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Abstract
Ageing is a universal and ever-present biological phenomenon. Yet, describing the ageing

mechanism in formal mathematical terms — in particular, capturing the ageing pattern and
quantifying the ageing rate — has remained a challenging actuarial modelling endeavour. In
this thesis, we propose a class of Coxian-type Markovian models. This class enables a quantita-
tive description of the well-known characteristics of ageing, which is a genetically determined,
progressive, and essentially irreversible process. The unique structure of our model features
the transition rate for the ageing process and a functional form for the relationship between
ageing and death with a shape parameter that captures the biologically deteriorating effect of
ageing. The force of moving from one state to another in the Markovian process indicates the
intrinsic biological ageing force. The associated increasing exit rate captures the external force
of stress due to mortality risk on a living organism.

We define an index, called physiological age, to quantify the heterogeneity between indi-
viduals. The physiological age can be used to compare the death rate between individuals in
which an individual with a higher physiological age has higher mortality rate. The probabil-
ity in each state at any time is calculated, and the distribution of the physiological age at any
chronological age is obtained. We also prove that the distribution of the physiological age at
a given time can be approximated by a normal distribution as the Phase-Type Ageing Model
(PTAM) allows for a large number of states. The approximation can be used to quickly com-
pute the probability in each state at any given time. The lifetime distribution for each individual
readily follows from their physiological ages whose distribution is helpful in quantifying the
variability of individual health status in the population.

We develop an efficient method to evaluate the PTAM’s likelihood utilising a lifetime data
set. Our likelihood calculation uses vectorisation to find simultaneously the density function
at observed lifetimes. Furthermore, our method uses uniformisation strategy to stabilise the
numerical calculation with an appropriate error tolerance. We demonstrate that our numeri-
cal method is more accurate and faster than the traditional method using matrix exponential.
Lastly, we investigate the estimability of the PTAM when only the lifetime data is observable
along with some conditions that could improve the model’s estimability in terms of parameters’
identification.

Keywords: Phase-type aging model, physiological age, uniformisation, estimability
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Summary for Lay Audience
Ageing is a universal and ever-present biological phenomenon. Yet, describing the ageing
mechanism in formal mathematical terms – in particular, capturing the ageing patterns and
quantifying the ageing rate - has remained a challenging endeavour. The modelling of the hu-
man ageing process, under a spectrum of uncertainty, is critical in the accurate valuation and
robust risk management of insurance and pension products. We put forward a general model
having a small number of parameters but flexible enough to produce a variety of lifetime dis-
tributions. Our research contributions widen the available actuarial and survival analysis tech-
niques in the following way: (i) A phase-type ageing model (PTAM) is constructed in which
the ageing’s deteriorating effect and the associated increasing mortality risk are simultaneously
taken into account. (ii) A physiological age index is introduced in order to quantify the het-
erogeneity between individuals. The physiological age index can be used to classify various
mortality risk levels. (iii) Some pertinent statistical properties of the PTAM and the physio-
logical age distribution are established. (iv) An efficient method is developed to evaluate the
PTAM’s likelihood. Some numerical examples, utilising simulated and actual lifetime data
sets, are provided to demonstrate that our proposed calculation technique is faster and more
accurate than the traditional method based on matrix exponential. (v) The estimability of the
PTAM under different lifetime-information scenarios is examined in the context of improving
the parameter estimation. Our modelling of the ageing process through lifetime distributions
is also of utmost importance in crafting suitable regulatory requirements and policies that will
strengthen further the public confidence in the national or even global financial system.
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sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.21 Empirical distribution of one hundred estimates of ψ̂ under different sample
sizs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.22 Empirical distribution of one hundred estimates of ŝ under different sample
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Chapter 1

Introduction

1.1 Background
As human beings, we start our life journey on the day when we were born. We are weak
babies when we are delivered. As time passes, our bodies gradually change – from infant to
young child, from young child to teenager, from teenager to adult, from adult to middle-aged,
from middle-aged to senior, even septuagenarian (70-79), octogenarian (80-89), nonagenarian
(90-99), centenarian (100+), if we are lucky enough! The journey of life is a progression of
ageing, becoming “old”, accompanied by inside and outside changes to our bodies. Several
characteristic ageing symptoms are listed below:

• Teenagers lose the young child’s ability to hear high-frequency sounds above 20 kHz
(Rodrı́guez Valiente et al., 2014).

• Wrinkles develop mainly due to photoageing, particularly affecting sun-exposed areas
(Thurstan et al., 2012).

• After age 30, the human body mass decreases until 70 years and then shows damping
oscillations (Gerasimov and Ignatov, 2004).

• At around age 50, hair turns grey (Pandhi and Khanna, 2013). Pattern hair loss by the
age of 50 affects about 30 -– 50% of males (Hamilton, 1951) and a quarter of females
(Vary Jr, 2016).

• Almost half of people older than 75 have hearing loss (presbycusis) impeding spoken
communication (U.S. Department of Health and Human Services, 2016).

• Recent evidence suggests that age-related risk of death plateaus after age 105 (Thomp-
son, 2018).

• The maximum human lifespan is suggested to be 115 years (Dong et al., 2016; Zimmer,
2016).

These common ageing symptoms reflect that there is a ubiquitous ageing process under-
neath the life of all human beings. Unfortunately, the ageing process is unobservable. Instead,
we can only observe some ageing phenotypes (i.e. the above-mentioned ageing symptoms).
Therefore, we resort to the utility of stochastic methods in modelling the ageing process.
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1.2 Literature Review on Modeling ageing Process

Despite being aware of its characteristics, ageing is conceptual and its definition is vague.
Researchers have their own beliefs, understandings, and interpretations of ageing. Typical
research studies on ageing concentrate on determining the relation between biological indica-
tors of ageing and longevity. Cevenini et al. (2008) pointed out that ageing is complex and
determined by multiple factors, such as genes (Leroi et al., 2005; Salvioli et al., 2006; Beek-
man et al., 2006; Capri et al., 2008), immunology (Franceschi et al., 1995a,b; Franceschi and
Bonafè, 2003; Sansoni et al., 2008), familial component (Atzmon et al., 2004; Perls et al., 2002;
Willcox et al., 2006; Schoenmaker et al., 2006), living location (Deiana et al., 1999; Gueresi
et al., 2003), and epigenetics (Fraga et al., 2005). The aforementioned studies provided a good
overview of ageing phenotype in humans. They reviewed some models utilised to study human
ageing and longevity with a particular focus on families with long-living members, twins and
cohorts of unrelated subjects. Those factors include familial gene component, twin classifica-
tion (monozygotic versus dizygotic twins), body mass index, metabolism, and risk factors for
cardiovascular diseases.

Mathematical models linking the ageing process and mortality are reviewed in Yashin et al.
(2000). The characteristic of deterioration was incorporated into the assumptions of these
mortality models. In Yashin et al. (2000), it is claimed that statistical methods based on an
appropriate mathematical model are required to analyse the information collected in the studies
of ageing and mortality. One such model is the phase-type model, which can approximate
many types of lifetime distributions. Following Lin and Liu (2007), we also consider a specific
phase-type model to capture the human ageing process.

As stated in Lin and Liu (2007),

ageing, as applied to living organisms, is the genetically determined, progressive,
and essentially irreversible diminution with the passage of time of the ability of an
organism or of one of its parts to adapt to its environment, manifested as diminu-
tion of its capacity to withstand the stresses to which it is subjected (i.e. the in-
crease of susceptibility to certain diseases with age), and culminating in the death
of the organism.

From the definition put forward by Jones (1956), the ageing process is also characterised as
genetically determined, progressive, and essentially irreversible. It is our view that people age
differently; that is, the ageing process is personalised. This is because ageing is determined
by both internal factors (e.g., genes) and external factors (family background, education, ac-
cidents). According to Herskind et al. (1996), an additive genetic component explains about
2 percent of the variability in life span, indicating that non-genetic factors contributes to some
extent to a person’s life span. Yashin et al. (2012) found that each factor generates different
average age patterns. There are certainly many factors affecting ageing such that the ageing
processes are individually different, but the pattern of ageing for individuals in a cohort popu-
lation can be similar. From this perspective, the ageing process can be treated as a stochastic
process, and the ageing experience of each individual is a trajectory of the stochastic process.

Apparently, ageing impacts health and hence, mortality. As ageing progresses, the biologi-
cal functionality of organs may change. For example, the ageing system can cause a decline in
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the T cells (thymus cells) and B cells (bone marrow- or bursa-derived cells), which are the ma-
jor cellular components of the adaptive immune response according to Prelog (2006). Indeed,
as a person gets older, the functionality of his/her body cells deteriorates, making him/her more
likely to be affected by illnesses and contract diseases. Thus, the person’s mortality will rise
eventually in which case ageing affects mortality indirectly through the ageing’s influence on
individual’s health status. On the other hand, the age patterns of mortality risk result from the
interaction between the process of individual ageing and external factors as asserted in Yashin
et al. (2012) and the references therein. Therefore, ageing has a direct impact on mortality.

We take the position in this thesis that ageing is progressive, essentially irreversible, per-
sonalised and highly correlated with mortality. Since the ageing process cannot be observed
directly, it requires a mathematical model to describe it. The calibration of such a model with
ageing-related data is desirable and beneficial in the context of annuity or insurance product
valuation and reserve setting. It aids insurance companies identify weak and strong cohorts,
thereby lowering insurance premiums for healthier policy holders and adjusting prices for less
healthy policy holders. This provides a fairer pricing mechanism than valuations merely based
on mortality at each age. Our modelling approach, therefore, complements the underwriting
strategy in premium adjustments. We recognise the difficulty of collecting ageing-related data
from birth to death of each individual. Nonetheless, the collection of individual’s time of death
is a straightforward task and as ageing and mortality are strongly correlated, it is reasonable to
use mortality data in calibrating a mathematical model for ageing.

It is worth noting that there is a difference between the ageing model and mortality model.
The latter focuses on fitting the mortality data, whilst the former is designed to pin down the
underlying process. The death time is treated as the terminal time of this process. So, the
ageing-process model contains more information than the mortality-rate model.

Stochastic models were previously utilised to examine the relationship between ageing and
mortality via a physiological variable; see for example, Yashin et al. (1985); Woodbury and
Manton (1977). The physiological variable provides information about the current status of
death risk in the ageing process.

Lin and Liu (2007) constructed a structured phase-type model, called phase-type ageing
model, by taking advantage of Markov chains to mimic the ageing process. The states are
labelled using integers starting from 1 and are interpreted as physiological ages. An excellent
fit to the Swedish cohort mortality data (1811-1911) was obtained except for super old ages.
The progression of a Markovian structure imitates the ageing process and the corresponding
lifetime distribution.

The model’s structural framework in this thesis is based on the phase-type ageing model
of Lin and Liu (2007). The structure on the absorption rates in Lin and Liu’s model is not
flexible enough to achieve a variety of lifetime distributions. We replace a pliable form on the
absorption rates so that the PTAM can result numerous shape of distributions. Furthermore,
the transition rate between transient states in Lin and Liu’s model is a free parameter, while in
our proposed model is linked to the total number of states. This can ease the interpretation of
the model parameters. It has to be noted that Su and Sherris (2012) used another structured
phase-type model for the Australian population data, and the calibrated model achieved a good
fit. The merits of phase-type models for modeling the human ageing process are akin to the
intuitive model interpretation and promising fitting results for mortality data.

The phase-type models, however, have some drawbacks, which include overparameterisa-
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tion and a time-consuming calibration. The general phase-type model has a large number of
parameters, and the number of parameters is usually more than required to fit the data well, giv-
ing rise to the overparameterisation problem just like in Faddy and Wilson (2000). Calibrating
phase-type models is computationally expensive when the total number of states is large; refer
for instance to the applications in Lin and Liu (2007) and Su and Sherris (2012). Furthermore,
a phase-type model with a large number of parameters may have multiple sets of parameters
that can maximise the likelihood of a set of data, which is problematic for model inference.
This is related to the model estimability ( cf, Chapter 6 of this thesis for more details on model
estimability).

The purpose of this thesis is to overcome the challenges of modelling the ageing process
using phase-type models under the following considerations.

• What does the Markov chain of the proposed model, including the functional form on
the transition rates, look like?

• What are the associated model’s statistical properties?

• How is the efficient calibration of the model going to be carried out?

• How could the estimability and identifiability aspects of the proposed model be ‘im-
proved’ so that the maximum likelihood estimation has a unique result?

The main contributions of this thesis are as follows:

• a relatively flexible structured phase-type ageing model to capture the ageing process;

• establishing the statistical properties of the model;

• an efficient algorithm to estimate the parameters of the proposed model; and

• an examination of the conditions to improve the model’s estimability and identifiability.

1.3 Description of methodology
In order to accomplish the objectives enumerated in Subsection 1.2, we execute the following:

• Propose a phase-type model with a small number of parameters yet flexible enough to
achieve a variety of lifetime distributions. This modelling structure requirement is im-
portant to enable a long Markov chain to mimic the ageing process; without imposing
this structure, calibration will be challenging.

• Investigate the statistical properties of the proposed model to provide insights for cali-
bration and further analysis.

• Develop an efficient algorithm for the maximum likelihood estimation of the proposed
model considering numerous matrix exponential calculations in the estimation process.

• Understand the estimability and the identifiability issues of the proposed model for the
purpose of statistical inference and meaningful interpretation of the parameters of our
ageing model. It is our goal as well to get the distribution of the calibrated parameter
values.



8 Chapter 1. Introduction

1.4 Outline of the remaining chapters
The succeeding parts of this thesis are organised as follows.

• Chapter 2 provides the relevant mathematical preliminaries for the phase-type models
and the Coxian models;

• The proposed model is introduced in Chapter 3 and some examples showing applications
of the proposed model on both the real data and simulated data are presented;

• In Chapter 4, certain statistical properties of the proposed model are discussed;

• Chapter 5 describes the parameter estimation including the analyses of the algorithm’s
accuracy and efficiency;

• The assessment of the identifiability and estimability of the proposed model, from both
the estimation and Bayesian perspectives, is the core subject of Chapter 6;

• Finally, Chapter 7 contains some concluding remarks.

The thesis has four appendices. Appendix A gives the proofs of lemmas and theorems.
These include the results on the denseness of the generalised phase-type ageing model, on the
stochastic-order of two PTAM random variables, and on the physiological age that increases as
time passes in the stochastic-order sense. In Appendix B, the issues concerning a large number
of states and an inappropriate ψ, which is a life span parameter in our model, are tackled. The
flexibility of the resulting distribution from the proposed model is detailed in Appendix C.
Lastly, Appendix D documents the MATLAB code for our proposed algorithm.



Chapter 2

Mathematical preliminaries

In this Chapter, the mathematical background for our proposed model is laid out. We start with
the most general model, the Markov-chain process, then move on to a specific model called the
phase-type ageing model (PTAM).

2.1 Markov process
A Markov process, named after Markov (1954), is a stochastic model possessing the (Markov)
property mainly characterised by memorylessness.

Definition 2.1. Let (Ω,F , P) be a probability space with a filtration (Fs, s ∈ I), for some
index set I, and let (E,Σ) be a measurable space. An (E,Σ)-valued stochastic process Y =

Yt : Ω→ Et∈I adapted to the filtration is said to possess the Markov property if, for each A ∈ Σ

and each s, t ∈ I with s < t

P (Yt ∈ A|Fs) = P (Yt ∈ A|Ys) . (2.1.1)

In the case where Σ is a discrete set with discrete sigma algebra, (2.1.1) is same as,

P (Yt = yt|Fs) = P (Yt = yt|Ys = ys) .

Furthermore, if Σ is the set of states for a Markov model with countable states and I = [0,∞),
then P (Yt = yt|Fs) is the probability that the process is in state yt at time t given the state
being in at any time up till s, and P (Yt = yt|Ys = ys) is the probability of the process in state
yt at time t conditional on the process in state ys at time s. In other words, the probability
distribution of future states (Yt), conditional on both past and present states (Fs), is the same
as that conditional on the current state (Ys). In our research, we focus on a specific Markov
model that has countable states and the index set is the set of non-negative real numbers.

Markov chains are widely used in real-world applications. These include queueing (Neuts,
1978; Latouche and Ramaswami, 1999; Klimenok and Dudin, 2006; Karlin, 2014; Hajek,
2015; Gagniuc, 2017), cruise control systems (Zhang and Vahidi, 2011), classical text transla-
tion (Markov, 2006), healthcare (Fackrell, 2009; Garg et al., 2010), actuarial problems (Hoem,
1969, 1977; Jones, 1994; Zhang, 2016), and quantitative finance (Mamon and Elliott, 2007;
Elliott and Mamon, 2002).

9
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On the one hand, the “memoryless” property of Markov chains simplifies the probability
structure, making the calculations of the corresponding probability distributions easier. On the
other hand, the assumption that the future states depend only on the present state satisfies many
natural dynamics of real-world processes.

The evolution of a Markov chain intuitively matches the process of a lifetime random vari-
able by considering the lifetime as the time in the process until absorption. When modeling
lifetime random variables with non-negative domains, we shall illustrate that a particular class
of Markov models is used extensively.

2.2 Phase-type distribution
The particular class of Markov models pointed out in Subsection 2.1 refers to the phase-type
models, whose distributions are mixtures of exponential distributions. Erlang (1917) first ex-
tended the exponential distribution to what is now called the Erlang distribution. This distri-
bution was developed by defining a non-negative random variable that models the time it takes
for a process to move through a fixed number of states, spending an exponential amount of
time with a fixed rate in each state. Fifty-eight years later, Neuts (1975) generalised the Er-
lang distribution via a phase-type random variable, which is defined as the time spent in the
transient states of a finite-state continuous-time Markov chain with one absorbing state. It has
to be noted that the Erlang distribution was showed by David and Larry (1987) to be the least
variable phase-type distribution. In other words, it is the phase-type distribution that has the
smallest coefficient of variation (i.e., Var(T )/E(T )2, where T is the lifetime random variable).

The associated probability distribution of a phase-type model is related to the solution of a
set of differential equations studied by Neuts (1982). Given the flexible and dynamic structure
of phase-type models together with the explicit solutions of the associated probability distribu-
tion, phase-type models have been widely employed in areas as diverse as telecommunications
(Sengupta, 1989; Asmussen, 1992; Ausın et al., 2004), finance (Asmussen et al., 2004), tele-
traffic modelling (Thummler et al., 2006), biostatistics (Olsson, 1996), queueing theory (Faddy
and McClean, 1999), drug kinetics (Faddy, 1993), reliability theory (Pérez-Ocón and Castro,
2004), classic illness-death model (Kodell and Nelson, 1980), and survival analysis (Aalen,
1995; Olsson, 1996). A good survey of phase-type models can be found in Chapter 1 of Fack-
rell (2003).

Definition Let Yt be a time-homogeneous Markov process defined on a finite state-space S =

E∪∆ = {1, 2, . . . ,m}∪{∆}, where ∆ is an absorbing state and the states in E = {1, 2, . . . ,m} are
transient. Let Yt have initial distribution (α, 0), where α is a 1×m row vector, and infinitesimal
generator (

Λ h
0 0

)
where Λ is a m × m matrix whose ith row jth column element is the transition rate from state
i to state j for any i, j ∈ S ; 0 is the 1 × m row vector of zeros; h = −Λe; and e is the m × 1
column vector of ones.

Let T denote the time until absorption or the time until death in the human lifetime context.
Then T is said to follow a phase-type (PH) distribution with representation (α,Λ). The matrix
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Λ is called the intensity matrix or the degenerated transition matrix. The row vector α is called
the initial probability.

Example 2.1. An example of a phase-type model is illustrated in Figure 2.1.
4

Considering state 1 as being healthy, state 2 as being sick, and the absorbing state as death,
then the phase-type model with two states in Example 2.1 is known as the disability-income
insurance model.

1 2
µ12

µ21

h1 h2

∆

Figure 2.1: A two-state phase-type model.

Phase-type models have intuitive interpretation providing the underlying biological/engi-
neering mechanism of the system that generates the resulting lifetime distribution. In partic-
ular, the survival time in such a system is the sum of the sojourn times in all states that the
process has ever visited before it is absorbed. The survival probability at any time t is equal to
the total probability that the process is in any state, excluding the absorbing state, at time t.

For s ≥ 0, t ≥ 0, i, j ∈ E, let Pi j(s, s + t) be the transition probability from state i to state j
during the time period (s, s + t]:

Pi j(s, s + t) = Pr(Ys+t = j|Ys = i) .

Because Yt is a time-homogeneous Markov process, the probability Pi j(s, s+t) does not depend
on s, so we write Pi j(t) = Pi j(s, s + t) for all s ≥ 0.

Suppose P(t) = {Pi j(t)}i, j∈E is the m × m transition probability matrix (amongst the tran-
sient states) of Yt in the time interval (0, t]. The transition probability matrix satisfies the
Kolmogorov forward equation

d
dt

P(t) = P(t)Λ , (2.2.2)

with the initial condition P(0) = I, where I is an m × m identity matrix.
The Kolmogorov forward equation has the unique solution

P(t) = exp (Λt), (2.2.3)
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where

exp(Λt) =

∞∑
n=0

tn

n!
Λn.

As a result, the survival function of the time-until-absorption random variable T can be
expressed as

S (t) = α exp(Λt)e, t > 0 ,

and the probability density function(pdf) of T is

f (t) = α exp(Λt)h, t > 0 .

Remark 2.1. We will call the (pdf) and survival function the probability distribution. This
terminology also applies to the succeeding Chapters.

The hazard function of T is the ratio of the pdf to the survival function, or f (t)/S (t). There-
fore, the hazard function for the phase-type distribution is

h(t) =
α exp(Λt)
α exp(Λt)e

h. (2.2.4)

It could be verified that
α exp(Λt)
α exp(Λt)e

is a 1 × m row vector, whose ith element (i = 1, . . .m) is

the probability in state i given the process is in transient states at time t. This representation of
hazard rate is a weighted average of the absorption rate in each transient state, and the weight
is dependent on time t.

The hazard function h(t) converges to the minimal negative diagonal value of the intensity
matrix Λ as t → ∞. Specifically, for an m−state phase-type model, its intensity matrix Λ is
an m × m matrix. The (i, j) element in Λ, λi, j, is the transition rate from state i to state j when
i , j, and the (i, i) element is equal to the negative sum of other elements in the ith row so that

λi,i = −
∑
j,i

λi, j.

We have h(t)→ mini=1,...,m(−λi,i) as t → ∞.
The moment generating function of T is

E
(
esT

)
=

∫ ∞

0
estdF(t) = −α(sI + Λ)−1h. (2.2.5)

The kth moment of the phase-type distribution is

E
(
T k

)
= (−1)kk!αΛ−ke,

by evaluating the kth derivative of (2.2.5) with respect to s at the point s = 0. When k = 1, the
mean of T is

E(T ) = −αΛ−1e. (2.2.6)
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Similarly, one can derive the variance of T by the formula E(T 2) − (E(T ))2, and get

Var(T ) = 2αΛ−2e −
(
αΛ−1e

)2
. (2.2.7)

One can use (2.2.6) and (2.2.7) to quickly calculate the life expectancy and its associated vari-
ability for the phase-type models.

Notice that the ith element of the 1 × m vector

p(t) = α exp(Λt) (2.2.8)

is just the probability that Yt = i, and p(t)e gives the probability that Yt ∈ E.
The class of phase-type distributions is dense in the space of all continuous non-negative

distributions. That is, any distribution on [0,∞) can, at least in principle, be approximated arbi-
trarily closely by a phase-type distribution (Johnson, 1993). Therefore, phase-type models have
been successfully applied in many fields to obtain explicit analytical solutions, i.e., the ruin-
related quantities (Feng, 2009; Badescu et al., 2009), and in reliability system (Ruiz-Castro
et al., 2008; Asmussen, 2000). However, getting numerical results by solving the differential
equations (2.2.2) or calculating the matrix exponential (2.2.3) is not trivial, especially when the
dimension of the matrix Λ (i.e., the number of states, m) is high.

A general phase-type model allows transitions from any state to any other state. This
structure provides the flexibility when approximating any non-negative distribution. A gen-
eral phase-type distribution has typically many parameters, and some parameterisation meth-
ods have the issue of non-unique estimated value; see for example, (Asmussen et al., 1996;
Marshall and Zenga, 2009b; Fackrell, 2003). The non-uniqueness is due to the overparame-
terisation of the phase-type model, i.e., the number of parameters is more than required. For
instance, a general phase-type model with m transient states has m2 + m parameters; that is, m2

parameters for the degenerated transition matrix and m parameters for the initial probability.
When using an m-state phase-type model, with m ≥ 2 and m2 + m parameters to approximate
an exponential distribution with one parameter, it may be shown that there is more than one
set of parameter values resulting from the exponential distribution. Due to its overparameter-
isation, the parameter estimation of phase-type distributions presents some difficulty. As will
be discussed in Chapter 6, the problem of non-uniqueness in parameter specification is usually
intermingled with the complication of model estimation, mainly when the model contains a
large number of states, and the model parameter values are close to each other.

One generalisation of the phase-type model is obtained by replacing the exponentially dis-
tributed assumption on each waiting time to leave the states by a parametric non-exponential
distribution (Huzurbazar, 1999), whose structure may depend on the present state or next state
to be visited. As a result, the time-until-absorption random variable T is the sum of random
variables with specific parametric distributions. For example, the generalised phase-type model
has two transient states, and the time spent in each state follows a Weibull distribution. The
resulting pdf is the convolution of the pdf’s of the Weibull distributions.

Another generalisation of phase-type models is extending the assumption of homogeneous
to inhomogeneous transition rates (Liu and Lin, 2012; Sherris and Zhou, 2014; Albrecher and
Bladt, 2018). Such a generalisation keeps the denseness in the class of distributions with
non-negative domains. The time-inhomogeneous phase-type models are more parsimonious
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with fewer parameters in approximating heavy-tailed distributions in comparison to the time-
homogeneous phase-type models. This is because the time-homogeneous phase-type models
are light-tailed distributions. So, a large number of states is required to fit the tails well when
approximating heavy-tailed distributions.

This thesis considers the applications of phase-type models for the human ageing process,
similar to Aalen (1995), Lin and Liu (2007), and Su and Sherris (2012). In these applications,
the phase-type models involve a large number of states with sparse degenerated transition ma-
trices. A class of phase-type models is more suitable for modeling the human ageing process
than the general phase-type models.

2.3 Coxian distributions
A particular class of phase-type models, proposed by Cox (1955) and called Coxian distribu-
tions, preserves the denseness in the class of distributions with non-negative domains. The
associated Markov chain only allows transitions from each state to either the next transient
state or the absorbing state. Such restriction forces the degenerated transition matrix to be
bi-diagonal.

Coxian models have numerical advantages in calculating distributional quantities, for ex-
ample, the pdf of T and its state distribution at a given time. Their applications are extensive in
many fields; see Asmussen et al. (1996); Asmussen (1992) and Marshall and Zenga (2009b).
Compared with the phase-type models, a Coxian model with m transient states has 2m − 1
parameters, while a phase-type model with m transient states has m2 + m parameters. Since
the number of parameters is reduced significantly, the Coxian models are preferable in most
applications, except for cases having explicit requirements in the underlying Markov chain.

One modification of the Coxian models is to impose a structure on the transition rates. For
example, Faddy and McClean (1999) extended the Coxian models by involving regressions
with covariates in the transition rates. Recall that the the human ageing process’ characteris-
tics are progressive and essentially irreversible. Accordingly, the states in the human ageing
process cannot be revisited once the individual has left them. Furthermore, the progressiveness
requires that the absorption rates cannot change dramatically when moving to other states. As
a result, the transition out of the present state can move to either the absorbing state (death) or
the next transient state.

Definition For m = 1, 2, . . . , denoting the absorbing state m + 1, let T have an associated
m-state phase-type distribution with a 1 × m initial probability vector

α = (1, 0, . . . , 0),

and the m × m degenerated transition matrix

Λ =


−(λ1 + h1) λ1

−(λ2 + h2) λ2
. . .

−(λm−1 + hm−1) λm−1

−hm


,
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where λi > 0 and hi > 0 for all i ∈ E. Then, T follows a Coxian distribution.

The Coxian model is illustrated in Figure 2.2. Since the process only starts from state 1,
the survival function of the Coxian model only depends on the first row of the m×m transition
matrix P(t), which is denoted by p1(t). Denote the kth element of p1(t) by P1k(t) or simply
Pk(t).

1 2 m
λ1 λ2 λm−1

h1 h2 hm

m+1

Figure 2.2: Diagram for a Coxian-type Markovian process.

Then, the Kolmogorov forward equation is given by
dP1(t)

dt = −(λ1 + h1)P1(t);
dPk(t)

dt = λk−1Pk−1(t) − (λk + hk)Pk(t), k = 2, 3, . . . ,m − 1;
dPm(t)

dt = λm−1Pm−1(t) − hmPm(t).
(2.3.9)

The initial conditions are P1(0) = 1 and Pk(0) = 0, k = 2, . . . ,m. This tells us that

P1(t) = e−(λ1+h1)t.

In addition, Pk(t) for k = 2, . . . ,m can be obtained iteratively, yielding

Pk(t) =

k∑
j=1

(−1)k−1λ1 . . . λk−1∏k
s=1,s, j(λ j + h j − λs − hs)

e−(λ j+h j)t, k = 2, . . . ,m, (2.3.10)

by defining λm = 0.
The denominator of (2.3.10) is equal to 0 when k = 1, at which the formula is not well-

defined. We define (−1)k−1λ1...λk−1∏k
s=1,s, j(λ j+h j−λs−hs)

= 1 when k = 1 so that the result in (2.3.10) also gives

P1(t). Therefore, the survival function of T is given by

S (t) =

m∑
k=1

Pk(t) =

m∑
k=1

k∑
j=1

(−1)k−1λ1 . . . λk−1∏k
s=1,s, j(λ j + h j − λs − hs)

e−(λ j+h j)t. (2.3.11)

Remark 2.2. Li and Ng (2008) derived a formula to calculate the probability of being in state
k at time t for a Coxian model using the same approach above by solving the Kolmogorov
forward equation. However, their formula for Pk(t) is equal to the difference of two sums,
specifically,

Pk(t) = λk−1

k−1∑
j=1

Ck−1, je−(λ j+h j)t

λk + hk − λ j − h j
− λk−1

k−1∑
j=1

Ck−1, je−(λk+hk)t

λk + hk − λ j − h j
, (2.3.12)
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and, C11 = 1,

Ci j =


λi−1Ci−1, j/(λi + hi − λ j − h j), when j < i
−λi−1

∑i−1
j=1 Ci−1, j/(λi + hi − λ j − h j), when j = i

0, when j > i

Since both (2.3.12) and (2.3.10) are the solutions of the Kolmogorov forward equation, the two
formulas are equivalent; both formulas can be expressed as Pk(t) =

∑k
j=1 a je−(λ j+h j)t. How-

ever, there are two subtle differences: firstly, (2.3.10) is more compact than (2.3.12); secondly,
(2.3.10) may be more numerically stable to evaluate when the two sums in (2.3.12) are rela-
tively large, but then Pk(t) is only relatively small.

When the dimension of the Coxian model is small, and the parameter values are far enough
apart so that the denominator of (2.3.10) is not too small, equation (2.3.10) may be used to
evaluate the distribution quickly. However, in lifetime modeling, the model to be used may
contain a large number of states with the λis and his being very close to each other. Using
(2.3.10) causes numerical problems because the values of each term in summation are large
and have alternating signs.

Coxian models require a substantially smaller number of parameters than the general phase-
type models when the total number of states is fixed. Hence, most modelers prefer Coxian
models for modeling lifetime random variables. Interestingly, due to the restrictions on the
transitions, it usually requires more states for a Coxian model to achieve a good fit to life data
than it does for a general phase-type model (Fackrell, 2009).

2.4 Phase-type aging model
Lin and Liu (2007) proposed a specific Coxian model, called the Phase-Type ageing Model
(PTAM), to fit the observed mortality data and link the parameters to the physiological mech-
anism of ageing. In their model, they incorporated the development of ageing periods in the
human ageing process. In this thesis, we focus on the ageing period.

The assumptions of the PTAM in Lin and Liu (2007) are:

• the initial probability α = (1, 0, . . . , 0), assuming each individual starts at state 1;

• the transition rates between states are constant, λi = λ, assuming the physiological vari-
ables have linear declines agewise on average;

• the absorption rates, ignoring the behaviour-related accident rate, follow a power func-
tion hi = b + ipq;

• the total number of states is fixed.

As a result, they simplified the Coxian model to a four-parameter PTAM with a parameter set
(b, p, q, λ). They utilised the progressiveness and irreversibleness of the Coxian-type Markov
chains to mimic the ageing process. They labeled the states with integer numbers starting
from 1 and interpreted the states as physiological ages. Their model was calibrated using the
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Swedish cohort data from the year 1811 to 1911, and an excellent fit to the mortality data
was achieved except for extremely old ages. Also, their calibrated model can capture trends in
mortality across birth cohorts. Additionally, using (2.3.11) and (2.3.10) allows one to calculate
the associated survival distributions and the probabilities in any states at any time easily.

Govorun et al. (2018) extended the PTAM with health information to narrow the state
variability at any given time. Their model has similar structures on the transition rates and
absorption rates as Lin and Liu’s.

The merits of PTAMs in modeling the human ageing process have been demonstrated con-
sidering the intuitive model interpretation and promising fitting results. The Markovian struc-
ture is suitable in portraying the progressive and essentially irreversible characteristics of the
ageing process. Certainly, the individual’s health history has impact on their current health sta-
tus. However, it could be argued that the current health status already encapsulated the informa-
tion from the past health status. Thus, on the basis of the current health status, the distribution
of the future status can be estimated, and this is where we could see the appropriateness of the
Markovian modelling framework. Needless to say, the simplicity of this framework enable a
much easier calibration than those entailed by other modelling frameworks. The Markovian
structure can be understandably interpreted as an imitation of the ageing process, whilst the
resulting distribution can be intelligibly interpreted as the lifetime distribution. A recent study
on modeling human mortality using the general phase-type models is elaborated in Asmussen
et al. (2019).

Nonetheless, the PTAMs also have some drawbacks. For instance, the modelers have to
determine judiciously the total number of states and the structure of the absorption rates before
other parameters could be estimated. In Lin and Liu (2007) and Govorun et al. (2018), power
functions were used for the absorption rates with a total number of states m = 200, whilst Su
and Sherris (2012) used exponential functions with a total number of states m = 100. Since
the applications of PTAMs require a large number of states, typically more than 50, PTAMs’
calibration is computationally expensive. Certainly, the value of m and the structure on the
absorption rates must be carefully selected.



Chapter 3

Phase-type ageing model

In this Chapter, we investigate special models following the Coxian structure. We propose a
family of special Coxian distributions, called the generalised phase-type ageing model (GP-
TAM), by assuming the transitions from any transient state to the next transient state having
the same rate. One of the parameters in the GPTAM is the transition rate, and the remaining
parameters are the absorption rates in all transient states. We can show that this family of dis-
tribution is flexible to approximate any continuous non-negative-valued distribution. However,
it is challenging to estimate the parameters of a GPTAM due to its large number of parameters.

We, therefore, propose a structure on the absorption rates that will reduce the number of
parameters. The proposed structure is a reminiscent of the Box-Cox transformation, which
provides some degrees of flexibility for the absorption rate to achieve a variety of patterns.
The proposed PTAM has 5 parameters, making it manageable for calibration. Additionally, the
proposed PTAM inherits the Coxian structure, which requires the state progression can only
move forward or exit into the absorbing state. Such a structure matches the characteristics
of the ageing process in our modelling context. Two numerical applications are included to
demonstrate the application of our proposed model. Furthermore, we use some numerical
examples to illustrate that the resulting probability distribution of the proposed model can
approximate a variety of lifetime distributions reasonably well.

3.1 Modelling background

This thesis takes the perspective that ageing is progressive and essentially irreversible. View-
ing the absorbing state as death and its transient states as intermediate statuses of the ageing
process, the PTAM’s Markovian structure matches our prior knowledge of ageing – progres-
sive and essentially irreversible. In lieu of validation using a data set, which is a challenge
to observe and choose the right proxy for the ageing process, our Markovian assumption is
simply made on the basis of a generally accepted principle that an ageing process progresses
irreversibly and ending in death eventually. Furthermore, some characteristics of the PTAM
are as follows:

• The lifetime of an individual is the sum of the sojourn times in each state before absorp-
tion;

18
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• For a given realisation of the process, the probability of being in each state is easily
determined using the Markov-chain theory;

• Given the current state, the conditional lifetime distribution is determined by another
PTAM, although the current state is usually unobservable.

Let us define the transition rates between the transient states as the ageing rates, and the
absorption rates as the dying rates. The labeled number for each state determines the physio-
logical age. The definition of physiological age will be addressed later.

Lin and Liu (2007) assumed the dying rates have a power functional form with an increas-
ing number of states. They defined the states as the physiological ages. They argued that
m = 200 should be large enough to have an excellent fit to the Swedish mortality data. Gov-
orun et al. (2018) assumed a different functional form for the dying rates, which involves a
power function in the later states. They believed m = 230 is the sufficient number to achieve
a good fit for the Canadian male mortality data. The total number of states is reasonably
large in both papers, and the parameter estimation is carried out via the least-squared-error or
maximum-likelihood approach.

Both models were calibrated with mortality data, although they are ageing models and not
mortality models. Furthermore, the model calibration in Govorun et al. (2018) attempted to
refine the estimation by incorporating health-related information.

The structure of the dying rate for each model is usually determined by the modeler’s be-
liefs. Furthermore, the total number of states is also fixed by some prior knowledge. Therefore,
it is natural to ask the following questions:

• Can the lifetime data itself determine the monotonic pattern and curvature on the dying
rates?

• Is it possible to estimate m from the lifetime data?

• Is there a simple and smooth structure on the dying rate such that the corresponding
estimation is relatively simple, yet the resulting lifetime distribution is flexible enough
to achieve a variety of lifetime distributions?

3.2 General phase-type ageing model
Before introducing our proposed model, we would like to generalise the phase-type ageing
models in Lin and Liu (2007) and Govorun et al. (2018).

Definition 3.1. The general phase-type ageing model (GPTAM) is a phase-type model satisfy-
ing three conditions:

• Every individual starts in state 1 at time 0;

• The transition of going out from each state must be either to the next transient state or to
the absorbing state;

• The rates of transition, which are ageing rates, from one transient state to the next tran-
sient state are the same.



20 Chapter 3. Phase-type ageing model

The GPTAM is a subclass of Coxian models with the restriction λi = λ, for all i =

1, 2, . . . ,m−1. With the above-mentioned restrictions, the GPTAM assumes that the ageing rate
is uniform over time, so that the rate of increase in physiological age is uniform. This makes
some sense because calendar age increases uniformly. Although the assumed ageing rate is
constant, there is variability in transition times. Therefore, individuals at the same calendar
age may be in different states, representing different physiological ages. This is the same idea
used by Lin and Liu (2007) in which the ageing-related transition intensity parameter is spec-
ified as a constant. To capture the mortality pattern at infant ages, Lin and Liu (2007) allowed
λi to vary so that the non-ageing-related mortality causes can be accommodated. However, in
our models, we focus on modeling ageing rather than mortality fitting. Given this focus, our
models are most applicable at human ages beyond the attainment of adulthood.

There is an intuitive way to understand the concept of GPTAM. Let us consider each state
in the GPTAM as the hypothetical year similar to the chronological year. The time spent in
each state is similar to the days spent in each chronological year. It is clear that there are
365(366) days in each chronological(leap) year, whilst the time spent in each hypothetical
year is random but expected to be the same on average. The force of mortality is different
at various chronological times, while the force of dying in each hypothetical year(state) is a
constant, but vary in different hypothetical years. Therefore, in the GPTAM the randomness in
the time of death is decomposed into two parts: the randomness of time in each hypothetical
year (dependent on the force of ageing) and the randomness of death in each hypothetical year
(dependent on the force of dying). The GPTAM differentiates two forces, the force of ageing
and the force of dying, which mutually determine the force of mortality.

We call a GPTAM with m transient states an m−state GPTAM, labeling the absorbing state
m + 1. The Markov chain for an m−state GPTAM is graphically exhibited in Figure 2.2. The
transition rates hi, i = 1, . . . ,m, are the dying rates and the transition rate λ is the ageing rate.

1 2 mλ λ λ

h1 h2 hm

m+1

Figure 3.1: State transition diagram for GPTAM.

The resulting pdf and survival function at time t are

f (t) =

m∑
k=1

Pk(t)hk, and S (t) =

m∑
k=1

Pk(t),

respectively, where Pk(t) is the probability in state k at time t. The survival probability at time
t is the total probability in transient states at time t, and the hazard rate, f (t)/S (t), at time t is a
weighted average of hk’s. The weight in state k is equal to Pk(t)/S (t). Solving the Kolmogorov
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forward equation (2.3.9), we get

Pk(t) =

k∑
j=1

(−λ)k−1∏k
s=1,s, j(λ j + h j − λs − hs)

e−(λ j+h j)t, k = 1, . . . ,m, (3.2.1)

where λi = λ for i , m, λm = 0, and
∏k

s=1,s, j(λ j + h j − λs − hs) = 1 for k = 1.

Remark 3.1. The survival function S (t) can be viewed as a weighted average of the survival
function for exponential distributions with rate λi + hi for i = 1, . . . ,m if negative weights are
allowed. This is easy to verify by the fact that S (0) = 1, yielding the sum of coefficients equal
to 1.

Equation (3.2.1) is useful in the evaluation of the state distribution at any time t ≥ 0, when
the total number of states is small and h1, . . . , hm are sufficiently far apart that the denominator
of (3.2.1) is not too small. It is worth noting that (3.2.1) may not be robust in the numerical
calculation when m is large or the denominator is too small. The discussion of a more ro-
bust method to numerically calculate the probability distribution is deferred until Chapter 5.
Consider the set of the resulting lifetime distribution of all GPTAMs. Then, any non-negative-
valued distribution can be approximated well by a GPTAM.

Theorem 3.1. Let F be the distribution family of all GPTAMs whose absorbing rate in state
i is equal to hi ≥ 0 for i = 1, . . . ,m; transition rate from state j to j + 1 is equal to λ for
j = 1, . . . ,m − 1; and the total number of states m is a positive integer. Given a non-negative-
valued distribution with domain (0,T ), assume its survival function S (t) is continuous. For
any ε > 0, there is a GPTAM in F such that its resulting survival function S ∗(t) satisfies
|S ∗(t) − S (t)| < ε for any t ∈ (0,T ). Therefore, F is dense in the field of all continuous
non-negative-valued distributions.

Proof. See Appendix A.1.

�

The distribution family of GPTAMs is flexible enough to represent any lifetime distribution.
The goodness of fit to any lifetime data is guaranteed almost surely.

If we assume the lifetime distribution is the observed information from an ageing process,
then one can find an equivalent GPTAM, whose lifetime distribution is close to the observed
lifetime distribution. Meanwhile, we can interpret the lifetime distribution from the ageing per-
spective, e.g. the associated ageing/dying rate pattern. By doing so, it provides a more intuitive
perspective to explain the lifetime distribution – interpreting the lifetime as the terminal time
of an ageing process.

Let Yt be the state variable at time t for any t > 0. The domain of Yt is the set {1, . . . ,m + 1},
where states 1, . . . ,m are the transient (alive) states and state m + 1 is the absorption (death)
state. The random variable Yt|Yt ∈ E represents the state occupied at time t given the individual
is in the transient states. We can prove that Yt|Yt ∈ E is increasing with respect to t in the
stochastic order by Lemma 3.1.

Definition 3.2. A random variable Yt is increasing with respect to t in stochastic order if Yt1 is
less than Yt2 for any t1 < t2, or P(Yt1 > y) ≤ P(Yt2 > y) for any y in the domain.
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Lemma 3.1. Consider an m−state GPTAM with transition rate from one transient state to the
next transient state equal to λ, and the absorption rate in state i is hi for i = 1, . . . ,m. For any
t > 0, let Yt be the state variable at time t, then P(Yt ≥ k|Yt ∈ E) is an increasing function with
respect to t for any k = 1, . . . ,m.

Proof. The proof is in Appendix A.2.

�

By Lemma 3.1, P(Yt1 ≥ k|Yt1 ∈ E) < P(Yt2 ≥ k|Yt2 ∈ E) for any 0 ≤ t1 < t2 and any
k = 1, . . . ,m. Equivalently, (Yt1 |Yt1 ∈ E) is less than (Yt2 |Yt2 ∈ E) in stochastic order. In other
words, the alive individual is more likely in the later states as time passes.

Example 3.1. Consider a GPTAM with m = 100, λ = 3, and hi = 0.005i for i = 1, . . . , 100,
i , 50 and h50 = 0.1. The state distributions, given that the individual being alive at various
times, are plotted in Figure 3.2.

The top graph shows that the mode of the state distribution shifts to a higher state as time
passes by, and the bottom graph shows that the probability P(Yt ≥ k|Yt ∈ E) is greater for a
larger t for any k. The intuitive explanation for Lemma 3.1 is that each individual in the ageing
process cannot reverse the process. This property matches our belief on the progressiveness
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Figure 3.2: The state distribution at various times t for a GPTAM.

and irreversibleness of the ageing process – the process has to progress to the later states as
time passes, and it cannot reverse the process back to the early states.

4

Since the dying rate hi for the GPTAM is flexible, let us assume hi is monotone. Then, we
can establish the relation between the pattern of the dying rate hi and the resulting pattern of
the hazard rate h(t). But, first we need the following result.
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Theorem 3.2. Suppose the absorption rate of a GPTAM is monotone with respect to state
label. The resulting hazard rate h(t) of the GPTAM is increasing with respect to age t if and
only if the dying rate hi is increasing with respect to i.

Proof. For any t ≥ 0, the resulting hazard rate is a weighted average of the dying rates in each
transient state by (2.2.4). Note that

h(t) =
α exp(Λt)
α exp(Λt)e

h =

m∑
i=1

hiP(Yt = i|Yt ∈ E) = E
(
hYt |Yt ∈ E

)
,

which shows h(t) is the expected value of (hYt |Yt ∈ E). The ith element of α exp(Λt) is the
probability in state i at time t.

By Lemma 3.1, for any t1 < t2, we have that Yt1 is less than Yt2 in stochastic order. It is
well known that A is less than B in stochastic order, then for any non-decreasing functions u,
E(u(A)) ≤ E(u(B)). Hence, when hi is increasing with respect to i, for any 0 ≤ t1 < t2,

h(t1) = E
(
hYt1

∣∣∣Yt,1 ∈ E
)
≤ E

(
hYt2

∣∣∣Yt2 ∈ E
)

= h(t2),

which yields that h(t) is increasing with respect to age t.
On the other hand, when h(t) is increasing with respect to t, for any 0 ≤ t1 < t2,

E
(
hYt1

∣∣∣Yt1 ∈ E
)

= h(t1) < h(t2) = E
(
hYt2

∣∣∣Yt2 ∈ E
)
. (3.2.2)

Suppose hi is decreasing with respect to i, then −hi is an increasing function. We have shown
that Yt1 is less than Yt2 in stochastic order. Therefore,

E
(
−hYt1

∣∣∣Yt1 ∈ E
)
≤ E

(
−hYt2

∣∣∣Yt2 ∈ E
)
,

yielding E
(
hYt1

∣∣∣Yt1 ∈ E
)
≥ E

(
hYt2

∣∣∣Yt2 ∈ E
)
, or h(t1) ≥ h(t2), which contradicts with h(t) is

increasing. Therefore, the dying rate hi is increasing with respect to i.

�

Remark 3.2. Suppose the absorption rate of a GPTAM is monotone with respect to state label.
Then, the resulting hazard rate h(t) is decreasing with respect to age t if and only if the dying
rate hi is decreasing with respect to i.

Remark 3.3. Without the monotone assumption, it is still true that h(t) is increasing given hi is
increasing. However, the inverse is not true, i.e., hi may not be necessarily increasing given h(t)
is increasing. In Example 3.1, the dying rate and resulting hazard rate are displayed in Figure
3.3. This is a counterexample showing that the dying rate is not monotone, yet the hazard rate
is increasing as time increases. The plateau of h(t) is the hazard rate’s limit, limt→∞ h(t).

Theorem 3.2 provides a guideline on how to select the dying rate pattern for the GPTAM in
order to achieve a monotonic hazard rate. For example, it is reasonable to choose an increasing
dying rate pattern for the GPTAM to generate a lifetime distribution whose hazard rate is
increasing.
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Figure 3.3: Resulting hazard rate and the dying rate for the GPTAM with m = 100, λ = 3, and
hi = 0.005i for ∀i, i , 50 and h50 = 0.1.

The GPTAM is flexible, and it has a lower number of parameters compared with the Coxian
models. However, the number of parameters for a GPTAM is still large when the model has a
large number of states. Recall that an m−state GPTAM has m+1 parameters. Hence, when m is
big, the number of parameters is large, and the model calibration is an extensive endeavour. It
is impractical to find the global maximum likelihood estimate(s) because the parameter space
is too huge to explore; see the curse of dimensionality as discussed in Bellman and Kalaba
(1959). To make the parameter estimation feasible and stable, we need to impose a structure
on the dying rate to reduce the number of parameters. Meanwhile, the proposed structure
should achieve a variety of patterns to reflect some plausible ageing process patterns.

3.3 Our proposed PTAM

We choose an appropriate pattern for the dying rate for the GPTAM to achieve the observed
hazard rate pattern. Let us first review some studies on hazard rate. Aalen (1994) claimed that
hazard rate as a function of time is the result of selection effects due to both variation between
individuals and variation within each individual over time. The selection effects are due to the
fact that individuals with higher risks tend to die earlier, and those survivors will tend to be
a selected group with lower risks. The Markov chain under the GPTAM can model well the
variation between individuals (different individuals may be in various states) and the variation
within each individual over time (the individual may progress to different states over time).

Aalen and Gjessing (2001) pointed out that progressive models for lifetime random vari-
ables would tend to have increasing hazard rates. Empirical studies of large populations of flies
and humans have shown mortality plateaus at extremely old ages (Ricklefs, 1998; Liedo et al.,
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1992; Fukui et al., 1993, 1996). Some lifetime variables may have decreasing hazard rate, e.g.
infant lifetime (see mortality rate before age 10 in Heligman and Pollard (1980)). As a result,
we only consider the lifetime distributions with monotonic hazard rate.

Let us assume that the proposed PTAM has a monotonic dying rate hi as a function of i.
Then, the associated hazard rate is monotone by Theorem 3.2. Furthermore, let us that assume
m > 3 for two reasons. Firstly, there is no need to propose a structure when m ≤ 3. Secondly,
it requires a large number of states to reproduce the ageing process as in the case of the human
ageing process.

We specify the form of the dying rates hi. Suppose that h1 and hm are fixed. These are
parameters to be estimated. We then require a smooth pattern of hi values for i between 1 and
m. We achieve this by letting

hs
i =

m − i
m − 1

hs
1 +

i − 1
m − 1

hs
m,

where s is a shape parameter that can control the convexity of the hi pattern. In other words,
the powers of hi are obtained as a linear interpolation between the corresponding powers of h1

and hm. We then have

hi =

(
m − i
m − 1

hs
1 +

i − 1
m − 1

hs
m

)1/s

.

We can use this for any real number s except s = 0, when the expression is undefined. However,
the limiting case as s→ 0 gives

hi = h
m−i
m−1
1 h

i−1
m−1
m .

In this case, log hi is obtained as a linear interpolation between log h1 and log hm. Thus, the
parameter s can take any real value. For i = 1, 2, . . . ,m, let

hi =


(

m−i
m−1hs

1 + i−1
m−1hs

m

)1/s
s , 0,

h
m−i
m−1
1 h

i−1
m−1
m s = 0.

(3.3.3)

Also, let β = i−1
m−1 . Then we have β ∈ [0, 1] and

hi =


(
(1 − β)hs

1 + βhs
m

)1/s
s , 0

h1−β
1 hβm s = 0.

By differentiating log hi with respect to s,

1
hi

∂hi

∂s
=

(1−β)hs
1 log h1+βhs

m log hm

(1−β)hs
1+βhs

m
s − log

(
(1 − β)hs

1 + βhs
m

)
s2 .
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Taking the limit as s→ 0 in the right hand-side of the previous equation,

lim
s→0

(1−β)hs
1 log h1+βhs

m log hm

(1−β)hs
1+βhs

m
s − log

(
(1 − β)hs

1 + βhs
m

)
s2

= lim
s→0

(
(1 − β)hs

1(log h1)2 + βhs
m(log hm)2

) (
(1 − β)hs

1 + βhs
m

)
−

(
(1 − β)hs

1 log h1 + βhs
m log hm

)2

2
(
(1 − β)hs

1 + βhs
m

)2

=

(
(1 − β)(log h1)2 + β(log hm)2

)
−

(
(1 − β) log h1 + β log hm

)2

2
,

where the first equation holds by L’Hopital’s Rule. This indicates the derivative of hi with re-
spect to s exists at s = 0 when h1 and hm are not equal to 0. This representation shows that hs

i
is a weighted average of hs

1 and hs
m. This structure is reminiscent of the well-known Box-Cox

transformation introduced by Box and Cox (1964). The Box-Cox transformation is a mono-
tonic data transformation skewing the curvature by a smooth functional structure. Therefore,
the proposed structure provides some curvature flexibility for the dying rate. Typically, the life-
time data have a linear or exponential patterns. Either pattern is a special case of the proposed
structure. The structure of (3.3.3) can achieve both increasing and decreasing patterns of hi.
This is formally stated in the next theorem.

Theorem 3.3. The dying rate hi is an increasing function of i if and only if h1 < hm; hi is a
decreasing function if and only if h1 > hm; hi’s are identical if and only if h1 = hm.

Proof. Suppose h1 = hm = h. It is trivial that hi = h for i = 1, . . . ,m.
Suppose h1 < hm. When s > 0, hs

1 < hs
m. For any 1 ≤ i < j ≤ m,

hs
i = hs

1 p1 + hs
m(1 − p1) < hs

1 p2 + hs
m(1 − p2) = hs

j,

where p1 = m−i
m−1 > m− j

m−1 = p2 and the inequality holds using Lemma 3.2. Therefore, hi < h j

using the fact that xs is an increasing function of x when x, s > 0.
Similarly, when s < 0, hs

1 > hs
m. For any 1 ≤ i < j ≤ m,

hs
i = hs

1 p1 + hs
m(1 − p1) > hs

1 p2 + hs
m(1 − p2) = hs

j.

Hence, hi < h j since xs is a decreasing function of x when x > 0 and s < 0.
When s = 0,

log(hi) =
log(hm) − log(h1)

m − 1
i +

m log(h1) − log(hm)
m − 1

,

which is an increasing function of i if and only if h1 < hm.
In summary, for any value of s, hi is an increasing function of i if and only if h1 < hm.

Likewise, one may prove that hi is a decreasing function with respect to i if and only if h1 >
hm. �
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Lemma 3.2. For any 0 < a < b and 0 ≤ p2 < p1 ≤ 1, the inequality ap1 + b(1 − p1) <
ap2 + b(1 − p2) holds.

Proof.

ap2 + b(1 − p2) − ap1 − b(1 − p1) = (p2 − p1)(a − b) > 0.

�

The structure given in (3.3.3) can achieve not only increasing and decreasing patterns but
also a variety of curvature patterns. The parameter s is the shape parameter controlling the
curvature. Note that, when s = 1, we have a linear pattern of hi values with increasing i. When
s = 0 we have an exponential pattern of hi values. Furthermore, when s < 1, the pattern will be
convex, and when s > 1, the pattern will be concave. Figure 3.4 shows the patterns of hi values
for s = 0, 1 and 2. For human ageing, we would expect that s = 0 is the most appropriate of the
three values. The actual value is ideally estimated from ageing-related data. However, since
such ageing-related information is hard to collect, the value may be estimated from lifetime
data.
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Figure 3.4: Left: Values of hi determined using h1 = 0.001, hm = 0.3 and s = 0, 1 and 2. Right:
Values of hi determined using h1 = 0.3, hm = 0.001 and s = 0, 1 and 2.

According to the definition of hi, it is a discrete function of i. To investigate how flexible
the structure is, suppose hi is a continuous function of i. Then, when s , 0, the first derivative
of hs

i with respect to i is

∂hs
i

∂i
= shs−1

i
∂hi

∂i
=

hs
m − hs

1

m − 1
,
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yielding

∂hi

∂i
=

hs
m − hs

1

s(m − 1)
h1−s

i .

When s = 1, ∂hi
∂i = hm−h1

m−1 ; When s , 1, the second derivative of hi with respect to i is

∂2hs
i

∂i2 =
hs

m − hs
1

s(m − 1)
(1 − s)h−s

i
∂hi

∂i

=

(
hs

m − hs
1

s(m − 1)

)2

(1 − s)h1−2s
i .

Hence, the second derivative is positive (hi is convex) when s < 1; and the second derivative is
positive (hi is concave) when s > 1.

Recall from Chapter 2 that the ageing rate λ is the transition rate between transient states.
The value of λ needs to be compatible with the value of m. We need the rate of progression
through the states to be large enough that some individuals will reach state m, or there is no
need to have as many as m states. However, we want only a small proportion of individuals to
survive to state m, or the model hazard rate will flatten out at older ages. On the other hand, the
mean spending time in each transient state is around 1/λ when λ >> hi. Hence, the expected
time being in the system for the individual who can reach state m is about m/λ. We therefore
let

λ = m/ψ, (3.3.4)

where ψ can be thought of as the life span of individuals in the population of interest. The
parameter ψ need not be a limiting age, as there is no limiting age in our model. However, ψ
should be a high age at which only a very small proportion of individuals will survive. This
parameter can be estimated from the data or chosen based on some prior opinion. For human
lifetimes, a value of ψ between 100 and 120 may be reasonable.

Remark 3.4. It is plausible to extend the proposed PTAM with a λ that has a more generalised
setting. This allows the PTAM to gain greater flexibility, although it could complicate the model
calibration. Hence, there is a need to balance the trade off between flexibility and inferential
power; see Section 6.2.

In summary, we propose a Coxian distribution with five parameters to be specified: m, ψ,
h1, hm and s. The parameters m and ψ may be selected based on some prior information of
the modeller, or a combination of lifetime/ageing-related data and prior knowledge. Having
established the values of m and ψ, λ is determined by (3.3.4), and h1, hm and s are easily
estimated from lifetime data. We will show two applications before providing the details of
the parameter estimation. A deeper understanding of the PTAM is facilitated by numerical
examples, which are featured prior to delving into the estimation details. More discussion of
the estimation of m and ψ will be provided in Chapter 5.

Ideally, our ageing model would be calibrated using ageing-related data, rather than lifetime
data. This means that if the observations for one or more key ageing variables are taken at one
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or more times whilst each individual is alive in addition to ages at death, we could estimate the
model parameters with less uncertainty. The estimation incorporating with ageing-related data
will be addressed in Chapter 6.

It is worth noting that the proposed PTAM can reproduce some special distributions by
setting the parameter values. The special cases are summarised in the succeeding remarks.

Remark 3.5. When h1 = hm = µ, formula (3.3.3) yields hi = µ for i = 1, . . . ,m. The resulting
survival function is S (t) = e−µt, in which the proposed PTAM degenerates to an exponential
distribution with rate parameter µ. In this case, there is no need to have more than 1 state in
the Markov chain.

Remark 3.6. For any m ≥ 2, when h1 , h and h2 = . . . = hm = h, the resulting probability
distribution of the GPTAM is the same as the resulting probability distribution of a 2-state
Markov model with the 2 × 2 transition matrix

Λ =

[
−(λ1 + h1) λ1

−h

]
.

This can be verified by the fact that

f (t) =

m∑
k=1

Pk(t)hk = P1(t)h1 +

m∑
k=2

Pk(t)h = P1(t)h1 + h
m∑

k=2

Pk(t).

By treating states 2 to m as simply a hypothetical state 2∗, the probability in state 2∗ at time t
is

∑m
k=2 Pk(t). Therefore, the probability distribution f (t) is equal to that of the 2-states Markov

model. As a result, the survival function and hazard function are also the same between the
two Markov models.

Remark 3.7. As s → +∞ and h1, hm , 0, formula (3.3.3) gives that hi = max(h1, hm) for
i = 2, . . . ,m − 1, where

lim
s→+∞

hi = lim
s→+∞

(
hs

1
m − i
m − 1

+ hs
m

i − 1
m − 1

) 1
s

= max(h1, hm) lim
s→+∞

((
h1

max(h1, hm)

)s m − i
m − 1

+

(
hm

max(h1, hm)

)s i − 1
m − 1

) 1
s

= max(h1, hm).

Furthermore, when h1 < hm, by Remark 3.6, the resulting probability distribution is equal
to the probability distribution of a 2-state Markov model with the 2 × 2 transition matrix

Λ =

[
−(λ + h1) λ

−max(h1, hm)

]
=

[
−(λ + h1) λ

−hm

]
,

and when h1 > hm, the resulting probability distribution is equal to the probability distribution
of a 2-state Markov model with the 2 × 2 transition matrix

Λ =

[
−(λ + max(h1, hm)) λ

−hm

]
=

[
−(λ + h1) λ

−hm

]
.
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So, the resulting probability distribution is equal to the probability distribution of a 2-states
Markov model with the 2 × 2 transition matrix:

Λ =

[
−(λ + h1) λ

−hm

]
.

Remark 3.8. As s → −∞ and h1, hm , 0, formula (3.3.3) provides that hi = min(h1, hm) for
i = 2, . . . ,m − 1, where

lim
s→−∞

hi = lim
s→−∞

(
hs

1
m − i
m − 1

+ hs
m

i − 1
m − 1

) 1
s

= min(h1, hm) lim
s→−∞

((
h1

min(h1, hm)

)s m − i
m − 1

+

(
hm

min(h1, hm)

)s i − 1
m − 1

) 1
s

= min(h1, hm).

Moreover, by Remark 3.6, the resulting probability distribution is equal to the probability
distribution of a 2-state Markov model with the 2 × 2 transition matrix

Λ =

[
−(λ + h1) λ

−hm

]
.

Remark 3.9. When h1 = 0, hm = λ and s = 0, we have hi = h
m−i
m−1
1 h

i−1
m−1
m = 0 for i = 1, . . . ,m − 1.

There is no early exit until the last state and the transition rate in each state is equal to λ,
in which the proposed PTAM is equivalent to a Gamma distribution with a shape parameter
m and a rate parameter λ, which is also called an Erlang distribution (Erlang, 1917). The
corresponding pdf is

f (t) =
λm

(m − 1)!
tm−1e−λt.

3.4 Empirical implementation of the proposed PTAM
The proposed PTAM is used for modelling the ageing processes. We will demonstrate two
applications of the proposed PTAM in this Section. For simplicity, we call the proposed PTAM
“the PTAM” or “our model”. We will address the estimation details in Chapter 5.

3.4.1 Application using data from a retirement community
To illustrate how our ageing model can be calibrated using lifetime data, we consider a data
set from the Channing House, a retirement community in Palo Alto, California. The data set
includes the entry age and age at death (or the date the study ended) for 462 people (97 males
and 365 females) who resided in the facility between January 1964 and July 1975. These
residents were covered by a health care program, which provided easy access to care at no
cost. This may have resulted in lower than average mortality. We fit our ageing model to



3.4. Empirical implementation of the proposed PTAM 31

the female data only. Thus, we consider data on a relatively small group of homogeneous
individuals - all females living in the same community with the same access to health care and,
very likely, similar lifestyles. This is not ideal, but this is the best we can do to ensure all other
variables that are likely to affect death are as similar as possible among individuals, and the
only variable that we cannot control is the underlying ageing process.

Only 362 of the 365 female records were kept, because three records had equal entry and
exit ages. Of the 362 females, 130 died whilst in the community, and the other 232 survived
until the end of the observation period. The youngest entry age was just over age 61, and the
oldest exit age was just under age 101. So the data pertain to ageing over this age range.

Since our model assumes that all individuals start at state 1, but we expect some variability
in states by age 61, we assume for this example that the ageing process starts at age 50. This
allows us to achieve some variability in the state distribution by age 61. The variability in the
state distribution is similar by assuming that the ageing process starts at age 50 or some earlier
ages. In particular, a starting age is chosen such that it is close to the youngest entry age in
the data set. It is more fitting to assume that the ageing process begins at young ages if some
individuals enter the observation study in their youth. Also, we assume, somewhat arbitrarily,
that age 105 is the end of the life span. This meets our condition that it should be a high age
to which only a very small proportion of individual will survive. In fact, none in our small
sample of females were observed to live older than 105. All members of the community were
dead or exited by this age. Therefore, ψ = 105 − 50 = 55. Also, based on experience, we
believe that having m = 100 ageing states is appropriate for modelling ageing above age 50.
This results in a reasonable amount of variability in the physiological age at various calendar
ages, as shown later in Figure 3.10. We then have λ = m/ψ = 100/55 = 1.8182. Using the
maximum likelihood estimation, we obtain the results in Table 3.1.

Table 3.1: Maximum likelihood estimates of parameters along with the approximate 95 percent
confidence intervals (based on the profile log-likelihood) for the Channing House data set.

Approximate 95% CI
Parameter Estimate Lower Upper

h1 0.0017 0.0000 0.0099
hm 1.2750 0.2770 ∞

s -0.0735 -0.5270 0.3550

In Table 3.1, we present approximate confidence intervals for the parameter estimates rather
than standard error estimates. This is because asymmetries of the log-likelihood function in-
dicate that the estimates are not approximately normal (Figure 3.5). The asymmetries may be
due to the strong correlation amongst h1, hm and s; moreover, 100 estimates are not enough
to approximate the estimator distributions. Therefore, standard errors would not be easy to
interpret. Furthermore, our confidence intervals are based on the profile log-likelihood func-
tions; these particular confidence intervals are known to perform well when the log-likelihood
function is asymmetric; see Figure 3.6.

The profile log-likelihood is constructed by fixing one parameter and then maximising the
likelihood with respect to the other parameters. In our model, we maximise the likelihood for
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each fixed value of h1, fixed value of hm and fixed value of s. The 95% confidence interval is
determined by the likelihood-ratio test. An approximate 95% confidence interval for θ is the
set of values satisfying:

l(θ̂) − l(θ) < 1.92,

where l(θ̂) is the maximum log-likelihood and 1.92 is half of the critical value of the χ2 statistic
with 1 degree of freedom. The upper bound of 95% confidence interval for hm is ∞. This
is because the profile log-likelihood does not change too much for a large value of hm; see
bottom-left graph in Figure 3.6.
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Figure 3.5: Histogram of 100 estimates for h1, hm and s using bootstrap for the Channing
house data. The red lines locate the lower and upper bounds for the empirical 95 % confidence
interval. The upper bound in the numerical optimisation for hm is set to 100, which has been a
very high mortality rate for humans.

The confidence intervals in Table 3.1 suggest considerable variability of the parameter esti-
mates. This is not surprising as the data set includes just 362 individuals, only 130 of which are
observed to die, and individuals are observed for just 7 years on average. The wide confidence
intervals reflect the fact that our functional form for hi involves great flexibility in its behaviour
for large values of i (near m = 100). However, very few individuals are old enough in the data
set in order to have a usable information concerning hi for large i. Our confidence interval for
hm extends to infinity, suggesting that any value of hm greater than 0.2770 is quite plausible.
Depending on which value is used, h1 and s must be adjusted so that appropriate estimates of
hi are obtained for less extreme values of i.

To gain insight into how much our parameter uncertainty would decrease by increasing the
size of the data set, we determine the confidence intervals using data cloning. This is because
we want to have the same estimate of the MLE for various sample sizes. The same estimate
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Figure 3.6: Top-left: Profile log-likelihood for h1;Top-right: Profile log-likelihood for hm

in [0, 4]; Bottom-left: Profile log-likelihood for hm in [0, 1000]; Bottom-right: Profile log-
likelihood for s.

of the MLE makes it straightforward to compare the 95% confidence interval with different
sample sizes. For more details on data cloning, see Chapter 6. We clone the data 10 times and
100 times, and determine the corresponding confidence intervals as before. Note that this does
not change the estimates of h1, hm and s, as the log-likelihood function is simply multiplied
by 10 and 100, respectively. However, this stretch produces narrower confidence intervals.
The results are shown in Table 3.2, which illustrates that with 100 repetitions, there are 36,200
observations involving 13,000 deaths and the uncertainty about the parameter values is greatly
reduced.

Table 3.2: Approximate 95 percent CIs (based on the profile log-likelihood) for the Channing
House data cloned 10 and 100 times.

Approximate 95% CIs
1 clone 10 clones 100 clones

Parameter Estimate Lower Upper Lower Upper Lower Upper
h1 0.0017 0 0.0099 0.0003 0.0042 0.0012 0.0024
hm 1.2750 0.2770 ∞ 0.6080 11.8032 0.9610 1.9106
s -0.0735 -0.5270 0.3550 -0.2890 0.1230 -0.1410 -0.0112

The estimates of hi that result from ĥ1, ĥm and ŝ are shown in Figure 3.7. The pattern
of values look reasonable given that they represent instantaneous mortality rates that apply
between ages 50 and 105. Figure 3.8 shows the force of mortality and the log (base 10) of the
force of mortality based on the fitted model. Once again, the behaviour is quite reasonable.
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Figure 3.7: Estimates of hi obtained by calibrating the PTAM using the Channing House female
data.

In Figure 3.9, we illustrate the goodness of fit of our model to the Channing House data
by plotting the fitted survival function along with the Kaplan-Meier nonparametric survival
function estimates. We observe that our model fits quite well, and our fitted model estimates
stay within the 95 percent confidence limits based on the Kaplan-Meier estimator.

To summarise the estimation process for the Channing House data, we firstly determine the
starting age for the process and the lifespan parameter based on the observations. Then, the
estimates of m is chosen by our prior knowledge. Hence, the estimate of m and λ are obtained.
The last step is to estimate the remaining parameters h1, hm and s by the MLE technique.

With our fitted model, we can perform a variety of analyses of the ageing process. For
example, it is relevant to examine the distribution of the state of an individual at different
ages, given that the individual is alive at these ages. The probabilities associated with this
distribution, that is P(Yt = i|Yt ∈ E), are given by the 1 × m vector

p(t)/p(t)e,

where p(t) can be calculated using equation (2.2.8). Since these probabilities correspond to age
50 + t in our example, it is intuitively appealing to transform the state Yt to a comparable value
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Figure 3.8: Force of mortality and log (base 10) force of mortality based on the PTAM cali-
brated using the Channing House female data.

that we can interpret as the individual’s physiological age. Let

Physiological age at calendar age t = 50 +
Yt − 1
m − 1

ψ. (3.4.5)

Then an individual in state 1 has physiological age 50, and an individual in state 100 has
physiological age 50+ 100−1

99 (55) = 105. We can now determine the distribution of physiological
age at any calendar age.

Figure 3.10 shows the distribution of physiological age at ages 60, 70, 80 and 90 for the
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Figure 3.9: Survival function based on the PTAM calibrated using the Channing House female
data, along with the Kaplan-Meier estimates of the survival function and corresponding 95
percent confidence limits (dashed).

PTAM calibrated using the Channing House female data. We observe that the physiological age
distribution has less variability at younger ages. Small physiological age variation for younger
people should be expected because we started the process at age 50, so that all individuals have
a physiological age 50 at age 50. At older ages, the variability stabilises. We also observe
that the mean physiological age, indicated by the vertical lines, is very close to 60 at age 60.
However, at older ages, the mean physiological age becomes noticeably smaller than the age.
This is due to mortality selection - individuals with a higher physiological age have a higher
mortality rate. Therefore, old-age survivors tend to be those with a lower physiological age.

We can gain further insight into our ageing model by observing how the paths of the process
behave. We can do this by simulating several paths and plotting them. To simulate a path, we
assume that the individual is in state 1 (physiological age 50) at age 50. The individual will
stay in state 1 for a length of time that is exponentially distributed with rate λ + h1. We can
generate this exponential random variable. At the end of the stay in state 1, the individual
will die with probability h1/(λ + h1) and move to state 2 with probability λ/(λ + h1). We can
generate a sample from a Uniform (0,1) distribution to determine whether or not the individual



3.4. Empirical implementation of the proposed PTAM 37

●●●●●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

50 60 70 80 90 100

0.
00

0.
02

0.
04

0.
06

0.
08

physiological age

pr
ob

ab
ili

ty
● Age 60

Age 70
Age 80
Age 90

Figure 3.10: Physiological age distribution at ages 60, 70, 80 and 90 based on the PTAM
calibrated using the Channing House female data. Vertical lines indicate the means of the
distributions.

dies at this time. If not, we generate the time spent in state 2 (exponential with rate λ+ h2) and
continue until the individual dies.

We simulated ten paths of the process and plotted them in Figure 3.11. Once again, the
state of the process has been transformed to physiological age as described by (3.4.5). Figure
3.11 illustrates once again the variability in physiological age at different ages, but also shows
the extent to which individual paths depart from uniform ageing over time. That is, we observe
the “wigglyness” of individual paths.

3.4.2 Further analysis of the PTAM

Our basic modelling principle is that the (length of) life is the result of two important forces:
the force of ageing (i.e., the fundamental biological process) and the force of dying (i.e., the
external forces from environmental stress including accidents, accessibility of nutrition and
medical care, etc). Besides, we want to model the two forces using a stochastic approach;
specifically, we adopt the Markovian modelling framework of the Coxian distribution. That
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Figure 3.11: Ten simulated paths from age 50 until death based on the PTAM model calibrated
using the Channing House female data.

is, we define a finite number of states representing different physiological capacity levels and
transition intensities determining the rate of progression through the states. These states (with
labelling suitably transformed) are interpreted as an individual’s physiological age, since they
are used to classify an individual’s physiological capacity at the moment. As a result, we
have naturally incorporated the concept of heterogeneity into the lifetime dynamic process by
introducing the so-called “physiological age”.

We mentioned in Chapter 1 that, since the middle of the 20th century, many researchers
have begun collecting longitudinal data on various physiological variables. The most striking
finding may be the fact that the decline of these physiological functions as a result of the under-
lying ageing process follows a slow, uniform and roughly linear pattern with age. This suggests
that, according to our assumption of a uniform rate of increase in physiological age, declines
in physiological function are decreasing, approximately linear, functions of physiological age.

Notwithstanding the appeal of our approach, other strategies can be used to construct a
Coxian distribution. We discuss one of these below and illustrate that our model is nearly
equivalent in terms of the resulting lifetime distribution.
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3.4.3 Benchmarking with the Markovian Le Bras model
We now describe a model developed by Szilard (1959) and Le Bras (1976). Szilard (1959)
proposed an ageing process theory assuming that chromosomes mutate with a constant rate
in cells. If a cell accumulates too many mutations, it will cease functioning. Once a certain
percentage of cells stop functioning in a human body, the body will die. Furthermore, Le Bras
(1976) added an assumption that the inherited chromosomal mutation in the human body fol-
lows a Markov process. For a newborn, each cell mutates with rate λ0 initially. Then new
mutations occur with additional rate iλ, proportional to the total number of mutations i that
have happened in this cell, and each cell dies with rate iµ, proportional to i as well. Hence, let
state i of a Markov process represent the state in which cells have accumulated i mutations in
total. Then the transition rate from state i to i + 1 is λ0 + iλ and the transition rate from state i
to the absorbing state, i.e. to death, is µ0 + iµ.

0 1 i · · · · · ·
λ0 λ0 + λ λ0 + iλ

µ0 µ0 + µ µ0 + iµ

Figure 3.12: Diagram for the Le Bras dual linear model.

The Le Bras model was discussed by Yashin et al. (1994) in the following form: λi = λ0 +iλ
and µi = µ0 + iµ, where µ0 is the initial exiting rate. See Figure 3.12 for the diagram of the
model. Here, the Le Bras model has an infinite number of states. Following the steps in solving
the Kolmogorov forward equation in Chapter 2, one can derive the transition probability

Pi(t) =
e−(µ0+λ0)t

i!

(
λ(1 − e−(λ+µ)t)

λ + µ

)i i∏
k=1

(
λ0

λ
+ k − 1

)
.

We recognise that Pi(t) follows the term of a binomial series by considering 1
(1−x)α =∑∞

i=0

(∏i
k=1(α + k − 1)/i!

)
xi, where x =

λ(1−e−(λ+µ)t)
λ+µ

, α = λ0
λ

, and
∏i

k=1

(
λ0
λ

+ k − 1
)
/i! is the bino-

mial coefficient. It may be verified that

S (t) =

∞∑
i=0

Pi(t) = e−(λ0+µ0)t
(

λ + µ

µ + λe−(λ+µ)t

) λ0
λ

.

The Le Bras model is one of the first few attempts that have successfully incorporated
physical and biological assumptions in a mathematical framework. Hence, it is important to
review their approach, as this can help us gain insight on how our proposed model can be
useful.

Remark 3.10. Under the further assumption that µ � λ, the hazard function of the Le Bras
model can be approximated by

µ(t) =

(
µ0 −

µλ0

λ

)
+
µλ0

λ
e(λ+µ)t,
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which is equivalent to the 3-parameter Gompertz-Makeham mortality model, µ(t) = a + bect,
with

a = µ0 −
µλ0

λ
, b =

µλ0

λ
, c = λ + µ .

See Yashin et al. (1994) for further details. The important contribution of the Le Bras model
is the dual linear structure in describing the ageing process (the linear pattern for λi) and
the deteriorating effect (the linear pattern for µi) that could result in a Gompertz form of an
exponentially increasing mortality pattern.

Remark 3.11. In Yashin et al. (1994), the authors discuss the Le Bras model. It was found
that, starting from a fixed frailty assumption, it is possible to derive the same mortality model.
Hence, it was argued that, in the statistical analysis of data, results and conclusions depend
not only on the data but also on underlying assumptions about the mechanism which generated
the data. In other words, in reality, the use of lifetime data alone is not sufficient to distinguish
between different assumptions on the mechanism that can generate the observed mortality pat-
terns. More sophisticated data need to be used to validate the assumption.

Remark 3.12. There are some similarities between the Le Bras model and our proposed model.
They are:

• both models differentiate the ageing effect from the ageing process;

• both models use a Coxian structure to describe the interaction between the intrinsic force
of ageing and the external force of dying.

However, from a practical perspective, the Le Bras model seems too restrictive in the sense that
it requires a dual-linear pattern in its parametric form, which cannot be tested or modified.

It is worth noting that both models are ageing models rather than mortality models.

3.4.4 A simulation study
The Le Bras model describes a plausible ageing mechanism. Such model is a good candidate
for modeling the human ageing process. However, the associated Markov chain has infinite
states, which makes it hard to analyse the physiological age distribution at any chronological
age. Since the heterogeneity of lifetimes in a population can be quantified by the physiological
age, and the physiological age for our PTAM is easy to analyse, we shall examine if our PTAM
can capture the probabilistic features of the Le Bras model.

To explore this, we simulated 5,000 lifetime observations from the Le Bras model with the
parameters given in Table 3.3. We then fit our model to the simulated data. Before estimating
the other parameters using the MLE method, we set the life span parameter ψ as

ψ = T̂VaR0.999(T ) .

where T̂VaR1−α(T ) is an empirical estimate of TVaR1−α(T ), obtained from the simulated data.
In particular, TVaR0.999(T ) is the conditional tail expectation of the lifetime that is in the 0.1%
of old ages. We use T̂VaR1−α(T ) to estimate the lifespan ψ for two reasons.
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• The lifespan ψ is a high age to which only a very small proportion of individuals will
survive and we believe TVaR0.999(T ) is such a high age;

• The sample size is large enough that T̂VaR0.999(T ) is a robust estimate of TVaR0.999(T ).

Since our simulated sample size is 5,000, T̂VaR0.999(T ) is the average of the five largest ob-
servations. We obtain ψ = T̂VaR0.999(T ) = 112.55. We estimate the remaining parameters
using the MLE method. Figure 3.13 shows a histogram of the simulated data, the pdf of the
Le Bras model and the pdf of the fitted PTAM. The MLE of m is determined by fitting the
model for different but fixed m using the MLE method, and comparing their respective Nega-
tive Log-Likelihood (NLL) values. As one can see in Table 3.4, when m = 225, we obtain the
lowest NLL value. It is worth noting that the log-likelihoods are similar for different fixed m’s.
Therefore, the estimation of m using lifetime data only has huge variability. This is due to the
fact that lifetime data carry very little information about m.

Table 3.3: Parameter values
λ0 λ µ0 µ

The Le Bras model 0.6 0.07 0.001 0.4 × 10−4

Our fitted PTAM model h1 hm λ s
with m = 225 0.0008 1.6535 1.9991 −0.1112
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Figure 3.13: Histogram of 5,000 lifetimes simulated from the Le Bras Model. The fitted model
with m=225 is plotted vis-à-vis the true model. The dotted vertical line indicates the location
of ψ = 112.55.

Figure 3.13 shows that if the observed mortality rates are truly generated from the Le Bras
model, our model can provide a nearly equivalent representation. Furthermore, we apply the
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Pearson’s chi-squared test for the estimated results. The frequency table has 120 categories
from age 1 to age 120. The limiting age is set to 120 because the survival probability to such
old age is tiny. Let Oi and Ei be the observed number of deaths, and the expected number of
deaths between age i−1 and age i, respectively. The calculated chi-squared statistic is χ2 = 2.54
with degrees of freedom equal to 120 − 4 = 116, where

χ2 =

120∑
i=1

(Oi − Ei)2

Ei
,

and the corresponding p−value is 1. Therefore, there is not enough evidence to reject the null
hypothesis of no difference between the fitted distribution and the distribution from the Le Bras
model. We are able to achieve the same goodness of fit as the Le Bras model by allowing the
exit rate hi to increase faster than a linear rate. The fact that s can be flexible to take any value
in order to accommodate the data (in this example s = −0.1112) is a specific feature of our
model.

Hence, we have found an alternative to the Le Bras dual linear model with a constant
transition rate λ, though our model has a slightly different interpretation of the underlying
ageing mechanism. While the original Le Bras model contains an infinite number of states, our
PTAM model re-labels them into m states. The ageing process is still modelled as marching
forward from one state to the next, and the impact of ageing is still described as increased
frailty to hazard with higher indexed state. The only difference is the way of labeling the states.
Transforming from the Le Bras model to our PTAM model, the earlier states may need to be
split into more states, while the later states may need to be grouped, but not in a linear fashion.
The overall effect is that, in our modelling framework, the transitions from one to another are
required to occur uniformly due to the use of the constant transition rate λ. In particular, the
pattern for hi changes from a linear increase to a pattern that has to climb slightly faster than
the exponential rate, as indicated by the parameter s taking a small negative value.

In Table 3.4, we show additional results from fitting our model to the simulated data. As
required, the estimate of the parameter λ increases with m. We have also plotted the survival
functions, pdfs and hazard functions of these fitted models with m ranging from 200 to 250 in
Figure 3.14, the dotted vertical line indicates the location of ψ = 112.55. For ages up to this
value, the distributions are very close to each other. However, for the hazard functions, there
are small but noticeable differences beginning near age 100.

Examining the hazard functions in the bottom left panel of Figure 3.14, we find that the fit
changes asymmetrically as m moves away from its optimal value. The model with m = 250 fits
much better than the one with m = 200. Also, the model with m = 250 gives the highest hazard
rate at the right end of the life span. For phase-type distributions, it is a well-known property
that

lim
t→∞

h(t) = min
i=1,··· ,m

{d1, d2, . . . , dm},

where the values of di are the eigenvalues of the transition intensity matrix Λ. In our fitted
PTAM, we have

lim
t→∞

h(t) = min{λ + h1, hm},

since the eigenvalues λ + hi increase except for the last element hm. The limit of h(t) for each
fitted model is provided in the last column of Table 3.4, and the model with m = 250 has the
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Table 3.4: Estimation results using different m based on 5,000 lifetimes simulated from the Le
Bras limiting distribution. The first column gives the negative log-likelihood - NLL. The last
column is the limit of the resulting hazard function h(t) as t → ∞.

NLL h1 hm λ s m min(λ + h1, hm)
21631.884 0.00081 2.0033 1.7764 -0.1237 200 1.7772
21631.826 0.00080 1.8392 1.8652 -0.1183 210 1.8392
21631.806 0.00080 1.7079 1.9540 -0.1134 220 1.7079
21631.713 0.00080 1.6535 1.9991 -0.1112 225 1.6535
21631.813 0.00079 1.6006 2.0428 -0.1089 230 1.6006
21631.843 0.00078 1.5108 2.1316 -0.1047 240 1.5108
21631.889 0.00078 1.4354 2.2205 -0.1009 250 1.4354
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Figure 3.14: Fitted survival function S (t), probability density function f (t), hazard function
h(t), and log (base 10) hazard function. Each graph includes four curves corresponding to the
fitted model with m=200, 225 and 250, as well as the true model. The dotted vertical line
indicates the location of ψ = 112.55.

lowest value of this limit.
In Figure 3.15, we show the logarithm of the hazard function of the fitted models from age

80 to 500. We extrapolate the hazard function to 500, an unrealistically old age, to demonstrate
the differences in the limiting hazard rate for the fitted results. Although the graph shows
differences in tail behaviour, these differences occur well beyond the age range that is relevant
to human ages from a practical perspective. When considering the ages that human beings can
survive to, the fitted models are equivalent in the sense of their resulting lifetime distributions.

The statistical equivalence of the outcome between two different model structures is of
importance. By all means, what we propose here is a statistical model which focuses on de-
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scribing the progressive and irreversible feature of the ageing process. The interaction between
ageing and mortality is not the ageing process itself; rather, the ageing effect is subject to what
we observe and how we observe it. In other words, the model aims at capturing the related in-
creasing mortality phenomenon due to the ageing process. It might be impossible to completely
rule out some subjective element in how we perceive the process. The equivalence means that
the interpretation of the internal ageing process could be flexible depending on what and how
we observe the process, but the model should be “true” to the ultimate observable facts – which
are the observed death rates by age in this situation. This is the basic principle to validate a
statistical model.

To understand the variability of the estimates of parameters associated with hi, the simu-
lation study was repeated 200 times. Then, holding ψ fixed at 112.55 and m fixed at 225, h1,
hm and s were estimated for each of the 200 simulations. Two hundred simulations are large
enough when using the estimated values to approximate the estimators’ distributions. Confi-
dence intervals based on the 2.5th and 97.5th percentiles of the sample of estimates for each
parameter were then constructed; they are shown in Table 3.5.

Table 3.5: Approximate Confidence Intervals based on Simulated Data.

Approximate 95% CI
Parameter Estimate Lower Upper

h1 0.0008 0.0007 0.0009
hm 1.6530 1.1001 2.7403
s -0.1110 -0.1442 -0.0671

As anticipated, with 5,000 complete lifetimes, the variability of the parameter estimates is
quite reasonable.

Now we move to another important concept that is introduced by our modelling framework.
Similar to (3.4.5), we can define a physiological age index based on our calibrated model:

Physiological age index Xt at calendar age t =
Yt − 1
m − 1

ψ. (3.4.6)

So Xt is a random variable transformed from Yt, and Xt can be interpreted as a physiological
age index since it is associated with where an individual is at in the ageing process. Note that Xt

takes values from [0, ψ]. That is, Xt is not affected by the state number parameter m and has the
same scale as the calendar age’s upper limit ψ. This makes Xt a good counterpart for age t: for
each individual which may follow a personalized ageing process Yt, there is this corresponding
physiological age index Xt telling the health status of the individual at his/her calendar age t.

In Figure 3.16, we plot hi versus physiological age i−1
m−1 ψ. The pattern of hi on [0, ψ] turns

out to be quite stable with different m. This is another good feature of the proposed model,
indicating that the underlying mechanism does not vary too much with m.

In our analysis so far, we have demonstrated that some critical aspects of our ageing model
are quite stable with changing m. Our estimated value of m was determined by maximising the
likelihood. However, the likelihood is nearly flat for values of m near the maximum. So there
are only small differences in the lifetime distribution that result from different m. This leads to
the question: How is the model affected by the value of m and how should m be determined?
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Figure 3.15: Fitted log (base 10) hazard function extended to age 500. Each curve corresponds
to the fitted model with m=200, 225 and 250, as well as the true model. The dotted vertical
line indicates the location of ψ = 112.55.
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Figure 3.16: The left graph shows the exit rate hi with m=200, 225 and 250. The right graph
shows the log-exit rate with m=200, 225 and 250. Both are plotted against the physiological
age i−1

m−1 ψ.

While the lifetime distribution is relatively insensitive to m, the progression of physiological
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age with advancing calendar age is affected by m. In particular, the variability in physiological
age is significantly affected by m. In fact, as m→ ∞, this variability disappears, and physiolog-
ical age converges to calendar age. In particular, when m increases, the expected physiological
age of an alive individual at calendar age t ∈ (0, ψ) approaches t

ψ
m and the variability decreases.

This phenomenon is illustrated in Figure 3.17, where ten simulated sample paths for each of
four different values of m: 25, 100, 225, and 1,000 are plotted. In fact, we can prove that as
m→ ∞, E(Xt|Yt ∈ E)→ t and Var(Xt|Yt ∈ E)→ 0 in Chapter 4.

Furthermore, the resulting hazard function takes on the behaviour of our hi values. That is,
as m gets large, we observe that the hazard function, which is the expected exit rate, given by
hm(t) = E(hYt |Yt ∈ E) approaches

h(t) =


((

1 − t
ψ

)
hs

1 + t
ψ

hs
m

)1/s
s , 0,

h
1− t

ψ

1 h
t
ψ

m s = 0.

In addition, the variability of hYt becomes smaller and smaller when m increases. This is
not surprising because of our observation in the last paragraph that Yt approaches t

ψ
m as m goes

to infinity.
Figure 3.17 shows ten simulated sample paths for each of four different values of m: 25,

100, 225, and 1,000. We observe that, as m increases, there is less variability in physiological
age, and physiological age is converging to calendar age. This suggests that m should not
be too large, or the model will not appropriately reflect the variability in physiological age.
Obviously, m cannot be too small either, or there will be too much variability in physiological
age.
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Figure 3.17: Ten simulated sample paths of the fitted PTAM model for each of four different
values of m, holding the parameters h1, hm and s fixed.



3.4. Empirical implementation of the proposed PTAM 47

In summary, we intend to choose m and ψ in such a way that the calibrated model can
reflect one’s opinion about the variability in physiological age. Also since ψ tends to take a
value close to the lifespan measured in years, the physiological age has a range between 0 and
ψ, which seems to be a reasonable scale conversion from calendar age. However, if one has
data that includes information about one or more health variables related to physiological age
in addition to the lifetimes of individuals, then additional consideration can be given to estimate
m and ψ along with the other parameters. This is the preferred approach if suitable data are
available.

Remark 3.13. The proposed PTAM gains some flexibility when m increases from a small value.
This is because, intuitively, a Markov chain with more states can represent more health statuses.
However, this flexibility may lose as m keeps increasing to a large value due to the restricted
structure of hi.

3.4.5 Comparison with the model in Lin and Liu (2007)
Our proposed PTAM is compared with the PTAM of Lin and Liu (2007), who demonstrated
how the ageing component, combined with other causes of death, can explain well the age
pattern of mortality rates for observed cohorts. However, the main goal of the proposed PTAM
is not to reproduce mortality patterns; instead, it aims at finding a way to describe the ageing
process, in which ageing-related mortality rates are used to determine a quantitative measure-
ment of the ageing rate and the associated ageing effect under our pre-defined model frame-
work. Hence, the resulting lifetime distribution from our model cannot be treated as a mortality
model as in Lin and Liu (2007).

For our proposed PTAM, the structure on dying rate is flexible to achieve a variety patterns.
In other words, the proposed functional form (3.3.3) can be used to reproduce the ageing-
related mortality rates in equation (3.3) in Lin and Liu (2007), which, for the convenience of
readers, is provided below:

h2(i) = ipq,

with parameter p and q estimated from three different cohorts.
We match our proposed functional form (3.3.3) to the three estimated patterns shown in

Figure 5 of Lin and Liu (2007). The parameters of h1, hm and s for the proposed PTAM are
given in Table 3.6 along with the values for q and p estimated from Lin and Liu (2007), respec-
tively.

Table 3.6: Parameters q and p adopted from from Lin and Liu (2007), and their corresponding
calibrated values in terms of the proposed structure (3.3.3) for the Swedish cohort data in years
1811, 1861, and 1911.

Year q p h1 hm s
1811 9.3157 × 10−9 3 1.7103 × 10−8 0.0745 0.3328
1861 2.6351 × 10−13 5 8.5212 × 10−13 0.0844 0.1994
1911 1.8872 × 10−15 6 5.1411 × 10−14 0.1206 0.1662
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Figure 3.18: Calibrated hi using the form (3.3.3) versus hi = ipq in Lin and Liu (2007) for three
cohorts.
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Figure 3.19: Calibrated log10(hi) using the form (3.3.3) of versus hi = ipq in Lin and Liu (2007)
for three cohorts.

As shown in Figures 3.18–3.19, the functional form (3.3.3) can reproduce the three different
scenarios in Lin and Liu (2007) well. The parameter s, which is supposed to capture the
curvature of the death rates associated with the ageing process, ranges from 0.3328 to 0.1662
for cohorts from 1811 to 1911. This appears to be a good feature of the proposed PTAM. The
combinations of p and q are used to capture the ageing-related mortality pattern in Figure 16 of
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Cheng et al. (2021). In comparison, the parameter s here is the analogue of the two parameters
in Lin and Liu (2007).

3.5 Flexibility of the resulting distribution
The quantitative study of ageing is still in its infancy due to the lack of directly observable
ageing-related data. The ageing process is not directly observable even using the most ad-
vanced technologies. For this reason, earlier theories of ageing often use the impact of ageing
(e.g. the observed increasing death rates with increasing age to validate their underlying hy-
pothesis about ageing). We know two facts about the relation between mortality rate and the
rate of ageing:

• The mortality rate is strongly correlated with the rate of ageing;

• It is hard to collect ageing-related data, but it is much easier to collect mortality data.

We used two sets of lifetime data to quantify the ageing effect (Channing House data and
simulated data from the Le Bras model). Reasonably good fits on both sets of data are achieved.
The promising approximation motivates us to explore the flexibility of the proposed PTAM, so
that we can answer the following question: Can the proposed PTAM achieve a good fit on
any set of lifetime data? The assessment of the PTAM’s flexibility in our exploration is based
on how well the resulting pdf and hazard function can approximate the true ones, since both
functions are easily obtained from the data and are commonly used to validate the calibrated
result.

For each living being, we assume that its embedded ageing process still meets our defini-
tion of ageing process – “ the genetically determined, progressive and essentially irreversible
process”. However, the dying rate pattern may be distinct for different living beings, and their
hazard rate patterns may be dissimilar. For example, the mortality rate for human being has an
increasing pattern beyond the attainment of adulthood; while the mortality rate for fruit flies
has a flipped U-shaped pattern.

Since the dying rate is monotone for the proposed PTAM, the resulting hazard rate is mono-
tone by Theorem 3.2. It is impossible for the proposed PTAM to produce a non-monotonic
hazard rate. Therefore, we only investigate the goodness of fit for some popular lifetime distri-
butions with monotonic hazard rate.

The following list includes the tested lifetime distributions we are interested in:

• Gamma distribution with increasing hazard rate;

• Gamma distribution with decreasing hazard rate;

• Weibull distribution with increasing hazard rate;

• Weibull distribution with decreasing hazard rate;

• Pareto distribution with decreasing hazard rate;

• Convolution of two exponential distributions;
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• Convolution of two Weibull distributions;

• Gompertz-Makeham distribution;

• Makeham’s second extension of the Gompertz distribution.

According to our experiments, the fitted results are promising for all tested distributions,
except for the tail part of heavy-tailed distributions. As expected, it is problematic to use
light-tailed distributions, which includes the proposed PTAM, to approximate heavy-tailed dis-
tributions, because there is always a distinct tail, which requires a large number of mixtures
(states in the PTAM) to approximate the tail well. For example, Figure 3.20 is the typical fitted
result for light-tailed distributions, and Figure 3.21 is the typical fitted result for heavy-tailed
distributions. More discussion and fitted results are presented in Appendix C.
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Figure 3.20: Proposed PTAM approximating a convolution of two Weibull distributions with
λ1 = 2, k1 = 1, λ2 = 1, and k2 = 1.3.



3.5. Flexibility of the resulting distribution 51

0 50 100 150
age

0

0.05

0.1

0.15

0.2

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

PTAM
Pareto

0 50 100 150
age

0

0.05

0.1

0.15

0.2

fo
rc

e 
of

 m
or

ta
lit

y PTAM
Pareto

0 50 100 150
age

0

0.5

1

su
rv

iv
al

 p
ro

ba
bi

lit
y PTAM

Pareto

0 50 100 150 200 250 300
i

0.05

0.1

0.15

0.2

h
i e

st
im

at
e

Figure 3.21: Proposed PTAM approximating a Pareto distribution with k = 0.2 and σ = 5.



Chapter 4

State and probability distributions

In this Chapter, we investigate the state distribution at any time and the resulting probability
distribution for the proposed PTAM. The investigation is heavily based on the underpinnings
of mathematical statistics. One numerical example is provided after each result to gain certain
intuitions.

We establish the convergence in probability at time t of a transformation of the state ran-
dom variable conditional on being in transient states to a function of t as the number of states
approaches infinity. This property shows that the physiological age index converges to the
chronological age if the PTAM has a large number of states. Furthermore, the distribution of
the transformed state random variable asymptotically converges to a normal distribution.

On the other hand, conditional on the current state, the lifetime random variable still follows
the proposed PTAM. Based on the resulting probability distribution, we can group the param-
eters of the proposed PTAM into two parameter classifications: shape and scale. The limit of
the resulting hazard function with respect to the number of states in the PTAM is provided at
the end of this Chapter.

4.1 The associated state distribution

As we demonstrated using the PTAM to fit the Channing House data, both the resulting lifetime
distribution and the state distribution at any time were important.

Given any lifetime t, the 1 × m probability vector of being in each state at time t is p(t),
whose value can be calculated by (2.2.8). Conditional on being alive at time t, the probability
vector is updated by

p(t|Yt ∈ E) =
p(t)
p(t)e

,

where e is a m × 1 column vector of ones and p(t)e is the sum of all elements in p(t). The
kth element of p(t|Yt ∈ E) is the probability in state k conditional on being alive at time t, or
P(Yt = k|Yt ∈ E).

The state distribution contains information on the variability of the state at any age. Using
(3.4.6), the state label could be transformed to a physiological age index with range [0, ψ].

52
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Using the transformation

Zt =
Yt − 1
m − 1

,

the physiological age index takes values between 0 and 1.
Recall that Figure 3.17 showed E

(
Yt
m

∣∣∣Yt ∈ E
)

gets closer to t
ψ

and Var
(

Yt
m

∣∣∣Yt ∈ E
)

gets closer
to 0 as m increases from 25 to 1000. It is reasonable to guess that the random variable(

Yt
m

∣∣∣Yt ∈ E
)

converges to t
ψ

in probability as m→ ∞. The convergence is indeed true as will be
shown below and owing to the fact that limm→∞

Yt
m = limm→∞ Zt. In order to emphasise that Yt

and Zt are related to the value of m, we use Yt,m to represent Yt and use Zt,m to represent Zt in
Theorem 4.1. The key idea of the proof is to prove Pk(t) is close to (λt)k−1

(k−1)! e−(λ+hk)t and Pm(t) is
close to 0 as m→ ∞.

Theorem 4.1. Suppose the proposed PTAM has m (m = 1, 2, . . .) transient states with labels
1, . . . ,m and one absorbing state with label m + 1. The ageing rate, which is the transition rate
from one transient state to the next transient state, is λ. For i = 1, . . . ,m, the dying rate in state
i is hi with 0 ≤ h1 < hm < ∞, and hi follows (3.3.3). Let ψ be the lifespan parameter. For any
time 0 ≤ t < ψ, let Yt,m be the state variable at time t, and Zt,m =

Yt,m−1
m−1 , then the sequence of

random variables (Zt,m|Yt,m ∈ E) converges to t
ψ

in probability as m→ ∞.

Proof. By Theorem 3.3, the rate hi is increasing if and only if h1 < hm . According to (3.3.3),
when s , 0, for any i = 1, . . . ,m − 1,

lim
m→∞

hi+1

hi
= lim

m→∞

hs
1

m−(i+1)
m−1 + hs

m
(i+1)−1

m−1

hs
1

m−i
m−1 + hs

m
i−1
m−1

1/s

= lim
m→∞

(
hs

1(m − i − 1) + hs
mi

hs
1(m − i) + hs

m(i − 1)

)1/s

= lim
m→∞

(
1 +

hs
m − hs

1

hs
1(m − i) + hs

m(i − 1)

)1/s

= 1.

Similarly, limm→∞
hi+1
hi

= 1 when s = 0 because hi is a continuous function of s. Therefore, for
any ε > 0, there is an M1 such that for any m > M1,

0 < hi+1 − hi < ε,

for any i = 1, . . . ,m − 1. Letting ε → 0, M1 → ∞ because hi+1 , hi for any fixed m.
For any fixed m > M1 and any 0 ≤ t < ψ, the probability in state k at time t is (2.3.9) with

initial conditions P1(0) = 1 and Pk(0) = 0 for k = 2, . . . ,m. The solution is
P1(t) = e−(λ+h1)t,

Pk(t) = λe−(λ+hk)t
∫ t

0
e(λ+hk)uPk−1(u)du, for k = 2, . . . ,m − 1,

Pm(t) = λe−hmt
∫ t

0
ehmuPm−1(u)du.
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The probability of being in state 2 at time t is

P2(t) = λe−(λ+h2)t
∫ t

0
e(λ+h2)ue−(λ+h1)udu

= λe−(λ+h2)t
∫ t

0
e(h2−h1)udu

= λe−(λ+h2)t
(∫ t

0
1 + (h2 − h1)u + o(ε)

)
du

= λe−(λ+h2)t(t + c′2(t))

= λte−(λ+h2)t(1 + c2(t)),

where the third equality uses both the Taylor series on e(h2−h1)u and the fact that 0 < h2−h1 < ε.
Furthermore, c2(t) =

c′2(t)
t and c′2(t) =

∫ t

0
(h2 − h1)u + o(ε)du ≥ 0. Since h2 − h1 < ε,∫ t

0
(h2 − h1)u + o(ε)du < ε

∫ t

0
udu +

∫ t

0
o(ε)du

= ε
t2

2
+ o(ε)t

= εt
( t
2

+ o(ε)
)
,

where limε→0 εt
(

t
2 + o(ε)

)
= 0 and limε→0

εt( t
2 +o(ε))
ε

= t2
2 , yielding c2(t) = O(ε).

Suppose, for any 0 ≤ t < ψ,

Pk(t) =
(λt)k−1

(k − 1)!
e−(λ+hk)t(1 + ck(t)), (4.1.1)

where ck(t) ≥ 0 and ck(t) = O(ε). Specifically, limε→0 ck(t) = 0 and there is a positive number
Ck such that ck(t) ≤ Ckε. Then, the probability of being in state k + 1 at time t is

Pk+1(t) = λe−(λ+hk+1)t
∫ t

0
e(λ+hk+1)u (λu)k−1

(k − 1)!
e−(λ+hk)u(1 + ck(u))du

=
λk

(k − 1)!
e−(λ+hk+1)t

∫ t

0
uk−1e(hk+1−hk)u(1 + ck(u))du.

Recall that 0 < hk+1 − hk < ε. Then, applying the Taylor series expansion on e(hk+1−hk)u, we get∫ t

0
uk−1e(hk+1−hk)udu =

∫ t

0
uk−1(1 + (hk+1 − hk)u + o(ε))du

=

∫ t

0
uk−1 + (hk+1 − hk)uk + o(ε)uk−1du

=
tk

k
+ c′′k (t),

or ∫ t

0
uk−1e(hk+1−hk)udu =

tk

k
(1 + c′k(t)), (4.1.2)
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where c′k(t) =
kc′′k (t)

tk and c′′k (t) =
∫ t

0
(hk+1 − hk)uk + o(ε)uk−1du ≥ 0. Since hk+1 − hk < ε,∫ t

0
(hk+1 − hk)uk + o(ε)uk−1du ≤ ε

∫ t

0
ukdu + o(ε)

∫ t

0
uk−1du

= tk

(
tε

k + 1
+

o(ε)
k

)
.

Therefore, c′k(t) ≤
ktε
k+1 + o(ε) and c′k(t) = O(ε). And∫ t

0
uk−1e(hk+1−hk)uck(u)du ≤ max

u∈[0,t]
(ck(u))

∫ t

0
uk−1e(hk+1−hk)udu

= C′k
tk

k
(
1 + c′k(t)

)
,

by letting C′k = maxu∈[0,t](ck(u)). Then, 0 ≤ C′k = O(ε) because ck(t) = O(ε) for any t in [0, ψ).
There exists a 0 ≤ C′k(t) = O(ε) such that∫ t

0
uk−1e(hk+1−hk)uck(u)du = C′k(t)

tk

k
(1 + c′k(t)). (4.1.3)

Therefore, by (4.1.2) and (4.1.3),∫ t

0
uk−1e(hk+1−hk)u(1 + ck(u))du =

tk

k
(1 + ck+1(t)),

where ck+1(t) = (1 + c′k(t))(1 + C′k(t)) − 1.

(1 + c′k(t))(1 + C′k(t)) − 1 = c′k(t) + C′k(t) + c′k(t)C
′
k(t),

yielding 0 ≤ ck+1(t) = O(ε) because c′k(t) = O(ε) and C′k(t) = O(ε) are non-negative. As a
result,

Pk+1(t) =
(λt)k

k!
e−(λ+hk+1)t(1 + ck+1(t)).

By induction, (4.1.1) holds for k = 1, . . . ,m − 1. When k = m, we have

Pm(t) = λe−hmt
∫ t

0
ehmu (λu)m−2

(m − 2)!
e−(λ+hm−1)u(1 + cm−1(u))du

= λe−hmt
∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)u(1 + cm−1(u))du.

By the fact that e(hm−hm−1)u ≥ 1 for any u ≥ 0, we have

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)udu ≥ λ

∫ t

0

(λu)m−2

(m − 2)!
e−λudu

=

∫ λt

0

wm−2

(m − 2)!
e−wdw

= 1 −
m−2∑
j=0

(λt) j

j!
e−λt,
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or

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)udu ≥

∞∑
j=m−1

(λt) j

j!
e−λt, (4.1.4)

where w = λu. The integration
∫ λt

0
wm−2

(m−2)!e
−wdw is calculated using integration by parts recur-

sively. The last equation holds because
∑∞

j=0
(λt) j

j! e−λt = 1.
On the other hand, by the fact that e(hm−hm−1)s1 < e(hm−hm−1)s2 for any 0 ≤ s1 < s2, we have

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)udu ≤ e(hm−hm−1)tλ

∫ t

0

(λu)m−2

(m − 2)!
e−λudu,

or

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)udu ≤ e(hm−hm−1)t

∞∑
j=m−1

(λt) j

j!
e−λt. (4.1.5)

Since 0 < hm − hm−1 < ε, 1 ≤ e(hm−hm−1)t = 1 + O(ε) by the Taylor series. Hence, by (4.1.4) and
(4.1.5),

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)udu = (1 + c′m(t))

∞∑
j=m−1

(λt) j

j!
e−λt,

where c′m(t) ≥ 0 and c′m(t) = O(ε). Similar to the arguments in the previous proof of (4.1.3), we
have

λ

∫ t

0

(λu)m−2

(m − 2)!
e−λue(hm−hm−1)ucm−1(u)du = c′′m(t)(1 + c′m(t))

∞∑
j=m−1

(λt) j

j!
e−λt,

where c′′m(t) ≥ 0 and c′′m(t) = O(ε). As a result,

Pm(t) = (1 + cm(t))e−hmt
∞∑

j=m−1

(λt) j

j!
e−λt, (4.1.6)

where cm(t) = (1 + c′m(t))(1 + c′′m(t)) − 1 = c′m(t) + c′′m(t) + c′m(t)c′′m(t). Meanwhile, cm(t) ≥ 0 and
cm(t) = O(ε) by checking

c′m(t) ≥ 0,
c′′m(t) ≥ 0,

and

lim
ε→0

cm(t) = lim
ε→0

c′m(t) + c′′m(t) + c′m(t)c′′m(t) = 0,

lim
ε→0

cm(t)
ε

= lim
ε→0

c′m(t)
ε

+
c′′m(t)
ε

+
c′m(t)c′′m(t)

ε
= c′′(t),
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where c′′(t) = limε→0
c′m(t)
ε

+
c′′m(t)
ε

is a positive number.
Now, we show that Pm(t) → 0 as m → ∞. Let a random variable X follow a Poisson

distribution with rate λt. Then, P(X ≥ m − 1) =
∑∞

j=m−1
(λt) j

j! e−λt. On the other hand, λt =

m t
ψ
< m by recalling λ = m/ψ and 0 ≤ t < ψ. Furthermore, when 0 ≤ t < ψ

(
1 − 1

m

)
, we

have λt = mt
ψ
< m − 1. According to a Chernoff bound argument (Upfal, 2005), which is

P(X ≥ x) ≤ (eλ)xe−λ

xx for x > λ and X ∼ Poisson(λ), when m − 1 > λt,

P(X ≥ m − 1) ≤
(eλt)m−1e−λt

(m − 1)m−1

=

( m
m − 1

)m−1
(

t
ψ

)m−1

em−1−mt/ψ

=

(
1 +

1
m − 1

)m−1

e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ.

Suppose g(x) = 1 − x + log(x) where x ∈ [0, 1]. Then, the first derivative of g(x) is

dg(x)
dx

= −1 +
1
x
≥ 0.

Therefore, g(x) is increasing in [0, 1]. Combining with g(1) = 0, we have g(x) ≤ 0 for any
x ∈ [0, 1].

Hence, 1− t/ψ+ log(t/ψ) < 0 for any 0 ≤ t < ψ. On the other hand, limm→∞

(
1 + 1

m−1

)m−1
=

e. As a result,

lim
m→∞

(
1 +

1
m − 1

)m−1

e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ = 0,

yielding the upper bound of limm→∞ P(X ≥ m − 1) is 0. Since limm→∞ P(X ≥ m − 1) is non-
negative, we have limm→∞ P(X ≥ m − 1) = 0, or

∑∞
j=m

(λt) j−1

( j−1)! e−λt → 0 as m → ∞. According to
(4.1.6), this yields Pm(t)→ 0 as m→ ∞.

Now we are going to prove Pm(t)∑m−1
k=1 Pk(t)

→ 0 as m→ ∞. We have shown that
∑∞

j=m
(λt) j−1

( j−1)! e−λt ≤(
1 + 1

m−1

)m−1
e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ. Therefore,

m−1∑
j=1

(λt) j−1

( j − 1)!
e−λt = 1 −

∞∑
j=m

(λt) j−1

( j − 1)!
e−λt

≥ 1 −
(
1 +

1
m − 1

)m−1

e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ.
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By (4.1.1) and (4.1.6), we have

Pm(t)∑m−1
k=1 Pk(t)

=
(1 + cm(t))e−hmt ∑∞

j=m
(λt) j−1

( j−1)! e−λt∑m−1
k=1

(λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t))

=
(1 + cm(t))

∑∞
j=m

(λt) j−1

( j−1)! e−λt∑m−1
k=1

(λt)k−1

(k−1)! e−(λ+hk−hm)t(1 + ck(t))

≤
(1 + cm(t))

∑∞
j=m

(λt) j−1

( j−1)! e−λt∑m−1
k=1

(λt)k−1

(k−1)! e−λt

≤
(1 + cm(t))

(
1 + 1

m−1

)m−1
e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ

1 −
(
1 + 1

m−1

)m−1
e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ

,

which converges to 0 as m → ∞ by recalling limm→∞

(
1 + 1

m−1

)m−1
e(m−1)(1−t/ψ+log(t/ψ))e−t/ψ = 0.

The first inequality above holds because e(hm−hk)t ≥ 1 and ck(t) ≥ 0. Since Pm(t)∑m−1
k=1 Pk(t)

≥ 0,
Pm(t)∑m−1

k=1 Pk(t)
→ 0 as m→ ∞. Meanwhile,

Pm(t)∑m
k=1 Pk(t)

=

Pm(t)∑m−1
k=1 Pk(t)

1 +
Pm(t)∑m−1

k=1 Pk(t)

=

∑∞
k=m

(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑m−1
k=1

(λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t)) + (1 + cm(t))e−hmt
∑∞

j=m
(λt) j−1

( j−1)! e−λt
,

which converges to 0 as m→ ∞.
Now we are ready to prove the limit of E(Zt,m|Yt,m ∈ E) as m goes to infinity. For any fixed

m, according to (4.1.1) and (4.1.6),

E(Zt,m|Yt,m ∈ E) =

∑m
k=1

k−1
m−1 Pk(t)∑m

k=1 Pk(t)

=

∑m−1
k=1

k−1
m−1

(λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t)) + (1 + cm(t))e−hmt ∑∞
j=m

(λt) j−1

( j−1)! e−λt∑m−1
k=1

(λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t)) + (1 + cm(t))e−hmt
∑∞

j=m
(λt) j−1

( j−1)! e−λt

=

∑∞
k=1 min

(
k−1
m−1 , 1

)
(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
,

where h∗k = hk, c∗k(t) = ck(t) for k = 1, . . . ,m and h∗k = hm, c∗k(t) = cm(t) for k > m.

Consider two sequences am =
∑∞

k=1 min( k−1
m−1 ,1) (λt)k−1

(k−1)! e−(λ+h∗k )t(1+c∗k(t))∑∞
k=1

(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

and bm =
∑∞

k=1
k−1
m−1

(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

,

then am ≤ bm, or bm − am ≥ 0 for any m. On the other hand,

bm − am =

∑∞
k=m+1

(
k−1
m−1 − 1

)
(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
(4.1.7)

=

λt
m−1

∑∞
k=m

(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t)) −
∑∞

k=m+1
(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
, (4.1.8)
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where λt
m−1 converges to t

ψ
,

∑∞
k=m

(λt)k−1
(k−1)! e−(λ+hm)t(1+cm(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

and
∑∞

k=m+1
(λt)k−1
(k−1)! e−(λ+hm)t(1+cm(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

converge to 0 as

m→ ∞. Therefore, limm→∞ bm = limm→∞ am.

Now,

lim
m→∞

∑∞
k=1

k−1
m−1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
= lim

m→∞

λt
m − 1

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

=
t
ψ
,

yielding limm→∞ E(Zt,m|Yt,m ∈ E) = t
ψ

. The last equation holds because

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
=

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + d∗k(t))(1 + c∗k(t))
,

by letting e(h∗k+1−h∗k)t = 1 + d∗k(t), where 0 ≤ d∗k(t) = O(ε) when k < m, and d∗k(t) = 0 when k ≥ m.

On the other hand, as m→ ∞, we can let ε → 0. Therefore,

lim
m→∞

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + d∗k(t))(1 + c∗k(t))
= 1.

Similarly, we can prove the limit of E(Z2
t,m|Yt,m ∈ E) as m approaches infinity. For any fixed

m,

E(Z2
t,m|Yt,m ∈ E) =

∑m
k=1

(
k−1
m−1

)2
Pk(t)∑m

k=1 Pk(t)

=

∑m−1
k=1

(
k−1
m−1

)2 (λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t)) + (1 + cm(t))e−hmt ∑∞
j=m

(λt) j−1

( j−1)! e−λt∑m−1
k=1

(λt)k−1

(k−1)! e−(λ+hk)t(1 + ck(t)) + (1 + cm(t))e−hmt
∑∞

j=m
(λt) j−1

( j−1)! e−λt

=

∑∞
k=1 min

((
k−1
m−1

)2
, 1

)
(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
.

Similar to the arguments in (4.1.7), E(Z2
t,m|Yt,m ∈ E) converges to the following value as m
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approaches infinity. Once again, recall that λ = m/ψ, and so

lim
m→∞

∑∞
k=1

(
k−1
m−1

)2 (λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

= lim
m→∞

λt
(m − 1)2

∑∞
k=1 k (λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

= lim
m→∞

λt
(m − 1)2

∑∞
k=1(k − 1) (λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t)) +
∑∞

k=1
(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

= lim
m→∞

(λt)2

(m − 1)2

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+2)t(1 + c∗k+2(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
+

λt
(m − 1)2

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

= lim
m→∞

(mt)2

((m − 1)ψ)2

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+2)t(1 + c∗k+2(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
+

lim
m→∞

mt
(m − 1)2ψ

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k+1)t(1 + c∗k+1(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

=
t2

ψ2 ,

giving limm→∞ E(Z2
t,m|Yt,m ∈ E) = t2

ψ2 . Hence, we have

lim
m→∞

Var(Zt,m|Yt,m ∈ E) = lim
m→∞
E

(
(Zt,m)2|Yt,m ∈ E

)
−

(
lim

m→∞
E(Zt,m|Yt,m ∈ E)

)2

=
t2

ψ2 −

(
t
ψ

)2

= 0.

Write Z′t,m := Zt,m|Yt,m ∈ E. For any ε1 > 0, we have

P
(
|Z′t,m − E(Z′t,m)| ≥ ε1

)
≤

Var(Z′t,m)

ε2
1

,

by Chebyshev’s inequality.
Since limm→∞ E(Z′t,m) = t

ψ
, for any ξ > 0, there is an M2, such that for any m > M2,∣∣∣∣∣E(Z′t,m) −

t
ψ

∣∣∣∣∣ < ξ. (4.1.9)

Rearranging (4.1.9), we have t
ψ
−ξ < E(Z′t,m) < t

ψ
+ξ, which implies

∣∣∣Z′t,m − E(Z′t,m)
∣∣∣ > ∣∣∣∣Z′t,m − t

ψ

∣∣∣∣−
ξ. Therefore, if

∣∣∣∣Z′t,m − t
ψ

∣∣∣∣ − ξ > ε1 then
∣∣∣Z′t,m − E(Z′t,m)

∣∣∣ > ε1, or the set of
∣∣∣∣Z′t,m − t

ψ

∣∣∣∣ > ε1 + ξ
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is a subset of
∣∣∣Z′t,m − E(Z′t,m)

∣∣∣ > ε1, yielding P
(∣∣∣Z′t,m − E(Z′t,m)

∣∣∣ > ε1

)
≥ P

(∣∣∣∣Z′t,m − t
ψ

∣∣∣∣ > ε1 + ξ
)
.

Combine with the Chebyshev’s inequality,

P
(∣∣∣∣∣Z′t,m − t

ψ

∣∣∣∣∣ > ε1 + ξ

)
≤ P

(∣∣∣Z′t,m − E(Z′t,m)
∣∣∣ > ε1

)
≤

Var(Z′t,m)

ε2
1

.

By letting m→ ∞,

lim
m→∞

P
(∣∣∣∣∣Z′t,m − t

ψ

∣∣∣∣∣≥ ε1 + ξ

)
≤ lim

m→∞

Var(Z′t,m)

ε2
1

= 0,

so that

lim
m→∞

P
(∣∣∣∣∣Z′t,m − t

ψ

∣∣∣∣∣≥ ε1 + ξ

)
= 0.

Since ε1, ξ can be arbitrary small, Z′t,m converges in probability to t
ψ

as m→ ∞.

�

Invoking Theorem 4.1 the physiological age of an alive individual at calendar age t (Zt|Yt ∈

E) converges in probability to the chronological age (t) as m → ∞. Therefore, m cannot be
too large if we require some variability on the state distribution of an alive individual at any
chronological age.

The state distribution conditional on being alive at any age resembles a bell-shaped curve
in the top graph of Figures 3.2 and 3.10 . Theorem 4.2 describes the shape of state distribution
of an alive individual when m is large enough. The main idea of the proof is to show that the
moment generating function of the state variable converges to the moment generating function
of the standard normal distribution as m goes to infinity.

Recall the standard normal distribution, which is a normal distribution with mean 0 and
standard deviation of 1. The respective pdf, cumulative distribution function, and moment-
generating function of a random variable are denoted by φ(x), Φ(x), and MN(u), where

φ(x) =
1
√

2π
e−

x2
2

Φ(x) =

∫ x

−∞

1
√

2π
e−

u2
2 du

MN(u) = e
u2
2 .

Theorem 4.2. A proposed PTAM has m transient states with labels 1, . . . ,m and one absorbing
state with label m + 1. The ageing rate from one transient state to the next transient state is λ.
For i = 1, . . . ,m, the dying rate in state i is hi, with 0 ≤ h1 < hm < ∞, and hi follows (3.3.3).
Let ψ be the lifespan parameter. For any 0 ≤ t < ψ, let Yt,m be the state variable at time t.
Y ′t,m =

Yt,m−1−λt
√
λt

is a transformation of Yt,m. Then, the distribution of (Y ′t,m|Yt,m ∈ E) converges to
the standard normal distribution as m→ ∞.
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Proof. In Theorem 4.1’s proof, for any ε > 0 and 0 ≤ t < ψ, there is an M1 such that for any
m > M1, we have (4.1.1) and (4.1.6) stated as

Pk(t) =
(λt)k−1

(k − 1)!
e−(λ+hk)t(1 + ck(t)), for k = 1, . . . ,m − 1;

Pm(t) = (1 + cm(t))e−hmt
∞∑

j=m−1

(λt) j

j!
e−λt,

where Pk(t) = P(Yt,m = k) and ck(t) = O(ε) for k = 1, . . . ,m. Equivalently, there is a positive
number C(t) such that ck(t) ≤ C(t)ε for k = 1, . . . ,m.

For any 0 ≤ t < ψ, the probability of being in state k at time t conditional on being in
transient states at time t is

P(Yt,m = k|Yt,m ∈ E) =
Pk(t)∑m

k=1 Pk(t)
=

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
,

for k = 1, . . . ,m − 1, and

P(Yt,m = m|Yt,m ∈ E) =
Pm(t)∑m

k=1 Pk(t)
=

∑∞
k=m

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
,

where h∗k = hk, c∗k(t) = ck(t) for k = 1, . . . ,m and h∗k = hm, c∗k(t) = cm(t) for k > m.
Let Y∗t,m = (Yt,m − 1|Yt,m ∈ E) for the sake of simplicity. The domain of Yt,m is {1, . . . ,m}.

The moment-generating function of Y∗t,m, denoted by M(u), is

M(u) = E(euY∗t,m)

=

m∑
k=1

eu(k−1)P(Yt,m = k|Yt,m ∈ E)

=

∑m−1
k=1 eu(k−1) (λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t)) +
∑∞

k=m eu(m−1) (λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
,

or

M(u) =

∑∞
k=1 eu min(k−1,m−1) (λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
. (4.1.10)

Let am =
∑∞

k=1 eu min(k−1,m−1) (λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

and bm =
∑∞

k=1 eu(k−1) (λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

. Then, bm−am ≥

0 for any m and u ≥ 0. We are going to prove that as far as there is a non-negative u near 0
such that M(u) < ∞ and bm − am converges to 0 as m→ ∞. The proof follows similar steps in
(4.1.7).

bm − am =

∑∞
k=m+1

(
eu(k−1) − eu(m−1)

)
(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
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bm − am =

∑∞
k=m+1

(euλt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
−

∑∞
k=m+1 eu(m−1) (λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
(4.1.11)

Suppose u > 0 is near 0 such that 1 − t/ψ + log(t/ψ) + u < 0, then

∑∞
k=m+1 eu(m−1) (λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

≤ eu(m−1)

∑∞
k=m+1

(λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑m
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))

= eu(m−1)

∑∞
k=m+1

(λt)k−1

(k−1)! e−λt(1 + cm(t))∑m
k=1

(λt)k−1

(k−1)! e−(λ+h∗k−hm)t(1 + c∗k(t))

≤ (1 + cm(t))eu(m−1)

∑∞
k=m+1

(λt)k−1

(k−1)! e−λt∑m
k=1

(λt)k−1

(k−1)! e−λt
.

The first inequality holds because
∑∞

k=m+1
(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t)) ≥ 0 in the denominator. The
second inequality holds because c∗k(t) ≥ 0 and hm − h∗k ≥ 0. Recall that hi is increasing when
h1 < hm by Theorem 3.3.

According to a Chernoff-bound argument, when m + 1 > λt (equivalent to m + 1 > mt/ψ
by recalling λ = t/ψ and 0 ≤ t < ψ),

∞∑
k=m+1

(λt)k−1

(k − 1)!
e−λt ≤

(eλt)m+1e−λt

(m + 1)m+1

=

( m
m + 1

)m+1
(

t
ψ

)m+1

em+1−mt/ψ

=

(
1 −

1
m + 1

)m+1

e(m+1)(1−t/ψ+log(t/ψ))et/ψ,

and

m∑
k=1

(λt)k−1

(k − 1)!
e−λt ≥ 1 −

(
1 −

1
m + 1

)m+1

e(m+1)(1−t/ψ+log(t/ψ))et/ψ.
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Therefore, ∑∞
k=m+1 eu(m−1) (λt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
(4.1.12)

≤ (1 + cm(t))eu(m−1)

∑∞
k=m+1

(λt)k−1

(k−1)! e−λt∑m
k=1

(λt)k−1

(k−1)! e−λt
(4.1.13)

≤ (1 + cm(t))eu(m−1)

(
1 − 1

m+1

)m+1
e(m+1)(1−t/ψ+log(t/ψ))et/ψ

1 −
(
1 − 1

m+1

)m+1
e(m+1)(1−t/ψ+log(t/ψ))et/ψ

(4.1.14)

= (1 + cm(t))e−2u

(
1 − 1

m+1

)m+1
e(m+1)(1−t/ψ+log(t/ψ)+u)et/ψ

1 −
(
1 − 1

m+1

)m+1
e(m+1)(1−t/ψ+log(t/ψ))et/ψ

, (4.1.15)

where in the last equation eu(m−1) is moved to the numerator. Since 1 − t/ψ + log(t/ψ) + u < 0,
limm→∞ e(m+1)(1−t/ψ+log(t/ψ)+u) = 0, and (4.1.15) converges to 0 as m→ ∞.

For the first term of bm − am,∑∞
k=m+1

(euλt)k−1

(k−1)! e−(λ+hm)t(1 + cm(t))∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
=

(1 + cm(t))eeuλt−(λ+hm)t ∑∞
k=m+1

(euλt)k−1

(k−1)! e−euλt∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t(1 + c∗k(t))
. (4.1.16)

Using the Chernoff-bound argument again, when m + 1 > euλt (this condition is equivalent to
− log(1 + 1/m) + log(t/ψ) + u < 0 which naturally holds if 1 − t/ψ + log(t/ψ) + u < 0),

∞∑
k=m+1

(euλt)k−1

(k − 1)!
e−euλt ≤

(eeuλt)m+1

(m + 1)m+1 e−euλt

=
(eu+1mt)m+1

ψm+1(m + 1)m+1 e−euλt

=

(
1 −

1
m + 1

)m+1

e(m+1)(u+1+log(t/ψ))e−euλt.

The numerator of (4.1.16) is

(1 + cm(t))eeuλt−(λ+hm)t
∞∑

k=m+1

(euλt)k−1

(k − 1)!
e−euλt

≤ (1 + cm(t))e−(m/ψ+hm)t
(
1 −

1
m + 1

)m+1

e(m+1)(u+1+log(t/ψ))

= (1 + cm(t))
(
1 −

1
m + 1

)m+1

et/ψ−hmte(m+1)(u+1−t/ψ+log(t/ψ)),

which converges to 0 as m → ∞ by the fact that u + 1 − t/ψ + log(t/ψ) < 0. Meanwhile,
the denominator of (4.1.16) converges to 1 as m → ∞. As a result, (4.1.16) converges to 0 as
m→ ∞.
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Since both (4.1.12) and (4.1.16) converge to 0 as m → ∞, bm − am converges to 0, or

M(u)→
∑∞

k=1 eu(k−1) (λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))∑∞

k=1
(λt)k−1
(k−1)! e−(λ+h∗k )t(1+c∗k(t))

, as m→ ∞ by (4.1.11).

On the other hand, we can check that

∞∑
k=1

(λt)k−1

(k − 1)!
e−(λ+h∗k)t(1 + c∗k(t)) ≤ (1 + max

k=1,...,m
c∗k(t))

∞∑
k=1

(λt)k−1

(k − 1)!
e−(λ+h∗k)t,

which converges to
∑∞

k=1
(λt)k−1

(k−1)! e−(λ+h∗k)t as m → ∞, because c∗k(t) = O(ε) and we can let ε → 0
as m → ∞. Therefore, for any u such that 1 − t/ψ + log(t/ψ) + u < 0, the limit of M(u) from
(4.1.10) is the same as the limit of M∗(u) as m goes to infinity (limm→∞(M(u) − M∗(u)) = 0),
where M∗(u) is

M∗(u) =

∑∞
k=1 eu(k−1) (λt)k−1

(k−1)! e−(λ+h∗k)t∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t
.

The first derivative of M∗(u) with respect to u is

dM∗(u)
du

=

∑∞
k=1(k − 1)eu(k−1) (λt)k−1

(k−1)! e−(λ+h∗k)t∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t

= euλt

∑∞
k=1 eu(k−1) (λt)k−1

(k−1)! e−(λ+h∗k+1)t∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t
,

or

dM∗(u)
du

= euλt

∑∞
k=1 eu(k−1) (λt)k−1

(k−1)! e−(λ+h∗k)te(h∗k+1−h∗k)t∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t
(4.1.17)

Recall that for any m such that m > M1, 0 < h∗k+1 − h∗k < ε. Then, 1 < e(h∗k+1−h∗k)t = 1 + O(ε) by
the Taylor series representation. As a result, there is a C(t) ≥ 0 such that e(h∗k+1−h∗k)t < 1 + C(t)ε
for any k. Taking this result back to (4.1.17),

euλtM∗(u) ≤
dM∗(u)

du
≤ (1 + C(t)ε)euλtM∗(u) (4.1.18)

As ε approaches 0, dM∗(u)
du approaches euλtM∗(u).

Consider the differential equation

dX(u)
du

= euλt X(u) (4.1.19)

with the boundary condition X(0) = 1. The solution of (4.1.19) is

X(u) = eλt(eu−1).
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It may be verified that

M∗(0) =

∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t∑∞
k=1

(λt)k−1

(k−1)! e−(λ+h∗k)t
= 1.

From (4.1.18), for any ε > 0 and any m > M1,

eλt(eu−1) ≤ M∗(u) ≤ (1 + C(t)ε)eλt(eu−1). (4.1.20)

On the other hand, we showed limm→∞(M(u) − M∗(u)) = 0. For any ξ > 0, there is an M2 such
that for any m > M2,

|M(u) − M∗(u)| < ξ.

By (4.1.20), for any m > max(M1,M2),

eλt(eu−1) − ξ ≤ M(u) ≤ (1 + C(t)ε)eλt(eu−1) + ξ (4.1.21)

For any m, the moment-generating function of (Y ′t,m|Yt,m ∈ E) is

E
(
euY′t,m

∣∣∣Yt,m ∈ E
)

= E
(
eu Yt,m−1−λt

√
λt

∣∣∣∣∣Yt,m ∈ E
)

= e−u
√
λt E

(
e

u√
λt

(Yt,m−1)
∣∣∣∣Yt,m ∈ E

)
= e−u

√
λtM

(
u/
√
λt

)
.

Based on (4.1.21), for any m > max(M1,M2),

e−u
√
λt
(
eλt(eu/

√
λt−1) − ξ

)
≤ e−u

√
λtM

(
u/
√
λt

)
≤ e−u

√
λt
(
(1 + C(t)ε)eλt(eu/

√
λt−1) + ξ

)
(4.1.22)

Recall that λ = m/ψ. By the Taylor series representation of eu/
√
λt − 1, we have

eu/
√
λt − 1 =

u
√
λt

+
1
2

u2

λt
+ o

(
1
λ

)
=

u
√
λt

+
1
2

u2

λt
+ o

(
1
m

)
.

Therefore, by applying this result on both sides of (4.1.22), the left hand side is

e−u
√
λt+λt(eu/

√
λt−1) − ξe−u

√
λt = e−u

√
λt+λt

(
u√
λt

+ 1
2

u2
λt +o( 1

m )
)
− ξe−u

√
mt/ψ

= e
1
2 u2+ tm

ψ o( 1
m ) − ξe−u

√
mt/ψ,

and the right hand side is

(1 + C(t)ε)e−u
√
λt+λt(eu/

√
λt−1) + ξe−u

√
λt = (1 + C(t)ε)e−u

√
λt+λt

(
u√
λt

+ 1
2

u2
λt +o( 1

m )
)
+ ξe−u

√
mt/ψ

= (1 + C(t)ε)e
1
2 u2+ tm

ψ o( 1
m ) + ξe−u

√
mt/ψ,
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where limm→∞
tm
ψ

o
(

1
m

)
= 0 and limm→∞ e−u

√
mt/ψ = 0. We can let ε, ξ → 0 as m → ∞ so that

e−u
√
λtM

(
u/
√
λt

)
converges to e

1
2 u2

by (4.1.22). Hence,

lim
m→∞
E

(
euY′t,m

∣∣∣Yt,m ∈ E
)

= e
1
2 u2
,

which is equal to the moment-generating function of the standard normal distribution. Since the
moment-generating function and the distribution have a one-to-one mapping, the distribution
of (Y ′t,m|Yt,m ∈ E) converges to the standard normal distribution as m→ ∞.

�

Recall that we defined Zt = Yt−1
m−1 as the physiological age index. From Theorem 4.2, when

m is large enough, we have

P
(
Zt ≤

k − 1
m − 1

∣∣∣∣∣Yt ∈ E
)

= P (Yt ≤ k|Yt ∈ E) ≈ Φ

(
k − 1 − λt
√
λt

)
, for k = 1, . . . ,m.

The approximation can be used as a quick assessment of the state distribution when m is large.

Example 4.1. We fix all parameters, except m, to the estimated values based on the Channing
house data (h1 = 0.0017, hm = 1.2750, s = −0.0735, ψ = 55), and plot the state distribution
P(Zt ≤

k−1
m−1 |Yt ∈ E) at age 80 (t = 30 because we assumed ageing starts at age 50 in the

analysis) and the normal distribution with mean 1 + λt standard deviation
√
λt for different

m’s in Figure 4.1. Two lines are distinguishable in Figure 4.1 when m = 100, whilst two
lines overlap gradually as m increases. In particular, two lines overlap with each other when
m = 10, 000. Therefore, the result shows the transformation of the state variable converges to
the normal distribution.

4

4.2 Lifetime distribution conditional on the current state
Suppose we can observe the current state, then what is the updated distribution? Theorem 4.3
tells us that the updated distribution still follows the PTAM structure but with new parameter
values. The intuition is that the current state can be treated as state 1 for a new Markov chain.

Theorem 4.3. Let an individual X follow the process of the proposed PTAM with parameter
values (h1 = h∗1, hm = h∗m, s = s∗, ψ = ψ∗,m = m∗). At age t > 0, the individual is observed
in state i, where i can be any integer between 1 and m∗. Conditional on the observed state,
the individual follows the process of the proposed PTAM with updated parameter values (h1 =

h∗i , hm = h∗m, s = s∗, ψ = ψ∗m∗−i+1
m∗ ,m = m∗ − i + 1), where h∗i is calculated through (3.3.3).

Proof. For any age t > 0, the individual is observed in state i. Consider another individual X∗

that follows the process of the proposed PTAM with parameter values (h1 = h∗i , hm = h∗m, s =

s∗, ψ = ψ∗m∗−i+1
m∗ ,m = m∗ − i + 1). For j = i, . . . ,m∗, the dying rate in state j for X is

h j =


(

m∗− j
m∗−1 (h∗1)s∗ +

j−1
m∗−1 (h∗m)s∗

)1/s∗
s∗ , 0,

(h∗1)
m∗− j
m∗−1 (h∗m)

j−1
m∗−1 s∗ = 0.
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Figure 4.1: State distribution conditional on being alive is approximated by a normal distribu-
tion.

Also, the dying rate in state j − i + 1 for X∗ is

h j−i+1 =


(

(m∗−i+1)−( j−i+1)
(m∗−i+1)−1 (h∗i )s∗ +

( j−i+1)−1
(m∗−i+1)−1 (h∗m)s∗

)1/s∗
s∗ , 0,

(h∗i )
(m∗−i+1)−( j−i+1)

(m∗−i+1)−1 (h∗m)
( j−i+1)−1

(m∗−i+1)−1 s∗ = 0,

which is the same as the dying rate in state j for X because of the following facts:
When s∗ , 0,

(h∗i )s∗ =
m∗ − i
m∗ − 1

(h∗1)s∗ +
i − 1

m∗ − 1
(h∗m)s∗;

then,

(m∗ − i + 1) − ( j − i + 1)
(m∗ − i + 1) − 1

(h∗i )s∗ +
( j − i + 1) − 1

(m∗ − i + 1) − 1
(h∗m)s∗

=
m∗ − j
m∗ − i

(h∗i )s∗ +
j − i

m∗ − i
(h∗m)s∗

=
m∗ − j
m∗ − i

(
m∗ − i
m∗ − 1

(h∗1)s∗ +
i − 1

m∗ − 1
(h∗m)s∗

)
+

j − i
m∗ − i

(h∗m)s∗

=
m∗ − j
m∗ − 1

(h∗1)s∗ +
j − 1

m∗ − 1
(h∗m)s∗ ,

When s∗ = 0,

h∗i = (h∗1)
m∗−i
m∗−1 (h∗m)

i−1
m∗−1 ,
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then

(h∗i )
(m∗−i+1)−( j−i+1)

(m∗−i+1)−1 (h∗m)
( j−i+1)−1

(m∗−i+1)−1 = (h∗i )
m∗− j
m∗−i (h∗m)

j−i
m∗−i

=

(
(h∗1)

m∗−i
m∗−1 (h∗m)

i−1
m∗−1

)m∗− j
m∗−i

(h∗m)
j−i

m∗−i

= (h∗1)
m∗− j
m∗−1 (h∗m)

j−1
m∗−1 ,

where

i − 1
m∗ − 1

m∗ − j
m∗ − i

+
j − i

m∗ − i
=

(i − 1)(m∗ − j) + ( j − i)(m∗ − 1)
(m∗ − 1)(m∗ − i)

=
( j − 1)(m∗ − i)

(m∗ − 1)(m∗ − i)
.

On the other hand, the ageing rate for X is

λ =
m∗

ψ∗
,

and the ageing rate for X∗ is

λ =
m∗ − i + 1
ψ∗m∗−i+1

m∗
=

m∗

ψ∗
.

Therefore, the ageing rates are the same for X and X∗. As a result, the individual X conditional
on being in state i at time t follows the same process as individual X∗ when treating time t for
X as time 0 for X∗. Hence, the updated process for X is the same as that for X∗.

�

By Theorem 4.3, the process and the resulting lifetime distribution could be updated for an
individual if its current state is observed. For example, suppose an individual follows the PTAM
with parameter values estimated from the Channing house data, and the individual is at age 80.
If the individual is at physiological age 70, 80, or 90 from (3.4.5), then the corresponding
updated parameter values are in Table 4.1 and the distributions are in Figure 4.2. It is clear that
the hazard rate is higher if the individual is in a higher physiological age as expected.

Table 4.1: Updated PTAM given the current physiological age.

current physiological age h1 hm s ψ m
70 0.1213 1.2750 -0.0735 17.0500 31
80 0.2542 1.2750 -0.0735 11.5500 21
90 0.5559 1.2750 -0.0735 6.0500 11
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Figure 4.2: Distributions at physiological age 70, 80, and 90.

4.3 Distribution of the PTAM

In this Section, we explore some mathematical properties related to the resulting distribution
of the proposed PTAM.

4.3.1 Shape and scale parameters

We refer to the parameter s as the shape parameter. A result via Theorem 4.4 is provided to
justify that indeed s is the parameter that controls the distribution’s shape. A preliminary result
(Lemma 4.1) is needed for the proof of Theorem 4.4.

Lemma 4.1. Let f (s) =
log(abs+(1−a)cs)

s when s , 0 and f (s) = a log(b) + (1 − a) log(c) when
s = 0, where 0 ≤ a ≤ 1, b ≥ 0, and c ≥ 0 but b, c cannot be 0 at the same time. Then, f (s) is
an increasing function of s.

Proof. The proof is detailed in Appendix A.3.

�

Theorem 4.4. Let two random variables X1 and X2 follow the proposed PTAM with the same
parameter values for h1, hm, m, and ψ. Also, let s1 be the value of s for X1 and s2 the corre-
sponding value for X2 with s1 < s2. Then, X1 is greater than X2 in a stochastic-order sense, or
S X1(t) ≥ S X2(t) for any t ≥ 0.

Proof. Let hXk
i be the absorption rate for Xk at state i, where i = 1, . . . ,m and k = 1, 2.
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The structure on the PTAM’s absorption rates is

hi =


(

m−i
m−1hs

1 + i−1
m−1hs

m

)1/s
s , 0,

h
m−i
m−1
1 h

i−1
m−1
m s = 0,

The monotonic pattern of hi is the same as the pattern of log hi,

log hi =

{ log(abs+(1−a)cs)
s s , 0,

alog b + (1 − a)log c s = 0.

where a = m−i
m−1 , b = h1, c = hm. When h1 = hm = 0, hi = 0 for any i = 1, . . . ,m, in which the

process never enters the absorbing state. Therefore, at least one of h1 and hm is positive.
By Lemma 4.1, log hi is an increasing function with respect to s, which shows hi is an

increasing function with respect to s as well. Since s1 < s2, we have hX1
i < hX2

i .
On the other hand, since ψ and m are the same for both variable, the ageing rates for X1 and

X2 are the same. Define Λk as the degenerate transition matrix for Xk, k = 1, 2, i.e.,

Λk =



−
(
λ + hXk

1

)
λ

−
(
λ + hXk

2

)
λ
. . .

−
(
λ + hXk

m−1

)
λ

−hXk
m


.

The (i, j) entry of Λk, denoted Λk(i, j), satisfies the inequality Λ1(i, j) ≥ Λ2(i, j) for i, j =

1, . . . ,m. The survival function for Xk at time t ≥ 0 is S Xk(t) = αeΛkte, where α = (1, 0, . . . , 0)
and e = (1, 1, . . . , 1)ᵀ. Thus,

S X1(t) − S X2(t) = αeΛ1te − αeΛ2te

= α
(
eΛ1t − eΛ2t

)
e

≥ 0,

where the last inequality holds because eΛ1t is greater than or equal to eΛ2t elementwise by
considering Λ1 = Λ2 + A, where A is non-negative diagonal matrix. Therefore, X1 is greater
than X2 in stochastic order for any t ≥ 0.

�

The parameter s controls not only the curvature on the dying rate (more convexity with
a smaller value of s), but also the stochastic order of the lifetime random variable by Theo-
rem 4.4. Recall that a random variable X is higher than another random variable Y in stochastic
order means X is greater than Y in the probability sense. Therefore, the lifetime random vari-
able following the proposed PTAM with a smaller value of s has a longer life in the probability
sense when fixing h1, hm,m, ψ.
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Example 4.2. We use the PTAM learnt from the Channing house data to compare with the
PTAM with the same h1, hm,m, ψ but s = 0 in Figure 4.3. The dying rate pattern has more
convexity for s = 0 and the survival probability (hazard rate) is smaller (higher) for s = 0 at
any age.
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Figure 4.3: Some distributions with different s’s but fixed h1, hm,m, ψ.

Theorem 4.5. Consider a proposed PTAM with parameter θ = (h1, hm, s, ψ,m). For any fixed
s and m, the parameter θ∗ =

(
h1, hm,

1
ψ

)
is a scale parameter.

Proof. For any fixed s and m, let F(t; θ∗) be the resulting cumulative distribution function of
the PTAM,

F(t; θ∗) = 1 − αeΛ(θ∗)te,

where Λ(θ∗) is an m × m degenerate transition matrix and its entries are determined by θ∗.
For any a > 0, the diagonal elements of Λ

(
θ∗

a

)
are

−
λ + hi

a
= −

λ

a
−

hi

a
= −

m
aψ
−

hi

a
,

for i = 1, . . . ,m − 1 and −hm
a for i = m. The super-diagonal elements of Λ

(
θ∗

a

)
are λ

a = m
aψ .

In addition, by the hi structure, when s , 0,

hi

a
=

(
m−i
m−1hs

1 + i−1
m−1hs

m

)1/s

a
=

(
m − i
m − 1

(
h1

a

)s

+
i − 1
m − 1

(
hm

a

)s)1/s

,
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and when s = 0,

hi

a
=

h
m−i
m−1
1 h

i−1
m−1
m

a
=

(
h1

a

) m−i
m−1

(
hm

a

) i−1
m−1

.

Therefore, we have
Λ(θ∗)

a
= Λ

(θ∗
a

)
. (4.3.23)

The cumulative distribution function evaluated at t
a with parameter θ∗ is

F
( t
a

; θ∗
)

= 1 − αeΛ(θ∗) t
a e = 1 − αe

Λ(θ∗)
a te = F

(
t;
θ∗

a

)
,

where the last equation holds by (4.3.23). Hence, the parameter θ∗ is a scale parameter.

�

With Theorem 4.5, the modellers do not need to worry about the lifetime unit (i.e. day,
month, year) when applying the proposed PTAM. This is because the scale parameter can be
adjusted to accommodate the unit. On the other hand, it is relatively easy to re-calibrate the
model by scaling the scale parameter when altering the lifetime unit, e.g., converting the data
in months to data in years.

4.3.2 The hazard rate as m goes to infinity
The resulting hazard rate of the proposed PTAM can be calculated by (2.2.4). For any fixed
h1, hm, s, and ψ, such a hazard rate is a function of m. We also give the limit of the resulting
hazard rate as m→ ∞.

Theorem 4.6. For any time t in [0, ψ), let h(t; m) be the resulting hazard rate of an m-states
proposed PTAM, then h(t; m)→ g(t) as m→ ∞, where

g(t) =


((

hs
m − hs

1

)
t
ψ

+ hs
1

)1/s
when s , 0;

h(1−t/ψ)
1 ht/ψ

m when s = 0.

Proof. Recall that

hi =


(

m−i
m−1hs

1 + i−1
m−1hs

m

)1/s
=

(
i−1
m−1 (hs

m − hs
1) + hs

1

)1/s
s , 0,

h
m−i
m−1
1 h

i−1
m−1
m = h1− i−1

m−1
1 h

i−1
m−1
m s = 0.

The resulting hazard rate is

h(t; m) =

m∑
i=1

hiP(Yt = i|Yt ∈ E)

=

m∑
i=1

hiP
(
Zt =

i − 1
m − 1

∣∣∣∣∣Yt ∈ E
)

= E(g1(Zt)),
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where g1(x) is a monotone and continuous function of x,

g1(x) =


((

hs
m − hs

1

)
x + hs

1

)1/s
, when s , 0;

h1−x
1 hx

m, when s = 0.

By Theorem 4.1, Zt →
t
ψ

in probability as m→ ∞. Therefore, for any ε > 0,

lim
m→∞

P
(∣∣∣∣∣Zt −

t
ψ

∣∣∣∣∣ > ε) = 0.

Considering that g1(x) is a monotonic function, we have

min
(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
≤ g1(z) ≤ max

(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
,

for any z that
∣∣∣∣z − t

ψ

∣∣∣∣ ≤ ε.
Since the domain of Zt is [0, 1], |Zt − t/ψ| ≤ max(t/ψ, 1− t/ψ). The expected value of g1(Zt)

can be calculated as

E(g1(Zt)) =
∑
|z−t/ψ|≤ε

g1(z)P (Zt = z) +
∑
|z−t/ψ|>ε

g1(z)P (Zt = z) ,

where the total probability in the first term converges to 1 and the total probability in the second
converges to 0 as m → ∞. Meanwhile, g1(z) is bounded when 0 ≤ z ≤ 1. Let U be an upper
bound of g1(z), g1(z) ≤ U for any z, when ε < |z − t/ψ| ≤ max(t/ψ, 1 − t/ψ). Then, we have

lim
m→∞
E(g1(Zt)) = lim

m→∞

∑
|z−t/ψ|≤ε

g1(z)P (Zt = z) + lim
m→∞

∑
ε<|z−t/ψ|

g1(z)P (Zt = z)

≤ max
(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
lim

m→∞
P

(∣∣∣∣∣z − t
ψ

∣∣∣∣∣ ≤ ε) + U lim
m→∞

P
(∣∣∣∣∣z − t

ψ

∣∣∣∣∣ > ε)
= max

(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
,

and

lim
m→∞
E(g1(Zt)) = lim

m→∞

∑
|z−t/ψ|≤ε

g1(z)P (Zt = z) + lim
m→∞

∑
ε<|z−t/ψ|

g1(z)P (Zt = z)

≥ min
(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
lim

m→∞
P

(∣∣∣∣∣z − t
ψ

∣∣∣∣∣ ≤ ε)
= min

(
g1

(
t
ψ
− ε

)
, g1

(
t
ψ

+ ε

))
.

By letting ε approach 0, we have

g1

(
t
ψ

)
≤ lim

m→∞
E(g1(Zt)) ≤ g1

(
t
ψ

)
;
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henceforth,

lim
m→∞
E(g1(Zt)) = g1

(
t
ψ

)
.

Therefore, limm→∞ h(t; m) = g(t).

�

Example 4.3. In Figure 4.4, the hazard rate of the PTAM is displayed using h1 = 0.0017, hm =

1.2750, s = −0.0735, ψ = 55, under different m’s (m = 100, 1000, 10000). The limit of the
resulting hazard function g(t), as described in Theorem 4.6, is also illustrated. The resulting
hazard rate gets closer to g(t) as m increases, and it is very close to g(t) when m = 10000.
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Figure 4.4: Hazard rate for the proposed PTAM with different m’s and the limit g(t) of the
resulting hazard rate.

4.4 Conclusion
In this Chapter, we proved that a transformation of the state variable conditional on the indi-
vidual being alive converges to the standard normal distribution, and the physiological index
converges to the chronological age in probability as m goes to infinity. Meanwhile, the result-
ing hazard rate converges to a special function g(t) as m goes to infinity. These results describe
the properties of the PTAM with infinite states. The properties can be useful for the analysis
when m is relatively large (e.g. m = 1000,m = 10000). Given the current state, the updated
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distribution follows the PTAM with updated parameter values. The PTAM’s parameters can be
divided into 3 groups: the s parameter that controls the convexity of the dying rate and the con-
vexity of the hazard rate; the (h1, hm, 1/ψ) parameters that govern the scale; and the parameter
m that controls the state variability at any age.



Chapter 5

Model calibration

We introduce in this Chapter an efficient algorithm to calculate the likelihood of the PTAM
given a set of parameter values. The proposed algorithm uses the uniformization method to
stabilize the numerical calculation. It uses a vectorised formula to only calculate the necessary
elements for the probability distribution. An error upper bound is provided for the proposed
algorithm. It can be easily adjusted to calculate the likelihood of the Coxian models.

Furthermore, we compare the speed and the accuracy of the proposed algorithm with the
traditional method using the matrix exponential. The proposed algorithm is faster and more
accurate than the traditional method in calculating the likelihood.

Based on our experiments, we recommend using 20 sets of randomly-generated initial val-
ues for the optimisation to get an estimate, at which the evaluated likelihood is close to the
maximum likelihood.

5.1 Background on the estimation of Coxian model

Model calibration is a process of finding a set of parameter values that optimise a selected ob-
jective function; for example, maximising the likelihood, minimising the Akaike Information
Criterion (AIC) or the the Bayesian Information Criterion (BIC), and minimising the mean-
squared error. Since the analytical solution for the optimisation problem under the Coxian
model is not available in general, the calibration procedure becomes a numerical search op-
timisation process, which has two parts: (i) construction of a function whose inputs are the
model parameter values and the output is the selected objective function; and (ii) optimising
numerically the objective function.

The Coxian distribution is a particular case of a phase-type distribution. It is then natural
to use the parameter estimation procedure for phase-type models in recovering the parame-
ters of a Coxian model. There are different ways to calibrate a Coxian model based on the
formulation of the objective function and the optimisation strategy. For example, Bobbio and
Cumani (1992) suggested maximising the log-likelihood by solving an iterative linearisation
method of estimation. Asmussen et al. (1996) put forward the maximisation of the likelihood
by a fitting procedure based on the Expectation-Maximisation (EM) algorithm. Faddy (1994,
1998) utilised the optimisation algorithm proposed by Nelder and Mead (1965) to maximise
the log-likelihood function. By way of the penalised likelihood, Faddy (2002) facilitated the

77
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convergence of the algorithm. Lin and Liu (2007) as well as Govorun et al. (2018) numeri-
cally searched for the estimates in the least-squares sense. The use of the maximum-likelihood
approach was carried out by Rizk et al. (2019) approach and the optimal number of states is
obtained by minimising the AIC and BIC.

Each above-mentioned calibration procedure searched for the estimate in a recursive fash-
ion, i.e., the estimation starts with an initial value and proceeds with recursive updates until
certain conditions are satisfied. In each recursion, the evaluation of the probability distribution
at the observations is required. The probability distribution includes the pdf and survival func-
tion, which can be calculated by the matrix exponential or by (2.3.10). For a Coxian model
with a large number of states, it is numerically unstable to calculate the probability distribution
using (2.3.10). The traditional method to calculate the probability distribution is to calculate
the matrix exponential. The matrix exponential calculation employs the built-in matrix expo-
nential function (e.g. expm in MATLAB, expm in R). From here onwards, we shall refer to the
method involving the matrix exponential as the traditional method. However, the calculation is
relatively slow when the total number of states is large. Therefore, both methods (i.e., (2.3.10)
and traditional method) have the disadvantage in the calculation of the probability distribution
of a Coxian model when m is large. How then do we improve available techniques in the
probability-distribution computation?

In terms of the optimisation process, the numerical algorithm requires an initial value.
We found that the numerical optimisation could produce different results for different initial
values. It is noted that the Coxian model is sensitive to the initial value; see Marshall and
Zenga (2009a). The sensitivity of the optimisation results to the initial values will be termed
in this thesis as the sensitivity issue. We suspect that the numerical optimisation outputs for
some initial values may not be optimum, and these outputs cannot be treated as providing the
estimated values. When using the maximum likelihood approach, the total number of states is
fixed. We found that the log-likelihood increases only a little when changing the total number
of states after a large value, for example m > 200 in section 3.4.3. There are two questions that
ensue: (i) How could the sensitivity problem be rectified, even partially? and (ii) What could
be done to test if if the small log-likelihood increases are due to numerical error or actuarial
difference?

As demonstrated in Chapter 3, a large number of states is required to model the human
ageing process. An efficient method is then necessary to calculate the probability distribution of
a Coxian model, especially when there is a large number of states, and to propose a calibration
procedure that reduces the sensitivity issue. Our objective in this Chapter is to develop an
algorithm that is fast and accurate in the evaluation of the probability distribution of a Coxian
model. The algorithm shall speed up the estimation by obtaining the probability distribution at
the observations simultaneously. The algorithm’s speed and accuracy will be quantified from
the theoretical and numerical comparison perspectives with the traditional method.
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5.2 Traditional method for the probability distribution cal-
culation

There are different methods to compute the probability distribution; see Duan and Liu (2015).
One of the methods is to compute a matrix exponential eΛt, where Λ is the degenerated transi-
tion matrix. The matrix exponential computation relies on the software’s built-in function. Let
θ be the parameter vector for the Coxian model. Then, the probability distribution at time t is
given by

S (t; θ) = αeΛt e, (5.2.1)

and

f (t; θ) = αeΛt h. (5.2.2)

Both Λ and h are functions of θ. For a given θ, it is common to calculate eΛt first, and then
find f (t; θ) or S (t; θ) by matrix multiplication. The calculation of eΛt is the key to determine
the probability distribution.

5.2.1 Matrix exponential: Scaling and squaring method
We consider the problem on how to calculate the matrix exponential eA efficiently for a given
matrix A. In particular,

eA =

∞∑
n=0

1
n!

An.

Ward (1977) summarised several algorithms to calculate a matrix exponential based on vari-
ous techniques such as eigenvalue and eigenvector representations (Gantmacher, 1959; Putzer,
1966; Kirchner, 1967), numerical integration (Choudhury et al., 1968; Healey, 1973), truncated
power series approximations (Liou, 1966; Bickart, 1968; Healey, 1973; Källström, 1973), and
rational approximations (Cody et al., 1969; Saff, 1971). An influential paper featured 19 prac-
tical ways concerning matrix exponential calculation (Moler and Van Loan, 2003). Moler and
Van Loan claimed 19 dubious methods since they do not know enough detailed performance
or careful implementations of various methods. It was found that, for a given matrix, some
methods may be better than the others, but the performance of each method highly depends
on the matrix structure; in essence, coming to the conclusion that no method outperforms the
others under all situations.

In general, some computational approaches may be better than others when the matrix
structure is unknown. The only generally competitive series method is the scaling and squaring
method, and Ward’s program (Ward, 1977) implementing this method is certainly amongst the
best available approaches (Moler and Van Loan, 2003). The scaling and squaring method
exploits the following facts:

• For any matrix A, eA =
(
eA/u

)u
for any value of u.
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• A Padé approximant can approximate eA well when the norm of A is small.

A major drawback of the Padé approximation is its poor approximation when the norm of the
matrix A is big. Different strategies to select the optimal value of u are proposed so that it can
improve the accuracy of calculating eA (Ward, 1977; Sidje, 1998; Higham, 2005; Al-Mohy and
Higham, 2009).

For any matrix A, there is a value u such that A/u is near the origin. Thus, eA/u can be
approximated by a Padé approximant by the second fact, and eA can be calculated by the first
fact. This is the main idea of the scaling and squaring method.

Currently, the default algorithm of expm in MATLAB is the algorithm proposed by Al-
Mohy and Higham (2009). We can treat their algorithm as the most efficient and one that
applies the scaling and squaring method to calculate a matrix exponential. It will be our bench-
mark to compare with our proposed algorithm.

We now investigate the objective function calculated by the traditional method.

5.2.2 Objective function calculation
The calculation of the objective function entails the evaluation of the probability distribution
at each observation. We will use log-likelihood as an example to demonstrate how to calculate
the objective function by the traditional method.

Suppose we observe the lifetime of n individuals. Specifically, for each observed individual
j = 1, . . . , n we observe (` j, t j, δ j), where ` j is the age at which individual j entered observation,
t j is the age at which individual j left observation, and δ j = 1 if individual j died at time t j and
δ j = 0 otherwise.

The likelihood function is given by

L(θ) =

n∏
j=1

f (t j; θ)δ j S (t j; θ)1−δ j

S (` j; θ)
,

where S (t; θ) is the survival function, and f (t; θ) is the pdf. So, the corresponding log-likelihood
is

l(θ) =

n∑
j=1

δ j log
(
αeΛt j h

)
+ (1 − δ j) log

(
αeΛt je

)
− log

(
αeΛ` je

)
, (5.2.3)

where

Λ =


− (λ1 + h1) λ1

− (λ2 + h2) λ2
. . .

− (λm−1 + hm−1) λm−1

−hm


Λ is an m × m matrix. Since δ j can be either 0 or 1, the log-likelihood has 2n matrix-

exponential calculations for a given θ. Furthermore, if we can observe all individuals at age
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0, then S (0; θ) = 1 in the denominator of L(θ), and the log-likelihood involves n matrix-
exponential calculations. In either case, the log-likelihood calculation is relatively slow when
the sample size and the total number of states is relatively large. Some numerical examples
will be provided to show how slow the traditional method is. But, why is this so?

According to the literature, the scaling and squaring method requires the calculation of
every element in eA/u so that eA can be calculated by eA/u to the power of u. Therefore, the
traditional method has to calculate every element in eΛt before calculating the probability dis-
tribution. For each observation (` j, t j, δ j), the scaling and squaring method calculates m × m
elements in the scaling step. In the squaring step, the algorithm performs k (the number of scal-
ing and u = 2k) matrix multiplications to obtain eΛt j and eΛ` j . Lastly, these two steps need to
repeat n times to get the log-likelihood. Therefore, using the traditional method to compute the
log-likelihood performs a large number of matrix multiplications, which makes the calculation
very time-consuming especially when the matrix dimension is large.

If we examine the probability distributions (5.2.1) and (5.2.2), it is sufficient to calculate the
first row of each eΛt j and eΛ` j for the log-likelihood (5.2.3), due to the fact that α = (1, 0, . . . , 0).
Hence, it is redundant to calculate the elements from the second row to the last row, and cal-
culating these redundant elements slows down the log-likelihood evaluation significantly. For
example, suppose we only have one observation who entered at age 0 and died at time t. Then
the log-likelihood is l(θ) = log f (t). To calculate the log-likelihood, it is sufficient to calculate
the first row m elements of eΛt and then multiply the row vector by the column vector h, whilst
the traditional method calculates m2 elements of eΛt and then performs the matrix multiplica-
tion. Only 1/m of the elements in eΛt are useful for (5.2.3). The proportion of useful elements
in eΛt decreases dramatically as m increases; in particular, only 1% of the results are useful
when m = 100. Therefore, under the traditional method, considerable time is wasted in the
evaluation of unnecessary elements.

On the other hand, the numerical accuracy of the traditional method is a concern to us
because using expm involves a Padé approximation, which incurs an approximation bias. Al-
though Higham (2005) and Al-Mohy and Higham (2009) showed that the numerical error can
be small for the scaling and squaring method, the numerical error of each eΛt j or eΛ` j may accu-
mulate to a significant error in (5.2.3), which could cause numerical bias on the log-likelihood
calculation. The numerical errors from the matrix-exponential computation are unlikely to can-
cel out each other in the log-likelihood calculation. Therefore, we are interested in the accuracy
of the log-likelihood calculation.

In summary, although expm is “optimal” to calculate a general matrix exponential, it seems
not the best way to compute the probability distribution in terms of algorithm speed and algo-
rithm accuracy.

5.3 Uniformisation method and the proposed algorithm

To compute the probability distribution, it is straightforward to use (2.3.10). This method may
work well for a Coxian model with a small number of states. However, the numerical result
will be unstable for a Coxian model with a large number of states. For example, the probability
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in state 2 at time t by (2.3.10) is given

P2(t) = −
λ1

λ1 + h1 − λ2 − h2
e−(λ1+h1)t −

λ1

λ2 + h2 − λ1 − h1
e−(λ2+h2)t

= −
λ1

λ1 + h1 − λ2 − h2
e−(λ1+h1)t +

λ1

λ1 + h1 − λ2 − h2
e−(λ2+h2)t,

where both coefficients have opposite signs. The formula for Pk(t) requires multiple subtraction
operations and division operations. Numerical minus operation may cause loss of significance.
This is problematic when two numbers in the minus operation are relatively large but the result
is relatively small, and numerical division is problematic when the denominator is close to 0.
Round-off error affects the result significantly in both cases. When the total number of state
m is large, it is typical to have the fitted λi + hi and λ j + h j very close that the denominator∏k

s=1,s, j(λ j + h j − λs − hs) is small, and the absolute value of each (−1)k−1λ1...λk−1∏k
s=1,s, j(λ j+h j−λs−hs)

e−(λ j+h j)t is

relatively large. Under such a scenario, the numerical sum of Pk(t) becomes unstable.

Example 5.1. A numerical example is to calculate P2(t) at t = 10−6 for a proposed PTAM with
parameter value h1 = 10−7, hm = 2×10−7, s = 1, λ = 0.016 and m = 1000. The numerical value
using the formula (2.3.10) is 2.9802×10−8, while the numerical value using either the proposed
algorithm or the traditional method is 1.6 × 10−8. The numerical value of − λ

h1−h2
e−(λ+h1)t has a

magnitude of 108, but the numerical value for P2(t) has a magnitude of 10−8. The round-off

error has a significant effect on the result after subtraction. Furthermore, pk(t) is significantly
greater than 1 for k > 3. Therefore, (2.3.10) is unstable in the numerical sense when the total
number of states is relatively large and the difference between hi and h j is small.

4

Motivated by Example 5.1, we develop a numerically robust method or algorithm for the
calculation of the probability distribution. It is well-known that the uniformisation or Jensen’s
method (Jensen, 1953; Stewart, 1994) can stabilise the numerical calculation of the probability
distribution of a Coxian model.

5.3.1 Introduction to the uniformisation method
The uniformisation method is a method of computing the transient solutions of continuous-
time Markov chains by the process of a discrete-time Markov chain. The basic idea of the
uniformisation is assuming all transitions occur at the highest rate out of each state (hypothe-
sised rate) in the original Markov chain, but only a fraction of transitions are real transitions
(transitions that are out of the current state) and the remaining ones are fictitious (transitions
that remain in the current state). The fraction of real transitions that occur is equal to the ratio
of the associated real rate over the hypothesised rate. A detailed introduction of uniformisation
can be found in Section 6.7 of Ross (2014).

5.3.2 Probability distribution calculation
Suppose we have a Coxian model whose Markov chain is depicted in Figure 5.1. We shall use
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1 2 m
λ1 λ2 λm−1

h1 h2 hm

m+1

Figure 5.1: State transition diagram for a Coxian model.

the uniformisation method to calculate the probability distribution. Recall that the pdf is

f (t) = αeΛth,

and the survival function is

S (t) = αeΛte.

By the uniformisation method, all transition rates are uniformised to the highest rate, and only
a fraction of hypothesised transitions are real transitions. The associated probability transition
diagram is displayed in Figure 5.2, where Pi,i+1 = λi

ν
, Pi,m+1 = hi

ν
, Pi,i = 1− λi+hi

ν
for i = 1, . . . ,m,

and ν = max(λi + hi) is the hypothesized rate by letting λm = 0.

1 2 m

m+1

P1,2 P2,3 Pm−1,m

P1,m+1 P2,m+1 Pm,m+1

P1,1 P2,2 Pm,m

Figure 5.2: Transition probability diagram for the uniformisation method. Pi, j is the probability
of moving from state i to state j given a hypothesised transition occuring in state i.

Let P be the m ×m probability transition matrix with the (i, j) element equal to the proba-
bility that a transition from state i to state j occurs given a hypothesised transition occurs. Then
P is given by

P =



1 − (λ1+h1)
ν

λ1
ν

1 − (λ2+h2)
ν

λ2
ν
. . .

1 − (λm−1+hm−1)
ν

λm−1
ν

1 − hm
ν


.

The matrix eΛt can be expressed as

eΛt =

∞∑
j=0

P je−νt
(νt) j

j!
. (5.3.4)
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Since all elements in P are non-negative, every term in (5.3.4) is positive, and the numerical
computation is stabilised.

Define P j
1,i as the element in the first row ith column in matrix P j. According to the def-

inition of matrix power, we have P j+1 = P j P. Since P is sparse and upper-diagonal, we can
derive the following recursive formula to calculate P j

1,i more efficiently:
P j+1

1,1 =
(
1 − λ1+h1

ν

)
P j

1,1

P j+1
1,i+1 = λi

ν
P j

1,i +
(
1 − λi+1+hi+1

ν

)
P j

1,i+1, i = 1, . . . ,m − 2
P j+1

1,m = λm−1
ν

P j
1,m−1 +

(
1 − h j

ν

)
P j

1,m

(5.3.5)

By defining λm = λ0 = 0 and P1,0 = 0, then 3 recursive formulae are summarised as

P j
1,i =

λi−1

ν
P j−1

1,i−1 +

(
1 −

λi + hi

ν

)
P j−1

1,i , i = 1, . . . ,m, j = 1, . . . (5.3.6)

The 1×m initial probability vector is
(
P 0

1,1, . . . , P
0
1,m

)
= (1, 0, . . . , 0), because P 0 is the identity

matrix.
An intuitive explanation for (5.3.6) is that an individual moves from state 1 to state i in j

transitions, which decomposes to two probability events. The individual moves from state 1 to
state i − 1 in j − 1 transitions, and then moves from state i − 1 to state i in the jth transition; or
the individual moves from state 1 to state i in j − 1 transitions, and then the jth transition is a
fictitious transition.

The recursive formula (5.3.6) is easy to code. In particular, the algorithm can concurrently
update the 1 × m vector

(
P j

1,1, . . . , P
j

1,m

)
, denoting P j

1,•, for each j. Compared with calculating
the m×m P j by matrix multiplication, it is faster to calculate the vector P j

1,• by (5.3.6) because
vector calculation is more efficient than matrix calculation in computers 1. For the proposed
PTAM, λi = λ for i = 1, . . . ,m − 1, and hi is monotone by (3.3.3). It is easy to check that
ν = max(λ + hm−1, hm) if h1 < hm, while ν = max(λ + h1, hm) if h1 > hm. The recursive formula
can be simplified further,

P j
1,i =

λ

ν
P j−1

1,i−1 +

(
1 −

λ + hi

ν

)
P j−1

1,i , i = 1, . . . ,m, j = 1, . . .

The pdf at time t is

f (t) = αeΛth

=

∞∑
j=0

αP jhe−νt
(νt) j

j!

=

∞∑
j=0

m∑
i=1

P j
1,i hi e−νt

(νt) j

j!
,

1The speed advantage can be attributed to the computational operation efficiency involving vectors rather than
matrices in software such as R or Matlab.
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and the survival function at time t is

S (t) = αeΛte =

∞∑
j=0

αP jee−νt
(νt) j

j!
,

or

S (t) =

∞∑
j=0

m∑
i=1

P j
1,i e−νt

(νt) j

j!
, (5.3.7)

where h = (h1, . . . , hm)> is a m × 1 column vector, e is a m × 1 column vector with ones and
P j

1,i is obtained by (5.3.5). It is worth noting that αP j is a 1 × m row vector equal to the first
row of P j.

Additionally, the first-row kth (k = 1, . . . ,m) column element of eΛt is the probability that
the individual in state k at time t, denoting Pk(t), and

Pk(t) =

∞∑
j=0

P j
1,ke

−νt (νt)
j

j!
,

where P j
1,k is the probability in state k given j hypothesised transitions occur, and e−νt (νt) j

j! is the
probability j transitions occur in the uniformised process. An intuitive interpretation for the
formula is that Pk(t) is the total probability in state k at time t after j transitions. It is worth
noting that e−νt (νt) j

j! is the pdf of a Poisson distribution with rate νt, and such a probability can
be accurately calculated by the built-in function (e.g. poisspdf in MATLAB, ppois in R).

So far, there is no approximation involved. However, since f (t) or S (t) is a sum with infinite
terms, it needs truncation in practice. Specifically, let J be the truncation point, and S N(t) and
S T (t) be the respective numerical value and the theoretical value of the survival function, where

S T (t) =

∞∑
j=0

αP jee−νt
(νt) j

j!

S N(t) =

J∑
j=0

αP jee−νt
(νt) j

j!
.

Gross and Miller (1984) proved the following result.

Remark 5.1. For any error tolerance ε > 0, if the truncation point J satisfies the following
condition

1 − e−νt
J∑

j=0

(νt) j

j!
6 ε, (5.3.8)

then the difference between the numerical result and the true value of the survival function is
less than ε, or S T (t) − S N(t) ≤ ε.
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Since each term in the difference of the two sums is positive, i.e.,

S T (t) − S N(t) =

∞∑
j=J+1

(
αP je

)
e−νt

(νt) j

j!
> 0,

we have S N(t) < S T (t). Similarly, let fN(t) =
∑J

j=0 αP jhe−νt (νt) j

j! and fT (t) =
∑∞

j=0 αP jhe−νt (νt) j

j!
be the numerical value and the theoretical value of the pdf, respectively. We have fN(t) < fT (t),
which is trivial by the fact that each term of sum is positive.

Theorem 5.1. When (5.3.8) holds, the difference between the numerical value and the theoret-
ical value of the pdf is less than maxi=1,...,m(hi)ε, i.e., fT (t) − fN(t) ≤ maxi=1,...,m(hi)ε.

Proof.

fT (t) − fN(t) = α

 ∞∑
j=0

P je−νt
(νt) j

j!

 h − α

 J∑
j=0

P je−νt
(νt) j

j!

 h

=

∞∑
j=J+1

(
αP jh

)
e−νt

(νt) j

j!

≤ max
i=1,...,m

(hi)
∞∑

j=J+1

e−νt
(νt) j

j!
≤ max

i=1,...,m
(hi)ε,

where the first inequality holds because αP j is a probability vector, and αP jh is a weighted
average of absorption rates. In particular, maxi=1,...,m(hi) = max(h1, hm) for the proposed PTAM.

�

The numerical error for the uniformisation method is caused by the round-off error and
the truncation error, where the truncation error can be controlled by the error tolerance ε. In
summary, the formulae for f (t) and S (t) by the uniformisation method only calculate the first
row of eΛt. This method calculates a significantly less number of elements than the traditional
method. Meanwhile, the uniformisation method can achieve any required accuracy within a
specified error tolerance. The next step is to evaluate the probability distribution at multiple
points simultaneously.

5.3.3 The proposed algorithm

We propose an algorithm that can compute the probability distribution at all observations at
the same time in a matrix form using the uniformisation method. According to (5.3.4), P j and
e−νt (νt) j

j! must be calculated to get eΛt. Each P j is independent of t for any j = 1, 2, . . . As a
result, the algorithm can vectorise the calculation of each first row of eΛt j and eΛ` j for (5.2.3).
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No censored or truncated data

Suppose all individuals entered the observation at age 0, and all individuals died during the
observation study. Then, αeΛ` je = 1 and δ j = 1 for each individual. Equation (5.2.3) may be
simplified to

l(θ) =

n∑
j=1

log
(
αeΛt j h

)
.

From (5.3.4), the associated matrix exponential for the ith individual is given by

eΛti =

∞∑
j=0

P je−νti
(νti) j

j!
,

Let βi be the first row vector of eΛti , then

βi =

∞∑
j=0

e−νti
(νti) j

j!

(
P j

1,1, . . . , P
j

1,m

)
,

where e−νti (νti) j

j! is a number, and (P j
1,1, . . . , P

j
1,m) is a 1 ×m vector calculated by (5.3.6). Then,

the n × m matrix β, whose ith row equals βi, is

β =


β1
...
βn

 =

∞∑
j=0



e−νt1 (νt1) j

j!
...

e−νtn (νtn) j

j!


(
P j

1,1, . . . , P
j
1,m

) .
Each term in the sum is equal to an n×1 matrix multiplied by a 1×m matrix, and β is an n×m
matrix. The (i, j) element of β is P j(ti), the probability of being in state j at time ti. The pdf
evaluated at each observation can be obtained by computing

( f (t1), . . . , f (tn))> = βh, (5.3.9)

Now, the log-likelihood (5.2.3) is calculated as

l(θ) =

n∑
i=1

log f (ti).

Similarly, the calculation of any objective function is immediate once ( f (t1), . . . , f (tn))> is
obtained. Furthermore, if the pdf in [T1,T2] is sought, the domain can be discretised into
T1 = t1 < . . . < tn = T2, and then (5.3.9) can be used to obtain all pdf values by considering the
discretised points as new observations at the same time.

Case of censored and truncated data

Suppose we observe n individuals with 3 vectors (t1, t2, . . . , tn), (`1, `2, . . . , `n) and δ = (δ1, δ2, . . . , δn)>.
Recall that for each observed individual j = 1, . . . , n we observe (` j, t j, δ j), where ` j is the age
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at which an individual j entered the observation study, t j is the age at which an individual j left
the observation, and δ j = 1 if an individual j died at time t j and δ j = 0 otherwise. We need an
efficient algorithm to compute the log-likelihood (5.2.3) for a given θ.

According to (5.3.4) and (5.2.3), the associated matrix exponentials for the ith individual
are

eΛ`i =

∞∑
j=0

P je−ν`i
(ν`i) j

j!
;

and

eΛti =

∞∑
j=0

P je−νti
(νti) j

j!
,

respectively.
Let γi be the first row vector of eΛ`i , and βi be the first row vector of eΛti . Then,

βi =

∞∑
j=0

e−νti
(νti) j

j!

(
P j

1,1, . . . , P
j

1,m

)
,

γi =

∞∑
j=0

e−ν`i
(ν`i) j

j!

(
P j

1,1, . . . , P
j

1,m

)
,

where P j
1,i is calculated by (5.3.6). Let γ be the n ×m matrix whose ith row is equal to γi, and

β be the matrix whose ith row is equal to βi. Then,

γ =


γ1
...
γn

 =

∞∑
j=0



e−ν`1 (ν`1) j

j!
...

e−ν`n (ν`n) j

j!


(
P j

1,1, . . . , P
j

1,m

) ,
and

β =


β1
...
βn

 =

∞∑
j=0



e−νt1 (νt1) j

j!
...

e−νtn (νtn) j

j!


(
P j

1,1, . . . , P
j

1,m

) .
Similar to the case when no censored or truncated data, each term in the sum is equal to an

n × 1 matrix multiplied by a 1 × m matrix, and both γ and β are n × m matrices. The β here is
the same as the one in the previous case, and γ has the same meaning as β, except that the time
of evaluation is different. The required probability distributions evaluated at each lifetime can
be obtained simultaneously by

( f (t1), . . . , f (tn))> = βh,
(S (t1), . . . , S (tn))> = βe1,

(S (`1), . . . , S (`n))> = γe1,
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where e1 is an m × 1 column vector of ones, and h is an m × 1 column vector of hi.
Let g(ti, `i, δi) be the contribution of the ith individual to the likelihood, or

g(ti, `i, δi) =
f (ti)δiS (ti)1−δi

S (`i)
. (5.3.10)

Then, g(ti, `i, δi) is computed as

(g(t1, `1, δ1), . . . , g(tn, `n, δn))> = (βh. ∗ δ + βe1. ∗ (e2 − δ)) ./ (γe1) , (5.3.11)

where e2 is an n×1 column vector of ones, and δ is an n×1 column vector whose ith element is
δi. We use the MATLAB operator notation .∗ and ./ for the element-wise scalar multiplication
and element-wise scalar division, respectively. It is worth noting that δi can be either 0 or 1,
so g(ti, `i, δi) = f (ti)/S (`i) when δi = 1, and g(ti, `i, δi) = S (ti)/S (`i) when δi = 0. On the
other hand, βh. ∗ δ + βe1. ∗ (e2 − δ) is a column vector, whose elements are equal to βh when
the corresponding column of δ is equal to 1, and whose elements are equal to βe1 when the
corresponding column of δ is equal to 0. Therefore, the left-hand side of (5.3.11) is equal to its
right-hand side even though the formula is different from (5.3.10). The log-likelihood function
is then given by

l(θ) =

n∑
i=1

log g(ti, `i, δi).

Similarly, the objective function follows once the value coming from (5.3.11) is obtained.

5.3.4 Truncation in the numerical calculation
Since γ and β have infinite terms in the sum, the algorithm needs to be truncated at some point
J in the implementation process. Suppose we have an error tolerance ε and the infinite-terms
sum truncates at J. Let J be the minimum integer such that

max
i=1,...,n

1 − e−νti
J∑

j=0

(νti) j

j!
, 1 − e−ν`i

J∑
j=0

(ν`i) j

j!

 6 ε. (5.3.12)

From Remark 5.1, the difference between the theoretical value and the numerical value of the
survival function is less than ε,

S T (ti) − S N(ti) < ε, and S T (`i) − S N(`i) < ε.

Moreover, the difference between the theoretical value and the numerical value of the proba-
bility density function is less than maxi=1,...,m(hi)ε, i.e.,

fT (ti) − fN(ti) < max
i=1,...,m

(hi)ε.

Let us investigate (5.3.12). Suppose two random variables (A and B) follow Poisson dis-
tributions with different rates. That is, suppose the rate of A is less than that of B. Then,



90 Chapter 5. Model calibration

the random variable with the higher rate is greater than the other (i.e., B is greater than A in
stochastic order). The probability that the random variable is greater than any number is higher
for the Poisson distribution with the higher rate, i.e., P(A > k) ≤ P(B > k) for any k. Therefore,
we have

max
i=1,...,n

1 − e−νti
J∑

j=0

(νti) j

j!
, 1 − e−ν`i

J∑
j=0

(ν`i) j

j!

 = 1 − e−νtmax

J∑
j=0

(νtmax) j

j!
,

where tmax = maxi=1,...,m(ti) = maxi=1,...,m(ti, `i) by the fact that `i ≤ ti for any i. This is because
νtmax is the highest rate, and 1−e−νtmax

∑J
j=0

(νtmax) j

j! is greater than or equal to any 1−e−νti
∑J

j=0
(νti) j

j!

and 1− e−ν`i
∑J

j=0
(ν`i) j

j! for any j, where 1− e−a ∑J
j=0

a j

j! is the probability that a Poisson variable
with rate a is greater than J. Consequently, (5.3.12) is equivalent to

1 − e−νtmax

J∑
j=0

(νtmax) j

j!
6 ε, (5.3.13)

or J is the 1 − ε quantile of the Poisson distribution with rate νtmax. The determination of J is
straightforward by the built-in quantile function of the Poisson distribution in MATLAB.

The default value for the error tolerance is ε = 10−10 in our numerical calculations. To
achieve a higher accuracy, one can set a smaller ε. We show how to calculate the pdf of a
GPTAM by 3 methods: the proposed algorithm, the traditional method, and formula (2.3.10).

Example 5.2. Suppose a GPTAM has a total of 50 states. The absorption rate in state i follows
hi = 0.1i + 0.15 and the transition rate to the next state is λ = 1.8. The numerical results are
shown in Figure 5.3, indicating more stability for the proposed algorithm than using (2.3.10).
The numerical results have little difference between the traditional method and the proposed
method in this example.

Our proposed algorithm only calculates the necessary elements for the probability distribu-
tion at all observations in a matrix. The numerical results are stable, compared with (2.3.10).
A truncation condition is provided for numerical computation so that the numerical error of the
probability distribution at each point can be controlled.

4

In the succeeding discussion, we compare the algorithm’s speed and accuracy with those
of the traditional method on the basis of the log-likelihood calculation.

5.4 Algorithm’s accuracy
We are interested in the accuracy of the proposed algorithm because the algorithm is useful
only if it can achieve a given accuracy. In this section, we assess the algorithm’s accuracy for
our proposed PTAM. All individuals entered the observation study at age 0; the times of death
of all individuals are observed at t1, . . . , tn. The log-likelihood is l(θ) =

∑n
j=1 log f (ti), where

f (ti) > 0.
We derive an upper bound for the numerical error of the computed log-likelihood. Then, we

will compare the proposed algorithm with the traditional method in terms of the numerical error
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Figure 5.3: The pdf calculated by the proposed algorithm, the traditional method, and the
derived formula (2.3.10).

of the probability distribution calculation. The numerical error of the log-likelihood calculation
will also be evaluated under a special PTAM, whose probability distribution can be obtained
accurately by an analytic solution that is stable in numerical computing. At the end of this
section, we establish a condition that tests if the true log-likelihoods are different for various
parameter values.

5.4.1 An upper bound for the numerical error in the log-likelihood

For a given parameter value θ, let lN(θ) and lT (θ) be the respective numerical value and the
theoretical value of the log-likelihood. Specifically,

lT (θ) =

n∑
i=1

log fT (ti),

lN(θ) =

n∑
i=1

log fN(ti),
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where the pdf is calculated by the uniformisation method. The 1 × m row vectors of the pdf
evaluated at the observations are:

( fT (t1), . . . , fT (tn))> =


∞∑
j=0


e−νt1 (νt1) j

j!
...

e−νtn (νtn) j

j!


(
P j

1,1, . . . , P
j
1,m

) h,

( fN(t1), . . . , fN(tn))> =


J∑

j=0


e−νt1 (νt1) j

j!
...

e−νtn (νtn) j

j!


(
P j

1,1, . . . , P
j
1,m

) h.

Recall that J is the minimum integer such that

1 − e−νtmax

J∑
j=0

(νtmax) j

j!
≤ ε,

where tmax = maxi=1,...,n(ti) and ε is the error tolerance.
Since fN(ti) < fT (ti) for each ti, we have lN(θ) < lT (θ). Therefore, the numerical error for

the log-likelihood is positive, i.e., lT (θ)− lN(θ) > 0. An upper bound for such a numerical error
is given in the next theorem.

Theorem 5.2. The numerical error of the proposed algorithm to compute the log-likelihood
has an upper bound of

∑n
i=1

maxi=k,...,m(hk)
fN (ti)

ε.

Proof.

lT (θ) − lN(θ) =

n∑
i=1

log( fT (ti)) −
n∑

i=1

log( fN(ti))

=

n∑
i=1

log
(

fT (ti)
fN(ti)

)
=

n∑
i=1

log
(
1 +

fT (ti) − fN(ti)
fN(ti)

)
≤

n∑
i=1

1
fN(ti)

( fT (ti) − fN(ti))≤ M(θ)ε,

where

M(θ) =

n∑
i=1

maxi=k,...,m(hk)
fN(ti)

.

The first inequality holds because log(1 + x) ≤ x for any x ≥ 0, and the second inequality is
justified due to fT (ti) − fN(ti) ≤ maxk=1,...,m(hk)ε as per Theorem 5.1.

�
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We turn our attention to the upper bound M(θ)ε, where the value of M(θ) depends on θ.
As ε and fT (ti) − fN(ti) become smaller, leading to a bigger fN(ti) that is closer to fT (ti), and
resulting to a smaller M(θ) that is closer to

∑n
i=1

maxi=k,...,m(hk)
fT (ti)

. Therefore, the numerical error of
the log-likelihood calculation asymptotically converges to 0 as ε approaches 0. In particular,

lim
ε→0

lT (θ) − lN(θ) ≤ lim
ε→0

M(θ)ε

=

n∑
i=1

maxi=k,...,m(hk)
fT (ti)

(0)

= 0.

Therefore, the numerical log-likelihood of the proposed algorithm can be arbitrarily close
to the actual value in theory. In practice, the round-off error may limit the algorithm’s accuracy,
but this type of analysis is out of the scope in this thesis. From a practical point of view, we shall
conduct the following experiments to compare the accuracy of the proposed algorithm with that
of the traditional method by computing the probability distribution and log-likelihoods using
randomly simulated data.

5.4.2 Comparison with the traditional method
Definition 5.1. The measure of the algorithm’s accuracy refers to the absolute difference be-
tween the theoretical value and the numerical result from the algorithm.

It has to be noted that the smaller the difference, the higher the algorithm’s accuracy.
To compare the accuracy between algorithms, we need the theoretical value accurately. It

was demonstrated that (2.3.10) is not stable for numerical calculation, creating a significant
bias against the theoretical value. It turns out that the probability distribution of a special
GPTAM has an analytic form that is stable in performing numerical calculation. The special
GPTAM has a restriction that hi is a linear function of i. Then, the analytic solution to (2.3.9)
can be obtained by the following theorem.

Theorem 5.3. Suppose hi is given by

hi = h1 + µ(i − 1),

and λi = λ for i = 1, . . . ,m − 1. The solution for (2.3.9) is

Pk(t) = e−(λ+h1)t (c(t))k−1

(k − 1)!
,

for k = 1, . . . ,m − 1, and

Pm(t) = λe−(h1+µ(m−1))t
∫ t

0
e((m−1)µ−λ)u (c(u))m−2

(m − 2)!
du

where c(t) = λ
µ

(
1 − e−µt).
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Proof. We obtain P1(t) = e−(λ+h1)t as a solution to dP1(t)
dt = −(λ + h1)P1(t). For k = 2, . . . ,m − 1,

the unique solution is

Pk(t) = e−(λ+hk)tλ

∫ t

0
e(λ+hk)uPk−1(u)du. (5.4.14)

Suppose Pk(t) = e−(λ+h1)t

(k−1)!

(
λ(1−e−µt)

µ

)k−1
. Then, according to (5.4.14),

Pk+1(t) = e−(λ+hk+1)tλ

∫ t

0
e(λ+hk+1)u e−(λ+h1)u

(k − 1)!

(
λ(1 − e−µu)

µ

)k−1

du

= e−(λ+hk+1)t λk

µk−1(k − 1)!

∫ t

0
ekµu(1 − e−µu)k−1du

= e−(λ+hk+1)t λk

µk−1(k − 1)!

∫ t

0
euµ(euµ − 1)k−1du

= e−(λ+hk+1)t λk

µk(k − 1)!

∫ t

0
(euµ − 1)k−1deuµ

= e−(λ+h1+kµ)t λk

µk(k − 1)!
(etµ − 1)k

k

=
e−(λ+h1)t

k!

(
λ(1 − e−µt)

µ

)k

.

Therefore, Pk(t) = e−(λ+h1)t

(k−1)!

(
λ(1−e−µt)

µ

)k−1
holds for k = 2, . . . ,m − 1 by induction. For k = m,

Pm(t) = e−hmtλ

∫ t

0
ehmuPm−1(u)du

= e−hmtλ

∫ t

0
ehmu e−(λ+h1)u

(m − 2)!

(
λ(1 − e−µu)

µ

)m−2

du

= e−(h1+(m−1)µ)tλ

∫ t

0
e((m−1)µ−λ)u

(
λ(1−e−µu)

µ

)m−2

(m − 2)!
du

�

Remark 5.2. Given the value of Pk(t), Pk+1(t) can be calculated in a recursive fashion,

Pk+1(t) = Pk(t)
c(t)
k
, for k = 1, . . . ,m − 1, (5.4.15)

starting with P1(t) = e−(λ+h1)t. In our experience, the recursive formula is accurate and efficient
to calculate Pk(t) for any k, except at k = m. The probability of being in state m at time t, Pm(t),
entails a numerical integration. Such a numerical integration is performed through MATLAB
using a long format with the highest precision. The results using the recursive formula (5.4.15)
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in conjunction with the numerical integration are treated as the theoretical values, which will
serve as benchmarks in our comparison. It is worth noting that the “theoretical” values still
have numerical errors attributed to both round-off and numerical-integration errors, but these
results are the most accurate results we can obtain.

Example 5.3. Consider a GPTAM with the following parameter values: h1 = 0.025, µ = 0.01,
m = 50, and λ = 1.6. The corresponding pdf, survival function, hazard rate, and dying rate are
graphically presented in Figure 5.4. The plot of the survival function shows that almost nobody
can survive to age 30 by assuming the process starts at age 0. The survival probabilities to ages
18, 25, and 30 are 1.6%, 0.2%, and 0.069%, respectively.
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Figure 5.4: Results for the GPTAM with h1 = 0.025, µ = 0.01, m = 50, and λ = 1.6. Top-
left: pdf; Top-right: Survival function; Bottom-left: hazard rate; Bottom-right: dying rate at
physiological age.

We compare the accuracy of the proposed algorithm and that of the traditional method in
terms of the probability distribution calculation. Recall that the numerical error of the pdf at
time t is | fT (t)− fN(t)|, where fT (t) is the calculated theoretical value and fN(t) is the numerical
value from the tested algorithm.

Let fNP(t) be the numerical value from the proposed algorithm and fNT (t) be the numerical
value from the traditional method. The ratio | fT (t) − fNT (t)|/| fT (t) − fNP(t)| gives the relative
error between the two algorithms. The proposed algorithm has better accuracy when the ratio
is higher than 1, and the greater the ratio, the more significant the accuracy advantage. Our
experiment results (see Figure 5.5 for the plot of | fT (t) − fNT (t)|/| fT (t) − fNP(t)| − 1) show that
the maximum of the ratio has magnitude of 1015. The ratio is significantly greater than 1 after
time 25, which implies that the numerical error is relatively large for the traditional method.

Remark 5.3. The actual values at the first 4 peaks before t = 25 in Figure 5.5 are infinite
because | fT (t) − fNP(t)| = 0, and we manually set them equal to the maximum of the remaining
values.
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By checking the numerical error for each algorithm, based on Figure 5.6, the numerical
error for both methods are close to 0 when t < 18. The numerical error for the traditional
method is significantly greater than 0, whilst the numerical error for the proposed algorithm
remains near 0 when t > 18. The traditional method computes less accurately than the proposed
algorithm.

Figures 5.5 – 5.6 show that the numerical error is small when t is small (e.g. t < 18 in the
example) for both methods. However, the traditional method has relatively larger numerical
error than the proposed method when t is relatively big (e.g. t > 25 in the example). This
shows both methods are accurate to calculate the distribution in most domains, but the proposed
algorithm outperforms the traditional method in the right tail of the distribution. Therefore, the
proposed algorithm is better than the traditional method in terms of accuracy of computing
probability distribution.
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Figure 5.5: The difference between the ratio | fT (t)− fNT (t)|/| fT (t)− fNP(t)| and 1 as t increases.

The next comparison is the accuracy of log-likelihood calculation by both methods. We
simulate 20 sets of observations with different sample sizes. For each set of data, we randomly
simulate n lifetimes, where n = 50 j, j = 1, . . . , 20, for the jth set of data. In other words,
the smallest data set has 50 observations, whilst the largest data-set has 1,000 observations.
For each data set, the true log-likelihood is calculated by Theorem 5.3, and the numerical log-
likelihood is calculated by the proposed algorithm and the traditional method. The relative nu-
merical error of the log-likelihood is the ratio of the difference between the true log-likelihood
and numerical log-likelihood over the true log-likelihood. That is,

Relative numerical error of the log-likelihood =
|lT (θ) − lN(θ)|

lT (θ)
.

The relative numerical error of the log-likelihoods for different sample sizes by different meth-
ods are compared in Figure 5.7. The relative numerical error for the proposed algorithm is close
to 0, yielding the numerical error for the proposed algorithm is negligible for the log-likelihood



5.4. Algorithm’s accuracy 97

0 5 10 15 20 25 30 35 40
lifetime t

-1

0

1

2

3

4

5

|f T
(t

)-
f N

(t
)|

10-5 Difference between numerical result and true value

expm
Proposed Algorithm

Figure 5.6: Numerical errors in the calculation of the Coxian model’s pdf with h1 = 0.025,
µ = 0.01, m = 50, and λ = 1.6.

calculation. On the other hand, the relative numerical error for the traditional method is small
in the magnitude of 10−4, but the error is larger than that for the proposed algorithm. The result
is consistent with the probability distribution calculation. As a result, the proposed algorithm
achieves a higher accuracy than the traditional method in log-likelihood calculation.
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Figure 5.7: Numerical error for the log-likelihood with increasing sample size using the pro-
posed algorithm and the traditional method.

The numerical comparisons demonstrate that the proposed algorithm achieves higher accu-
racy than the traditional method.
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4

5.4.3 Test condition on the log-likelihood difference
As demonstrated in the Le Bras simulation, the maximum log-likelihoods are similar for differ-
ent values of m. We explore if the true log-likelihoods are different by comparing the numerical
results. If the true log-likelihoods are different for two sets of parameter values, then at least
one of them cannot be the MLE.

Suppose we have two numerically computed log-likelihoods obtained by the proposed algo-
rithm for two sets of parameter values θ1 and θ2 corresponding to the log-likelihood lN(θ1) and
lN(θ2), respectively. The respective error upper bounds in Theorem 5.2 are M(θ1)ε and M(θ2)ε;
we also assume that lN(θ1) < lN(θ2). The following theorem provides a sufficient condition that
the true log-likelihood with parameter equal to θ2 is the larger one, i.e., lT (θ1) < lT (θ2).

Theorem 5.4. If

lN(θ2) − lN(θ1) > M(θ1)ε (5.4.16)

then the true log-likelihood is greater at θ2, or lT (θ2) − lT (θ1) > 0.

Proof.

lT (θ2) − lT (θ1) = (lT (θ2) − lN(θ2)) + lN(θ2) − lN(θ1) − (lT (θ1) − lN(θ1))
> (lT (θ2) − lN(θ2)) + M(θ1)ε − (lT (θ1) − lN(θ1))
≥ 0,

where the last inequality holds because lT (θ2) − lN(θ2) ≥ 0 and lT (θ1) − lN(θ1) ≤ M(θ1)ε.
Therefore, the theoretical log-likelihood is greater at θ2.

�

Since M(θ1)ε asymptotically converges to 0 as ε approaches 0, there exists a small ε such
that lN(θ2) − lN(θ1) > M(θ1)ε, whenever the theoretical log-likelihoods are different at θ1 and
θ2. As a result, lN(θ2) − lN(θ1) > M(θ1)ε is a useful condition to diagnose if the actual log-
likelihood increases by changing parameter values. The following example is a demonstration
of this condition.

Example 5.4. Five thousand lifetimes are randomly generated from the proposed PTAM with
λ = 1, h1 = 0.05, hm = 1, s = 1 and m = 20. Specifically, the absorption rate in state i is
hi = 0.05i for i = 1, . . . , 20. We estimate m using the maximum likelihood approach, and m
is restricted to the values in the set {5, 10, 15, 20, 25, 30, 35, 40}. For each fixed m, the other
parameters are estimated by MLE method.

The estimation results are summarised in Table 5.1. From the lN(θ) column, the log-
likelihood increases as m increases from 5 to 40, indicating that the maximum likelihood is
achieved when m = 40. The values in lN(θ2) − lN(θ1) column from m = 5 to m = 25 are greater
than the corresponding values in the Mε column; thus, the theoretical log-likelihood increases
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indeed by changing from m = 5 to m = 30. However, the values in lN(θ2) − lN(θ1) column for
m = 30 and m = 35 are less than the corresponding values in the column named Mε in Table
5.1. Therefore, we cannot conclude if the log-likelihood actually increases by changing from
m = 30 to m = 35, or from m = 35 to m = 40. As a result, we can confirm that the estimate of
m is greater than 25 by the MLE, but we cannot tell if the theoretical log-likelihood increases
by changing from m = 30 to m = 35 and from m = 35 to m = 40. So, Theorem 5.4 can help
identify some cases that the true log-likelihood can increase by changing the parameter value.
Under the special case that the actual log-likelihoods are the same for two different sets of
parameter values, the model is not estimable. Model estimability will be dealt with in Chapter
6.

Table 5.1: Estimation results based on 5,000 lifetimes simulated from the proposed PTAM for
different m’s. The lN(θ) column is the log-likelihood. The Mε column is the right-hand side of
(5.4.16). The ith value in the lN(θ2) − lN(θ1) column is the left-hand side of (5.4.16) between
the ith and (i + 1)th values.

lN(θ) h1 hm λ s m Mε lN(θ2) − lN(θ1)
−12285.1545 0.0610 0.6750 0.5770 0.0090 5 6.584 × 10−6 3.6200
−12281.5342 0.0550 0.7430 0.7880 0.7600 10 7.736 × 10−6 0.2380
−12281.2960 0.0540 0.8310 0.9560 0.9190 15 8.860 × 10−6 0.0140
−12281.2817 0.0530 1.0640 0.9880 0.9410 20 1.140 × 10−5 0.0010
−12281.2800 0.0530 1.3160 1.0000 0.9470 25 1.412 × 10−5 6.816 × 10−5

−12281.2799 0.0530 1.5900 1.0010 0.948 30 1.707 × 10−5 7.476 × 10−7

−12281.2799 0.0530 1.8710 1.0000 0.9470 35 2.008 × 10−5 5.527 × 10−8

−12281.2799 0.0530 2.1520 1.0000 0.9470 40 2.310 × 10−5

4

5.5 Algorithm’s efficiency
In this Section, we compare the speed of the proposed algorithm and the traditional method in
the computation of the pdf (log-likelihood). When the total number of states (m) is large, it is
time-consuming for the traditional method to calculate the log-likelihood. The first comparison
is based on the theoretical assessment whilst the second comparison is based on numerical
experiments.

5.5.1 Required flops
The first algorithm efficiency comparison is based on the concept of flop, which is proposed by
Moler and Van Loan (2003) to quantify the magnitude of the time required for computations.
More precisely, they defined a flop to be the time required for a particular computer system to
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execute the FORTRAN statement

A(I, J) = A(I, J) + T ∗ A(I,K),

where A(I, J) represents the (I, J) element of matrix A, T is a number, and ∗ is multiplication
operation. This involves one floating-point multiplication, one floating-point addition, a few
subscripts, index calculations, and a few storage references. The smaller the required flops, the
faster the algorithm.

We start with the required flops for the traditional method. Moler and Van Loan (2003)
derived the required flops for the scaling and squaring method (the algorithm used in expm)
to calculate the matrix exponential eΛt, where Λ is a m × m matrix, are O(m3). Therefore, the
required flops for the traditional method to calculate the probability distribution are O(m3). For
a set of observation with n individuals, the required total flops for the traditional method to
calculate the log-likelihood is O(nm3).

Let us assess the required flops for the proposed algorithm. Recall that the proposed al-
gorithm evaluates the probability distribution at multiple points simultaneously by (5.3.9), and
the calculation is truncated at J and satisfies (5.3.13). When evaluating the probability distri-
bution at one point β, which is a 1 × m vector, the required flops are Jm + J. The calculation
requires Jm flops for J 1 × m vectors

(
P j

1,1, . . . , P
j

1,m

)
j = 1, . . . , J, and additional J flops for

βh. For a set of observations with n individuals, the required flops for β are Jmn + J, because
the calculation involves J terms of n × 1 matrices multiplying by 1 ×m matrices. The required
flops are nm for each n × 1 matrix multiplied by 1 × m matrix. For the sum to obtain β, the
required flops are J. Therefore, the required flops for the proposed algorithm to calculate the
log-likelihood are O(Jmn).

Focusing on J for the proposed PTAM, its value depends on both the error tolerance ε and
the rate νtmax by (5.3.13). The higher ε or νtmax, the bigger the J. That a Poisson distribution
with rate λ can be approximated by a normal distribution with mean equal to λ and standard
deviation equal to

√
λ, when λ is large enough, is a well-known fact. For a fixed set (h1, hm, s, ψ)

in the proposed PTAM, ν = m/ψ + maxi=1,...,m−1(hi) when m > ψ(hm −maxi=1,...,m−1(hi)). This is
because

m/ψ + max
i=1,...,m−1

(hi) > hm,

and

ν = max
i=1,...,m−1

(m/ψ + hi, hm).

Since J is the 1 − ε quantile of a Poisson random variable with rate νtmax, when νtmax is large,

Φ

(
J − νtmax
√
νtmax

)
≈ 1 − ε,

or

J ≈ νtmax + Φ−1(1 − ε)
√
νtmax,
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where Φ is the cumulative density function for the standard normal distribution and Φ−1 is the
inverse function of Φ, Φ−1(Φ(x)) = x. Hence,

J ≈ m
tmax

ψ
+ max

i=1,...,m−1
(hi)tmax + Φ−1(1 − ε)

√
m

tmax

ψ
+ max

i=1,...,m−1
(hi)tmax, (5.5.17)

when νtmax is large.

Remark 5.4. Recall that Φ−1(1 − 10−10) = 6.36. The approximation in (5.5.17) is dominated
by m tmax

ψ
+ maxi=1,...,m−1(hi)tmax, when m tmax

ψ
+ maxi=1,...,m−1(hi)tmax is large. For instance, when

m tmax
ψ

+ maxi=1,...,m−1(hi)tmax = 10000, J ≈ 10000 + 6.36 ×
√

10000 = 10636.

The required flops for the proposed algorithm to calculate the log-likelihood are

O(Jmn) ≈ O
(
m2n

tmax

ψ
+ max

i=1,...,m−1
(hi)tmaxmn + Φ−1(1 − ε)mn

√
m

tmax

ψ
+ max

i=1,...,m−1
(hi)tmax

)
,

whose dominant term is m2n tmax
ψ

when m is large. As a result, the total required flops have the
magnitude of O(nm2) when m is large.

The required flops for the proposed algorithm to calculate the log-likelihood of the pro-
posed PTAM are about 1/m of that for the traditional method. For instance, the required flops
for the proposed algorithm are about 1% of that for the traditional method when m = 100.

5.5.2 Comparison with the traditional method
It was shown that the proposed algorithm is theoretically faster than the traditional method.
A speed comparison in so far as computing the log-likelihoods of simulated data under the
proposed PTAM is concerned, will be conducted in this Subsection. All calculations are per-
formed in MATLAB on the same computer equipped with an i7-6700k @4.0GHz CPU and
16GB RAM.

Required time versus m

Example 5.5. We compare the required time to calculate the log-likelihood by each method
under different values of m. The assigned values of m are 10, 25, 50 and 100. For a given
value of m, 1,000 sets of parameter values are randomly generated. For each set of parameter
values, 5,000 observations are randomly simulated from the PTAM and the corresponding
log-likelihood is calculated using both methods. The 1,000 required times to calculate the
log-likelihoods in each method are obtained.

The empirical distribution of the required times for each m is presented in Figures 5.8-5.11;
the red dotted lines in each histogram are the mean of the required times for each method.

Remark 5.5. Figures 5.8-5.11 only reflect the speed of obtaining the log-likelihood for a set
of parameter values. In the calculations entailed in the search for the MLE, thousands of log-
likelihood evaluations are required. Certainly, the cumulative time in completing the entire
MLE-search process would be significantly different in each method.
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0.01 0.015 0.02 0.025 0.03 0.035
time spans

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

em
pi

ric
al

 p
ro

ba
bi

lit
y

expm
proposed algorithm

Figure 5.8: Required time (in seconds) to calculate the log-likelihood when m = 10.
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Figure 5.9: Required time (in seconds) to calculate the log-likelihood when m = 25.

In Figures 5.8-5.9, the right tail of the histogram for the proposed algorithm overlaps with
the left tail of the histogram for the traditional method method when m is relatively small (e.g.,
m = 10 and m = 25). Meanwhile, the mean of the required times is substantially less for
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Figure 5.10: Required time (in seconds) to calculate the log-likelihood when m = 50.
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Figure 5.11: Required time (in seconds) to calculate the log-likelihood when m = 100.

the proposed algorithm. This shows that the proposed algorithm is faster than the traditional
method on average, but the speed advantage is not significant. It is worth noting that more than
50% of the recorded times are smaller for the proposed algorithm in Figures 5.8 – 5.9. On the
other hand, when m is relatively big (e.g., m = 50 and m = 100), all the recorded times are
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smaller than those of the proposed algorithm; see Figures 5.10- 5.11. Additionally, the distance
between the required time distributions for each method go further away as m increases from
m = 50 to m = 100. This indicates that the fast speed advantage of the proposed algorithm
is more significant for a larger m. One can also confirm the speed advantage of the proposed
algorithm by comparing the mean required times. For example, in Figure 5.10, the mean of the
required times for the traditional method is 0.135 seconds, whilst for the proposed algorithm is
0.03 seconds or 22.2% of the mean required time for the traditional method when m = 50. In
Figure 5.11, the mean of the required times for the traditional method is 0.40 seconds, whilst
for the proposed algorithm it is 0.05 seconds, or 12.5% of the time for the traditional method
when m = 100. On average, the ratio of the required time for the proposed algorithm over that
for the traditional method becomes smaller as m increases, attesting to the speed advantage of
the proposed algorithm for a large m (e.g., m ≥ 50).

Let us apply the two-sample Kolmogorov-Smirnov test on the empirical cumulative den-
sity distribution (cdf) of required time(s) for each method, under the null hypothesis that two
required time distributions are the same. The test statistic is

D = sup
t
|F1,n(t) − F2,n(t)|,

where F1,n(t) and F2,n(t) are the empirical cdf’s of the required time(s) for methods 1 and 2,
respectively. The corresponding statistics under each situation is displayed in Table 5.2. Very
low p-values (close to 0) indicate that the distributions of the required times to evaluate the log-
likelihood for a set of parameter values are significantly different between two methods. The
speed superiority of our method is definitely going to be magnified when taking into account
the complete MLE search.

Table 5.2: Two-sample Kolmogorov–Smirnov test.

D p-value
m = 10 0.9670 0
m = 25 0.9720 0
m = 50 1.0000 0
m = 100 1.0000 0

4

Trend of mean required time versus m

Example 5.6. The second comparison covers the trend of the mean required time to calculate
the log-likelihood as m increases from 10 to 200 by each method. The sample size is fixed
at 5,000 for each log-likelihood, and we use the same procedure to collect the required times
to calculate the log-likelihoods by both methods. For each value of m, we randomly generate
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1,000 sets of parameter values. For each set of parameter values, we randomly simulate 5,000
data, and compute the corresponding log-likelihood using both methods.

The mean of 1,000 required times for each method is a statistic that represents the empirical
algorithm’s speed and the result is shown in Figure 5.12. The mean required time for the
traditional method (blue line) increases much faster than that for the proposed algorithm (red
line) as m increases.
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Figure 5.12: Mean of 1,000 required times in the calculation of the log-likelihood with different
m for the traditional and proposed methods.

According to our previous analysis, the required flops for the traditional method are O(nm3),
whilst the required flops for the proposed algorithm are O(nm2). We shall predict the required
time to compute the log-likelihood for any given m by each method. To do this, we fit, in the
least-squares sense, the required times under the traditional method to a polynomial t(m) of
degree 3, where t(m) = a3m3 + a2m2 + a1m + a0, and the required times under the proposed
algorithm to a polynomial t(m) of degree 2, where t(m) = a2m2 + a1m + a0. The estimates for
the coefficients are given in Table 5.3.

Table 5.3: Coefficient estimates of the fitted curve for the required time to calculate the log-
likelihood under different m’s by each method.

Traditional Proposed
â0 0.3465 −0.0397
â1 −0.0115 0.0032
â2 0.0003 1.7448 × 10−6

â3 1.1716 × 10−7

The respective fitted results for the traditional and proposed methods with a 95% prediction
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interval are diagrammed in Figures 5.13 and 5.14. We extrapolate from both fitted curves up
to m = 300. It is clear that the increasing trend is less dramatic for the proposed algorithm by
checking the magnitude of the vertical axis (0-35 for the traditional method versus 0-1.4 for
the proposed algorithm).
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Figure 5.13: Estimated time with a 95% prediction interval in the calculation of the log-
likelihood with different m’s under the traditional method.
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Figure 5.14: Estimated time with a 95% prediction interval to calculate the log-likelihood with
different m’s under the proposed method.

The estimated required times for the traditional method and for the proposed algorithm in
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the calculation of the log-likelihood involving 5,000 observations with an m−state PTAM are
ttrd(m) = 0.3465−0.0115m+0.0003m2+1.1716×10−7m3 with coefficient of determination R2 =

0.9842 and tprop(m) = −0.0397 + 0.0032m + 1.7448× 10−6m2 with coefficient of determination
R2 = 0.9857. The high value of R2 supports a goodness-of-fit of both polynomial models.
Thus, with m = 300, the approximated time to calculate the log-likelihood by the traditional
method is 26 seconds, whilst the approximated time by the proposed algorithm is only 1 second.

The difference in the estimated times by both methods is ttrd(m) − tprop(m) = 1.1716 ×
10−7m3 + 2.8597 × 10−4m2 − 0.0147m + 0.3863. The first derivative of ttrd(m) − tprop(m) with
respect to m is 3.5148 × 10−7m2 + 5.7194 × 10−4m − 0.0147, which is greater than 0 when
m > 25. So the difference in the predicted time by each method is an increasing function of m
when m > 25.

4

Trend of mean required time versus sample size

Example 5.7. The third investigation is concerned with the trend of the mean required time for
each method in calculating the log-likelihood as sample size increases. We fix m = 200 and try
different sample-sizes in this experiment. Similar to previous experiments, we randomly gen-
erate 1,000 sets of parameter values. For each set of parameter value, n lifetimes are randomly
simulated, where n = 100, 200, 300, . . . , 5000 for each set of observations. The log-likelihood
for each set of observations is calculated by both methods. For each n, 1,000 required times
to calculate the log-likelihoods are recorded in each method. The mean of the 1,000 empiri-
cally required times is used to represent the required time to calculate the log-likelihood for n
individuals.

The mean required time for each n by each method is plotted in Figure 5.17. The mean re-
quired time for both methods increase linearly as the sample size increases, which is consistent
with our theoretical analysis. We fit the required time to a linear model t(n) = b1n + b0 in the
least-squares sense. The estimates of the coefficients are exhibited in Table 5.4. The estimated
time t(n) for the proposed algorithm follows t(n) = 0.0001n + 0.1137, and the estimated time
for the traditional method is t(n) = 0.0019n + 1.3109. The corresponding R2 are 0.9726 and
0.9744. Again, the high value of R2 indicates both linear models fit reasonably well. The fitted
lines with their 95% prediction intervals are displayed in Figures 5.15-5.16.

Table 5.4: Coefficient estimates of the fitted line for the required time in calculating the log-
likelihood for different n’s in each method.

Traditional Proposed
b̂0 1.3109 0.1137
b̂1 0.0019 0.0001

Both slope estimates are greater than 0 implying that the required time increases as the sam-
ple size increases. The slope for the proposed algorithm is 0.0001, which is 0.0001/0.0019 =

5.26% of the slope for the traditional method. Therefore, the predicted required time increases
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Figure 5.15: Estimated time with 95% prediction interval to calculate the log-likelihood with
different n for the traditional method.
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Figure 5.16: Estimated time with 95% prediction interval to calculate the log-likelihood with
different n for the proposed method.

much slower for the proposed algorithm as the sample size increases. Thus, the larger the sam-
ple size, the more significant the speed advantage of the proposed algorithm.

4
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Figure 5.17: Mean required time in the calculation of the log-likelihood for different sample
sizes.

5.6 Proposed calibration procedure

One particular issue when optimising the objective function for the Coxian model is that the
optimised result may be sensitive to the initial value. Marshall and Zenga (2012) assessed the
fitting process for a Coxian model and found that the estimation result was largely dependent
on both the initial parameter value and the actual data set. The sensitivity issue may cause
the estimation to be unreliable. We probe the sensitivity issue in this section by providing the
following example.

Example 5.8. We simulate 4 sets of lifetime observations with n lifetimes (n = 500, 1000, 1500, 2000)
from the proposed PTAM with parameter values h1 = 0.0018, hm = 1.2752, s = −0.0734,
ψ = 55 and m = 100, which are estimated from the Channing house data. Furthermore, it is
assumed that m = 100 and the parameters to be estimated (the inputs of the objective function)
are h1, hm, s and ψ. For each set of observations, 100 initial values are randomly simulated to
initiate the numerical optimisation in search for the MLE.

The maximised log-likelihoods are plotted in Figure 5.18, in which most optimisation out-
puts are located at the maximum log-likelihood value. As expected, some are smaller than
the maximum log-likelihood value; that is, the maximum log-likelihood value is about -1860
whilst a few outputs are around -1873 for n = 500.

4
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Figure 5.18: Empirical distribution of one hundred estimates using 100 randomly simulated
initial values for different sample sizes.

5.6.1 Sensitivity assessment
Marshall and Zenga (2012) proposed a measure of convergence performance called rate of
algorithm’s success (RAS) defined by

RAS =
number of acceptable results

number of successful estimations
(100%),

where the successful estimations refer to the estimation procedure that complete the entire
calculation process. The acceptable results are those that fall in the range of acceptable param-
eters.

On the basis of a sufficient condition in Theorem 5.4, the range of acceptable parameters
are

lN(θ̂) − lN(θ) < M(θ)ε,

where θ̂ is the parameter value that maximises the log-likelihood. Recall the default value
ε = 10−10. The maximum log-likelihoods in Example 5.6 are −1860.2659, −3720.4667,
−5659.3706 and −7497.9491 for n = 500, 1000, 1500, 2000, respectively.

We use the RAS to assess how sensitive the optimisation output is to the initial value. The
RAS for each sample is reported in in Table 5.5. There are 3 unsuccessful estimations for
n = 500 and 1 unsuccessful estimation for n = 1500. The Hessian matrix evaluated at each
unsuccessful estimation is not negative definite (not all eigenvalues of the Hessian matrix are
positive), implying that a local maximum is not found. The RAS is poor, i.e., less than 20%,
for n = 500, whilst the RAS is greater than 50% for n = 1000, 1500, and 2000. The RAS
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increases when the sample size increases from n = 500 to n = 1000; then, the RAS decreases
as the sample size continues to increase from n = 1000 to n = 2000. The low RAS suggests
that the estimated result based on one set of initial values is unreliable.

Table 5.5: Number of acceptable results, number of successful estimations, and the RAS for 4
sets of simulated lifetimes.

# of acceptable results # of successful estimations RAS (%)
n=500 19 97 19.6
n=1000 75 100 75
n=1500 66 99 66.7
n=2000 56 100 56

Furthermore, by checking the eigenvalues of the Hessian matrix evaluated at the estimated
point, the smallest eigenvalue is always close to 0 (around 0.01 for n = 500, around 0.05 for
n = 1000, around 0.1 for n = 1500, and around 0.2 for n = 2000). The smallest eigenvalue
near 0 means the log-likelihood surface is flat, which is problematic for optimisation. As a
result, it is not easy to find the global maximum-likelihood estimate for this illustration.

In terms of the estimate for each initial value, the distributions of estimate for each pa-
rameter for the successful estimations are in Figure 5.19, Figure 5.20, Figure 5.21, and Figure
5.22. The estimated results for each parameter are stable with a distinguishable tall bar in each
graph. Therefore, the estimate for each parameter is stable. The estimates for all parameter
are significantly biased when n = 500, and, as we expected, the estimates are closer to the true
values as sample size increases. The estimates of hm are far from the true value, but our focus
for this example is on the stability of the estimate. Therefore, we conclude that the estimated
result is stable in the general sense.

Remark 5.6. In all Figures in this Section, the red line locates the mean and the black dash
lines are the lower and upper limits of the 95% confidence interval of the estimate.

5.6.2 Strategy to overcome the initial-value sensitivity
We demonstrated that the estimate may be sensitive to one set of initial values, but it is generally
stable. A random simulation of a number sets of initial values can mitigate, to some extent, the
sensitivity issue. In particular, the calibration process starts with generating a number of initial
values, and then runs the numerical optimisation with each initial value. The final estimate is
the one that gives the best objective function amongst the optimisation outputs. For example,
Marshall and Zenga (2012, 2009a) used 103 initial values to find the MLE for their 4-state
Coxian model.

On the one hand, the more initial values we generate, the more likely the final estimate can
reach the optimum value. On the other hand, the more initial values we generate, the slower
the estimation process. To balance both aspects in implementation, we suggest that 20 sets of
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Figure 5.19: Empirical distribution of one hundred estimates of ĥ1 under different sample sizes.
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Figure 5.20: Empirical distribution of one hundred estimates of ĥm under different sample sizes.

initial values will be sufficient for the proposed PTAM. For example, the RAS in the above
example is between 20% and 75%. The probability that the final estimate is not in the range of
acceptable parameters is between 0.2520 = 9×10−13 and 0.820 = 1.15%. Such probabilities in
this range are so small that it is likely the final estimate is in the acceptable range.

In summary, the estimate based on one set of initial values may be sensitive to the initial
point, but the estimate based on a number of randomly generated initial values is relatively
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Figure 5.21: Empirical distribution of one hundred estimates of ψ̂ under different sample sizs.
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Figure 5.22: Empirical distribution of one hundred estimates of ŝ under different sample sizs.

computationally helpful.



Chapter 6

Identifiability and estimability

We investigate the identifiability and the estimability of the proposed PTAM in this Chapter.
The proposed PTAM will be shown to be identifiable, but it has poor estimability when the
observation is only the time until absorption. The poor estimability can be visualised by the
narrow ellipses in the contour plots, and the flat marginal likelihood functions.

We use a data-cloning method to assess model estimability. Through this method, the
PTAM’s estimability under different scenarios could be compared, from the best scenario that
the Markov process is fully observable for each individual to the worst scenario that the only
observation is the time until absorption for each individual. Some scenarios in the middle are:
(i) the state can be observed every couple years; and (ii) the state can be measured with some
error. The additional information about the state improve the PTAM’s estimability.

6.1 Some pertinent background on model identifiability and
model estimability

A simple version of the relationship between model inference and model identifiability is that
model inference can be accurate if and only if the model is identifiable. When the model is
identifiable, the true parameter values can be learnt theoretically. Thus, model identifiability is
one of the fundamental statistical properties required for both model inference and hypothesis
testing. Hsiao (1983) included a survey on the development of the model identifiability condi-
tions since the publication of Fisher’s book (Fisher, 1966). Hsiao (1983) attempted to describe
the identifiability issues in a mathematical manner. The identifiability criteria for some specific
models were provided. Furthermore, a discussion about the identifiability issue from the per-
spective of the Bayesian approach was addressed as well. In Casella and Berger (2002), and
Lehmann and Casella (2006), some examples of models that are non-identifiable were given.
The true parameter values in those non-identifiable models can never be learnt from the data.

Model inference plays an important role in recovering the true parameters based on ob-
served data. For example, either a point estimate paired with its estimated standard error or the
confidence interval for each parameter is helpful to get some insights on the underlying model.
However, the performance of such statistics depends highly on model identifiability and model
estimability. In other words, two basic questions need to be answered before starting model
inference: Which models are identifiable? and Which models are estimable? The formal def-
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inition of each concept will be provided in the later part of this Chapter. We start with some
general ideas.

One of the popular ways to estimate the model parameters is through the MLE method.
Given a data set, the MLE of a model is plausibly unique only when the likelihood surface
has a distinguishable peak and the likelihood surface has much curvature around the peak.
The uniqueness of the MLE is related to model estimability, which has been well studied
for linear models. For example, Alalouf et al. (1979) studied the required conditions on X
such that a general linear model g(Y) = Xβ is estimable. Bunch (1991) demonstrated some
non-identifiable covariance parameters in a model that has a linear-in-parameters multinomial
probit framework. Lele et al. (2010) applied data cloning to test the estimability of generalised
linear mixed models.

There are some studies on model estimability for general models. For instance, Mietti-
nen (1976) assessed the estimability of the ratio of incidence densities in case-referent studies.
Jacquez and Greif (1985) attempted to develop practical approaches to examine local identifia-
bility for particular parameters. They showed that if one has initial estimates of the parameters,
then the local identifiability, estimability, and optimal sampling design involve similar consid-
erations. To generalise the required conditions for a model to be identifiable and estimable,
Bunke and Bunke (1974) developed a general theory of both parameter identifiability of un-
biased decision functions and estimable optimal decision sets. Furthermore, they showed that
estimability and identifiability coincide for linear models, and the linear parameters in multi-
variate linear models can be viewed as estimable and identifiable with a suitable loss function.
A good survey of previous studies on identifiability and estimability is McLean and McAuley
(2012). In their survey, they compared the questions to answer between identifiability analysis
and estimability analysis, which clearly distinguish one analysis from the other. Furthermore,
they recommended some studies on identifiability analysis and some studies on estimability
analysis in each of the following categories:

• alternative names

• information used

• mathematical techniques

• model type

• model complexity

The relationships between identifiability and estimability are as follows:

• a non-identifiable model must be non-estimable;

• an estimable model must be identifiable.

Nevertheless, it is worth noting that the opposite of previous relationships may not be true. An
identifiable model is not necessarily estimable for any set of data, and a non-estimable model
is not necessarily non-identifiable. After defining model identifiability and model estimability,
we provide a counterexample to show the opposite of the relationships may not hold.
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Recall the fact that a model has accurate model inference if the model is identifiable, and
another fact that the MLE is unique if the model is estimable. There are some challenges on
interpreting the calibrated result if the MLE is not unique. Since the proposed PTAM is a
model for ageing process, both the model inference and model interpretation are important.

6.2 Trade-off between model flexibility and inferential power
A model with more parameters is more flexible in reproducing a variety of distributions.
Nonetheless, including more parameters in a model increases model complexity. A well-known
theorem, proved initially by Cox (1955) and summarised by Bolch et al. (2006), states that any
distribution with non-negative support can be approximated well by a phase-type distribution
or a Coxian distribution. The models with more parameters have a higher degree of freedom
resulting distribution, and their distributions are more flexible. From the standpoint of model
flexibility, a model with more parameters is preferable.

A model with more parameters though has less inferential power. As the model includes
more parameters, it is less likely to learn the “true” parameter values from the data. This phe-
nomenon is related to the curse of dimensionality – when the dimension increases, the volume
of the parameter space increases so fast that the available data becomes sparse, especially in
high dimensional data. All objects then appear to be sparse and dissimilar in many ways,
which prevent common data-organisation strategies from being efficient. This sparsity is prob-
lematic for model inference. Trunk (1979) constructed a mixed Gaussian example such that
P(X | ω1) ∼ N(µ1, I), P(X | ω2) ∼ N(µ2, I), where µ1 = µ = −µ2 is an n−vector mean value
whose ith component is (1/i)1/2, and P(ω1) = P(ω2) = 1

2 . They proved that the probability
error, P

(
X>µ ≥ 0 | ω2

)
, approaches zero as the dimensionality increases when the mean values

were known; whilst the probability error approaches 0.5 as the dimensionality increases when
the mean values were estimated from a finite number of samples. Friedman (1997) demon-
strated an example that the optimal K for the K-nearest neighbor method increased rapidly as
the dimension of parameters increased. Both examples demonstrate that the issues occur in
high dimensionality. From the perspective of inferential power, a model with fewer parameters
is preferable.

To strike a balance between model flexibility and inferential power, the “best” model is typ-
ically selected from some model candidates through the Akaike Information Criterion (AIC)
or Bayesian Information Criterion (BIC). These criteria deal with the trade-off between the
goodness of fit and the model complexity. Cavanaugh and Neath (2019) summarised the back-
ground, derivation, properties, application, interpretation, and refinements of the AIC, and
similar research endeavours were contributed by Neath and Cavanaugh (2012) for the BIC.
Vrieze (2012) compared the AIC and the BIC, and found that:

• The BIC is consistent in selecting the right model if the actual model is amongst the
candidates, under which the BIC is more efficient than the AIC.

• The AIC is more efficient if the actual model is not amongst the candidates since the AIC
asymptotically chooses the model by minimising the mean squared error of estimation.

Since the number of parameters in the proposed PTAM is fixed for any m, and both the AIC
and the BIC are equal to a constant minus two times the log-likelihood, minimising either the
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AIC or the BIC is equivalent to maximising the log-likelihood (MLE), which is our criterion
to calibrate the PTAM. As a result, when calibrating the PTAM, we do not need to worry about
the trade-off between goodness of fit and the model simplicity.

From the perspective of model simplicity, the proposed PTAM has 5 parameters, and this
number of parameters is relatively small compared with the models in Lin and Liu (2007) and
Govorun et al. (2018). From the perspective of model flexibility, the proposed PTAM allows
some flexibility on the dying rates resulting to a variety of lifetime distributions (see section
3.5).

6.3 Identifiability of the proposed PTAM

Which models are identifiable? To answer this question, we need to define what model identi-
fiability is.

Definition 6.1. Given the model parameter space Θ and the model support T , the model pa-
rameter θ ∈ Θ is identifiable if, for any θ1, θ2 ∈ Θ such that the probability density functions
fθ1(t) = fθ2(t) for ∀ t ∈ T, then it must be that θ1 = θ2. Or equivalently, for any θ1 , θ2 ∈ Θ,
there is a t0 ∈ T such that fθ1(t0) , fθ2(t0). If the (model) parameter fails to be identifiable, then
the (model) parameter is non-identifiable.

It is well-known that the general phase-type models are non-identifiable. Marshall and
Zenga (2009b) indicated that finding efficient numerical procedures in the estimation of the
phase-type model parameters remains an open problem. A part of the estimation challenge is
due to the phase-type model’s non-identifiability.

Remark 6.1. There may be two different phase-type models whose resulting lifetime distribu-
tions are indistinguishable, i.e., their pdf’s are the same but their corresponding set of param-
eter values could be different.

Example 6.1. A case of a non-identifiable phase-type model is the m×m degenerated transition
matrix

Λ =


− (λ1 + h) λ1

− (λ2 + h) λ2
. . .

− (λm−1 + h) λm−1

−h


. (6.3.1)

Under this situation, the transition rates from any transient states to an absorbing state are
identical. The resulting pdf for any λi ≥ 0, i = 1, ...,m− 1, is equal to the pdf of an exponential
distribution with rate h, i.e., f (t) = he−ht.

4
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Ramı́rez-Cobo et al. (2010) constructed a simple but non-identifiable two-state hidden
Markov model. The non-identifiability of the general phase-type model is due to overparam-
eterisation – the number of model parameters is more than needed to generate the required
distribution.

Different restrictions on the phase-type models are imposed to construct identifiable phase-
type models. One popular class of phase-type models is the Coxian model, which is proved
to be dense in the field of non-negative-valued distributions (Cox, 1955). The identification of
the Coxian models is an open problem, and many contributions to the Coxian model calibra-
tion have been given in the past few decades (e.g., Dempster et al. (1977) and Asmussen et al.
(1996) utilising the EM algorithm to maximise likelihoods). In order to enhance the interpreta-
tions, Augustin and Büscher (1982) presented a new representation for the Coxian models by
decomposing the Markov chain into several Markov chains with associated entry probabilities.
In Faddy (1994), Coxian models are fitted to several example data sets; whilst in Faddy (1998),
inferring the number of states for a Coxian model by likelihood ratio testing was shown. Faddy
(2002) exploited the penalised maximum likelihood estimation in distinguishing the eigenval-
ues of the transition intensity matrix. The characterisation of the Coxian model as it relates to
its identifiability is contained in the next theorem.

Theorem 6.1. A Coxian model has a unique minimal representation.

Proof. See Cumani (1982).

�

Remark 6.2. Recall that the representation for a Coxian model is (α,Λ), where the dimension
of Λ depends on the total number of states m. The representation with the smallest m such that
it can generate the target lifetime distribution is called the minimal representation.

Chapter 2 of Fackrell (2003) discusses the non-uniqueness of representations for the gen-
eral phase-type models and the uniqueness of minimal representation for the Coxian models.
Cumani’s theorem implies that the minimal representation of a Coxian model is identifiable.
The minimal representation of Example 6.1 has the following 1 × 1 degenerated transition
matrix

Λ =
[
−h

]
.

Such a representation is identifiable. However, other representations of the form (6.3.1) are
non-identifiable.

Since the proposed PTAM is a type of a Coxian model, its minimal representation is unique
and identifiable. When h1 , hm, the minimal representation of the proposed PTAM is (α,Λ),
where α is a 1 × m row vector with the first element equal to 1 and the others are equal to 0,
and Λ is a m × m matrix

Λ =


− (λ + h1) λ

− (λ + h2) λ
. . .

− (λ + hm−1) λ
−hm


,
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and hi follows (3.3.3). The minimal representation has such a form because the absorption
rates in different states are different. Thus, the dimension of the intensity matrix in the minimal
representation cannot be reduced further. As a result, both the absorption rates and the tran-
sition rates for the proposed PTAM are identifiable. The parameters for the proposed PTAM
are identifiable as well. However, one trivial case occurs when h1 = hm = h, yielding hi = h,
and the degenerated transition matrix Λ is a special case of (6.3.1) with λi = λ. This example
illustrates the concept of non-identifiablility as per our previous analysis.

From another perspective, the resulting distribution is a mixture of exponential distribu-
tions with different rates by (2.3.11). The rate parameters uniquely determine the resulting
distribution. Thus, insofar as the rates are different, the rate parameters should be identifiable,
which is consistent with the theorem of Cumani (1982). Two proposed PTAMs, except for the
trivial example having all absorption rates equal, with different total numbers of states cannot
generate the same pdf in the domain. This is trivial when considering the resulting pdf as a
mixture of exponential distributions, in which the number of components is equal to the total
number of states and the rates for different components are distinct.

In summary, the proposed PTAM is identifiable. Therefore, the true parameter values can
be inferred from the lifetime data. As per our investigations, however, it is typical to achieve
similar likelihoods for different values of m for the same set of lifetime data. When involving
parameter estimation, a desired requirement is to introduce model estimability.

6.4 Estimability of the proposed PTAM
The identifiability of the proposed PTAM provides a solid background for accurate model
inference in theory. However, there are challenges when calibrating the PTAM. Given a set
of lifetime data, it is typical to obtain similar likelihoods for different values of m. In order
to facilitate the interpretation of the calibrated results, only one set of estimated values will be
used in the final calibrated model. Therefore, it is important to answer the question: which set
of estimated values is the most suitable for the final calibrated model?

Let us start with the parameter estimation of the phase-type models. The parameter esti-
mation is challenging, especially when the total number of states is unknown and it has to be
estimated from the data. To overcome the estimation challenges, many studies have defined
restrictions on the Coxian representation. Bobbio and Cumani (1992) suggested maximising
the log-likelihood by solving an iterative linearisation method of estimation. Asmussen et al.
(1996) proposed a fitting procedure based on the Expectation-Maximisation (EM) algorithm.
Faddy (1994) and Faddy (1998) utilised the optimisation algorithm proposed by Nelder and
Mead (1965) to maximise the log-likelihood function. The problem of non-convergence of the
algorithm by penalised likelihoods was remedied in Faddy (2002).

It is typical for Coxian models to achieve a flat log-likelihood surface around the maxi-
mum. This is troublesome when searching for the MLE numerically, and it is a symptom of
poor model estimability, which we will address after defining model estimability. Notably, the
proposed PTAM has a flat log-likelihood, and the result from the simulation study in Subsec-
tion 3.4.3 is used to demonstrate this particular issue of flatness. Consider the estimated results
for other parameters when fixing the value of m in Table 6.1. The log-likelihood differences
for various values of m are relatively small.
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Table 6.1: Estimation results using different m’s based on 5,000 lifetimes simulated from the
Le Bras’s limiting distribution. The first column gives the negative log-likelihood NLL. The
last column is the limit of the resulting hazard function h(t) as t → ∞.

NLL h1 hm λ = m
ψ

s m min(λ + h1, hm)
21631.884 0.00081 2.0033 1.7764 -0.1237 200 1.7772
21631.826 0.00080 1.8392 1.8652 -0.1183 210 1.8392
21631.806 0.00080 1.7079 1.9540 -0.1134 220 1.7079
21631.713 0.00080 1.6535 1.9991 -0.1112 225 1.6535
21631.813 0.00079 1.6006 2.0428 -0.1089 230 1.6006
21631.843 0.00078 1.5108 2.1316 -0.1047 240 1.5108
21631.889 0.00078 1.4354 2.2205 -0.1009 250 1.4354

The goodness of fit for some values of m is displayed in Figure 6.1. Graphically, all fitted
PTAMs approximate the Le Bras model well for most ages, except for the extremely old ages
above 100. The survival probabilities to such extremely old ages are so small that only a few
extremely old lifetimes can be observed. There could be hardship in validating the goodness of
fit at the tail due to the lack of data. This validation may require an unreasonably large amount
of data, which is unrealistic to collect in practice. Since the PTAM’s calibrated results under
different fixed m’s are close, it is challenging to estimate m using lifetime data only. This is
consistent with our beliefs that m controls the variability of physiological age at any chronolog-
ical age, and the lifetime data provide little information about the variability of physiological
age. Our experiments show that the PTAM’s estimability is relatively poor when m is one of
the parameters, whilst the estimability of the other parameters is improved significantly when
m is fixed.

The main idea of estimability is whether the MLE is unique. If the MLE is not unique,
it is impossible to distinguish those estimated results from each other when comparing their
resulting distributions.

Definition 6.2. Given a set of data y = (y1, ..., yn). If N(θ) = {θ ∈ Θ : l(θ, y) = max l(θ, y)} is a
single set, where l(.) is the log-likelihood, then we say θ is estimable based on y. Or, we simply
call the model estimable.

According to the definition, the estimability of the model parameter relies on both the model
identifiability and the data quality. The parameter is estimable only when both the model is
identifiable and the data quality is good enough to generate a distinguishable log-likelihood
peak around the MLE. However, an identifiable model is not necessary to be estimable for any
set of data. A counterexample is

Example 6.2. Suppose the random variable X follows a PTAM with a 2 × 2 intensity matrix

Λ =

[
− (λ + h1) λ

−h2

]
,
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Figure 6.1: Fitted survival function S (t), pdf f (t), hazard function h(t), and log (base 10) hazard
function. Each graph includes four curves corresponding to the fitted model with m=200, 225
and 250, as well as the true model. The dotted vertical line indicates the location of ψ = 112.55.

where h1 , h2. From Theorem 6.1, the PTAM is identifiable. Suppose only one data x = ε,
where ε is a small value close to 0, is observed. Then the likelihood is

L(h1, hm, λ) = (1, 0)eΛεh ≈ (1, 0)(I + Λε)h = h1 − ((λ + h1)h1 − λh2)ε,

where the approximation is due to the Taylor series eΛε = I + Λε + o(Λε). The values of λ and
h2 have little impact on the likelihood value. Hence, the likelihood around the neighbourhood
of MLE is flat and it is problematic to maximize the likelihood.

4

If more observations can be collected in Example 6.2, we have more information about the
process. Thus, it is easier for the numerical optimisation process to find an unique MLE. This
maximisation challenge in the numerical process is due to poor data quality. For instance, there
is only one observation in Example 6.2. This observation has the information about the first
state, but tiny information about the second state. Therefore, the likelihood remains the same
level when change the parameter value in the second state.

Recall that the observed lifetimes are the sum of sojourn times spent in each state before
absorption. If the complete information for each individual (the sojourn time spent in each
state before absorption) is observed, the estimability of the parameters in the PTAM improves
significantly. The improvement is attributed to the capacity of being able to estimate the rate
parameters in each state through the sample sojourn times; meanwhile, the total number of
states m can be estimated by the maximum observed state. However, complete information is
unattainable in reality and it is typical to estimate the parameters with lifetime data only. Our
experiments show nonetheless that the estimability of the proposed PTAM is relatively poor if
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only the lifetime data are relied upon, especially when m needs to be estimated. It is typical
to achieve a fairly flat log-likelihood surface for some values of m. On the other hand, if m is
fixed, the estimates of other parameters are more stable and are easier to find, which indicates
that model estimability could be brought about by fixing m.

We monitor closely the marginal log-likelihood in the neighbourhood of the MLE for the Le
Bras model simulation study in Figure 6.2. That is, each marginal log-likelihood is calculated
by changing one parameter value near the MLE and fixing the others at the MLE. As we
could see from Figure 6.2, the marginal log-likelihood has more curvature when h1, hm, s, and
λ are changed. The marginal log-likelihood is relatively flat though when changing ψ and m.
Furthermore, when fixing both m and ψ, the other parameters are highly correlated, which is
shown by three contour plots in Figure 6.3. There is a narrow ridge in each graph, which means
the log-likelihood can remain the same even when other parameter values are changed with
one parameter value having a drastic change. The correlation between hm and s is relatively
stronger, compared with the other two correlations. This is because a smaller s can achieve
a flatter hi pattern in the early states when hm is overstated (see Figure 3.4); this somehow
mitigates the biased estimate of hm.
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Figure 6.2: Left-Up: Log-likelihood function with h1 changing and other parameters fixed
around the MLE; Right-Up: Lhe log-likelihood function with hm changing and other parame-
ters fixed around the MLE; Left-Middle: Log-likelihood function with λ changing and other
parameters fixed around the MLE; Right-Middle: Log-likelihood function with s changing and
other parameters fixed around the MLE; Left-Down: Log-likelihood function with ψ chang-
ing and other parameters fixed around the MLE; Right-Down: Log-likelihood function with m
changing and other parameters fixed around the MLE.

Example 6.3. To illustrate the strong pairwise correlation amongst h1, hm and s, we assign
m = 225 and λ = 1.99908. After fixing m and λ, we fix one of the parameters in the set {h1, hm,
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Figure 6.3: Contour plots of the log-likelihood at the MLE for the Le Bras simulation study
with one parameter fixed.

s}, and estimate the other two parameters by the MLE method. The fixed values are:

• h1 = 10−5, resulting to relatively low dying rates in the early states.

• hm = 100, resulting to extremely high dying rates in the last few states.

• s = 0, resulting to an exponentially increasing dying rate with respect to physiological
age.

The estimated hi’s under each scenario are plotted in Figure 6.4. It is clear that the
estimated dying rates under each scenario are almost identical before state 100; they
are slightly distinguishable from state 100 to state 150; and they are significantly dis-
tinguishable after state 150. Since only few individuals can survive to extremely high
physiological ages (states), the maximised likelihoods under each scenario are similar to
each other.

4

When calibrating the PTAM with lifetime data only, the estimate of h1 is determined by the
mortality rates at extremely young ages, and the estimate of hm is determined by the mortality
rates at extremely old ages. The logic behind this is intuitive when checking the physiological
age distributions at young ages and the physiological age distributions at old ages. Recall
another fact that the impact on the resulting lifetime distribution due to the biased estimate of
hm can be mitigated by a biased estimate of h1. Therefore, as far as the sample size is large
enough that there are enough sample individuals surviving to extremely old ages, the estimates
of h1 and hm should be independent and accurate. However, it is extremely rare that there
are enough death time samples at extremely old ages, which causes huge uncertainty on the
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estimate of hm. The strong correlations between h1 and hm, between h1 and s, and between hm

and s make the PTAM calibration quite a hurdle, especially when dealing with model inference.
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Figure 6.4: Estimated hi for the Le Bras simulation study with one parameter fixed.

6.4.1 Assessing model estimability
As mentioned before, the model estimability relies on both model identifiability and data qual-
ity. For a given set of lifetimes, different parameter values for the proposed PTAM may gen-
erate similar log-likelihoods. It is essential to test whether the log-likelihood difference is due
to computation errors or the nature of poor estimability. Our objective is to be able to assess
model estimability.

Some tools in the exploration of model estimability could be grouped into five categories:

• Interval estimation or confidence interval for the parameter;

• Hessian matrix evaluated at the MLE;

• Constructed testing function;

• Sensitivity testing on priors;

• Data cloning.

Interval estimation
Most papers (e.g., Titman and Sharples (2010)), with the use of a data set, assess model estima-
bility by checking the width of the confidence interval for each parameter. When the confidence
interval is “wide”, the estimates’ variance is large, and there is more uncertainty about the ac-
tual parameter values. Therefore, the model estimability is poor when the confidence interval
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is “wide”. One advantage of this method is that the concept is easy to understand, and another
advantage is its power to detect those models that are non-estimable. Note that this method is
qualitative in terms of judging “wide” confidence interval. For those cases with not so wide
confidence intervals, model estimability may still be poor.

Hessian matrix at the MLE
When numerically searching for the MLE, it is easy to evaluate the Hessian matrix of the
log-likelihood at the optimum. Moriguchi and Murota (2012) reported the characteristics of
the Hessian matrix, one of which is that the curvature of log-likelihood around the MLE can
be quantified by the Hessian matrix evaluated at the MLE. If the evaluated Hessian matrix
is negative-definite, i.e., eigenvalues are all negative, then the optimum is a local maximum.
Moreover, the bigger the minimum of the absolute value of eigenvalues for the evaluated Hes-
sian matrix is, the more curvature the log-likelihood surface exhibits, the better the model es-
timability. Unfortunately, when estimating the parameters for the proposed PTAM, it is typical
to find that the minimum eigenvalue, in absolute value terms, of the Hessian matrix evaluated
at the estimated point is relatively very small; causing poor estimability in the proposed PTAM.
The Hessian matrix evaluated at the MLE is equal to the negative of the Fisher information.
The observed Fisher information can be numerically obtained as robust numerical methods to
calculate the Hessian matrix are available in most software such as MATLAB and R.

Testing function
The third tool to assess estimability is to construct a testing function by utilising the alternating
conditional expectation (Hengl et al., 2007). The testing function is the empirical variance of
the average ranked transformation, which is designed to detect models with poor estimability.
However, the testing function is not powerful enough to detect estimable models.

Sensitivity testing on priors
When using Bayesian approaches, the model parameter is estimable for data set if the posterior
is not sensitive to the choice of the prior. Eberly and Carlin (2000) selected three different
priors for a non-estimable parameter in a hierarchical Gaussian model, resulting to 3 different
posteriors. Similarly, Mu (2019) chose four different priors for a non-estimable parameter in
their binomial model, resulting to four distinguishable posteriors. Both examples demonstrated
the assessment of estimability from the Bayesian perspective. The embedded mechanism is in-
tuitive. If the model parameter is estimable for a given data set, the data has enough information
for learning the parameter value, and the posterior should not be affected too much by the pri-
ors, and vice versa. It is inevitable to use the Markov Chain Monte Carlo (MCMC) technique
to obtain the posterior for the proposed PTAM. To test whether the posterior is affected by the
choice of the prior, we need to select a variety of priors and run the MCMC for each prior,
which is a time-consuming process. There is no quantitative way to test whether the posterior
is sensitive to the choice of prior. Currently, this approach is mainly based on the modeler’s
graphical judgement of the posteriors.

Data cloning
Another method to assess estimability using the Bayesian approaches is called data cloning.
The basic idea of data cloning is to ‘exaggerate’ the log-likelihood’s curvature by repeating
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the data multiple times. Lele et al. (2010) utilised data cloning to explore the estimability of
parameters in some hierarchical models, logistic-normal model, and mixed binary-regression
model. They proved that the variance of the posterior for the estimable parameter converges to
0 with increasing clones, whilst the variance of the posterior for the non-estimable parameter
does not converge to 0 with increasing clones. Some numerical examples to demonstrate the
variance of the posterior for both estimable and non-estimable parameters were provided in
their paper. In the context of data cloning, Campbell and Lele (2014) assumed a linear model
for the posterior mean with k clones and the pth prior. They performed ANOVA testing on two
hypotheses: (i) the point estimates are not significantly different when changing the number of
clones, and (ii) the point estimates are not significantly different when changing priors. Their
conclusion is that the parameter is estimable if the result passes both ANOVA tests. In general,
the process of data cloning can be summarised in 3 steps:

• Step 1: Clone the data multiple times and treat them as observations;

• Step 2: Obtain the posterior based on the observations;

• Step 3: Check if the variance of the posterior converges to 0 with the increasing number
of clones.

Theorem 6.2. Suppose K is the number of clones, n is the number of observations, and N(θ) =

{θ ∈ Θ : l(θ, y) = max l(θ, y)} is a single-point set, that is, the likelihood function is identical
over the set N(θ). As K → ∞, the posterior distribution converges to a distribution with density

π(θ)∫
N(θ) π(θ)dθ

for θ ∈ N(θ), where π(θ) is the prior distribution of θ. If the set N(θ) is not a single-

point set, σ2
K,n, the largest eigenvalue of the posterior variance matrix, does not converge to

0.

Proof. The proof is the same as that in Lele et al. (2010). However, some details are supple-
mented to clarify certain steps in the original proof.

Consider the ratio of the posterior distributions with two sets of parameter values:

πK (θ|y)
πK

(
θ(n)|y

) =
π(θ)
π
(
θ(n)

) f K(y|θ)
f K (

y|θ(n)
) ,

where θ(n) is a parameter value that maximises the log-likelihood l(θ; y). For θ < N(θ),

πK(θ|y)
πK

(
θ(n)|y

) =
π(θ)
π
(
θ(n)

) (
f (y|θ)

f
(
y|θ(n)

))K

→ 0,

as K → ∞ because f (y|θ)
f (y|θ(n))

< 1. For θ1, θ2 ∈ N(θ), πK (θ1 |y)
πK (θ2 |y) =

π(θ1)
π(θ2)

f K (y|θ1)
f K (y|θ2) =

π(θ1)
π(θ2) . Thus, N(θ) is a

single-point set if and only if the variance of the posterior converges to 0 as K → ∞.

�

The sufficient and necessary condition, indicated in the proof of Theorem 6.2, provides a
quantitative method to assess model estimability. It is inevitable to use MCMC in obtaining
posteriors under a Bayesian approach as the posteriors have generally intricate structures.
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Similarly, we can prove that, given lifetime data set, the MLE is unique if and only if the
MLE for such a data set with K clones is unique as K → ∞. Hence, data cloning is a powerful
method to test estimability from both the Bayesian and likelihood-based approaches.

Theorem 6.3. Consider a lifetime data y = (y1, ..., yn) and any calculation tolerance ξ and
suppose NK(θ) = {θ ∈ Θ : K|l(θ, y) − max l(θ, y)| < ξ}, where l(.) is the log-likelihood. The
parameter θ is estimable based on lifetime data y if and only if NK(θ) is a single-point set as
K → ∞.

Proof. When N(θ) is a single-point set, N1(θ) may contain more than one point, which means
there are at least two different sets of parameter values such that the log-likelihoods are nu-
merically identical. Since N(θ) is a single-point set, there is a unique θ0 such that l(θ0, y) =

max l(θ, y). Therefore, for any ξ > 0 and any θ , θ0 ∈ N1(θ) there is a K0 such that for any
K > K0,

K|l(θ, y) − l(θ0, y)| > ξ,

which indicates θ < NK(θ). As K → ∞, we have NK(θ) = {θ0}.
On the other hand, suppose NK(θ) is a single-point set as K → ∞ and there are θ1, θ2 ∈ Θ

such that l(θ1, y) = l(θ2, y) = max l(θ, y). By definition, θ1, θ2 ∈ NK(θ) for K = 1, 2, .... Hence,
θ1, θ2 ∈ NK(θ) as K → ∞. Since NK(θ) is a single-point set as K → ∞, we have θ1 = θ2, which
implies N(θ) is a single-point set.

�

Compared with other methods, data cloning is the most suitable method to explore estima-
bility for two reasons:

• It is the only method that provides a sufficient and necessary condition to distinguish
estimable models from non-estimable models;

• It is a quantitative method providing a robust estimability procedure.

We shall therefore use data cloning in the pursuit of probing PTAM’s estimability. In the
next Section PTAM’s estimability will be investigated and the results will be compared under
different scenarios. This investigation is an assessment of the quality of model estimability in
a relative sense rather than in an absolute sense. In particular, a model has better estimability
compared with another model if the posterior of the model has a smaller variance than that of
the other.

6.4.2 PTAM estimability under some scenarios
Govorun et al. (2018) attempted to incorporate health-related information when calibrating
their phase-type model. They utilised health information to refine the physiological age dis-
tribution at any chronological age by assuming a linear relationship between the physiological
age and medical cost. By doing so, their calibrated results showed that the physiological age
variability at any chronological age was reduced with the incorporation of medical-cost infor-
mation. Thus, health-related information of a person apparently provides some information on
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the person’s physiological age. Refining the physiological age distribution at any chronological
age could mitigate the estimability issue. Inclusion of health-related information, in addition
to lifetime data, is a possible way to improve the poor estimability of the proposed PTAM.
However, it is not easy to collect this information, and therefore, we shall continue delving in
this investigation by simulations.

The PTAM to be simulated has the following true parameter values: h1 = 0.025, hm =

0.515, s = 1, m = 50, ψ = 31.25; and so, λ = 50/31.25 = 1.6. The corresponding pdf, survival
function, hazard rate, and dying rate are exhibited in Figure 6.5.
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Figure 6.5: Some plots related to the proposed PTAM with paramater values h1 = 0.025,
hm = 0.515, s = 1, m = 50, ψ = 31.25. Top-left: pdf; Top-right: survival function; Bottom-
left: hazard rate; Bottom-right: dying rate at physiological age.

One thousand phase-type ageing processes are simulated from the true model under the
following scenarios.

• Complete information – the complete path is observable;

• Partial information – the physiological age can be observed every k years;

• Partial information with noise – the physiological age can be measured every k years
with known measurement error;

• Partial information with unknown noise – the physiological age can be measured every
k years with unknown measurement error;

• No information – the physiological age is unobservable and only death time is observ-
able.
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Complete information

Suppose we observe the complete paths for n individuals. For the ith individual, let ti, j be the
time spent in state j and ni be the last transient state before absorption. The likelihood for the
ith individual is

L(θ; ti,•) =

ni−1∏
j=1

λ je−(λ j+h j)ti, jhnie
−(λni +hni )ti,ni ,

where λi = λ when i = 1, ...,m − 1 and λm = 0. The log-likelihood for the ith individual is then

l(θ; ti,•) =

{
(ni − 1) log λ + log hni −

∑ni
j=1(λ + h j)ti, j, when ni , m;

(m − 1) log λ + log hm −
∑m−1

j=1 (λ + h j)ti, j − hmti,m, when ni = m.

Then, the log-likelihood is

l(θ; t) =

n∑
i=1

l(θ; ti,•) (6.4.2)

It is necessary for the parameter MLEs to satisfy the system

∂l
∂λ

=
∑n

i=1
(ni−1)
λ
−

∑n
i=1

∑min(ni,m−1)
j=1 ti, j = 0

∂l
∂h1

=
∑n

i=1
1

hni

∂hni
∂h1
−

∑n
i=1

∑ni
j=1 ti, j

∂h j

∂h1
= 0

∂l
∂hm

=
∑n

i=1
1

hni

∂hni
∂hm
−

∑n
i=1

∑ni
j=1 ti, j

∂h j

∂hm
= 0

∂l
∂s =

∑n
i=1

1
hni

∂hni
∂s −

∑n
i=1

∑ni
j=1 ti, j

∂h j

∂s = 0.

Example 6.4. We sample 100 sets of data from the true model. Each set of data has 1,000
complete paths. The MLE, using each data set, can be numerically obtained through (6.4.2).
The summary statistics of one hundred MLEs via the mean, standard deviation, 5% quantile
and 95% quantile for each parameter are presented in Table 6.2.

Table 6.2: Some statistics for 100 MLEs under the complete information case.

mean standard Q(0.05) Q(0.95) true value
deviation

h1 0.0248 0.0048 0.0175 0.0322 0.025
hm 0.5012 0.0488 0.4319 0.5758 0.515
ψ 30.1094 1.4235 27.395 31.5449 31.25
s 0.9961 0.1288 0.78021 1.2044 1.00
m 48 2 44 50 50

Remark 6.3. For Tables 6.2 – 6.7. Q(0.05) and Q(0.95) are the 5th and 95th quantiles (or more
specifically, percentiles), respectively. The mean and standard deviation for m are rounded off

to the nearest integer.
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The one hundred MLEs shown in Figure 6.6 can be used to approximate the distribution
of the MLE with 1,000 individuals or more specifically, ageing processes for the complete
information case. The solid red line in each subgraph is the true parameter value, and the left
green dotted line is the 5th percentile of the empirical MLEs, which is the fifth smallest MLE.
The green dotted line to the right is the 95th percentile of the empirical MLEs, which is the
fifth largest MLE. All solid red lines are between the two green dotted lines, except that the red
line overlaps with the right green line in the distribution of estimated m.

From 6.6, the 90% confidence interval for each parameter can capture the true value, and the
associated standard deviation is relatively small. The empirical distribution of each estimate is
bell-shaped, except for the estimates of m and ψ. This evidence shows that the log-likelihood is
symmetric when complete information is observed. Furthermore, 50 out of the 100 estimated
m’s are equal to the true value 50, and the smallest estimated m is 42. Recall that for each
sample the size is 1,000, which is relatively small when fitting PTAMs. However, the estimates
are quite promising, especially the estimate of m.
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Figure 6.6: One hundred MLEs for the simulation study under the scenario of complete infor-
mation.

4

Remark 6.4. In Figures 6.6 – 6.11, the red solid lines are the true values, the green dotted lines
to the left are the 5th percentiles, and green dotted lines to the right are the 95th percentiles.

Partial information

Suppose we observe the states every k years for n individuals. For the ith individual, the states
are observed at time t i,• = 0, k, 2k, ..., nik, nik + ∆ti and the corresponding observed states are
yi,• = yi,1, yi,2, ..., yi,ni+1, yi,ni+2. Particularly, yi,1 = 1 and yi,ni+2 = m + 1. The likelihood for the



6.4. Estimability of the proposed PTAM 131

ith individual is

L(θ; t i,•, yi,•) =

ni∏
j=1

Pyi, j,yi, j+1αni+1eΛ∆ti h,

where Pi, j is the (i, j) element of the m × m matrix eΛk. The dimension of the vector αni+1 is
1 × m, where the (ni + 1)st element is 1 and 0 elsewhere. The log-likelihood is

l(θ; t i,•, yi,•) =

ni∑
j=1

log Pyi, j,yi, j+1 + log
(
αni+1eΛ∆ti h

)
The sample log-likelihood is

l(θ; t, y) =

n∑
i=1

ni∑
j=1

log Pyi, j,yi, j+1 +

n∑
i=1

log
(
αni+1eΛ∆ti h

)
. (6.4.3)

Example 6.5. We sample 100 data sets from the true PTAM. Each data set has 1,000 individual
lifetimes, whose ageing states can be observed every 3 years (k = 3). The MLE for each data
set can be numerically obtained using (6.4.3). The summary statistics for the one hundred
MLEs are displayed in Table 6.3.

Recall that the maximum lifetime for the true model is around 30. Hence, the number of
physiological ages that can be observed for the individuals who survive to the maximum life-
time in this population is around 10. If we linearly scale the lifetime variable in this population
to the human lifetime whose maximum age is 120, the state is scaled to be observed every 12
years, which is a reasonable time for insurance companies to update the physiological age for
each individual.

Table 6.3: Some statistics for 100 MLEs under the partial information case.

mean standard Q(0.05) Q(0.95) true value
deviation

h1 0.0278 0.0059 0.0182 0.0375 0.025
hm 0.4730 0.0494 0.3916 0.5432 0.515
ψ 32.8910 0.6500 32.0755 34.214 31.25
s 1.2166 0.16250 0.9748 1.5085 1
m 48 1 48 50 50

In Figure 6.7, one hundred MLEs are used to approximate the distribution of the MLEs.
Each MLE emanates from 1,000 data points for the partial-information case. All solid red
lines are between two green dotted lines, except for ψ and λ. Recall the fact that λ = m/ψ.
Therefore, the estimate of λ will be biased when either the estimate of m or the estimate of ψ
is biased. Compared with Figure 6.6, the estimability of ψ is relatively weaker.

4
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Figure 6.7: Histogram of one hundred MLEs for the simulation stud under the scenario of
partial information.

Partial information with noise

In practice, the physiological age (state) is unobservable at any chronological age. How-
ever, we can estimate the physiological age from some health-related information. Using
this approach to estimate the physiological age for each individual incurs measurement er-
rors. Suppose we observe the physiological age every k years with measurement errors for n
individuals. For the ith individual, the states are observed at time t i,• = (0, k, 2k, ..., nik, nik +

∆ti), and the corresponding observed values are ci,• = (ci,1, ci,2, ..., ci,ni+1, ci,ni+2). Let yi,• =

(yi,1, yi,2, ..., yi,ni+1, yi,ni+2) be the corresponding actual states. Furthermore, it is reasonable to
assume that

Ci, j = Yi, j + εi, j,

where Ci, j and Yi, j are the random variables with values ci, j and yi, j, respectively. Recall that we
cannot measure the true physiological age Yi, j, but can only get the state information through a
measurement Ci, j. Then, εi, j is the measurement error and assumed as

εi, j ∼ N
(
0, σ2

i, j

)
,

where N
(
0, σ2

i, j

)
represents a Gaussian distribution with mean 0 and standard deviation σi, j.

Additionally, it is reasonable to assume that the measurement errors are homogeneous so that
σi, j = σ. By such assumptions, the conditional distribution for Ci, j given Yi, j = yi, j is

Ci, j|Yi, j=yi, j ∼ N
(
yi, j, σ

2
)
.
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This tells us that the probability the individual is in state yi, j with its observed value ci, j is

P(Yi, j = yi, j, Ci, j = ci, j) = P(Yi, j = yi, j)P(Ci, j = ci, j|Yi, j = yi, j)

= P(Yi, j = yi, j)
1
σ
φ
(ci, j − yi, j

σ

)
.

It is worth noting that one can extend the relation between Ci, j and Yi, j to a function of physi-
ological age (state). For example, Govorun et al. (2018) assumed that Ci, j = aYi, j + b, where
a and b are parameters estimated from health-related data. Additionally, Ci, j can be treated
as a health-related random variable after making appropriate assumptions on the relation be-
tween Ci, j and Yi, j. Govorun et al. (2018) used the extended health benefits data for a Canadian
employee and retiree group. The health-related information is the health costs. That is, Ci, j’s
are taken as health costs. One can even extend Ci, j to other health-related data by proposing a
suitable function f (•) for Ci, j = f (Yi, j).

The likelihood for the ith individual is

L(θ; t i,•, ci,•) = α

 ni∏
j=1

P∗Ci, j

 h,

where P∗ = eΛk is an m × m matrix and

Ci, j =
1
σ


φ
( ci, j−1

σ

)
φ
( ci, j−1

σ

)
. . . φ

( ci, j−1
σ

)
φ
( ci, j−2

σ

)
φ
( ci, j−2

σ

)
. . . φ

( ci, j−2
σ

)
. . .

φ
( ci, j−m

σ

)
φ
( ci, j−m

σ

)
. . . φ

( ci, j−m
σ

)
 ,

which is m × m. The φ(•) is the standard normal pdf

φ(x) =
1
√

2π
e−

x2
2 .

The log-likelihood for the ith individual is

l(θ; t i,•, ci,•) = log

α
 ni∏

j=1

P∗Ci, j

 h

 ,
and the log-likelihood for the sample is

l(θ; t, c) =

n∑
i=1

log

α
 ni∏

j=1

P∗Ci, j

 h

 . (6.4.4)

Example 6.6. We sample 100 sets of data from the true PTAM. Each set of data has 1,000
individuals, whose states can be observed, with measurement error, every 3 years. Additionally,
the true value for the standard deviationσ is 1. The MLE for each set of data can be numerically
obtained using (6.4.4).
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Table 6.4: Summary statistics for 100 MLEs under the partial-information case with known
measurement error.

mean standard Q(0.05) Q(0.95) true value
deviation

h1 0.0180 0.0068 0.0067 0.0283 0.025
hm 0.4204 0.0424 0.3625 0.5029 0.515
ψ 30.9048 2.4115 26.4233 34.2845 31.25
s 1.3227 0.1621 1.0494 1.6019 1
m 46 4 39 51 50

The investigation starts with the easiest scenario – the true value for σ is known. One
hundred MLEs are summarised by the mean, standard error, 5% quantile and 95% quantile for
each parameter in Table 6.4. The empirical distribution of 100 MLEs are depicted in Figure
6.8.

Compared with Figure 6.7, the parameter estimability is relatively weaker owing to the fact
both the variance for each parameter is larger than that of the partial-information case, and the
90% confidence intervals for hm and s cannot capture their true values. This result is reasonable
because the measurement error contributes additional uncertainty to the parameter estimates.
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Figure 6.8: Histogram of one hundred MLEs for the simulation study under the scenario of
partial information and known measurement error.

The ensuing investigation deals with the scenario with unknown σ but to be estimated from
the data. Under this scenario, Table 6.5 contains the summary statistics of one hundred MLEs.
Figure 6.8 features the distributions of various MLEs showing that the bias of h1 and hm are
relatively higher because fewer estimated values are close to their true values. As expected, the
unknown standard deviation makes it harder to learn the true parameter values. The standard



6.4. Estimability of the proposed PTAM 135

error of estimates for h1 and hm are marginally smaller than that of the partial-information case
with known measurement error. This may be due to the biased estimation.

Table 6.5: Some statistics for the 100 MLEs for the case that states can be observed every 3
years with unknown measurement error.

mean standard Q(0.05) Q(0.95) true value
deviation

h1 0.0180 0.0059 0.0089 0.0268 0.025
hm 0.4198 0.03893 0.3656 0.4835 0.515
ψ 30.6299 2.4358 26.1289 33.73067 31.25
s 1.3113 0.1667 1.0155 1.5738 1.000
m 46 4 39 50 50
σ 1.1147 0.0494 1.0414 1.1978 1.000
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Figure 6.9: Histogram of one hundred MLEs for the simulation study under the scenario of
partial information and unknown measurement error.

4

We set k = 3 in previous investigations. What is then the impact on the estimability if
using a larger k? In other words, the effect of longer duration between two time points in the
collection of health-pertinent information is also a matter of interest. To demonstrate the impact
by a larger k, we set k = 7, meaning the states are observed every 7 years for each individual.
Furthermore, we assume σ is unknown, which is a more realistic occurrence. Similar to the
previous investigation, the parameter σ needs to be estimated from the data.
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Example 6.7. We sample 100 data sets from the true PTAM. Each data set has 1,000 indi-
viduals, whose states are reported, with measurement error, every 7 years. The true standard
deviation of the measurement error is 1.

Table 6.6: Summary statistics for 100 MLEs under the scenario where states can be observed
every 7 years with unknown measurement error.

mean standard Q(0.05) Q(0.95) true value
deviation

h1 0.0323 0.0058 0.0215 0.0412 0.025
hm 0.4296 0.0377 0.3757 0.5036 0.515
ψ 24.9278 0.6944 24.2117 25.7927 31.25
s 0.9289 0.1535 0.6668 1.18466 1.000
m 37 1 37 38 50
σ 1.2700 0.2660 0.5785 1.5751 1.000

The mean, standard error, 5th quantile, and 95th quantile for one hundred MLEs under this
scenario are given in Table 6.6, and the corresponding distribution is depicted in Figure 6.10.
As Ci, j is measured with a longer frequency, the estimates have more bias especially for m and
ψ. This finding is revealed by the locations of the red lines in Figures 6.9 – 6.10. However,
the MLE for ψ and m has less variability even when Ci, j is gathered less frequently. One
explanation may be due to the underestimation of ψ and m when health-related information is
collected every 7 years.
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Figure 6.10: Histogram of one hundred MLEs for the simulation study under the scenario
where states are observed every 7 years with an unknown measurement error.
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No information

Recall that when the observed lifetimes are (t1, ..., tn), the likelihood can be calculated as

L(θ; t) =

n∏
j=1

αeΛt j h.

and the log-likelihood is

l(θ; t) =

n∑
j=1

log
(
αeΛt j h

)
, (6.4.5)

Example 6.8. We sample 100 sets of data from the true PTAM. Each set of data has 1,000
individuals, and we can only observe each death time. The MLE for each set of data can be
numerically obtained using (6.4.5). Furthermore, since we need to fix m before estimating the
other parameters, the values of m are set to 30, 40, 50, 60 and 70. For each set of data, we
can get the MLE for each fixed value of m, and the MLE yielding the highest likelihood is
considered as the ultimate MLE.

Table 6.7: Summary statistics for 100 MLEs under the no-information case.

mean standard error Q(0.05) Q(0.95) true value
deviation

h1 0.0342 0.0055 0.0245 0.0416 0.025
hm 2.0356 1.4802 0.2451 3.9998 0.515
ψ 53.4666 27.3086 10.8214 99.9988 31.25
s 0.6121 0.3173 -0.0045 1.0985 1.000
m 44 16 30 70 50

In Table 6.7, summary statistics for one hundred MLE’s is provided under the no-information
situation. Figure 6.11 is the histogram of 100 MLEs, with each MLE obtained from 1,000 data
samples. The standard deviations for the parameters are relatively higher compared with the
previous cases. In particular, around 70% of the estimates of m amass at the boundaries (ei-
ther at 30 or 70), which means the likelihood may increase when setting m equal to the value
beyond the boundaries. Therefore, the poorest estimability happens when no information is
observed, especially the estimability of m. This is expected because it is the hardest scenario
to learn the true parameter value with no information concerning the underlying process.

4

Assessment of estimability by data cloning

We assess the estimability under each scenario by comparing the distribution of the estimate
of each parameter. Based on Figure 6.12 , the standard deviations for the estimates getting
larger the less information we have for the physiological age, implying a more problematic
estimability.
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Figure 6.11: Histogram of one hundred MLEs for the simulation study under the scenario no
information.

We simulate observations in each scenario. One thousand complete paths of individual’s
ageing process are simulated from the true model. The only difference in each scenario is the
observed information. Since we are going to explore the posterior variance with different num-
ber of clones, we need to select a prior. It is reasonable to assume the prior for each parameter
in the PTAM is independent and each prior is uniformly distributed. This is because posterior
calculation is easiest when the priors for each estimate are independent. For each set of data
with K clones, the posterior is obtained by the MCMC using the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970). Once the posterior is obtained, it is straightforward
to get the covariance matrix of the posterior, which can be used to approximate the theoretical
covariance matrix.

According to Theorem 6.2, the model is estimable if the largest eigenvalue of the covariance
matrix of the posterior converges to 0 as the number of clones approaches infinity. Additionally,
Lele et al. (2010) proved that when the model is estimable, the convergence rate for the stan-
dardised largest eigenvalue λs

K = λ∗K/λ
∗
1 is about 1

K , where λ∗K and λ∗1 are the largest eigenvalues
of the posterior covariance matrices for cloning K times and for the original data, respectively.
Therefore, we can graphically compare the standardised largest eigenvalues with increasing K
and the line 1

K under each scenario. Faster convergence implies better model estimability. This
is because the data contains enough information to generate a distinct peak around the MLE,
when the model is estimable for such a data set. Data cloning is applied to exaggerate the
curvature of the likelihood around the MLE, when model estimability is relatively poor for a
given data set. The results under each scenario are summarised in Figure 6.12. There is a clear
pattern that the convergence rate for λs

K is slower when there is less physiological age informa-
tion to observe. Apparently, λs

K does not converge to 0 as K increases to a fairly large number,
when no physiological age information is provided; see Figure 6.12. These data-cloning results
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are consistent with the previous conclusion; that is, the model estimabiltiy is relatively poorer
when less information is observed.

In summary, the estimability analysis using data cloning supports the conclusion that health-
related (state-related) information can improve model estimability. Even observing the phys-
iological age only every few years, despite the unknown measurement error, can improve the
model estimability significantly. According to our experiments, we highly recommend incor-
porating some health-related information when calibrating the PTAM. On the other hand, if no
health-related information is available, the PTAM’s estimability is relatively poor when both m
and ψ are free parameters. One way to improve the model estimability under such a situation is
to fix or estimate both m and ψ before estimating the other parameters. This was shown in the
application covering the Channing House data (i.e.,fixing m and ψ based on prior knowledge)
and the simulation study involving the Le Bras model (i.e., estimating ψ from the data).
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Chapter 7

Conclusion

7.1 Summary of contributions
In this thesis, we proposed a class of distributions, under the so-called the Phase-Type Ageing
Model (PTAM), to capture the human ageing process. The PTAM has an embedded Markov
chain in which

• each individual’s ageing process starts in state 1;

• the process is irreversible, meaning the transition can only move to the next transient
state or to the absorbing state from each transient state;

• the transition and absorbing rates have their own structural forms.

The model structure is aligned to our prior knowledge of the human ageing process, which is
progressive, essentially irreversible, personalised and highly correlated with mortality process.
The PTAM is useful for insurance company to emphasise the ageing experience in the cohort
population. In doing so, the pricing strategy can be adapted and tailored to the individual health
profile.

In terms of the resulting lifetime distribution, the PTAM as detailed in Chapter 3 can ap-
proximate well a variety of lifetime distributions including the Gamma distribution, Weibull
distribution, Pareto distribution, a convolution of exponential distributions, a convolution of
Weibull distributions, Gompertz-Makeham model, and the Makeham’s second extension of the
Gompertz distribution. As a result, the lifetime distribution of the PTAM was demonstrated
to offer extensive flexibility. Two applications of PTAM, fitting the lifetime data, were consid-
ered. The first application is on a data set from the Channing House, a retirement community
in Palo Alto, California; the second application is based on a simulated data set from the Le
Bras model. Results are promising, when we compare the fitted PTAM with the Kaplan-Meier
estimates for the Channing House data set and with the true distribution generating the data
for the simulation study. We also illustrated the flexibility of the proposed structure on the
absorption rate with a numerical result indicating that the structure can replicate the pattern
estimated by Lin and Liu’s model for Swedish cohort data. So, the proposed PTAM can be
used for mortality modelling by considering the death time as the terminal time of the ageing
process.
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142 Chapter 7. Conclusion

To quantify the heterogeneity in the lifetime dynamic process, we proposed an index called
the physiological age. This concept has an easy interpretation as a comparable value similar to
the chronological age. We demonstrated the analysis of the physiological age on the Channing
House data set and the Le Bras model simulation data set. The estimated physiological age
distribution at any age informs the variability of ageing effect amongst cohorts – the process of
an individual with a lower ageing rate progresses slower than that of an individual with a higher
ageing rate. In Chapter 4, we proved that the physiological age converges to the chronological
age as the number of states in the Markov chain goes to infinite. Such Markov chain with
infinite states can be treated as the limit case of the Markov chain with a large number of
states. In reality, we can apply this property when the total number of states is large, e.g.,
m > 1000. Thus, a very large number of states is not advisable if we expect some variability on
the physiological age at any chronological age. Otherwise, the PTAM loses the heterogeneity
of the states. Nonetheless, a very small number of states is not ideal either because the PTAM
does not have enough number of states to mimic the lifetime process. We selected the total
number of states based on certain educated beliefs including the incorporation of some health-
related information to aid in choosing of the the total number of states. In Chapter 5, the model
parameter estimation was carried out using the MLE approach. There is no analytical formula
for the MLE of the PTAM, and numerical optimisation is required. The numerical procedure
involves a large number of likelihood evaluations, which are time-consuming by the traditional
method using matrix exponential. We developed a method that is faster and more accurate than
the traditional method for likelihood calculation. We also put forward a procedure that is likely
to locate the global maximum of the log-likelihood function.

It was shown in Chapter 6 that the model estimability of the PTAM is poor if only the death
time is observable, under which at least one of the parameter estimates has a high variance even
with a large sample-size observation data. However, the model estimability can be improved
significantly even if we can only measure the state every couple years with unknown measure-
ment errors. We examined the scenarios that the state information can be measured every 3 and
7 years. We used 3 and 7 years because age 30 is a limit age that the population could unlikely
survive to, and we wanted to mimic the case that the state-related information is collected every
10 years and 30 years in human lifespan scale. Recall that the limit age for human is around
120. In reality, it is impractical to collect the state-related information very frequently due to
cost, resources, and time limitations. We believe the frequency of every 10 and 30 years are
practically doable based on current technology. In the PTAM calibration, we recommend not
only to use the lifetime data but also health variables that could reflect the current state of the
individual.

7.2 Future research directions

In the course of this study, several important questions were still left unanswered and they
could be pursued as part of future research.

• Some health variables reflecting the current states could be beneficial in calibrating the
PTAM. For example, a healthier individual tends to have a stronger grip strength and and
a balanced body mass index. It is natural to ask, what kind of observable health variables
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do we need? What are presently available? And, how information could be extracted
efficiently and dynamically from these observed variables?

• We proposed a class of distributions called the GPTAM, which is dense in the field of
variables with continuous survival function and non-negative domain. GPTAM’s enor-
mous flexibility brings about a challenging parameter-estimation problem. Additional
information may be helpful in addressing this issue. For example, the time between
transitions and the path of each individual process could be collected in the ideal-world
setting. The recovery of parameters then becomes straightforward under various scenar-
ios. However, we are not in the ideal world. Thus, what additional information will be
useful?

• The PTAM can be used to compare the lifetime processes between populations. The pop-
ulation here represents a group of homogeneous individuals. For example, the process
for cohorts 100 years ago could be significantly different from the process for cohorts
100 years in the future; The ageing process for different countries could also have dis-
tinct variations. The process for different factors (genders, races, living habits, etc) could
be different as well. So, how should PTAM be re-designed or extended to incorporate
the above-mentioned factors in the comparison of the ageing process between popula-
tions? One possible way is to set h1, hm and s in the proposed PTAM as functions of the
observed factors.
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Gueresi, P., Troiano, L., Minicuci, N., Bonafé, M., Pini, G., Salvioli, G., Carani, C., Ferrucci,
L., Spazzafumo, L., Olivieri, F., et al. (2003). The MALVA (MAntova LongeVA) study: An
investigation on people 98 years of age and over in a province of northern Italy. Experimental
Gerontology, 38(10):1189–1197.

Hajek, B. (2015). Random Processes for Engineers. Cambridge University Press. Cambridge.

Hamilton, J. B. (1951). Patterned loss of hair in man: Types and incidence. Annals of the New
York Academy of Sciences, 53(3):708–728.

Hastings, W. K. (1970). Monte Carlo Sampling Methods using Markov Chains and their Ap-
plications. Oxford University Press. Oxford.

Healey, M. (1973). Study of methods of computing transition matrices. Proceedings of the
Institution of Electrical Engineers, 120(8):905–912.



BIBLIOGRAPHY 149

Heligman, L. and Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute
of Actuaries, 107(1):49–80.

Hengl, S., Kreutz, C., Timmer, J., and Maiwald, T. (2007). Data-based identifiability analysis
of non-linear dynamical models. Bioinformatics, 23(19):2612–2618.
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M. E., Kivisild, T., Lee, S., Kartal-Özer, N., et al. (2005). What evidence is there for the
existence of individual genes with antagonistic pleiotropic effects? Mechanisms of Ageing
and Development, 126(3):421–429.

Li, J. S. and Ng, A. C. (2008). “Markov Aging Process and Phase-Type Law of Mortality,” X.
Sheldon Lin and Xiaoming Liu, October 2007. North American Actuarial Journal, 12(1):90–
94.

Liedo, P., Orozco, D., and Vaupel, J. (1992). Slowing of mortality rates at older ages in large
medfly cohorts. Science, 258(5081):457–461.

Lin, X. S. and Liu, X. (2007). Markov aging process and phase-type law of mortality. North
American Actuarial Journal, 11(4):92–109.

Liou, M. (1966). A novel method of evaluating transient response. Proceedings of the IEEE,
54(1):20–23.

Liu, X. and Lin, X. S. (2012). A subordinated Markov for stochastic mortality. European
Actuarial Journal, 2(1):105–127.

Makeham, W. M. (1860). On the law of mortality and construction of annuity tables. Journal
of the Institute of Actuaries, 8(6):301–310.



BIBLIOGRAPHY 151

Makeham, W. M. (1890). On the Further Development of Gompertz’s Law. Journal of the
Institute of Actuaries, 28(4):316–332.

Mamon, R. S. and Elliott, R. J. (2007). Hidden Markov Models in Finance. Springer. New
York.

Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA
Steklova, 42:3–375.

Markov, A. A. (2006). An example of statistical investigation of the text Eugene Onegin
concerning the connection of samples in chains. Science in Context, 19(4):591–600.

Marshall, A. H. and Zenga, M. (2009a). Recent developments in fitting coxian phase-type
distributions in healthcare. In ASMDA. Proceedings of the International Conference Applied
Stochastic Models and Data Analysis, volume 13, page 482. Department of Construction
Economics, Vilnius Gediminas Technical University, Vilnius.

Marshall, A. H. and Zenga, M. (2009b). Simulating Coxian phase-type distributions for patient
survival. International Transactions in Operational Research, 16(2):213–226.

Marshall, A. H. and Zenga, M. (2012). Experimenting with the Coxian phase-type distribution
to uncover suitable fits. Methodology and Computing in Applied Probability, 14(1):71–86.

McLean, K. A. and McAuley, K. B. (2012). Mathematical modelling of chemical pro-
cesses—obtaining the best model predictions and parameter estimates using identifiability
and estimability procedures. Canadian Journal of Chemical Engineering, 90(2):351–366.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of Chemical Physics,
21(6):1087–1092.

Miettinen, O. (1976). Estimability and estimation in case-referent studies. American Journal
of Epidemiology, 103(2):226–235.

Moler, C. and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review, 45(1):3–49.

Moriguchi, S. and Murota, K. (2012). On discrete Hessian matrix and convex extensibility.
The Operations Research Society of Japan, 55:48–62.

Mu, J. (2019). Exploring the estimability of mark-recapture models with individual, time-
varying covariates using the scaled logit link function. Electronic Thesis and Dissertation
Repository, 6385. The University of Western Ontario, Canada.

Neath, A. A. and Cavanaugh, J. E. (2012). The Bayesian information criterion: background,
derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics,
4(2):199–203.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, 7(4):308–313.



152 BIBLIOGRAPHY

Neuts, M. F. (1975). Probability distributions of phase type. Liber Amicorum Prof. Emeritus
H. Florin, Department of Mathematics, University of Louvain, Belgium.

Neuts, M. F. (1978). Markov chains with applications in queueing theory, which have a matrix-
geometric invariant probability vector. Advances in Applied Probability, 10(1):185–212.

Neuts, M. F. (1982). Explicit steady-state solutions to some elementary queueing models.
Operations Research, 30(3):480–489.

Olsson, M. (1996). Estimation of phase-type distributions from censored data. Scandinavian
Journal of Statistics, pages 443–460.

Pandhi, D. and Khanna, D. (2013). Premature graying of hair. Indian Journal of Dermatology,
Venereology, and Leprology, 79(5):641.
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Appendix A

Proofs

This Appendix includes the proof of the denseness of the GPTAM in the continuous non-
negative-valued distribution, the justification of the state distribution for the GPTAM, and the
proofs of Theorem 3.1, Lemma 3.1 and Lemma 4.1.

A.1 Proof of Theorem 3.1
Let F be the distribution family of all GPTAMs whose absorbing rate in state i is equal to
hi ≥ 0 for i = 1, ...,m; transition rate from state j to j + 1 is equal to λ for j = 1, ...,m − 1; and
the total number of states m is a positive integer. Given a non-negative-valued distribution with
domain (0,T ), assume its survival function S (t) is continuous. For any ε > 0, there is a GPTAM
in F such that its resulting survival function S ∗(t) satisfies |S ∗(t) − S (t)| < ε for any t ∈ (0,T ).
Therefore, F is dense in the field of all continuous non-negative-valued distributions.

Proof. The proof follows by adapting the approach employed in Rolski et al. (1998) and Tijms
(1994). Let S (t) be any survival function on R+ with S (0) = 1 and limt→T S (t) = 0. We are
letting T = ∞ when the distribution with non-negative value domain is the point of interest.

For any fixed t ∈ (0,T ), consider the following approximation of S (t):

S n(t) =

∞∑
k=0

e−nt (nt)k

k!
S

(
k
n

)
= E

(
S

(
Xn(t)

n

))
,

where Xn(t) follows a Poisson distribution with rate nt. Since S (t) ≤ 1 is bounded and con-
tinuous at t, for each ε > 0, there is δ > 0 such that |S (x) − S (t)| ≤ ε/2 whenever |x − t| ≤ δ.
Thus,

|S n(t) − S (t)|

=
∑

k:| kn−t|≤δ

∣∣∣∣∣∣S
(

k
n

)
− S (t)

∣∣∣∣∣∣ P(Xn(t) = k) +
∑

k:| kn−t|>δ

∣∣∣∣∣∣S
(

k
n

)
− S (t)

∣∣∣∣∣∣ P(Xn(t) = k)

≤
ε

2
+ 2P

(∣∣∣∣∣Xn(t)
n
− t

∣∣∣∣∣ > δ) ≤ ε

2
+

2t
δ2n

,

where the first inequality holds because of the following facts:
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•
∣∣∣∣S (

k
n

)
− S (t)

∣∣∣∣ ≤ ε/2, when
∣∣∣ k
n − t

∣∣∣ ≤ δ;
•

∑
| kn−t|≤δ P(Xn(t) = k) ≤ 1;

•
∣∣∣∣S (

k
n

)
− S (t)

∣∣∣∣ ≤ 2 always holds;

•
∑
| kn−t|>δ P(Xn(t) = k) = P

(∣∣∣Xn(t)
n − t

∣∣∣ > δ).
The last inequality holds by the Chebyshev’s inequality, E

(
Xn(t)

n

)
= t, and Var

(
Xn(t)

n

)
= t

n .
Therefore, when n ≥ 4t

δ2ε
or 2t

δ2n ≤
ε
2 , we have

|S n(t) − S (t)| ≤ ε. (A.1.1)

With the uniformisation method and (5.3.7), for any m, the resulting survival function of a
GPTAM with m transient states is

S ∗(t) =

m∑
i=1

 ∞∑
k=0

P(k)
1,i e
−νt (νt)

k

k!

 =

∞∑
k=0

 m∑
i=1

P(k)
1,i

 e−νt
(νt)k

k!

 ,
where ν can be any number greater than maxi=1,...,m−1(λ + hi, hm), and the P(k)

1,i is the first row’s
ith element of Pk. The P matrix is

P =



1 − (λ+h1)
ν

λ
ν

1 − (λ+h2)
ν

λ
ν
. . .

1 − (λ+hm−1)
ν

λ
ν

1 − hm
ν


.

Let ν = n when n > λ + h and h = maxi=1,...,m(hi). Hence,

S ∗(t) =

∞∑
k=0

 m∑
i=1

P(k)
1,i

 e−nt (nt)k

k!

 ,
and

P =



1 − (λ+h1)
n

λ
n

1 − (λ+h2)
n

λ
n
. . .

1 − (λ+hm−1)
n

λ
n

1 − hm
n


.

On the other hand, for any fixed n and any ξ > 0 there is a K such that
∑∞

k=K e−nt (nt)k

k! < ξ/2,
because

∑∞
k=K e−nt (nt)k

k! is the tail probability of a Poisson distribution with rate nt.
Next, we need to prove there exists a set of parameter value (h1, ..., hm, λ,m) such that∑m

i=1 P(k)
1,i = S

(
k
n

)
for any k = 0, ...,K − 1.
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We know that P1,1 = 1 − λ+h1
n , P1,2 = λ

n and P1, j = 0 for j = 3, ...,m. Suppose P(`)
1,i is a

function of (h1, ..., h`, λ) when i = 1, .., `, P(`)
1,`+1 =

(
λ
n

)`
and P1, j = 0 for j > ` + 1. Evaluating

the matrix power, we have

P(k)
1,1 =

(
1 −

λ + h1

n

)k

,

P(n+1)
1,i =

λ

n
P(n)

1,i−1 +

(
1 −

λ + hi

n

)
P(n)

1,i , for 2 ≤ i < m.

For any 1 < i ≤ `,

P(`+1)
1,i =

λ

n
P(`)

1,i−1 +

(
1 −

λ + hi

n

)
P(`)

1,i

=
λ

n
(P(`)

1,i−1 − P(`)
1,i) +

(
1 −

hi

n

)
P(`)

1,i ,

which is a function of (h1, ..., h`, λ) because P(`)
1,i is a function of (h1, ..., h`, λ). For i = ` + 1,

P(`+1)
1,`+1 =

λ

n
P(`)

1,` +

(
1 −

λ + h`+1

n

)
P(`)

1,`+1

=
λ

n
P(`)

1,` +

(
1 −

λ + h`+1

n

) (
λ

n

)`
,

which is a function of (h1, ..., h`, h`+1, λ). In particular, the coefficient of h`+1 is − λ`

n`+1 , which is
non-zero. For i = ` + 2,

P(`+1)
1,`+2 =

λ

n
P(`)

1,`+1 +

(
1 −

λ + h`+2

n

)
P(`)

1,`+2 =

(
λ

n

)`+1

For ` + 2 < i ≤ m,

P(`+1)
1,i =

λ

n
P(`)

1,i−1 +

(
1 −

λ + hi

n

)
P(`)

1,i = 0,

because P(`)
1,i−1 and P(`)

1,i are equal to 0. By induction, P(`)
1,i is a function of (h1, ..., h`, λ) when

i = 1, .., `, P(`)
1,`+1 =

(
λ
n

)`
and P1, j = 0 for j > ` + 1 for any ` = 1, ...,m. Furthermore,

∑m
i=1 P(k)

1,i
is the probability that the process under the uniformisation is in any transient state given the
process transits k times, whose value is determined by (h1, ..., hk, λ). As a result, the number of
parameters in

∑m
i=1 P(k)

1,i is k + 1.
Consequently, with m ≥ K −2, there exists a set of parameter values (h1, ..., hm, λ) such that∑m

i=1 P(k)
1,i = S

(
k
n

)
for any k = 1, ...,K − 1. Meanwhile,

∑m
i=1 P(0)

1,i = S
(

0
n

)
= 1 for any parameter

value (h1, ..., hm, λ).
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Therefore, for any n > max( 4t
δ2ε
, λ+ h) and m ≥ K − 2, there exists a set of parameter values

(h1, ..., hm, λ) such that
∑m

i=1 P(k)
1,i = S

(
k
n

)
for any k = 0, ...,K − 1 and

|S ∗(t) − S n(t)| =

∣∣∣∣∣∣∣
∞∑

k=0

e−nt (nt)k

k!

 m∑
i=1

P(k)
1,i − S

(
k
n

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑

k=K

e−nt (nt)k

k!

 m∑
i=1

P(k)
1,i − S

(
k
n

)
∣∣∣∣∣∣∣

≤

∞∑
k=K

e−nt (nt)k

k!

∣∣∣∣∣∣∣
m∑

i=1

P(k)
1,i − S

(
k
n

)∣∣∣∣∣∣∣
≤ 2

∞∑
k=K

e−nt (nt)k

k!
≤ ξ,

by recalling
∑∞

k=K e−nt (nt)k

k! < ξ/2. Combining with (A.1.1),

|S ∗(t) − S (t)| = |S ∗(t) − S n(t) + S n(t) − S (t)|
≤ |S ∗(t) − S n(t)| + |S n(t) − S (t)| ≤ ε + ξ.

Since ε and ξ are arbitrarily small, we successfully constructed a GPTAM in F whose
resulting survival function S ∗(t) can approximate S (t) well. This shows the distribution family
F is dense in the field of all continuous and non-negative-valued distributions. �

A.2 Proof of Lemma 3.1
Consider an m−state GPTAM with transition rate from one transient state to the next transient
state equal to λ, and the absorption rate in state i is hi for i = 1, ...,m. For any t > 0, let Yt be
the state variable at time t. Then P(Yt ≥ k|Yt ∈ E) is an increasing function of t for k = 1, ...,m.

Proof. The m × m degenerated transition matrix of the GPTAM is

Λ =


− (λ + h1) λ

− (λ + h2) λ
. . .

− (λ + hm−1) λ
−hm


,

where λ is the transition rate from state i to i + 1 and hi is the absorbing rate at state i. For
any fixed t > 0, let Y`,t be the state random variable at time t assuming starting in state ` at 0,
particularly Y1,t = Yt. For any k = 1, ...,m,

P(Yt ≥ k|Yt ∈ E) =

∑m
j=k P(Y1,t = j)∑m
j=1 P(Y1,t = j)

=
αeΛtek

αeΛte
,
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where ek is a m×1 column vector with first k−1 elements equal to 0 and the remaining elements
are equal to 1. The quantity P(Yt ≥ k|Yt ∈ E) is the probability that the state of the individual
at time t is greater than or equal to k conditional on this individual being alive. We note that
P(Yt ≥ 1|Yt ∈ E) = 1. When k , 1, the first derivative of P(Yt ≥ k|Yt ∈ E) with respect to t is

dP(Yt ≥ k|Yt ∈ E)
dt

=
αeΛt(Λekα − ekαΛ)eΛte(

αeΛte
)2 .

Let g(t) = αeΛt(Λekα − ekαΛ)eΛte. The (i, j) entry of eΛt, denoted by Pi, j(t), is the probability
of being in state j at time t given that the starting state is i at time 0. One may verify that

αeΛt = (P1,1(t), ..., P1,m(t)) a 1 × m row vector

eΛte =

 m∑
j=1

P1, j(t), ...,
m∑

j=1

Pm, j(t)


ᵀ

a m × 1 column vector

Λekα =



0 0 0 · · ·
...

...
0 0 0 · · ·

λ 0 0 · · ·

−hk 0 0 · · ·

−hk+1 0 0 · · ·
...
−hm 0 0 · · ·


a m × m matrix

ekαΛ =



0 0 0 · · ·
...

...
0 0 0 · · ·

0 0 0 · · ·

−(λ + h1) λ 0 · · ·

−(λ + h1) λ 0 · · ·
...

−(λ + h1) λ 0 · · ·


a m × m matrix,

where λ is the (k − 1, 1) entry of Λekα and the entire first (k − 1)th rows in ekαΛ are 0.

Hence, Λekα− ekαΛ = (β1,β2, 0, ..., 0)ᵀ, where β2 is a m× 1 column vector with first k− 1
elements equal to 0 and remaining elements equal to −λ and β1 is a m × 1 column vector with
first k − 2 elements equal to 0, (k − 1)th element equal to λ and `th(` ≥ k) element equal to
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λ + h1 − h`. In matrix form,

Λekα − ekαΛ =



0 0 0 · · ·
...

...
0 0 0 · · ·

λ 0 0 · · ·

λ + h1 − hk −λ 0 · · ·

λ + h1 − hk+1 −λ 0 · · ·
...

λ + h1 − hm −λ 0 · · ·


.

Then g(t) can be simplified as

g(t) = (P1,1(t), ..., P1,m(t))



0 0 0 · · ·
...

...
0 0 0 · · ·

λ 0 0 · · ·

λ + h1 − hk −λ 0 · · ·

λ + h1 − hk+1 −λ 0 · · ·
...

λ + h1 − hm −λ 0 · · ·



 m∑
j=1

P1, j(t), ...,
m∑

j=1

Pm, j(t)


ᵀ

=

λP1,k−1(t) +

m∑
`=k

(λ + h1 − h`)P1,`(t)

 ,−λ m∑
`=k

P1,`(t), 0, ..., 0


 m∑

j=1

P1, j(t), ...,
m∑

j=1

Pm, j(t)


ᵀ

=

λP1,k−1(t) +

m∑
`=k

(λ + h1 − h`)P1,`(t)

 m∑
j=1

P1, j(t) −
m∑
`=k

λP1,`(t)
m∑

j=1

P2, j(t).

On the other hand, we know that

deΛt

dt
= ΛeΛt = eΛtΛ,

yielding

dP1,k(t)
dt

= −(λ + h1)P1,k(t) + λP2,k(t) = λP1,k−1(t) − (λ + hk)P1,k(t) for k = 2, ...,m − 1

dP1,m(t)
dt

= −(λ + h1)P1,m(t) + λP2,m(t) = λP1,k−1(t) − hmP1,m(t).

Rearranging further, we have

(h1 − hk)P1,k(t) = λ(P2,k(t) − P1,k−1(t)) for k = 2, ...,m − 1
(λ + h1 − hm)P1,m(t) = λ(P2,m(t) − P1,m−1(t))
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The first part of g(t) can be written as

λP1,k−1(t) +

m∑
`=k

(λ + h1 − h`)P1,`(t)

= λP1,k−1(t) +

m−1∑
`=k

λP1,`(t) +

m−1∑
`=k

(h1 − h`)P1,`(t) + (λ + h1 − hm)P1,m(t)

= λP1,k−1(t) +

m−1∑
`=k

λP1,`(t) + λ

m∑
`=k

(P2,`(t) − P1,`−1(t))

= λ

m∑
`=k

P2,`(t).

Now, g(t) can be further simplified to

g(t) = λ

 m∑
`=k

P2,`(t)
m∑

j=1

P1, j(t) −
m∑
`=k

P1,`(t)
m∑

j=1

P2, j(t)

 ,
which shows that g(t) ≥ 0 if and only if

P(Y1,t ≥ k|Y1,t ∈ E) =

∑m
`=k P1,`(t)∑m
j=1 P1, j(t)

≤

∑m
`=k P2,`(t)∑m
j=1 P2, j(t)

= P(Y2,t ≥ k|Y2,t ∈ E),

with the equality holds if and only if g(t) = 0. Similarly, dP(Y`,t≥k|Y`,t∈E)
dt ≥ 0 if and only if

P(Y`,t ≥ k|Y`,t ∈ E) ≤ P(Y`+1,t ≥ k|Y`+1,t ∈ E). (A.2.2)

The inequality is trivial when ` = m − 1 because P(Ym,t ≥ k|Ym,t ∈ E) = 1 and P(Y`,t ≥ k|Y`,t ∈
E) ≤ 1. Recall that Y`,t is the state variable at time t assuming the starting state is ` at time
0. By letting t = 0, it could be verified that P(Y`,t=0 ≥ k|Y`,t=0 ∈ E) = 1 when ` ≥ k and
P(Y`,t=0 ≥ k|Y`,t=0 ∈ E) = 0 when ` < k.

Since (A.2.2) holds when ` = m − 1, we have dP(Ym−1,t≥k|Ym−1,t∈E)
dt ≥ 0, or P(Ym−1,t ≥ k|Ym−1,t ∈

E) is increasing with respect to t.
The next step is to prove P(Ym−2,t ≥ k|Ym−2,t ∈ E) ≤ P(Ym−1,t ≥ k|Ym−1,t ∈ E) by contradic-

tion. Suppose

P(Ym−2,t ≥ k|Ym−2,t ∈ E) > P(Ym−1,t ≥ k|Ym−1,t ∈ E) (A.2.3)

By (A.2.2), we have dP(Ym−2,t≥k|Ym−2,t∈E)
dt < 0, or P(Ym−2,t ≥ k|Ym−2,t ∈ E) is decreasing with respect

to t. Therefore, for any t > 0,

P(Ym−2,t ≥ k|Ym−2,t ∈ E) < P(Ym−2,t=0 ≥ k|Ym−2,t=0 ∈ E)
≤ P(Ym−1,t=0 ≥ k|Ym−1,t=0 ∈ E)
< P(Ym−1,t ≥ k|Ym−1,t ∈ E),

which conflicts with (A.2.3). The first inequality holds because P(Ym−2,t ≥ k|Ym−2,t ∈ E) is
decreasing with respect to t. The second inequality holds because P(Y`,t=0 ≥ k|Y`,t=0 ∈ E) is
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equal to 1 when ` ≥ k; otherwise, it is equal to 0, so that P(Ym−1,t=0 ≥ k|Ym−1,t=0 ∈ E) must be
1 if P(Ym−2,t=0 ≥ k|Ym−2,t=0 ∈ E) = 1 for any k. The third inequality holds because we proved
P(Ym−1,t ≥ k|Ym−1,t ∈ E) is an increasing function of t.

Hence, (A.2.3) is false, and it must be that

P(Ym−2,t ≥ k|Ym−2,t ∈ E) ≤ P(Ym−1,t ≥ k|Ym−1,t ∈ E),

which shows P(Ym−2,t ≥ k|Ym−2,t ∈ E) is increasing with respect to t by (A.2.2). Following the
same procedure recursively, it could be shown that P(Y1,t ≥ k|Y1,t ∈ E) ≤ P(Y2,t ≥ k|Y2,t ∈ E).
Therefore, g(t) ≥ 0 and dP(Yt≥k|Yt∈E)

dt ≥ 0, implying that P(Yt ≥ k|Yt ∈ E) is an increasing function
of t. �

A.3 Proof of Lemma 4.1
Let f (s) =

log(abs+(1−a)cs)
s when s , 0 and f (s) = a log(b) + (1 − a) log(c) when s = 0, where

0 ≤ a ≤ 1, b ≥ 0, and c ≥ 0 but b, c cannot be 0 at the same time. Then f (s) is an increasing
function with respect to s.

Proof. The function f (s) is a continuous function since

lim
s→0

log (abs + (1 − a)cs)
s

= a log(b) + (1 − a) log(c).

In the first case, either b or c equals 0. Suppose c = 0 (b = 0 is the same as c = 0 by
substituting a for 1 − a). Then

f (s) =
log(abs)

s
=

log(a)
s

+ b.

Since a is in [0, 1], log(a) ≤ 0, and f (s) is an increasing function of s,
The second case is both b and c are positive. When s , 0, the first derivative of f (s) is

d f (s)
ds

=
−bsg(a, d)

s2 (abs + (1 − a)cs)
,

where d =
(

c
b

)s
> 0 and g(a, d) = (a + (1 − a)d) log(a + (1 − a)d) − (1 − a)d log(d). For any

0 ≤ a0 ≤ 1, The first partial derivatives of g(a0, d) with respect to d is

∂g
∂d

= (1 − a0) log
(a0

d
+ (1 − a0)

)
.

When 0 < d < 1,

∂g
∂d

> (1 − a0) log(a0 + (1 − a0)) = 0,
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and when d > 1,

∂g
∂d

< (1 − a0) log(a0 + (1 − a0)) = 0.

So, for any a0 ∈ [0, 1], max g(a0, d) = g(a0, 1) = 0, yielding g(a0, d) ≤ 0 for d > 0. Since a0

is arbitrary, we have g(a, d) ≤ 0 for 0 ≤ a ≤ 1 and d > 0. Hence, d f (s)
ds ≥ 0 and f (s) is an

increasing function with respect to s. �



Appendix B

Selection of typical lifespan ψ for a PTAM
with a large number of states m

This Appendix relates to Subsection 3.4.4 of Chapter 3. It addresses the issue that poor iden-
tifiability may occur if ψ and m are not appropriate. Let T be the maximum lifetime, which is
not necessarily equal to the lifespan ψ. It is more reasonable to assume T ≤ ψ.

B.1 When ψ is much greater than T

Let us assume h1 ≤ hm. Suppose ε is a fixed calculation tolerance. When ψ > T
log( hm

h1
)

log(1+ε) , we
have (

hm

h1

) T
ψ

< 1 + ε.

By Theorem 4.6, the resulting hazard function h(t) asymptotically converges to h1

(
hm
h1

) t
ψ , and

h1

(
hm

h1

) t
ψ

< h1

(
hm

h1

) T
ψ

< h1(1 + ε),

as m→ ∞. For some small ε, the numerical values of h(t) could be made close to h1, resulting
to the same distribution as an exponential distribution with rate h1. Let fm(t) be the pdf of an
m−state PTAM. Then, for any ξ > 0, there is an M such that for any m > M,∣∣∣ fm(t) − h1e−h1t

∣∣∣ < ξ.
Therefore, for any m > M, the numerical values for fm(t) are identical to h1e−h1t, in which
m, hm, s and ψ are non-identifiable based on a numerical evaluation.

On the other hand, when m is too small compared to the value of ψ, it is typical to have
m
ψ
≈ 0, because

ψ > T
log

(
hm
h1

)
log(1 + ε)

.
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The right-hand side is typically much larger than m due to the fact that log(1 + ε) ≈ ε is very
small. The probability of absorption conditional on one transition occurring in state 1 is

P(Yt+∆ = m + 1|Yt = 1,Yt+∆ , 1) =
h1

λ + h1
=

h1

m/ψ + h1
≈ 1,

where ∆ is a small fraction of time. Hence, each individual starting in state 1 at time 0 moves
to the absorbing state after one transition with probability almost equal to 1. The resulting
lifetime distribution is an exponential distribution with rate h1 with probability almost 1, in
which, once again, m, hm, s, and ψ are non-identifiable based on numerical calculation.

Under both situations considered above, the numerical evaluation for the resulting lifetime
distribution is identical to an exponential distribution with rate h1. Given any lifetimes, the
numerical value of the likelihood will be dominated by h1. The likelihood is not sensitive to the
other parameter values, in which it is impossible to estimate the true values of (hm, s, ψ,m) by
the MLE method. Identifiability and estimability are extremely poor. To avoid these scenarios,
ψ should not be much greater than T in applications.

B.2 When ψ is not much greater than T

The limit of the resulting survival function as m→ ∞ is

lim
m→∞

S (t) = lim
m→∞

e−
∫ t

0 h(u)du = e−
∫ t

0 g(u)du.

When s , 0,

lim
m→∞

S (t) = e−
∫ t

0

(
(hs

m−hs
1) u

ψ+hs
1

)1/s
du

= e−
1

ab ((at+c)b−cb),

where a =
hs

m−hs
1

ψ
, b = s+1

s and c = hs
1.

For a set of parameter values (h1, hm, s, ψ), we can find another set of parameter values
(h′1, h

′
m, s

′, ψ′) leading to the same value of (a, b, c). This is achievable by setting h′1 = h1,

s′ = s, ψ′ , ψ and h′m =
((

hs
m − hs

1

)
ψ′

ψ
+ hs

1

)1/s
. The limit of the resulting survival functions

are identical under two different sets of parameter values as m → ∞, in which the parame-
ters (h1, hm, s, ψ) are not identifiable, but the parameters

(
h1, s,

hs
m
ψ

)
are. To mitigate the non-

identifiable issue, one should fix/estimate ψ before estimating (h1, hm, s).
To validate the formula for the limit of the resulting survival function, we provide a numer-

ical example illustrated in Figure B.1.

Example B.1. One can easily calculate the resulting survival function of an m−state PTAM
given the parameter values h1 = 0.001, hm = 1.275, s = −0.073, ψ = 55. Consequently, the
values of a, b, c are −0.0122, −12.6986 and 1.6558, respectively. Let S 1(t) be the resulting
survival function of an m−state PTAM and S 2(t) = e−

1
ab ((at+c)b−cb). The vertical axis refers to the

difference of maxt |S 1(t) − S 2(t)| and the horizontal axis represents the value for m. It is clear
that maxt |S 1(t) − S 2(t)| converges to 0 as m→ ∞ in Figure B.1. 4
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Figure B.1: Validating numerically the formula for the limit of the resulting survival function
when s , 0.

When s = 0,

lim
m→∞

S (t) = e−
∫ t

0 h(1−u/ψ)
1 hu/ψ

m du = e−
1

a′b′
(
ec′ t−1

)
,

where a′ = 1
h1ψ

, b′ = log (hm/h1) and c′ = 1
ψ

log (hm/h1). There are two different sets of parame-
ter values (h1, hm, ψ) and (h′1, h

′
m, ψ

′) such that the value of (a′b′, c′) are the same, where ψ′ , ψ,

h′1 = h1 and h′m = h1 (hm/h1)
ψ′

ψ . The resulting survival functions under the two sets of parameter
values are identical. One may verify that the parameters (h1, hm, ψ) are non-identifiable, but the
parameters

(
h1, (hm/h1)1/ψ

)
are identifiable. To mitigate the non-identifiability problem, once

again, ψ must be fixed or estimated before estimating (h1, hm, s)

Example B.2. This example aims to verify the formula for the limit of the resulting survival
function. Let S 2(t) = e−

1
a′b′

(
ec′ t−1

)
and S 1(t) be the resulting survival function of an m−state

PTAM with parameter values h1 = 0.01, hm = 1, s = 0, and ψ = 55. The corresponding
a′, b′, c′ are 1.8182, 4.6052 and 0.0837, respectively. It is clear that maxt |S 1(t) − S 2(t)| also
approaches 0 as m→ ∞ in Figure B.2. 4

B.3 Consideration summary
We demonstrated that the PTAM’s identifiability and estimability are poor when ψ is too large.
To improve the model identifiability and the model estimability, the value for ψ cannot be too
big.
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Figure B.2: A Verification of the formula for the limit of the resulting survival function when
s = 0.

When ψ is a free parameter with a suitable domain (the upper bound cannot be too large),
there are at least two different sets of parameter values such that the resulting lifetime distri-
butions are identical numerically when m is too large. Under such a situation, the estimates of
h1, hm, s and ψ are not unique. To circumvent this issue, ψ must be fixed or estimated before
estimating h1, hm and s. Ideally, the parameter ψ should be estimated from other health-related
information rather than lifetime data only; see Govorun et al. (2018).

The value of m determines the state variability. The bigger the value of m is, the less state
variability is for the physiological age t. The value of m can be either estimated from health
information or determined by the required state variability from prior knowledge.



Appendix C

Experiments showing the flexibility of the
resulting distribution from a PTAM

This Appendix details an analysis of the PTAM’s flexibility as described in Chapter 3. This is
based on the concept of goodness-of-fit to the target distribution by the calibrated PTAM.

C.1 Some distributions for lifetime modelling
The Gamma distribution has two parameters: α and β. Its associated pdf is

f (t) =
βα

Γ(α)
tα−1 exp(−βt), α > 0, β > 0,

where Γ(x) =
∫ ∞

z=0
zx−1e−zdz is the gamma function. When α > 1, the Gamma distribution

has an increasing hazard rate, whilst the hazard rate for a Gamma distribution when α < 1 is
decreasing. When α = 1, the Gamma distribution reduces to an exponential distribution with a
rate λ = β. Since the family of Gamma distributions is rich and capable of reproducing a variety
of distribution shapes, it is extensively used in lifetime modelling. The Gamma distribution is
one of the potential lifetime distributions utilised to capture lifetime processes of humans and
some other living things.

The Weibull distribution has two parameters: k and λ. Its associated pdf is

f (t) =
k
λ

( t
λ

)k−1
exp

(
−

( t
λ

)k
)
, λ > 0, k > 0.

When k > 1, the Weibull distribution has an increasing hazard rate, whilst the hazard rate is
decreasing when k < 1. A Weibull distribution with k = 1 reduces to an exponential distribution
with rate λ. The Weibull distribution is popular in survival analysis and affords a sound basis
for modelling lifetime distributions.

The Pareto distribution has two parameters: k and σ. Its associated survival function is

S (t) =

(
1 +

kt
σ

)− 1
k

, k > 0, σ > 0.
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It is well-known that Pareto distributions are heavy-tailed.
A convolution of two exponential distributions has two parameters, and the random variable

that represents a convolution of two exponential distributions is

Y = X1 + X2,

where X1, X2 follow the exponential distributions with rates λ1 and λ2, respectively. The con-
volutions of different distributions have physical interpretation, i.e., the process can be de-
composed into several components and the time spent on each component follows a certain
distribution. In particular, the physical interpretation for the convolution mechanism is con-
sistent with our cognizance of ageing, being a progressive process. Furthermore, it is often
assumed that the time spent in each component follows an exponential distribution, because an
exponential distribution matches most observed data. Therefore, a convolution of exponential
distributions is a further extension capable of affording more flexibility.

A convolution of two Weibull distributions has four parameters, and the random variable
representing a convolution of two Weibull distributions is

Z = W1 + W2,

where W1 and W2 follow the Weibull distribution with parameter (λ1, k1) and (λ2, k2) respec-
tively. This is a simple extension of the previous example by changing the distributions of each
component, similar to Huzurbazar (1999). Since the Weibull distribution is utilised in survival
analysis, it is plausible for the ageing process that the time spent in each component follows
a Weibull distribution as well. It is then worth exploring whether one can use the PTAM to
approximate well a convolution of Weibull distributions.

The Gompertz-Makeham distribution has three parameters, and its associated hazard rate
is

h(t) = ζ + ξ exp(λt), ζ ≥ −ξ, ξ > 0, λ > 0,

where ξ is the growth rate of mortality and ζ represents the background mortality with addi-
tional constraint ζ > 0.

The Gompertz-Makeham distribution were proposed by Makeham (1860) and Gompertz
(1825) , and it assumes a shifted exponential increasing hazard rate with respect to age. Such
a distribution fits human mortality rates from age 30 to 80 well. When we calibrate the PTAM
with human lifetime observations only, the PTAM is essentially approximating the Gompertz-
Makeham distribution.

The Makeham’s second extension of the Gompertz distribution has four parameters, and its
survival function is

S (t) = exp
(
−ξ(exp(λt) − 1) − ξθλt − ξα(λt)2

)
, ξ > 0, λ > 0, θ > 0, α > 0.

Makeham (1890) extended the assumptions on the deferential equation for the hazard rate
to higher order derivatives, because Makeham (1890) observed that the third differences of
empirical hazard rates were much closer to a geometrical progression. Once again, it is likely
to observe human lifetimes following the extended Gompertz distribution.

For each example, we select appropriate parameter values to achieve a particular shape of
probability density function or hazard function. Once the parameter values are chosen, the
target lifetime distributions are fixed and known.
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C.2 Calibration criterion
We shall use the Kullback–Leibler divergence (Kullback and Leibler, 1951; Kullback, 1997)
to summarise the information loss when using the PTAM to approximate the target lifetime
distribution, which is known. When calibrating the proposed PTAM, we minimise the Kull-
back–Leibler divergence to ensure minimal lost information.

Definition C.1. For continuous distributions P and Q with respective pdf’ p(x) and q(x) de-
fined on a sample probability space, the Kullback-Leibler divergence of Q from P is

DKL(P || Q) =

∫ +∞

−∞

p(x) log
(

p(x)
q(x)

)
dx.

Usually, the distribution P represents the actual model, and the distribution Q represents
the distribution used to approximate P. In our case, the distribution P is the target lifetime
distribution in each example, and the distribution Q is the proposed PTAM.

A good property for the Kullback-Leibler divergence is its non-negative value, which means

DKL(P || Q) ≥ 0,

with equality if and only if P = Q. This result is known as Gibbs’ inequality (Gibbs, 1902).
One can interpret the divergence value as the extra information required for Q to represent
P. Therefore, the smaller the divergence, the less extra information is required when using
Q to approximate P and the better goodness of fit is for Q. Furthermore, by its non-negative
property, the closer the divergence value to 0, the better the approximation.

In our case, we calibrate the proposed PTAM by minimizing the Kullback-Leibler diver-
gence of the proposed PTAM from the target lifetime distribution. The analytical formula for
the PTAM’s resulting distribution is quite involved. However, the resulting distribution is fairly
easy to evaluate numerically for a given set of parameter values. Thus, we numerically search
for the minimum of DKL(lifetime distribution || proposed PTAM), where p(x) is the pdf for the
target lifetime distribution, q(x) is the pdf for the PTAM, and

DKL(lifetime distribution || proposed PTAM) =

∫ +∞

0
p(x) log

(
p(x)
q(x)

)
dx.

The numerical search utilises the optimisation function fmincon in MATLAB. The calibration
process is similar to previous model calibration in the Le Bras model simulation, except for
switching the optimisation criterion from Negative Log-Likelihood to the Kullback-Leibler
divergence. The Tail Value at Risk with risk level 0.999(TVaR0.999(T )) can be calculated in
each example, and the calculated value is used to estimate ψ. The estimated values for the
other four parameters are the values that minimise the divergence.

C.3 Estimates of parameters for each distribution
In the Tables C.1–C.10, h1, hm, λ, s, m are the estimated values, and DKL is the numerical value
for the Kullback–Leibler divergence. Some DKLs are negative because we use the following
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approximation to calculate the KL divergence numerically:∫ ∞

0
p(x) log

(
p(x)
q(x)

)
dx ≈

N∑
i=1

p(xi) log
(

p(xi)
q(xi)

)
∆x,

where xi+1 − xi = ∆x is a small number, x1 = 0 and the survival probability to xN , S (xN), is
very small.

DKL h1 hm λ s m
0.1099 1.51 × 10−11 99.1353 0.3495 0.2323 10
0.0477 2.12 × 10−12 99.9896 0.3845 0.2339 11
0.0142 3.27 × 10−11 99.8473 0.4195 0.2351 12
0.0037 3.12 × 10−9 99.7605 0.4542 0.2349 13
0.0109 8.39 × 10−10 83.8905 0.4893 0.2437 14
0.0273 2.90 × 10−8 21.8657 0.5244 0.3146 15
0.0438 3.98 × 10−10 10.2016 0.5594 0.3759 16

Table C.1: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Gamma distri-
bution with α = 4 and β = 0.5.

DKL h1 hm λ s m
0.0018 1.2273 0.3788 0.1575 −0.7211 2
−0.0022 3.6463 0.4414 20.2472 −4.4077 257
−0.0022 3.8817 0.4188 30.2441 −3.9887 384
−0.0021 3.9809 0.4045 40.3026 −3.7623 512
−0.0021 3.9919 0.3876 60.5440 −3.5211 768
−0.0021 3.9288 0.3782 80.6907 −3.4003 1024

Table C.2: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Gamma distri-
bution with α = 0.5 and β = 0.5.

DKL h1 hm λ s m
20.7744 0.4994 2.0686 0.3365 −0.4522 2
0.0071 0.0257 2.0078 86.3166 1.9922 513
0.0029 0.0161 2.0065 129.2587 1.9920 768
0.0007 0.0088 2.0056 161.5810 1.9925 960
0.0002 0.0063 2.0049 169.7268 1.9927 1008
8.55 × 10−5 0.0061 2.0052 171.7103 1.9927 1020
6.40 × 10−5 0.0061 2.0059 171.9036 1.9927 1022
5.25 × 10−5 0.0059 2.0052 172.2107 1.9927 1023
4.19 × 10−5 0.0059 2.0059 172.2599 1.9927 1024

Table C.3: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Weibull distri-
bution with λ = 1.5 and k = 1.5.



C.3. Estimates of parameters for each distribution 173

DKL h1 hm λ s m
25.6238 8.15 × 10−7 1.4283 0.6619 0.5127 2
0.0063 2.69 × 10−6 15.0291 169.8246 0.2261 513
0.0034 9.57 × 10−7 14.4057 254.2103 0.2328 768
0.0027 6.72 × 10−7 14.2276 296.6121 0.2346 896
0.0024 6.05 × 10−7 14.1681 317.7771 0.2353 960
0.0023 4.84 × 10−7 14.1096 333.7019 0.2360 1008
0.0022 4.93 × 10−7 14.1064 337.6457 0.2361 1020
0.0022 5.15 × 10−7 14.1049 338.9924 0.2359 1024

Table C.4: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Weibull distri-
bution with λ = 2 and k = 5.

DKL h1 hm λ s m
0.2133 0.3426 0.0424 0.0157 −0.8731 2
−1.0749 0.8666 0.0341 2.0305 −2.1191 258
−1.0733 0.8849 0.0327 2.5184 −2.0471 320
−1.0654 0.9063 0.0301 4.0294 −1.9219 512
−1.0579 0.9101 0.0285 6.0441 −1.8466 768
−1.0536 0.9092 0.0277 8.0589 −1.8089 1024

Table C.5: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Weibull distri-
bution with λ = 2 and k = 0.5.

DKL h1 hm λ s m
0.0065 0.1851 0.0704 0.0201 −0.1012 2
−0.0014 0.1962 0.0419 2.5954 −0.9922 258
−0.0013 0.1962 0.0418 3.2190 −0.9874 320
−0.0013 0.1963 0.0416 5.1505 −0.9799 512
−0.0013 0.1963 0.0415 7.7257 −0.9758 768
−0.0013 0.1963 0.0414 10.3009 −0.9737 1024

Table C.6: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Pareto distribu-
tion with k = 0.2 and σ = 5.

DKL h1 hm λ s m
0.0905 0.1876 0.6259 0.0178 0.1853 2
4.05 × 10−13 0.0046 0.3549 0.5775 21.9696 65
1.36 × 10−12 0.0057 0.4277 0.7108 7.8810 80
1.20 × 10−12 0.0048 0.4824 0.8529 5.6336 96
5.58 × 10−5 4.10 × 10−8 0.5622 1.1461 4.1867 129
0.0010 1.67 × 10−9 0.6755 1.7058 3.2584 192

Table C.7: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the convolution of
two exponential distributions with λ1 = 0.6 and λ = 0.3.
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DKL h1 hm λ s m
0.0009 7.29 × 10−12 19.1858 2.1776 0.3584 17
0.0007 4.64 × 10−14 15.7827 2.3057 0.3793 18
0.0006 4.24 × 10−14 13.4428 2.4338 0.3982 19
0.0006 8.85 × 10−12 11.7538 2.5619 0.4154 20
0.0007 7.52 × 10−11 10.5362 2.6899 0.4303 21
0.0007 7.06 × 10−13 9.5865 2.8181 0.4441 22
0.0008 8.81 × 10−11 8.8437 2.9461 0.4564 23
0.0009 5.84 × 10−11 8.2471 3.0742 0.4677 24

Table C.8: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the convolution of
two Weibull distributions with λ1 = 2, k1 = 1, λ2 = 1 and k2 = 1.3.

DKL h1 hm λ s m
1.8724 2.62 × 10−8 0.0263 0.0185 0.5925 2
5.91 × 10−5 6.22 × 10−5 17.9815 4.7413 −0.1775 513
6.53 × 10−6 1.69 × 10−5 2.3699 7.0981 −0.0821 768
4.19 × 10−6 1.60 × 10−5 2.1037 8.2811 −0.0762 896
3.16 × 10−6 1.54 × 10−5 1.9653 9.1684 −0.0726 992
2.88 × 10−6 1.51 × 10−5 1.9237 9.4642 −0.0713 1024

Table C.9: Estimated values of (h1, hm, λ = m/ψ, s) under each fixed m for the Gompertz-
Makeham model with ζ = 2.2 × 10−5, ξ = 2.7 × 10−6 and λ = log 1.125.

DKL h1 hm λ s m
0.2031 0.0465 0.2800 0.0938 0.8680 2
0.0002 0.0301 1.8184 24.0717 −0.0478 513
9.10 × 10−5 0.0301 1.7668 36.0371 −0.0411 768
6.96 × 10−5 0.0301 1.7529 42.0433 −0.0393 896
5.55 × 10−5 0.0301 1.7439 47.2987 −0.0381 1008
5.46 × 10−5 0.0301 1.7441 47.6741 −0.0381 1016
5.37 × 10−5 0.0301 1.7436 48.0495 −0.0381 1024

Table C.10: Estimated values of (h1, hm, λ = m/ψ, s) for each fixed m under the Markham’s
second extension of the Gompertz distribution with ξ = 0.1, λ = 0.2, θ = 0.3 and α = 0.4.

C.4 Fitted Results

In summary, the fitted results for each example are promising in terms of the pdf, survival
function and hazard rate. For instance, the Kolmogorov–Smirnov statistic is 0.0032 with p-
value equal to 0 for Figure C.1. Thus, the fitted PTAM is not different from the true distribution.
The results of the Kolmogorov-Smirnov tests for Figures C.2–C.10 are similar, and thus, the
PTAM provides an excellent approximation. The results are promising in approximating the
Gompertz model, including its extended version. These demonstrate the PTAM’s goodness
of fit for human lifetime data. The calibrated PTAM is validated by checking its resulting
lifetime distribution, and the proposed PTAM successfully captures the human mortality trend.
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Figure C.1: Proposed PTAM approximating a Gamma distribution with α = 4 and β = 0.5.
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Figure C.2: Proposed PTAM approximating a Gamma distribution with α = 0.5 and β = 0.5.

Meanwhile, it is plausible to use the calibrated model to analyse the human ageing mechanism.
For lifetimes that follow the distributions highlighted in Figures C.1 - C.10, our results suggest
that the PTAM could be applied to gain insights on the embedded ageing process. For cases
with decreasing hazard rate, there are always distinct tails when using the proposed PTAM
to approximate the target lifetime distributions. Nevertheless, the fitted results are reasonably
good for most values in the domain. The areas where the PTAM cannot approximate well are
negligible because the probability in such areas is close to 0.
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Figure C.3: Proposed PTAM approximating a Weibull distribution with λ = 1.5 and k = 1.5.
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Figure C.4: Proposed PTAM approximating a Weibull distribution with λ = 2 and k = 5.
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Figure C.5: Proposed PTAM approximating a Weibull distribution with λ = 2 and k = 0.5.
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Figure C.6: Proposed PTAM approximating a Pareto distribution with k = 0.2 and σ = 5.
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Figure C.7: Proposed PTAM approximating a convolution of two exponential distributions
with λ1 = 0.6 and λ = 0.3.
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Figure C.8: Proposed PTAM approximating a convolution of two Weibull distributions with
λ1 = 2, k1 = 1, λ2 = 1 and k2 = 1.3.
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Figure C.9: Proposed PTAM approximating a Gompertz-Makeham Model with ζ = 2.2 ×
10−5, ξ = 2.7 × 10−6 and λ = log 1.125.
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Figure C.10: Proposed PTAM approximating a Makeham’s second extension of the Gompertz
distribution with ξ = 0.1, λ = 0.2, θ = 0.3 and α = 0.4.



Appendix D

A proposed algorithm

This is the proposed algorithm written in MATLAB in connection with the proposed algorithm
in Subsection 5.3.3 of Chapter 5. This algorithm can efficiently calculate the likelihood and
pdf of the proposed PTAM.

%% y is a one by n vector and it contains the observation in descending ...
order

%% delta is a one by n vector, delta=1 is exact death time, delta=0 is ...
sensor data

%% m is the total number of state
%% lam is a one by one numerical value and it is the constant lambda in ...

the PTAM
%% epsilon is the numerical tolerance

function [Likelihood]=PTAM likelihood(y,m,h1,hm,lam,s,delta,epsilon)
%total number of state m
nn=(1:m)';
% hi is the dying rate in the PTAM, it can be modified to Coxian model ...

with specifying each value of hi. Here use the proposed structure
if abs(s)<10ˆ−3

hi=h1.ˆ((m−nn)/(m−1)).*hm.ˆ((nn−1)/(m−1));
else

hi=(h1ˆs*(m−nn)/(m−1)+hmˆs*(nn−1)/(m−1)).ˆ(1/s);
end
%%%
%lambda is a m−1 vector with each value is equal to lambda i for the PTAM
lambda=lam*ones((m−1),1);
maxx=max(hi+[lambda;0]);
P=zeros(m,1);
P(1)=1−(lambda(1)+hi(1))/maxx;
P(2)=lambda(1)/maxx;
% ex is a n by m vector with the ith row element is the probability in ...

each state for the ith observation
ex=zeros(size(y,1),m);
ex(:,1)=poisspdf(0,maxx*y(:,1));
w1=[0;lambda]/maxx; w2=1−([lambda;0]+hi)/maxx;
%N is the truncation point for the infinite sum
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N=poissinv(1−epsilon,maxx*y(end,1));
for N i=1:N
ex=ex+poisspdf(N i,maxx*y(:,1))*P';
P=w1.*[0;P(1:end−1)]+w2.*P;
end
% Likelihood is a n by one vector. The ith element is the likelihood ...

for the ith element
Likelihood=ex*hi.*delta+sum(ex,2).*(1−delta);
end
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