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Abstract

This thesis studies the impact of anti-predation strategy on the population dynamics of predator-

prey interactions. This work includes three research projects.

In the first project, we study a system of delay differential equations by considering both

benefit and cost of anti-predation response, as well as a time delay in the transfer of biomass

from the prey to the predator after predation. We reveal some insights on how the anti-predation

response level and the biomass transfer delay jointly affect the population dynamics; we also

show how the nonlinearity in the predation term mediated by the fear effect affects the long

term dynamics of the model system. These results seem to suggest a need to revisit existing

predator-prey models in the literature by incorporating the indirect effect and biomass transfer

delay.

In the second project, we propose two model systems in the form of ordinary differential

equations to mechanistically explore trophic cascade of fear effect. The three species model

only considers the cost of the anti-predation response reflected in the decrease of the produc-

tion, while the four species model also considers the benefit of the response in reducing the

predation rate. We perform a thorough analysis on the dynamics of the two models. The re-

sults reveal that the 3-D model and 4-D model demonstrate opposite patterns for trophic and

such a difference is attributed to whether there is a benefit for the anti-predation response by

the meso-carnivore species.

In the last project, to study the evolution of anti-predation strategy, we consider three

species predator-prey models in which the two competing prey species have the same pop-

ulation dynamics but different anti-predation strategies. We identify the existence conditions

of a singular anti-predation strategy, as well as conditions for it to be a local evolutionarily

stable strategy. We use some examples to illustrate our results and compare the results between

two different types of predators. Numerical simulations are also carried out to verify our theo-

retical findings and to demonstrate that three types of outcomes are possible: the mutant fails

to invade, or the mutant invades and replaces the resident, or the mutant invades co-persist with

the resident. These results help us understand more about the role anti-predation response can

play in conveying competitive advantages.
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Summary for Lay Audience

Predator-prey interaction is an important topic in ecology and evolutionary biology. Anti-

predation response is a common behavior of prey in predator-prey interaction but it is widely

ignored in existing predator-prey models and management of ecosystems because the impact

of anti-predation response can not be observed as easily as direct predation. Recent researches

showed empirical evidence in both theory and practice that anti-predation strategy can strongly

affect the population size of the prey species and therefore, should not be ignored. Preys have

many different anti-predation strategies to fight against predators. Some strategies allow in-

dividuals to improve their fitness while other strategies could lead to extinction. Therefore,

studying the impact of these strategies is of theoretical and practical importance for determin-

ing the long-term dynamics of the populations. In this thesis, we use mathematical tools to

investigate this problem. We develop models which consider the costs and benefits of anti-

predation strategies simultaneously. Secondly, we use mathematical methods and theories to

analyze our models. The main objective of this thesis is to reveal some new insights from con-

sidering anti-predation strategies and explore the existence of the “best” anti-predation strategy,

a strategy which will maximize the long-term survival of the species. Our goal for this thesis is

to understand the influence of anti-predation strategies and accordingly suggest ways by which,

possible manipulations to the anti-predation response of animals in some area may help pre-

serve the biodiversity of the ecosystem. Some results obtained in this thesis can also be applied

to control of some un-wanted biological species in agriculture and forest.
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Chapter 1

Introduction

Predator-prey interaction is considered one of the most fundamental and important topic in both

ecology and mathematical biology[5, 29]. In the real world, predation is most common event in

every ecosystem. For every pair of predator and prey, the interaction seems like the same. The

predator catches and eats the prey. However, the mechanism behind predator-prey interaction

is complicated and species specific, and thus attracts wide research interests. Predators are

mainly classified into two different types, specialist and generalist [19]. A generalist predator

such as most omnivores can consume a wide range of prey species while a specialist predator’s

diet is limited to a very small range, sometimes even only to a unique prey species. Different

predator types directly affect the ability for adapting to the environment and have effects on

survival probability.

The core problem of predator-prey interaction in population ecology is to characterize the

population size among different predator and prey species. To this end, ecologists spend mas-

sive time and resources on field studies. On the other hand, in order to develop general theory,

mathematicians use mathematical modeling to study the dynamics of predator-prey interac-

tions. The early pioneering and probably most well-known predator-prey model [23, 24, 44, 45]

was proposed by Lotka-Volterra about a century ago. There has been a large number of liter-

ature on the models for predator-prey interactions since then. Considering spatial invariance

and ignoring the maturation, a general predator-prey model can be described by a system of

1



2 Chapter 1. Introduction

ordinary differential equations of the form


du
dt

= f1(u(t)) − p(u(t), v(t))v(t),

dv
dt

= f2(v(t)) + cp(u(t), v(t))v(t),
(1.1)

where u(t) and v(t) are the population densities of the prey and predator respectively. f1(u)

and f2(v) represent the demographies of the prey and predator in the absence of other species.

p(u, v) is known as the functional response which models the encounter between predator and

prey. The constant c is the conversion rate in biomass transfer from predation. In the classic

Lotka-Volterra model, p(u, v) is chosen to be proportional to u with a constant capture rate

and is recognized as Holling Type I functional response [17]. Later literature argued that

this kind of constant capture rate is only valid for a narrow range of predations such as for

passive feeders. Therefore, Holling Type II functional response is introduced as p(u, v) = au
1+ahu

where a is the capture rate and h accounts for handling time. In this functional response,

per capita capture rate of prey from predation decreases when its population size increases

and predator consumption saturates when the prey’s population reaches high level. Holling

Type III functional response in the form p(u, v) = au2

1+ahu2 has similar saturation mechanism to

Holling Type II when prey’s density is high. But different from Holling Type II, it suggests

a low per capita capture rate for prey when it is rare and this rate reaches maximum value

at an intermediate level of the prey’s density. All these types of functional responses have

been studied in vast and rich literature. While the functional responses mentioned above are

all driven by the density of the prey, some further modifications suggest that the functional

response can also be predator-density-dependent [3, 36, 1, 18, 39]. In general, the encounter

mechanism between predator and prey in direct predation is complex and heterogeneous among

different pairs of species. Each of the aforementioned types works for a range of predations

but fails for the others.

However, unlike the rich understanding and investigation of direct predation, classic predator-

prey models and studies on ecosystem management usually ignored the indirect effect between

predator and prey[8], such as reductions in prey reproduction due to the perceived risk of

predation and energy cost of prey in induced defense. This is mainly because these indirect
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effects cannot be easily observed, in contrast to direct predation which can be easily observed,

measured and incorporated into the change of population density. Lacking awareness of these

anti-predation responses, their impact on population dynamics was traditionally thought to be

small when compared to direct predation. Recently, empirical studies have shown that indi-

rect effects like anti-predation responses can be large, sometimes even larger than the effects

from direct predation. Pangle et al[32] examined the indirect effect of predatory spiny water

fleas (Bythotrephes longimanus) on zooplankton. The result showed that the indirect effects on

prey growth rate were more than seven times larger than direct predation. Zanette et al [49]

studied the fear effect of song sparrows by eliminating direct predation and manipulating fear

of predator by its playback. They observed a 40% reduction in offspring of song sparrow by

only perceiving predation risk. More evidence can be found in [37, 30, 34]. These field study

results suggest the anti-predation response alone is powerful enough to regulating the popu-

lation dynamics in a predator-prey interaction and therefore, motivate us to revisit the classic

mathematical modeling on predator-prey system by incorporating anti-predation response to

reveal new insight into complex dynamical behaviors in predator-prey interactions.

Mathematical modeling on biological problems is a powerful tool for understanding main

features of the field work and predicting the phenomenon which have not been examined in

experiments. Wang et al[46] proposed a predator-prey system to consider some indirect effect

motivated by the field study in [49]. The model is formulated as follow:


du
dt

= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − g(u(t)) v(t),

dv
dt

= c g(u(t)) v(t) − m v(t),
(1.2)

where u and v denote the population density of prey and predator respectively. r0 is the intrinsic

growth rate of prey. d and m are natural mortality rate of prey and predator respectively. au

is the density dependent mortality rate of prey due to intra-species’ competition. g(u) is the

functional response accounting for the encounter mechanism of the predator and prey. The

indirect fear effect is incorporated in the model in terms of function f (k, v) where k is the

positive parameter denoting the level of anti-predation response. This model assumes a cost

in reproduction because of the fear of predator. So naturally, f (k, v) is a decreasing function
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with respect to both k and v. According to the analysis, high level of anti-predation response

in the model with Holling Type II functional response can forbid the occurrence of periodic

solution and stabilize the system. Furthermore, when anti-predation response is low, it is pos-

sible to have limit cycles because of Hopf bifurcation. The Hopf bifurcation in model (1.2)

can be either supercritical or subcritical while the models without fear effect can only have

supercritical Hopf bifurcation. The subcritical Hopf bifurcation can lead to an unstable limit

cycle and as a result, a bistability scenario arises from such kind of bifurcation. These differ-

ences between (1.2) and classic predator-prey system show that incorporating indirect effect

into modeling is essential, and can cause substantial differences.

Following their pioneering work, there have been more predator-prey models taking indi-

rect effect into account. Wang and Zou [47] considered an age-structured model incorporating

fear effect. They used delay differential equation model to study avoidance mechanism of

adult prey. The result suggested either strong adaption of adult prey or huge cost of anti-

predation response can destabilize the system and therefore introduce periodic behavior. Wang

and Zou [48] also considered spatial heterogeneity of the environment and proposed a partial

differential equation model to study the pattern formation induced by anti-predation response.

This thesis is deeply motivated by the important findings in field study on anti-predation

response as well as previous mathematical modeling and analysis by Wang [46]. But one

central question about the model (1.2) is that they only considered the cost of anti-predation

response. In the real world, anti-predation strategies are applied mostly because of its protective

benefits. Purely considering costs of anti-predation response may miss some key features about

the response itself and also under or over estimate the change in population dynamics. Another

direction to extend the study of anti-predation response is to consider more than two species

interactions. In real ecosystems, the structure of food web is more complex and can have

interesting biological phenomenon. For example, Suraci et al [41] found that anti-predation

response can not only affect the prey but also have great impact on the species in lower trophic

level, which leads to a trophic cascade[42]. So we examine the food chain models to find out

the existence and direction of trophic cascade induced by anti-predation response.

Thus, the main questions in this thesis have been raised to explore how the costs and benefits
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of anti-predation response affect population dynamics of predator and prey? Will anti-predation

strategies stabilize or destabilize a predator-prey system? What role does anti-predation strat-

egy play in more complex food chain ecosystems? When should a prey adopt anti-predation re-

sponse and when it should not? Is there an optimal anti-predation strategy? How anti-predation

strategies evolve in the predator-prey interaction?

In this thesis, we address these problems by qualitatively analyzing the models with anti-

predation response and numerically exhibiting the population dynamics of the species involv-

ing in the interaction. In Chapter 2, we start from a two species predator-prey system and

demonstrate the integrated impact of anti-predation strategies and digestion delay. We show

both the anti-predation strategy and the time delay in biomass transfer can play important roles

in determining the long term population size of both predator and prey species. In Chapter 3,

we examine the food chain models with anti-predation response. The occurrence of trophic

cascade illustrates that the response not only affects the single species but also changes the dy-

namics of whole ecosystem. In Chapter 4, we study how the anti-predation strategies evolves

and compare two predation types to show that possible endpoints of evolution are different

depending on the type of predator. In Chapter 5, we briefly summarize the main results of this

thesis and discuss some future directions of studying anti-predation response.

The rest of introduction exhibits basic ecological aspects mentioned in this thesis: costs

and benefits of anti-predation response (Chapters 2, 3 and 4) and trophic cascade (Chapter

3), along with the main mathematical tools used in this thesis: stability analysis of nonlinear

system (Chapters 2,3 and 4) and adaptive dynamics (Chapter 4).

1.1 Costs and benefits of anti-predation response

The impact of anti-predation response on population dynamics can not be understood without

understanding of its trade-off mechanism. Direct protective benefits such as avoiding detec-

tion [6, 7], escaping from direct predation [7, 28] and development of beneficial behaviors can

be considered as reducing the predation risk, which are intuitive, and therefore are reflected in

the predation term in our model [8, 43].
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Compared to the benefits, the costs of anti-predation response are much more complicated

and widely ignored in study of wildlife management. This is mainly due to lack of general

theory to measure the costs in comparison with benefits and direct effect. The costs of anti-

predation response include classical allocation costs which are resulted from the use of en-

ergy and material to form and maintain the anti-predation behaviors [4, 20, 43]. For example,

most escape strategies need higher energy requirement and form energetic consequences on

reproduction. A possible type of costs induced by aforementioned allocation cost is called

opportunity costs [11]. For example, a species may leave a habitat with abundant resource to

avoid detection by predator and therefore lose a potential growth opportunity because of the

anti-predation response. This kind of costs is almost impossible to measure. Also there are

self damage costs [15, 31, 38] like when honeybee use its sting and sacrifice to defense colony.

Among these different types of costs, the mechanism is really complicated and species specific.

In order to capture the main feature and also make it mathematically tractable, in this thesis,

we assume all the costs affect only the intrinsic growth rate of the prey species.

1.2 Trophic cascade

In real world ecosystems, the predator-prey interactions most likely involve more than just

two species. Most organisms play the roles of both predator and prey simultaneously. So it

is natural to extend our interest of anti-predation response into food chain environment. In

a complex food web, apex predators has a very important position to regulate the food web

below them [42]. This is understood as a top-down process which counters the bottom-up flow

from productivity. In 1960, the famous “green world” hypothesis was proposed by Hairston,

Smith and Slobodkin [12]. In short, the hypothesis claims the effect that carnivores’ proper

consumption of herbivores can enrich plant and keep our world green. This hypothesis has

motivated ecologist to consider trophic cascade. But because top-down processes are difficult

to study (need large space, long timescale and are expensive to implement), the understanding

of these effects is far behind the understanding of bottom-up phenomenon. So the acceptance of

“green world” hypothesis has been delayed. Recently, empirical evidences have shown severe

effects that break the balance of ecosystems due to the loss of top predator [2, 27, 35]. The
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importance of these top-down effects to sustain the ecosystem and preserve the biodiversity

has widely captured research interests in both field experiments and theory development.

For example, a tri-trophic mesopredator cascade was examined by Suraci et al [41] by ma-

nipulating the fear of large carnivore to cause the behavior change of mesocarnivore. As a

result, the prey of the mesocarnivore gained benefits reflected in population growth and further

affected lower trophic level species. This leaves an avenue for us to consider applying manip-

ulated anti-predation response as a control tool to shift the balance of ecosystem and conserve

the biodiversity.

1.3 Mathematical theories and methodologies

Mathematical modeling in biology are characterized by rate of changes in biological mean-

ingful variables [5, 29]. In this thesis, we use differential equations to continuously track the

changes in population sizes. These differential equations use time as independent variable and

populations as state variables to demonstrate the development of species with time varying. To

connect these mathematical models with real world problems, we first use dynamical system

theory to check the well-posedness of each model [33, 40, 13]. In more details, we show the

global existence of the unique solution and verify that the biological meaningful state variables

(such as populations) are non-negative and bounded. Most modern differential equation models

for population dynamics are nonlinear systems and therefore, it is hard and impossible in most

of the times to find the solution explicitly. So it is essential to use some mathematical tools

and numerical simulations to examine the qualitative behavior of the systems. In particular,

for population dynamics, we use standard stability analysis for nonlinear systems to reveal the

long term behavior of the systems. For phenotypic evolution problems, we use the method of

adaptive dynamics to study the evolutionary stability of the traits. Next, I briefly outline the

main ideas of these core mathematical analysis techniques.
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1.3.1 Stability analysis of nonlinear systems

By dynamical system theory, in deterministic differential equation models, the whole dynamics

is determined by the flow defined by the differential equations. We mainly seek for the asymp-

totic behavior of the models since it predicts the final scenario of our interested biological

phenomena. This dynamical terminology often refers to the so-called α-limit set and ω-limit

set depending on time going forward and backward respectively.

To study these limit sets, a common start point is to analyze the time independent solutions,

called equilibria. They are also called steady states of the systems. Stability of equilibria can

provide rich information of the whole dynamical system. Here, stability refers to the clas-

sic Lyapunov stability. That is, an equilibrium solution is called locally stable if trajectories

starting close to the equilibrium will remain close to it forever. It is called locally asymptoti-

cally stable if any trajectories start close will eventually converge to this equilibrium solution.

It is called globally asymptotically stable if trajectories start everywhere will eventually ap-

proach to the equilibrium solution. By Hartman-Grobman Theorem [33], near a hyperbolic

equilibrium solution, the dynamics of a nonlinear systems is equivalent to that of its corre-

sponding linearization. Therefore, local stability of an equilibrium solution can be obtained

by the linearization around the equilibrium solution, which is determined by the eigenvalues

of the Jacobian matrix of the linear system. If all eigenvalues of the Jacobian matrix at an

equilibrium solution have negative real part, then the equilibrium solution is locally asymp-

totically stable. If at least one eigenvalue has positive real part, then it is unstable. However,

with the changing of the parameters, the local stability of an equilibrium solution may change,

such a phenomenon is called local bifurcation. Some well-known bifurcations such as saddle-

node bifurcation, transcritical bifurcation and pitch-fork bifurcation [33] account for changes

of stability of equilibrium solutions respectively such that the dynamical behavior of the system

dramatically vary with the parameters passing some threshold values.

This linearization strategy is always applicable unless the equilibrium solution is non-

hyperbolic, in another words, some eigenvalues of the corresponding Jacobian matrix have

zero real part. In this case, the local behavior of the original nonlinear system can not be full

characterized by its corresponding linear system and more complicated dynamical structure
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like periodic orbits may occur. This kind of bifurcation by which limit cycle is created when

the stability of the equilibrium solution changes, is called Hopf bifurcation. To confirm the

existence of Hopf bifurcation, we also need to check the transversal condition that ensures the

pure imaginary eigenvalue crosses the imaginary axis in complex plane with the change of pa-

rameter. The stability of these limit cycles induced by Hopf bifurcation can be determined by

center manifold theory which is often related to the normal form theory [33].

On the other hand, global stability is more difficult to determine because of its nonlinearity.

There are no generally applicable tools for this problem. But for some special cases, Lyapunov

function method is available to decide the global stability [33]. A strict Lyapunov function

is a non-negative function of state variables. It is zero at the equilibrium solution and strictly

positive at anywhere else. If the derivative of this Lyapunov function with respect to the time

variable along the model system is negative at everywhere in the feasible region, then the

equilibrium is globally asymptotically stable. The construction of Lyapunov functions, often

referred as Lyapunov direct method, can be found in some standard models. But one should

notice at present, there is no general way to construct a Lyapunov function for a general system.

1.3.2 Adaptive dynamics

Different from the basic mathematical theory in studying population dynamics, adaptive dy-

namics is introduced about thirty years ago to solve the problems involving phenotypic evolu-

tion [9, 26]. In adaptive dynamics, the goal is to examine the evolution of a continuous trait,

a phenotype for a species. The trait can be represented as a real number. Imagine there is a

resident strain which has reached a steady state by its trait. Now consider a rare mutant who

plays a different strategy. The question is whether it can invade or not. To answer this question,

invasion analysis is applicable to check the growth rate of the mutant at current environment.

To this end, we can define a fitness function of the rare mutant says, h(r,m), depending on both

the resident strategy, r and the mutant strategy, m. The fitness function is directly related to a

condition that determines whether the mutant can have a growing population or not. That is,

when h > 0, the mutant can invade and when h < 0, the mutant will be wiped out. Notice that

h(r, r) = 0 when the mutant plays same strategy as the resident.
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Next, we can define the selection gradient s(r) =
[
∂
∂mh(r,m)

]
m=r

. This shows the evolution

direction of the trait. When s(r) > 0 (< 0), a slightly stronger (weaker) strategy is favored.

The strategy r∗ that satisfies s (r∗) = 0 is called an evolutionary singular strategy. A central

concept in evolutionary biology is called evolutionarily stable strategy (ESS)[25, 14]. That is,

a strategy once played by the resident, any mutant can never invade it by applying a different

strategy. As we can see, the singular strategy is a candidate for an evolutionary stable strategy.

Since we have h (r∗, r∗) = 0 and s (r∗) = 0, we only need C22 =
[
∂2

∂m2 h(r,m)
]

m=r=r∗
< 0 such that

h (r∗,m) has a local maximum value zero when m = r∗ along the direction of varying m only,

that is, for any other nearby strategies, the fitness is negative and the invasion is impossible.

Another related concept is called convergence stable strategy. A singular strategy r∗ is called

a convergence stable strategy if a resident play a nearby strategy r will always be invaded

by a mutant with strategy m lying in between r and r∗. To this end, we need the selection

gradient s(r) be a decreasing function around r∗, that is, ds(r)
dr

∣∣∣
r=r∗

=
[
∂2h(r,m)
∂r∂m +

∂2h(r,m)
∂m2

]
m=r=r∗

<

0. Remember we have h(r, r) = 0, so
[
∂2h(r,m)
∂r2 +

2∂2h(r,m)
∂r∂m +

∂2h(r,m)
∂m2

]
m=r

= 0. We can define

C11 =
[
∂2

∂r2 h(r,m)
]

m=r=r∗
and therefore, the criterion of convergence stable can be rewritten as

C11 > C22. For mutual invasibility, we need both h(r,m) > 0 and h(m, r) > 0, the generic

condition can be concluded as C11 > −C22.

One should be careful about the evolutionarily stability and convergence stability. In gen-

eral, they are not related. A singular strategy that is both evolutionarily stable and convergence

stable is called a continuously stable strategy (CSS), which is a possible endpoint of the evolu-

tion. To avoid confusion between continuously stable strategy and convergence stable strategy

(which is also called CSS in some literatures [22]), we follow [9] and use the term evolution-

arily attraction strategy (EAS) to denote a convergence stable strategy.

After determining the local evolutionary stability, a further question is whether the success-

fully invaded strain replaces the resident to become a new resident or coexists with the resident

to form a dimorphic resident. However, this requires nonlinear analysis and there is no general

method to solve the problem. Only in some special models, these properties can be determined

by relating to the global stability of dynamical systems [10, 16, 21].
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Chapter 2

On a predator-prey system with digestion

delay and anti-predation strategy

2.1 Introduction

Predator-prey system is one of the most important topics in mathematically biology. Since

the early pioneering model by Lotka-Volterra [15, 16, 22, 23], there has been a vast and rich

literature on the models for predator-prey interactions. Without considering spatial and age

structure, a predator-prey model can be generally described by a system of ordinary differential

equations of the form 
du
dt

= f1(u(t)) − p(u(t), v(t))v(t),

dv
dt

= f2(v(t)) + cp(u(t), v(t))v(t),
(2.1)

where u(t) and v(t) are the population densities of the prey and predator respectively under con-

sideration. Here, f1(u) is the growth rate of the prey population in the absence of the predator,

and f2(v) is the growth rate of the predator population in the absence of the prey; p(u, v) is

referred to as the functional response which accounts for the predation rate and biomass trans-

fer after predation, from the prey to the predator; and the constant c explains the efficiency in

biomass transfer. For some frequently used forms of the functional response p(u, v), see, e.g.,

[2, 8, 18] for some earlier works and [1, 11, 19] for some more recent works.

Predator-prey ODE models of the form (2.1) only consider the direct effect between the

16
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predator and prey, reflected by the predation term. In the real world however, presence of

predators also has indirect effects on prey population, in various ways. For example according

to a recent field experimental study on song sparrow population by Zanette et al [29], the

perception of predation risk can reduce the number of prey’s offspring by as much as 40%, even

without any direct predation. This evidence showed that the indirect effect can be as significant

as direct predation for some species, sometimes even more significant. This phenomenon

has attracted some biologists, both theoretical and experimental, and there have been some

biological hypotheses proposed on such effects and some field experiments reported confirming

such effects. See, e.g., [4, 5, 13, 14, 29] and the references therein.

The aforementioned preliminary biological studies strongly suggest that the neglect of in-

direct effect due to fear in the traditional predator-prey models, such as models of the form

of (2.1), may not be reasonable for many species. This means that the existing mathematical

models for predator-prey interactions need to be modified to include the fear effect that is in-

direct. Recently, Wang et. al. [24, 25, 26] made some initial efforts along this direction by an

ordinary differential equation (ODE) model, a delay differential equation (DDE) model, and a

partial differential equation (PDE) model respectively to address different aspects of the anti-

predation responses of the prey caused by the fear. This work is mainly motivated by Wang et.

al. [24] which proposed the following ODE model


du
dt

= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − g(u(t)) v(t),

dv
dt

= c g(u(t)) v(t) − m v(t),
(2.2)

where u is the population density of prey species , v is the population density of predator

species, r0 is the reproduction rate of prey in the absence of predator, d is the natural (density

independent) death rate and the term au2 = (au)u reflects the crowing effect with au accounting

for density dependent death rate, c is the biomass transform efficiency constant. The function

g(u) is the functional response which is assumed to depend on the prey population only. Here

the function f (k, v) is incorporated into the model to account for the prey’s anti-predation re-

sponse with the positive parameter k measuring the response level due to the prey’s perceived

fear, and hence, f (k, v) is decreasing in k and v. By analyzing this model, Wang et al [24]
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obtained some interesting results on how the anti-predation response affects the population

dynamics of this predator-prey model.

Obviously, in (2.2) only the cost of the anti-predation response in prey’s reproduction is

considered, but the benefits of such responses are ignored. However, there should be some

benefits, as the prey’s anti-predation response will obviously decrease the chance of the prey

being caught by predators. This suggests a replacement of g(u) in (2.2) by g(k, u) which is

decreasing in the response level parameter k. Moreover, in (2.2) it is assumed that the biomass

transfer from prey to predator after predation is instantaneous. But in reality, such transfer

takes time (see, e.g., [6, 27, 12, 28] and the references therein). With the above observations of

the mentioned two drawbacks in (2.2), we propose, in this chapter, the following modification:


du
dt

= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − g(k, u(t)) v(t),

dv
dt

= c g(k, u(t − τ)) v(t − τ) − m v(t).
(2.3)

where τ ≥ 0 is the average time needed for biomass transfer after predation from prey to

predator. Here, by the meanings of the parameter k, and the non-negative functions f (k, v) and

g(k, u), it is reasonable to pose the following assumptions:



f (0, v) = 1, f (k, 0) = 1, ∂ f
∂k < 0, ∂ f

∂v < 0,

limk→∞ f (k, v) = 0, limv→∞ f (k, v) = 0,

g(k, 0) = 0, ∂g
∂k < 0,

limk→∞ g(k, u) = 0.

(2.4)

This model is a system of delay differential equations and hence is of infinite dimension. In

the rest of this chapter, we will analyze this infinite dimensional dynamical system. To make

the analysis more explicit and for convenience of comparison, we will follow Wang et al [24]

to consider two particular forms for the functional response g: (i) Holling Type I (linear) and

(ii) Holling Type II. The main concern is the long time dynamics and thus, we will perform

stability analysis by employing the stability theory and methods for delay differential equations.

For the linear functional response mediated by the prey’s anti-predation response, we find that
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there are two thresholds for the anti-predation strategy k: when k is large, the prey species can

always survive from the predation and predator species will die out; an intermediate value of k

will lead to a stable co-existence equilibrium; when k is further decreased to a very small level,

the co-existence equilibrium becomes unstable and a Hopf bifurcation occurs, leading to the

occurrence of a stable periodic solution. This is in strong contrast to the results for (2.2) in [24],

where there is no Hopf bifurcation when the functional response is linear. For the Holling Type

II functional response mediated by the prey’s anti-predation response, we do similar analysis

and the analytic results reveal how the cost and benefit of the prey’s anti-predation response

interplay to affect the population dynamics. We also perform some numerical simulations to

confirm our analytic results, and to explore, more visually, how the anti-predation strategies

and the biomass transfer delay will impact the population dynamics.

The remainder of this chapter is organized as follows. In Section 2, we will address the

well-posedness of the model system (2.3) including the existence and uniqueness of solution

to (2.3) with biologically meaningful initial conditions, the positivity and boundedness of the

solution. In Section 3, we investigate the existence and stability of equilibria. To this end, we

consider two particular forms for the functional response g, with Subsection 3.1 dealing with

the linear functional response mediated by the prey’s anti-predation response, and Subsection

3.2 covering the case of Holling Type II functional response. In Section 4, we present some

numeric results to confirm and demonstrate our analytic results. In Section 5, we summarize

our main results and discuss their biological implications. We also discuss some possible future

projects along this direction of fear effect in predator-prey interactions.

2.2 Well-posedness of the model

The model (2.3) is a system of delay differential equations for which an initial condition needs

to be specified on the interval [−τ, 0]. Considering the biological meanings of the variables u

and v, non-negativity is required, motivating the following initial condition


u(θ) = u0(θ),

v(θ) = v0(θ),
(2.5)
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where (u0(θ), v0(θ)) ∈ C
(
[−τ, 0],R2

+

)
.

By the fundamental theory of functional differential equations (see, e.g., Hale and Verduyn

Lunel [9] ), the system (2.3) -(2.5) has a unique solution (u(t), v(t)) = (u(t, u0, v0), v(t, u0, v0))

which exists in a maximal interval [0,Tm). We now prove the well-posedness of (2.3) in the

sense that u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0,Tm), and Tm = ∞ meaning that the solution exists

globally. Indeed, the non-negativity of u(t) and v(t) is a direct result of Theorem 2.1 in Smith

[20]. To prove that Tm = ∞, by the extension theory for delay differential equations (see, e.g.,

Hale and Verduyn Lunel [9]), we just need to establish a priori boundedness for the solution.

To this end, we consider W(t, τ) = u(t − τ) + v(t)/c. Simple calculations lead to

W ′(t) = r0 u(t − τ) f (k, v(t − τ)) − d (u(t − τ)) − a u2(t − τ) −
m
c

v(t)

≤ (r0 − d) u(t − τ) −
m
c

v(t) − a u2(t − τ)

≤ r0 u(t − τ) − a u2(t − τ) −min(d,m) W

≤
r2

0

4a
−min(d,m) W =:

r2
0

4a
− µW,

where µ = min(d,m/c). This implies that lim supt→∞W(t) ≤ r2
0/(4aµ), concluding the bound-

edness of u(t − τ) + v(t)/c. Since we have already shown that u(t) and v(t) are non-negative,

u(t) and v(t) are also bounded.

Combining the above, we have proved the well-posedness of (2.3)-(2.5) as stated in the

following theorem.

Theorem 2.2.1 Initial value problem (2.3)-(2.5) has a unique solution which exists for all t ≥ 0

and is bounded in [0,∞).

2.3 Equilibria and their stability

In this section, we investigate the long time behaviour of solutions to (2.3)-(2.5). To be more

concrete, we will consider two particular forms for the functional response g(k, u): (i) linear;

(ii) Holling Type II.
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2.3.1 Model with linear functional response

In this subsection, we consider g(k, u) being linear in u, that is, g(k, u) = ρ(k)u. With this

choice, (2.3) becomes

du
dt

= r0 u(t) f (k, v(t)) − d u(t) − a u2(t) − ρ(k) u(t) v(t),

dv
dt

= c ρ(k) u(t − τ) v(t − τ) − m v(t),
(2.6)

The dependence of g(k, u) on k assumed in (2.4) naturally poses the following condition on

ρ(k): 
ρ(k) is a decreasing function with respect to k,

limk→∞ ρ(k) = 0.
(2.7)

System (2.6) has three possible equilibrium solutions. The trivial equilibrium E0 = (0, 0)

always exists. When r0 > d, there exists a predator free equilibrium Eu = ( r0−d
a , 0). A unique

positive (co-existence) equilibrium exists when

r0 >
a m

c ρ(k)
+ d. (2.8)

The positive equilibrium is denoted by E+ = (ū, v̄) with ū and v̄ satisfying

ū =
m

cρ(k)
,

r0 f (k, v̄) − d − aū − ρ(k)v̄ = 0.
(2.9)

Remark Notice that ρ(k) is a decreasing function and limk→∞ ρ(k) = 0. Therefore, for any set

of other parameters in (2.6), there exists a critical value k∗ ≥ 0, such that, when k > k∗, the

condition (2.8) fails, implying that there is no positive solution when k > k∗.
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Local stability and Hopf bifurcation

In this section, we study the local stability for each of the equilibrium solution. The lineariza-

tion of (2.6) near an equilibrium (u∗, v∗) is given by

du
dt

= [r0 f (k, v∗) − d − 2 a u∗] u(t) − ρ(k) u∗ v(t) − ρ(k) v∗ u(t) +

(
r0 u∗

∂ f
∂v

∣∣∣∣∣
v∗

)
v(t),

dv
dt

= c ρ(k) u∗ v(t − τ) + c ρ(k) v∗ u(t − τ) − m v(t),
(2.10)

where (u∗, v∗) denotes the corresponding equilibrium.

The characteristic equation of (2.10) at E0 = (0, 0) is

(r0 − d − λ)(−m − λ) = 0. (2.11)

Therefore, if r0 < d, E0 is locally asymptotically stable. If r0 > d, E0 is unstable.

Now if r0 > d, there exists a predator free (semi-trivial) equilibrium Eu = ( r0−d
a , 0), the

characteristic equation of which is given by

(−r0 + d − λ)
[
c ρ(k) e−λ τ

r0 − d
a
− m − λ

]
= 0. (2.12)

Since r0 − d > 0, −r0 + d − λ = 0 only has a negative root. Other roots are determined by the

equation

c ρ(k) e−λ τ
r0 − d

a
− m − λ = 0. (2.13)

This transcendental equation is in the form of the Hayes equation and hence, the existing results

for this equation can be employed. Note that c ρ(k) r0−d
a > 0 > −m provided that r0 > d, by

Hayes [10] (also see Hale and Verdyun Lundel [9] or Smith [21]), Eu is locally asymptotically

stable if c ρ(k) r0−d
a −m < 0 and Eu is unstable if c ρ(k) r0−d

a −m > 0. In other words, r0 <
a m

c ρ(k) +d

(reverse of (2.8)) is a necessary and sufficient condition for Eu to be locally asymptotically

stable.

When condition (2.8) holds, there is a unique positive equilibrium E+ = (ū, v̄), at which,
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the corresponding characteristic equation reads

λ2 + (a ū + m)λ + m a ū + e−λ τ
[
−m λ + m ρ(k) v̄ − r0 m v̄

∂ f
∂v

∣∣∣∣∣
v̄
− a m ū

]
= 0. (2.14)

When τ = 0, since a ū > 0 and m ρ(k) v̄ − r0 m v̄ ∂ f
∂v

∣∣∣
v̄
> 0, by the Routh–Hurwitz criterion,

all roots of the resulting quadratic equation have negative real parts. Now we check if pure

imaginary roots are possible for τ > 0. Plugging λ = ω i (ω > 0) into (2.13) and separating the

real and imaginary parts, we obtain


mω sin(ωτ) −

[
m ρ(k)v̄ − r0 m v̄ ∂ f

∂v

∣∣∣
v̄
− a m ū

]
cos(τω) = −ω2 + m a ū,

mω cos(ωτ) +
[
m ρ(k)v̄ − r0 m v̄ ∂ f

∂v

∣∣∣
v̄
− a m ū

]
sin(τω) = (a ū + m)ω,

(2.15)

By eliminating the trigonometric functions in (2.15), we obtain the following equation for

ω > 0:

ω4 + (p2
1 − q2

1 − 2p0)ω2 + p2
0 − q2

0 = 0 (2.16)

where p0 = m a ū, p1 = a ū + m, q0 = m ρ(k)v̄ − r0 m v̄ ∂ f
∂v

∣∣∣
v̄
− a m ū and q1 = −m. Simple

calculation shows p2
1 − q2

1 − 2p0 = (aū)2 > 0. Now we distinguish two exclusive cases: (A)

p2
0 > q2

0; and (B) p2
0 < q2

0.

For (A), the equation (2.16) has no positive solution, implying that (2.14) can not have pure

imaginary roots for all τ > 0. Therefore, the co-existence equilibrium is locally asymptotically

stable for all τ > 0.

For (B), (2.16) has a unique positive root

ω0 =


−a2 ū2 +

√
a4 ū4 − 4 p4

0 + 4 q4
0

2


1
2

. (2.17)

Plugging ω = ω0 into (2.15) and solving the resulting equation for sinω0τ and cosω0τ, we
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obtain 

cos(ω0 τ) =
q0 ω

2
0 − q0 p0 − p1 q1 ω

2
0

q2
0 + q2

1 ω
2
0

=: P0

sin(ω0 τ) =
p1 ω0 + q1 ω0P0

q0
=: Q0

(2.18)

From this, we obtain a sequence of critical values for the delay parameter τ:

τn =


1
ω0

arccos
q0 ω

2
0 − q0 p0 − p1 q1 ω

2
0

q2
0 + q2

1 ω
2
0

+
2nπ
ω0

, n = 0, 1, · · · , if Q0 > 0;

1
ω0

[
2π − arccos

q0 ω
2
0 − q0 p0 − p1 q1 ω

2
0

q2
0 + q2

1 ω
2
0

]
+

2nπ
ω0

, n = 0, 1, · · · , if Q0 < 0.
(2.19)

Therefore, in this case, the co-existence equilibrium is locally asymptotically stable when τ <

τ0. At τ = τ0, (2.13) has a pair of pure imaginary roots ±iω0. We now verify the transversality

condition at τ = τ0. We claim that

d(<(λ))
dτ

∣∣∣∣∣∣
τ=τ0

> 0. (2.20)

Indeed, differentiating equation (2.14) with respect to τ, we obtain

(
dλ
dτ

)−1

=
2 λ + p1 + q1 e−λ τ

e−λ τ λ(q1 λ + q0)
−
τ

λ
. (2.21)

Thus, at τ = τ0 (λ = iω0), we have

sgn
 d<(λ)

dτ

∣∣∣∣∣∣
τ=τ0

 = sgn
(
<

d(λ)
dτ

∣∣∣∣∣
τ=τ0

)
= sgn

< (
d(λ)
dτ

∣∣∣∣∣
τ=τ0

)−1
= sgn

< [
2 λ + p1 + q1 e−λ τ

e−λ τ λ(q1 λ + q0)
−
τ

λ

]∣∣∣∣∣∣
λ=iω0


= sgn

(
−ω0(p1 q1 − 2 q0) cos(ω0 τ) + (2 q1 ω

2
0 + p1 q0) sin(ω0 τ) − q2

1 ω0

ω0(q2
1 ω

2
0 + q2

0)

)
.

(2.22)

Plugging (2.18) into (2.22) and simplifying, we obtain

<

(
d((λ))

dτ

∣∣∣∣∣
τ=τ0

)−1

=
p2

1 − q2
1 − 2p0 + 2ω2

q2
1 ω

2
0 + q2

0

=
a2 ū2 + 2ω2

q2
1 ω

2
0 + q2

0

> 0, (2.23)
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implying
d(<(λ))

dτ

∣∣∣∣∣∣
τ=τ0

> 0.

This verifies the transversality condition at τ = τ0. Therefore, when τ increases to pass τ0,

Hopf bifurcation occurs.

Summarizing the above analysis, we have proved the following theorem.

Theorem 2.3.1 For model system (2.6), the following results hold.

(i) When r0 < d, there is only the trivial equilibrium E0 = (0, 0) and it is locally asymptoti-

cally stable.

(ii) When d < r0 < d + a m
c ρ(k) , then E0 = (0, 0) becomes unstable and there is the predator free

equilibrium Eu =
(

r0−d
a , 0

)
which is locally asymptotically stable.

(iii) When r0 > d + a m
c ρ(k)) , both E0 and Eu are unstable and there is a third equilibrium, the

positive (or co-existence) equilibrium E+. Moreover,

(iii)-1 if p0 > q0, then E+ = (ū, v̄) is locally asymptotically stable for all τ > 0;

(iii)-2 if p0 < q0, there is a τ0 > 0 such that E+ = (ū, v̄) is locally asymptotically stable

when 0 < τ < τ0 and is unstable when τ > τ0. Furthermore, there is a Hopf

bifurcation of E+ at τ = τ0, leading to the occurrence of periodic solutions.

Remark By Theorem (3.2) in [24], we know that the ODE model (2.2) with the linear func-

tional response can never have periodic solutions. But in our modified model (2.6) with both

cost and benefit of the anti-predation response and biomass transfer delay incorporated, even

for the linear functional response, within certain range of other parameters and time delay, the

stability of the co-existence equilibrium can be destroyed, leading to the occurrence of periodic

solutions through Hopf bifurcation. Although we used the delay τ as the bifurcation parameter,

we can also use an alternative parameter as the bifurcation parameter. For example, if we use

k as bifurcation parameter, we can also confirm Hopf bifurcation when k passes some critical

value. We will discuss this in more details in Section 5.
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Global stability of the boundary equilibria E0 and Eu

Theorem 2.3.1-(i) and (ii) established the local asymptotical stability of E0 and Eu respectively.

In this subsection, we show that E0 and Eu are actually globally asymptotically stable under

the respective condition.

Theorem 2.3.2 When r0 < d, there is only one trivial equilibrium E0 = (0, 0) and it is globally

asymptotically stable.

Proof Consider the Lyapunov functional V(t) = u(t) +
v(t)
c + ρ(k)

∫ t

t−τ
u(s) v(s)ds. Calculating

the derivative of V along the trajectory of (2.6) yields

V̇ = r0 u(t) f (k, v(t)) − d u(t) − a u2(t) −
m v(t)

c
. (2.24)

Therefore V̇ ≤ 0 provided r0 < d (note that f (k, v(t)) ≤ 1 by (2.4)). V̇ = 0 if and only if

u(t) = v(t) = 0. Thus, u(t) → 0 and v(t) → 0 as t → ∞, implying that E0 = (0, 0) is globally

asymptotically stable.

Theorem 2.3.3 When d < r0 < d + a m
c ρ(k) , Eu =

(
r0−d

a , 0
)

is globally asymptotically stable.

Proof Note that

du
dt

= r0 u(t) f (k, v(t)) − d u(t) − a u2(t) − ρ(k) u(t) v(t) ≤ r0 u(t) − d u(t) − a u2(t)

since f (k, v(t)) ≤ 1. By the property of the logistic equation and the comparison theorem, for

any ε > 0, there exist a T = T (ε) > 0, such that u(t) < r0−d
a + ε when t > T . Then for t > T + τ,

the DDE for v(t) satisfies

dv
dt

= c ρ(k) u(t − τ) v(t − τ) − m v(t) < c ρ(k)
(
r0 − d

a
+ ε

)
v(t − τ) − m v(t). (2.25)

This establishes the following comparison (from above) equation for the variable v(t)

dx
dt

= c ρ(k)
(
r0 − d

a
+ ε

)
x(t − τ) − m x(t). (2.26)
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Since r0 < d+ a m
c ρ(k) and ε is arbitrary, we can choose ε < m

c ρ(k)−
r0−d

a so that c ρ(k)
(

r0−d
a + ε

)
−m <

0 and c ρ(k)
(

r0−d
a + ε

)
> 0 > −m. For such chosen ε, by Theorem 4.7 in [21], the trivial

solution x = 0 of (2.26) is globally asymptotically stable, meaning that every solution x(t) of

(2.26) satisfies x(t) → 0 as t → ∞. Since (2.26) is linear and cooperative, by (2.25) and the

comparison theorem (see, e.g., Theorem 4.1 in [20]), we have 0 ≤ v(t) ≤ x(t), implying that

v(t) → 0 as t → ∞. Now by the theory of asymptotically autonomous systems in [3], the

behavior of u is governed by the limiting equation

du
dt

= r0 u(t) − d u(t) − a u2(t).

By the result on a logistic equation, we then conclude that u(t) → r0−d
a as t → ∞. Therefore,

we have proved that Eu =
(

r0−d
a , 0

)
is globally asymptotically stable.

2.3.2 Model with the Holling Type II functional response

In this subsection, we study the model system (2.3) with Holling Type II functional response

g(u(t), k) = ρ(k)
p u(t)

1 + q u(t)
. (2.27)

To make the model more mathematically tractable, in this subsection we also choose some

particular forms for the functions ρ(k) and f (v, k) that represent the fear effect through the the

response level parameter k as below:

ρ(k) =
1

1 + c1 k
, f (v(t), k) =

1
1 + c2 k v(t)

. (2.28)

With the above adoptions, model (2.3) becomes


du
dt

=
r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) −

p u(t) v(t)
1 + q u(t)

·
1

1 + c1 k
,

dv
dt

=
c

1 + c1 k
·

p u(t − τ) v(t − τ)
1 + q u(t − τ)

− m v(t),
(2.29)

Here we introduce two constants c1 and c2 to describe the decreasing rate of reproduction and

predation respectively, with respect to the response level k.
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This system also has three possible equilibrium solutions. The trivial equilibrium E0 =

(0, 0) always exists. When r0 > d, there exists the predator free equilibrium Eu = ( r0−d
a , 0). A

positive (co-existence) equilibrium is determined by solving the system


0 =

r0

1 + c2 k v̄
− d − a ū −

p v̄
1 + q ū

·
1

1 + c1 k
,

0 =
c

1 + c1 k
·

p ū
1 + q ū

− m.
(2.30)

The second equation does not contain variable v, and it has a positive solution for u if and only

if

c p > m q(1 + c1 k), (2.31)

and the solution is given by

ū =
m(1 + c1 k)

c p − m q(1 + c1 k)
.

Plugging this ū into the first equation in (2.30) gives the following quadratic equation for the

variable v:

a2 v2 + a1 v + a0 = 0 (2.32)

where 
a2 = c2 k p,

a1 = p + (d + a ū)(1 + q ū)(1 + c1 k)c1 k,

a0 = (1 + q ū)(1 + c1 k)(d + a ū − r0).

Note that under (2.31), both a1 and a2 are positive, and a0 < 0 if and only if d + aū − r0 < 0

which is equivalent to
m(1 + c1 k)

c p − m q(1 + c1 k)
<

r0 − d
a

. (2.33)

By the property of quadratic functions, we conclude that (2.32) has a positive solution v̄ if

and only if (2.33) holds. Summarizing the above, when r0 > d, there exists a unique positive

equilibrium (ū, v̄) if and only if

0 <
m(1 + c1 k)

c p − m q(1 + c1 k)
<

r0 − d
a

. (2.34)
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Local stability and Hopf bifurcation

In this subsection, we study the local stability for each of the equilibrium solutions. The lin-

earization of (2.29) at an equilibrium (u∗, v∗) is given by


d u
d t

d v
d t

 =


J11 J12

0 −m



u(t)

v(t)

 +


0 0

K21 K22



u(t − τ)

v(t − τ)

 (2.35)

where

J11 =
r0

1 + c2 k v∗
− d − 2 a u∗ −

p v∗

(1 + c1 k)(1 + q u∗)2 ,

J12 = −
c2 k r0 u∗

(1 + c2 k v∗)2 −
p u∗

(1 + c1 k)(1 + q u∗)
,

K21 =
c p v∗

(1 + c1 k)(1 + q u∗)2 ,

K22 =
c p u∗

(1 + c1 k)(1 + q u∗)
.

From (2.35) we can derive the characteristic equation as

(λ − J11)(λ + m − K22e−τ λ) − J12 K21e−τ λ = 0. (2.36)

At E0 = (0, 0), J11 = r0 − d, J12 = J21 = K12 = K22 = 0, and hence, the characteristic

equation of (2.36) becomes

(λ − r0 + d)(λ + m) = 0.

Therefore, if r0 < d, E0 is locally asymptotically stable. If r0 > d, E0 is unstable.

Now if r0 > d, there exists the predator free (semi-trivial) equilibrium Eu = ( r0−d
a , 0), at

which the characteristic equation is given by

(λ − d + r0)
(
λ + m −

c p û
(1 + c1 k)(1 + q û)

e−τ λ
)

= 0 (2.37)

where û = r0−d
a . Since r0 − d > 0, λ − d + r0 = 0 only has a negative root. Other roots of (2.37)
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are determined by the equation

λ + m −
c p û

(1 + c1 k)(1 + q û)
e−τ λ = 0. (2.38)

Noting that c p û
(1+c1 k)(1+q û) > 0 > −m, again by the results for the Hayes equation given in Hayes

[10] (also see Hale and Verdyun Lunel [9] or Smith [21]), Eu is locally asymptotically stable if

c p û
(1 + c1 k)(1 + q û)

− m < 0, (2.39)

and Eu is unstable if (2.39) is reversed. Calculation shows that (2.39) is equivalent to

m(1 + c1 k) > [c p − m q(1 + c1 k)]
r0 − d

a
,

which holds if

either { c p < m q(1 + c1 k) } ,

or
{

c p > m q(1 + c1 k) > 0 and
m(1 + c1 k)

c p − m q(1 + c1 k)
>

r0 − d
a

}
.

(2.40)

Note that (2.40) is nothing but precisely the violation of (2.34). Therefore, it is the loss of

stability of Eu that leads to the occurrence of the positive equilibrium E+ = (ū, v̄).

When condition (2.34) holds, there is a unique positive equilibrium E+ = (ū, v̄) with the

following characteristic equation

λ2 + (m − J11)λ − J11 m + e−λ τ (−m λ + J11 m − J12 K21) = 0 (2.41)

where K22 has been simplified to m for this case.

When τ = 0, (2.41) reduces to

λ2 − J11λ − J12 K21 = 0. (2.42)

Note that J12 < 0 and K21 > 0. Thus, if J11 < 0, then by the Routh–Hurwitz criterion, the above

quadratic equation only has roots with negative real parts. Now we check, under the condition
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J11 < 0, if the roots of (2.41) will cross the pure imaginary axis to enter the right half plane in

the complex plane as τ increases.

Plugging λ = ω i into (2.41) and separating the real and imaginary parts, we obtain


mω sin(ωτ) − (J11 m − J12 K21) cos(τω) = −ω2 − J11 m,

mω cos(ωτ) + (J11 m − J12 K21) sin(τω) = (−J11 + m)ω,
(2.43)

Eliminating the cosine and sine functions by trigonometric identity leads to the following equa-

tion for ω:

ω4 + J2
11 ω

2 +
(
2 m J11 J12 K21 − J2

12 K2
21

)
= 0. (2.44)

Note that this is indeed a quadratic equation for ω2 and J2
11 > 0. Thus, when

2 m J11 J12 K21 − J2
12 K2

21 > 0, (2.45)

then (2.44) has no positive solution, implying that no root of (2.41) will cross the pure imag-

inary axis for all τ ≥ 0; that is, all roots remain in the left half complex plane for all τ ≥ 0.

Therefore, the co-existence equilibrium is locally asymptotically stable for all τ ≥ 0, provided

that J11 < 0 and (2.45) holds.

If J11 < 0 but (2.45) is reversed, then (2.43) has a unique positive root

ω0 =

√√
−J2

11 +

√
J4

11 − 4 ·
(
2 m J11 J12 K21 − J2

12 K2
21

)
2

,

corresponding to which, τ has a sequence of values

τn =
1
ω0

arccos
ω2

0 m(−J11 + m) + (ω2
0 + J11 m)(J11 m − J12 K21)

m2 ω2
0 + (J11 m − J12 K21)2

+
2 n π
ω0

, n = 0, 1, 2, · · · ,

which are possible critical values for τ at which Hopf bifurcation may occur. Therefore, the

co-existence equilibrium is locally asymptotically stable when τ < τ0 where

τ0 =
1
ω0

arccos
ω2

0 m(−J11 + m) + (ω2
0 + J11 m)(J11 m − J12 K21)

m2 ω2
0 + (J11 m − J12 K21)2

. (2.46)
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When τ = τ0, (2.41) has a pair of pure imaginary roots ±iω0. In order to confirm Hopf

bifurcation at the first critical value τ = τ0, we need to verify the transversality condition,

that is,
d<(λ)

dτ

∣∣∣∣∣∣
τ=τ0

> 0. (2.47)

Indeed, differentiating equation (2.41) with respect to τ, we have

(
dλ
dτ

)−1

=
m − J11 + 2 λ − m e−λ τ

e−λ τ λ(−m λ + J11 m − J12 K21)
−
τ

λ
.

Hence, at τ = τ0 (λ = iω0),

sgn
 d<(λ)

dτ

∣∣∣∣∣∣
τ=τ0

 = sgn
(
<

d(λ)
dτ

∣∣∣∣∣
τ=τ0

)
= sgn

< (
d(λ)
dτ

∣∣∣∣∣
τ=τ0

)−1
= sgn

< [
m − J11 + 2 λ − m e−λ τ

e−λ τ λ(−m λ + J11 m − J12 K21)
−
τ

λ

]∣∣∣∣∣∣
λ=iω0


= sgn

(
k1 cos(ω0 τ) + k2 sin(ω0 τ) − m2 ω0

ω0[(J2
11 + ω2

0)m2 − 2 m J11 J12 K21 + J2
12 K2

21]

)

where k1 = ω0(I11 m − 2 J12 K21 + m2) and k2 = m2 J11 + m(−J2
11 − J12 K21 − 2ω2

0) + J11 J12 K21.

From system (2.43), we have

cos(ω0 τ) =
ω2

0 m(−J11 + m) + (ω2
0 + J11 m)(J11 m − J12 K21)

m2 ω2
0 + (J11 m − J12 K21)2

,

sin(ω0 τ) =
−ω2

0 − J11 m + (J11 m − J12 K21)cos(ω0 τ)
mω0

.

(2.48)

Consequently,

<

(
d(λ)
dτ

∣∣∣∣∣
τ=τ0

)−1

=
J2

11 + 2ω2

(J2
11 + ω2

2) m2 − 2 m J11 J12 K21 + J2
12 K2

21

> 0. (2.49)

Therefore, the transversal condition holds and there occurs a Hopf bifurcation at τ = τ0.

If (2.34) holds but J11 > 0, then equation (2.41) only has roots with positive real parts

when τ = 0, meaning that the positive equilibrium E+ = (ū, v̄) is unstable when τ = 0. Now

we follow the same procedure to check if the roots of (2.41) will cross the pure imaginary axis
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to enter the left half plane in the complex plane as τ increases.

Plugging λ = ω i into (2.41) and separating the real and imaginary parts, we still obtain

the system (2.43) and the equation (2.44) for ω. But now, since J11 > 0, the condition (2.45)

is reversed, and thus, (2.43) has a unique positive root ω0. Differentiating equation (2.41) and

evaluating at λ = iω0, we find that (2.49) still holds, implying that any roots on the right half

of the complex plane will remain on the right half plane as τ increases. This means that the

positive equilibrium E+ = (ū, v̄) remains unstable for all τ > 0.

Summarizing the above analysis, we have proven the following theorem,

Theorem 2.3.4 For model system (2.29), the following hold.

(i) When r0 < d, there is only the trivial equilibrium E0 = (0, 0) and it is locally asymptoti-

cally stable; when r0 > d, it becomes unstable and there is the predator free equilibrium

Eu.

(ii) For Eu, when (2.34) is violated (i.e., (2.40) holds), Eu is locally asymptotically stable;

when (2.34) holds, then Eu becomes unstable and there is the positive (co-existence)

equilibrium E+.

(iii) Assume (2.34) holds so that E+ exists and suppose J11 < 0 holds.

(iii)-1 If (2.45) is satisfied, then E+ = (ū, v̄) is locally asymptotically stable for all τ > 0

(iii)-2 If (2.45) is reversed, then there is a τ0 > 0 such that E+ = (ū, v̄) is locally asymp-

totically stable when 0 < τ < τ0 and unstable when τ > τ0. Furthermore, there is a

Hopf bifurcation around E+ at τ = τ0, causing periodic solutions around E+.

(iv) Assume (2.34) holds so that E+ exists and suppose J11 > 0 holds, then E+ = (ū, v̄) is

unstable for all τ > 0.

Remark Comparing with the results for the case with linear functional response (i.e., (2.6))

in Subsection 3.1, as far as the stability of the co-existence equilibrium is concerned, we have

required a condition “J11 < 0” which is needed for the corresponding ODE when τ = 0 to
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have its co-existence equilibrium being stable. This should not be surprising as it is well-

known that for an ODE predator-prey model (i.e., without delay) with a functional response

of Holling Type II, the positive equilibrium may also lose its stability to periodic solutions

through Hopf bifurcation. It is very natural to expect Hopf bifurcation to occur as well when

J11 changes signs. But this is quite analytically demanding, hence we will explore along this

line numerically in Section 4.

Global stability of the boundary equilibria E0 and Eu

Parallel to Subsection 3.1.2, in this subsection, we study the global asymptotical stability of

the equilibria E0 and Eu.

Theorem 2.3.5 When r0 < d, the trivial equilibrium E0 = (0, 0) is indeed globally asymptoti-

cally stable.

Proof Consider

V(t) = u(t) +
v(t)
c

+
1

1 + c1k

∫ t

t−τ

p u(s) v(s)
1 + qu(s)

ds.

Then

V̇ =
r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) −

m v(t)
c

. (2.50)

Therefore V̇ ≤ 0 provided r0 < d, and V̇ = 0 if and only if u(t) = v(t) = 0. Thus, u(t) → 0 and

v(t)→ 0 as t → ∞, and hence, E0 = (0, 0) is globally asymptotically stable.

Theorem 2.3.6 When d < r0 and (2.39) holds (i.e., (2.34) is violated), Eu =
(

r0−d
a , 0

)
is globally

asymptotically stable.

Proof Consider

du
dt

=
r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) −

p u(t) v(t)
(1 + q u(t)) (1 + c1 k)

≤ r0 u(t) − d u(t) − a u2(t).

By the property of logistic equation and the comparison theorem, for any ε > 0, there exist a

T = T (ε) > 0, such that when t > T , u(t) < r0−d
a + ε. Then for t > T + τ, the DDE for v(t)
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satisfies

dv
dt

=
c

1 + c1 k
·

p u(t − τ) v(t − τ)
1 + q u(t − τ)

− m v(t)

<
c

1 + c1 k
·

p
(

r0−d
a + ε

)
1 + q

(
r0−d

a + ε
)v(t − τ) − m v(t).

(2.51)

By (2.39), we can choose ε > 0 sufficiently small so that

c
1 + c1 k

·
p (û + ε)

1 + q (û + ε)
− m < 0.

By [21], the trivial solution of

dx
dt

=
c

1 + c1 k
·

p (û + ε) x(t − τ)
1 + q (û + ε)

− m x(t), (2.52)

is globally asymptotically stable. Note that (2.52) is monotone, by (2.51) and the comparison

theorem, v(t) → 0 as t → ∞. This means that the first equation in (2.29) is asymptotically

autonomous having the following logistic equation as its limit equation:

du
dt

= r0 u(t) − d u(t) − a u2(t).

Since û = (r0 − d)/a attracts every positive solution to this logistic equation, by the theory

of asymptotically autonomous systems (see, e.g.[3]), we conclude that in the system (2.29)

u(t)→ û = r0−d
a as t → ∞. Therefore, every positive solution of (2.29) converges to Eu = (û, 0).

This together with the local stability established in Theorem 2.3.4 implies that Eu is globally

asymptotically stable.

2.4 Numerical simulations

In this section, we present some numerical simulations to illustrate the main analytic results ob-

tained in Section 3, and also to more visually explore the impact of the anti-predation response

level and the biomass transfer time.
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We begin with the model (2.6) that adopts the linear functional response, with two response

functions f (k, v) and ρ(k) given by (2.28), that is, the following system:



du
dt

=
r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) −

u(t) v(t)
1 + c1 k

,

dv
dt

=
c u(t − τ) v(t − τ)

1 + c1 k
− m v(t).

(2.53)

We fix the parameters

r0 = 0.03, d = 0.01, a = 0.01, m = 0.05, c = 0.4, c1 = 1, c2 = 1, (2.54)

and demonstrate how k and τ impact the population dynamics. To this end, we transfer the

threshold for r0 in comparison with d + am/cρ(k) for the stability of Eu in (ii) and (iii) of

Theorem 2.3.1 to a threshold value for k. By setting r0 = d+ a m
c ρ(k) and using the parameter values

in (2.54), we obtain k∗ = 15. By Theorem 2.3.1, when k > 15, the predator free equilibrium

Eu is stable (as demonstrated in Figure 2.1-(a) for k = 20); when k < 15, Eu becomes unstable

and there occurs the unique co-existence equilibrium E+. For k = 11 < k∗ and with the above

parameters, we can numerically calculate to obtain p0 = 0.00075 and |q0| = 0.0005250388635,

giving a situation of p0 > |q0| (Theorem 2.3.1-(iii)-1), and hence, E+ is asymptotically stable

for any τ > 0, as demonstrated in Figure 2.1-(b).

When k is further decreased to k = 1, we still have the co-existence equilibrium E+, and

p0 and q0 are numerically computed to be p0 = 0.000125 and q0 = 0.0007484621132, cor-

responding to the scenario in Theorem 2.3.1-(iii)-(2). Further calculations reveal that τ0 =

3.678038406. The numeric solutions are illustrated in Figure 2.2, for τ < τ0 and τ > τ0 respec-

tively in (a) and (b). For latter case (τ = 4 > τ0), the periodic solutions are also illustrated in

the u − v plane in Figure 2.3. With the parameters given in (2.54), we also plot the bifurcation

diagrams with respect to time delay τ (with k = 1 fixed) and anti-predation strategy k (with

τ = 2 fixed) respectively in Figure 2.4-(a) and Figure 2.4-(b). There, the curve represents

either the predator population of the stable positive equilibrium point, or the maximum and the

minimum value of the predator population in the the bifurcated periodic solution.
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Figure 2.1: Population dynamics of (2.53). (a) When k = 20 > k∗ = 15, the predator free
equilibrium Eu is stable, the predator species goes extinct and the prey species eventually goes
to its carrying capacity. (b) When k = 11 < k∗ = 15, Eu is unstable and there is the co-
existence equilibrium E+ which is asymptotically stable for all τ ≥ 0 since p0 = 0.00075 >
|q0| = 0.0005250388635.
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Figure 2.2: Population dynamics of (2.53). (a) When k = 1 < k∗, p0 = 0.000125 < q0 =

0.0007484621132, τ = 2 < τ0 = 3.678038406, the co-existence equilibrium is stable. (b)
τ = 4 > τ0 = 3.678038406, there occurs a periodic solution.
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Figure 2.3: Plot of periodic orbit of (2.53) in u = v plane when k = 1 and τ = 4 > τ0 =

3.678038406.
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Figure 2.4: Bifurcation diagram for (2.53) : (a) fixing k = 1 and choosing τ as the bifurcation
parameter; (b) fixing τ = 2 and choosing k as the bifurcation parameter.
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Next demonstrate the results for the model system (2.29) with the following parameter

values

r0 = 0.03, d = 0.01, a = 0.01, m = 0.05, c = 0.4, c1 = 1, c2 = 1, p = 0.5, q = 0.6.

(2.55)

Since r0 > d, the predator free equilibrium Eu exists. For its stability, we can similarly transfer

the threshold value for r0 in Theorem (2.3.4) to a critical value k∗ of k, by setting

r0 =
a m(1 + c1 k)

c p − m q(1 + c1 k)
+ d

and solving it for k, leading to the a numeric value k∗ = 2.636363636. Thus, by Theorem

(2.3.4), when k > 2.636363636, the predator free equilibrium Eu is stable (as demonstrated

in Figure 2.5-(a)), and when k < 2.636363636, Eu becomes unstable and there occurs the

unique co-existence equilibrium E+. As far as the stability of E+ is concerned under k < k∗ =

2.636363636, it depends on whether J11 < 0 or J11 > 0. When k = 2, numeric calculations

give J11 = −0.01184921799 < 0 and 2 m J11 J12 K21 − J2
12 K2

21 = 1.723290120 × 10−7 > 0 (i.e.,

(2.45) holds). By Theorem 2.3.4-(iii)-1, E+ is asymptotically stable (see Figure 2.5-(b)).

However, when k is further decreased to k = 1, computations give J11 = −0.003821249991 <

0 (still negative) but 2 m J11 J12 K21− J2
12 K2

21 = −2.86322377×10−8 < 0 (i.e., (2.45) is reversed

now). This is the scenario of Theorem 2.3.4-(iii)-2, meaning that the stability of E+ further

depends on the size of delay τ. By (2.46) we compute to obtain τ0 = 33.27610729. The nu-

meric solutions for τ < τ0 and τ > τ0 are shown in Figure 2.6-(a)-(b) respectively for τ = 4 and

τ = 120; and plotting in the u − v plane for the case of Figure 2.6-(b) is given in Figure 2.7.

Parallel to Figure 2.4, we also plot the bifurcation diagrams with respect to delay τ (with

k = 1 fixed) and anti-predation response level k (with τ = 2 fixed) respectively in Figure 2.8-(a)

and Figure 2.8-(b), with the parameters given in (2.55).

We have seen in Theorem 2.3.4 and mentioned in Remark 2.3.2 that when J11 > 0, the sys-

tem has no stable equilibrium for all τ > 0. In such a case, periodic behaviour is the outcome.

This is demonstrated in Figure 2.9. Indeed, we not only observe the periodic behaviours, but

also find that the magnitude of the sustained oscillations (periodic solutions) is enlarged by
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Figure 2.5: Population dynamics of (2.29). (a) When k = 20 > k∗ = 2.636363636, the
predator free equilibrium Eu is stable. (b) When k = 2 < k∗, Eu becomes unstable and there
occurs the positive equilibrium E+ which is asymptotically stable for all τ > 0 because J11 =

−0.01184921799 < 0 and
(
2 m J11 J12 K21 − J2

12 K2
21

)
= 1.723290120 · 10−7 > 0.
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Figure 2.6: When k = 1 < k∗, J11 = −0.003821249991 < 0,
(
2 m J11 J12 K21 − J2

12 K2
21

)
=

−2.86322377 · 10−8 < 0. (a) When τ = 4 < τ0 = 33.27610729, the co-existence equilibrium
E+ is still stable; (b) When τ = 120 > τ0 = 33.27610729, E+ loses its stability and a periodic
solution occurs.
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Figure 2.9: By setting k = 3.4, J11 = 0.00084875902838911633 > 0. (a) Solutions approach
to a periodic solution for τ = 0 (periodic solutions for the ODE). (b) Periodic behaviours are
preserved for τ > 0 and are actually magnified by τ > 0.

τ > 0.

2.5 Conclusion and discussions

Recent field studies on the fear effect in predator-prey interactions have trigged the need to

modify existing predator-prey models that do not consider the fear effect. In a recent work

Wang et al [24], the authors incorporated an anti-predation mechanism into an ODE model to

account for the fear effect which leads to a cost in reproduction; analyzing the model, they have

obtained some results on the effect of such an anti-predation response. In this chapter, based

on the fact that in addition to cost, there is also a benefit for an anti-predication response; and

meanwhile, there is also a time delay in biomass transfer from prey to predator after predation,

we have further modified the model studied in [24] to explore the joint effects of both biomass

transfer delay and the fear effect.

Following [24], we have considered two types of functional responses: Holling Type I and

Holling Type II. In both cases, we have obtained and stated our main results more explicitly in

terms of some parameters such as r0 and d, but they can be translated into statements in terms

of the two main parameters k and τ. Such a translation will lead to loss of some explicitness,

but this can be easily achieved numerically, as demonstrated in Section 4. For example, when
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Holling Type I (linear) functional response is adopted, Theorem 2.3.1 can be restated in terms

of k and τ as below:

Theorem 2.5.1 For the predator-prey system (2.6) with linear functional response under con-

dition r0 > d, there may exist two critical values of the anti-predation level k that 0 < k̂ < k∗,

such that,

(i) When k > k∗, Eu =
(

r0−d
a , 0

)
is globally asymptotically stable. When k < k∗, Eu =

(
r0−d

a , 0
)

is unstable and there occurs a unique co-existence equilibrium E+.

(ii) When k∗ > k > k̂, the unique co-existence equilibrium E+ = (ū, v̄) is locally asymptoti-

cally stable for all τ > 0. If 0 < k < k̂, there is a τ0 > 0 such that E+ = (ū, v̄) is locally

asymptotically stable when 0 < τ < τ0 and unstable when τ > τ0; furthermore, there is

a Hopf bifurcation about E+ at τ = τ0.

When Holling Type II functional response is adopted, Theorem 2.3.4 can be restated in terms

of k and τ as below.

Theorem 2.5.2 Consider the predator-prey system (2.29) with Holling Type II functional re-

sponse under condition r0 > d.

(i) There exists a critical value k∗ > 0 such that for k > k∗, Eu =
(

r0−d
a , 0

)
is globally

asymptotically stable. When k < k∗, Eu =
(

r0−d
a , 0

)
is unstable and there occurs a unique

co-existence equilibrium E+ = (ū, v̄).

(ii) When k < k∗ and J11 < 0, there exists another critical value 0 < k̂ < k∗ such that

(ii)-1 if k̂ < k < k∗, the unique co-existence equilibrium E+ is locally asymptotically

stable for all τ > 0;

(ii)-2 if 0 < k < k̂, there is a τ0 > 0 such that E+ is locally asymptotically stable only

when 0 < τ < τ0 and it becomes unstable when τ > τ0; furthermore, there is a Hopf

bifurcation about E+ at τ = τ0.

(iii) When k < k∗ and J11 > 0, a periodic solution occurs even if τ = 0, and it does not vanish

for all τ > 0.
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We point out that the critical values k∗ and k̂ in the above translated theorems are defined

implicitly by equations in Theorem 2.3.4-(ii) corresponding to the thresholds for the inequali-

ties there, which in general cannot be solved explicitly. However, as demonstrated in Section

4, given the values of other parameters, they can be numerically calculated.

From the above theorems, we find that the anti-predation strategy k and the digestion delay

τ play important roles in both models. As long as r0 (the natural growth rate of prey) is greater

than d (the natural death rate of prey), the trivial equilibrium solution is unstable and the popu-

lations of the predator and prey are determined by k and τ, in terms of the critical values k∗, k̂

and τ0, as classified in the theorems. Note that τ0 depends on k, as illustrated in Figure 2.10

for both functional responses considered for the given set of parameter values in (2.55). Also

from the equations that determine the critical values k∗ (r0 = d + am/cρ(k) in Theorem 2.3.1

and (2.34) in Theorem 2.3.4), we can see the impact of the incorporated benefit factor ρ(k) as

a function of the anti-predation response level k. This shows the trade-off effect of cost and

benefit of the response k, and is in strong contrast to the corresponding models considered in

[24], where no benefit was considered (ρ(k) = 1) and hence small k favours the prey population

since k only leads to a cost of reducing the reproduction of the prey. Also, in the ODE model in

[24] with Holling Type I functional response, there is no periodic solution for any values of the

parameter set; however, with the digestion delay incorporated, periodic phenomenon becomes

possible.

We also point out an important difference of the model with Holling Type II functional

response from that with Holling Type I functional response. For the former, when k < k∗, delay

caused oscillations can occur only in the case when J11 < 0; and when J11 > 0, there is also a

periodic solution but that is not caused by the delay τ. This indicates that the sign change of

J11 from negative to positive also leads to Hopf bifurcation, and this is in agreement with the

periodic solution observed in the ODE model with Holling Type II functional response in [24].

Accordingly, one can also explore the sign change numerically by the formula defining J11 and

the equations in (2.30) that determine the co-existence equilibrium E+ = (ū, v̄).

The differences between the two functional responses considered in our model are illus-

trated in Section 4 by using the same set of parameter values. It has been seen that for a given
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τ > 0, the critical value k∗ in Holling Type II model is much less than that in the model with

linear functional response (2.636363636 vs 15 in our numeric results). This seems to suggest

that anti-predation strategy is more sensitive to the population of predator with Holling Type

II functional response than with Holling Type I. Similarly, for a given k, the critical delay

τ0 in Holling Type II model is much greater than that in the model with linear functional re-

sponse (see Fig. 2.10). Thus, the results are actually specific to the particular choice of the

functional response function. This is not surprising to predator-prey modellers as it has been

widely known that different kinds of predation between species have different characteristics

and hence, needs to use different functional responses to capture the main feature. Exploring

the joint impacts of anti-predation response and biomass transfer delay on the population dy-

namics with other types of functional responses remains an interesting and worthwhile topic

for future research. We point out that in both cases, we have only explored the Hopf bifurcation

at the first critical value τ0 for the delay parameter. This is because this value is most important,

serving as a threshold for the stability of the positive equilibrium E+ and carrying information

about the consequence of E+ becoming unstable. Investigation of the bifurcations at the sub-

sequent critical values τn, n = 1, 2, · · · is more involving, demanding theory and methods on

global bifurcation and hence could be very lengthy. Therefore, we decide not to explore in this

chapter.

We have chosen the ODE model (2.2) from [24] as the basic model into which a bene-
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fit coming from the anti-predation response and a delay in biomass transfer are incorporated.

Note that this basic model uses the logistic growth for the prey population and assumes that the

predator is a specialist. Other types of growth for prey population and the predation by gen-

eralist predators are also important topics to investigate, when the fear effect and the biomass

transfer delay are incorporated. We remark that, also based on (2.2), Das and Samanta [7]

incorporated an extra food source for the predator and added a white noise to the death rates

of the prey and predator and they analyzed the resulting stochastic model. Mondal et al [17]

further considered a digestion delay in addition to the cost of fear, white noise in the death

rates, and extra food for the predator; however, the benefit of the anti-predation response was

not considered.
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Chapter 3

On mechanisms of trophic cascade caused

by anti-predation response in food chain

systems

3.1 Introduction

Predator-prey interactions have attracted the great attention of both ecologists and mathemat-

ical biologists, not only because of their vast existence in nature but also because of their

diversified forms and rich consequences in the real world. Mathematically, if only considering

direct interaction through predation, a classic predator-prey model can be generally described

by a system of ordinary differential equations of the form:


du
dt

= f1(u(t)) − p(u(t), v(t))v(t),

dv
dt

= f2(v(t)) + cp(u(t), v(t))v(t).
(3.1)

See, e.g., [16, 17, 29, 30]. Here u(t) and v(t) are the populations of the prey and predator

respectively, f1(u) and f2(v) denote growth functions of the prey and the predator respectively,

p(u, v) is the functional response which accounts for the predation rate and biomass transfer

from the prey to the predator after predation, and the constant c explains the efficiency in

biomass transfer.

50
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Predator-prey ODE models of the above form only consider interactions of two species with

direct effect reflected by the predation term. However, since 1990s, more and more ecologists

have realized the existence of indirect effects (e.g., fear effect), and observed impact of such

effects; see, e.g. [1, 14, 21, 27]. Recent field experiments have found the presence of predator

itself, can have significant influence on prey’s population through changes in reproduction

[15, 36], habitat selection [4, 28] and physiology [3, 5, 35]. In contrast, as far as mathematical

modeling is concerned, indirect effects have been largely (if not all) ignored in those existing

models describing predator-prey interactions and those on conservation and management of

the ecosystem.

Motivated by the field study in [36] which observed an as high as 40% decrease in prey’s

reproduction rate when the prey perceived a risk of predator coming from the playback of the

predator’s voice, [31] formulated a mathematical model in the form of the following ordinary

differential equations


du
dt

= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − p(u(t)) v(t),

dv
dt

= c p(u(t)) v(t) − m v(t).
(3.2)

Here u is the population of the prey species and v is the population of predator species, and the

prey’s growth follows a logistic growth with the intrinsic growth rate being split into the net

growth rate r0 and natural death rate d, given by r0 − d. To mimic the scenario of the field ex-

perimental study in [36] in which predation actually did not occur due to the use of electronic

fence, in (3.2) the fear effect is only incorporated into the production term by the function

f (k, v(t)) accounting for a cost. The term au2 = (au)u reflects the self-limiting mechanism of u

(due to intra-species competition) and c is the biomass transform efficiency constant. The func-

tion p(u) is the functional response which is assumed to depend on the prey population only.

Analysis of (3.2), both analytical and numerical, have revealed some interesting dynamics that

would have not occurred without considering the fear effect.

Since [31], there have been some follow-up modelling works that extend the model (3.2)

to accommodate various aspects of fear effect. For example, [32] considered age structure and

discussed different impacts of fear effect on different age stages; [33] explored the fear effect
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reflected thought the dispersals and its impact on the pattern formation. [8] incorporated an

extra food source for the predator in (3.2) and also added a white noise to the death rates of

the prey and predator, and analyzed the resulting stochastic model. [18] further considered a

digestion delay in addition to the cost of fear, white noise in the death rates, and extra food for

the predator but ignored the benefit of the anti-predation response. More recently, in addition

to a digestion delay and a cost in prey’s production due to the anti-predation response, [34]

further incorporated a benefit term from the anti-predation response, and explored the joint

impact of the fear effect and the digestion delay on the population dynamics for both predator

and prey.

In the real world, it is quite common that a species can predate on one species and in the

mean time, it can be a prey of other species. This leads to occurrence of food chains between

multiple species, consisting of cascading predator-prey interactions. One may naturally ask

how a fear effect arising from one or more species in the chain will affect the dynamics of the

whole cascaded populations? In a more recent field experimental study [26], the authors tested

a meso-predator cascade by manipulating the large carnivores playback, which resulted in a

decrease in the population of meso-carnivore and increase in the population of its prey. That

is, the fear effect on the top species in that chain of three species actually affects every species

in the ecosystem explicitly or implicitly.

To better understand the above mentioned propagation of the fear effect from top layer to

the bottom layer in that food chain ecosystem reported in [26], we incorporate a fear effect

on the top species into a Lotka-Volterra type food chain model, formulated by the following

system of ordinary differential equations



dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3 (B(α) − D − a33N3 + a32N2) ,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0.

(3.3)

Here, N3 is the population of the meso-carnivore (e.g., racoon) which is affected by the large

carnivore’s (e.g., wolf, bear) playback; N2 is the prey (e.g., crab) of the meso-carnivore N3,



3.1. Introduction 53

and N1 is the prey of N2. Each species is assumed to follow a logistic growth with growth

rates R1, R2 and B(α) − D respectively. The population of the large carnivores does not appear

in the system because in the field study [26], only their voices are played, and hence they

only have fear (indirect) effect on the meso-carnivores represented by B(α), where the net

birth (production) rate B(α) depends on a parameter α standing for the meso-carnivore’s anti-

predation response level. By its biological meaning, B(α) is assumed to satisfy

B′(α) < 0, B(0) = B3 > 0 and lim
α→∞

B(α) = 0. (3.4)

The constant D is the natural death rate of N3, aii (i = 1, 2, 3) are the intra-species competition

coefficients. a12 and a23 are the predation rates, while a21 and a32 are the conversion rate of

the biomass from N1 to N2 and from N2 to N3 respectively; thus, a12/a21 and a23/a32 actually

account for the efficiency of biomass transfer from the predations. We point out that this type

of three dimensional food chain models have been intensive and extensively studied by some

researchers, see, e.g., [9, 11, 12, 13] and the references therein. As far as fear effect in food

chains is concerned, two recent papers [19, 20] have also followed line of [31] to consider fear

effect in food chain of three species; their scenario is different from ours: they considered other

types of functional responses, they incorporated fear effects in the bottom and middle species,

and they assumed that the top and middle species are specialist predators. The first goal of this

chapter is to explore the dynamics of (3.3), particularly, the impact of the meso-carnivore’s

anti-predation response level α on the dynamics.

In (3.3), only the cost for the meso-carnivore’s anti-predation response is considered. For

such a response, in addition to cost, there should also be a benefit (see, e.g., [6, 27]), typically

reflected by the decrease in the chance of being predated. A response strategy is expected to

seek balance between cost and benefit to achieve certain optimality. In order to also add the

benefit into the interplay in the above model system (3.3), we need the term of predation on the

meso-carnivore by a large carnivore, which inevitably requires us to add the the population of

that large carnivore into the system. This leads to the following four dimensional food chain
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model 

dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3 (B(α,N4) − D3 − a33N3 + a32N2 − a34(α)N4) ,

dN4

dτ
= N4 (−D4 + c̄ a34(α)N3) ,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0 , N4(0) ≥ 0,

(3.5)

where N4 is the population of the restored top predator (large carnivore) which is assumed to be

a specialist predator with the mortality rate D4. Now the net growth function of N3 depends not

only on the anti-predation response level α but also on the population of its predator N4. The

function a34(α) denotes the encounter rate between N3 and N4 which is affected by the protec-

tive behaviours of N3 species characterized by its dependence on the anti-predation response

level α. By their biological meanings of B(α,N4) and a34(α), they are assumed to satisfy the

following conditions:


B(α,N4) is decreasing in α and N4, B(0,N4) = B(α, 0) = B3 > 0,

lim
α→∞

B(α,N4) = lim
N4→∞

B(α,N4) = 0,
(3.6)

and

a34(α) is decreasing, a34(0) = a0 > 0, lim
α→∞

a34(α) = 0. (3.7)

Finally, c̄ is the efficiency of biomass transform. So in this model, we consider both the com-

plex multi-trophic predator-prey structure and the trade-off from anti-predation response.

The remainder of this chapter is organized as follows. In Section 2, we analyze the model

system (3.3). We establish the well-posedness of system (3.3) and find the condition for exis-

tence and stability for all its equilibrium solutions. We also discuss the relationship between

the anti-predation level and the final population size. In the end, some numerical examples, to-

gether with some discussions, are given to demonstrate our results. In Section 3, we investigate

the dynamics of the four dimension model (3.5), including the existence and stability of equi-

libria as well as the continuously dependence between the final population size with respect

to the anti-predation level. We also discuss the difference of the results from those for (3.3)
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in Section 2. In addition, we also present some numerical examples to illustrate that different

functional response functions may lead to slightly different dynamical behaviour of the solu-

tion. In Section 4, we summarize our main results and discuss their biological implications.

We also discuss some possible future projects along this direction of anti-predation response in

predator-prey interactions.

3.2 Analysis of the model without large carnivores

In this section, we analyze the three-species model (3.3). We first show the well-posedness of

the system (3.3). Then we find all equilibrium solutions and discuss their stability in terms of

the parameter values and anti-predation strategy level. As we mentioned in last section, this

kind of food chain models have been studied in literatures, and thus, some technical results

can be found in existing researches, e.g., [9, 11, 12, 13] and their references. But we need to

associate the results to the new parameter α, the anti-predation response level of the species N3

to shed light on influence of the fear effect for this model.

3.2.1 Preliminaries

For mathematical simplification, we first non-dimensionalize the model (3.3). Let

t = R1τ, x =
a11N1

R1
, y =

a12N2

R1
, z =

a23N3

R1
,

then model (3.3) becomes 

dx
dt

= x(1 − x − y),

dy
dt

= y(k − d1y − z + β1x),

dz
dt

= z( f (α) − d2z + β2y),

(3.8)

where

k =
R2

R1
, d1 =

a22

a12
, d2 =

a33

a23
, β1 =

a21

a11
, β2 =

a32

a12
,

f (α) =
B(α) − D

R1
, f (0) =

B3 − D
R1

, lim
α→∞

f (α) = −
D
R1
.
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By the basic theory of ODE systems, we can easily show that the initial value problem for

(3.8) has a unique solution; moreover, the solution is nonnegative (positive) with nonnegative

(positive) initial conditions because each equation in (3.8) is of Gaussian type. Now we show

that the solution to system (3.8) is bounded.

From the first equation in system (3.8) and by the non-negativity of y(t), we have

dx
dt

= x(1 − x − y) ≤ x(1 − x).

By the comparison theorem [25], we can obtain limt→∞ sup x(t) ≤ 1. Therefore, for any ε1 > 0,

there holds x(t) ≤ 1 + ε1 for large t. Incorporating this estimate for large t into the second

equation in (3.8) results in

dy
dt

= y(k − d1y − z + β1x) ≤ y(k + β1(1 + ε1) − d1y), for large t.

Applying the comparison theorem again, we then obtain

lim
t→∞

sup y(t) ≤
k + β1(1 + ε1)

d1
.

Since ε1 > 0 is arbitrary small, the above inequality actually implies

lim
t→∞

sup y(t) ≤
k + β1

d1
.

Incorporating the above inequality into the third equation in (3.8) and by the same argument,

we can obtain

lim
t→∞

sup z(t) ≤ max
(

f (α)d1 + β2(k + β1)
d1d2

, 0
)
.

Combining the above, we have proved that the solution (x(t), y(t), z(t)) to (3.8) is bounded.

3.2.2 Existence and Stability of the boundary equailibria

In this section, we find all boundary equilibrium solutions and give the condition for their

existence and stability. For the result to be biologically meaningful, we are only interested in
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equilibria with nonnegative components.

An equilibrium of (3.8) solves the following system


x(1 − x − y) = 0,

y(k − d1y − z + β1x) = 0,

z( f (α) − d2z + β2y) = 0.

There are seven boundary equilibrium solutions. E0 = (0, 0, 0) is the trivial equilibrium so-

lution which always exists. E1 = (1, 0, 0), E2 = (0, k/d1, 0) and E3 = (0, 0, f (α)/d2) are the

equilibria representing the scenario that only one species survives; E1 and E2 always exist,

while E3 exists only when f (α) > 0. There are also other three possible equilibria correspond-

ing to the scenario of two species coexisting, and they are given by

E12 =

(
1 −

k + β1

d1 + β1
,

k + β1

d1 + β1
, 0

)
,

E13 =

(
1, 0,

f (α)
d2

)
,

E23 =

(
0,

d2k − f (α)
d1d2 + β2

, k −
d1d2k − d1 f (α)

d1d2 + β2

)
.

By the nonnegative requirement, E12 exists when k < d1, E13 exists when f (α) > 0 and E23

exists when d2k > f (α) > −β2k/d1.

The local stability of an equilibrium is obtained by linearization at the equilibrium. The

Jacobian matrix at equilibrium (x∗, y∗, z∗) is given by

J (E = (x∗, y∗, z∗)) =



1 − 2x∗ − y∗ −x∗ 0

β1y∗ k − 2d1y∗ + β1x∗ − z∗ −y∗

0 β2z∗ f (α) − 2d2z∗ + β2y∗


. (3.9)
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At E0 = (0, 0, 0), the Jacobian is given by

J(E0) =



1 0 0

0 k 0

0 0 f (α)


,

therefore E0 is unstable, as there are positive eigenvalues λ1 = 1 and λ2 = k.

Similarly, at E1 = (1, 0, 0), the Jacobian is given by

J(E1) =



−1 −1 0

0 k + β1 0

0 0 f (α)


,

therefore E1 is unstable, as there is a positive eigenvalue λ = k + β1.

At E2 = (0, k/d1, 0), the Jacobian is given by

J(E2) =



1 −
k
d1

0 0

β1k
d1

−k −
k
d1

0 0 f (α) +
β2k
d1


,

therefore E2 is asymptotically stable if and only if 1 − k/d1 < 0 and f (α) < −β2k/d1.
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At E3 = (0, 0, f (α)/d2), the Jacobian is given by

J(E3) =



1 0 0

0 k −
f (α)
d2

0

0
β2 f (α)
α2

− f (α)


,

hence, E3 is unstable since there is a positive eigenvalue λ = 1.

At E12, the Jacobian becomes

J(E12) =



k + β1

d1 + β1
− 1

k + β1

d1 + β1
− 1 0

β1k + β2
1

d1 + β1
−

d1k + d1β1

d1 + β1
−

k + β1

d1 + β1

0 0 f (α) +
β2k + β2β1

d1 + β1


,

thus, E12 is asymptotically stable if and only if f (α) < −
β2k + β2β1

d1 + β1
.

At E13 = (1, 0, f (α)/d2), the Jacobian reduces to

J(E13) =



−1 −1 0

0 k + β1 −
f (α)
d2

0

0
β2 f (α)
α2

− f (α)


,

therefore E13 is asymptotically stable if and only if f (α) > d2(k + β1).
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At E23 =

(
0,

d2k − f (α)
d1d2 + β2

, k −
d1d2k − d1 f (α)

d1d2 + β2

)
, the Jacobian is given by

J(E23) =



1 −
d2k − f (α)
d1d2 + β2

0 0

β1d2k − β1 f (α)
d1d2 + β2

−
d1d2k − d1 f (α)

d1d2 + β2
−

d2k − f (α)
d1d2 + β2

0 β2k −
β2d1d2k − β2d1 f (α)

d1d2 + β2
−d2k +

d1d2
2k − d1d2 f (α)
d1d2 + β2


,

therefore E23 is asymptotically stable if and only if f (α) > d2k − d1d2 − β2.

We summarize the above analysis in the following proposition.

Proposition 3.2.1 For system (3.8), the following statement hold.

(i) Equilibrium E0 and E1 always exist and are unstable.

(ii) Equilibrium E2 always exists; it is asymptotically stable if and only if k > d1 and f (α) <

−β2k/d1.

(iii) When f (α) > 0, E3 exists; it is unstable. E13 exists and is asymptotically stable if and

only if f (α) > d2(k + β1).

(iv) When k < d1, E12 exists; it is asymptotically stable if and only if f (α) < −β2(k+β1)/(d1 +

β1).

(v) When d2k > f (α) > −β2k/d1, E23 exists; it is asymptotically stable if and only if f (α) <

d2k − d1d2 − β2.

3.2.3 Existence and stability of a positive equilibrium solution

There is a unique positive equilibrium solution E∗ = (x∗, y∗, z∗) if

d2(k + β1) > f (α) > max
(
d2k − d1d2 − β2,

−β2(k + β1)
d1 + β1

)
. (3.10)
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Indeed, E∗ = (x∗, y∗, z∗) is given by


x∗ = 1 − y∗,

y∗ =
d2(k + β1) − f (α)
d2(d1 + β1) + β2

,

z∗ = k + β1 − (d1 + β1)y∗.

(3.11)

The conditions in (3.10) directly comes from the formulas in (3.11).

The Jacobian matrix at the positive equilibrium can be simplified as

J(E∗) =



−x∗ −x∗ 0

β1y∗ −d1y∗ −y∗

0 β2z∗ −d2z∗


,

Thus, the corresponding characteristic equation is

λ3 + (d1y∗ + d2z∗ + x∗)λ2 + (d1d2y∗z∗ + β1x∗y∗ + β2y∗z∗ + d1x∗y∗ + d2x∗z∗)λ

+ (β1d2 + d1d2 + β2)x∗y∗z∗ = 0.

where 
a1 = d1y∗ + d2z∗ + x∗ > 0,

a2 = d1d2y∗z∗ + β1x∗y∗ + β2y∗z∗ + d1x∗y∗ + d2x∗z∗ > 0,

a3 = (β1d2 + d1d2 + β2)x∗y∗z∗ > 0,

and

a1a2 − a3 = d2
1d2(y∗)2z∗ + d1d2

2y∗(z∗)2 + β1d1x∗(y∗)2 + β2d1(y∗)2z∗ + β2d2y∗(z∗)2

+ d2
1 x∗(y∗)2 + 2d1d2x∗y∗z∗ + d2

2 x∗(z∗)2 + β1(x∗)2y∗ + d1(x∗)2y∗ + d2(x∗)2z∗ > 0.

By Routh-Hurwitz criterion, the positive equilibrium is locally asymptotically stable. More-

over, we can prove that it is actually globally asymptotically stable as long as it exists (i.e.,

(3.10) holds).
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Theorem 3.2.2 If (3.10) holds, then the positive equilibrium E∗ is globally asymptotically

stable.

Proof Consider the Lyapunov function

V(x, y, z) = β1β2(x − x∗ − x∗ ln
x
x∗

) + β2(y − y∗ − y∗ ln
y
y∗

) + (z − z∗ − z∗ ln
z
z∗

),

then
dV
dt

= −β1β2(x − x∗)2 − β2(y − y∗)2 − (z − z∗)2 ≤ 0

and
dV
dt

= 0 if and only if (x, y, z) = (x∗, y∗, z∗). By LaSalle’s Invariant Principle, we conclude

E∗ is globally asymptotically stable.

For readers’ convenience, we summarize the analytical results on the dynamics of the model

(3.8) obtained above in the following Table 3.1.

Table 3.1: Condition of existence and stability of the equilibria in model (3.8)
Equilibrium solution Existence Stability

E0 Always Unstable

E1 Always Unstable

E2 Always d1 < k and f (α) < −β2k/d1

E3 f (α) > 0 Unstable

E12 d1 > k f (α) < −β2(k + β1)/(d1 + β1)

E13 f (α) > 0 f (α) > d2(k + β1)

E23 d2k > f (α) > −β2k/d1 f (α) < d2k − d1d2 − β2

E∗ d2(k + β1) > f (α) > max
(
d2k − d1d2 − β2,−

β2(k + β1)
d1 + β1

)
GAS

From Theorem 3.2.2 , we know that the positive equilibrium is always globally asymp-

totically stable as long as it exists (i.e., (3.10) holds), implying that the populations of all

three species will converge to co-existence state at the respect levels x∗, y∗ and z∗. Thus, it is

worthwhile to investigate how the response strength α will affect these levels. Indeed, direct
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calculations give 

dy∗

dα
=

− f ′(α)
d2(d1 + β1) + β2

> 0,

dx∗

dα
= −

dy∗

dα
< 0,

dz∗

dα
= −(d1 + β1)

dy∗

dα
< 0.

That is, within the range of α that guarantees (3.10), with the increase of the anti-predation

response strength α, the final population sizes of the meso-carnivore, its prey and the prey’s

prey will decrease, increase and decrease respectively, demonstrating an alternative pattern for

the fear effect in the cascade, which was observed in the field study [26]. Therefore, the model

(3.3) does provide a mechanism that can explain the phenomenon of trophic cascade caused by

a fear of large carnivores reported in [26].

3.2.4 Numerical simulations

In this subsection, we present some numerical simulations to illustrate the analytical results

obtained above. For this purpose, we choose a particular form for the function B(α) given by

B(α) =
R3

1 + cα
,

and this sends (3.3) to the following system:



dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3

( R3

1 + cα
− D − a33N3 + a32N2

)
,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0,

(3.12)

We fix the parameters

R1 = 1, a11 = 1, a12 = 0.4, R2 = 1, a22 = 0.2, a23 = 0.5, a21 = 0.5,

R3 = 3, D = 1, a33 = 0.5, a32 = 0.05, c = 0.4,
(3.13)
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and demonstrate how α impacts the population dynamics. In this case, k = R2/R1 = 1 and

d1 = a22/a12 = 1/2 so k > d1. According to Proposition 3.2.1, there are three threshold values

for α, denoted by α∗1, α∗2 and α∗3, which are given by


f
(
α∗1

)
= d2(k + β1),

f
(
α∗2

)
= d2k − d1d2 − β2,

f
(
α∗3

)
= −

β2k
d1
.

Using the parameter values in (3.13), we obtain α∗1 = 0.5, α∗2 ≈ 2.954545455 and α∗3 = 7.5. By

Proposition 3.2.1, when 0 < α < 0.5, the equilibrium E13 is stable (as demonstrated in Figure

3.1-(a) for α = 0.4); when 0.5 < α < 2.954545455, the coexistence equilibrium E∗ is stable (as

demonstrated in Figure 3.1-(b) for α = 2); when 2.954545455 < α < 7.5 (destroying (3.10),

hence E∗ no longer exists), the equilibrium E23 is stable (as demonstrated in Figure 3.1-(c)

for α = 5); when α > 7.5, the equilibrium E2 is stable (as demonstrated in Figure 3.1-(d) for

α = 10). The bifurcation diagram with respect to α is given in Figure 3.2.

Now, we change R1 to R1 = 3 and a33 to a33 = 0.1 and keep other parameters the same as

in (3.13). Then k = R2/R1 = 1/3 and d1 = a22/a12 = 1/2 leading to the scenario of k < d1.

According to Proposition 3.2.1, there are two threshold values for α, denoted by α1 and α2,

which are given by 
f (α1) = d2(k + β1),

f (α2) = −
β2(k + β1)

d1 + β1
.

Using the parameter values in (3.13), we obtain α1 = 2.5 and α2 ≈ 8.409090911. By Proposi-

tion 3.2.1, when 0 < α < 2.5, the equilibrium E13 is stable (as demonstrated in Figure 3.3-(a)

for α = 2); when 2.5 < α < 8.409090911, the coexistence equilibrium E∗ is stable (as demon-

strated in Figure 3.3-(b) for α = 6); when α > 8.409090911, the equilibrium E12 is stable (as

demonstrated in Figure 3.3-(c) for α = 10). The bifurcation diagram with respect to α is given

in Figure 3.4.

We find that depending on the difference between k and d1, we have two kinds of bifur-

cation. In both cases, when the anti-predation response α passes a threshold, it leads to a
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Figure 3.1: Population dynamics of (3.12) when d1 < k. (a) When 0 < α = 0.4 < 0.5,
the equilibrium E13 is stable, (b) 0.5 < α = 2 < 2.954545455, the coexistence equilibrium
E∗ is stable, (c) when 2.954545455 < α = 5 < 7.5, the equilibrium E23 is stable, (d) when
α = 10 > 7.5, the equilibrium E2 is stable.
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Figure 3.2: (a) Bifurcation diagram of (3.12) when k > d1, (b) In the region when the coexis-
tence equilibrium E∗ is stable, we can observe a meso-predator cascade.

transcritical bifurcation and we can always observe a meso-predator cascade inside the coexis-

tence region when increasing α: the population of meso-predator is decreasing, the population

of its prey is increasing and the population of the prey’s prey (bottom prey) is decreasing. How-

ever, this pattern will be dramatically changed when we restore large carnivores instead of only

manipulating their playback to induce fear. In the next section, we will model the case when

we also introduce the large carnivores back into the food chain, leading to a 4-D model.

3.3 Model with restoring large carnivores

In this section, we analyze (3.5) which has the population of large carnivores incorporated

together with a benefit in preventing predation of the meso-carnivore by the large carnivores,

in addition to the cost in the meso-carnivore’s production. Parallel to Section 3.2, we first

establish the well-posedness of the 4-D model (3.5), discuss all possible equilibrium solutions

and find the condition for their existence and stability in terms of the parameter values and

anti-predation strategy level.
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Figure 3.3: Population dynamics of (3.12) when d1 > k. (a) When 0 < α = 2 < 2.5, the
equilibrium E13 is stable, (b) 2.5 < α = 6 < 8.409090911, the coexistence equilibrium E∗ is
stable, (c) when 8.409090911 < α = 10, the equilibrium E12 is stable.
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Figure 3.4: (a) Bifurcation diagram of (3.12) when d1 > k, (b) In the region when the coexis-
tence equilibirum E∗ is stable, we can observe a meso-predator cascade.

3.3.1 Well-posedness

For mathematical simplification, we still apply non-dimensionalization for our model (3.5)

which is a natural expansion of the non-dimensionalization for (3.3) in Section 2, given by

t = R1τ, x =
a11N1

R1
, y =

a12N2

R1
, z =

a23N3

R1
, w =

a0N4

R1
,

with a0 = a34(0). Then model (3.5) becomes



dx
dt

= x(1 − x − y),

dy
dt

= y(k − d1y − z + β1x),

dz
dt

= z ( f (α,w) − d2z + β2y − p(α)w) ,

dw
dt

= w(−m + cp(α)z)

(3.14)

where

k =
R2

R1
, d1 =

a22

a12
, d2 =

a33

a23
, β1 =

a21

a11
, β2 =

a32

a12
, m =

D4

R1
, c =

c̄a0

a23
.

For the transformed and rescaled functions f (α,w) and p(α), the conditions (3.6) and (3.7) are

transformed to
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

f (α,w) =
B(α,N4) − D3

R1
,

f (α, 0) = f (0,w) = f0 =
B3 − D3

R1
,

∂ f
∂α

< 0,
∂ f
∂w

< 0,

lim
α→∞

f (α,w) = lim
w→∞

f (α,w) =
−D3

R1
,

p(α) =
a34(α)

a0
,

dp
dα

< 0,

p(0) = 1 and lim
α→∞

p(α) = 0.

(3.15)

By the fundamental theory of ODEs, we easily see that the initial value problem associ-

ated with (3.14) has a unique solution; moreover, the solution is nonnegative (positive) with

nonnegative (positive) initial conditions. Next we show that the solution to system (3.14) is

bounded.

Firstly, by the same argument as in subsection 2.2, we can obtain the same estimates for

x(t) and y(t):

lim
t→∞

sup x(t) ≤ 1 and lim
t→∞

sup y(t) ≤
k + β1

d1
.

For z and w, we consider P = cz + w. Then we have

dP
dt

= cz ( f (α,w) − d2z + β2y) − mw.

Now for any given ε > 0, there holds y(t) ≤ (k + β1)(1 + ε)/d1 for large t. Then for some

µ ∈ (0,m) and large t, we have

dP
dt

+ µP = cz (µ + f (α,w) − d2z + β2y) − (m − µ)w,

≤ cz
(
µ + f0 +

β2(k + β1)(1 + ε)
d1

− d2z
)

=: cz(K − d2z)

(3.16)
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where

K = µ + f0 +
β2(k + β1)(1 + ε)

d1
.

If K ≤ 0, since z(t) ≥ 0, we can conclude that

dP
dt

+ µP ≤ 0,

leading to P ≤ P0e−µt, where P0 = cz0 + w0 comes from the initial condition. Thus,

lim
t→∞

sup P(t) ≤ 0.

If K > 0, then
dP
dt

+ µP ≤
cK

2

4d2
.

By the comparison theorem [25], we can obtain

P ≤ P0e−µt +
(
1 − e−µt) cK

2

4µd2
.

which implies

lim
t→∞

sup P(t) ≤
cK

2

4µd2
.

Thus, in both cases, P is bounded, implying that z and w are both bounded. Therefore, all four

components of the solution are bounded.

3.3.2 Existence and Stability of the boundary equailibrium solutions

As in Section 2, we first analyze the boundary equilibria of the model (3.14). Again, we are

only interested in the equilibria with nonnegative components.
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By solving the system



x(1 − x − y) = 0,

y(k − d1y − z + β1x) = 0,

z ( f (α,w) − d2z + β2y − p(α)w) = 0,

w(−m + cp(α)z) = 0,

we find that there are eleven possible boundary equilibria and they are described below. E0 =

(0, 0, 0, 0) is the trivial equilibrium solution which always exists, E1 = (1, 0, 0, 0), E2 =

(0, k/d1, 0, 0) and E3 = (0, 0, f0/d2, 0) are the equilibria that correspond to the case of only

one species surviving: E1 and E2 are always exist while E3 exists only when f0 > 0. There are

also four possible equilibria accounting for the scenario of two species coexisting and they are

E12 =

(
d1 − k
d1 + β1

,
k + β1

d1 + β1
, 0, 0

)
,

E13 =

(
1, 0,

f0

d2
, 0

)
,

E23 =

(
0,

d2k − f0

d1d2 + β2
,

kβ2 + d1 f0

d1d2 + β2
, 0

)
,

E34 =

(
0, 0,

m
cp(α)

,w
)

where w satisfies the equation

f (α,w) −
d2m

cp(α)
− p(α)w = 0. (3.17)

Due to the requirement of non-negativity, E12 exists when k < d1, E13 exists when f0 > 0, and

E23 exists when d2k > f0 > −β2k/d1. For the existence and uniqueness of E34, we denote

F1(w) = f (α,w) −
d2m

cp(α)
− p(α)w.

Then it is obvious that F1(w) is a decreasing function with respect to w and limw→∞ F1(w) =

−∞. Thus, the sufficient and necessary condition for E34 to exist is F1(0) > 0, that is f0 >

d2m/cp(α).
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There are three possible equilibria for the case of three species coexisting, given by

E123 =

(
d1d2 − d2k + β2 + f0

β1d2 + d1d2 + β2
,
β1d2 + d2k − f0

β1d2 + d1d2 + β2
,
β1β2 + β1 f0 + β2k + d1 f0

β1d2 + d1d2 + β2
, 0

)
,

E134 =

(
1, 0,

m
cp(α)

,w
)
,

E234 =

(
0,

cp(α)k − m
d1cp(α)

,
m

cp(α)
, ŵ

)
,

where w̄ is as in (3.17) and ŵ satisfies the equation

f (α, ŵ) −
d2m

cp(α)
+
β2cp(α)k − β2m

d1cp(α)
− p(α)ŵ = 0. (3.18)

Thus, E123 exists when

d2(k + β1) > f0 > max
(
d2k − d1d2 − β2,−

β2(k + β1)
d1 + β1

)
,

The condition for E134 to exist is the same as for the existence of E34, that is, when f0 >

d2m/cp(α). Condition for E234 to exist is cp(α)k − m > 0 and

f0 >
d2m

cp(α)
−
β2cp(α)k − β2m

d1cp(α)
.

In order to discuss the local stability, we calculate the Jacobian matrix at equilibrium E =

(x∗, y∗, z∗,w∗) as

J(E) =



1 − 2x∗ − y∗ −x∗ 0 0

β1y∗ k − 2d1y∗ + β1x∗ − z∗ −y∗ 0

0 β2z∗ J33 J34

0 0 cp(α)w∗ −m + cp(α)z∗



, (3.19)
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where

J33 = f (α,w∗) − 2d2z∗ + β2y∗ − p(α)w∗,

and

J34 = z∗
∂ f (α,w)
∂w

∣∣∣∣∣
w=w∗
− p(α)z∗ < 0 for z∗ > 0, w∗ > 0.

At E0 = (0, 0, 0, 0), the Jacobian becomes

J(E0) =



1 0 0 0

0 k 0 0

0 0 f0 0

0 0 0 −m



,

thus, E0 is unstable.

At E1 = (1, 0, 0, 0), the Jacobian reduces to

J(E1) =



−1 −1 0 0

0 k + β1 0 0

0 0 f0 0

0 0 0 −m



,

hence E1 is unstable.
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At E2 = (0, k/d1, 0, 0), the Jacobian is given by

J(E2) =



1 −
k
d1

0 0 0

β1k
d1

−k −
k
d1

0

0 0 f0 +
β2k
d1

0

0 0 0 −m



,

so E2 is asymptotically stable if and only if 1 − k/d1 < 0 and f0 < −β2k/d1.

At E3 = (0, 0, f0/d2, 0), the Jacobian is now

J(E3) =



1 0 0 0

0 k −
f0

d2
0 0

0
β2 f0

α2
− f0 J34

0 0 0 −m +
cp(α) f0

d2



,

therefore E3 is unstable.
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At E12, the Jacobian is reduced to

J(E12) =



k − d1

d1 + β1

k − d1

d1 + β1
0 0

β1k + β2
1

d1 + β1
−

d1k + d1β1

d1 + β1
−

k + β1

d1 + β1
0

0 0 f0 +
β2k + β2β1

d1 + β1
0

0 0 0 −m



,

therefore E12 is asymptotically stable if and only if

f0 <
−(β2k + β2β1)

d1 + β1
.

At E13, the Jacobian is

J(E13) =



−1 −1 0 0

0 k + β1 −
f0

d2
0 0

0
β2 f0

α2
− f0 J34

0 0 0 −m +
cp(α) f0

d2



,

consequently, E13 is asymptotically stable if and only if

md2

cp(α)
> f0 > d2(k + β1).
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At E23, the Jacobian is given by

J(E23) =



1 −
d2k − f0

d1d2 + β2
0 0 0

β1d2k − β1 f0

d1d2 + β2
−

d1d2k − d1 f0

d1d2 + β2
−

d2k − f0

d1d2 + β2
0

0
kβ2

2 + d1 f0β2

d1d2 + β2
−

kβ2d2 + d1 f0d2

d1d2 + β2
J34

0 0 0 −m +
cp(α) (kβ2 + d1 f0)

d1d2 + β2



,

therefore E23 is asymptotically stable if and only if

f0 > d2k − d1d2 − β2 and p(α) <
m (d1d2 + β2)
c (kβ2 + d1 f0)

.

At E34 =

(
0, 0,

m
cp(α)

,w
)
, the Jacobian becomes

J(E34) =



1 0 0 0

0 k −
m

cp(α)
0 0

0
β2m

cp(α)
−d2m
cp(α)

J34

0 0 cp(α)w 0



,

therefore E34 is unstable.
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At E123 = (X1,Y1,Z1, 0), the Jacobian is given by

J(E123) =



−X1 −X1 0 0

β1Y1 −d1Y1 −Y1 0

0 β2Z1 −d2Z1 0

0 0 0 −m + cp(α)Z1



,

where X1, Y1 and Z1 denote the three positive components in E123. In Section 2, for the three

dimensional model (3.8), we have proved the principle 3 × 3 sub-matrix of J(E123) only has

negative eigenvalues. Therefore E123 is asymptotically stable if and only if −m + cp(α)Z1 < 0,

that is

p(α) <
m (β1d2 + d1d2 + β2)

c (β1β2 + β1 f0 + β2k + d1 f0)
.

At E134 =

(
1, 0,

m
cp(α)

,w
)

, the Jacobian is given by

J(E134) =



−1 −1 0 0

0 k + β1 −
m

cp(α)
0 0

0
β2m

cp(α)
−

d2m
cp(α)

J34

0 0 cp(α)w 0



,

Since J34 < 0, E123 is asymptotically stable if and only if k + β1 − m/cp(α) < 0, that is

p(α) < m/c (k + β1).
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At E234, the Jacobian becomes

J(E234) =



1 −
cp(α)k − m

d1cp(α)
0 0 0

β1 (cp(α)k − m)
d1cp(α)

−
d1 (cp(α)k − m)

d1cp(α)
−

cp(α)k − m
d1cp(α)

0

0
β2m

cp(α)
−

d2m
cp(α)

J34

0 0 cp(α)ŵ 0



,

the lower 3 × 3 principle sub-matrix can be written as

A =



−d1Y2 Y2 0

β2Z2 −d2Z2 J34

0 cp(α)ŵ 0


,

where

Y2 =
cp(α)k − m

d1cp(α)
and Z2 =

m
cp(α)

.

Then the characteristic polynomial of matrix A is

λ3 + (d1Y2 + d2Z2)λ2 + (−cp(α)ŵJ34 + d2Z2d1Y2 + β2Z2Y2) λ − cp(α)J34d1ŵY2 = 0,

where 
a1 = d1Y2 + d2Z2 > 0,

a2 = −cp(α)ŵJ34 + d2Z2d1Y2 + β2Z2Y2 > 0,

a3 = cp(α) − J34d1ŵY2 > 0,

and

a1a2 − a3 = −cp(α)J34d2ŵZ2 + d2
1d2Y2

2 Z2 + d1d2
2Y2Z2

2 + β2d1Y2
2 Z2 + β2d2Y2Z2

2 > 0.
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Therefore, by the Routh-Hurwitz criterion, the sub-matrix A only has negative eigenvalues.

Thus, E234 is asymptotically stable if and only if

1 −
cp(α)k − m

d1cp(α)
< 0.

3.3.3 Existence and stability of the positive equilibrium

By solving the system 

1 − x − y = 0,

k − d1y − z + β1x = 0,

f (α,w) − d2z + β2y − p(α)w = 0,

− m + cp(α)z = 0,

(3.20)

we can find the expression of the possible positive equilibrium solution E∗ = (x∗, y∗, z∗,w∗)

where 

x∗ =
cp(α) (d1 − k) + m

cp(α) (β1 + d1)
,

y∗ =
cp(α) (β1 + k) − m

cp(α) (β1 + d1)
,

z∗ =
m

cp(α)
,

and w∗ is given by the equation

f (α,w∗) − d2z∗ + β2y∗ − p(α)w∗ = 0.

Therefore, there exists a unique positive equilibrium if and only if the following inequalities

hold 
cp(α) (d1 − k) + m > 0

cp(α) (β1 + k) − m > 0,

f0 −
d2m

cp(α)
+

cp(α)β2 (β1 + k) − β2m
cp(α) (β1 + d1)

> 0,

(3.21)
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The Jacobian of the positive equilibrium is given by

J(E∗) =



−x∗ −x∗ 0 0

β1y∗ −d1y∗ −y∗ 0

0 β2z∗ −d2z∗ J34

0 0 cp(α)w∗ 0



,

The corresponding characteristic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = d1y∗ + d2z∗ + x∗ > 0,

a2 = −J34cp(α)w∗ + d1d2y∗z∗ + β1x∗y∗ + β2y∗z∗ + d1x∗y∗ + d2x∗z∗ > 0,

a3 = −J34cp(α)d1w∗y∗ − J34cp(α)w∗x∗ + β1d2x∗y∗z∗ + d1d2x∗y∗z∗ + β2x∗y∗z∗ > 0,

a4 = −J34β1cp(α)w∗x∗y∗ − J34cp(α)d1w∗x∗y∗ > 0.

Calculation gives

a1a2 − a3

= −J34cp(α)d2w∗z∗ + d2
1d2(y∗)2z∗ + d1d2

2y∗(z∗)2 + β1d1x∗(y∗)2 + β2d1(y∗)2z∗ + β2d2y∗(z∗)2

+ d2
1 x∗(y∗)2 + 2d1d2x∗y∗z∗ + d2

2 x∗(z∗)2 + β1(x∗)2y∗ + d1(x∗)2y∗ + d2(x∗)2z∗ > 0

and

a1a2a3 − a2
1a4 − a2

3

= d2x∗z∗ (cp(α)w∗J34 + β1x∗y∗)2
+ d1d2y∗z∗ (β1x∗y∗ + cp(α)w∗J34)2

+ positive terms > 0.
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Therefore, by the Routh-Hurwitz criterion, the positive equilibrium is locally asymptotically

stable.

For readers’ convenience, we summarize the results obtained above about the existence and

stability of all the equilibria in Table 3.2.

Table 3.2: Condition of existence and stability of the equilibria in model (3.14)
Equilibrium solution Existence Stability

E0 Always Unstable

E1 Always Unstable

E2 Always 1 − k/d1 < 0 and f0 < −β2k/d1

E3 f0 > 0 Unstable

E12 k < d1 f0 < −
β2k + β2β1

d1 + β1

E13 f0 > 0
md2

cp(α)
> f0 > d2(k + β1)

E23 d2k > f0 > −β2k/d1 f0 > d2k − d1d2 − β2 and p(α) <
m (d1d2 + β2)
c (kβ2 + d1 f0)

E34 f0 > d2m/cp(α) Unstable

E123 d2(k + β1) > f0 > max
(
d2k − d1d2 − β2,−

β2(k + β1)
d1 + β1

)
p(α) <

m (β1d2 + d1d2 + β2)
c (β1β2 + β1 f0 + β2k + d1 f0)

E134 f0 > d2m/cp(α) p(α) <
m

c (k + β1)

E234 cp(α)k − m > 0 and f0 >
d2m

cp(α)
−
β2cp(α)k − β2m

d1cp(α)
. 1 −

cp(α)k − m
d1cp(α)

< 0

E∗ Condition (3.21) Stable

As was done to rescaled model (3.5) in Section 2, we can also examine the relationship

how the population size for each species at the stable positive equilibrium depends on the anti-

predation level α. Indeed, we can calculate to obtain

dz∗

dα
=
−m

cp2(α)
dp
dα

> 0.

By using implicit differentiation on the system (3.20), we can also determine
dx∗

dα
> 0 and

dy∗

dα
< 0. However, we are not able to determine the sign of

dw∗

dα
.

From the above discussion, we see that after incorporating the benefit obtained by the meso-

predator’s anti-predation response in reducing the predation by the large carnivores, the final

population sizes of the meso-predator, its prey and its prey’s prey are increasing, decreasing,

and increasing respectively with respect to the response strength α. This alternating pattern is

totally opposite to the one obtained in Section 2 on this context.
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3.3.4 Numerical simulations

In this part, we present some numerical simulations to illustrate the analytical results obtained

above. To this end, we choose

B(α,N4) =
R3

1 + c1αN4
and a34(α) =

1
1 + c2α

in (3.5), leading to the following system



dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3

(
R3

1 + c1αN4
− D3 − a33N3 + a32N2 −

N4

1 + c2α

)
,

dN4

dτ
= N4

(
−D4 +

cN3

1 + c2α

)
,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0 , N4(0) ≥ 0,

(3.22)

We fix the parameters

R1 = 3, a11 = 1, a12 = 0.4, R2 = 1, a22 = 0.2, a23 = 0.5, a21 = 0.5,

R3 = 3, D3 = 1, a33 = 0.5, a32 = 0.05, c1 = 0.4,D4 = 0.1, c = 0.5, c2 = 0.2,
(3.23)

and illustrate how α impacts the population dynamics.

For the above set of parameter values, k = 1/3 < d1 = 1/2, the bifurcation diagram with

respect to α is given in Figure 3.5. There is a transcritical bifurcation between E∗ and E123

where the critical value α∗ is given by

f0 −
d2m

cp(α∗)
+

cp(α∗)β2 (β1 + k) − β2m
cp(α∗) (β1 + d1)

= 0.

Using the parameter values in (3.23), we can solve this equation to obtain α∗ ≈ 97.77777780.

We can observe a trophic cascade in Figure 3.5 inside the coexistence region with respect to

increment of α. Contrary to the previous section, this cascade shows an increasing population

in odd level and decreasing population in even level.
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Figure 3.5: Bifurcation diagram of (3.22) when k < d1.

Next, we change R1 from R1 = 3 to R1 = 1 in (3.23) and keep the same values for other

parameters. We then have k = R2/R1 = 1 and d1 = a22/a12 = 1/2 so that k > d1. For this

case, we observe more complicated dynamical behaviours: there are three critical values for α,

denoted by α1, α2 and α3, which are given by


cp(α1) (d1 − k) + m = 0

cp(α2) (β1 + k) − m = 0,

md2

cp(α3)
= f0.

Using the parameter values in (3.23), we obtain α1 = 20, α2 = 70 and α3 = 95. In figure 3.6,

when 0 < α < α1, E234 is stable; when α1 < α < α2, E∗ is stable; when α2 < α < α3, E134 is

stable; when α3 < α, E13 is stable. We can also observe trophic cascade in this case as is shown

in Figure 3.6.

In the last two cases, we can see that population size of large carnivores at the positive

equilibrium is monotonically decreasing. We point out that this is dependent on the choice

of the benefit reflecting term p(α) = a34(α)/a0. To see this, we change c2 from 0.2 to 2

(corresponding to a more significant benefit to N3 and disadvantage to N4), then, as is shown

in Figure 3.7-(a), we can see a transcritical bifurcation from E∗ to E123 at threshold value

α̃ = 10.43750000, and before this value, w∗(α) is not monotone: it increases first and then

decreases. Figure 3.7-(b) is an enlargement of (a) in which, one can more clearly see that
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Figure 3.6: Bifurcation diagram of (3.22) when k > d1.

while the lower trophic still follow the cascade, the top predator (w∗) increases first and then

decreases with respect to the increment of α. Thus, the response function p(α) has an impact

of the trophic cascade.

3.4 Conclusion and discussions

A recent experimental study [26] in fields observed a phenomenon of trophic cascade in a food

chain population system consisting of three species, i.e., meso-carnivore on top, its prey in

the middle and the prey’s prey in the bottom, caused by the fear of virtual large carnivores

which is implemented by playback of the large carnivores. This phenomenon, together with

some recent works on fear effect in two species predator-prey models, has motivated us to

theoretically explore the mechanisms for such trophic cascade in this chapter. To this end, we

have proposed two models, (3.3) and (3.5), with (3.3) directly corresponding to the scenario of

field study in [26], and (3.5) being an extension to include a benefit in the meso-carnivore from

the anti-predation response, in addition to a cost, as in (3.3). In order to incorporate the benefit

term into the model, we have to add the population of the large carnivores into the interplay,

making (3.5) a 4-D system.

We have thoroughly analyzed the two models, using the approach of dynamical systems.

For each of the two models, we have obtained complete structure of the equilibria, and estab-

lished their stability/instability in terms of the model parameters, in the form of thresholds for
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Figure 3.7: (a) Bifurcation diagram of (3.22) when c2 = 2, (b) In the region when the
coexistence equilibrium E∗ is stable, we can observe a meso-predator cascade with non-
monotonically change on top predator.

certain parameters. For model (3.3) our results show that an anti-predation response at lower

level is beneficial to the top and bottom species (N3 and N1); while at higher level, it is benefi-

cial to the middle species (N2) but disadvantageous to N3 and N1, confirming the phenomenon

of trophic cascade reported in that experimental study. For model (3.5), our results show that

there are now three threshold values for the response level α, distinguishing ranges for α ac-

counting for various combinations of co-existence among the four species. Particularly, within

certain range of parameters, the model also demonstrates the phenomenon of trophic cascade

but with an opposite alternating pattern for the three species (the meso-carnivore, its prey and

its prey’s prey): increasing the response level α is beneficial to N3 and N1 but disadvantageous

to N2. This change is attributed to the effect of the benefit of the anti-predation response in

reducing the predation and its balance with cost of such a response.

Our results can have ecological implications as they may suggest practical strategies of

management/control for maintaining biodiversity. For example, in some ecosystems, popula-

tions of some meso-predators have been observed to increase significantly due to the loss/extinction

of larger carnivores, and this has in turn put some pressure on the meso-predators’ preys for

their survivals. Our results on model (3.3) suggest that by creating certain virtual situations

(e.g, vocal) mimicking the large carnivore predators, one may expect to reduce the populations

of the meso-predators, and consequently relax the pressure on the meso-predators’ preys. On
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the other hand, if the large (top) predators of the meso-predators are present, their predation on

the meso-predators poses a major threat to the meso-predators. In such a case, by our results on

model (3.5), creating the aforementioned virtual situations may stimulate the meso-predators

to increase their anti-predation response level, which will then reduce the predation risk by

the top predators. This way, the benefit of anti-predation response of the meso-predators in

reducing the predation risk may outplay the cost in production, and thus, enhance the survival

probability of the meso-predators. Such a net benefit in the meso-predators can then be passed

on to the lower level species in an alternating fashion. Therefore, the risk events such as fear

effect in some species in an ecosystem may actually offer a management tool in shifting the

structure of ecosystem and help conserve the biodiversity.

Note that in our model, we have used the mass action or Holling Type I functional responses

as the predation mechanism. For some species between which the predation involves foraging,

this mechanism is not suitable and other types of functional responses should be adopted. It

would be interesting and worthwhile to investigate the population dynamics in models like

(3.3) and (3.8) with such replaced functional responses. We also point out that in our models,

we have only considered fear effect of meso-carnivore species N3 against the large carnivores

N4. Such fear effect may also exist in N2 against N3 and in N1 against N2. Modeling fear effect

in those or in all levels would also be interesting but would be very challenging mathematically.

We remark that for predator-prey interactions between two species only, the recent works

mentioned in the introduction may also suggest some possible extensions and expansions of

the two models in this chapter. For example, one may also incorporate age structure, spatial

structure, digestion delay, extra food, stochastic noise, as was done in [8, 18, 32, 33, 34].

Efforts on all these lines will greatly enhance our understanding of predator-prey interactions,

and enrich the theory in this area.
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Chapter 4

Evolution of anti-predation response of

prey in predator-prey interactions

4.1 Introduction

Predator-prey interaction is one of the most classic topics in ecology and evolutionary biology.

However, more and more field experiments and observations have been reported in recent years,

which provides evidences showing that the indirect effects due to a prey’s fear of predator

can be as important as that of direct predation [5, 6, 14, 19, 21, 27, 28]. Because of these

reported results, indirect effects between predator and prey have received increasing attention.

Particularly, mathematical modelling has been recognized as a useful tool for understanding

the role that indirect effect can play in predator-prey interactions. In this regard, Wang et. al.

[22] proposed an ODE model to incorporate indirect effect (fear effect) in the prey’s production

in a classic Lotka-Volterra model:
du
dt

= f (α, v(t)) r0 u(t) − d u(t) − a u2(t) − p(u(t)) v(t),

dv
dt

= c p(u(t)) v(t) − m v(t).
(4.1)

Here u(t) is the population of the prey species , v(t) is the population of the predator species,

r0 is the intrinsic growth rate of the prey, d is the natural (density independent) mortality rate

of the prey and a u(t) denotes the density dependent death rate from intra-species’ competition,
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c is the transfer rate of the biomass between predator and prey. The function g(u) is the func-

tional response governing the encounters of the predator and the prey. The function f (α, v) is

incorporated into the model to account for the prey’s anti-predation response with the positive

parameter α measuring the level of the prey’s anti-predation response, once the prey have per-

ceived the risk from the predator. Therefore, it is natural to assume that f (α, v) is decreasing

with respect to both α and v. By analyzing this model, Wang et al [22] revealed some new in-

sights into the predator-prey interaction, compared to the classic models. Especially, the model

predicted some similar results observed in the field experimental study [28] which claimed that,

without the real predation, the fear effect itself can reduce the prey’s reproduction by as much

as 40%.

We noticed that in (4.1), the authors only considered the costs of anti-predation response

which leads to a decrement in prey’s reproduction. But in most cases, if not all, an anti-

predation response of the prey will lead to higher level of vigilance which will make predation

more difficult. In other words, in addition to the costs in the production, an anti-predation

response should also have some benefits for the prey, for example, help avoiding the predation

and hence, reducing the predation rate. This suggests a modification to the predation term

p(u)v by incorporating a dependence on the anti-predation level α in a decreasing way, that is,

replacing p(u)v by p(α, u)v with p(α, u) being decreasing in α.

Since Wang et. al. [22], there have occurred more models investigating various aspects of

anti-predation strategy by considering either costs, or benefits or both. These studies covered

a wild range of topics including the integrating effect of anti-predation strategy and time delay

[23, 25], the spatial problems on fear effect [24], food chain models with anti-predation strategy

[17, 18, 26], among others. These researches have compared the predator-prey systems with

and without indirect effects and as a result, showed indirect effects play an important role in

predator-prey interaction and can not be ignored. However, all of above studies mostly focus

on ecological aspects of anti-predation strategy.

Besides these ecological findings, there is also a natural evolutionary question: how an

anti-predation strategy evolves? This chapter intends to address this question. We will use

the method of adaptive dynamics to study the evolutionary stability of anti-predation strategy.
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To this end, we use (4.1) as the starting point but incorporate a benefit of the anti-predation

response for the resident prey to obtain a basic ODE system for the interactions of a resident

prey and the predator


dur

dt
= f (αr, v(t)) r0 ur(t) − d u(t) − a u2

r (t) − g(αr) β ur(t) v(t),

dv
dt

= c g(αr) β ur(t) v(t) + b (v(t)) .
(4.2)

where we have added an subscript r to the unknown u(t) and parameter α to indicate that ur(t)

is the population of the resident prey playing an anti-predation strategy αr. Here, for simplicity,

we adopt the Holling Type I functional response p(α, u) = g(α) β u where β denotes the natural

encounter rate between predator and prey without anti-predation response; however, in the

equation for the predator growth, we use a general growth function b(v) to allow the model to

accommodate both specialist predator (e.g., when b(v) = −mv) and generalist predator (e.g.,

when b(v) = rv(1 − v/K). By their meanings of costs and benefits, the functions f (α, v) and

g(α) are assumed to satisfy the following conditions:



f and g are continuous differentiable,

f (0, v) = 1, f (α, 0) = 1, ∂ f
∂α
< 0, ∂ f

∂v < 0,

limα→∞ f (α, v) = 0, limv→∞ f (α, v) = 0;

g(0) = 1, dg
dα < 0,

limα→∞ g(k) = 0.

(4.3)

Now, assume there is a mutant prey with its population denoted by um(t) and a different anti-

predation response level αm. Then, combining the competition between the two prey strains and

predations of the predator on the two prey strains, (4.2) is naturally expanded to the following
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three dimensional ODE system



dur

dt
= f (αr, v(t)) r0 ur(t) − d ur(t) − a ur(t) (ur(t) + um(t)) − g(αr) β ur(t) v(t),

dum

dt
= f (αm, v(t)) r0 um(t) − d um(t) − a um(t) (ur(t) + um(t)) − g(αm) β um(t) v(t),

dv
dt

= c g(αr) β ur(t) v(t) + c g(αm) β um(t) v(t) + b (v(t)) ,

(4.4)

With this model, we will use method of adaptive dynamics to answer how the anti-predation

strategy evolves. We first explore the dynamics of (4.2) by which we obtain conditions to con-

firm a positive steady state for the resident prey and the predator. Then we assume a mutant

strain of prey species merges with small population, and perform an invasion analysis to find

out whether the mutant can successfully invade the resident. In the case of successful inva-

sion, we are also interested in the population dynamics for both prey strains, by investigating

whether the mutants will replace the residents and become new residents such that the envi-

ronment reach to a new steady state, or the mutant prey can coexist with the resident prey.

A central notion in evolutionary game theory, called evolutionarily stable strategy (ESS) (see,

e.g., Maynard Smith and Price[16]) will be examined. A strategy is called evolutionarily sta-

ble if a resident species playing this strategy can not be invaded by small amount of mutants

with any other strategy. A related concept is convergence stable strategies. Roughly speak-

ing, a convergence stable strategies is such a singular strategy that when two species (strains)

are playing different strategies, whichever playing a strategy closer to the convergence stable

strategies will outcompete the other. A strategy which is both evolutionarily stable and conver-

gence stable is recognized as a continuously stable strategy (CSS). To get rid of the confusion

between CSS and convergence stable strategy (which also has the abbreviation CSS in some

literature [13]), we follow the notation in [10] and use evolutionary attracting strategy (EAS)

to denote convergence stable strategy. The theoretical way to find an ESS is to compute the

invasion exponent and the corresponding selection gradient. An alternative graphic way to find

the evolutionary stable of a singular strategy is called pairwise invasibility plot which is visual

and convenient in demonstrating results. In this chapter, we will use the abbreviation ”PIP” to

denote pairwise invasibility plot.

There are also other studies on evolution related problems in predator-prey interactions. For
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example, the evolution of predator strategy in capture rate are studied [1, 2, 4], where possible

cyclic behaviour of population and optimal capture rate are explored. The evolution of prey

strategy(anti-predation strategy) is also studied in [2, 3, 12]. A recent work [29] define the evo-

lutionary stability for one type of predator-prey model and also discuss the possible occurrence

of evolutionary branching. Last but not the least, [8, 9, 11, 15] consider co-evolution between

predator and prey species. In this chapter, motivated by [22] for the anti-predation strategy,

we study the evolution of prey’s anti-predation strategy as an response to the fear of predator.

Comparing to the references mentioned above, there are two main differences between our

study and previous studies. First, we consider both specialist and generalist predators, while

the previous studies focus on specialist predators. Secondly, the cost for the prey is density

dependent whereas in the previous studies, and the costs (benefits) are purely strategy driven.

The remainder of this chapter is organized as follows. In Section 2, we set up our starting

point of invasion analysis, including address the well-posedness of the model (4.5) and apply

stability analysis to find the feasible region of the anti-predation strategy such that a globally

asymptotically stable coexistence equilibrium occurs. In Section 3, we start from the steady

state in Section 2. Assuming there is a rare mutant prey with different anti-predation strategy,

we apply invasion analysis to show the conditions of whether it can successfully invade or

not. We first use this analysis tool on general model (4.4). Then we use two examples with

specialist predator and generalist predator respectively. We compare the results of these model

theoretically and numerically and point out the main difference in the results of different types

of predator. In Section 4, we summarize the results obtained from previous sections and discuss

their biological implications. We also suggest some possible directions for future study on

evolutionary stability of anti-predation strategies.



96 Chapter 4. Evolution of anti-predation response of prey in predator-prey interactions

4.2 Premliminaries

We begin with analyzing the basic model (4.2). To simplify notations, we temporarily drop the

subscript r in (4.2) to consider


du
dt

= f (α, v(t)) r0 u(t) − d u(t) − a u2(t) − g(α) β u(t) v(t),

dv
dt

= c g(α) β u(t) v(t) + b (v(t)) .
(4.5)

The functions f (α, v), g(α), b(v), as well as all parameters in (4.5) are explained after(4.2).

4.2.1 Well-posedness of (4.5)

By the fundamental theory of ODEs, we know that the for any given initial values (u0, v0) for

u and v, the initial value problem associate with (4.5) has a unique solution. Moreover, if u0

and v0 are non-negative (positive), the solution (u(t), v(t)) remains nonnegative (positive) for

all t ≥ 0.

If r0 < d, one can easily show that the prey species goes extinct even without the predator.

Therefore, we only need to consider the case of r0 > d which is assumed in the rest of the

chapter.

Next, we show the solution is bounded. In the first equation of system (4.5),by the non-

negativity of v(t) and the assumption (4.3), we have

du
dt
≤ u(r0 − d − au).

By the comparison theorem, we can obtain limt→∞ sup u(t) ≤ r0−d
a .

For the boundedness of v(t), we distinguish the two cases for b(v) representing specialist

and generalist predator scenarios respectively. When b (v(t)) = −m v(t), we consider P = cu+v.

Then we have
dP
dt

= cu (r0 f (α, v) − d − au) − mv.
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For any µ ∈ (0,m), the equation can be rewritten as

dP
dt

+ µP = cu (r0 f (α, v) − d + µ − au) − (m − µ)v.

By non-negativity of v(t) and the assumption (4.3), we have

dP
dt

+ µP ≤ cu (r0 − d + µ − au) ≤
c(r0 − d + µ)2

4a
.

By the comparison theorem, we have

P ≤ P0e−µt +
(
1 − e−µt) c(r0 − d + µ)2

4aµ
,

which implies

lim
t→∞

sup P(t) ≤
c(r0 − d + µ)2

4aµ
.

The boundedness of P(t) and u(t) together implies that v(t) is also bounded.

If b (v(t)) = r v(t)
(
1 − v(t)

K

)
, then

dv
dt
≤

c g(α) β (r0 − d)
a

v(t) + r v(t)
(
1 −

v(t)
K

)
,

which implies

lim
t→∞

sup v(t) ≤
(c g(α) β (r0 − d) + a r) K

a r
.

So we can also conclude the system is bounded.

The existence, uniqueness, non-negativity and boundedness of solutions to (4.5) with non-

negative initial values obtained above established the well-posedness of basic model (4.5).

4.2.2 Dynamics of (4.5)

Now we discuss all possible equilibria of system (4.5) and investigate their stability.

Case I for specialist predator: b (v(t)) = −m v(t). In this case, there are in total three

possible equilibrium solutions: the trivial solution E0 = (0, 0), the predator free equilibrium
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E1 =
(

r0−d
a , 0

)
and the coexistence equilibrium E∗ = (u∗, v∗) given by


r0 f (α, v∗) − d − au∗ − g(α) β v∗ = 0,

c g(α) β u∗ − m = 0.
(4.6)

The trivial equilibrium always exists; the predator free equilibrium exists when r0 > d; and the

coexistence equilibrium exists if and only if

r0 − d −
a m

c g(α) β
> 0. (4.7)

To determine the stability of the equilibria, we compute the Jacobian matrix of (4.5), which

is

J(u, v) =


r0 f (α, v) − d − 2 a u − g(α) β v r0 u ∂ f (α,v)

∂v − g(α) β u

c g(α) β v c g(α) β u − m

 . (4.8)

By substituting the respective the equilibrium into (4.8) and analyzing the eigenvalues of the

resulting matrices, we obtain the following conclusions:

(i) when r0 < d, the trivial solution E0 is the only equilibrium and it is locally asymptotically

stable;

(ii) when r0 > d, the trivial equilibrium loses its stability and the predator free equilibrium

and E1 comes into existence; moreover

(ii-1) if r0 < d + a m
c g(α) β (i.e., (4.7) is reversed), E1 is locally asymptotically stable;

(ii-2) if r0 > d + a m
c g(α) β (i.e.,(4.7) holds), E1 becomes unstable and E∗ comes into exis-

tence and is locally asymptotically stable;

The above results are directly obtained from the conditions for the corresponding Jabcobian

matrices to be stable or unstable. We can also present the results in (ii)-(iii) above in terms of

the anti-predator strategy parameter α. Note that under (4.3), d + a m/c g(α) β increases from

d + a m/c β to∞. Thus, if

d +
a m
c β

< r0 (4.9)
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then theres exists a unique α̂ > 0 such that

d +
a m

c g(α) β
=


< r0, for α ∈ (0, α̂);

= r0, for α = α̂;

> r0, for α ∈ (α̂,∞).

Therefore, assuming (4.9), there is an equilibrium bifurcation at α̂ for the parameter α in the

following sense:

(ii-1)* if α > α̂, then the predator free equilibrium
(

r0−d
a , 0

)
is locally asymptotically stable;

(ii-2)* if α < α̂, then the predator free equilibrium
(

r0−d
a , 0

)
becomes unstable and there occurs

the coexistence equilibrium (u∗, v∗) which is locally asymptotically stable.

Rewrite (4.7) and (4.9) as c g(α) β r0−d
a > m and c β r0−d

a > m respectively. The left hand

sides of these two inequalities measure the predating capability of the predator when the prey

pays anti-predator strategy α or plays no anti-predator strategy. Thus, the results in (ii-1) and

(ii-2) means that if the predator is not capable enough such that c β r0−d
a < m, the prey does not

need to play an anti-predator strategy and it can maintain its population to the level (r0 − d)/a;

but if the predator is a sufficient capable such that c β r0−d
a > m, then the prey’s anti-predator

strategy will make difference: sufficient large response level α > α̂ can still help the prey

to maintain its population at the level (r0 − d)/a; while insufficient response level can only

maintain its population at a lower level u∗(α) < (r0 − d)/a. Note that u∗(α) is increasing in α,

and u∗ = u∗(α)→ (r0 − d)/a as α→ α̂.

For this case of specialist predator, consumption of prey is the sole source for the predator’s

growth. With this in mind, we we relate conditions (4.7) in (ii-1)-(ii-2) the basic reproduction

number of the predator:

Rv0(α) =
c g(α) β

m
·

(r0 − d)
a

.

The condition in (ii-1) corresponds to Rv0(α) < 1, whereas the condition in (ii-2) corresponds

to Rv0(α) > 1. Note that Rv0(α) is decreasing in α.

Case II for generalist predator: b (v(t)) = r v(t) (1 − v(t)/K). For this case, there are

four possible equilibrium solutions and they are: the trivial solution E0 = (0, 0); the predator
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free equilibrium E1 =
(

r0−d
a , 0

)
(if r0 > d); the predator only equilibrium E2 = (0,K) (since

this is a generalist predator scenario); and the coexistence equilibrium E∗ = (u∗, v∗) which is

determined by 
r0 f (α, v∗) − d − a u∗ − g(α) β v∗ = 0,

c g(α) β u∗ + r
(
1 −

v∗

K

)
= 0.

(4.10)

Simple analysis of (4.10) shows that the coexistence equilibrium exists if and only if

r0 f (α,K) − d − g(α) βK > 0. (4.11)

Note that (4.11) implies r0 > d.

In order to discuss the stability of these equilibria, We calculate the Jacobian matrix of

model (4.5) for this b(v) as below:

J(u, v) =


r0 f (α, v) − d − 2 a u − g(α) β v r0 u ∂ f (α,v)

∂v − g(α) β u

c g(α) β v c g(α) β u + r − 2 r v
K

 . (4.12)

By substituting the respective equilibria into (4.12), and analyzing the eigenvalues of the re-

sulting matrices, we conclude the following.

(i) E0 is always unstable.

(ii) E1 exists if and only if r0 > d, but it is unstable when it exists.

(iii) E2 always exists and it is locally asymptotically stable if and only if

r0 f (α,K) − d − g(α) βK < 0. (4.13)

(iii) When (4.13) is reversed (e.g. (4.11) holds), E2 becomes unstable and the coexistence

equilibrium E∗ = (u∗, v∗) comes into existence and it is locally asymptotically stable.

Unlike condition (4.7) for Case I, conditions (4.11) and its reverse (4.13) contains both

f (α,K) and g(α) and hence, their dependence on the anti-predation strategy α is more com-
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plicated and hence, the equilibrium bifurcation from E2 leading to the occurrence of the stable

coexistence equilibrium E∗ cannot be that conveniently expressed in terms of the strategy pa-

rameter α, as for Case I. To see this, we let G(α) = r0 f (α,K)− d− g(α) βK. From the stability

analysis of equilibrium E2 and E∗, G(α) is an survival index for the prey, determining whether

or not the prey will survive: if G(α) < 0, then the prey will go to extinction; if G(α) > 0,

then the prey will persist with u(t) → u∗ = u∗(α) as t → ∞. Now G(0) = (r0 − d) − βK and

G(∞) = −d < 0. Thus, if

(r0 − d) − βK > 0, (4.14)

meaning that the generalist predator is not that good at predating the prey (βK is small), then

G(α) > 0 for small α ≥ 0, suggesting that α = 0 should be favoured by the prey. But if

(r0 − d) − βK < 0, (4.15)

meaning the predator is good at predating the prey, then G(0) < 0 and hence, the prey will

go extinct when doing nothing. It is hoped that G(α) has a positive maximum at some value

of α > 0, implying that appropriate response level will help the prey survive. This of course

depends on the choices of f and g, there are actually many choices for f and g that can achieve

this expectation, and in Section 3, we will choose a particular pair to move forward to obtain

more detailed results.

Condition (4.11) can also be rewritten in terms of the basic reproduction number of the

prey:

Ru0 = Ru0(α) :=
r0 f (α,K)

d + g(α) βK
> 1.

Similar to the above analysis on the effect of α on the survival index G(α) about the threshold

value 0, analysis on the impact of α on Ru0(α) about the threshold value 1 can also lead to

similar conclusions to those in the above paragraph.

Remark The local asymptotic stability for the equilibria stated above for both Cases I and

II can actually be shown to be global as well. This can be achieved by applying the Dulac-

Bendixson theorem [20]. Indeed, just as in Theorem 3.2 in [22], we can consider the Dulac

function B(u, v) = 1/(uv) to rule out periodic solutions, and consequently conclude global
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stability for all those cases of local stability.

4.3 Invasion analysis

In this section, we study the corresponding evolutionary problem to find out how the anti-

predation strategy α evolves. We first assume the predator and the resident prey have reached

the coexistence steady state. According to the results on (4.5) with u and α replaced by ur

and αr, as stated in (ii-2) for Case I and in (iv) for Case II, such an assumption is ensured by

(4.5) for Case I and by (4.11) for Case II. Then, the model system (4.4) has the mutant free

equilibrium E0 = (u∗r , 0, v
∗). Note that u∗r and v∗ depends on the resident prey’s strategy αr,

and thus, whenever there is a need of emphasis on this fact, we will write u∗r = u∗r(αr) and

v∗ = v∗(αr).

Now we assume there is a rare mutant, meaning that um(0) is very small. To determine

whether the mutant can invade or not, we need to explore if the um(t) component in the solution

of (4.4) will grow or decay near E0. For this purpose, we linearize (4.4) at E0 and obtain the

Jacobian matrix of (4.4) at E0 as

J(u∗r , 0, v
∗) =

J11 J12

0 h(αr, αm)

 . (4.16)

where J11 = J(u∗r , v
∗) is the Jabobian matrix of (4.5) with α replaced by αr and u replaced by

ur, and

h(αr, αm) = r0 f (αm, v∗(αr)) − d − a u∗(αr) − g(αm) β v∗(αr).

By the assumption in the beginning of this section, J11 is a stable 2×2 matrix and hence stability

of E0 is fully determined by the sign of h(αr, αm): E0 is asymptotically stable if h(αr, αm) < 0;

E0 is unstable if h(αr, αm) > 0. The former corresponds to the case that um(t) will decay near

E0, while the latter corresponds to the case that um(t) will grow near E0. We call h(αr, αm) the

invasion exponent, and its sign measures whether the mutant can invade or not.

The direction of evolution from the current anti-predation level αr is defined as the selection
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gradient of h(αr, αm) with respect to αm at αm = αr:

s(αr) =

[
∂

∂αm
h(αr, αm)

]
αm=αr

= r0
∂ f (αm, v∗)
∂αm

∣∣∣∣∣
αm=αr

− g′(αr) β v∗. (4.17)

It tells which direction the anti-predation level will evolve from the current level αr. A strategy

α∗r where s(α∗r) = 0 is known as an evolutionarily singular strategy, which vanishes the selection

gradient. To proceed further, we need the following definitions.

Definition 4.3.1 Let α∗r be a singular strategy, that is, s(α∗r) = 0.

(i) α∗r is said to be an evolutionary stable strategy (ESS) if it cannot be invaded by any

nearby strategy αm , α
∗
r .

(ii) α∗ it said to be an evolutionary attracting strategy (EAS), also called a convergence

stable strategy by some people) if a resident strategy αr what is near α∗r but αr , α
∗
r can

be invaded by a mutant strategy αm if and only if αm is closer to α∗r .

(iii) We say mutual invasibility occurs near α∗ if there are pairs of strategies αr and αm such

that h(αr, αm) > 0 and h(αm, αr) > 0 both hold, implying that both prey strains can

co-exist.

By [10], a singular strategy α∗r is an ESS if

C22 := r0
∂2 f (αm, v∗)
∂αm

2

∣∣∣∣∣∣
αm=αr=α

∗
r

− g′′(α∗r) β v∗ < 0. (4.18)

Define

C11 :=
∂2h(αr, αm)

∂α2
r

=

r0

 ∂2 f
∂ v∗2

(
d v∗

d αr

)2

+
∂ f
∂ v∗

d2 v∗

d α2
r

 − a
d2 u∗

d α2
r
− g(αm) β

d2 v∗

d α2
r


∣∣∣∣∣∣∣
αm=αr=α

∗
r

.

(4.19)

Then, by [10], a singular strategy α∗r is an EAS if C11 > C22; and there occurs mutual invasibil-

ity near α∗r if C11 > −C22.
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In the rest of this section, to be more mathematical tractable, we choose the following

particular forms for the two fear effect functions

f (α, v) =
1

1 + c2 α v
, g(α) =

1
1 + c1 α

. (4.20)

Here c1, c2 are positive constants and they represent efficiencies of the anti-predation responses

in reducing production and avoiding predation respectively. With the above adoption, we will

be able show, in more details, the steps of invasion analysis for specialist and generalist preda-

tors defined by Case I and Case II respectively. We will also present some numerical simula-

tions to demonstrate our theoretical results.

To begin, we do some further reparation with the above chosen f and g. Firstly, the equation

s(α∗r) = 0 is now simplified to

√
β c1

1 + c1 α∗r
=

√
r0 c2

1 + c2 α∗r v∗
(
α∗r

) . (4.21)

Furthermore, the composed parameter C22 can also be given more explicitly expressed as

C22 = r0
∂2 f (αm, v∗)
∂αm

2

∣∣∣∣∣∣
αm=αr=α

∗
r

− g′′(α∗r) β v∗ =
2 r0 c2

2 (v∗)2(
1 + c2 α∗r v∗

)3 −
2 β c2

1 v∗(
1 + c1 α∗r

)3 . (4.22)

By substituting equation (4.21) into (4.22), we conclude that C22 < 0 (α∗r is ESS) if

v∗
(
α∗r

)
<

c1

c2
. (4.23)

Also from the equation (4.21), we know that v∗
(
α∗r

)
can be represented as

v∗
(
α∗r

)
=

c1

c2

√
r0 c2

β c1
+

√
r0 c2
β c1
− 1

c2 α∗r
. (4.24)

Therefore, when r0 c2
β c1

< 1, then v∗
(
α∗r

)
< c1

c2
, implying that the strategy α∗r is an (locally) ESS

when it exists in the feasible region of αr; when r0 c2
β c1

> 1, then v∗
(
α∗r

)
> c1

c2
, implying that even

if a singular strategy α∗r exists, it may not be an ESS. For the latter case, there may not exist

a singular strategy at all, as will be demonstrated in the numerical examples in the follow two
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subsections.

4.3.1 With specialist predator

In this subsection, we consider (4.4) with b(v) = −mv, leading to



dur

dt
= f (αr, v(t)) r0 ur(t) − d ur(t) − a ur(t) (ur(t) + um(t)) − g(αr) β ur(t) v(t),

dum

dt
= f (αm, v(t)) r0 um(t) − d um(t) − a um(t) (ur(t) + um(t)) − g(αm) β um(t) v(t),

dv
dt

= c g(αr) β ur(t) v(t) + c g(αm) β um(t) v(t) − m v(t),

(4.25)

where the two fear effect functions f and g are as in (4.20). Since we are only interested in

whether the mutant can invade when it is rare, we focus on the boundary equilibrium solution

E0 = (u∗r , 0, v
∗) where


u∗r =

m (1 + c1 αr)
c β

,

β c2 αr

1 + c1 αr
v∗

2
+

[
c2 αr d +

c2 αr a m (1 + c1 αr)
c β

+
β

1 + c1 αr

]
v∗ − H = 0.

(4.26)

where H = r0 − d − a m (1+c1 αr)
c β . By (4.7), there is a unique positive v∗ = v∗(α∗r) satisfying (4.26)

if and only if

r0 − d −
a m (1 + c1 αr)

c β
> 0.

Thus, we can conclude that in order for E0 to exist, the resident’s strategy αr needs to be in the

feasible region

0 < αr <
(r0 − d) c β − a m

c1 a m
=: α̂r.

Next, we use some numerical examples to demonstrate the theoretical results obtained

above. To this end, we set

r0 = 0.03, d = 0.01, a = 0.01, m = 0.05, c = 0.4, c1 = c2 = 1, β = 1. (4.27)
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With these values, (4.26) can be explicitly solved for to obtain


u∗r = u∗r(αr) = 0.125 + 0.125αr,

v∗ = v∗(αr) =
0.000625

(
−α3

r − 10α2
r − 9αr − 800 + J

)
αr

.

(4.28)

where

J =

√
α6

r + 20α5
r + 118α4

r − 1420α3
r + 60881α2

r + 62400αr + 640000.

The upper bound for the feasible region for αr is also calculated as

α̂r =
(r0 − d) c β − a m

c1 a m
= 15.

Plugging the second equation in (4.28) into (4.21) and solving the resulting equation numeri-

cally, we then obtain an evolutionarily singular strategy α∗r as

α∗r = 6.130616080,

which in term leads to

v∗
(
α∗r

)
= 0.03834181285 < 1 =

c1

c2
.

Therefore, α∗r is actually a (locally) evolutionarily stable strategy. We can also numerically

calculate C22 and C11 as

C22 = −0.0001646851833, and C11 = 0.0002364439905.

Thus, C11 > C22 and C11 > −C22 both hold, implying that α∗r is also evolutionarily attracting,

and near α∗r mutual invasibility may occur meaning that coexistence is possible.

By applying numerical simulations using the parameter values given in (4.27), we present

pairwise invasibility plots (PIP) for system (4.25) in Figure 4.1. From the PIP, we can find

the region of successful invasion by mutant and find a unique intermediate ESS in the feasible

region of anti-predation strategy. The plot also confirms that the singular strategy α∗r is not

only an ESS and but also an EAS. This implies that when the mutant strategy and the resident
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strategy are on the same side of the α∗r , then the mutant strategy cannot invade if it is further

away than the resident strategy is from the α∗r (i.e., either α∗r < αr < αm or αm > αr > α∗r);

however, when the mutant strategy and the resident strategy are on the opposite sides of the

ESS α∗r , successful invasion by the mutant strategy is still possible even if it is further away

from α∗r than the resident strategy is. Right pane in Figure 1 is the mutual invasibility obtained

by reflect the curve in the left pane about the diagonal line. The region with double plus signs

(i.e., + + ) correspond to the strategies for the resident and mutant strains by which mutual

invasibility occurs. This presents the scenario that the invasion is mild and hence will not

replace the other strain, leading to co-existence of the two strains.

In Figure 4.2, we use three strategy pairs of values for the resident strategy and the mutant

strategy (αr, αm) to illustrate the eventual results of the three-dimensional predator-prey sys-

tem (4.25) with initial condition at
(
u∗r , ε, v

∗
)

with ε small, which accounts for the scenario of

a rare mutant initially appearing when the resident prey and the predator settles at the positive

equilibrium. These three pairs of values are chosen respectively from the three types of re-

gions in the right pane in Figure 4.1. These simulations, clearly demonstrate the three possible

outcomes: (i) the mutant prey can successfully invade and replace the original resident prey to

become the new resident prey, as is shown in Figure 4.2-(a); (ii) the mutant prey cannot invade

at all, reflected by the fact that the corresponding solution approaches
(
u∗r , 0, v

∗
)

as is shown

Figure 4.2-(b); (iii) the mutant prey can invade but mildly, without wiping out the original

resident, reflected by the fact that the corresponding solution approaches a new steady state

with all three component positive, accounting for coexistence of all three species/strains, as is

shown in Figure 4.2-(c).

At this point, we would like to make a remark on the biological implication of the condition
r0c2
βc1

< 1 that guarantees the existence of an ESS α∗r . Note that (i) β accounts for the predator’s

capability in predating the prey and c1 = |g′(0)| measures the efficiency of the prey’s anti-

predation response in avoiding predation; (ii) r0 stands for the prey’s capability in reproduction

and c2 =
∣∣∣∣ ∂ f (α,v)
∂(α v)

∣∣∣∣
α=0

∣∣∣∣ measures the efficiency of the prey’s anti-predation response in reducing

its reproduction. Therefore, the quantity r0 c2
β c1

plays a role of comparing the cost and the benefit

of anti-predation response at low level (α equal or near 0) with the given efficiencies c1 and c2.

Accordingly, the condition r0 c2
β c1

< 1 (equivalent to βc1 − r0c2 > 0) corresponds to the scenario
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Figure 4.1: Pairwise invasibility plot (PIP) for the mutant and for both the resident and the
mutant. Left: plot for invasibility of the mutant prey where the two regions carrying “+” (“−”)
symbols denote strategy ranges for the mutant prey to be able (unable) to invade the resident
prey. Right: plot for mutual invasibility where the two regions with double +′s stand for the
strategy ranges for both resident and mutant preys to be able to mildly invade each other leading
to co-persistence.

that benefit is larger than the cost, and thus, justifies the need of an anti-predation response;

and if r0 c2
β c1

< 1, such a need is not justified and there may be no need for such a response.

To demonstrate the latter case above, we keep all parameter values in (4.27) except for

changing r0 to 1.5, leading to r0 c2
β c1

= 1.5 > 1. Then, we find that there is no positive root for

the equation (4.21). In fact, the selection gradient now remains negative for all strategies in the

feasible range of anti-predation strategy (see Figure 4.3), and thus, there is no singular strategy

and no or lower response level is favoured. This is confirmed/supported by the numerical

simulations on the population dynamics of the model system (4.25) presented in Figure 4.4. In

Figure 4.4(a), αr = 6 > αm = 4, we can see the mutant invades prey and replaces the resident

prey to become the new resident prey. In Figure 4.4(b), αr = 6 < αm = 10, we can see the rare

mutant is immediately wiped and the system recovers to its steady state before the rare mutant

appears. Therefore, the prey strain with lower anti-predation response level is favoured and no

co-ex-existence is possible.
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Figure 4.2: Numerical solutions to (4.25) with parameters given in (4.27) and the initial con-
dition is set to be

(
u∗r , ε, v

∗
)

where ε is small. The strategy pair (αr, αm) is chosen respectively
from the three types of regions in the right pane in Figure 4.2: (a) when (αr, αm) = (4, 6) which
is in the (−,+) region, the mutant can grow when rare and eventually replace the resident to
become the new resident; (b) when (αr, αm) = (6, 4) which is in the (+,−) region, the mutant
can not invade when rare, and after a small fluctuation, the solution converge to the equilib-
rium

(
u∗r , 0, v

∗
)
; (c) when (αr, αm) = (10, 4) which is in it is in the (+,+) region — the mutual

invasibility region, the mutant can invade when rare, without replacing the resident, resulting
in the co-existence of both the mutant and the resident preys.
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Figure 4.3: With parameter values given in (4.27) except that r0 is changed to r0 = 1.5, the
selection gradient s(α) remains negative.

4.3.2 With generalist predator

In this subsection, we consider the scenario of a generalist predator for (4.4) with b(v) =

rv(1 − v/K), leading to



dur

dt
= f (αr, v(t)) r0 ur(t) − d ur(t) − a ur(t) (ur(t) + um(t)) − g(αr) β ur(t) v(t),

dum

dt
= f (αm, v(t)) r0 um(t) − d um(t) − a um(t) (ur(t) + um(t)) − g(αm) β um(t) v(t),

dv
dt

= c g(αr) β ur(t) v(t) + c g(αm) β um(t) v(t) + r v(t)
(
1 −

v(t)
K

)
.

(4.29)

Again, we are only interested in whether the mutant prey can invade when it is rare, and if it

can, will it replace the resident prey (strong invasion) or co-exist with the resident prey (mild

invation). With f and g given by (4.20), u∗r and v∗ in E0 = (u∗r , 0, v
∗) are given by


r0

1 + c2 αr v∗
− d − au∗r −

β v∗

1 + c1 αr
= 0,

c β u∗r
1 + c1αr

+ r
(
1 −

v∗

K

)
= 0.

(4.30)

From equation(4.11), (4.30) has unique positive solution (u∗, v∗) if and only if

F (αr) = d c1 c2 K α2
r +

[
d(c1 + c2 K) + c2βK2 − c1r0

]
αr + (βK + d − r0) < 0. (4.31)
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Figure 4.4: Numerical simulations of the population dynamics of (4.25). Parameter values
are as in (4.27) except that r0 is changed to r0 = 1.5. The initial condition is set to the form(
u∗r , ε, v

∗
)

where ε is small. (a) For αr = 6 and αm = 4 (scenario of αm < αr) , the mutant
can grow and invade even when it is rare, and it eventually replaces the resident and become
the new resident. (b) For αr = 6 and αm = 10 (scenario of αm > αr), the mutants die out and
can not invade when rare; after a small fluctuation, the populations are back to the equilibrium(
u∗r , 0, v

∗
)
.
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Since F(αr) is a quadratic function of αr, we can discuss the feasible region

Ω = {αr| F (αr) < 0 and αr > 0} ,

in terms of the coefficients of F(αr) as below:

(p1) When F(0) = βK + d − r0 < 0, then F(αr) = 0 has a unique positive root α+
r and

Ω = (0, α+
r ).

(p2) When F(0) = βK + d − r0 > 0, and F′(0) = d(c1 + c2 K) + c2βK2 − c1r0 ≥ 0, then Ω is

empty.

(p3) When F(0) = βK + d − r0 > 0, and F′(0) = d(c1 + c2 K) + c2βK2 − c1r0 < 0, then F(αr)

has a minimum Fmin attained at the positive value of αr = α̃r where

α̃r =
c1r0 − d(c1 + c2 K) − c2βK2

2dc1c2K
,

and thus,

(p3-1) if Fmin = F(α̃r) ≥ 0, then Ω is empty;

(p3-2) if Fmin = F(α̃r) < 0, then F(αr) = 0 has two positive roots α1+
r < α2+

r , and Ω =

(α1+
r , α

2+
r ).

As for the specialist predator case in Subsection 3.1, next we use some numerical examples

to illustrate our theoretical results for the generalist predator case. To this end, in addition

to keeping the values of those parameters given in (4.27), we also specify the values for the

parameters r and K in the demography term of the predator in (4.29), as below

 r0 = 0.03, d = 0.01, a = 0.01, m = 0.05,

c = 0.4, c1 = c2 = 1, β = 1, r = 0.01, K = 0.01.
(4.32)

Following the calculations above, we can find the boundary equilibrium (u∗r , 0, v
∗) to be given
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by the following formulas:


u∗r =

αr
3 − 138αr

2 − 239αr − 4100 + Q
80 (αr + 1)

(
αr

2 + 2αr + 41
) −

αr + 1
40

,

v∗r =
αr

3 − 138αr
2 − 239αr − 4100 + Q

200αr
(
αr

2 + 2αr + 41
) .

(4.33)

where

Q =
√
αr

6 + 124αr
5 + 52166αr

4 + 172164αr
3 + 2598321αr

2 + 3288200αr + 16810000.

In this case, we have d+βK−r0 = −0.01 < 0. The feasible region of αr is given by Ω =
(
0, α+

r
)

where α+
r = 199.5012500. By solving equation (4.21) and the second equation in (4.28), we

obtain an evolutionarily singular strategy α∗r as α∗r = 6.522176963 and the corresponding v∗r(α∗r)

as

v∗
(
α∗r

)
= 0.04643837017 <

c1

c2
= 1.

That is, α∗r is (locally) evolutionarily stable. To explore the evolutionary attracting property

and the mutual invasibility of this singular strategy, we can calculate C22 = −0.0001597058850

and C11 = 0.0001940213681. Thus, we have both C11 > C22 and C11 > −C22 implying that

α∗r is indeed also (locally) an EAS and mutual invasibility may occur near this α∗r leading to

coexistence of both the resident and mutant prey species.

In Figure 4.5, we present pairwise invasibility plots (PIP) for system (4.29), using the the

parameter values given in (4.32). The left plane is the plot for the invasibility of the mutant

prey, in which there are four regions: the two regions with “+” (“−”) symbols represent the

strategy range for the mutant prey to be able (unable) to invade the resident prey. The right

pane is the plot for mutual invasibility in which there are six regions. The paired symbols in

each region tell which prey strain can invade: regions with (+,−) represent the range of (αr, αm)

in which the mutant prey cannot invade; regions with (−,+) stand for the range of (αr, αm) in

which the mutant can invade and replace the resident; while regions with (+,+) account for the

range of (αr, αm) in which the both mutant and resident preys will both co-exist.

From the plots in Figure 4.5, we can see that there is a singular strategy which is determined
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Figure 4.5: Pairwise invasibility plot(PIP) and mutual invasibility plot. In the PIP, ”+” region
denotes where mutants can invade the residents while in ”−” region mutants fail to invade
residents. In the mutual invasibility plot, ”++” region notes where mutants and residents are
mutually invasive and thus may cause coexistence of both species.

by the intersection of the diagonal line and the curve. The plots also confirms that this singular

strategy is both (locally) evolutionarily stable and evolutionarily attracting (hence continuously

stable). We particularly point out that, just as in the specialist predator case, for the generalist

predator case, coexistence of both the resident and mutant preys is still possible when they play

different anti-predation strategies (see the two regions with two “+’s ” symbols in right pane in

Figure 4.5. In Figure 4.6, we use three pairs of values for (αr, αm), respectively located in the

three different types of the regions in the right pane in Figure 4.5, to illustrate three different

outcomes. These simulations clearly show that the mutant prey can (i) either successfully

invade and replace the original resident prey to become the new resident (Figure 4.6-(a)); (ii)

or go extinct and the system bringing the populations of the three species back to
(
u∗r , 0, v

∗
)

(Figure 4.6-(b)); (iii) or grow but without wiping the resident prey, leading to a new steady

state with coexistence of all three subpopulations (Figure 4.6-(c)).

Similar to Subsection 3.1, we can also numerically examine the impact of the condition
r0c2
βc1

< 1. Keeping all parameter values given in (4.32) except for changing r0 to 1.5. We now

have r0 c2
β c1

= 1.5 > 1. In this case, after some computations, we find there is no positive requa-

tion (4.21). In fact, the selection gradient s(αr) is always less than 0 for feasible anti-predation

strategy(see Figure 4.7). Thus, there is no singular strategy, and this suggesting a weaker

strategy is favoured. This conclusion is numerically confirmed by numerical simulations of
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Figure 4.6: Numerical solutions to (4.29) with parameters given in (4.32) and the initial con-
dition is set to be

(
u∗r , ε, v

∗
)

where ε is small. The strategy pair (αr, αm) is chosen respectively
from the three types of regions in the right pane in Figure 4.2: (a) when (αr, αm) = (4, 6) which
is in the (−,+) region, the mutant can grow when rare and eventually replace the resident to
become the new resident; (b) when (αr, αm) = (6, 4) which is in the (+,−) region, the mutant
can not invade when rare, and after a small fluctuation, the solution converge to the equilib-
rium

(
u∗r , 0, v

∗
)
; (c) when (αr, αm) = (10, 4) which is in it is in the (+,+) region — the mutual

invasibility region, the mutant can invade when rare, without replacing the resident, resulting
in the co-existence of both the mutant and the resident preys.
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Figure 4.7: With parameter values given in (4.32) except that r0 is changed to r0 = 1.5, the
selection gradient s(α) remains negative.

solutions to (4.29), presented in in Figure 4.8, where we use (αr, αm) = (6, 4) for Figure 4.8-(a)

and (αr, αm) = (6, 10) for Figure 4.8-(b).

The numerical results above show that, as in the case of specialist predator, for the gen-

eralist predator case, the quantity r0 c2
β c1

affected by the efficiencies of the prey’s anti-predation

response in reducing the production (cost) and in avoiding the predation (benefit) still plays

an important role. When the cost of anti-predation strategy is relatively large, there is no in-

termediate ESS and weaker strategy is always more favoured; when the cost of anti-predation

strategy is relatively small, if there exists an evolutionarily singular strategy inside the feasi-

ble region of residents’ strategy, then it is an ESS, meaning that the prey strain that plays this

anti-predation strategy can not be invaded by the other prey strain playing a different strategy.

4.3.3 Difference between specialist and generalist predator

In the last section, we have shown that model (4.25) and model (4.29) have some similar

dynamical behaviors with respect to evolutionary stability. However, because of the different

types of the predator, there are also some differences between two systems that are worth

mentioned.

First, the feasible regions of the anti-predation strategy for the residents are different. In

model (4.25), the feasible region always has the form as αr ∈
(
0, (r0−d) c β−a m

c1 a m

)
, that is, in order to



4.3. Invasion analysis 117

0 200 400 600 800 1000

time

0

5

10

15

p
o
p
lu

a
ti
o
n

Solution of the three dimension system

resident

mutant

predator

(a)

0 200 400 600 800 1000

time

0

5

10

15

p
o
p
lu

a
ti
o
n

Solution of the three dimension system

resident

mutant

predator

(b)

Figure 4.8: Numerical simulations of the population dynamics of (4.29). Parameter values
are as in (4.32) except that r0 is changed to r0 = 1.5. The initial condition is set to the form(
u∗r , ε, v

∗
)

where ε is small. (a) For αr = 6 and αm = 4 (scenario of αm < αr) , the mutant
can grow and invade even when it is rare, and it eventually replaces the resident and become
the new resident. (b) For αr = 6 and αm = 10 (scenario of αm > αr), the mutants die out and
can not invade when rare; after a small fluctuation, the populations are back to the equilibrium(
u∗r , 0, v

∗
)
.
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observe the coexistence between predator and prey, the anti-predation strategy must be main-

tained under certain level. Otherwise, the predator species will go extinct. But in model (4.29),

since the predator can persist with absence of prey. The feasible region of the anti-predation

strategy changes to two possibilities. When F(0) = βK+d−r0 < 0 the feasible region is
(
0, α+

r
)

where α+
r denotes the positive root of F (αr) = 0 from inequality (4.31). That is, if the carrying

capacity of the generalist predator is small, the prey can apply anti-predation strategy from 0 to

certain level. When the strategy exceeds this level, the prey can not survive due to its huge cost

on reproduction but not as huge benefit from defense of predator. When F(0) = βK+d−r0 > 0,

we need to further check F′(0) and Fmin. When F′(0) and Fmin are both negative, then the fea-

sible region of αr is given by
(
α1+

r , α
2+
r

)
, where α1+

r < α2+
r are the two distinct positive roots

of F (αr) = 0 from inequality (4.31). This means when the carrying capacity of the generalist

predator is increasing. The prey, in order to survive, can not apply weak anti-predation strategy

anymore. A weak strategy will cause a huge predation rate such that the prey population is

suffered severely by direct predation and thus goes extinct. Of course, if the carry capacity of

the predator keeps increasing, then the prey can not survive no matter what strategy they apply

due to abundance of predator.

The difference on feasible region of the anti-predation strategy directly leads to the second

main difference on the dynamics between model (4.25) and model (4.29). That is, whether the

mutants can invade with an anti-predation strategy outside of the feasible region.

We first show that in model (4.29), a mutant with anti-predation strategy αm can never

invade when rare if αm does not belong to the feasible region of residents strategy αr. Consider

the invasion exponent

h(αr, αm) = r0 f (αm, v∗) − d − au∗ − g(αm) β v∗.

We know a successful invasion requiring a positive invasion exponent. Since αm is not in the

feasible region. We have r0 f (αm,K) − d − g (αm) K < 0. From equation (4.30), we also have

u∗ > 0 and v∗ > K. Using the monotonicity of function f (α, v) with respect to v, we can



4.4. Conclusion and discussions 119

conclude

h(αr, αm) = r0 f (αm, v∗) − d − au∗ − g(αm) β v∗

< r0 f (αm,K) − d − g(αm) βK < 0.

Therefore, the mutant can not successfully invade the resident when rare. In another word, for

model (4.29), we can conclude that a singular strategy α∗, if exists, must appears in the feasible

region of αr. Moreover, whether it is an ESS is determined by r0 c2
β c1

.

However, it is not true for the case of specialist predator. In fact, we can easily find a

example for model (4.25) that a singular strategy is not in the feasible region. Let r0 = 0.03,

d = 0.01, a = 0.05, m = 0.05, c = 0.4, c1 = c2 = 1 and β = 1. The feasible region of αr is give

by (0, 2.2). But by solving equation (4.21), we find a singular strategy α∗r = 4.003614398 > 2.2.

In Figure 4.9, we show that in this example, a mutant with anti-predation strategy αm = 2.4,

which does not belong to the feasible region, can still successfully invade. Before the mutants

replacing the residents, the predator species goes extinct first. That leads to the coexistence of

two strains of prey species with absence of predator. In conclusion, for model (4.25), a mutant

with a strategy outside of the feasible region can still invade. Remember the feasible region in

model (4.25) is always in the form of
(
0, (r0−d) c β−a m

c1 a m

)
, which means the mutants must apply a

strong strategy. With the growing of the mutants population, the predator will be eliminated by

such a strong strategy and only prey species can persist.

4.4 Conclusion and discussions

Recent field studies and mathematical modelings suggest importance to incorporate indirect

effect when considering a predator-prey interaction. Wang et al [22] proposed an ODE model

included the fear effect which leads to a cost in reproduction. Further modification in [23, 24,

25, 26] suggests the benefit of anti-predation strategy which is, obviously, reducing the risk of

predation should also be taken into account. In this chapter, based on the ecological facts from

these previous work, we propose a model to answer the corresponding evolutionary problem.

We look for an optimal anti-predation strategy that can avoid invasion by a mutant and we also
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Figure 4.9: αr = 2, αm = 2.4 > 2.2 is outside of the feasible region. We can find the mutants
can still invade and start replace the residents. However, the predator population tends to 0 first
and since the absence of predator, the two strains of prey coexist.

find the direction of evolving of the trait.

We start from a general system (4.4) that we use general cost and benefit functionals sat-

isfied condition (4.3) and demographic functional of the predator so it can be either specialist

and generalist. We find condition for the singular strategy to be an ESS is

C22 = r0
∂2 f (αm, v∗)
∂αm

2

∣∣∣∣∣∣
αm=αr=α

∗
r

− g′′(α∗r) β v∗ < 0,

which shows the curvature of cost and benefit functional play an important role to determine

the evolutionary stability of the singular strategy.

In order to make our result more clear, we then use a detailed expression of f and g as

f (α, v) = 1/ (1 + c2 α v(t)) and g(α) = 1/(1 + c1 α) where c1, c2 are positive coefficients. By

using this pair of simple form of f and g, we analyze the model (4.25) and model (4.29)

to compare the qualitative results of evolutionary stability between different type of predator,

namely, specialist predator and generalist predator.

We first stated some similar behavior in both model. Regardless of the type of predator,

the evolutionary stability of the singular strategy always determined by the anti-predation ef-

ficiency indicator I = r0 c2
β c1

. If I < 1, the singular strategy in the feasible region of αr is a

locally ESS. If I > 1, the singular either does not exist and a weaker strategy is always more

favored. The biological implication is that when I is large, it means either r0 is large or β is
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small. In both case, it shows reducing the predator risk is not as worthwhile as maintained

the reproduction size. That is, the cost in reproduction exceeds much than the benefit from

reducing the predation risk. Therefore, a weaker anti-predation strategy has more evolutionary

advantages than a stronger strategy. In contrary, when I is small, it means the benefits of reduc-

ing predation risk can somehow make up the cost from reproduction and therefore a stronger

anti-predation strategy is preferred in certain region. That is, an intermediate optimal strategy

is possible.

We also point out an important difference between the models with different type of preda-

tors, that is, the feasible region of resident preys’ strategy αr. If the predator is specialist,

a weak anti-predation strategy is enough to confirm the persistence of prey species. This is

because the predator will go extinct with the absence of prey and therefore the size of prey’s

population restrict the size of predator’s population. Also, a extremely strong strategy will

decrease the predation risk such that the predator can not reproduce themselves and become

extinct. But this feature changed dramatically if the predator is generalist. The population of

the predator is not limited by the prey anymore but mainly by its own demographic dynamics.

Now, the carrying capacity of predator plays an important role. When the carrying capacity

is small, satisfying r0 − d − βK > 0, a weak strategy can still confirm the persistence of the

prey. But since the predator can survive with the absence of the prey, any strong strategy can

not help prey to wipe the predator like in the specialist case. Then an extremely strong strategy

will only suffer the prey species with its heavy cost on prey’s reproduction. As a result, prey

will go extinct due to its over reaction on anti-predation response. However, when the carrying

capacity of predator becomes large, we can find not only extremely strong strategies will elim-

inate prey species but also weak strategies will do so. This is because the abundant of predators

can consume more preys if the anti-predator response is low. In this case, both under estimation

of the predation and over reaction on defense can lead prey to extinction. Only intermediate

anti-predation strategy can help prey survive.

The difference in the feasible region of resident preys’ strategy αr directly affects the evo-

lution process. We find in model (4.29) with generalist predator, a mutant with strategy outside

of the feasible region can never invade the resident population. This also tells us that a singular
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strategy, once exists, must located inside the feasible region and its evolutionary stability is

totally determined by the efficiency indicator I. If I < 1, then it is an ESS. But in model (4.25)

with specialist predator, a singular strategy can be found exceeded the feasible region which

will lead to the fact that the selection gradient in the feasible region is always positive and a

stronger strategy is favored. As a result, the anti-predation strategy will evolve along the direc-

tion of stronger strategies and eventually make the predator go extinct. On the invasion point

of view, Figure 4.9 shows a mutant with strategy outside the feasible region, can still invade,

break the balance between predator and prey, and wipe the predator.

In conclusion, we find the condition of evolutionary stability in general model(4.4) and

use two example to show the qualitative results in more explicit way including define the anti-

predation efficiency indicator, show the relationship between the efficiency indicator and evo-

lutionary stability of the anti-predation strategy and compare these results with different type

of predator.

We modified the ODE model in [22] as the basic model and added the benefit from the

anti-predation strategy by considering the effect of reducing the predation risk. In this chapter,

we use a simple form of f and g functions which give us mathematical convenience to illustrate

the qualitative behavior of the model. One future direction is to apply more realistic functional

response of the cost and benefit functions. In [7], the author mentioned there has not been a

general theory to measure the relative magnitude of the impact between direct predation and

anti-predation response. Although there have been some experiments [19, 28] using manipu-

late predator who can delivery only risk effects to measure the significant impact of indirect

effect alone. These measurement still leave spaces to understand how the results generalize to

more natural environment with coexistence of direct and indirect effects. A pair of more com-

plicated and realistic cost and benefit functionals f and g may provide richer and more precise

prediction of the optimal anti-predation strategy in the sense of evolution. Another direction

is in our model, we use mass action as our functional response of predation which can lead to

a globally asymptotically stable steady state as our starting point. But in reality, mechanism

of interaction between predator and prey can be different. So we can apply Holling Type II,

Holling Type III or other type of functions as our functional response. But now the original
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two dimensional resident-predator system can have more complicated dynamical behavior like

periodic solutions. Then the invasion exponent is time varying which will lead to some interest-

ing questions. Last and not the least, since in our model, under certain condition, the mutants

can coexist with the resident and the predator. Then a natural question is after a new steady

state is reached of this mutant-resident-predator system, how will the anti-predation strategy

further evolve by considering whether a new mutant can invade this three species steady state.

These are some future direction beyond the scope of this chapter and may interest us to do

some future work on this topic.



Bibliography

[1] Abrams, PA., Foraging time optimization and interactions in food webs. Am. Nat.

124(1984), 80-96.

[2] Abrams, PA., Adaptive responses of predators to prey and prey to predators: the failure of

the arms race analogy. Evolution 40(1986), 1229-1247.

[3] Abrams, PA., The evolution of antipredator traits in prey in response to evolutionary

change in predators., Oikos 59(1990), 147-56.

[4] Abrams, PA., Adaptive foraging by predators as a cause of predator-prey cycles. Evol.

Ecol. 6(1992), 56-72.

[5] Boonstra, R. et al., The impact of predator-induced stress on the snowshoe hare cycle.

Ecol. Monogr. 68(1998) , 371–394.

[6] Creel, S., D. Christianson, S. Liley, and J. A. Winnie, Predation risk affects reproductive

physiology and demography of elk, Science 315(2007), 960.

[7] Creel, S., Christianson, D., Relationships between direct predation and risk effects, Trends

Ecol Evolut 23(2008), 194-201.

[8] Diekmann, U., Marrow, P., Law, R., Evolutionary cycling in predator-prey interactions:

population dynamics and the Red Queen., J. Theor. Biol. 176(1995), 91-102.

[9] Diekmann, U., Law, R., The dynamical theory of coevolution: a derivation from stochastic

ecological processes., J. Math. Biol. 34(1996), 579-612.

124



BIBLIOGRAPHY 125

[10] Diekmann, O., Beginner’s Guide to Adaptive Dynamics, Banach Center Publications, 63

(2004), 47-86.

[11] Gavrilets, S., Coevolutionary chase in exploiter-victim systems with polygenic charac-

ters., J. Theor. Biol. 186(1997), 527-534.

[12] Ives, AR., Dobson, AP. Antipredator behavior and the population dynamics of simple

predator-prey systems., Am. Nat. 130(1987), 431-437.

[13] Lam, K. Y., Lou, Y.,Evolutionarily stable and convergent stable strategies in reaction-

diffusion models for conditional dispersal. Bull Math Biol 76(2) (2014), 261–291.

[14] Lima, S. L., Nonlethal effects in the ecology of predator-prey interactions, Bioscience

48(1998), 25-34.

[15] Marrow, P., Cannings, C., Evolutionary instability in predator-prey systems., J. Theor.

Biol. 160, 135-150.

[16] Maynard Smith, J., Price, G.,The logic of animal conflict, Nature, 246(1973), 15–18.

[17] Panday, P., Pal, N., Samanta, S., Chattopadhyay, J., Stability and bifurcation analysis of

a three-species food chain model with fear, Int. J. Bifurc. Chaos 28 (2018), 1850009.

[18] Panday, P., Pal, N., Samanta, S., Chattopadhyay, J., A Three Species Food Chain Model

with Fear Induced Trophic Cascade, Int. J. Appl. Comput. Math 5 (2019),100.

[19] Peckarsky, B.L. et al.,Sublethal consequences of streamdwelling predatory stoneflies on

mayfly growth and fecundity. Ecology 74(1993), 1836–1846.

[20] Perko, L., Differential equations and dynamical systems, Springer, New York(1996)

[21] Tollrian, R. and Harvell, C.D., The evolution of inducible defenses: current ideas. In

The Ecology and Evolution of Inducible Defenses (Tollrian, R. and Harvell, C.D., eds),

Princeton University Press, (1999), 306–321.

[22] Wang, X., Zanette, L. Y., Zou, X., Modelling the fear effect in predator-prey interactions,

J Math Biol. 73(2016 ), 1179-1204.



126 BIBLIOGRAPHY

[23] Wang, X., Zou, X., Modeling the Fear Effect in Predator-Prey Interactions with Adaptive

Avoidance of Predators, Bull Math Biol 79(2017), 1325-1359.

[24] Wang, X., Zou, X., Pattern formation of a predator-prey model with the cost of anti-

predator behaviours, Mathematical Biosciences and Engineering, 15(2018), 775-805.

[25] Wang, Y., Zou, X., On a predator prey system with digestion delay and anti-predation

strategy, J Nonlinear Sciences, 30(2020), 1579-1605

[26] Wang, Y., Zou, X., On mechanisms of trophic cascade caused by anti-predation response

in food chain systems, Mathematics in Applied Sciences and Engineering, 1(2)(2020), 181-

206

[27] Zanette, L., Synergistic effects of food and predators on annual reproductive success in

song sparrows. Proceedings: Biological Sciences, 270(2003), 799-803.

[28] Zanette, L. Y.,White, A. F.,Allen, M. C.,Clinchy, M., Perceived predation risk reduces the

number of offspring songbirds produce per year, Science 334 (6061)(2011), 1398-1401.

[29] Zu, J., Takeuchi, Y., Adaptive evolution of anti-predator ability promotes the diversity of

prey species: critical function analysis., BioSystems, 109(2012), 192–202.



Chapter 5

Conclusions and discussions

Throughout this thesis, we proposed differential equation models to study the ecological and

evolutionary features of anti-predation strategies. We have considered three different aspects of

such strategies to better understand predator-prey interactions and more complicated ecosys-

tems. These works are mainly motivated by empirical studies [7, 8, 13, 14, 18] which all

suggest that the indirect effect in predator-prey interaction is as important as and sometimes

even more stronger than direct predation. We developed theories and used numerical simula-

tions to visually demonstrate the role anti-predation response plays in the systems and how it

evolves.

We started from considering two-species predator-prey interaction to explore the integrated

impact of anti-predation response and digestion delay. Motivated by the model from [17],

we considered not only the cost of anti-predation response in reproduction of prey, but also

took the benefit of avoiding direct predation into account in our modified model. In addition,

we compared two types of functional responses: Holling Type I and Holling Type II [1, 5,

12]. We found in both models that a high level of anti-predation response can inhibit periodic

solutions and stabilize the system. In the model with Holling Type I functional response, an

intermediated anti-predation response level confirms the stability of the coexistence between

predator and prey. A relatively low level of anti-predation response incorporated with large

digestion delay can cause Hopf bifurcation leading to the occurrence of limit cycles. So in our

model, even with Holling Type I functional response, periodic oscillation of predator and prey
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population is possible while it is impossible in previous modeling in [17]. With Holling Type

II functional response, Hopf bifurcation can be generated by both delay effect and functional

response itself, so there are richer possibility for existence of periodic solutions when anti-

predation response is in a relatively low level.

In Chapter 3, we explored the impact of anti-predation response in a food chain motivated

by the field study [14]. The anti-predation response of top prey not only has a great impact

on its own population but also affects the species in lower trophic levels. This top-down pro-

cess forms so-called trophic cascade phenomenon [16]. We first considered the same situation

as in the field study [14] that large carnivore does not exist and only its playback is released

as a source for spreading predation risk. We proposed a three dimensional food chain model

and successfully exhibited the phenomenon of trophic cascade in the same direction with field

study [14]. We also argued this is because of the manipulating of the perceived fear. In this

case anti-predation response can not gain any benefits and therefore is purely harmful. Then,

we proposed a four dimensional food chain model with restoring the large carnivore as the

apex predator so that the top prey can have some benefits from their anti-predation strategies.

Although in both models, the population of top prey decreases after introducing playback from

predator and restoring predator respectively, we predicted that anti-predation response plays

different roles in two situations and establishes trophic cascade in opposite direction. This re-

sult is meaningful for ecosystem management since empirical studies have reported abundance

of herbivore or mesopredator because of the loss of top predator (large carnivore) due to human

activities [2, 6, 11]. We compared two control methods in reducing the number of overgrowth

population and provided a complete theoretical analysis to show the difference between ma-

nipulating fear and restoring apex predator. These methods can help shifting the balance of

complicated ecosystems and conserving the biodiversity [16].

In Chapter 4, we examined the evolution aspect of anti-predation strategy by using adaptive

dynamics method [4]. We identified a quantity for the efficiency of anti-predation response.

That is, if the costs on reproduction are relatively larger than the benefits from defensing or

the predator is inefficient in catching and eating prey even without anti-predation response,

then the anti-predation response wastes energy and a weaker strategy is favored. Otherwise,
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the trade-off between costs and benefits can increase the fitness of prey in certain range and an

intermediate evolutionarily stable strategy may exist. If the evolutionarily stable strategy is also

convergence stable, then it can be a possible endpoint of evolution. In addition, we compared

the evolution under different predation types: generalist predator and specialist predator. If

the predator is a specialist, an extremely high level anti-predation strategy has evolutionary

advantage since it can limit the size of predator population, and it will end up with breaking

the balance of the ecosystem and rule out the predator species. However, if the predator is a

generalist, the prey species can not regulate the size of predator by any strategy they apply.

In this case, the carrying capacity of the predator becomes an important parameter. When the

carrying capacity is small, weak anti-predation response from prey can still help them survive.

When the carrying capacity is large enough, both under and over response of anti-predation

behavior will lead the prey to extinction. Only intermediate anti-predation response can help

the prey survive and the evolution force drives the strategy to a positive level. In both cases,

we showed that a stable dimorphism is possible when there is an intermediate evolutionarily

stable anti-predation strategy.

So far, we have studied three areas of anti-predation strategy in both ecological and evo-

lutionary aspects. We have used dynamical system theory [10] and adaptive dynamics [4] to

reveal qualitative behavior of anti-predation strategy. So naturally, in the next step, along these

frameworks, quantitative analysis can be done to predict the population dynamics more pre-

cisely. The central problem for quantitative analysis is how to measure more realistic functional

response of the cost and benefit functions. In [3], the author mentioned there has not been a

general theory to measure the relative magnitude of the impact between direct predation and

anti-predation response. We also discussed in Chapter 1 that for the costs, most field studies

focus on estimating allocation costs[15] which are observable. But other types of costs, such as

opportunity cost, are really hard to measure. Another problem is that indirect effect and direct

effect are correlated. Although some field studies [9, 18] used manipulated predation risk to

measure the impact of indirect effect alone, these measurements still leave plenty spaces to un-

derstand what is the real magnitude of the impact from anti-predation response when it coexists

with direct predation. A pair of more complicated and realistic cost and benefit functionals can

give us more precise prediction of population dynamics. Besides, in our models, we assumed
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all the costs reflecting a decrement in reproduction and the benefits reflecting a decrement in

predation risk. However, as we discussed in Chapter 1, costs can come from different aspects

and impact not only the reproduction mechanism of the prey. For example, anti-predation

strategies can change the choice of habitat and foraging strategy of the prey species [14], re-

duce the ability of intra-species’ competition and even develop self-damage behavior which

will increase death rate. Therefore, there are really plenty of topics that can be included in

models considering anti-predation response depending on different species. We leave these as

our future directions of work on fear effect in predator-prey interactions.
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