task of PQ selection, including
a mixture-of-experts approach to combine sentence and document embeddings (Chap-
ter 4);

• and we describe several motivated approaches for HARE, ranging from simple heuristics
to adapted generic summarizers, to interest-learning approaches (Chapter 5).

Finally, in terms of empirical contributions,

• we demonstrate that PPDs are competitive at solving text coherence tasks while quickly
providing access to further insights into organization of texts (Chapter 3);

• we inspect the performance of our PQ-selection approaches to gain a deeper understand-
ing of PQs, their relation to other tasks, and what engages readers (Chapter 4);

• and we evaluate our HARE approaches to gain a deeper understanding of the task (Chap-
ter 5).

1.4 Thesis Format

This thesis is presented in the integrated-article format. In Chapter 2 we introduce key concepts
needed to understand our objectives and their solutions. This chapter covers topics in NLP as
well as machine learning. Chapters 3, 4, and 5 are integrated articles from relevant projects
completed during the duration of the author’s PhD. They represent the three prongs of this the-
sis. Each of these chapters first provides the publication status of the article and places it in the
context of this thesis. Each article, by nature of being a self-contained paper, contains a discus-
sion of more domain-specific motivations, a small literature review, and detailed descriptions
of the novel work and experimental results. Chapter 6 concludes the thesis and discusses many
possible future directions.
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1.5 Publications and Preprints
The work in this thesis is directly related to the following three articles, listed in the order
of publication (and expected publication, in the case of the third article which is still under
review):

1. Tanner Bohn, Yining Hu, Jinhang Zhang, and Charles Ling. Learning sentence em-
beddings for coherence modelling and beyond. In Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages
151–160, Varna, Bulgaria, September 2019. INCOMA Ltd.

2. Tanner Bohn and Charles Ling. Catching attention with automatic pull quote selec-
tion. In Proceedings of the 28th International Conference on Computational Linguistics,
pages 62–76, Barcelona, Spain (Online), December 2020. International Committee on
Computational Linguistics.

3. Tanner Bohn and Charles Ling. Hone as you read: A practical type of interactive sum-
marization. Submitted to the Conference of the Association for Computational Linguis-
tics, 2021.

While not directly related, the following articles have also been completed over the course
of the PhD:

4. Tanner Bohn, Yining Hu, and Charles X. Ling. Few-shot abstract visual reasoning with
spectral features. arXiv preprint arXiv:1910.01833, 2019.

5. Xinyu Yun, Tanner Bohn, & Charles X. Ling. (2020, May). A Deeper Look at Bongard
Problems. In Canadian Conference on Artificial Intelligence (pp. 528-539). Springer,
Cham.

6. Xinyu Yun, Tanner Bohn, and Charles X. Ling. Tackling Non-forgetting and Forward
Transfer with a Unified Lifelong Learning Approach. Appeared at the 4th Lifelong
Learning Workshop at ICML, 2020.

7. Charles X. Ling and Tanner Bohn. A Conceptual Framework for Lifelong Learning.
arXiv preprint arXiv:1911.09704, 2020.



Chapter 2

Background

In this chapter we will briefly cover the concepts most important to understanding the contents
of this thesis. In the first three sections, we will introduce concepts from NLP, namely tex-
tual coherence, situational interestingness, and summarization. In the next three sections, we
will introduce basic machine learning concepts used throughout the work in this thesis, neural
networks, and sentence embeddings.

2.1 Coherence
Coherence is an organizational property of text, where better-organized texts are more co-
herent, making them easier to read and comprehend [58, 86]. As coherence is a property of
readability, coherence modelling has found many applications. Examples include refinement
of multi-document summaries [3], automatic scoring of essay quality [30], the detection of
schizophrenia (through analyzing coherence of speech) [27], and machine translation [56].
Within a given text, the coherence is often considered at occurring at two scales:

Local coherence This refers to the relatedness of text at the sentence-to-sentence transition
level. For example, the sentence pair “It is pleasant outside. Sally will go for a walk.” is
coherent because the fact that it is pleasant outside is easily understood as the reason that Sally
is going for a walk. However, if the pair was “It is pleasant outside. Sally has a brother.”, then
this would not be coherent. The evaluation of local coherence models can be performed with
the discrimination of documents with locally-permuted sentences [77]. That is, the ability of
the model to distinguish between two versions of the same document: one where all sentences
are in the correct order, and one where only a few contiguous sentences are shuffled. The task
of producing a coherent ordering of a set of sentences can also be considered to evaluate local
coherence models [65]. A models can produce such a global ordering by maximizing local
coherence throughout the document.

Global coherence This refers to the higher-order structuring of the text. For example, a co-
herent news article will often begin with a group of sentences describing a central event. This
is naturally followed by reporting the cause of the event, then the effect, and then background
information [117]. If these groups are not well-separated or occur out of order, the document

7
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may lack global coherence, even if the sentences locally occur in a mostly-coherent fashion.
The evaluation of global coherence models can be performed with the discrimination of doc-
uments with globally-permuted sentences [4, 77]. That is, distinguishing between the original
document and one where all sentences are shuffled.

In this thesis, coherence is most relevant to Chapter 3, where we describe a new method for
estimating coherence, sensitive to both local and global coherence. In the associated article,
we also further discuss previous approaches to these tasks.

2.2 Situational Interest
While coherence may influence the readability of a text and the internal motivation of readers
while they read, it is situational interest which often incites the motivation for them to begin
reading1.

Situational interest appears in the form of spontaneous curiosity and an attraction to novelty
or salient information. This type of interest (in contrast to topic interest which features in
Section 2.3) is short-lived and depends on the context [32]. For an example of such context-
dependent interest, consider a student tasked with learning about the Battle of Vimy Ridge; they
may have no pre-existing interest in the topic, but in the context of completing their assignment,
any article on the topic may catch their attention. Understanding and predicting what we find
interesting, attention-grabbing, and appealing has been studied for a wide variety of content
types and domains such as music [62], images and video [23, 89], web-page aesthetics [91], as
well as online news article content [57, 19].

The situational interest of documents, particularly online content, can be increased through
many means. An online news outlet, wishing to increase the attractiveness of their articles,
may including salient images or videos for example. Emotionally significant visual media in
particular has been shown to capture attention [98], and the task of automatically predicting
interestingness of images and video scenes has also been studied [23, 89]. To capitalize on
novelty, stories regarding recent events should be published, and to further ensure contextual
interest, stories originating from near the target audience should be preferred [26] (e.g., an
article about election results in a target country are generally most interesting to residents of
that country around election time).

There also exist specific textual components of articles where the ability to spark situational
interest is a defining characteristic:

Headlines Perhaps the most well-known component is the headline. Having a successful
headline is crucial in attracting attention, and significant effort goes towards their optimiza-
tion. This optimization increasingly occurs in an analytical and automated fashion [43]. One
common way of measuring the success of an online headline is the clickthrough rate—the frac-
tion of visitors who click on the headline after being exposed to it. The number of likes and
shares on social media are also sometimes used [76]. A particular type of headline, known as
clickbait may be employed to maximize the clickthrough rate of articles. Clickbait may be

1Muddying the distinct roles of coherence and situation interest in supporting internal motivation however,
coherence may be a strong contributor to situational interest [32].
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intentionally misleading to draw in visitors, even though reader expectations end up not being
met, or they may employ a technique called “information gapping”, where key information is
left out of the title, increasing curiosity [87, 43]. An overview of the types of techniques used
by clickbait is provided by Yimin Chen et al. [13].

Pull quote Another textual component of engaging articles is the pull quote (PQ). PQs are
graphical elements of articles with thought provoking spans of text pulled from an article by a
writer or copy editor and presented on the page in a more salient manner [33], such as in Fig-
ure 2.1. Following the 15 year period between 1965 and 1980 where many newspapers experi-
mented with their design (having previously been graphically similar) [107], some newspapers
adopted a more modern design. Aspects of this newer design, preferred by readers, includes a
more horizontal or modular layout, the six-column format, additional whitespace around heads,
fewer stories, larger photographs, more colour, and more PQs [103, 109, 15]. PQs serve many
purposes. They provide temptation (with unusual or intriguing phrases, they make strong en-
trypoints for a browsing reader), emphasis (by reinforcing particular aspects of the article), and
improve overall visual balance and excitement [104, 49]. PQ frequency in reading material
is also significantly related to information recall and student ratings of enjoyment, readability,
and attractiveness [109, 110].

Figure 2.1: An example of a PQ from https://theintercept.com/2019/12/05/

us-visa-social-media-screening/.

In Chapter 4, we discuss machine learning approaches to identifying successful headlines or
clickbait, as well as novel approaches for PQ selection. However, there are additional textual
components of news articles with similar purposes A strapline is a second headline placed
beneath the main headline used to highlight another point or amplify the main headline [95].
A subhead may refer to the same thing (i.e., a sub-headline), but can also refer to a one or
two word headline placed in bold at the beginning of paragraphs [95]. A kicker may refer to
several components, including the first few words of a caption to grab a reader’s attention [18].
The lede (also known as lead or lead paragraph) often refers to the first sentence or opening
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paragraph of an article [18, 68]. A good lede must not only grab the reader’s attention (if the
previously discussed mechanisms have not already done so, or build upon the interest they have
generated), but supply the primary details of the article, i.e., the who, what, where, when, why,
and how. By concisely providing the main details, a lede also functions as a summary of the
article. The act of summarization, to varying degrees, shifts the priority away from situational
interest and towards topic interest, as discussed in the next subsection.

2.3 Document Summarization

Document summarization is an important problem in NLP and appears, in one form or another,
in all three articles forming the body of this thesis. At the highest level, summarization is the
act of distilling something into a more compact form, while losing minimal information. This
concept can be applied to many modalities and types of texts, including images [99, 112],
videos [67], conversations [36], and computer event logs [40].

In the context of this thesis, summarization is important as a result of its ability to increase
the personal interestingness of a text: of the information in a document, only a small frac-
tion of it may be interesting to a given person. Summarization takes this diluted source of
interestingness and distills it. Depending on the type of summarization employed, personal in-
terestingness can be improved to varying degrees. The three main types of text summarization
tasks of interest are described next.

Generic Summarization Generic document summarization (the most common type of sum-
marization, often referred to simply as summarization) aims to capture and convey the main
topics and key information discussed in a body of text in a generic way (the same for all readers)
[81]. All types of summarization, including those described later, can be categorized as either
extractive or abstractive. Extractive summarization aims to capture the most important infor-
mation by extracting sentences. In contrast, abstractive summarization generates new text for
the summary [82], and for this reason is often considered the more difficult type. While generic
summarization is concerned with what is important or representative in a document, this over-
laps with what is interesting when the text is relevant to the user. Approaches to generic
summarization have roughly evolved from unsupervised (see Section 2.4 for descriptions of
unsupervised and supervised learning) extractive heuristic-based methods [66, 70, 28, 83, 44],
to supervised and often abstractive deep-learning approaches [80, 79, 78, 116]. In Chapter 3,
as a side-effect of producing a novel coherence-modelling approach, we propose an approach
to generic summarization which effectively works by identifying lede-like sentences.

Query-based Summarization For a given article, not every reader will be interested in the
same parts. Query-based summarization (QS) aims to produce relevant summaries for person-
alized interests by generating a summary conditioned on a user-provided query [17, 82, 81].
For example, when applying QS to an article about cats with the query ”Why do cats meow?”,
the summarizer will try to extract (or abstract) the information in the article relevant to why
cats meow. Two flavors of query-based summaries are informative summaries, which pro-
vide the reader with the relevant answers, and indicative summaries, which provide the reader
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with a summary of what information is present, not necessarily the detailed information itself.
Difficulties and approaches to QS are discussed further in Chapter 5.

Interactive Personalized Summarization While query-based summarization requires users
to explicitly provide a query, interactive personalized summarization (IPS) considers the task
where user preferences are learned from non-textual feedback [114]. This feedback can take
many forms, both in terms of how users provide feedback (e.g., selecting, swiping, rating)
and what they provide feedback on. For example, the APRIL IPS system [35] allows users
to indicate their preference given pairs of candidate summaries. If the user repeatedly selects
summaries mentioning a particular subset of topics, we can guess that a good personalized
summary is one that focuses on those topics. In Chapter 5 we discuss IPS further, and propose
a modified version of the IPS task, which we call HARE. This modified task aims to further
reduce the effort and time required by users to produce a personalized summary by learning
their preferences and summarizing the document while they read it.

These three types of summarization—generic, QS, and IPS—can be applied to single-
document or multi-document settings. In this thesis, we are particularly interested in working
with single documents at a time.

In the context of this thesis, relevance is the most important criterion for all types of sum-
maries we consider. However, there are several other properties a good summary should pos-
sess:

• Coherence: As discussed in Section 2.2, coherence refers to how well the text is orga-
nized and structured. As extractive summaries work by selecting possibly non-contiguous
sentences, it is possible that a resulting summary would not read very smoothly, with
sentences feeling disconnected.

• Factual correctness: Also known as consistency, this property refers to the factual align-
ment between a summary and the source text [29]. A summary should only condense or
abstract the information in a text, not fundamentally change it. For extractive summa-
rizers, this is easy to achieve since no text is modified. For abstractive summarizers that
generate new text, maintaining factual correctness has proven to be a challenge [63].

• Fluency: This property refers to the quality of individual sentences (grammar, spelling,
capitalization, etc.) [29]. A good summarizer should of course produce text that is easy
to read.

• Non-redundancy: Redundancy in a summary refers to the amount of information that is
repeated [85]. This overlapping information can occur in cases of either exact textual
overlap (which is more likely when performing multi-document summarization), or in
overlap of concepts or details. In order to maximize the informativeness of a summary
while minimizing its length, it should have minimal redundancy.

In the next section, we begin introducing concepts of machine learning, which can be used
to automatically learn how to perform tasks such as coherence modelling, identifying interest-
ing sentences, and summarization.
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2.4 Fundamental Machine Learning Concepts
In this section, we provide a focused overview of machine learning, a field concerned with
constructing computer programs that automatically learn from experience [75]. In particular,
we will cover the concepts most relevant to understanding the integrated articles of this the-
sis, assuming a cursory knowledge of the field. First we will discuss two important learning
paradigms: unsupervised and supervised learning. Second, we consider the central challenges
of machine learning, and the various techniques that exist to overcome these challenges.

2.4.1 Learning Paradigms
Machine learning algorithms can be classified based on the types of information they learn
from. The two types of information here refer to the feature space and the label space. When
learning only from the feature space, algorithms are considered to be performing unsupervised
learning. The aim of such algorithms is to uncover useful properties of the data. For example,
clustering algorithms, such as K-Means, aim to identify naturally occurring structures within
the data [113]. When clustering images of houses for example, the algorithm may end up
grouping together images based on housing size or colour, time of day, and amount of greenery
present. In Chapter 5, we apply clustering to embeddings (see Section 2.6) of sentences in a
document to identify the general concepts present. For example, when clustering sentences in
an article about cooking, we might identify core concepts related to the ingredients to prepare,
health information, or the history of the recipe.

Supervised learning algorithms, in contrast, learn from labelled data. That is, a dataset
that contains samples from the feature space (often called “inputs”) with corresponding labels
(often called “outputs”). The goal of these algorithms is to find a function capable of predicting
the label of a sample given a point in the feature space. In other words, learning an input–output
mapping. Continuing the housing example, if we are wishing to construct a computer program
capable of taking a picture of a house and predicting its price, then the label space would consist
of possible prices (and each image constitutes a point in the feature space). If the possible
prices lie along a continuum, it would be considered a regression problem, and if the labels
instead come from a discrete set, it is a classification problem. Reviews of common machine
learning models for supervised learning, including logistic regression, decision trees, k-nearest
neighbors, and neural networks can be found in [75] by Tom Mitchell or [6] by Christopher
Bishop. In Section 2.5 we will further discuss neural networks in particular. In our work,
the clearest instances of supervised learning occur in Chapter 4, where we train classifiers to
identify interesting sentences in a document.

Lying between unsupervised and supervised learning are semi-supervised learning and
self-supervised learning. In semi-supervised learning, algorithms have access to both labelled
and unlabelled data, with the unlabelled data generally being more voluminous [119]. The
motivation for semi-supervised learning comes from the fact that unlabelled data is generally
cheaper to obtain than labelled data, as labelling often requires human input. An example
of an intuitive semi-supervised learning algorithm is label-propagation [120]. This algorithm
is able to assign labels to unlabelled points in the feature space. The assigned label for a
point is determined by the labels (either ground-truth or assigned) of any points nearby in
the feature space. Self-supervised learning algorithms (which are often the same types of
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algorithms used by supervised learning) require only unlabelled data, and rely on surrogate
tasks where the goal is to predict some properties of the feature space based on the remaining
properties. Applications of self-supervised learning are commonly found in computer vision
[51] and NLP [64], domains where there is often a whole lot of unlabelled data available,
and the cost of labelling would be prohibitively high. From computer vision, one such task is
inpainting, where some portion of an image is erased, and a model must learn to reconstruct
the missing pixels given the remaining pixels. From NLP, one task is next-sentence prediction,
whereby a model must learn to predict the next sentence given one or more preceding ones.
This technique has been used to learn sentence embeddings useful for a large variety of tasks
[22]. In this thesis, self-supervised learning appears in Chapter 3, where we propose a new
self-supervision task: predicting the location of a sentence in a document given only semantic
information.

2.4.2 Central Challenges of Machine Learning

An ever-present thought in the minds of machine learning practitioners is the generalization
ability of fitted models. This is a measure of how well a model applies to unseen samples. In the
case of supervised learning, generalization implies that the model is able to accurately predict
the output for new inputs. For unsupervised learning, generalization implies that new samples
are consistent with the identified patterns or structures. When the model over-simplifies the
input-output relationship or underlying data distribution, it is said to underfit. On the other
hand, when the model is overly sensitive to small changes or noise in the dataset, it is said to
overfit. Figure 2.2 demonstrates simple examples of overfitting and underfitting in supervised
and unsupervised scenarios.
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Figure 2.2: Examples of underfitting, optimal fitting, and overfitting in regression (supervised
learning) and clustering (unsupervised learning). We consider a clustering model to overfit
when it identifies structures in the data, such as additional “groups”, that are likely the result
of noise.
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Traditionally, the problem of balancing underfitting and overfitting is understood to be a
result of the bias–variance trade-off. This trade-off says that the more bias a model has (i.e.,
the more strongly the model assumes the data follows a predetermined pattern or family of
patterns), the less variance it exhibits (i.e., sensitivity of the model predictions or learned struc-
tures to the particular samples in the dataset). By controlling the bias and variance of a model,
via the representational capacity of the model, a “sweet spot” can be found between under-
fitting and overfitting [5], as reflected in the middle column of Figure 2.2. Representational
capacity can be considered as the maximum complexity of patterns the model is able to fit.

Recently, the traditional understanding of the bias–variance trade-off and the connection
between representational capacity and generalization ability has been under question. New
machine learning models, large neural networks in particular, have been observed to follow
a “double-descent” curve [5], whereby increasing model capacity arbitrarily beyond a certain
threshold actually continues to improve generalization. For an in-depth treatment on this effect,
see [5] by Mikhail Belkin et al.

There exist many techniques to tune model complexity, many of which are motivated by
the traditional understanding of the bias–variance trade-off. With decision trees for example,
we can increase the maximum complexity of the model through increasing the maximum tree
depth. When training a logistic regression model, complexity can be tuned through setting
the weight regularization strength, which penalizes the model having large weights. Weight
regularization is discussed further in Section 2.5.2. Of course, by adding yet another hyperpa-
rameter such as maximum depth or regularization strength to a model, we could increase the
overall variance if we are not careful. However, in supervised learning, we can select hyper-
parameters while avoiding overfitting through the use of validation sets. Rather than training
many models with the various hyperparameter choices and evaluating them each on the testing
data (which effectively tunes the hyperparameters to the test data), we can evaluate the models
on an additional set of data specifically for hyperparameter validation. This allows our final
evaluation of the best model on the test set to better reflect its true generalizability. Typically,
the validation set is constructed with 20% of the training data, while the other 80% continues
to be used only for training [38].

In the next section, we will provide background on neural networks, including hyperpa-
rameters used to mitigate generalization error.

2.5 Artificial Neural Networks
In this section, we provide an overview of artificial neural networks (which we refer to simply
as neural networks). We start with the basic mathematics and core concepts, and then cover
regularization techniques relevant to this thesis, and finally introduce several types of neural
networks of particular interest.

2.5.1 Basics
To introduce neural networks, we can start from the perceptron, researched by Rosenblatt in
the 1950s and 1960s [92, 93]. The perceptron is a primitive version of the artificial neuron
which is the fundamental unit of a neural network.
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Figure 2.3: A perceptron, showing the input (x0, x1, x2, ...), the weights (w0,w1,w2, ...), and the
bias, b.

The perceptron Loosely modelled after biological neurons, perceptrons are binary classi-
fiers that can take in signals from several sources (analogous to dendrites in biological neu-
rons), combine this information, and produce an output (similar to axons). This structure is
shown in Figure 2.3, where the perceptron has 3 real-valued inputs: x0, x1, x2. Each input, xi,
is also associated with a weight, wi, which is the scaling factor of the given input (and can
sometimes be interpreted as importance). To compute the output of the perceptron, we take the
weighted sum of its inputs, plus a bias: w0x0 + w1x1 + w2x2 + b, which can be more compactly
expressed as w · x + b. If this weighted sum is larger than some threshold then the output is
1, otherwise it is 0. By modulating the bias, the sum can be biased towards either side of the
threshold. This thresholding operation applied to the weighted sum is termed the activation
function.

Modern artificial neurons Rather than using a simple thresholding operation, modern neu-
rons use more expressive activation functions, such as:

• sigmoid: This function transforms values to lie between 0 and 1. This is useful for the
output of a binary classifier: when the output is close to 0, it indicates the input is from
class 0, and if it is close to 1, the input is from class 1. It is computed with the following
equation:

σ(x) =
1

1 + e−x (2.1)

• tanh: This function transforms values to lie between -1 and 1. It is computed with the
following equation:

tanh(x) =
2

1 + e−2x − 1 (2.2)

• ReLU: This piece-wise linear activation function simply returns 0 when the value is
negative, and x where it is positive: ReLU(x) = max(0, x). Despite its simplicity, it
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brings several benefits over sigmoid and hyperbolic tangent activations. This includes
increased biological plausibility, representation sparsity, and faster training of deep neu-
ral networks due to removing the vanishing gradient problem suffered by the previous
activations [37].

• softmax: This function is frequently used as the output activation function when per-
forming multi-class classification, as it returns a vector whose values sum to 1, allowing
them to be interpreted as class probabilities. For each value, xi of the vector, x, it is
computed with the following equation:

softmax(xi) =
exp(xi)∑
j exp(x j)

(2.3)

output layer
hidden layers

input layer

W0 W1 W2

Figure 2.4: Multi-layer neural network (biases not shown).

Layers of neurons Modern neural networks consist of many neurons, often arranged in lay-
ers. Neurons used to input data to the network are are part of the input layer. Those neurons
which produce the final output are in the output layer. Those neurons (if any) which lie between
the input and output are in hidden layers. The number of neurons in each layer is referred to as
the width, and the total number of layer is the depth. A small example of a multi-layer neural
network is shown in Figure 2.4. The matrix Wi corresponding to the weights of the neurons
in layer i (one row per neuron). The full set of weights which parameterize a neural network
is often represented by θ, and the function which represents the network is hθ. If we use the
activation function f and ignore the biases for simplicity, the output of the neural network in
the figure for a given input X is computed with:

hθ(X) = f (W2 f (W1 f (W0X))) (2.4)

Optimization For neural networks to be useful at solving a classification or regression task,
they should form a close approximation of the true function mapping the input features, X, to
the labels, y. To measure how far away the network is from providing a good approximation
of this function, we can use loss functions. Given a neural network, hθ, loss functions take the
predictions of a network, y′ = hθ(X), and compare these predictions to the true labels. Often
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used for regression tasks, the mean squared error loss simply computes the square of the
difference between the true and predicted values, averaged over the n samples:

MSE(y, y′) =
1
n

n∑
i=1

(yi − y′i)
2 (2.5)

For classification tasks, cross entropy loss is often used, which provides a measure of the
distance between two probability distributions. If we consider y′i to be the predicted discrete
probability distribution over all classes, and yi to be the distribution where all mass is placed
on the single correct class (and all other values are 0), then the loss is computed with:

CE(y, y′) = −
1
n

n∑
i=1

yi · log(y′i) (2.6)

In the particular case of binary classification, where each yi is 1 or 0, then this is often written:

BinaryCE(y, y′) = −
1
n

n∑
i=1

(yi log(y′i) + (1 − yi) log(1 − y′i)) (2.7)

In order to augment the weights of a neural network, θ, such that the loss is minimized, we
can use a variety of training methods called optimizers. The most popular class of optimizers
combine stochastic gradient descent (SGD) and back-propagation. SGD is based on the gradi-
ent descent method of optimization, where the idea is to compute the gradient of the loss with
respect to the model parameters, and step in the direction of steepest descent:

θ ← θ − ε∇θJ(θ) (2.8)

Here, J(θ) refers to our loss to minimize, as a function of θ. The learning rate, ε, controls the
step size. Rather than compute the gradient based on the entire dataset for each step (which
can be very slow or computationally infeasible), SGD uses an approximation of the the true
gradient by computing it for each sample. As this often produces a much more noisy gradient,
it is common to use minibatch SGD, which averages the gradient over a batch of samples for
each step. The number of samples in each batch is termed the batch size. Many modifications
to SGD have been proposed to help train neural networks, which incorporate concepts such
as momentum and adaptive learning rates [88, 54]. Back-propagation provides the particular
method for computing the gradient with respect to each model parameter, and works through
recursively applying the chain rule of calculus [94].

In addition to SGD, other types of optimization include Hebbian learning [45, 1], reinforce-
ment learning [105, 100], and evolution [115, 71, 34].

2.5.2 Regularization
Neural networks, especially deep neural networks, are often overparamaterized, which means
that the number of weights which require tuning is larger than the number of training samples
available. This means that for a given dataset, (X, y), there may be an infinite number of choices
for the weights which perfectly capture the mapping. In order to discover solutions that are
more likely to generalize to new data, various regularization techniques can be applied.
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Weight regularization One of the oldest techniques is weight regularization, in the form of
L1 or L2. When L1 regularization is used, the loss function not only encourages accurately
predicting y, but also minimizing |θ|. This induces sparsity in the weights, intending to capture
our intuition that not all features are useful for a given problem (e.g., when predicting housing
prices, we can probably ignore the radius of the doorknobs). L2 similarly constrains the values
of the weights by trying to minimize θTθ, which decreases the ability of the model to easily
overfit to noise in the data.

Dropout This is a common regularization technique for neural networks which is intended to
prevent the “co-adaptation of features” [47, 102]. This is achieved by randomly disabling (or
“dropping out”) a fraction of neurons and their connections in each layer of a network during
training. This encourages the learning of robust and diverse feature detectors, as the network
may not be able to assume the constant presence of all neurons responsible for detecting any
given feature. Dropout is only applied during the training stage and is disabled during testing.
With standard dropout, if we keep weights or neurons with a probability of p, then we need to
re-scale weights by by a factor of p during testing to account for the fact that each neuron now
receives an increased number of inputs. Alternatively, there is inverted dropout, where weights
are re-scaled during training by a factor of 1/p.

Early-Stopping We often observe that as a neural network is trained, at first both the training
loss and validation loss decrease. As training continues however, eventually the validation loss
begins to increase, while the training loss continues to decrease, signalling that the model is
overfitting to particular aspects or noise in the training data that is not present in the validation
data. To stop training at the point where validation loss is minimized, we can perform early-
stopping. This is achieved by monitoring the validation loss during training, and stopping
training once the validation loss stops decreasing [38].

2.5.3 Important Types of Neural Networks

Beyond the basic type of neural network architecture, the feedforward fully-connected network
(such as in Figure 2.4), there is a veritable zoo of additional established types of networks2.
Each type of network is constructed to incorporate or avoid various inductive biases, making it
easier to achieve high accuracy given different amounts of data (with less training data gener-
ally calling for stronger inductive biases). Perhaps the most well-known example of the success
of useful inductive biases in neural networks is from convolutional neural networks (CNNs)
[60], commonly used for computer vision tasks. If a human is to specify whether an image
contains a picture of a cat, we intuitively know both that the pixels representing a cat will tend
to have a particular spatial organization, and that the answer does not depend on the precise
location of the cat in the image. CNNs, which rely heavily upon feature maps and the shift
invariant convolution operation, make use of these observations [61, 118].

While the work in this thesis does not use CNNs, there are two other important types with
their own inductive biases that directly appear in this work:

2For a large visual collection, see https://www.asimovinstitute.org/neural-network-zoo/.
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Neural mixture-of-experts While this type of network will also be described in Chapter 4,
briefly, it assumes that the problem to be solved is best represented as multiple distinct but
related problems. In a mixture-of-experts model, an “expert” is trained for each sub-problem,
and a gating function decides, for a given input, which expert (or weighting over the experts)
to rely on [50]. For example, if we want a single large neural network to classify images
of animals into their species, it may be beneficial for one expert (each expert constitutes a
sub-network) to specialize in classifying mammals, one specialize in birds, one in insects,
etc. The strength of a neural mixture-of-experts is that the areas of specialization for each
expert are automatically decided. In Chapter 4, we find that using a neural mixture-of-experts
outperforms simpler architectures in identifying whether sentences in news articles are pull
quotes or not.

xt
recurrent 

layer ot

Figure 2.5: A simplified diagram of a single-layer recurrent network. At each time step, it
receives the next element of the input sequence as well as the layer output from the previous
time step.

Recurrent neural networks While CNNs assume spatial structure in the input, recurrent
neural networks (RNNs) assume a sequential or temporal aspect [94]. Additionally, while
feedforward densely-connected networks only accept a fixed-size input and produce a fixed-
size output, RNNs can accept arbitrary-length input and produce an arbitrary-length output3.
This is especially useful for problems in signal processing or NLP, where sequences of words
or characters are abundant. If we wish to predict the part-of-speech tags for each word in a
sentence for example, RNNs are especially effective, as their inductive bias allows them to
easily capture certain hierarchical syntax structures [106].

The fundamental idea behind RNNs is that, instead of processing each element, xt, of an
input sequence, x = (x0, x1, ...), independently, we want to condition the processing based
on all previously seen elements. This is enabled through recurrent connections, as shown in
Figure 2.5, where the output of a layer at time step t − 1 becomes part of the input at time
t. Various extensions of this concept have been proposed to allow RNNs to more efficiently
learn patterns over longer gaps of time, with the most popular being Long Short-Term Memory
networks (LSTMs) [48]. For a full treatment of RNNs and LSTMs, see [39] by Alex Graves.

In this thesis, we use RNNs in Chapter 3 to learn to map a sequence of words to a single
output vector.

3To improve training efficiency however, it is common to specify a maximum sequence length, and trim or pad
sequences as necessary.
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2.6 Text Embeddings
In the previous sections, we have introduced the areas of NLP that we are interested in working
in, as well as machine learning concepts which will eventually be used to solve problems in
those areas. In this section we will cover text embeddings, which form the bridge between the
problem domain of NLP and machine learning algorithms. Text embeddings achieve this by
converting unstructured text into vector representations that can be used by learning algorithms.
We will introduce three general types of embeddings that appear in this thesis: handcrafted
features, n-gram representations, and distributed embeddings.

2.6.1 Handcrafted Features
The first type of embedding makes use of manually defined features. Simple examples of
handcrafted features that can be concatenated into a word embedding include word length, fre-
quency, part-of-speech tag, sentiment, and number of syllables. For embedding sentences, we
can simply average across the embeddings of individual words, or we can also use sentence-
specific handcrafted features such as total sentence length, reading difficulty, argumentative
purpose, sentiment (the sentiment of a whole sentence is often a complex function of the in-
dividual words), or location in the document. When we have a strong intuition about what
features are likely to be important when solving a problem, handcrafted features may work
well. However, for more difficult problems, the embedding techniques discussed next are more
popular.

The cat stole the car.

Word unigrams (n=1)

Word bigrams (n=2)

Character bigrams (n=2)

Character trigrams (n=3)

the cat stole car

X2

the cat cat stole stole the the car

th he e_ _c ca at t_ _s st to ol le _t ar

X2 X2 X2X2

the he_ e_c _ca cat at_ t_s _st sto tol ole le_ e_t _th

X2 X2 X2

X2

X2

car

Input sentence:

(first remove capitalization 
and punctuation)

Figure 2.6: Converting a sentence into various word and character level n-grams.

2.6.2 n-Gram Representations
An n-gram is a contiguous sequence of n tokens from a longer sequence. When embedding
sentences or documents, these tokens are often characters or words. Figure 2.6 demonstrates
how to decompose a sentence into a series of n-grams for both characters and words, for n ∈
[1, 2, 3]. To create the actual embedding for a piece of text, we simply count the occurrences of
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each n-gram and place these values into a vector, which removes positional information of the
n-grams. When n = 1 and our tokens are words, this technique is equivalent to bag-of-words
(BOW).

Since the number of possible n-grams grows exponentially with n and token vocabularies
may be very large, we can limit our n-gram vocabulary (thus the embedding dimension) by
only considering occurrences of the N most frequent n-grams. For example, when using word
bigrams (n = 2), we can avoid requiring an embedding dimension corresponding to occur-
rences of the phrase “predator dishwasher”, since it is unlikely to occur at all. When working
with words, it is also common to remove stopwords, which are frequent words that carry little
information (such as “the”, “and”, “a”, etc.).

Despite its simplicity, n-gram representations are still commonly used, and often make for
a strong baseline on text classification problems [52, 42]. Our own work in Chapter 4 supports
this, demonstrating that when combined with a simple classifier, n-grams help achieve near-
best performance on PQ selection.

2.6.3 Distributed Embeddings
With handcrafted features, we arrive at the problem of having to decide ourselves what features
will be important, and perform the often complex task of determining how to compute those
features. If we do not already know how to solve the problem, it is unlikely that we can be
confident on what features will work best. With n-gram embeddings, we have the problem of
sparsity (most embedding dimensions will be 0), which has the side-effect that, for example,
if two sentences are semantically similar but use different exact words, their embeddings will
be far apart. For example, the two phrases have roughly the same meaning with minimal word
overlap: 1) “The black cat slept.”, 2) “The charcoal feline snoozed.” Distributed text embed-
dings try to solve both of these problems through automatically discovering useful embedding
dimensions and ensuring that distance in the embedding space roughly corresponds to semantic
distance.

For an intuitive introduction to distributed embeddings, we can consider the influential
word2vec approach proposed by Mikolov et al. [73]. This word embedding technique is
driven by the intuition that words with similar meaning will have similar contexts (surrounding
words). This intuition is exploited by training a model with the Skip-gram architecture which
has a single hidden layer with a linear activation, as shown in Figure 2.7. This model is trained
to take a one-hot encoding of a word from a text as input, project it to a lower-dimensional
embedding with the hidden layer, and use the embedding to predict the one-hot encodings of
the words both to the left and right of it. For a vocabulary of size N, the one-hot encoding of a
word is simply the N-dimensional vector where only the dimension corresponding to the index
of the word in the vocabulary is 1 and all others are zero.

Once the Skip-gram model is trained (which is done with a suite of tricks for improved
efficiency [73]), the word2vec embedding of a word is obtained by recording the output of the
hidden layer. If two words have similar contexts, then their embeddings must be similar. Addi-
tionally, by having a high-dimensional word embedding space, many types of word properties
can be encoded. These embeddings can capture gender for example: if vec(king) represents
the distributed embedding of “king”, and vec(man), is the embedding for “man”, then these
embeddings match our intuition in that vec(king)− vec(man) + vec(woman) ≈ vec(queen) [74].
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word(t)

word(t-1)word(t-2) word(t+1) word(t+2)

Input

Projection

Output

Figure 2.7: Skip-gram architecture with a context size of 2 (two words before and after an input
word). By training a neural network to predict the words surrounding an input word, we can
learn useful distributed word representations.

Additional examples of word relationships captured by word2vec embeddings are provided by
Mikolov et al. [73]. In this thesis, we made use of fastText word embeddings [52] in Chapter 3,
which can be seen as an improvement upon word2vec. A primary difference is that instead of
using the Skip-gram architecture, it uses the Continuous Bag-of-Words (CBOW) architecture,
where we input the surrounding context of a word, and train the model to predict the center
word [72].

In addition to distributed word embeddings, there are also distributed sentence [55, 16,
22, 90] and document embeddings [59]. These techniques tend to rely on the same general
concept as word2vec: given part of the information from some context window, predict the
remainder. The skip-thought model for example is trained to take a sentence and predict the
embeddings of those to the left and right [55]. The BERT (Bidirectional Encoder Represen-
tations from Transformers) model makes use of two tasks to learn sentence embeddings: 1)
randomly masking some of the input words and trying to predict their vocabulary id based on
the remaining unmasked words, and 2) “next sentence prediction” (determining whether one
of the input sentences comes after the other input sentence) [22]. In this thesis, we make use of
the Sentence-BERT (SBERT) embedding model, a modification of BERT which allows for ef-
ficiently extracting more semantically meaningful sentence embeddings [90]. SBERT achieved
state-of-the-art performance on several semantic textual similarity tasks when it was released
in 2019. SBERT is used in Chapter 4 and Chapter 5.
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Paper 1

A version of this paper, titled “Learning Sentence Embeddings for Coherence Modelling and
Beyond”, was submitted to and published by the International Conference on Recent Advances
in Natural Language Processing (RANLP) 2019. It was accepted for poster presentation and
publication in the conference proceedings [7].

This paper presents a new technique for learning sentence embeddings which prove useful
for multiple coherence-related tasks. They can be used to visually estimate the coherence of
an article (and thus, an aspect of its readability), and identify where the incoherent sentence
transitions are likely to be. It is worth noting that this paper considers coherence at the scale of
sentences. If a sentence lacks coherence at the level of individual words, our technique may not
recognize it. Our technique is instead able to identify when a sentence is located in an unusual
position in the article.
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Learning Sentence Embeddings for Coherence Modelling and Beyond

Abstract

We present a novel and effective tech-
nique for performing text coherence tasks
while facilitating deeper insights into the
data. Despite obtaining ever-increasing
task performance, modern deep-learning
approaches to NLP tasks often only pro-
vide users with the final network deci-
sion and no additional understanding of
the data. In this work, we show that a
new type of sentence embedding learned
through self-supervision can be applied
effectively to text coherence tasks while
serving as a window through which deeper
understanding of the data can be ob-
tained. To produce these sentence em-
beddings, we train a recurrent neural net-
work to take individual sentences and pre-
dict their location in a document in the
form of a distribution over locations. We
demonstrate that these embeddings, com-
bined with simple visual heuristics, can be
used to achieve performance competitive
with state-of-the-art on multiple text co-
herence tasks, outperforming more com-
plex and specialized approaches. Addi-
tionally, we demonstrate that these embed-
dings can provide insights useful to writ-
ers for improving writing quality and in-
forming document structuring, and assist-
ing readers in summarizing and locating
information.

1 Introduction

A goal of much of NLP research is to create tools
that not only assist in completing tasks, but help
gain insights into the text being analyzed. This is
especially true of text coherence tasks, as users are
likely to wonder where efforts should be focused

How coherent is it? Suggest a coherent sentence order

Algorithm:
If dashed line is close to diagonal, high 
coherence. If far, low coherence.

Algorithm:
Take sentences in the order that the black dots 

appear along the x-axis.

Result:
Sentences 1 and 2 may be out of order, otherwise 
it is quite close, with a coherence of 0.73.

Result:
Suggested order: 2, 1, 4, 3, 5, 6.

Figure 1: This paper abstract is analyzed by our
sentence position model trained on academic ab-
stracts. The sentence encodings (predicted posi-
tion distributions) are shown below each sentence,
where white is low probability and red is high. Po-
sition quantiles are ordered from left to right. The
first sentence, for example, is typical of the first
sentence of abstracts as reflected in the high first-
quantile value. For two text coherence tasks, we
show the how the sentence encodings can easily
be used to solve them. The black dots indicate the
weighted average predicted position for each sen-
tence.

to improve writing or understand how text should
be reorganized for improved coherence. By im-
proving coherence, a text becomes easier to read
and understand (Lapata and Barzilay, 2005), and
in this work we particularly focus on measuring
coherence in terms of sentence ordering.

Many recent approaches to NLP tasks make
use of end-to-end neural approaches which ex-
hibit ever-increasing performance, but provide lit-
tle value to end-users beyond a classification or
regression value (Gong et al., 2016; Logeswaran
et al., 2018; Cui et al., 2018). This leaves open the
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question of whether we can achieve good perfor-
mance on NLP tasks while simultaneously provid-
ing users with easily obtainable insights into the
data. This is precisely what the work in this paper
aims to do in the context of coherence analysis,
by providing a tool with which users can quickly
and visually gain insight into structural informa-
tion about a text. To accomplish this, we rely on
the surprising importance of sentence location in
many areas of natural language processing. If a
sentence does not appear to belong where it is lo-
cated, it decreases the coherence and readability
of the text (Lapata and Barzilay, 2005). If a sen-
tence is located at the beginning of a document
or news article, it is very likely to be a part of a
high quality extractive summary (See et al., 2017).
The location of a sentence in a scientific abstract is
also an informative indicator of its rhetorical pur-
pose (Teufel et al., 1999). It thus follows that the
knowledge of where a sentence should be located
in a text is valuable.

Tasks requiring knowledge of sentence position
– both relative to neighboring sentences and glob-
ally – appear in text coherence modelling, with
two important tasks being order discrimination (is
a sequence of sentences in the correct order?) and
sentence ordering (re-order a set of unordered sen-
tences). Traditional methods in this area make use
of manual feature engineering and established the-
ory behind coherence (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008; Grosz et al., 1995).
Modern deep-learning based approaches to these
tasks tend to revolve around taking raw words and
directly predicting local (Li and Hovy, 2014; Chen
et al., 2016) or global (Cui et al., 2017; Li and Ju-
rafsky, 2017) coherence scores or directly output
a coherent sentence ordering (Gong et al., 2016;
Logeswaran et al., 2018; Cui et al., 2018). While
new deep-learning based approaches in text coher-
ence continue to achieve ever-increasing perfor-
mance, their value in real-world applications is un-
dermined by the lack of actionable insights made
available to users.

In this paper, we introduce a self-supervised ap-
proach for learning sentence embeddings which
can be used effectively for text coherence tasks
(Section 3) while also facilitating deeper under-
standing of the data (Section 4). Figure 1 provides
a taste of this, displaying the sentence embeddings
for the abstract of this paper. The self-supervision
task we employ is that of predicting the location

of a sentence in a document given only the raw
text. By training a neural network on this task,
it is forced to learn how the location of a sen-
tence in a structured text is related to its syntax
and semantics. As a neural model, we use a bi-
directional recurrent neural network, and train it
to take sentences and predict a discrete distribu-
tion over possible locations in the source text. We
demonstrate the effectiveness of predicted position
distributions as an accurate way to assess docu-
ment coherence by performing order discrimina-
tion and sentence reordering of scientific abstracts.
We also demonstrate a few types of insights that
these embeddings make available to users that the
predicted location of a sentence in a news article
can be used to formulate an effective heuristic for
extractive document summarization – outperform-
ing existing heuristic methods.

The primary contributions of this work are thus:

1. We propose a novel self-supervised approach
to learn sentence embeddings which works
by learning to map sentences to a distribution
over positions in a document (Section 2.2).

2. We describe how these sentence embeddings
can be applied to established coherence tasks
using simple algorithms amenable to visual
approximation (Section 2.3).

3. We demonstrate that these embeddings are
competitive at solving text coherence tasks
(Section 3) while quickly providing access to
further insights into texts (Section 4).

2 Predicted Position Distributions

2.1 Overview
By training a machine learning model to predict
the location of a sentence in a body of text (condi-
tioned upon features not trivially indicative of po-
sition), we obtain a sentence position model such
that sentences predicted to be at a particular loca-
tion possess properties typical of sentences found
at that position1. For example, if a sentence is pre-
dicted to be at the beginning of a news article, it
should resemble an introductory sentence.

In the remainder of this section we describe our
neural sentence position model and then discuss
how it can be applied to text coherence tasks.

1If we instead learned to rank sentences, we would lose
this ability to learn about normative properties of sentences,
as a first-rank sentence does not necessarily mean at-the-
beginning.
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2.2 Neural Position Model

Softmax (sentence PPD)

PPD sequence

Sentence position model

fText(w0)

fText(article)

fText(w0)-fText(article)

fText(w1)

fText(article)

fText(w1)-fText(article)

fText(w2)

fText(article)
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LSTM LSTM LSTM

LSTM LSTM LSTM
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PPD(S2)
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=
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Figure 2: Illustration of the sentence position
model, consisting of stacked BiLSTMs. Sentences
from a text are individually fed into the model
to produce a PPD sequence. In this diagram we
see a word sequence of length three fed into the
model, which will output a single row in the PPD
sequence.

The purpose of the position model is to produce
sentence embeddings by predicting the position in
a text of a given sentence. Training this model re-
quires no manual labeling, needing only samples
of text from the target domain. By discovering
patterns in this data, the model produces sentence
embeddings suitable for a variety of coherence-
related NLP tasks.

2.2.1 Model Architecture
To implement the position model, we use stacked
bi-directional LSTMs (Schuster and Paliwal,
1997) followed by a softmax output layer. In-
stead of predicting a single continuous value for
the position of a sentence as the fraction of the
way through a document, we frame sentence po-
sition prediction as a classification problem.

Framing the position prediction task as classi-
fication was initially motivated by the poor per-
formance of regression models; since the task of
position prediction is quite difficult, we observed

that regression models would consistently make
predictions very close to 0.5 (middle of the doc-
ument), thus not providing much useful informa-
tion. To convert the task to a classification prob-
lem, we aim to determine what quantile of the doc-
ument a sentence resides in. Notationally, we will
refer to the number of quantiles as Q. We can in-
terpret the class probabilities behind a prediction
as a discrete distribution over positions for a sen-
tence, providing us with a predicted position dis-
tribution (PPD). When Q = 2 for example, we are
predicting whether a sentence is in the first or last
half of a document. When Q = 4, we are pre-
dicting which quarter of the document it is in. In
Figure 2 is a visualization of the neural architec-
ture which produces PPDs of Q = 10.

2.2.2 Features Used
The sentence position model receives an input sen-
tence as a sequence of word encodings and out-
puts a single vector of dimension Q. Sentences
are fed into the BiLSTM one at a time as a se-
quence of word encodings, where the encoding for
each word consists of the concatenation of: (1)
a pretrained word embedding, (2) the average of
the pretrained word embedding for the entire doc-
ument (which is constant for all words in a docu-
ment), and (3) the difference of the first two com-
ponents (although this information is learnable
given the first two components, we found during
early experimentation that it confers a small per-
formance improvement). In addition to our own
observations, the document-wide average compo-
nent was also shown in (Logeswaran et al., 2018)
to improve performance at sentence ordering, a
task similar to sentence location prediction. For
the pretrained word embeddings, we use 300 di-
mensional fastText embeddings2, shown to have
excellent cross-task performance (Joulin et al.,
2016). In Figure 2, the notation ftxt(token) rep-
resents converting a textual token (word or docu-
ment) to its fastText embedding. The embedding
for a document is the average of the embeddings
for all words in it.

The features composing the sentence embed-
dings fed into the position model must be chosen
carefully so that the order of the sentences does
not directly affect the embeddings (i.e. the sen-
tence embeddings should be the same whether the

2Available online at https://fasttext.cc/
docs/en/english-vectors.html. We used the
wiki-news-300d-1M vectors.
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sentence ordering is permuted or not). This is be-
cause we want the predicted sentence positions to
be independent of the true sentence position, and
not every sentence embedding technique provides
this. As a simple example, if we include the true
location of a sentence in a text as a feature when
training the position model, then instead of learn-
ing the connection between sentence meaning and
position, the mapping would trivially exploit the
known sentence position to perfectly predict the
sentence quantile position. This would not allow
us to observe where the sentence seems it should
be located.

2.3 Application to Coherence Tasks
For the tasks of both sentence ordering and calcu-
lating coherence, PPDs can be combined with sim-
ple visually intuitive heuristics, as demonstrated in
Figure 3.

2.3.1 Sentence Ordering
To induce a new ordering on a sequence of sen-
tences, S, we simply sort the sentence by their
weighted average predicted quantile, Q̂(s ∈ S),
defined by:

Q̂(s) =
Q∑

i=1

i× PPD(s)i, (1)

where PPD(s) is the Q-dimensional predicted
position distribution/sentence embedding for the
sentence s.

2.3.2 Calculating coherence
To calculate the coherence of a text, we employ
the following simple algorithm on top of the PPDs:
use the Kendall’s tau coefficient between the sen-
tence ordering induced by the weighted average
predicted sentence positions and the true sentence
positions:

coh = τ((Q̂(s), for s = S1, ..., S|S|), (1, ..., |S|)).
(2)

3 Experiments

In this section, we evaluate our PPD-based ap-
proaches on two coherence tasks and demonstrate
that only minimal performance is given up by our
approach to providing more insightful sentence
embeddings.

Order discrimination setup. For order dis-
crimination, we use the Accidents and Earth-
quakes datasets from (Barzilay and Lapata, 2008)

Calculate weighted 
average predicted 
sentence quantiles 

Calculate PPDs

Summary

Sentences 1, 2, and 7

Extract sentences with 
highest Q1 probability

Reordered Sentences

[1, 2, 7, 6, 5, 3, 4, 8, 7, 9] 

Kendall’s tau Coherence Score

0.5 

Original Text (news article)

Islamabad , pakistani -- a 9 - month - old pakistani boy bawled as he was 
fingerprinted and booked in lahore on an attempted murder charge after his 
family members allegedly threw bricks at police trying to collect an unpaid 
bill. The ordeal started february 1 when several police officers and a bailiff 
went to a home hoping to get payment for a gas bill , said butt , a senior police 
official in lahore. A scuffle ensued , during which the infant 's father , one of 
his teenage sons and others in t...

Induce ranking with 
weighted average 
predicted positions

Figure 3: A visualization of our NLP algorithms
utilizing PPDs applied to a news article. To re-
order sentences, we calculate average weighted
positions (identified with black circles) to induce
an ordering. Coherence is calculated with the
Kendall’s rank correlation coefficient between the
true and induced ranking. We also show how
PPDs can be used to perform summarization, as
we will explore further in Section 4.

which consists of aviation accident reports and
news articles related to earthquakes respectively.
The task is to determine which of a permuted
ordering of the sentences and the original or-
dering is the most coherent (in the original or-
der), for twenty such permutations. Since these
datasets only contain training and testing parti-
tions, we follow (Li and Hovy, 2014) and perform
10-fold cross-validation for hyperparameter tun-
ing. Performance is measured with the accuracy
with which the permuted sentences are identified.
For example, the Entity Grid baseline in Table 2
gets 90.4% accuracy because given a shuffled re-
port and original report, it correctly classifies them
90.4% of the time.
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Task Dataset Q Epochs Layer dropouts Layer widths

Order Disrcim. Accident 5 10 (0.4, 0.2) (256, 256)
Earthquake 10 5 (0.4, 0.2) (256, 64)

Reordering NeurIPS 15 20 (0.5, 0.25) (256, 256)

Table 1: The neural sentence position model hy-
perparameters used in our coherence experiments.
The following settings are used across all tasks:
batch size of 32, sentence trimming/padding to a
length of 25 words, the vocabulary is set to the
1000 most frequent words in the associated train-
ing set. The Adamax optimizer is used (Kingma
and Ba, 2014) with default parameters supplied by
Keras (Chollet et al., 2015).

Sentence ordering setup. For sentence order-
ing, we use past NeurIPS abstracts to compare
with previous works. While our validation and test
partitions are nearly identical to those from (Lo-
geswaran et al., 2018), we use a publicly available
dataset3 which is missing the years 2005, 2006,
and 2007 from the training set ((Logeswaran et al.,
2018) collected data from 2005 - 2013). Abstracts
from 2014 are used for validation, and 2015 is
used for testing. To measure performance, we re-
port both reordered sentence position accuracy as
well as Kendall’s rank correlation coefficient. For
example, the Random baseline correctly predicts
the index of sentences 15.6% of the time, but there
is no correlation between the predicted ordering
and true ordering, so τ = 0.

Training and tuning. Hyperparameter tun-
ing for both tasks is done with a random search,
choosing the hyperparameter set with the best val-
idation score averaged across the 10 folds for or-
der discrimination dataset and for three trials for
the sentence reordering task. The final hyperpa-
rameters chosen are in Table 1.

Baselines. We compare our results against
a random baseline, the traditional Entity
Grid approach from (Barzilay and Lapata,
2008), Window network (Li and Hovy, 2014),
LSTM+PtrNet (Gong et al., 2016), RNN Decoder
and Varient-LSTM+PtrNet from (Logeswaran
et al., 2018), and the most recent state-of-the art
ATTOrderNet (Cui et al., 2018).

Results. Results for both coherence tasks are
collected in Table 2. For the order discrimination
task, we find that on both datasets, our PPD-based
approach only slightly underperforms ATTOrder-

3https://www.kaggle.com/benhamner/
nips-papers

Net (Cui et al., 2018), with performance similar to
the LSTM+PtrNet approaches (Gong et al., 2016;
Logeswaran et al., 2018). On the more difficult
sentence reordering task, our approach exhibits
performance closer to the state-of-the-art, achiev-
ing the same ranking correlation and only slightly
lower positional accuracy. Given that the pub-
licly available training set for the reordering task
is slightly smaller than that used in previous work,
it is possible that more data would allow our ap-
proach to achieve even better performance. In the
next section we will discuss the real-world value
offered by our approach that is largely missing
from existing approaches.

4 Actionable Insights

A primary benefit of applying PPDs to coherence-
related tasks is the ability to gain deeper insights
into the data. In this section, we will demon-
strate the following in particular: (1) how PPDs
can quickly be used to understand how the coher-
ence of a text may be improved, (2) how the ex-
istence of multiple coherence subsections may be
identified, and (3) how PPDs can allow users to lo-
cate specific types of information without reading
a single word, a specific case of which is extrac-
tive summarization. For demonstrations, we will
use the news article presented in Figure 4.

4.1 Improving Coherence

For a writer to improve their work, understand-
ing the incoherence present is important. Observ-
ing the PPD sequence for the article in Figure 4
makes it easy to spot areas of potential incoher-
ence: they occur where consecutive PPDs are sig-
nificantly different (from sentences 1 to 2, 6 to 7,
and 10 to 11). In this case, the writer may deter-
mine that sentence 2 is perhaps not as introduc-
tory as it should be. The predicted incoherence
between sentences 10 and 11 is more interesting,
and as we will see next, the writer may realize that
this incoherence may be okay to retain.

4.2 Identifying Subsections

In Figure 4, we see rough progressions of
introductory-type sentences to conclusory-type
sentences between sentences 1 and 10 and sen-
tences 11 and 15. This may indicate that the ar-
ticle is actually composed of two coherent subsec-
tions, which means that the incoherence between
sentences 10 and 11 is expected and natural. By
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Order discrimination Reordering

Model Accident Earthquake Acc τ

Random 50 50 15.6 0
Entiry Grid 90.4 87.2 20.1 0.09
Window network - - 41.7 0.59
LSTM PtrNet 93.7 99.5 50.9 0.67
RNN Decoder - - 48.2 0.67
Varient-LSTM+PtrNet 94.4 99.7 51.6 0.72
ATTOrderNet 96.2 99.8 56.1 0.72

PPDs 94.4 99.3 54.9 0.72

Table 2: Results on the order discrimination and sentence reordering coherence tasks. Our approach
trades only a small decrease in performance for improved utility of the sentence embeddings over other
approaches, achieving close to or the same as the state-of-the-art.

Figure 4: The PPDs for a CNN article. (full text available at http://web.
archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/
tulane-bacteria-exposure/). The dashed line shows the weighted average predicted sentence
positions.

being able to understand where subsections may
occur in a document, a writer can make informed
decisions on where to split a long text into more
coherent chunks or paragraphs. Knowing where
approximate borders between ideas in a document
exist may also help readers skim the document to
find desired information more quickly, as further
discussed in the next subsection.

4.3 Locating Information and
Summarization

When reading a new article, readers well-versed
in the subject of the article may want to skip high-
level introductory comments and jump straight to
the details. For those unfamiliar with the content

or triaging many articles, this introductory infor-
mation is important to determine the subject mat-
ter. Using PPDs, locating these types of infor-
mation quickly should be easy for readers, even
when the document has multiple potential subsec-
tions. In Figure 4, sentences 1 and 11 likely con-
tain introductory information (since the probabil-
ity of occurring in the first quantiles is highest), the
most conclusory-type information is in sentence
10, and lower-level details are likely spread among
the remaining sentences.

Locating sentences with the high-level details
of a document is reminiscent of the task of extrac-
tive summarization, where significant research has
been performed (Nenkova et al., 2011; Nenkova
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Model (lead baseline source) ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Lead-3 (See et al., 2017) 40.3 17.7 36.6
Lead-3 (Ours) 35.8 15.9 33.5
SummaRuNNer (Nallapati et al., 2017) ((Nallapati et al., 2017)) 39.6 16.2 35.3
Pointer-generator (See et al., 2017) ((See et al., 2017)) 39.5 17.3 36.4
RL (Paulus et al., 2017) ((Nallapati et al., 2017)) 41.2 15.8 39.1
TextRank (Mihalcea and Tarau, 2004) (ours) 26.2 11.1 24.3
Luhn (Luhn, 1958) (ours) 26.4 11.2 24.5
SumBasic (Nenkova and Vanderwende, 2005) (ours) 27.8 10.4 26.0
LexRank (Erkan and Radev, 2004) (ours) 28.4 11.6 26.3
PPDs (ours) 30.1 12.6 28.2

Table 3: ROUGE scores on the CNN/DailyMail summarization task. Our PPD-based heuristic outper-
forms the suite of established heuristic summarizers. However, the higher performance of the deep-
learning models demonstrates that training explicitly for summarization is beneficial.

and McKeown, 2012). It is thus natural to ask
how well a simple PPD-based approach performs
at summarization. To answer this question, the
summarization algorithm we will use is: select the
n sentences with the highest PPD(s ∈ S)0 value,
where S is the article being extractively summa-
rized down to n sentences. For the article in Fig-
ure 4, sentences 1, 11, and 3 would be chosen since
they have the highest first-quantile probabilities.
This heuristic is conceptually similar to the Lead
heuristic, where sentences that actually occur at
the start of the document are chosen to be in the
summary. Despite its simplicity, the Lead heuris-
tic often achieves near state-of-the-art results (See
et al., 2017).

We experiment on the non-anonymized
CNN/DailyMail dataset (Hermann et al., 2015)
and evaluate with full-length ROUGE-1, -2, and
-L F1 scores (Lin and Hovy, 2003). For the
neural position model, we choose four promising
sets of hyperparameters identified during the
hyperparameter search for the sentence ordering
task in Section 3 and train each sentence position
model on 10K of the 277K training articles (which
provides our sentence position model with over
270K sentences to train on). Test results are
reported for the model with the highest validation
score. The final hyperparameters chosen for this
sentence location model are: Q = 10, epochs = 10,
layer dropouts = (0.4, 0.2), layer widths = (512,
64).

We compare our PPD-based approach to other
heuristic approaches4. For completeness, we

4Implementations provided by Sumy library, available at
https://pypi.python.org/pypi/sumy.

also include results of deep-learning based ap-
proaches and their associated Lead baselines eval-
uated using full-length ROUGE scores on the non-
anonymized CNN/DailyMail dataset.

Table 3 contains the the comparison between
our PPD-based summarizer and several estab-
lished heuristic summarizers. We observe that
our model has ROUGE scores superior to the
other heuristic approaches by a margin of ap-
proximately 2 points for ROUGE-1 and -L and 1
point for ROUGE-2. In contrast, the deep-learning
approaches trained explicitly for summarization
achieve even higher scores, suggesting that there is
more to a good summary than the sentences sim-
ply being introductory-like.

5 Related Work

Extensive research has been done on text coher-
ence, motivated by downstream utility of coher-
ence models. In addition to the applications we
demonstrate in Section 4, established applications
include determining the readability of a text (co-
herent texts are easier to read) (Barzilay and La-
pata, 2008), refinement of multi-document sum-
maries (Barzilay and Elhadad, 2002), and essay
scoring (Farag et al., 2018).

Traditional methods to coherence modelling
utilize established theory and handcrafted linguis-
tic features (Grosz et al., 1995; Lapata, 2003). The
Entity Grid model (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008) is an influential tradi-
tional approach which works by first constructing
a sentence × discourse entities (noun phrases) oc-
currence matrix, keeping track of the syntactic role
of each entity in each sentence. Sentence tran-
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sition probabilities are then calculated using this
representation and used as a feature vector as in-
put to a SVM classifier trained to rank sentences
on coherence.

Newer methods utilizing neural networks and
deep learning can be grouped together by whether
they indirectly or directly produce an ordering
given an unordered set of sentences.

Indirect ordering. Approaches in the indi-
rect case include Window network (Li and Hovy,
2014), Pairwise Ranking Model (Chen et al.,
2016), the deep coherence model from (Cui et al.,
2017), and the discriminative model from (Li and
Jurafsky, 2017). These approaches are trained to
take a set of sentences (anywhere from two (Chen
et al., 2016) or three (Li and Hovy, 2014) to the
whole text (Cui et al., 2017; Li and Jurafsky,
2017)) and predict whether the component sen-
tences are already in a coherent order. A final or-
dering of sentences is constructed by maximizing
coherence of sentence subsequences.

Direct ordering. Approaches in the direct case
include (Gong et al., 2016; Logeswaran et al.,
2018; Cui et al., 2018). These model are trained
to take a set of sentences, encode them using some
technique, and with a recurrent neural network
decoder, output the order in which the sentences
would coherently occur.

Models in these two groups all use similar high-
level architectures: a recurrent or convolutional
sentence encoder, an optional paragraph encoder,
and then either predicting coherence from that en-
coding or iteratively reconstructing the ordering
of the sentences. The PPD-based approaches de-
scribed in Section 2 take a novel route of directly
predicting location information of each sentence.
Our approaches are thus similar to the direct ap-
proaches in that position information is directly
obtained (here, in the PPDs), however the posi-
tion information produced by our model is much
more rich than simply the index of the sentence in
the new ordering. With the set of indirect order-
ing approaches, our model approach to coherence
modelling shares the property that induction of an
ordering upon the sentences is only done after ex-
amining all of the sentence embeddings and ex-
plicitly arranging them in the most coherent fash-
ion.

6 Conclusions

The ability to facilitate deeper understanding of
texts is an important, but recently ignored, prop-
erty for coherence modelling approaches. In an
effort to improve this situation, we present a self-
supervised approach to learning sentence embed-
dings, which we call PPDs, that rely on the con-
nection between the meaning of a sentence and its
location in a text. We implement the new sentence
embedding technique with a recurrent neural net-
work trained to map a sentence to a discrete distri-
bution indicating where in the text the sentence is
likely located. These PPDs have the useful prop-
erty that a high probability in a given quantile indi-
cates that the sentence is typical of sentences that
would occur at the corresponding location in the
text.

We demonstrate how these PPDs can be applied
to coherence tasks with algorithms simple enough
such that they can be visually performed by users
while achieving near state-of-the-art, outperform-
ing more complex and specialized systems. We
also demonstrate how PPDs can be used to ob-
tain various insights into data, including how to
go about improving the writing, how to identify
potential subsections, and how to locate specific
types of information, such as introductory or sum-
mary information. As a proof-of-concept, we ad-
ditionally show that despite PPDs not being de-
signed for the task, they can be used to create a
heuristic summarizer which outperforms compa-
rable heuristic summarizers.

In future work, it would be valuable to evaluate
our approach on texts from a wider array of do-
mains and with different sources of incoherence.
In particular, examining raw texts identified by hu-
mans as lacking coherence could be performed,
to determine how well our model correlates with
human judgment. Exploring how the algorithms
utilizing PPDs may be refined for improved per-
formance on the wide variety of coherence-related
tasks may also prove fruitful. We are also in-
terested in examining how PPDs may assist with
other NLP tasks such as text generation or author
identification.
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Chapter 4

Paper 2

A version of this paper, titled “Catching Attention with Automatic Pull Quote Selection”,
was submitted to and published by the International Conference on Computational Linguis-
tics (COLING) 2020. It was accepted for oral presentation and publication in the conference
proceedings [8].

This paper presents a new task called “pull quote selection”, which can help understand
situational interestingness (i.e. things that attract the attention of readers in general). By being
able to automatically select good pull quotes to place inside an article, it stands to reason that
the situational interestingness of the article can be improved. Human evaluation supports the
effectiveness of our selection models, with interestingness being comparable to pull quotes
occurring in published news articles.
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Catching Attention with Automatic Pull Quote Selection

Abstract

To advance understanding on how to engage readers, we advocate the novel task of automatic
pull quote selection. Pull quotes are a component of articles specifically designed to catch the at-
tention of readers with spans of text selected from the article and given more salient presentation.
This task differs from related tasks such as summarization and clickbait identification by several
aspects. We establish a spectrum of baseline approaches to the task, ranging from handcrafted
features to a neural mixture-of-experts to cross-task models. By examining the contributions
of individual features and embedding dimensions from these models, we uncover unexpected
properties of pull quotes to help answer the important question of what engages readers. Human
evaluation also supports the uniqueness of this task and the suitability of our selection models.
The benefits of exploring this problem further are clear: pull quotes increase enjoyment and read-
ability, shape reader perceptions, and facilitate learning. Code to reproduce this work is available
at https://github.com/tannerbohn/AutomaticPullQuoteSelection.

1 Introduction

In a way, a PQ is like 
clickbait, except that it 
is not lying to people.

Figure 1: A pull quote from this paper
chosen with the help of our best perform-
ing model (see Section 5.3).

Discovering what keeps readers engaged is an important
problem. We thus propose the novel task of automatic
pull quote (PQ) selection accompanied with a new dataset
and insightful analysis of several motivated baselines. PQs
are graphical elements of articles with thought provoking
spans of text pulled from an article by a writer or copy ed-
itor and presented on the page in a more salient manner
(French, 2018), such as in Figure 1.

PQs serve many purposes. They provide temptation
(with unusual or intriguing phrases, they make strong en-
trypoints for a browsing reader), emphasis (by reinforcing
particular aspects of the article), and improve overall visual
balance and excitement (Stovall, 1997; Holmes, 2015). PQ
frequency in reading material is also significantly related to information recall and student ratings of en-
joyment, readability, and attractiveness (Wanta and Gao, 1994; Wanta and Remy, 1994).

The problem of automatically selecting PQs is related to the previously studied tasks of headline
success prediction (Piotrkowicz et al., 2017; Lamprinidis et al., 2018), clickbait identification (Potthast
et al., 2016; Chakraborty et al., 2016; Venneti and Alam, 2018), as well as key phrase extraction (Hasan
and Ng, 2014) and document summarization (Nenkova and McKeown, 2012). However, in Sections 5.4
and 5.5 we provide experimental evidence that performing well on these previous tasks does not translate
to performing well at PQ selection. Each of these types of text has a different function in the context of
engaging a reader. The title tells the reader what the article is about and sets the tone. Clickbait makes

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creative
commons.org/licenses/by/4.0/.
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unwarranted enticing promises of what the article is about. Key phrases and summaries help the reader
decide whether the topic is of interest. And PQs provide specific intriguing entrypoints for the reader or
can maintain interest once reading has begun by providing glimpses of interesting things to come. With
their unique qualities, we believe PQs satisfy important roles missed by these popular existing tasks.

eat, run

Use a 
direct 
quote

Avoid urls and twitter handlesAvoid numbers and dates

Use messages related to two or more of the these:

I, you, they, we, she

Use personal 
pronouns and verbs

avoid long or uncommon words

Use high readability
Avoid past tense

consider conceptual topics over 
concrete physical objects

Use more abstract 
subjectsmorality difficulty politics danger the economy

discrimination strong emotions problems justice

Do not worry about these: using lots of adjectives, adverbs, or nouns being “exciting” trying to summarize the article having a positive or negative sentiment

Figure 2: Factors suggested by our results to be important (and unimportant) in creating pull quotes.

In this work we define PQ selection as a sentence classification task and create a dataset of articles
and their expert-selected PQs from a variety of news sources. We establish a number of approaches
with which to solve and gain insight into this task: (1) handcrafted features, (2) n-gram encodings, (3)
Sentence-BERT (SBERT) (Reimers and Gurevych, 2019) embeddings combined with a progression of
neural architectures, and (4) cross-task models. Via each of these model groups, we uncover interesting
patterns (summarized in Figure 2). For example, among handcrafted features, sentiment and arousal are
surprisingly uninformative features, overshadowed by presence of quotation marks and reading difficulty.
Analysing individual SBERT embedding dimensions also helps understand the particular themes that
make for a good PQ. We also find that combining SBERT sentence and document embeddings in a
mixture-of-experts manner provide the best performance at PQ selection. The suitability of our models
at PQ selection is also supported via human evaluation.

The main contributions are:

1. We describe several motivated approaches for the new task of PQ selection, including a mixture-of-
experts approach to combine sentence and document embeddings (Section 3).

2. We construct a dataset for training and evaluation of automatic PQ selection (Section 4).

3. We inspect the performance of our approaches to gain a deeper understanding of PQs, their relation
to other tasks, and what engages readers (Section 5). Figure. 2 summarizes these findings.

2 Related Work

In this section, we look at three natural language processing tasks related to PQ selection: (1) headline
quality prediction, (2) clickbait identification, and (3) summarization and keyphrase extraction. These
topics motivate the cross-task models whose performance on PQ selection is reported in Section 5.4.

2.1 Headline Quality Prediction
When a reader comes across a news article, the headline is often the first thing given a chance to catch
their attention, thus predicting their success is a strongly motivated task. Once a reader decides to check
out the article, it is up to the content (including PQs) to maintain their engagement.

In (Piotrkowicz et al., 2017), the authors experimented with two sets of features: journalism-inspired
(which aim to measure how news-worthy the topic itself is), and linguistic style features (reflecting
properties such as length, readability, and parts-of-speech – we consider such features here). They found
that overall the simpler style features work better than the more complex journalism-inspired features at
predicting social media popularity of news articles. The success of simple features is also reflected in
(Lamprinidis et al., 2018), which proposed multi-task training of a recurrent neural network to not only
predict headline popularity given pre-trained word embeddings, but also predict its topic and parts-of-
speech tags. They found that while the multi-task learning helped, it performed only as well as a logistic
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regression model using character n-grams. Similar to these previous works, we also evaluate several
expert-knowledge based features and n-grams, however, we expand upon this to include a larger variety
of models and provide a more thorough inspection of performance to understand what engages readers.

2.2 Clickbait Identification

The detection of a certain type of headline – clickbait – is a recently popular task of study. Clickbait
is a particularly catchy headline and form of false advertising used by news outlets which lure potential
readers but often fail to meet expectations, leaving readers disappointed (Potthast et al., 2016). Clickbait
examples include “You Won’t Believe...” or “X Things You Should...”. We suspect that the task of
distinguishing between clickbait and non-clickbait headlines is related to PQ selection because both
tasks may rely on identifying the catchiness of a span of text. However, PQs attract your attention with
content truly in the article. In a way, a PQ is like clickbait, except that it is not lying to people.

In (Venneti and Alam, 2018), the authors found that measures of topic novelty (estimated using LDA)
and surprise (based on word bi-gram frequency) were strong features for detecting clickbait. In our
work however, we investigate the interesting topics themselves (Section 5.3). A set of 215 handcrafted
features were considered in (Potthast et al., 2016) including sentiment, length statistics, specific word
occurrences, but the authors found that the most successful features were character and word n-grams.
The strength of n-gram features at this task is also supported by (Chakraborty et al., 2016). While we
also demonstrate the surprising effectiveness of n-grams and consider a variety of handcrafted features
for our particular task, we examine more advanced approaches that exhibit superior performance.

2.3 Summarization and Keyphrase Extraction

Document summarization and keyphrase extraction are two well-studied NLP tasks with the goals of
capturing and conveying the main topics and key information discussed in a body of text (Turney, 1999;
Nenkova and McKeown, 2012). Keyphrase extraction is concerned with doing this at the level of in-
dividual phrases, while extractive document summarization (which is just one type of summarization
(Nenkova et al., 2011)) aims to do this at the sentence level. Approaches to summarization have roughly
evolved from unsupervised extractive heuristic-based methods (Luhn, 1958; Mihalcea and Tarau, 2004;
Erkan and Radev, 2004; Nenkova and Vanderwende, 2005; Haghighi and Vanderwende, 2009), to su-
pervised and often abstractive deep-learning approaches (Nallapati et al., 2016b; Nallapati et al., 2016a;
Nallapati et al., 2017; Zhang et al., 2019). Approaches to keyphrase extraction fall into similar groups,
with unsupervised approaches including (Tomokiyo and Hurst, 2003; Mihalcea and Tarau, 2004; Liu et
al., 2009), and supervised approaches including (Turney, 1999; Medelyan et al., 2009; Romary, 2010).

While summarization and keyphrase extraction are concerned with what is important or representative
in a document, we instead are interested in understanding what is engaging. While these two concepts
may seem very similar, in Sections 5.4 and 5.4 we provide evidence of their difference by demonstrating
that what makes for a good summary does not make for a good PQ.

3 Models

We consider four groups of approaches for the PQ selection task: (1) handcrafted features (Section 3.1),
(2) n-gram features (Section 3.2), (3) SBERT embeddings combined with a progression of neural archi-
tectures (Section 3.3), and (4) cross-task models (Section 3.4). As discussed further in Section 4, these
approaches aim to determine the probability that a given article sentence will be used for a PQ.

3.1 Handcrafted Features

Our handcrafted features can be loosely grouped into three categories: surface, parts-of-speech, and
affect, each of which we will provide justification for. For the classifier we will use AdaBoost (Hastie et
al., 2009) with a decision tree base estimator, as this was found to outperform simpler classifiers without
requiring much hyperparameter tuning.
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3.1.1 Surface Features
• Length: We expect that writers have a preference to choose PQs which are concise. To measure

length, we will use the total character length, as this more accurately reflects the space used by the
text than the number of words.

• Sentence position: We consider the location of the sentence in the document (from 0 to 1). This is
motivated by the finding in summarization that summary-suitable sentences tend to occur near the
beginning (Braddock, 1974) – perhaps a similar trend exists for PQs.

• Quotation marks: We observe that PQs often contain content from direct quotations. As a feature,
we thus include the count of opening and closing double quotation marks.

• Readability: Motivated by the assumption that writers will not purposefully choose difficult-to-
read PQs, we consider two readability metric features: (1) Flesch Reading Ease: This measure
(RFlesch) defines reading ease in terms of the number of words per sentence and the number of
syllables per word (Flesch, 1979). (2) Difficult words: This measure (Rdifficult ) is the percentage
of unique words which are considered “difficult” (at least six characters long and not in a list of
∼3000 easy-to-understand words). See Appendix A for details.

3.1.2 Part-of-Speech Features
We include the word density of part-of-speech (POS) tags in a sentence as a feature. As suggested by
(Piotrkowicz et al., 2017) with respect to writing good headlines, we suspect that verb (VB) and adverb
(RB) density will be informative. We also report results on the following: cardinal digit (CD), adjective
(JJ), modal verb (MD), singular noun (NN), proper noun (NNP), personal pronoun (PRP).

3.1.3 Affect Features
Events or images that are shocking, filled with emotion, or otherwise exciting will attract attention
(Schupp et al., 2007). However, this does not necessarily mean that text describing these things will
catch reader interest as reliably (Aquino and Arnell, 2007). To determine how predictive sentence affect
properties are of PQ suitability, we include the following features:

Positive sentiment (Apos) and negative sentiment(Aneg).
Compound sentiment (Acompound). This combines the positive and negative sentiments to represent

overall sentiment between -1 and 1.
Valence (Avalence) and arousal (Aarousal): Valence refers to the pleasantness of a stimulus and arousal

refers to the intensity of emotion provoked by a stimulus (Warriner et al., 2013). In (Aquino and Arnell,
2007), the authors specifically note that it is the arousal level of words, and not valence which is predictive
of their effect on attention (measured via reaction time). Measuring early cortical responses and recall,
(Kissler et al., 2007) observed that words of greater valence were both more salient and memorable. To
measure valence and arousal of a sentence, we use the averaged word rating, utilizing word ratings from
the database introduced by (Warriner et al., 2013).

Concreteness (Aconcreteness): This is “the degree to which the concept denoted by a word refers to
a perceptible entity” (Brysbaert et al., 2014). As demonstrated by (Sadoski et al., 2000), concrete texts
are better recalled than abstract ones and concreteness is a strong predictor of text comprehensibility,
interest, and recall. To measure concreteness of a sentence, we use the averaged word rating, utilizing
word ratings in the database introduced by (Brysbaert et al., 2014).

3.2 N-Gram Features

We consider character-level and word-level n-gram text representations, shown to perform well in related
tasks (Potthast et al., 2016; Chakraborty et al., 2016; Lamprinidis et al., 2018). A passage of text is then
represented by a vector of the counts of the individual n-grams it contains. We use a logistic regression
classifier with these representations with L2 regularization and an inverse-regularization strength of 1.
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Figure 3: The progression of neural network architectures combined with SBERT sentence and docu-
ment embeddings. Group A only uses sentence embeddings, while groups B and C also use document
embeddings. In group C, they are combined in a mixture-of-experts fashion (the width of the sigmoid
and softmax layers is equal to the # experts). For each group, there is a basic version and deep version.

3.3 SBERT Embeddings with a Progression of Neural Architectures

All other models described in this work use only the single sentence to predict PQ probability. To
understand the importance of considering the entire article when choosing PQs, we consider three groups
of neural architectures, as shown in Figure 3.

Group A. These neural networks only take the sentence embedding as input. In the A-basic model,
there are no hidden layers. In A-deep, the embedding passes through a set of densely connected layers.

Group B. These models receive the sentence embedding and a whole-document embedding as input.
This allows the models to account for document-dependent patterns. These embeddings are concatenated
and connected to the output node (B-basic), or first pass through densely connected layers (B-deep).

Group C. These networks also receive sentence and document embeddings, but they are combined in
a mixture-of-experts manner (Jacobs et al., 1991). That is, multiple predictions are produced by a set
of “experts” and a gating mechanism determines the weighting of these predictions for a given input.
The motivation is that there may be many “types” of articles, each requiring paying attention to different
properties when choosing a PQ. If each of k experts generates a prediction, we can use the document
embedding to determine the weighting over the predictions. In Figure 3c, k corresponds to the width
of the sigmoid and softmax layers, which are then combined with a dot product to produce the final
prediction. In C-deep, the embeddings first pass through a set of densely connected layers (non-shared
weights) as shown in the right of Figure 3c, while in C-basic, they do not.

To embed sentences and documents, we make use of a pre-trained Sentence-BERT (SBERT) model
(Reimers and Gurevych, 2019). SBERT is a modification of BERT (Bidirectional Encoder Represen-
tations from Transformers) – a language representation model which performs well on a wide variety
of tasks (Devlin et al., 2018). SBERT is designed to more efficiently produce semantically meaningful
embeddings (Reimers and Gurevych, 2019). We computed document embeddings by averaging SBERT
sentence embeddings.

3.4 Cross-Task Models

To test the similarity of PQ selection with related tasks , we use the following models: Headline pop-
ularity: We train a model to predict the popularity of a headline (using SBERT embeddings and linear
regression) with the dataset introduced by (Moniz and Torgo, 2018). This dataset includes feedback
metrics for about 100K news articles from various social media platforms. We apply this model to PQ
selection by predicting the popularity of each sentence, scaling the predictions for each article to lie in
[0, 1] and interpreting these values as PQ probability. Clickbait identification: We train a model to
discriminate between clickbait and non-clickbait headlines (using SBERT embeddings and logistic re-
gression) with the dataset introduced by (Chakraborty et al., 2016). Clickbait probability is used as a
proxy for PQ probability. Summarization: Using a variety of extractive summarizers, we score each
sentence in an article, scale the values to lie in [0, 1], and interpret these values as PQ probability. No
training is required for this model. Appendix. A contain implementation details of these models
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4 Experimental Setup

To support the new task of automatic PQ selection, we both construct a new dataset and describe a
suitable evaluation metric.

4.1 Datatset Construction
To conduct our experiments, we create a dataset using articles from several online news outlets: Na-
tional Post, The Intercept, Ottawa Citizen, and Cosmopolitan. For each outlet, we identify those articles
containing at least one pull quote. From these articles, we extract the body, edited PQs, and PQ source
sentences. The body contains the full list of sentences composing the body of the article. The edited PQs
are the pulled texts as they appear after being augmented by the editor to appear as pull quotes1. The
PQ source sentences are the article sentences from which the edited PQs came. In this work, we aim to
determine whether a given article sentence is a source sentence or not2.

Dataset statistics are reoprted in Table 1. It contains ∼27K positive samples (PQ source sentences—
which we simply call PQ sentences) and ∼680K negative samples (non-PQ sentences). The positive to
negative ratio is 1:26 (taken into consideration when training our classifiers with balanced class weights).
For all experiments, we use the same training/validation/test split of the articles (70/10/20).

nationalpost theintercept ottawacitizen cosmopolitan train val test all

# articles 11112 1183 1066 1267 10239 1462 2927 14628
# PQ 16307 2671 1087 2360 15709 2235 4481 22425
# PQ/article 1.47 2.26 1.02 1.86 1.53 1.53 1.53 1.53
# sentences/PQ 1.16 1.23 1.32 1.24 1.19 1.18 1.19 1.19
# sentences/article 40.49 97.94 38.35 79.03 48.47 47.8 48.06 48.32
# pos samples 18975 3274 1436 2906 18640 2625 5326 26591
# neg samples 430959 112588 39443 97230 477609 67258 135353 680220

Table 1: Statistics of our PQ dataset, composed of articles from four different news outlets. Only articles
with at least one PQ are included in the dataset.

4.2 Evaluation
What do we want to measure? We want to evaluate a PQ selection model on its ability to determine
which sentences are more likely to be chosen by an expert as PQ source sentences.

Metric. We will use the probability that a random PQ source sentence is scored by the model above
a random non-source sentence from the same article (i.e. AUC). Let ainclusions be the binary vector
indicating whether each sentence of article a is truly a PQ source sentence, and let âinclusions be the cor-
responding predicted probabilities. Our metric can then be computed with Equation 1, which computes
the AUC averaged across articles.

AUCavg =
1

#articles

∑

a∈articles
AUC(ainclusions, âinclusions) (1)

Why average across articles? By averaging scores for each article instead of for all sentences at the
same time, the evaluation method accounts for the observation that some articles may be more “pull-
quotable” than others. If articles are instead combined when computing AUC, an average sentence from
an interesting article can be ranked higher than the best sentence from a less interesting article.

5 Experimental Results

We present our experimental results and analysis for the four groups of approaches: handcrafted fea-
tures (Section 5.1), n-gram features (Section 5.2), SBERT embeddings combined with a progression of

1This can include replacing pronouns such as “she”, “they”, “it”, with the more precise nouns or proper nouns, or shortening
sentences by removing individual words or clauses, or even replacing words with ones of a similar meaning but different length
in order to achieve a clean text rag.

2A PQ source sentence could be only part of a multi-sentence PQ or contain the PQ inside it.
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neural architectures (Section 5.3), and cross-task models (Section 5.4). We also perform human evalu-
ation of several models (Section 5.5). Appendix A contains implementation details of our models, and
Appendix C includes examples of PQ sentences selected by several models on various articles.

5.1 Handcrafted Features
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Figure 4: The value distributions for two
interesting handcrafted features for both
non-PQ sentences (solid blue region) and
PQ sentences (dashed orange lines).

The performance of each of our handcrafted features is pro-
vided in Figure 4a. There are several interesting observa-
tions, including some that support and contradict hypothe-
ses made in Section 3.1:

Sentence position. Simply using the sentence position
works better than random guessing. When we inspect the
distribution of this feature value for PQ and non-PQ sen-
tences in Figure 4b, we see that PQ sentences are not
uniformly distributed throughout articles, but rather tend
to occur slightly more often around a quarter of the way
through the article.

Quotation mark count.. The number of quotation
marks is by far the best feature in this group, confirming
that direct quotations make for good PQs. We find that a
given non-PQ sentence is ∼3 times more likely not to con-
tain quotation marks than a PQ sentence.

Reading difficulty. The fraction of difficult words is the
third-best handcrafted feature, outperforming the Flesch
metric. As suggested in Section 3.1.1 we find that PQ sen-
tences are indeed easier to read than non-PQ sentences.

POS tags. Of the POS tag densities, personal pronoun
(PRP) and verb (VB) density are the most informative. In-
specting the feature distributions, we see that PQs tend to
have slightly higher PRP density as well as VB density
– suggesting that sentences about people doing things are
good candidates for PQs.

Affect features. Affect features tended to perform
poorly, contradicting our intuition that more exciting or
emotional sentences would be chosen for PQs. However,
concreteness is indeed an informative feature, with de-
creased concreteness unexpectedly being better (see Fig-
ure 4c). Given the memorability that comes with more con-
crete texts (Sadoski et al., 2000), this suggests that some-
thing else may be at work in order to explain the beneficial effects of PQs on learning outcomes (Wanta
and Gao, 1994; Wanta and Remy, 1994).

5.2 N-Gram Features
The results for our n-gram models are provided in Table 2. Impressively, almost all n-gram models per-
formed better than any individual handcrafted feature, with the best model, character bi-grams, demon-
strating an AUCavg of 75.4. When we inspect the learned logistic regression weights for the best variant
of each model type (summarized in Figure 5), we find a few interesting observations:

Top character bi-grams. The highest weighted character bi-grams exclusively aim to identify the
beginnings of quotations, agreeing with the success of the quote count feature that the presence of a
quote is highly informative. Curiously, the presence of a quotation being present but not starting the
sentence is a strong negative indicator (i.e. “ “”).

Bottom character bi-grams. Among the lowest weighted character bi-grams are also indicators of
numbers, URLs, and possibly twitter handles (i.e. “@”).
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Token n = 1 n = 2 n = 3

char 70.7 75.4 74.2
word 73.9 72.3 65.6

Table 2: AUCavg scores of
the n-gram models.

Char-2

“h “k “j “t “o “f “c “s “e “u

Highest weighted 2-grams

.k p: -q .c .2 62 (@  “ •  .a

Word-1

) entire weve " nothing seems … 
seem politics needs

Lowest weighted words

Highest weighted words

june 30 friday m called thursday 
included argued ( suggested

Lowest weighted 2-grams

Figure 5: The ten highest and lowest weighted n-
grams for the best character and word models.

Words. Although the highest weighted words are difficult to interpret together, among the lowest
weighted words are those indicating past tense: “called”, “included”, “argued”, “suggested”. This sug-
gests a promising approach for PQ selection includes identification of the tense of each sentence.

5.3 SBERT Embeddings with a Progression of Neural Architectures

Model AUCavg Width # Params

A-basic 76.7±0.15 - 7.7E+02
A-deep 77.7±0.16 128, 64 1.1E+05

B-basic 77.1±0.24 - 1.5E+03
B-deep 78.3±0.29 128, 64 2.1E+05

C-basic (k = 16) 77.7±0.51 - 2.5E+04
C-deep (k = 4) 78.7±0.07 32, 16 5.0E+04

Table 3: Results on the neural architec-
tures. Performance mean and std. dev. is
calculated with five trials. k refers to the #
experts, only applicable to C group mod-
els. Width values correspond to the width
of the two additional fully connected lay-
ers (only applicable to the deep models).

The results of the neural architectures using SBERT em-
beddings is included in Table 3. Overall, these results sug-
gest that using document embeddings helps performance,
especially with a mixture-of-experts architecture. This is
seen by the general trend of improved performance from
group A to B to C. Within each group, adding the fully
connected layers (the “deep” models) helps.

Inspecting individual SBERT dimensions. Given the
performance of these embeddings, we are eager to under-
stand what aspects of the text it picks up on. To do this, we
first identify the most informative of the 768 dimensions
for PQ selection by training a logistic regression model for
each one. For each single-feature model, we group sen-
tences in the test set by PQ probability (high, medium,
and low) and perform a TF-IDF analysis to identify key
terms associated with increasing PQ probability3. See Ap-
pendix B for more details. Results for the top five best performing dimensions are shown in Figure 6.
We find that each of these dimension is sensitive to the presence of a theme (or combination of themes)
generally interesting and important to society. Our interpretations of them are: (a) politics and doing the
right thing, (b) working hard on difficult/dangerous things, (c) discrimination, (d) strong emotions – both
positive and negative, and (e) social justice.

Dim 483 (65.4)

important, want, really, 
political, people, economy, 
risk, better, free, thing, politics, 
continue, need, lot, said, think 
important, willingness, means, 
problem, don want

Highest scored sentence

Dim 476 (64.8)

good, want, best, dangerous, 
isn, careful, doesn, right, 
exhausting, easy, better, win, 
like, difficult, awesome, right 
direction, bad, deserve, don, 
right thing

Dim 262 (64.1)

people, good, slavery, said, 
unions, better, like, somebody, 
women, true, workers, think, 
angry, praise, men, 
embarrassed, world, work, 
organization, respect

Dim 312 (63.8)

lot, scared, good, easy, 
dangerous, wrong, feel, sad, 
difficult, felt, scary, exciting, 
kind, really, amazing, fear, 
problem, fun, pretty, said

Dim 294 (63.5)

important, want, things, need, 
people, feel, life, cares, just, 
difference, young people, time, 
really important, social justice, 
think, really, right, work, sense, 
understand

Important terms

Highest scored sentence Highest scored sentence Highest scored sentence Highest scored sentence

Important termsImportant termsImportant termsImportant terms

(a) (b) (c) (d) (e)

That type of unstructured 
schedule isn't for everyone, 
but I love it.

There is a moral duty to 
provide that which only riches 
make possible.

You are the boss of what you 
put out there.“

It sounds [easy enough] but it 
was really difficult.

It's about equal rights.

Figure 6: The top five best performing SBERT embedding dimensions, along with the terms associated
with increasing PQ probability with respect to that dimension. For each dimension, we also include the
sentence from the test articles which that dimension most strongly scores as being a PQ sentence. At the
top of each box is the dimension index and the test AUCavg.

3Likewise, we could study terms associated with decreasing PQ probability – to deeper understand what bores people.
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5.4 Cross-Task Models

Model AUCavg

headline popularity 56.9

clickbait 63.8

LexRank 51.9
SumBasic 44.9
KLSum 55.1
TextRank 55.9

Table 4: Performance of
the cross-task models.

The results for the cross-task models of headline popularity prediction,
clickbait identification, and summarization are shown in Table 4. Con-
sidered holistically, the results suggest that PQs are not designed to inform
the reader about what they are reading (the shared purpose of headlines and
summaries), so much as they are designed to motivate further engagement
(the sole purpose of clickbait). However, the considerable performance
gap between the clickbait model and PQ-specific models (such as charac-
ter bi-grams and SBERT embeddings) suggest that this is only one aspect
of choosing good pull quotes.

Another interesting observation is the variability in performance of sum-
marizers at PQ selection. If we consider the summarization performance
of these models as reported together in (Chen et al., 2016), we find that PQ selection performance is not
strongly correlated with their summarization performance.

5.5 Human Evaluation

Model Rating ↑ Rank ↓ 1st Place Pct. ↑
True PQ Source 2.75 3.04 28%

Char-2 2.86 2.74 28%
C-deep 2.75 3.08 18%

Headline pop. 2.57 3.66 8%
Clickbait 2.70 3.26 18%
TextRank 2.69 3.32 14%

Table 5: The results of human evaluation com-
paring models in terms of how interested the
reader is in reading more of the article. The ↑
and ↓ indicate whether better values for a met-
ric are respectively higher or lower.

As a final experiment, we conduct a qualitative eval-
uation to find out how well the PQs selected by vari-
ous models (including the true PQ sources) compare.
The results are summarized in Table 5. We randomly
select 50 articles from the test set and ask nine vol-
unteers to evaluate the candidate PQs extracted by six
different models. They are asked to rate each of the
300 candidate PQs based on how interested it makes
them in reading more of the article on a scale of 1
(not at all interested) to 5 (very interested). For each
model we report the following metrics: (1) the rat-
ing averaged across all responses (with 5 being the
best), (2) the average rank within an article (with 1
being the best), and (3) 1st Place Pct. – how often
the model produces the best PQ for an article (with
100% being the best).

The results in Table 5 show that the two PQ-specific approaches (Char-2 and C-deep using the best
hyperparameters from Section 5.3) perform on par or slightly better than the true PQ sources. By gener-
ally out-performing the transfer models, this further supports our claim that the PQ selection task serves
a unique purpose. When looking at how often each model scores 1st place, which accentuates their
performance differences, we can see that the headline and summarization models in particular perform
poorly. Mirroring the results from Section 5.4, among the cross-task models, the clickbait model seems
to perform best.

6 Conclusion

In this work we proposed the novel task of automatic pull quote selection as a means to better understand
how to engage readers. To lay foundation for the task, we created a PQ dataset and described and bench-
marked four groups of approaches: handcrafted features, n-grams, SBERT-based embeddings combined
with a progression of neural architectures, and cross-task models. By inspecting results, we encountered
multiple curious findings to inspire further research on PQ selection and understanding reader engage-
ment.

There are many interesting avenues for future research with regard to pull quotes. In this work we
assume that all true PQs in our dataset are of equal quality, however, it would be valuable to know the
quality of individual PQs. It would also be interesting to study how to make a given phrase more PQ-
worthy while maintaining the original meaning. When determining the similarity of PQ selection to
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related tasks, it would also be worth considering alternative methods, such as applying our PQ-specific
models to the related tasks instead. Additionally, to get a better understanding of the performance gap
we should expect between PQ-selection and other tasks, we should first consider how well PQ models
trained on one news source generalize to other news sources.
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Günes Erkan and Dragomir R Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text summa-
rization. Journal of Artificial Intelligence Research, 22:457–479. 3, 13

Rudolf Flesch. 1979. How to Write Plain English: A Book for Lawyers and Consumers. Harper & Row New
York, NY. 4

Nigel French. 2018. InDesign Type: Professional Typography with Adobe InDesign. Adobe Press. 1

Aria Haghighi and Lucy Vanderwende. 2009. Exploring content models for multi-document summarization. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 362–370. 3, 13

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic keyphrase extraction: A survey of the state of the art. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1262–1273, Baltimore, Maryland, June. Association for Computational Linguistics. 1

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. 2009. Multi-class adaboost. Statistics and its Interface,
2(3):349–360. 3

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
13

Tim Holmes. 2015. Subediting and Production for Journalists: Print, Digital & Social. Routledge. 1

Clayton J Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model for sentiment analysis of social
media text. In Eighth International AAAI Conference on Weblogs and Social Media. 12

44 Chapter 4. Paper 2



Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local
experts. Neural Computation, 3(1):79–87. 5

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980. 13

Johanna Kissler, Cornelia Herbert, Peter Peyk, and Markus Junghofer. 2007. Buzzwords: Early cortical responses
to emotional eords during reading. Psychological Science, 18(6):475–480. 4

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. 2017. Self-normalizing neural
networks. In Advances in Neural Information Processing Systems, pages 971–980. 13

Sotiris Lamprinidis, Daniel Hardt, and Dirk Hovy. 2018. Predicting news headline popularity with syntactic and
semantic knowledge using multi-task learning. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 659–664. 1, 2, 4

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun. 2009. Clustering to find exemplar terms for keyphrase
extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing:
Volume 1-Volume 1, pages 257–266. Association for Computational Linguistics. 3

Hans Peter Luhn. 1958. The automatic creation of literature abstracts. IBM Journal of Research and Development,
2(2):159–165. 3

Olena Medelyan, Eibe Frank, and Ian H Witten. 2009. Human-competitive tagging using automatic keyphrase
extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing:
Volume 3-Volume 3, pages 1318–1327. Association for Computational Linguistics. 3

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Processing, pages 404–411. 3, 13

Nuno Moniz and Luı́s Torgo. 2018. Multi-source social feedback of online news feeds. arXiv preprint
arXiv:1801.07055. 5, 13

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. 2016a. Abstractive text summarization using
sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023. 3

Ramesh Nallapati, Bowen Zhou, and Mingbo Ma. 2016b. Classify or select: Neural architectures for extractive
document summarization. arXiv preprint arXiv:1611.04244. 3

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent neural network based se-
quence model for extractive summarization of documents. In Thirty-First AAAI Conference on Artificial Intel-
ligence. 3

Ani Nenkova and Kathleen McKeown. 2012. A survey of text summarization techniques. In Mining Text Data,
pages 43–76. Springer. 1, 3

Ani Nenkova and Lucy Vanderwende. 2005. The impact of frequency on summarization. Microsoft Research,
Redmond, Washington, Tech. Rep. MSR-TR-2005, 101. 3, 13

Ani Nenkova, Kathleen McKeown, et al. 2011. Automatic summarization. Foundations and Trends® in Informa-
tion Retrieval, 5(2–3):103–233. 3
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Appendix A Implementation Details

Here we outline the various tools, datasets, and other implementation details related to our experiments:

• To perform part-of-speech tagging for feature extraction, we use the NLTK 3.4.5 perceptron tagger
(Bird et al., 2009).

• To compute sentiment, the VADER Sentiment Analysis tool is used (Hutto and Gilbert, 2014),
accessed through the NLTK library.

• Implementations of the RFlesch readability metric is provided by the Textstat 0.6.0 Python package4.
The corpus of easy words for Rdifficult is also made available by this package.

• Valence, arousal word ratings are obtained from the dataset described in (Warriner et al., 2013)5.
When computing average valence and arousal for a sentence, stop words are removed and when
a word rating cannot be found, a value of 5 is used for valence and 4 for arousal (the mean word
ratings).

• Concreteness word ratings are obtained from the dataset described in (Brysbaert et al., 2014) 6. The
concreteness score of a sentence is computed similar to valence and arousal, with a mean word
rating of 5 used when no value for a word is available.

• For the n-gram models, a vocabulary size of 1000 was used for all models, and lower-casing was
applied for the character and word models.

• The SBERT (Reimers and Gurevych, 2019) implementation and pre-trained models are used for
text embedding7.

4Available online here: https://github.com/shivam5992/textstat
5Available online at http://crr.ugent.be/archives/1003.
6Available online at http://crr.ugent.be/archives/1330.
7Can be found online at https://github.com/UKPLab/sentence-transformers. We use the

bert-base-nli-mean-tokens pre-trained model.
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• All neural networks using the SBERT embeddings were implemented with the Keras library (Chol-
let and others, 2015) with the Adam optimizer (Kingma and Ba, 2014) (with default Keras settings)
and binary cross-entropy loss. Early stopping is done after validation loss stops decreasing for 4
epochs – with a maximum of 100 epochs. In the deep version of the models, we include two addi-
tional densely connected layers as shown in Figure 3, with the second additional layer having half
the width of the initial one. We use selu activations (Klambauer et al., 2017) for the additional layers
and a dropout rate of 0.5 for only the first additional densely connected layer (Hinton et al., 2012).
The hyperparameters requiring tuning for each model and the range of values tested (grid search) is
provided in Table A.1.

• The clickbait identification dataset introduced by (Chakraborty et al., 2016) is used, which contains
16,000 clickbait samples and 16,000 non-clickbait headlines8.

• The headline popularity dataset introduced by (Moniz and Torgo, 2018) is used, which includes
feedback metrics for about 100,000 news articles from various social media platforms9. For pre-
processing, we remove those article where no popularity feedback data is available, and compute
popularity by averaging percentiles across platforms. For example, if an article is in the 80th pop-
ularity percentile on Facebook and in the 90th percentile on LinkedIn, then it is given a popularity
score of 0.85.

• We use the following summarizers: TextRank (Mihalcea and Tarau, 2004), SumBasic (Nenkova and
Vanderwende, 2005), LexRank (Erkan and Radev, 2004), and KLSum (Haghighi and Vanderwende,
2009)10.

• We used the Scikit-learn (Pedregosa et al., 2011) implementations of AdaBoost, decision trees, and
logistic regression. To accommodate the imbalanced training data, balanced class weighting was
used for the decision trees in Adaboost and logistic regression. For AdaBoost, we use 100 estimators
with the default learning rate of 1.0. For logistic regression we use the default settings of L2 penalty
with C = 1.0.

model Initial width # Experts

A-basic - -
A-deep [16, 32, 64, 128, 256, 512] -

B-basic - -
B-deep [16, 32, 64, 128, 256, 512] -

C-basic - [2, 4, 8, 16]
C-deep [16, 32, 64, 128, 256, 512] [2, 4, 8, 16]

Table A.1: Hyperparameter values used in grid search for the different SBERT neural networks. The
models with the best performance on the validation set averaged across 5 trials are reported in Table 3.

Appendix B TF-IDF Analysis of SBERT Embedding Dimensions

In order to uncover the key terms associated with increased PQ probability for a given SBERT embedding
dimension, the following steps were performed:

1. Train a logistic regression model using that single feature. Make a note of whether the coefficient
is positive (i.e. increasing the feature value increase PQ probability) or negative (i.e. decreasing
feature value increases PQ probability).

8Available online at https://github.com/bhargaviparanjape/clickbait/tree/master/dataset.
9Available online at https://archive.ics.uci.edu/ml/machine-learning-databases/00432/Data/.

10Implementations provided by Sumy library, available at https://pypi.python.org/pypi/sumy.
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2. Take all test sentences and split them into three groups: (1) those where the feature value is in the
top k, (2) those where the feature value is in the middle 2k, and (3) those where the feature value is
in the bottom k. We use k = 2000.

3. Join together the sentences within each of the three groups so that we have three “documents” and
apply TF-IDF on this set of documents. We use the Scikit-learn (Pedregosa et al., 2011) implemen-
tation, with an n-gram range of 1-3 words and use the English stopword list with sublinear tf
= True. All other settings are at the default values.

4. If the coefficient from step 1 is positive, use the highest ranked terms for group 1. If the coefficient
is negative, use the highest ranked terms for group 3.

Appendix C Model-Chosen Pull Quote Examples

Model Highest rated sentence(s)

True PQ Source “To date, the fishing industry in British Columbia has not raised the carbon tax as an area of specific concern,” it
says.

Quote count OTTAWA - The federal government’s carbon tax could take a toll on Canada’s fishing industry, causing its
competitiveness to “degrade relative to other nations,” according to an analysis from the fisheries department.

Sent position In the aquaculture and seafood processing industries, in contrast, fuel makes up just 1.6 per cent and 0.8 per cent of
total costs, respectively.

R difficult That would result in a difference in the GDP of about $2 billion in 2022, or 0.1 per cent.
POS PRP “To date, the fishing industry in British Columbia has not raised the carbon tax as an area of specific concern,” it

says.
POS VB “The relatively rapid introduction of measures to reduce GHG emissions would allow little time for industry and

consumers to adjust their behaviour, creating a substantial risk of economic disruption and uncertainty.”
A concreteness “This could have a negative impact on the competitiveness of Canada’s fishing industry.”

Char-2 “However, Canada’s competitiveness may degrade relative to other nations that have not yet announced plans, or are
proceeding more slowly towards measures to reduce GHG emissions,” the memo says.

Word-1 The memo concludes that short-term impacts are expected to be “low to moderate,” and the department will “continue to
monitor developments.”

C-deep “To date, the fishing industry in British Columbia has not raised the carbon tax as an area of specific concern,” it
says.

Headline popularity The four largest provinces - Quebec, Ontario, Alberta and B.C.
Clickbait Ottawa has said all jurisdictions that don’t have their own carbon pricing plans in place this year will have the

federal carbon tax imposed on them in January 2019, starting at 20pertonneandincreasingto50 per tonne in 2022.
TextRank The analysis was completed in December 2016, shortly after most provinces and territories had signed Ottawa’s pan-

Canadian climate change framework, committing them to a range of measures, including carbon pricing, to reduce Canada’s
2030 emissions to 30 per cent below 2005 levels.

Table C.1: Article source: https://nationalpost.com/news/politics/federal-car
bon-tax-could-degrade-canadian-fishing-industrys-competitiveness-sa
ys-memo.
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Model Highest rated sentence(s)

True PQ Source I think so many people voted for me because I think they’re just proud of me as well.

Quote count The school year is finally coming to an end and that means it’s prom season, woo season!
Sent position I texted my friends like, “Oh my god I’m freaking out.
R difficult I’m only at the school for an hour and a half every other day so I had no idea that we were even voting.
POS PRP I think so many people voted for me because I think they’re just proud of me as well.
POS VB - and some people would send me them, but I just choose not to read them.
A concreteness I didn’t hear about anything.

Char-2 Something that I just want everyone to take away from this is you can be you as long as you’re not hurting anyone else
and as long as you’re not breaking any rules.

Word-1 Something that I just want everyone to take away from this is you can be you as long as you’re not hurting anyone else
and as long as you’re not breaking any rules.

C-deep I don’t think there’s any day where I haven’t worn a full face of makeup to school, and I always dress up.

Headline popularity I think so many people voted for me because I think they’re just proud of me as well.
Clickbait I texted my friends like, “Oh my god I’m freaking out.
TextRank In an interview with Cosmopolitan.com, he talked about putting together his look, why he didn’t see his crowning coming,

and what he’d like to tell the haters.

Table C.2: Article source: https://www.cosmopolitan.com/lifestyle/a20107039/so
uth-carolina-prom-king-adam-bell-interview/

Model Highest rated sentence(s)

True PQ Source There is not a downtown in the whole wide world that’s made better by vehicle traffic.

Quote count We need to stop widening roads and otherwise “improving” our road infrastructure, and pronto.
Sent position By putting an immediate moratorium on it.
R difficult But at the same time (this is the important part), make it super easy, free (or nearly free) and convenient to get

around downtown.
POS PRP Not, I think, if we have any say over it.
POS VB Have them criss-cross the inner core.
A concreteness Not, I think, if we have any say over it.

Char-2 We live far away from where we need to be, and we enjoy activities that aren’t always practical by bus, especially if
you happen to have kids that need to be in six different places every day.

Word-1 We live far away from where we need to be, and we enjoy activities that aren’t always practical by bus, especially if
you happen to have kids that need to be in six different places every day.

C-deep I want to scream.

Headline popularity Personally, I’d rip out the Queensway and turn it into a light-rail line with huge bike paths, paths for motorcycles,
and maybe a lane or two dedicated to autonomous vehicles and taxis and ride-shares.

Clickbait It’s an idea I’ve been obsessed with since visiting Portland, Oregon, in 2004.
TextRank Not, I think, if we have any say over it.

Table C.3: Article source: https://ottawacitizen.com/opinion/columnists/armcha
ir-mayor-fewer-cars-more-transit-options-would-invigorate-ottawa
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Model Highest rated sentence(s)

True PQ Source But Pelosi seems to have thought more about alliteration than what pitch would effectively challenge the inaccurate but
narratively satisfying story the president had just told.

Sanders packed more visceral humanity in the first minute or so of his remarks than in the entirety of Pelosi and
Schumer’s response.

And perhaps most importantly, he validated that there is, in fact, a crisis afoot: one created by Trump, as well as
several produced by structural forces the political class has long ignored.

And this is an important point: The temptation to fact-check is understandable. And a certain amount of fact-checking is
necessary to keep Trump accountable. But poking holes in Trump’s narrative, by itself, is not enough.

Quote count The life of an American hero was stolen by someone who had no right to be in our country,” he said.
Sent position An opioid crisis does kill thousands of Americans each year.
R difficult The life of an American hero was stolen by someone who had no right to be in our country,” he said.
POS PRP I’m not going to blame you [Chuck Schumer] for it.”
POS VB I live paycheck to paycheck, and I can’t get a side job because I still have to go to my unpaid federal job.”
A concreteness He didn’t disappoint.

Char-2 “Let me be as clear as I can be,” said Sanders, “this shutdown should never have happened.”
Word-1 “Let me be as clear as I can be,” said Sanders, “this shutdown should never have happened.”

C-deep All are equally guilty - children are merely “pawns,” not people.

Headline popularity And what Trump said about who is hurting most is true: “Among the hardest hit are African-Americans and Hispanic-
Americans.”

Clickbait “[Trump] talked about what happened the day after Christmas?
TextRank These are people in the FBI, in the TSA, in the State Department, in the Treasury Department, and other agencies who

have, in some cases, worked for the government for years.”

Table C.4: Article source: https://theintercept.com/2019/01/09/trump-speech-dem
ocratic-response/. This article demonstrates a case where there are many real PQs in an article.
It also highlights the need for future work which can create multi-sentence PQs (True PQ #4 consists of
two sentences).

50 Chapter 4. Paper 2



Chapter 5

Paper 3

A version of this paper, titled “Hone as You Read: A Practical Type of Interactive Summa-
rization”, was submitted to the Conference of the Association for Computational Linguistics
(ACL) 2021 [9]. It is currently under review.

This paper presents a new type of interactive personalized summarization task intended to
increase the personal interestingness of an article. This is done by allowing the reader to, in a
low-effort and unobtrusive manner, indicate their interest level in sentences as they read. By
capturing this feedback as the user reads an article, the article can be fine-tuned to only show
content of interest. It is worth mentioning that this new task is a form of informative, rather
than indicative, summarization. This is because we assume that the reader is already willing
to read (at least some of) the contents of a chosen article, not just get an idea of what kind of
information is present.
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Hone as You Read: A Practical Type of Interactive Summarization

Abstract

We present HARE, a new task where reader
feedback is used to optimize document sum-
maries for personal interest during the normal
flow of reading. This task is related to interac-
tive summarization, where personalized sum-
maries are produced following a long feedback
stage where users may read the same sentences
many times. However, this process severely
interrupts the flow of reading, making it im-
practical for leisurely reading. We propose to
gather minimally-invasive feedback during the
reading process to adapt to user interests and
augment the document in real-time. Building
off of recent advances in unsupervised sum-
marization evaluation, we propose a suitable
metric for this task and use it to evaluate a
variety of approaches. Our approaches range
from simple heuristics to preference-learning
and their analysis provides insight into this im-
portant task. Human evaluation additionally
supports the practicality of HARE. The code
to reproduce this work will be made publicly
available at placeholder.

1 Introduction

Keeping readers engaged in an article and helping
them find desired information are important objec-
tives (Calder et al., 2009; Nenkova and McKeown,
2011). These objectives help readers deal with the
explosion of online content and provide an edge
to content publishers in a competitive industry. To
help readers find personally relevant content while
maintaining the flow of natural reading, we propose
a new text summarization problem where the sum-
mary is honed as you read (HARE). The challenge
is to learn from unobtrusive user feedback, such
as the types in Figure 1, to identify uninteresting
content to hop over.

This new task is related to both query-based
summarization (QS) and interactive personalized
summarization (IPS). In QS, users must specify
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be caused by its moons.
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Figure 1: Potential feedback methods for HARE used
on a smartphone. In (a), users can choose to swipe left
or right to indicate interest or disinterest in sections of
text as they read. Users may also provide implicit feed-
back in the form of dwell time in center window (b)
or gaze location, as measured by camera for example
(c). More interesting text may have longer gazes or
dwell time. The approaches evaluated in this paper rely
on feedback similar to (a), but further development in
HARE can extend to (b) or (c).

a query to guide the resultant summary (Damova
and Koychev, 2010). For users performing focused
research, specifying queries is useful, but for more
leisurely reading, this requirement interrupts the
natural flow. Approaches to IPS avoid the problem
of having to explicitly provide a query. However,
they suffer a similar problem by requiring users to
go through several iterations of summary reading
and feedback-providing before a final summary is
produced (Yan et al., 2011; Avinesh et al., 2018;
Gao et al., 2019; Simpson et al., 2019).

In contrast, HARE places high importance on
non-intrusiveness by satisfying multiple properties
detailed in Section 3.1 (such as feedback being
non-invasive). We find that due to the high cost of
generating a dataset for this task, evaluation poses
a difficulty. To overcome this, we adapt recent re-
search in unsupervised summary evaluation. We
also describe a variety of approaches for HARE
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that estimate what the user is interested in and how
much they want to read. Automated evaluation
finds that relatively simple approaches based on
hiding sentences nearby or similar to disliked ones,
or explicitly modelling user interests, outperforms
the control, where no personalization is done. Hu-
man evaluation suggests that not only is deciding
the relevance of sentences rather easy in practice,
but that even with simple binary feedback, HARE
models may truly provide useful reading assistance.

The major contributions of this work are:

1. We define the novel HARE task, and describe
a suitable evaluation technique (Section 3).

2. We describe a wide range of motivated ap-
proaches for HARE that should serve as useful
baselines for future research (Section 4).

3. We evaluate our approaches to gain a deeper
understanding of the task (Section 5).

2 Related Work

In this section, we examine related work on QS,
IPS, and unsupervised summarization evaluation.

2.1 Query-based Summarization

Both tasks of HARE and QS aim to produce per-
sonalized summaries. Unlike generic summariza-
tion where many large datasets exist (Hermann
et al., 2015; Fabbri et al., 2019; Narayan et al.,
2018), development in QS has been affected by
a lack of suitable training data (Xu and Lapata,
2020). To cope, approaches have relied on hand-
crafted features (Conroy et al., 2005), unsuper-
vised techniques (Van Lierde and Chow, 2019),
and cross-task knowledge transfer (Xu and Lapata,
2020). The approach of Mohamed and Rajasekaran
(2006) highlights how query-based summarizers
often work by adapting a generic summarization
algorithm and incorporating the query with an ad-
ditional sentence scoring or filtering component.
Alternatively, one can avoid training on QS data
by decomposing the task into several steps, each
performed by a module constructed for a related
task (Xu and Lapata, 2020).

A pervasive assumption in QS is that users have
a query for which a brief summary is expected.
This is reflected in QS datasets where dozens of
documents are expected to be summarized in a max-
imum of 250 words (Dang, 2005; Hoa, 2006) or
single documents summarized in a single sentence

(Hasselqvist et al., 2017). However, in HARE, we
are interested in a wider range of reading prefer-
ences. This includes users who are interested in
reading the whole article and users whose interests
are not efficiently expressed in a written query.

2.2 Interactive Personalized Summarization
The iterative refinement of summaries based on
user feedback is also considered by IPS approaches.
An early approach by Yan et al. (2011) considers
progressively learning user interests by providing
a summary (of user-specified length) and allowing
them to click on sentences they want to know more
about. Based on the words in clicked sentences, a
new summary can be generated and the process re-
peated. Instead of per-sentence feedback, Avinesh
and Meyer (2017) allows users to indicate which
bigrams of a candidate summary are relevant to
their interests. A successor to this system reduces
the computation time to produce each summary
down to an interactive level of 500ms (Avinesh
et al., 2018). The APRIL system (Gao et al., 2019)
aims to reduce the cognitive burden of IPS by in-
stead allowing users to indicate preference between
candidate summaries. Using this preference infor-
mation, a summary-ranking model is trained and
used to select the next pair of candidate summaries.

Shared among these previous works is that the
user is involved in an interactive process which in-
terrupts the normal reading flow with the reviewing
of many intermediate summaries. In HARE, the
user reads the document as it is being summarized,
so that any given sentence is read at most once (if
it has not already been removed). These previous
works also focus on multi-document summariza-
tion, whereas we wish to improve the reading expe-
rience during the reading of individual documents.

2.3 Unsupervised Summary Evaluation
When gold-standard human-written summaries are
available for a document or question-document
pair, the quality of a model-produced summary is
commonly computed with the ROUGE metric (Lin
and Och, 2004). Driven by high costs of obtaining
human-written summaries at a large scale, espe-
cially for tasks such as multi-document summariza-
tion or QS, unsupervised evaluation of summaries
(i.e. without using gold-standards) has rapidly de-
veloped (Louis and Nenkova, 2013).

Louis and Nenkova (2009) found that the Jensen
Shannon divergence between the word distribu-
tions in a summary and reference document out-
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performs many other candidates and achieves a
high correlation with manual summary ratings, but
not quite as high as ROUGE combined with ref-
erence summaries. Sun and Nenkova (2019) con-
sider a variety of distributed text embeddings and
propose to use the cosine similarity of summary
and document ELMo embeddings (Peters et al.,
2018). Böhm et al. (2019) consider learning a re-
ward function from existing human ratings. Their
reward function only requires a model summary
and document as input and achieves higher correla-
tion with human ratings than other metrics (includ-
ing ROUGE which requires reference summaries).
Stiennon et al. (2020) also consider this approach,
with a larger collection of human ratings and larger
models. However, Gao et al. (2020) found that com-
paring ELMo embeddings or using the learned re-
ward from Böhm et al. does not generalize to other
summarization tasks. Their evaluation of more
advanced contextualized embeddings found that
Sentence-BERT (SBERT) embeddings (Reimers
and Gurevych, 2019) with word mover’s-based dis-
tance (Kusner et al., 2015) outperforms other un-
supervised options. Post-publication experiments
by Böhm et al. further support the generalizability
of this approach1. In Section 3.3, we adapt the
method of Gao et al. to HARE evaluation.

3 Task Formulation

To define the proposed task, we will first describe
how a user interacts with an HARE summarizer
(Section 3.1). Second, we describe a method for
modelling user interests and feedback for automatic
evaluation (Section 3.2). Third, we propose an
evaluation metric for this new task (Section 3.3).

3.1 User-Summarizer Interaction Loop

The interaction between a user and HARE summa-
rizer, as shown in Figure 2 and sketched in Algo-
rithm 1, consists of the user reading the shown sen-
tences and providing feedback on their relevance.
Using this feedback, the summarizer decides which
remaining sentences to show, aiming to hide un-
interesting sentences. This interaction is designed
to smoothly integrate into the natural reading pro-
cess by exhibiting three important properties: 1)
feedback is either implicit or non-intrusive, 2) sen-
tences are presented in their original order to try

1The additional results can be found
here: https://github.com/yg211/
summary-reward-no-reference.

Studies in animal models have 
found that increasing the 
aggregation of Aβ in the 
hippocampus

Synaptic plasticity is crucial to the 
development of learning and 
cognitive functions in the 
hippocampus.

Thus, Aβ and its role in causing 
cognitive memory and deficits 
have been the focus of most 
research aimed at finding 
treatments for Alzheimer's.

Upon additional perfusion with 
oxytocin, however, the signaling 
abilities increased,
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Figure 2: In HARE, users are shown sentences in their
original order, and can provide relevance feedback. A
model uses this feedback to optimize the remainder
of the article, automatically hiding uninteresting sen-
tences.

maintain coherence, and 3) updates to the summary
should occur beyond the current reading point so
as to not distract the user. Next, we discuss how to
model a user in this interaction for the purposes of
automatic evaluation.

3.2 User Modelling
In order to model user interaction during HARE,
we need to know what kind of feedback they would
provide when shown a sentence. This requires
understanding how much a user would be interested
in a given sentence and how feedback is provided.

User interests For our work, user interests will
be modelled as a weighted set of concept vec-
tors from a semantic embedding space. Given
a weighted set of k user interests, U = {<
w1, c1 >, ..., < wk, ck >} such that wi ∈ [0, 1]
and max(w) = 1, and a sentence embedding, x,
the interest level (which we also refer to as impor-
tance) is calculated with Equation 1. We use cosine
distance for ∆. Intuitively, the importance of a
sentence reflects the maximum weighted similarity
to any of the interests. This method of comput-
ing importance is similar to that use by Avinesh
et al. (2018); Wu et al. (2019); Teevan et al. (2005).
However, we adapt it to accommodate modern dis-
tributed sentence embeddings (SBERT).

R(U, x) = max
i=1,...,k

wi(1−∆(ci, x)) (1)
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Algorithm 1: User-Summarizer Interaction

1 user chooses a document D = [x1, ..., x|D|]
to read with help from summarizer M

2 S = ∅ // summary sentences
3 for i = 1, ..., |D| do
4 if M decides to show xi to user then
5 show sentence xi to user
6 S := S ∪ {xi}
7 incorporate any feedback into M
8 end
9 if user is done reading then

10 break
11 end
12 end
13 return S

Feedback types Given a sentence interest score
of rx ∈ [0, 1], what feedback will be observed by
the model? If using implicit feedback like dwell
time or gaze tracking, feedback could be continu-
ously valued. With explicit feedback, like ratings or
thumbs up/down, feedback could be discrete. For
an in-depth discussion on types of user feedback,
see Jayarathna and Shipman (2017).

In this work, we will consider an explicit feed-
back inspired by the “Tinder sort” gesture popular-
ized by the Tinder dating app2, where users swipe
left to indicate disinterest, and right to indicate
interest. This feedback interaction has proven to
be very quick and easy. Users will routinely sort
through hundreds of items in a sitting (David and
Cambre, 2016). To adapt this feedback method
to our interactive summarization system, we can
consider users to “accept” a sentence if they swipe
right, and “reject” it if they swipe left (see Figure 1a
and Figure 2)3.

To model the noisy feedback a user provides,
we adopt a logistic model, shown in Equation 2,
following Gao et al. (2019); Viappiani and Boutilier
(2010); Simpson et al. (2019). Our feedback model
is parameterized by a decision threshold, α ∈ [0, 1],
and a noise level, m > 0. Low α means that
users are willing to accept sentences with lower
importance. We consider the model to receive a
feedback value of 0 if they reject a sentence, and 1
if they accept. In setting α for feedback modelling,

2https://tinder.com/?lang=en
3If we wanted to make the feedback optional, we could

simply let no swipe indicate acceptance, and left swipe indi-
cate rejection.

we tie it to the users length preference to better
simulate realistic behavior. When users want to
read very little for example, they only accept the
best sentences. If a user wants to read l out of |D|,
then we set α = 1− l/|D|. For user modelling, we
sample l uniformly from the range [1, |D|].

Pα,m(accept x) = 1−
[
1 + exp

(
α− rx
m

)]−1

(2)

3.3 Unsupervised Evaluation
Unsupervised evaluation is tricky to do properly.
You must show that it correlates well with human
judgement, but also be confident that maximizing
the metric does not result in garbage (Barratt and
Sharma, 2018).

As discussed in Section 2, we adapt the unsu-
pervised summary evaluation method described by
Gao et al. (2020). This metric computes a mover’s-
based distance between the SBERT embeddings
of the summary and a heuristically-chosen subset
of document sentences (a “pseudo-reference” sum-
mary). They show that it correlates well will human
ratings and that using it as a reward for training a re-
inforcement learning-based summarizer produces
state-of-the-art models. The authors found that
basing the pseudo-reference summary on the lead
heuristic, which generally produces good single
and multi-document summaries, worked best. For
HARE, we can apply the analogous idea: when
computing the summary score, we can use all doc-
ument sentences in the pseudo-reference summary,
but weight them by their importance:

score(U,D, S) = 1− 1∑
x∈D rx

∑

x∈D
rx min

s∈S
∆(x, s)

(3)
This metric has the behavior of rewarding cases

where an important sentence is highly similar to
at least one summary sentence. For this reason,
coverage of the different user interests is also en-
couraged by this metric: since sentences drawing
their importance from similarity to the same con-
cept are going to be similar to each other, having
summaries representing a variety of important con-
cepts is better.

4 Methods

We consider three groups of approaches ranging
in complexity: (1) simple heuristics, (2) adapted
generic summarizers, and (3) preference learning.
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4.1 Simple Heuristics
This first set of approaches are as follows:

SHOWMODULO This approach shows every kth

sentence to the user. When k = 1, this is equivalent
to the control, where every sentence is shown. By
moving through the article faster, we suspect that
greater coverage is obtained, making it more likely
that important concepts are represented.

HIDENEXT This approach shows all sentences,
except for the k following any rejected sentence.
E.g. when k = 2 and the user rejects a sentence,
the two after it are hidden. The motivation for this
model is that nearby sentences are often related, so
if one is disliked, a neighbour might also be. Larger
k suggests a larger window of relatedness.

HIDEALLSIMILAR While HIDENEXT hides
physically nearby sentences, this model hides all
sentences that are actually conceptually similar to
a rejected one, where similarity is measure with co-
sine similarity of SBERT embeddings. We also in-
clude a compromise between hiding based on phys-
ical and conceptual similarity: HIDENEXTSIMI-
LAR. This model hides only the unbroken chain of
similar sentences after a rejected one.

4.2 Adapted Generic Summarizers
This set of approaches make use of generic extrac-
tive summarizers. The motivation for considering
them is that even though they are independent of
user interests, they are often designed to provide
good coverage of an article. In this way, they may
accommodate all user interests to some degree. For
a given generic summarizer, we consider the fol-
lowing options:

GENFIXED This approach first uses the generic
summarizer to rank the sentences, and then shows
a fixed percentage of the top sentences.

GENDYNAMIC This approach estimates an im-
portance threshold, α̂, of sentences the user is will-
ing to read, and hides the less important sentences.
Importance is computed by scoring the sentences
with the generic summarizer and rescaling the val-
ues to [0, 1]. The initial estimate is α̂ = 0, which
means that all sentences are important enough.
Each time a sentence is rejected, the new estimate is
updated to be the average importance of all rejected
sentences. To help avoid prematurely extreme es-
timates, we also incorporate ε-greedy exploration.
With probability 1− ε, the sentence is only shown

if the importance meets the threshold, otherwise it
is shown anyways. A larger ε will help find a closer
approximation of the threshold, but at the cost of
showing more unimportant sentences.

4.3 Preference Learning

The approaches in this group use more capable
adaptive algorithms to learn user preferences in
terms of both preferred length and concepts:

LR This approach continually updates a logis-
tic regression classifier to predict feedback given
sentence embeddings. Before a classifier can be
trained, all sentences are shown. We propose two
variations of this approach. The first uses an ε-
greedy strategy similar to GENDYNAMIC. The
second uses an ε-decreasing strategy: for a sen-
tence at a given fraction, frac, of the way through
the article, ε = (1− frac)β , for β > 0.

COVERAGEOPT This approach explicitly mod-
els user interests and length preference. It scores
potential sentences by how much they improve cov-
erage of the user interests. However, since we do
not know the user’s true interests or their length
preference, both are estimated as they read.

This approach prepares for each article by us-
ing K-Means clustering of sentence embeddings
to identify core concepts of the article. The initial
estimate of concept importances is computed with:

Ĉ =

[
1 + exp

(
cfsum
β

)]−1
(4)

We initialize the vector cfsum with the same value
c ∈ R for each concept. A larger cmeans that more
evidence is required before a concept is determined
to be unimportant. β > 0 controls how smoothly a
concept shifts between important and unimportant
(larger value means more smoothly). To update the
estimate of user interests with feedback ∈ {0, 1}
for sentence x, we update cfsum with:

cfsum← cfsum + 2(feedback− 0.5)concepts(x)
(5)

If feedback = 0 for example, this moves cfsum
away from the article concepts represented by that
sentence. The function concepts() returns the rele-
vance of each concept for the specified sentence.

After updating Ĉ, we re-compute sentence im-
portances based on their contribution to improving
concept coverage, weighted by concept importance.
Next, we update the estimated length preference,
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l̂frac, by averaging the importance of rejected sen-
tences. The summary is updated to show sentences
among the top l̂frac|D| important sentences. If
the user has rejected low and medium importance
sentences, then only the most coverage-improving
sentences will be shown.

5 Experiments

In this section, we first describe the experimental
setup, and then provide an analysis of the results.

5.1 Setup

Dataset We evaluate on the test articles from
the non-anonymized CNN/DailyMail dataset (Her-
mann et al., 2015)4. We remove articles with less
than 10 sentences so as to cluster sentences into
more meaningful groups for user interest modelling.
This leaves us with 11222 articles, with an average
of 34.0 sentences per article.

User modelling We apply K-Means clustering
to SBERT sentence embeddings for each article
to identify k = 4 cluster centers/concepts. User
interests are a random weighting over these con-
cepts, as described in Section 3.2. For feedback
noise, we use m = 0.01 (essentially no noise) and
m = 0.1 (intended to capture the difficulty in de-
ciding whether a single sentence is of interest or
not). α is chosen as described in Section 3.2.

Metrics Evaluation with the two noise values of
m = 0.01 and m = 0.1 correspond to scoresharp
and scorenoisy respectively. scoreadv corresponds
to the difference between scorenoisy and the con-
trol score (no personalization). Positive values in-
dicate outperforming the control. Since the scores
fall between 0 and 1, we multiply them by 100.

Privileged information comparison models
We consider for comparison three oracle models
and the control. ORACLEGREEDY has access to
the user preferences and greedily selects sentences
to maximize the score, until the length limit is
reached. ORACLESORT selects sentences based
only on their interest level. ORACLEUNIFORM

selects sentences at random throughout the article
until the length limit is reached5.

4Accessed through HuggingFace: https:
//huggingface.co/datasets/cnn_dailymail.

5Readers cannot be guaranteed a uniform sampling of
sentences unless their length preference is known in advance.

Model scoresharp scorenoisy scoreadv
ORACLEGREEDY 87.04 4.89
ORACLESORTED 82.74 0.58
ORACLEUNIFORM* 82.77 0.62
Control (show all) 82.15 0.0
SHOWMODULO 78.83 -3.32
HIDENEXT 82.66 82.66 0.51
HIDENEXTSIMILAR 82.79 82.86 0.71
HIDEALLSIMILAR 83.03 83.09 0.94
GENFIXED 81.97 -0.19
GENDYNAMIC* 82.39 82.24 0.09
LR (ε-greedy)* 82.48 82.50 0.34
LR (ε-decreasing)* 82.28 82.31 0.15
COVERAGEOPT 83.11 82.81 0.65

Table 1: A comparison of each model proposed. For
parameterized models, results with the best variation
are reported (for all models, we found that the same
parameters performed best for both scoresharp and
scorenoisy). Non-deterministic models are marked by
a *. scoreadv is the difference between scorenoisy and
the control score (which is independent of feedback).

5.2 Results

Table 1 reports the results for each model with its
best performing set of hyperparameters. While
scoresharp and scorenoisy can range from 0 to
100, the difference between the control and OR-
ACLEGREEDY is less that 5 points (reflected in
scoreadv). This suggests that even relatively small
performance differences are important. For stochas-
tic models (marked by a * in Table 1), results are
averaged across 3 trials and standard deviations
were all found to be below 0.05.

Overall, we find that the simple heuristics pro-
vide robust performance, unaffected (and possibly
helped) by noise. While the more complex COV-
ERAGEOPT approach is able to perform best with
low-noise feedback, it falls behind when noise in-
creases. Next we discuss in more detail the results
for each group of models, then comment on aspects
of efficiency, and finally discuss the results of our
human evaluation.

5.2.1 Privileged Information Models
ORACLEUNIFORM outperforms the control as well
as ORACLESORTED. This may seem counter-
intuitive, since ORACLEUNIFORM has the disad-
vantage of not knowing true user interests. How-
ever, the strength of ORACLEUNIFORM is that it
provides uniform coverage over the whole article,
weakly accommodating any interest distribution.
By choosing only the most interesting sentences,
ORACLESORTED runs the risk of only showing
those related to the most important concept. If
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our user model simulated more focused interests,
ORACLESORTED may perform better however.

It is also interesting to see how much higher OR-
ACLEGREEDY is than every other model, suggest-
ing that there is plenty of room for improvement.
The reason the oracle does not reach 100 is that the
summary length is restricted by user preference. If
future approaches consider abstractive summariza-
tion techniques, it may be possible to move beyond
this performance barrier.

5.2.2 Simple Heuristics
While we suspected that the SHOWMODULO strat-
egy might benefit from exposing readers to more
concepts faster, we found that this does not work as
well as ORACLEUNIFORM. The top performance
of scoreadv = −3.32 is reached with k = 2, and
it quickly drops to −7.06 with k = 3. The mini-
mally adaptive approach of hiding a fixed number
of sentences after swiped ones, as per HIDENEXT,
does help however, especially with n = 2.

The related models of HIDENEXTSIMILAR and
HIDEALLSIMILAR, which simply hide sentences
similar to ones the user swipes away, work surpris-
ingly well, in both moderate and low noise. In
Figure 3, we can see that their performance peaks
when the similarity threshold is around 0.5 to 0.6.
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Figure 3: The performance for HIDENEXTSIMILAR
and HIDEALLSIMILAR for a range of similarity thresh-
olds. When the threshold is high, it means that only the
most similar sentences are hidden.

5.2.3 Adapted Generic Summarizers
We use the following extractive summarizers:
LexRank (Erkan and Radev, 2004), SumBasic
(Nenkova and Vanderwende, 2005), and TextRank
(Mihalcea and Tarau, 2004)6.

6Implementations provided by Sumy library, available at
https://pypi.python.org/pypi/sumy.

LR (constant ε) LR (decreasing ε)

ε scoreadv β scoreadv

0 -7.27 0.25 0.05
0.1 -1.58 0.5 0.09
0.2 -0.18 1 0.15
0.3 0.25 2 0.07
0.4 0.34 4 -0.61
0.5 0.34

Table 2: Results for the two LR model version. For the
constant-ε variation, a greater ε indicates greater explo-
ration. For the decreasing-ε variation, larger β indicates
a faster decay in exploration probability.

We find that the generic summarizer-based mod-
els always perform worse than the control when
showing a fixed fraction of the article (GENFIXED).
The best model of this type used the SumBasic
summarizer, showing 75% of sentences. When
dynamically estimating target summary length
(GENDYNAMIC), the control is outperformed by
only 0.09 points. This is achieved by the SumBasic
summarizers with ε = 0.5. For both variations, we
find that the best hyperparameters are tend to be
those that make them show the most sentences.

5.2.4 Preference-learning Models
The LR models out-perform the control, as shown
in Table 2, but fail to match the simpler approaches.
Using a decaying ε actually hurt performance, sug-
gesting that the model is simply not able to learn
user preferences fast enough. However, there is a
sweet spot for the rate of ε decay at β = 1.

We find that COVERAGEOPT consistently im-
proves with larger initial concept weights (c) and a
slower concept weight-saturation rate (β), with the
performance plateauing around β = 4 and c = 5.
When both c and β are both large, there is a longer
exploration phase with more evidence required to
indicate that any given concept should be hidden.

5.3 Efficiency
Acceptance rate When measuring the fraction
of shown sentences that are accepted, we find no
consistent connection to their performance. For
example, the control and the best HIDENEXT, HI-
DENEXTSIMILAR, HIDEALLSIMILAR, and COV-
ERAGEOPT models all have rates between 64-66%
in the noisy feedback case. ORACLESORTED

has the highest however, at 79%, while ORACLE-
GREEDY is only at 69% acceptance. As discussed
in Section 5.2.1, this is because the sentence set
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which maximizes the score is not necessarily the
same as the set with the highest importance sum.

Speed The approaches presented here are able to
update the summary in real-time. Running on a
consumer-grade laptop, each full user-article simu-
lation (which consists of many interactions) takes
between 100ms for the slowest model (GENFIXED

with TextRank), to 2.8ms for HIDEALLSIMILAR,
to 1.3ms for HIDENEXT.

5.4 Human Evaluation

Finally, we run a human evaluation to test a variety
of approaches on multiple measures.

Setup We selected 10 news articles from a va-
riety of sources and on a variety of topics (such
as politics, sports, and science), with an average
sentence length of 20.6, and asked 13 volunteers
to read articles with the help of randomly assigned
HARE models. In total, we collected 70 trials. Par-
ticipants were shown sentences one at a time and
provided feedback to either accept or reject sen-
tences. They were also able to stop reading each
article at any time. After reading each article, they
were asked several questions about the experience,
including the coherence of what they read (how
well-connected consecutive sentences were, from
1 to 5) and how easy it was to decide whether to
accept or reject sentences (from 1 to 5). We also
showed them any unread sentences afterwards in
order to determine how many would-be accepted
sentences were not shown. Coverage, roughly cor-
responding to our automated evaluation metric, can
then be estimated with the fraction of interesting
sentences that were actually shown.
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Figure 4: Summary of human evaluation results. Error
bars indicate 90% confidence intervals.

Results From the human evaluation, we find that
making the decision to accept or reject sentences
is quite easy, with an average decision-ease rating
of 4.4/5. However, departing from the assumptions
of our user model, people ended up reading more
than an average of 50% of the articles (up to 70%
for the control). This could influence the relative
performance of the various models, with a skew
towards models that tend to hide fewer sentences.
We find the acceptance rate to vary from 47% for
LR to 75% for COVERAGEOPT, with the remain-
der around 60%. From Figure 4 we can see that
the best model (highest coverage) appears to be
COVERAGEOPT. This is followed by the control
and LR model, with their 90% confidence intervals
overlapping. This highlights that achieving good
coverage of interesting sentences is not the same
as achieving a high acceptance rate. The worst
performing model according to both human and
automated evaluation is SHOWMODULO. The re-
maining four models significantly overlap in their
confidence intervals. However, it is interesting to
note that HIDEALLSIMILAR performs poorer than
we would expect. Given the positive correlation be-
tween the percent of the article users end up reading
and the model coverage, we can guess that this is a
result of the model automatically hiding too many
sentences. This also leads to low reported summary
coherence, as many sentences are skipped. In con-
trast, the control achieves the highest coherence
(since nothing is skipped), with COVERAGEOPT

near the middle of the pack.

6 Conclusion

In this paper we proposed a new interactive sum-
marization task where the document is automat-
ically refined during the normal flow of reading.
By not requiring an explicit query or relying on
time-consuming and invasive feedback, relevant in-
formation can be conveniently provided for a wide
range of user preferences. We provided an approxi-
mate user model and suitable evaluation metric for
this task, building upon recent advances in unsu-
pervised summary evaluation. To guide examina-
tion of this new task, we proposed a variety of ap-
proaches, and perform both automated and human
evaluation. Future research on this task includes
adapting the interaction model to implicit feedback
and trying more advanced approaches. We could
also consider potential improvements upon the un-
supervised evaluation method, possibly by drawing
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on recent developments in topic modelling (Zhao
et al., 2021).

7 Ethical Considerations

Diversity of viewpoints The HARE task is in-
tended for the design of future user-facing applica-
tions. By design, these applications have the ability
to control what a user reads from a given article.
It is possible that, when deployed without suffi-
cient care, these tools could exacerbate the “echo
chamber” effect already produced by automated
news feeds, search results, and online communities
(Pariser, 2011). However, the ability to influence
what readers are exposed to can also be leveraged
to mitigate the echo chamber effect. Rather than
considering only what user interests appear to be
at a given moment, future HARE models could in-
corporate a diversity factor to explicitly encourage
exposure to alternative views when possible. The
weighting of this factor could be tuned to provide
both an engaging reading experience and exposure
to a diversity of ideas.

Beneficiaries As mentioned in Section 1, those
most likely to benefit from HARE applications
once successfully deployed will be those using
them to read (by saving time and increased en-
gagement) as well as any content publishers who
encourage their use.
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1 Experimental Setup

Computing infrastructure All experiments were
performed on a machine with an Intel Core i7-
6700HQ CPU with 16G RAM and a GeForce GTX
960M GPU.

Hyperparameter searches For parameterized
models, grid searches over the following ranges
were performed:

• SHOWMODULO: k ∈ {2, 3, 4, 5}

• HIDENEXT: n ∈ {1, 2, 3, 4}

• HIDENEXTSIMILAR and HIDE-
ALLSIMILAR: threshold ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

• GENFIXED: frac ∈ {0.25, 0.5, 0.75}

• GENDYNAMIC: ε ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5}

• LR (constant ε): ε ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5}

• LR (decreasing ε): β ∈ {0.25, 0.5, 1, 2, 4}

• COVERAGEOPT: β ∈ {0.25, 0.5, 1, 2, 4} and
c ∈ {0, 1, 2, 3, 4}

2 Detailed Results

Detailed results for those models without full
results reported in the paper are shown here.
For SHOWMODULO and HIDENEXT, results are
shown in Table 1. For summarizer-based models,
results are shown in Table 2. For COVERAGEOPT,
results are shown in Table 3.

SHOWMODULO HIDENEXT

k scoreadv n scoreadv

2 -3.32 1 0.45
3 -7.06 2 0.51
4 -9.87 3 0.19
5 -12.00 4 -0.41

Table 1: Results for the first two simple heuristic mod-
els. For SHOWMODULO, every kth sentence is shown.
For HIDENEXT, the n sentences following a swiped
one are hidden.

frac (for GENFIXED)

summarizer 0.25 0.5 0.75

LexRank -11.18 -3.77 -0.79
SumBasic -10.75 -3.22 -0.19
TextRank -12.28 -4.99 -1.53

ε (for GENDYNAMIC)

summarizer 0 0.1 0.2 0.3 0.4 0.5

LexRank -1.37 -0.53 -0.22 -0.07 0.01 0.06
SumBasic -3.19 -1.47 -0.72 -0.28 -0.05 0.09
TextRank -1.95 -1.02 -0.59 -0.31 -0.18 -0.08

Table 2: Results for the two variations of adapted
generic summarizer models, for each of three extractive
summarizers tested. For GENFIXED, frac indicates
what fraction of the document is shown, after first sort-
ing sentences by importance. For GENDYNAMIC, ε is
used for ε-greedy exploration to estimate length prefer-
ence.



β

c 1/4 1/2 1 2 4

0 0.12 0.22 0.33 0.42 0.50
1 0.51 0.50 0.51 0.52 0.55
2 0.49 0.57 0.60 0.59 0.59
3 0.50 0.53 0.61 0.63 0.63
4 0.49 0.50 0.59 0.64 0.64
5 0.49 0.50 0.55 0.64 0.65

Table 3: Results for the COVERAGEOPT model. c con-
trols the initial estimate for concept importances and β
controls how smoothly a concept shifts between impor-
tant and unimportant.

3 Human Evaluation

Human evaluation was performed via a chatbot de-
ployed on the Telegram chat app1 using their con-
venient API2. A screenshot of the chatbot serving
as a simple HARE interface is shown in Figure 1.
To participate, volunteers were instructed to en-
gage with the publicly accessible bot in the app and
follow instructions provided therein.

Figure 1: A screenshot of the demo in action. For each
sentence, users were able to accept, reject, or stop read-
ing the article at that point.

1https://telegram.org/
2https://core.telegram.org/bots/api



Chapter 6

Conclusion

Toward the goal of improving the reading experience through supporting internal reader mo-
tivation, we have made contributions to three problems in NLP: coherence modelling (Chap-
ter 3), PQ selection (Chapter 4), and personalized summarization (Chapter 5). In this last
chapter we will review our proposed methods for supporting internal motivation (Section 6.1),
summarize our findings (Section 6.2), and finally contemplate future research directions (Sec-
tion 6.3).

6.1 Synopsis
This thesis has studied the problem of supporting internal reader motivation from three direc-
tions:

Reading difficulty Chapter 3 presented a new approach for estimating the coherence of a
document, a property which affects reading difficulty. In particular, it proposed a new sentence
embedding which captures the expected positional distributions of sentences. We evaluated our
method on two types of coherence modelling tasks as well as a related task of summarization.

Situational interest Chapter 4 introduced the new task of PQ selection. PQs are elements
of a news article specifically designed to catch the attention of readers. We proposed a diverse
set of approaches for this task, ranging in complexity. We performed automatic evaluation
of these approaches with a newly constructed PQ dataset, as well as human evaluation. An
in-depth analysis of several approaches was also performed to gain a deeper understanding of
what makes for a good PQ.

Personal interest Chapter 5 introduced a new personalized summarization task called HARE.
The goal of this task is to efficiently incorporate user feedback while they read, so as to summa-
rize the remaining unread part of the document to match their personal interests. We proposed
a new unsupervised evaluation method which can make use of existing news article datasets,
proposed a variety of approaches designed to test several hypotheses about the nature of the
new task, and performed both automatic and human evaluation of these approaches.
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6.2 Summary of Findings

This thesis followed an explorational aim: to investigate novel approaches to supporting inter-
nal reading motivation using machine learning. We now discuss how our work addressed the
objectives initially laid out to achieve this aim while providing a summary of our findings.

Identifying existing or new tasks in NLP whose solutions can be used to address reader
motivation In Section 1.1.2, we identified an abundance of NLP tasks that can be used to
address several aspects of the reading experience (visualized in Figure 1.1). We chose to focus
on three tasks where the literature supported their effectiveness at supporting internal moti-
vation in particular. The first task was coherence modelling. Coherence affects the ease of
comprehension of a text, with more easily readable texts leading to greater reader enjoyment
and interest. The second task was PQ selection. PQs, which often occur in newspapers or on-
line articles, increase the situational interestingness of the article. The third task was HARE, a
type of personalized summarization. This task explicitly aims to increase the personal interest-
ingness (i.e., relevance) of the text. While coherence modelling was a pre-existing task, both
PQ selection and HARE are new tasks developed during the course of this PhD.

Devising novel machine learning approaches to these tasks For the task of coherence mod-
elling, we introduced PPDs, a sentence embedding learned through self-supervision which re-
flects the predicted position distribution of a sentence in a document. These embeddings were
created following the intuition that if a sentence does not occur where its semantics or style
suggest, then it contributes to a lack of coherence. Using these embeddings, we can suggest
a coherent ordering of sentences by sorting them based on the weighted average predicted
quantiles. To estimate overall coherence, we can compute a correlation coefficient between the
suggested ordering and the true ordering.

For the task of PQ selection, we proposed several machine learning approaches. We con-
sidered three motivated sets of handcrafted features, including surface-level features, part-of-
speech features, and affect features. We considered n-gram features at the character and word
level. We also used cross-task models: models trained on tasks we suspected were related to
PQ selection. We also considered three groups of neural architectures for the task, including a
neural mixture-of-experts.

For HARE, we proposed simple heuristic approaches based on sentence similarity and
proximity, cross-task approaches based on generic summarization, and more flexible machine
learning approaches to adapt to user feedback. The first machine learning model used logistic
regression and distributed sentence embeddings to predict future user feedback. The second
machine learning approach was model-based, in that it assumed a model of user behaviour
based on a discrete set of user interests and length preference, and used incoming feedback to
refine the parameters of that model.

Evaluating and examining these approaches to determine what they can teach us about
the various factors of reader motivation For coherence modelling, we performed auto-
matic evaluation on two types of coherence tasks. We demonstrated that the simple PPD-based
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approach is competitive with more advanced and specialized systems. We saw that this ap-
proach is amenable to visual approximation – by simply visualizing the PPD sequence, we can
identify problem areas of the text or even identify natural locations to split the text into smaller
coherent sections or paragraphs. The quantitative success of this approach supports our in-
tuition on the importance of sentence ordering on coherence and thus readability, based on a
normative understanding: a text is coherent if the sentences occur in similar global positions
to similar sentences in similar types of documents. In addition, driven by the knowledge that
introductory sentences tend to make for good summary sentences, we showed that using PPDs
to identify introductory-like sentences outperforms other heuristic extractive summarizers.

We evaluated our PQ selection approaches on a newly constructed dataset for the task.
Overall, we found that the neural network approaches performed the best, particularly the
mixture-of-experts. The character n-gram model followed. The handcrafted features gave a
wide range of performances, with the single best feature being the number of quotation marks
present. Among the cross-task models, the clickbait model performed best, supporting the idea
that writing a PQ is more about catching reader attention than conveying the important details
of the article. A couple more factors that turned out to be important for creating PQs (and thus,
catching attention) were the use of abstract subjects, usage of personal pronouns and verbs,
and ensuring high readability.Human evaluation of several of the approaches confirmed their
general performance ranking, and suggested that the best human-rated model, the character
bigram model, performs on par, or even better than copy editor-selected PQs.

For our HARE summarization models, we performed automatic unsupervised evaluation,
which relied on an existing dataset of news articles and a model of user interests and behavior.
This evaluation was performed in both low and moderate noise settings. Overall, we found
that the simple heuristic models performed the best, especially in the moderate-noise setting.
In particular, the summarizer which simply hid all sentences semantically similar to disliked
sentences performed best. The summarizer which relied on a more detailed model of user
behavior in order to optimize coverage of interesting concepts performed best in the low-noise
scenario, as well as in the human evaluation. As a result of the human evaluation, we also found
that the process of providing simple feedback while reading was rated as very easy. This project
supports the idea that improving personal interestingness of reading material does not need to
be a time consuming or interruptive process. Rather, this work suggests that enough preference
information can be conveyed while reading in order to dynamically update a document to match
estimated user interests and length preference.

6.3 Future Directions
While the individual integrated articles briefly mention directions for future work, we recount
and expand upon them in this section.

PPDs In Chapter 4, we applied PPDs to estimating coherence in a small number of domains.
It may prove insightful to apply it to a wider range of texts, such as conversations or even movie
scripts. In this way, we might be able to visually analyze their coherence. Additionally, our
evaluation relied on a rather synthetic form of incoherence, namely sentence shuffling. It would
be interesting to see how well this approach matches human coherence rating of natural texts.
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Integrating PPDs into other NLP tasks such as text generation or author identification may also
be considered. Methods for text generation are known to suffer from large-scale incoherence
[111], and such a technique may be integrated in a differentiable way to improve coherence
of generative methods. For author identification, patterns in the progression of thoughts may
form a “fingerprint” which can be captured by PPDs.

PQs In Chapter 4, when constructing our dataset and evaluation methodology, we assumed
that all PQs are of the same quality. However, we can presume that some PQs will do a better
job at catching attention than others. Discovering what distinguishes between good and great
PQs would be interesting. Online news sites may be able to generate this kind of quality
data with A/B testing, similar to how many sites already implement such testing for headline
optimization [43]. Additionally, our work on PQs focused on selection, which captures only
some of the true complexity of creating PQs. Rather than only select individual sentences, a PQ
generation tool should be able to select one or more neighboring (not necessarily contiguous)
sentences and perform augmentations (such as adding details or removing clauses) to turn it
into a high-quality PQ. This is also related to the problem of how to suggest larger scale edits
to a phrase which can make it more PQ-worthy while maintaining its original meaning and
veracity.

In addition to simply selecting or generating PQs, we could consider the problem of rec-
ognizing where in the text PQs would bring the most value. Perhaps this could be done by
estimating where the least interesting parts of the text are? In this way, PQs could maintain
reader interest where it is most critical. We can also consider dynamically adding PQs based
on real-time estimations of reader engagement or reader interest. If we know that a reader
finds some topics more interesting, PQs may be personalized and more effective at maintaining
attention.

HARE In Chapter 5, our experiments considered a simple type of explicit feedback for the
interactive personalized summarization task. To further reduce the effort required by users to
obtain personalized summaries, we should consider implicit feedback methods such as dwell
time or gaze tracking. This direction brings extra difficulties however, especially in increased
noise of feedback signals. To handle this increased noise, as well as improve other approaches
to HARE, we can consider maintaining user profiles, so that we do not need to learn their
interests from scratch every time they read a new article. By incorporating profiles, we can also
improve the quality of personalized summaries by estimating what the user already knows. In
this way, depending on what articles a user has previously read, we could hide more or less of
the content in the current article.

Our work on HARE also considered rather simple approaches, which is important to es-
tablish baselines for future work. More advanced approaches should certainly be considered
in future work. One promising direction is meta-learning, i.e., learning how to learn from
user feedback for summary personalization. For example, we considered a logistic regression
model which was trained with user feedback to predict the feedback on later sentences. With
noisy feedback, few training samples, and high-dimensional sentence embeddings, the model
is slow to learn. If we could learn in advance what embedding dimensions tend to be the most
discriminative or learn what kind of dynamic exploration vs. exploitation strategy to use when
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deciding to show sentences, performance may be improved.

Beyond text This thesis considered ways of supporting internal motivation when reading.
A primary application area of this research is in education, where developing reading skills
and obtaining knowledge through reading is important. However, an increasingly large portion
of learning these days is done through video [24], especially during the current COVID-19
pandemic where many students are learning from home. If we ask the question of how we
can improve the video watching experience, we can first see what methods considered in this
thesis have video analogues. For example, does the coherence of a video presentation affect
viewer enjoyment or understanding of the material being presented? And how might we handle
the more complex forms of incoherence in videos which can occur in both the visual and
audio dimensions? Does there exist an analogue to the pull quote in video presentations?
And can we learn to automatically identify, extract, and leverage these to maintain reader
interest? Finally, would it be feasible to adapt the idea of HARE summarizers to videos? That
is, can we use minimally invasive viewer feedback to augment a video being watched in real
time? Rather than sitting through an hour long lecture and falling asleep, such a personalized
video summarizer might identify what parts the student could skip given their interests, current
knowledge, or time constraints.
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