
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

4-2008

COTS-Based Software Product Line Development
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Faheem Ahmed
Thompson River University, fahmed@tru.ca

Shereef Al-Maati
American University of Kuwait, ShereefAlMaati@gmail.com

Zaher AlAghbari
University of Sharjah, zaher@sharjah.ac.ae

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@article{DBLP:journals/ijwis/CapretzAAA08, author = {Luiz Fernando Capretz and Faheem Ahmed and Shereef Al-Maati and
Zaher Al Aghbari}, title = {COTS-based software product line development}, journal = {IJWIS}, volume = {4}, number = {2}, year =
{2008}, pages = {165-180}, ee = {http://dx.doi.org/10.1108/17440080810882351}, bibsource = {DBLP, http://dblp.uni-trier.de} }

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 1

COTS-Based Software Product Line Development

Luiz Fernando Capretz 1), Faheem Ahmed 2),
Shereef Al-Maati 3), Zaher Al Aghbari 4)

Structured Abstract:

Purpose of this paper Software Product Line (SPL) is at the forefront among the

techniques for reducing costs, decreasing schedule time, and
ensuring commonality of features across a family of products - as
components off-the-shelf (COTS) are reused in multiple products.

Design/methodology/approach A disciplined process for software product line development is
still needed. We propose the Y-model for COTS-based software
product line development. The model put forward identifies and
elaborates the essential phases and activities of software product
line development from COTS-based repository.

Findings The Y-model provides an efficient way of integrating the
approaches of software product line and COTS-based
development as a cohesive software development model.

Practical implications The model has the potential to tremendously increase software
engineers' productivity. Thus software architects, domain
engineers and component designers should become aware of how
to use these ideas to structure their models and designs.

What is original/value of paper This research describes a systematic approach for COTS-based
development that takes into account the cataloguing and retrieval
of software assets permeating a process that encompasses all
stages of software development from system product
requirements engineering to system deployment.

Keywords: Software Product Lines, Component-Based Software Engineering, Component-off-the-

Shelf, COTS, Software Reuse, Software Process Model

Research Paper

1 Department of Electrical and Computer Engineering, University of Western Ontario, London, Ontario, Canada, N6A 5B9,
lcapretz@uwo.ca. (on sabbatical leave – visiting associate professor in the Department of Computer Science at the
University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates)
2 College of Information Technology, United Arab Emirates University, P.O. Box 17555, Al-Ain, Abu Dhabi, United Arab
Emirates, f.ahmed@uaeu.ac.ae
3 Computer Science and Information Systems, American University of Kuwait, P.O. Box 3323, Safat, Kuwait, 13034,
smaati@auk.edu.kw
4 Department of Computer Science, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates,
zaher@sharjah.ac.ae

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 2

1. Introduction

Experience shows that a company can drastically improve its competitive advantage if it optimizes how
it develops these product lines. Using product line engineering, some organizations have reduced the
number of defects in their products and reduced costs. However, many companies do not use a product
line engineering approach when developing their products. More often than not, they either start from a
single system, branching off new variants as the need arises and ending up with completely
independent code bases, or they start with the different variants as independent projects from scratch.

A software product line is a group of software-intensive systems sharing a common, managed set of
features that satisfies the specific needs of a particular market segment or mission and are developed
from a common set of core assets in a prescribed way (Clement and Northrop, 2001). A software
product lines usually starts with the analysis of the common and the variable features supporting a
product-line development, and then defining a set of reusable elements that can be customized and
combined into new products. The establishment of a software product line is expected to bring dramatic
change in software engineers' primary roles and required skills for software development.

A COTS (Component-off-the-shelf) is a self-contained piece of software that provides clear
functionality, has open interfaces, and offers plug-and-play services. A product line can be built around
a set of COTS by analyzing the products to determine the common and variable features. The product
structure and implementation strategy around a set of COTS prepares a platform for several products. A
product line based on COTS has broad implications for how software engineers develop and maintain
software systems, so this approach is here to stay.

Software product line deals with the assembly of products from existing core assets commonly known
as components and there is continuous growth in the core assets as the production proceeds (Weiss and
Lau, 1999). This idea has emerged as vital in terms of software development from component-based
architecture (Griss, 2001). According to (Jazayeri et al., 2000), product family software architecture
defines the concepts, structure, and texture necessary to achieve variation in features of variant
products while achieving maximum sharing parts in the implementation. (Meekel et al., 1998)
identified three axes of variability among products resulting from software product line: features
variability, hardware platform variability and performance variability.

Although software product line is gaining popularity over time due to economical impacts, as asserted
by (Ahmed and Capretz, 2007), (Linden, 2002), (Buckle et al. 2004), there has not been a great deal of
research in establishing appropriate models for developing software product line from COTS. By
having controlled variability and in satisfying the market demands, COTS-based software product line
development model has broad implications on how software engineers develop and evolve multiple
software products.

2. The Y-model for Component-Based Software Development

Independent work carried out in software reusability, object-orientation, and software architecture has
reached a point at which many activities can be integrated to yield a new coherent approach to product-
line integration. Traditional software life-cycle models do not encourage reusability within their phases.

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 3

Hence, a software life-cycle model that emphasizes the importance of incorporating COTSs during
software development for the production of multiple products is in demand. The Y-model as taken in
Figure 1 has been proposed as a feasible solution. Our approach focuses on a collection of components
within a particular application domain, and encourages reuse of components from reusable libraries
within that application domain (Capretz, 2005).

Component reuse involves both "development with reuse" and "development for reuse". Our approach
addresses the mechanisms used when components are retrieved from and catalogued into a reusable
library of core assets. Initially, the software engineer identifies potentially reusable components from
existing reusable libraries of core assets. The components are then selected, adapted and reused through
composition, generalization and specialization mechanisms. At the end of software development, there
may be many new reusable components need to be validated, classified and stored as core assets.

Based on available experience, the use of the Y-model appears to cover the likely phases of large
software development and enforces software reuse. This model supports “development with reuse”
through component assembly, as well as “development for reuse” through component cataloguing, so
that in the future, such components can be reused in other systems in the same software family.

………..

Figure 1: Overview of the Y-model for COTS-Based Software Development

Product
Requirements
Engineering

Evaluation

Archive

Design

Views

Construction

Deployment &
Maintenance

Testing &
Validation

Assembly

Catalogue/
Storage

Selection/
Adaptation

Application
Engineering

Domain
Engineering

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 4

2.1 Domain Engineering Phase of Y-model

The Domain Engineering phase of Y-model taken in Figure 2 establishes an infrastructure for software
product line and constructs a COTS repository for product development. During the Domain
Engineering phase, we initiate Product Line Infrastructure View and COTS Archive View. The
iterations in the activities of Product Line Infrastructure View and COTS Archive View provide
feedback to one another. The aim is to generate a COTS repository, which fulfills the product line
requirements and meets the production constraints.

Figure 2: Domain Engineering Phase of the Y-model

2.1.1 Product Line Infrastructure View

Product Line Infrastructure View involves the activities related to conceptualization and initiation of
software product line within an organization. This view performs activities that establish an
infrastructure for software product line. The Product Line Infrastructure View constantly provides
feedback to COTS Archive View for effective search, identification, evaluation, selection and
catalogue/storage. The various activities performed during this view are as following:

1. Product Line Scope Definition: Software product line scope identifies the characteristics of the

product line and the products that comprise the product line. Software product line scope

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 5

definition activity provides iterative feedback to COTS search and identification activity in COTS
Archive View. This way it ensures that all the searched COTSs are consistent with the scope of
product line. The aim is to develop a COTS repository within the scope of the product line, one
that can be utilized to develop products.

2. Product Line Requirement Engineering: A well-established requirement management activity

for the software product line assists in understanding the scope and boundaries of the products to
be developed. Product line requirements deal with features or functionalities common to all the
products belonging to that family. The requirement engineering for product line gives feedback to
COTS selection activity in the COTS Archive View to generate a candidate list of COTSs that
meets the product line requirements.

3. Business Case Engineering: The goals of the software product line are explained by the

business cases identified, and they promote the product line. Each product released from the
software product line is a valid business case for the organization, and this helps an organization
to achieve its financial goal along with the justification of the product line. The identification of
business cases helps in evaluating identified COTSs in COTS Archive View in order to meet the
production criteria and product requirements.

2.1.2 COTS Archive View

COTS Archive View is responsible for building up a COTS repository for the COTS-based software
product line. It communicates with Product Line Infrastructure View to generate a COTS repository,
which fulfills the product line requirements and meets the production constraints. Initially the COTS
Archive Engineer identifies potential COTSs from existing reusable libraries and open markets based
on the software product line requirements and scope. The components are evaluated and selected. The
selected COTS is catalogued and stored so that they are readily available for assembly of products to
capture market segments. The various activities performed during COTS Archive View are as
following:

1. Search & Identification of COTS: The process of searching and identifying potential COTSs
for software product line development starts when we conceptualize the product line by defining
the product line scope. The selection of COTSs for software product line involves four steps:

 Index the COTS by the information that uniquely identifies them. A multi-dimensional

index structure, such as R-tree, could be used for this purpose. The R-tree index will
narrow the search space and thus reduce the search to O(logm n), where n is the total
number of COTSs and m is the minimum number of items stored in an R-tree node.

 Search the index structure for the required (target) COTS, which are within the scope of
the software product line.

 Understand the functionalities provided by the searched COTS.
 Evaluate COTS adaptation trade-off (specialization, generalization, composition or

adjustment).

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 6

2. Evaluation & Selection of COTS: The search and identification process yields a number of
potential COTSs that can be used in the development of various products in a software product
line. Those COTSs need to be evaluated at the individual component level as well as at the
product line level before they are selected for use in a software product line development:

 COTS Level Evaluation: involves evaluating possible quality attributes of a COTS such

as reliability, portability, efficiency, etc.
 Product Line Level Evaluation: involves evaluating a COTS with respect to integration

into the common architecture of the resultant products, its interoperability and its standard
compliance to product line and product requirements.

3. Catalogue / Storage of COTS: The selected COTS is catalogued and stored in the COTS

repository with enough information so that they can be easily traced and retrieved as and when
required for assembly. One way to express the association between COTSs involves organizing
them through a set of pre-defined categories. Such categories allow COTSs to be classified and
correlated with each other in order to be reused. Categories are used to represent information
about COTS, and this information can help in solving the problem of discordance of terminology
among professionals. When the archive of COTSs is huge, manual categorization of COTSs will
be tedious and time consuming; thus, an automatic categorization can be used. A machine
learning-technique, such as neural networks, may be used. First, we prepare a training dataset of
COTSs whose categories are known a priori and train the neural network using this training
dataset. After training the neural network, the archive of COTSs is fed into the neural network,
which will automatically categorize them.

2.2 Application Engineering Phase of Y-model

In the Application Engineering phase of the Y-model taken in Figure 3, actual products are developed
from COTSs present in the COTS repository. In this phase, activities of the Product Line Application
View interact with the activities of the COTS Utilization View to produce required products.

2.2.1 Product Line Application View

Product Line Application View interacts with Product Line Infrastructure View to identify potential
business cases to capture market segment. The Product Line Application View generates the product
requirements of the potential business case and provides feedback to COTS Utilization View to find out
which candidate COTS is to be used in product development. The various activities performed during
Product Line Application View are as following:

1. Product Requirement Engineering: Product requirements are composed of a constant and a

variable part. The constant part comes from product line requirements in the Product Line
Infrastructure View and deals with features common to all the products belonging to the family.
The variable part represents those functionalities that can be changed to differentiate one product
from another. This activity defines the variable part of the product requirement.

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 7

2. Assembly: The assembly activity involves the development of product. The product
requirements guide the assembly process to get feedback from the query activity of COTS
Utilization View to find out those potential COTSs suitable to be assembled in order to produce
the product. If it is required then assembly activity performs specialization, generalization, or
adjustment of the COTS.

3. Product Testing & Validation: In product testing and validation, products developed from

software product line are tested to analyze whether they meet the product line testing and
evaluation criteria or not. Specific testing and validation about integration of a COTS ensures
that adaptability has no consequences.

4. Business Case Evaluation: Business case evaluation identifies the success and failure story of

the products developed and deployed. It compares the proposed business case strategy with the
outcome of the development and deployment process of products. It studies the market and
analyzes the impact of the product in terms of cost to benefit ratio. The study re-establishes the
business case identification, keeping in view the market demands and product evaluation.

Figure 3: Application Engineering Phase of the Y-model

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 8

2.2.2 COTS Utilization View

COTS Utilization View is responsible for providing required COTSs from COTS repository to develop
products. COTS Utilization View interacts with Product Line Application View to receive product
requirements and then communicates with COTS Archive View to search and retrieve the required
COTSs from COTS repository, as developed and maintained by COTS Archive View. The various
activities performed during COTS Utilization View are as following:

1. Query: In the query activity of the COTS Utilization View, COTSs are searched from the COTS

repository in order to develop the product. A well-cataloged COTS repository established by
COTS Archive View reduces the efforts to trace the suitable COTS for assembly. The product
requirements serve as parameter for query activity, and continuously traversing the COTS
repository yields the required COTS, either exactly matched, partially matched, or not matched:

 Exact Match: An exact match between an available COTS in repository and product

requirements is reached. In this scenario the COTS is retrieved from the repository and placed
for product assembly.

 Partial Match: Some closely matching COTSs are available and requires adaptations in order
to match the product requirement. In this scenario, necessary specialization, generalization, or
adjustment of the COTS to the requirements is performed before the COTS is ready for
product assembly.

 No Match: COTS repository is searched thoroughly, but neither an exact match nor a partial
match COTS is available to satisfy the product requirement. In this scenario a request for a
search of new a COTS is passed to the Domain Engineering activity, and this stimulates
Archive View and Product Line Infrastructure View to find the potential COTSs from the
open markets and update the COTS repository respectively.

2. Version Management of COTS: The COTS, after adaptation, generates versions, which are

documented in this activity. A comprehensive version management and dependency link strategy
for components and products in software product line provides us with vital information about
components and products having a relationship of composition and utilization.

3. Update COTS Repository: The software product line develops an initial COTS repository in

the Domain Engineering phase. As we maintain the software, products resulting from the product
line tend to develop new versions of COTS, which must be added to the COTS repository so that
they can be reused in later products. The COTS repository is dynamic and continues increasing
its size with the addition of a new COTS when required.

3. Component Cataloguing

So far, most of the work that has been done in the reusability arena involves storing and recovering
components from reusable libraries, but there are still many problems related to reusing such
components. For instance, as a software system becomes mature, the reusable libraries may grow as
domain-specific libraries and reusable components can be added over time. It does not take long for
such libraries to expand to enormous proportions and often with multiple versions of a component,

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 9

which makes it difficult for software engineers to look for components that might meet their needs.
Reusable libraries are usually large and their organisation makes it problematic to find potentially
reusable components.

Additionally, one of the great difficulties in identifying a reusable component lies in the fact that there
is discordance in terminology among professionals, such that a component someone is looking for
might be described in unfamiliar or unexpected terminology. Google code search engine (Google,
2007) and Koders (Koders, 2006) have been tackling this problem and have given us some hope. They
are both primarily used by software engineers in searching of related samples from the available open
source project on the web.

Ideally, the potential re-user of software components must be able to find a connection between what is
needed and what is available. One way to express relationships between components of a reusable
library involves organizing them through a set of pre-defined relations. Such relations allow
components to be classified, and correlated to others that could also be reused. In addition, relations
can be used to express a link between different components, facilitating the understanding of the
components. Relations used to represent information between two reusable components can help solve
the problem of discordance of terminology among professionals because the relations can establish
some fixed semantic concepts between components. Four different relations to link components and to
express relationships among components have been proposed:

1. Compose (<component-1>, <list-of-components>): This relation represents <component-1> as
a composition of components in a <list-of-components> (has-a relationship). Complex software
system behaviour can be achieved with compositions that combine the simple behaviour of
several types of components.

2. Inherit (<component-1>, <component-2>): This relation indicates that <component-1> is a

generalization of <component-2> or the other way round that <component-2> is a specialization
of <component-1> (is-a relationship).

3. Use (<component-1>, <list-of-components>): This relation indicates that <component-1>

interacts with components in a <list-of-components> (uses-a relationship). It means that any
operation of <component-1> uses any service provided by any component in a <list-of-
components>.

4. Context (<component-1>, <context-1>): This relation associates a <component-1> with a

<context-1> defined by the software engineer (is-part-of relationship). The <context-1> can be
a framework or application domain.

These relationships are vital for data mining - the automated extraction of hidden predictive
information from large data sets, such as reusable library of software assets. In this way re-users will
have a functionality which may read something like: "Software engineers who used these components
also used…" to help the software engineers while browsing the assets. This is just like the Amazon
feature that lists other books that were related to the same purchase, and reads "Customers who bought
this book also bought…".

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 10

4. Component Assembly

The decisions involving the reuse of a component are very important in that the software engineer must
select the component that requires the least effort to adapt, with an exact match between what is needed
and what is available being the goal. Basically, the selection of a component from a reusable library
involves four steps:

1) identifying the required (target) component;
2) selecting potentially reusable components;
3) understanding the components;
4) adapting (specializing, generalizing, composing or adjusting) the components to satisfy

the needs of the developing software system.

The search for a component in a reusable library can lead to one of the following possible results:

 An identical match between the target and an available component is reached.
 Some closely matching components are collected, then adaptations are necessary.
 The requirements are changed in order to fit available components.
 No reusable component can be found, so the target should be created from scratch.

Following a procedure which helps select potentially reusable components is vital to the reuse process.
The procedure described in Figure 4 illustrates a typical attempt to reuse a component from a reusable
library. The procedure describes only the selection and adaptation of reusable components.

While searching for components it is also necessary to address the similarity between the required
(target) component and any near matching components. The best component selected for reuse may
also require specialization, generalization or adjustment to the requirements of the new software system
in which it will be reused. Sometimes, it is preferable to change the requirements in order to reuse the
available components. The adaptability of the components depends on the difference between the
requirements and the features offered by the existing components, as well as the skill and experience of
the software engineer. The process of adapting components is the least likely to become automated in
the software reuse process.

5. The COTS Life Cycle

As COTS-based software is produced essentially out of interrelated collections of independently
developed components, it is important to understand the stages that such components go through. The
stages reflect the activities involving the design, implementation, verification, classification, storage,
selection, retrieval, and adaptation of the component. Figure 5 depicts the lifetime of a reusable
component.

Reusability not only involves reusing existing components in a new software system but also producing
components that are meant for reuse. When a software system has been developed, the software
engineer may realise that some components can be generalized for potential reuse in future projects. A
component must be easily adaptable for different uses, either in original or in modified form.

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 11

Therefore, developing reusable components is considerable more difficult and involves much greater
expense then producing ordinary components, although it may still be worth the investment over the
longer term.

If a newly implemented component does not exist in the reusable library, then a decision has to be
made as to whether the new component should be classified as a reusable component, and to be frozen
and validated, then put in a reusable library. The validation is applied only to that component, not to the
whole software system and should include treatment of exceptional conditions.

begin
 //The component reuse process.
//Given a keyword for a target component: Search libraries
// for potentially reusable components and their relations.
if (identical match between the target and an available component

exists)
then

 //reuse by composition
 retrieve it and reuse the component as it is
else

 collect fitting components
 for each collected component

assess the degree of matching
 endfor
 rank the components

select the best component
if (the target shares commonalities with the best component)
then

 adjust the best component to the requirements or
 adjust the requirements to the best component
 else
 //reusability is not possible
 create the target component from scratch
 endif
 endif
end

Figure 4: A Procedure for Component Reuse

Classification of components depends on the experience of the software engineer, and storage issues
are straightforward. By properly storing a component using the relations proposed previously, the
chances of finding potentially reusable components are increased. The effort required to get a suitable
component is reduced because the classification scheme based on relations guides the software
engineer through the various relations quickly and efficiently.

Storing a component also involves classifying it, taking it from the software product line, relating it to
other components and putting it into the reusable assets library. Selection involves browsing to find a
component, retrieving it, and transferring it from the reusable assets library to the software product line.

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 12

Figure 5: Lifetime of a Reusable Component

A software system is not merely produced out of reusable components. On the contrary, usually,
components selected and derived from reusable libraries are combined with newly-written components,
and all of them have to be bound together in the final software. It is natural that with some of the
components, the software designer will face the decision of whether to reuse them straightforwardly,
adapt them then reuse, or write them from scratch. The break-even point of reusing versus redoing is
where the cost of search plus adaptation exceeds the cost of producing the respective component.

6. Following the Y-model: A Case Study

One day while Luiz, Faheem, Sheeref, and Zaher were busy in discussions about how they could
evaluate the Y-model, somebody knocked at the office door. The man at the door was Luiz’s friend
Lucas who works for a software development company at the managerial level. He seemed to be upset.
When Luiz asked what the problem was, he said:

“My boss wants to establish a product line from COTS and I don’t have any ideas about what to do. He
gave me a very short time frame and I think I’m in trouble. You guys have to help me either to establish
a product line or to find a new job.”

Luiz glanced at Sheeref and Faheem and all came to the same conclusion that here was the test bed for
the Y-model.

Sheeref said, “Don’t worry Lucas, we have developed a model for COTS-based Software Product Line
Development that might help you to meet your target."

Lucas said “I have no other choice; I came here with very high hopes so tell me what I have to do."

Luiz asked Faheem to open the Y-model diagram.

Software
Product

Line

Reusable
Assets

Selection/RetrievalAdaptation
Design

Implementation

Classification

Verification

Storage with
relations

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 13

Sheeref said, “First we had to work on the Domain Engineering Phase.”

Lucas asked, “What is this phase and why do we need to do this?”

Luiz explained to Lucas that first we have to develop an infrastructure for the product line and an initial
COTS repository. The Domain Engineering phase will carry out certain activities in the Product Line
Infrastructure View and COTS Archive View to do that job.

Sheeref said, “Let’s get started."

Luiz asked Lucas if he could explain, “What was the scope of his product line."

Lucas asked, “What do you mean by scope of the product line?”

Sheeref replied, “Okay forget about the terminology. Tell me what kind of products you want to
produce from this product line."

Lucas said, “My boss wants to establish a production facility to create products to carry out
commercial activities like selling and purchasing electronically, particularly via open networks like the
Internet."

Luiz said, "Here is your scope, now we can move ahead."

Faheem looked at the diagram of the Y-model and asked Lucas, “Is there anyone in your office who is
good at searching and browsing the Internet for COTS, because, if there is, that person starts
searching and identifying the COTS."

Lucas replied, “Yes, Zaher always does this for us whenever we want to have COTS."

Sheeref called Zaher, and explained to him what kind of COTS he had to search and asked him to
prepare a list of components.

Luiz was more curious about the product line requirements because he thought that if we could prepare
them by the time Zaher had searched the COTS we would be able to figure out what exactly we
needed.

Luiz asked Lucas, “Okay tell me your product line requirements?”

Again Lucas complained, “Don’t use this terminology. It confuses me. Explain to me what you want to
know."

Faheem elaborated, “What kind of functions should all the products be able to perform?”

Lucas quickly answered, “The resulting E-Commerce products must provide traditional commercial
and specific online activities, for example it must provide product information, conduct online retail in
virtual malls, and publish digital information."

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 14

Sheeref asked Lucas, “Could you categorize the activities?”

Lucas said, “Okay, well there should be a Business Website comprised of a Payment Processing
System, a Store Management System and a Shopping Cart."

The phone rang. It was Zaher and he was anxious to tell us what he had found.

Luiz asked him if he had found things like Business Website Templates, a Payment Processing System,
a Store Management System and a Shopping Cart in his list.

Zaher was delighted to tell us he had a huge list of these things.

Sheeref was not eager to move ahead with the Y-model until all the COTS that Zaher had searched
were evaluated.

Faheem pointed out that before we could evaluate the COTS we must do the business case engineering,
because it would help in evaluating the COTS.

Lucas said, “What is this, I’m not a businessman."

Luiz explained, “It is very important to know what the business cases are for which you are
establishing this product line."

Lucas said, “There may be products like an Online Pharmacy, E-Book Shop, Online Auto Part Shop,
Online Car Rental and Online Air Line Ticket Sale etc.”

Luiz said to Faheem, “Faheem, I’m going for lunch with Lucas and Sheeref. In the meantime, please
coordinate with Zaher and evaluate the COTS to ensure that they are fulfilling our product line
requirements and make different categories of them."

Faheem said, ”So, you want me to finish up with the Product Line infrastructure View and COTS
Archive View."

Lucas asked Faheem meant about the “Views” and what the outcome was of the activities we have
done so far?”

Sheeref said, “Don’t worry Lucas, when we come back from lunch Faheem will have established a
COTS repository and an infrastructure for your product line."

When Luiz, Sheeref and Lucas came back from lunch, Faheem was eager to show them Table I that
illustrates the initial COTS repository, which he and Zaher prepared.

Luiz said, “Okay Lucas, now you have the COTS repository and an infrastructure of the product line.
Which product do you want to develop first?”

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 15

Faheem pointed out that now we are moving into the Application Engineering Phase of the Y-model.

Lucas asked, “What is this Application Engineering Phase?”

Table I: Selected COTS for E-Commerce Software Product Line

Sheeref explained to Lucas, “The Application Engineering phase of the Y-model deals with the
development of products from COTS present in the COTS repository. In this phase, we will perform
activities of the Product Line Application View and COTS Utilization View to produce the required
products."

Lucas asked, “Please explain what these views will do?”

Faheem said, “The Product Line Application View generates the product requirements of the potential
business case and provides feedback to the COTS Utilization View, so the user can find out which
COTS is to be used in the product assembly."

Lucas said, “Okay, my boss was asking for an online pharmacy."

Sheeref was interested in doing the Product Requirement Engineering; he asked Lucas, “Is there any
specific requirement for that?

Lucas said, “Yes, he wants an ASP-based website, an online transaction system from Pay Pal, and a
MS Access based database."

Sheeref said to Faheem, “Be careful now. We are going to start assembly and query activities."

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 16

Faheem queried Zaher, “Could you please find COTS from the COTS repository that matches these
requirements?”

He replied, “Yes, Here you go!” and gave us BW-1, PP-1, SC-1 and SM-1.

Lucas asked, “Can we assemble the product right away?”

Luiz said, “If the COTS are exactly match then yes, otherwise, no, because you need to perform
adaptation so that you can fulfill the individual product requirements."

Sheeref highlighted the changes to be performed in the COTS in order to assemble the Online
Pharmacy, the one Lucas’s boss wants.

Faheem emphasized to Zaher the need to update the information of new versions of COTS in the COTS
repository.

Zaher said, “I know that BW-1 has version BW-11 whereas PP-1 has version PP-11."

Luiz asked Faheem to look at the Y-model diagram and to tell them what else should be done now.

Faheem said, “We need to test this Online Pharmacy that we have developed. That’s what the Y-model
says. And we need to evaluate the business case."

Lucas said, ”Don’t worry. I will ask my boss to look at it and evaluate this business case."

Lucas inquired, “What happens when we don’t have any matched or partially matched COTS in our
repository?”

Faheem told him “You have to go through the Domain Engineering phase to search again for new
COTS in order to update your COTS repository."

Luiz explained to Lucas, “This is the way you establish a COTS-base software product line. We did a
quick exercise to explain to you the various steps of the Y-model. Now you have to go through carefully
all these steps in your office and understand the various views of the Y-model. You will need to
establish a team and let them understand the collaboration protocols. We have shown you that the Y-
model works to establish a COTS-based Software Product Line."

Lucas left with high hopes and after few days conveyed to us that he has established a COTS-based
software product line in his office and has produced four E-Commerce Applications so far and is in the
process of producing more.

7. Final Remarks

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 17

This paper has provided an overview of a pragmatic approach to COTS-based development. Starting
from the set of common and variable features needed to support a software product line, we can
systematically develop and assemble the reusable elements needed to produce the customized
components and component infrastructures needed to implement the family members of the product
line.
There is still a need for tools to support the management of software families, which are specific to
particular application domains. A software family comprises a group of software systems that expresses
a general solution for a family of related applications in that application domain. Therefore, a
component will not be as generally useful outside the application domain because it contains domain-
dependent components. However, it is sometimes beneficial to adapt the developing software so that it
fits into a software family, resulting in a tremendous gain in productivity.

The Y-model for COTS-based software product line development highlights various activities of
software product line and COTS-based development. The model integrates the concept of software
product line with COTS to come up with a prescribed way of establishing COTS-based software
product line capable of producing multiple products within an application domain. The
interdependence of various activities of software product line and COTS shows a strong relationship
within a common framework of product development. In order to validate the model, we conducted a
case study based on E-Commerce application, which revealed that productivity, in terms of cost, time
and quality, increased when we followed the Y-model for COTS-based software product line.

Finally, the use of software product lines as a platform for larger systems is becoming increasingly
commonplace. The shift from custom development to software family is occurring in both new
development and maintenance activities. Shrinking budgets, accelerating rates of COTS enhancements,
and expanding systems requirements are all increasing the need for software product lines. If done
properly, this shift can help establish a sustainable practice. We believe that software product lines and
COTS-based development encompass the best practices of software engineering and hold the promise
of improving the quality of software as well as the productivity of software engineers.

References

Ahmed, F. and Capretz, L. F. (2007), "Managing the business of software product line: an empirical
investigation of key business factors", Information and Software Technology, Issue 49, pp. 194-208.

Buckle, G., Clements, P., McGregor, J. D., Muthig, D. and Schmid, K. "Calculating ROI for software
product lines", IEEE Software, Vol 21, No 3, pp. 23-31.

Capretz L. F. (2005), "Y: a new component-based software life cycle model", Journal of Computer
Science, Vol 1, No1, pp. 76-82.

Clement, P. and Northrop, L (2001), Software Product Lines: Practices and Pattern, Addison Wesley,
New York.

Google (2007), Google Code Search Engine, http://www.google.com/codesearch.

International Journal of Web Information Systems, Volume 4, Number 2, pp. 165-180, Emerald Group Publishing, 2008.

 18

Griss M. L. (2001), "Product-line architectures", in Heineman, G. T. and Councill, W. L. (Eds.),
Component-Based Software Engineering, Addison-Wesley, New York, pp. 405-419.

Jazayeri, M., Ran, A., van der Linden, F. (2000) Software Architecture for Product Families:
Principles and Practice, Addison-Wesley, New York.

Koders (2006) Koders Source Code Search Engine, http://www.koders.com.

Linden, F. (2002), "Software product families in Europe: the Esaps & Café projects", IEEE Software,
Vol 19, No 4, pp. 41-49.

Meekel, J., Horton, T., and Mellone, C. (1998), "Architecting for domain variability", 2nd International
ESPRIT ARES Workshop on Development and Evolution of Software Architectures for Product
Families, Lecture Notes in Computer Science, Vol 1429, pp. 205-213.

Weiss, D. M. and Lai C. T. (1999), Software Product-Line Engineering: A Family-Based Software
Development Approach, Addison-Wesley, New York.

	Western University
	Scholarship@Western
	4-2008

	COTS-Based Software Product Line Development
	Luiz Fernando Capretz
	Faheem Ahmed
	Shereef Al-Maati
	Zaher AlAghbari
	Citation of this paper:

	Microsoft Word - Jakarta-IJWIS.doc

