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Abstract 

Numerical modelling of wastewater management systems is crucial for investigating 

alternative designs and developing strategies for operation and control that improve the 

performance of the treatment stage (such as improving the aeration systems in activated 

sludge systems). Modelling can also help operators to mitigate common problems that arise 

from unwanted biochemical conversions in the sewer networks (such as the production of 

sulfide and methane).  Therefore, this work focuses on two major areas related to modelling 

wastewater management systems. First, it seeks to develop more accurate models for aeration 

systems in activated sludge reactors. Second, it seeks to studying the mathematical 

formulation and sensitivity/uncertainty related to input parameters for biochemical models of 

sewer system. Based on the uncertainty analysis of the sewer models, an improved 

biochemical model for the biological oxidation of sulfide using nitrate dosing is developed. 

This allows for the investigation of different dosing strategies and to propose optimized 

experimental plans for lab-scale experiments.  

A CFD model integrated with the population balance model (PBM) was developed to 

simulate the aeration of a bubble column of clean water operating in a homogeneous flow 

regime. This study aims at investigating the influence of the liquid phase flow field on the 

evolution of the bubble size distribution (BSD) from a fine pore air diffuser to the free 

surface of the water. Moreover, the local oxygen mass transfer rate is calculated based on the 

bubbles’ relative velocity and interfacial area, which is deduced from the modelled BSD, 

between the air bubbles and water. The model is validated by experimental data obtained 

from literature. The validation is based on the BSD and the values of the oxygen mass 

transfer coefficient (KLa). A comparison between different PBM closure models for the 

bubble breakup and coalescence rates is conducted to determine the proper closure models 

for this flow regime. The study shows the influence of the flow field, especially near the free 

surface of water, on the BSD and KLa. Moreover, a comparison is conducted with the 

simulation results of the constant bubble size (CBS) approximation to show the inaccuracy 

that accompanies this approximation. The results show that the widely used constant bubble 
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size approximation can predict the global gas holdup reasonably, but poor matching with the 

oxygen mass transfer is obtained.  

 Uncertainty analysis of the Wastewater Aerobic/Anaerobic Transformation in Sewers 

(WATS) biochemical model is conducted. The analysis is concerned with the uncertainty of 

the biochemical model parameters and its mathematical form. The WATS model is 

implemented in 1-D (CSTR-in-series) and CFD frameworks. The 1-D model is used to study 

the uncertainty/sensitivity analysis by the Monte Carlo technique, and standardized 

regression coefficients (SRC) are determined to quantify the importance of the different 

biochemical model parameters. The CFD model is used to study the influence of two 

assumptions that are used in the 1-D model; homogenization of the reactions that occur in the 

biofilm and neglecting the non-uniform distribution of the particulate matters due to settling 

of solids. It is concluded that the 1-D model approximations are reasonable in the case of 

simple pressure mains.  

Modelling of a lab-scale experiment, intended to replicate the behaviour of a sewer pipe, is 

conducted to determine the optimal nitrate dosing strategy in the system. The WATS model 

is extended to include the biological oxidation of sulfide by nitrate dosing. The experiment is 

modelled as a series-of-CSTRs. The developed model is calibrated and validated using 

experimental data collected from the system. A dosing strategy is developed to be used in the 

planning of experiments.  

 

Keywords 

Computational fluid dynamics, bubble column, population balance model, bubble size 

distribution, gas-liquid mass transfer, sewers, uncertainty/sensitivity analysis, WATS model, 

standardized regression coefficient method, sulfide formation, nitrate dosing.   
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Summary for Lay Audience 

Wastewater management systems, which involve the collection system (sewer networks) and 

wastewater treatment plants, are critical for the protection of human health and the 

environment. Mathematical modelling of wastewater management systems is useful for 

predicting their performance. Through modelling, the design of different processes can be 

made more efficient or their performance can be improved. The biological and chemical 

conversions that happen in these systems can be beneficial, such as the reactions that occur in 

activated sludge reactors, which help to degrade waste organic material before it is 

discharged to the environment. On the other hand, these conversions could be harmful to 

humans and environment, for example to formation of sulfide and methane in sewer systems. 

Therefore, mathematical modelling is crucial to study the different sections of the wastewater 

management system and is more efficient than conducting expensive and time-consuming 

experiments and measurement campaigns in full-scale utilities. However, the most common 

mathematical models in this field rely on approximations that are necessary to simplify the 

complexity of the real world. These approximations could carry high uncertainty that may 

affect the accuracy of the model predictions which could subsequently result in wasted 

resources or substandard designs. Therefore, more sophisticated mathematical models such 

as computational fluid dynamics (CFD) could be used either directly in the design and 

operation process or indirectly by verifying the more simplified models.  

This doctoral thesis is divided into two parts. The first part is concerned with a common 

approximation used in modelling the aeration of the biological treatment reactors where 

either the oxygen transfer rate from air bubbles is assumed to be homogeneous (uniform) 

throughout the reactor or a non-uniform distribution is considered but with the assumption of 

all the bubbles have the same size. This approximation is studied, and an alternative model 

based on CFD framework integrated with a statistical model is proposed. The study shows 

that the simplified models cannot address the strong influence of the water flow field and the 

evolution of the bubble size on the oxygen mass transfer rate. In the second part, 

uncertainty/sensitivity analysis is conducted on the widely used WATS biochemical model 

for the reactions in sewer systems. The biochemical model is also implemented in a CFD 

framework to study the approximations of the 1-D models. The studied assumptions are the 

homogenization of the reactions that occur in the biofilm only and neglecting the settling of 
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particulate matter. It is concluded from this investigation that the 1-D model can predict the 

biological and chemical conversion satisfactorily and the approximations are valid to be used 

in the case of simple pressure mains. Therefore, the 1-D framework is used to implement the 

WATS model that was extended to include one of the most common control strategies for 

sulfide levels in the sewer system, which involves nitrate dosing to stimulate a certain 

population of microorganisms that exist in the biofilm to oxidize the produced sulfide 

biologically. The developed model is used to determine the optimal dosing strategy that will 

be followed in a lab-scale experiment.  
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Chapter 1  

1 Introduction and Literature Review  

1.1 Background 

Effective wastewater management systems are imperative for modern cities all over the 

world. With the continuously growing population and accelerated urbanization, the 

demand for water resources is rising and, subsequently, the produced wastewater from 

households and industry is increasing every day. Direct disposal of wastewater to the 

environment with inadequate treatment carries a brutal danger to both human health and 

ecosystems. Wastewater contains pathogenic microorganisms such that discharging the 

wastewater to freshwater resources results in spreading of waterborne diseases. 

Moreover, oxidation of the carbonaceous organic compounds in wastewater by the 

dissolved oxygen in receiving water has a detrimental impact on the marine life. In 

addition, nutrients in wastewater could stimulate the growth of aquatic plants and 

microorganisms.  

The economic growth of the developing countries is contingent on the pollution control 

which is a key factor of the improvement of the agricultural and industrial productivity. 

The United Nations (UN) adopted 17 Sustainable Development Goals (SDGs) (UNHCR, 

2017) that include clean water and sanitation goal (SGD 6). SGD 6 is for ensuring the 

availability and sustainability of the water and sanitation management systems. It is 

stated that discharging the wastewater without treatment or reuse is an existential threat 

of human being.  Indeed, untreated wastewater is a critical source of deadly pathogens in 

food and water. In addition, discharging wastewater without reuse dissipates a huge 

amount of water, nutrients, energy and materials that can be recovered.   

Governments enforce stringent regulations on the treatment of wastewater prior to 

discharge to the environment. These regulations set the removal objectives of the 

treatment process. The primary objectives include the removal of the wastewater 

constituents that have an immediate and long-term impact on human health and 

environment such as pathogenic organisms, suspended solids and biodegradable organics, 
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in addition to nutrients such as phosphorous and nitrogen. Furthermore, the allowable 

concentration of these constituents in the discharged wastewater have been reduced 

significantly over the years in light of more recent research into the environmental harm 

caused by wastewater pollutants. Therefore, the degree of the wastewater treatment that is 

required by the regulations has been become more stringent.  

In developed countries, the concept of wastewater treatment is being extended beyond its 

traditional scope of simply removing pollutants and pathogens prior to returning water to 

the environment or reusing. The goal of such systems includes the recovery of some 

wasted resources along with reducing the cost and improving the efficiency. Therefore, 

renaming of Wastewater Treatment Plants (WWTP) to Water Resource Recovery 

Facilities (WRRF) is advocated by different water quality associations (Coats and 

Wilson, 2017). The recovery of resources such as energy, in the form of biogas, 

chemicals (e.g. phosphate), valuable materials (e.g. cellulose fibres, bioplastic, etc.), is 

active research in the academic community (Loosdrecht and Brdjanovic, 2014).  

Wastewater produced from residential and industrial sources has a complex composition 

of organic and inorganic dissolved and suspended matter in addition to microorganisms. 

In order to properly design and control wastewater management systems, the quality of 

the wastewater should be adequately described.  Wastewater quality is characterised 

based on physical properties and the chemical and biological constituents (Metcalf & 

Eddy, 2003). The physical properties of wastewater include density, temperature, 

conductivity, color, odor and turbidity along with the solids content that is composed of 

suspended and dissolved solids. Moreover, the typical chemical parameters of wastewater 

comprise pH level, alkalinity, Total Solids (TS), Biological Oxygen Demand (BOD), 

Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), nitrogen and 

phosphorus concentrations. The biological characteristics of the wastewater that describe 

the microorganism population are essential due to the important role of bacteria and other 

microorganisms in degradation and stabilization of the organic matter.  

Organic matter, generally composed of a combination of carbohydrates, proteins, fats, 

oils and grease, is a major concern because of its influence on the environment. The 
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constituents of organic matter cannot be distinguished separately, therefore techniques 

have been developed to measure aggregate organic constituents in wastewater that have 

the same characteristics. Moreover, other advanced methods are used for measuring some 

organic components individually, e.g. Volatile Organic Compounds (VOCs).  Most 

common analyses used to quantify the aggregate organic constituents of wastewater are 

BOD, COD and TOC (Metcalf & Eddy, 2003). Measuring BOD is the most widely used 

method to estimate the organic pollution that is based on quantifying the dissolved 

oxygen consumption in wastewater sample seeded with population of bacteria over a 

period of five days (BOD5). BOD5 indicates the amount of the biodegradable organic 

matter in wastewater. However, this test has a number of limitations that include the long 

time needed to complete the test, the fact that only biodegradable matter can be 

determined, and that the sample needs to be pretreated in the case of high toxicity 

wastewater. COD is another measure that takes much less time, around 2-3 hours, and 

does not need pretreatment of the sample. In this method, organic matter is chemically 

oxidized using dichromate in strong acid solution and heating. However, in order to 

assess the treatability of the wastewater, fractionation of the measured COD is required. 

The fractionation is based on the biodegradability of the soluble and particulate COD. 

The fractionation of COD is required to be more detailed for the mathematical modelling 

of the biochemical conversions in wastewater, since these models include many 

additional wastewater constituents (Makinia and Zaborowska, 2020) .The last common 

method to measure the organic matter is the TOC measure where total organic carbon 

concentration is determined by oxidizing the organic carbon to carbon dioxide using 

ultraviolet radiation, heat and oxygen, and chemical oxidant. TOC is commonly 

recommended to be used in the control system since a relationship with the BOD of a 

specific wastewater could be established and it needs 5 to 10 minutes to complete the test 

(Metcalf & Eddy, 2003). Measurements of wastewater organic loading is routinely 

conducted at different sections of the wastewater management system.  

Fractionation of the organic matter in wastewater is essential to determine the portion that 

can be removed by the biological treatment and the mechanisms of the biodegradation. 

Moreover, it is imperative for mathematical modelling of the biochemical conversion 

rates (Makinia and Zaborowska, 2020). COD measurement comprises the biodegradable 
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and non-biodegradable constituent concentrations in wastewater. These constituents are 

in soluble and particulate form. Typical fractionation of the COD is depicted in Fig (1-1). 

While the soluble non-biodegradable constituents leave the sewer system and treatment 

plant without any change, the particulate non-biodegradable constituents accumulate in 

the biosolids. Microorganisms in the wastewater system can easily utilize readily 

biodegradable substrates (rbCOD), which are typically soluble matters. rbCOD is further 

fractionated into Volatile Fatty Acids (VFAs) and more complex COD that can be 

fermented to VFAs. However, particulate and colloidal COD needs more biodegradation 

by extracellular enzymes that are produced by the microorganism so that it can be 

absorbed through the microorganisms’ cell wall. Therefore, the biodegradation of the 

particulate COD is slower than the soluble fraction. The biodegradability of organic 

matters in wastewater is determined by the biodegradable fraction in the total COD. For 

untreated municipal wastewater, the ratio of BOD/COD determines the biodegradability 

of pollutants in the wastewater hence better treatability by the biological means. While 

the ratio BOD/COD varies from 0.3 to 0.8, untreated wastewater water with BOD/COD 

greater than 0.5 is considered easily biologically treatable (Metcalf & Eddy, 2003). 

 

 

Figure 1-1: COD fractionation in wastewater (Metcalf & Eddy, 2003) 
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Solids concentration is the most important parameter that is used to characterize 

wastewater. TS is fractionated into total suspended solids (TSS) and total dissolved solids 

(TDS) (Fig 1-2). The concentration of the TSS is typically measured by filtering a sample 

of the wastewater through a filter paper (the most commonly accepted pore size is 1.2 

μm) and measuring the weight of the retained solids after drying at 105°C. Solids that can 

escape from the filter with the filtrate is considered to be dissolved and colloidal solids. 

The organic portion of solids is volatile. This portion is measured as fraction of BOD, 

organic nitrogen and organic phosphorus. On the other hand, the inorganic solids are 

considered fixed solids. the ratio of the volatile suspended solids (VSS) to TSS in raw 

wastewater is typically 0.6-0.8 (Metcalf & Eddy, 2003). 

Management system of wastewater starts with the collection (sewer) system which 

collects transports municipal and industrial wastewater (Fig. 1-3). Sewer networks may 

be designed to collect and transport sanitary wastewater and stormwater separately 

(separated sewers) or together (combined sewers). Combined sewers act as sanitary 

sewers only during dry-weather periods. However, overflow structures, e.g. detention 

tanks, are included for wet-weather periods, since the flow rate may be up to 100-1000 

 

Figure 1-2: Solids fractionation in wastewater (Metcalf & Eddy, 2003) 
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times the average of the dry-weather conditions (Hvitved-Jacobsen and Nielsen, 2013). 

For the last 50 -100 years, separate sewers have been widely used to control the levels of 

contamination of the discharged flow to receiving water bodies during wet-weather 

periods. Variability over day and night of wastewater flow rate and hence the residence 

time in the sewer system relies on the type of the sewer system and behaviour of the 

community. Sanitary and stormwater sewers are different in terms of the hydraulics and 

composition. Stormwater sewer design is largely concerned with the hydraulics and 

solids transportation with minor attention to the chemical and biological reactions. On the 

other hand, for sanitary sewers, the chemical and biological conversions are of high 

importance to consider during the design and operation. Most of the sewer systems are 

designed to transport wastewater and stormwater by gravity where the flow is 

characterized as open-channel flow. Therefore, the sewer pipes are partially filled and 

oxygen diffusion from the sewer atmosphere to the wastewater occurs. However, some 

segments of the sewer network involve pumping stations and pressurized pipes, mainly 

due to changes in elevation. In these segments, pipes are fully filled and dissolved oxygen 

is depleted by the biochemical reactions in a short distance at the beginning of the pipe. 

The type of the sewage and the transport method determine the change in the wastewater 

constituents and flow rate that is delivered to the wastewater treatment facility.    

The WWTP is the next element in the wastewater management system, where residential 

and industrial wastewater is treated before being disposed to the environment or reused. 

The main objectives of wastewater treatment are: (1) removal of suspended solids; (2) 

removal of the organic biodegradable substrate that may cause oxygen depletion in the 

receiving water; and (3) inactivation of pathogens (Qasim, 2017). National legislation on 

the quality of discharged water defines the standard composition that the treatment should 

achieve. Treatment of wastewater includes several physical, chemical and biological 

processes to accomplish the targeted composition of the discharged treated wastewater. In 

general, the soluble and solids pollutants are removed over several processes that could 

be grouped into stages based on the nature of the processes in each stage. Conventionally, 

these stages are named as primary, secondary and tertiary stages (Metcalf & Eddy, 2003). 
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The preliminary stage involves physical processes such as screening to remove large 

floating objects that might clog pipes and to remove grit, which includes sand, seeds, and 

other solids that generally heavier than organic matter. After grit removal, the sewage 

still contains organic and inorganic suspended minute particles that could be removed by 

a sedimentation tank in the primary stage. The secondary stage includes biological and 

chemical processes that remove the soluble, colloidal and particulate biodegradable 

organic matters, and further remove suspended solids. The biological removal of organic 

matter is based on selectively stimulating the active microorganisms in the system to 

consume the organic matter as food for producing new cells and for energy. This is 

achieved by providing oxygen, through an aeration system, to the microorganisms and 

maintaining favorable conditions, temperature and pH level, for their activities. The 

aeration system provides oxygen, as an electron acceptor, to the wastewater to support 

the aerobic activities of the obligate aerobic microorganisms that requires oxygen for 

producing energy. The new bacteria tissue can be removed from the wastewater by 

further solids settling by gravity in the secondary settling tanks. The secondary stage 

objective is extended to include the removal of nutrients, i.e. nitrogen and phosphorus, 

from the wastewater. This requires stimulating other microorganisms’ activities that only 

happen in the absence of oxygen (anaerobic conditions), e.g. fermentation, and activities 

that utilize nitrate as electron acceptor (anoxic conditions) that is produced in the aerobic 

condition. This is achieved by using different connected compartments for each 

condition, as shown in Fig. 1-3, which represents a typical advanced biological treatment 

to remove nutrients. Additionally, tertiary stage might be required for the reuse of the 

wastewater.  Typically, tertiary stage includes filtration of the secondary effluent to 

remove any residual suspended solids and more disinfection of the discharged wastewater 

(Metcalf & Eddy, 2003). Moreover, the tertiary stage includes disinfection process to kill 

the pathogenic bacteria and reduce the odors. The disinfection is performed either by 

injecting chlorine to the effluent of the secondary settling tank or by more advanced 

methods using ultraviolet light or ozone.   
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Shifting wastewater treatment towards resource recovery necessitates energy utilization 

optimization. It is estimated that the energy used for wastewater treatment and water 

delivery is about 2% of the total energy consumption all over the world. Moreover, this 

energy represents approximately 20% of the energy used by municipalities (Pasini, 

2019). Specific energy required for biological wastewater treatment varies between 0.2 to 

2 kWh per cubic meter of wastewater treated. The energy consumption in the biological 

treatment depends on the characteristics of the influent wastewater, permissible pollutants 

in the effluent, and technologies installed and capacity of treatment plant (Singh et al., 

2016; Gude, 2015). Aeration of the aerobic reactors consumes the majority of the energy 

utilized in the wastewater treatment process. It was reported that 45 to 75% of the energy 

consumed in the treatment plant is through the aeration in the secondary stage (Rosso et 

al., 2011). Therefore, studying aeration systems and the factors affecting oxygen mass 

transfer in wastewater is important to efforts toward reducing the aeration energy 

requirement.  

Aeration systems are assessed based on the Oxygen Transfer Efficiency (OTE), which 

describes the percentage of the oxygen transferred from the air bubbles into the liquid 

 

Figure 1-3: Wastewater management system 
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phase of the reactor as compared to the oxygen supplied. Factors influence the OTE 

could be categorized into environmental conditions (e.g. atmospheric temperature and 

pressure), process conditions (e.g. concentration of surface active agents such as 

surfactants, process design, solids concentration as function of Solids Retention Time 

(SRT) and air diffuser fouling) and reactor design parameters, (e.g. diffusers density and 

arrangement, reactor configuration and water height in the reactor) (Baquero‐Rodríguez 

et al., 2018).  

In general, design, operation and control of wastewater management systems requires a 

comprehensive understanding of the hydrodynamics, biological and chemical reactions 

and physical processes take place in the flow of the wastewater. Conducting experiments 

requires building expensive pilot-scale setups that are both expensive and time-

consuming. Another alternative is to develop conceptual mathematical models that can 

describe the hydrodynamics and the biological and chemical conversions along with lab-

scale experimental measurements. Moreover, the ease of constructing such models allows 

more flexibility at developing and examining many alternative designs and control 

strategies. 

1.2 Modelling of Wastewater Management Systems 

Mathematical models play a crucial role in the design and control of wastewater 

management systems. Both engineering consulting firms and the academic community 

are pursuing the development of the mathematical models not only to provide more 

accurate predictions for the carbonaceous substrate, nutrients and sulfur conversions, but 

also for resource recovery, energy consumption, and gases emission that contribute to 

greenhouse gases thus global warming (Lizarralde et al., 2015). Modelling part of the 

system or the whole system depends on the purpose of the modelling project and the 

capability of the available data and resources. 

1.2.1 Complete modelling 

Complete modelling of a wastewater management system involves modelling of the 

hydrodynamics, biochemical conversions of wastewater constituents and mass transfer 

processes along with other physical processes in all sections of the wastewater 
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management system (Makinia and Zaborowska, 2020). Modelling the hydrodynamics of 

the wasteawater treatment reactors or the sewer pipes provides critical information 

pertaining the mixing between the constituents of the wastewater and retention time of 

the wastewater in specified sections. In addition, flow characteristics have a profound 

influence on the other physical processes, such as the increase in mass transfer that arises 

due to turbulence in the flow (Teuber, 2020). On the other hand, biochemical conversion 

models describe the conversion rates of the wastewater constituents due to biological and 

chemical reactions, thereby the rate of change of concentrations with respect to time. 

Moreover, mass transfer models simulate the diffusion of some species from the gas 

phase to the liquid phase and the gas stripping from the liquid phase to the gas phase. For 

instance, mass transfer is essential for modelling the dissolved oxygen levels that are 

available for microorganisms in the biological treatment reactors. Another important 

example is the stripping of hydrogen sulfide in sewer systems (Teuber, 2020). 

Considering a complete model of a wastewater treatment system is challenging task that 

requires coding of multiple interconnected models which would require high 

computational power to solve. Therefore, approximations are usually made by neglecting 

or simplifying the effects of some aspects of the complete model to reduce the 

complexity of the model and its computational cost. Some of these approximations are 

justified, yet more investigation is needed to study the influence of these approximations 

on the accuracy of the models. 

Interaction between the different sub-models contained within the complete model is 

crucial to assess the approximations that may be assumed during conceptual development 

of a model for a certain section of the wastewater management system (Makinia and 

Zaborowska, 2020). Hydrodynamics of the wastewater flow is characterized as a 

turbulent multiphase flow that contains solid and gas phases in the liquid water phase. 

The significance of these phases relies on their volume fractions in the liquid phase, their 

effect on the properties of the liquid phase, and their role in the biological and chemical 

conversions. For instance, comprehensive modelling of the aeration tank in the secondary 

stage of the biological wastewater treatment, including nutrient removal, is depicted in 

Fig. 1-4. The model could be divided into two sub-models that are hydrodynamic and 

biochemical sub-models. It is also essential to model the oxygen mass transfer from the 
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gas phase to the liquid phase, yet this process is interrelated with both the hydrodynamic 

and biochemical sub-models. For the hydrodynamics modelling, the reactor geometry and 

influent liquid phase flow rate profile are the main inputs to the sub-model. However, the 

influence of the concentration of solids, e.g. biomass, particulate substrate, etc., that are 

derived from the biochemical model should be considered to determine the rheological 

properties of the liquid medium. Moreover, the aeration system configuration and air 

flow rate profile are required. The interphase forces between the phases in the 

hydrodynamic sub-model determine the volume fraction distribution of the phases and 

the turbulence levels. The gas phase has a particular importance as discussed in chapter 2. 

The flow field of the gas phase determines the distribution of the dissolved oxygen 

concentration in the reactor. 

Along with velocity field, the volume fraction distribution and bubble size distribution 

are necessary for the accurate prediction of the oxygen mass transfer rate. This rate is 

used as a source term for dissolved oxygen state variable in the biochemical sub-models 

that are to be described in section 1.2.4. Furthermore, the pH level and the temperature of 

the fluid have an influence on the biokinetics that are commonly accounted for as a 

correction factor of the biokinetic rates. The biochemical sub-model is responsible for 

predicting the rate of change of each wastewater constituent concentration with respect to 

time. The biochemical sub-model assumes homogeneity of the different constituents, 

hence the microorganisms are assumed to be in contact with the same concentrations at 

all the locations of the compartments that are defined based on the hydrodynamic models, 

which will be discussed in section 1.2.2. With all of these model interdependencies, it is 

the work of the wastewater process modeller to determine which interactions are 

important and those which can be neglected. It is the goal of this work to further 

elucidate. 
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1.2.2 Hydrodynamics and mixing models in the sewer network and 
WWTPs 

Flow in wastewater management systems varies from simple pipe flow in sewer network 

to more complex flows in the different types of activated sludge reactors with and 

without aerators. Therefore, wastewater management systems involve various kinds of 

hydrodynamic configuration that can be bracketed from two ideal configurations; plug 

flow and completely mixed tank (Metcalf & Eddy, 2003). The plug flow configuration 

could be characterized as a pipe flow where all the flow particles exiting the reactor have 

the exact residence time. On the other hand, a completely mixed tank or Continuously 

Stirred-Tank Reactor (CSTR) is characterized by all constituents of the liquid phase 

being completely homogeneous all the times. A series of CSTRs is commonly used for 

 

Figure 1-4: Complete modelling of biological treatment in aeration tank 
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modelling reactors that have a flow regime existing between the ideal plug flow and 

CSTR.   

The objective of a hydrodynamic model is to approach the real flow behaviour in the 

reactor where the Residence Time Distribution (RTD) deviates from the ideal 

configurations of completely mixed reactor and plug flow. This deviation could be a 

result of number of factors such as the geometry and the aspect ratio of the reactor, 

insufficient input mixing power, non-streamlined inlet and outlet, the fluctuations of the 

inlet velocity and the temperature and density difference between the inflow and the 

content of the system (Metcalf & Eddy, 2003).  

Modelling the hydrodynamics of the different elements of the wastewater management 

system could be conducted using simplified systemic process models or using 

Computational Fluid Dynamics (CFD) which is more detailed modelling. Another 

approach that was introduced is the compartmental model, which is intended to capture 

the flow better than a systemic process model at a computational cost much less than 

CFD (Rigopoulos and Jones, 2003; Qiao et al., 2013). 

Systemic process models are robust and simple models that are used extensively in 

modelling chemical reactors. These models represent the reactor either as a plug flow 

with axial dispersion, namely the Axial Dispersion Model (ADM), or as a series of 

CSTRs. AD model is characterized by two parameters which are the axial dispersion 

number, which is simply the reciprocal of the Peclet number ( Pe ), and the mean 

residence time ( ). Series of CSTR models are characterized by the number of the tanks-

in-series ( J ) and the mean residence time. However, the series of CSTR model suffers 

from a drawback that arises in the case of flow rate variation, hence the number of 

CSTRs that represents the system is not constant for the dynamic simulations. Therefore, 

Potier et al. (2005) introduced the concept of perfectly mixed cells with back-mixing 

thereby the number of the CSTR is constant with varying back-mixing coefficient that is 

calculated based on the flow rate. The two models of the systemic approach are 

equivalent. An equivalence relation between the parameters of the two models (

2 1Pe J= +  ) could be used in most of the cases (Le Moullec et al., 2008). 
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Conventionally, the parameters of these two models are estimated using a tracer test that 

is conducted on the real reactor or using CFD simulation. Although this approach is 

simple in terms of the computational power and time needed, it has a limited applicability 

and cannot be used for extrapolation under different operation conditions. Moreover, it 

does not give sufficient details regarding the hydrodynamics in the reactor and needs 

many approximations to model localized reactions such in case of reactions happening in 

the biofilm. 

CFD is a numerical method that is used to simulate the flow of the fluids, as well as mass 

and heat transfer. CFD has been widely used in different engineering applications where 

the flow field is a key element of the design that requires optimization. The application of 

CFD has witnessed an enormous development to improve the solution accuracy and to 

reduce the computational power required of the simulation. Moreover, great 

developments in the available computing power (e.g. super computers, computational 

clusters, and servers) widen the applications of CFD in engineering fields by reducing the 

total simulation runtime. In addition, CFD can tackle the flow of various fluids in 

complex geometries that may include more than one phase. The ability of CFD to be 

integrated with chemical and biological models makes it an attractive tool to be used 

instead of the classical approaches, when greater detail is required. The concept 

underlying CFD is to discretize the flow domain flow into a number of non-overlapping 

computational cells. Each cell could be considered as a CSTR that is connected with the 

neighbour cells through the cell faces. The transport of wastewater constituents between 

cells is computed based on advection and diffusion. Advection is a result of transport due 

to the flow field, while diffusion results from both molecular and turbulent diffusion. The 

chemical and biological conversion rates can also be included for all the constituents of 

the wastewater. The conversion rates are computed at each computational cell based on 

the value of the local constituent concentrations (Karpinska and Bridgeman, 2016; Le 

Moullec et al., 2010a; Sánchez et al., 2018; Glover et al., 2006; Lei and Ni, 2014). This 

feature makes CFD an outstanding approach to model the reactors where highly localized 

biochemical reactions take place such as the reactions happen in attached biofilms. The 

capability of CFD to model the flow field of interacting phases in the system adds 

another advantage of the ability to model the solids separation processes and aeration 
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systems. CFD is also able to effectively identify dead zones that exist due to inadequate 

design and can be used to identify alternative designs based on detailed study of the flow 

field (Karpinska and Bridgeman, 2016).  

Compartmental models are another approach in which the reactor geometry is divided 

into a number of functional compartments (Fig. 1-5). The basis of dividing the reactor 

geometry is that the physio-chemical properties are homogenous within each 

compartment, where compartments are derived using CFD or general knowledge of the 

process (Le Moullec et al., 2010b). CFD investigations of the liquid flow field without 

reactions is conducted on the reactor geometry prior to the compartmentalization of the 

domain. The connectivity and the shape of the compartments are determined based on the 

analysis of the turbulence characteristics, which includes the turbulent kinetic energy and 

turbulence dissipation rate, and air volume fraction distribution in the domain. The 

connectivity and flux between these compartments are determined using the CFD 

simulation results. It is worth mentioning that the turbulent dispersion between the 

compartments is crucial to model the transport of different species in the compartmental 

model. While the flow rates between the compartments are directly determined using the 

liquid flow field of the CFD study, the turbulent dispersion is more challenging to be 

quantified. Le Moullec et al. (2008) and Le Moullec et al. (2010b) made an analogy with 

Potier’s systemic model (Potier et al., 2005) to determine the turbulent dispersion as a 

back-mixing flow. However it was claimed that the compartmental model has a much 

lower computational expense, but the compartmental model is very dependent upon the 

computationally-intensive CFD results and the determination of the back mixing flow 

that represents the turbulent dispersion is based on a strong approximation as explained in 

(Le Moullec et al., 2010b). Furthermore, there are no clear guidelines for the partitioning 

of the domain, especially, for the reactors with more complex geometry and aeration 

system. 
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Although the flow in the sewer systems is rather simple since most of the sewer network 

system segments are simple straight pipes, the flow turbulence in some segments is 

important in terms of gases emission (Teuber, 2020). Commonly the sewer system is 

modelled using the CSTR-in-series concept. However, this necessitates to apply several 

approximations associated with the biochemical model that is used that may have a 

significant effect on the accuracy of the simulations. Moreover, turbulence is not 

considered in the mass transfer calculations. 

1.2.3 Aeration modelling  

As illustrated above, aeration is a major part of the wastewater treatment process that 

needs accurate modelling to optimize the energy consumption. Modelling of the aeration 

is commonly based on the assumption of completely mixed reactor. The oxygen mass 

 

Figure 1-5: Compartmentalization of CFD domain and connectivity between 

compartments 
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transfer rate is computed using two-film theory where the two films are assumed along 

the interface between the air and liquid phase. However, it was proved that the mass 

transfer resistance from the liquid side is predominant. Therefore, the resistance from the 

gas side is commonly ignored (Kulkarni, 2007). Oxygen mass transfer rate, 2

o

Om , in clean 

water in tank of volume tankV  is expressed as the multiplication of the volumetric mass 

transfer coefficient of the liquid side, LK a  , and the difference between saturation 

concentration of dissolved oxygen and the concentration of the dissolved oxygen in the 

bulk liquid phase (Eq. 1.1). 

 

 *

2 tank( )o

O Lm K a C C V= −  (1.1) 

The coefficient LK a is defined as the mass transfer coefficient of the liquid side, , LK , 

multiplied by the specific interfacial area, a , (ratio between interfacial air-liquid area to 

reactor volume) since the interfacial area between air and liquid phase is difficult to 

measure. Yet, measuring the mass transfer coefficient in the process water is difficult due 

to the utilization rate by the microorganisms in the bioreactor. Therefore, a lumped factor 

is used to account for the difference between oxygen mass transfer in the clean water and 

process water (α-factor). Historically, the α-factor is assumed to be constant in process 

models knowing the LK a of clean water from measurement in clean water or data from 

the air diffuser manufacturer. However, this results in misleading calculation of oxygen 

transfer rate (Jiang et al., 2017). In fact, α-factor is dynamic because of the temporal 

change of a number of parameters such as SRT and the concentration of organic matter in 

the reactor (Leu et al., 2009). Therefore, more effort has been done in order to improve 

the modelling of α-factor by introducing empirical correlation between the α-factor and 

the main parameters that have significant influence (Sánchez et al., 2018; Lei and Ni. 

2014). However, using the empirical approach to study the aeration performance in 

bioreactors offers a limited understanding of the mechanisms of the oxygen mass 

transfer. Several studies have been published to understand and optimize the aeration 

using more mechanistic approach. Studies such as the work of Amaral et al. (2018) that 
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showed the inaccuracy of the assumption uniform  LK a  at all the levels of the reactor. 

The separation between the mass transfer coefficient LK  and air-liquid specific 

interfacial area was proposed, where the interfacial area might be assumed as a constant 

using mean diameter of the bubbles or modeled using statistical models such as 

Population Balance Model (PBM) (Amaral, 2019). Moreover, adopting CFD to model the 

distribution of the gas phase through the bioreactor and compute the LK  based on the 

flow field has been conducted for more accurate presentation of the dead zone (Le 

Moullec et al., 2010a; Jiang et al., 2017). Furthermore, integration between PBM and 

CFD could be powerful to optimize the performance and design of aeration system in the 

future (Amaral et al., 2019). 

1.2.4 Biochemical model in wastewater management system  

Several models of the biochemical reactions and physical processes have been developed 

based on the experimental data obtained from measurement campaigns in existing 

facilities of wastewater management, pilot-scale reactors, and lab-scale reactors. These 

models are widely used in the industry for designing new facilities, improving existing 

ones, and controlling the different processes in the system. The objective of these models 

is adjusted based on the part of the system that is modelled. For instance, the objective of 

WWTP models could be to determine the efficiency of the WWTP to remove the 

different pollutants from the received wastewater before disposing it to the water bodies. 

On the other hand, for the sewer system, the objective may be to determine the 

conversion of the different species on the way to the WWTP, along with the prediction of 

the formation of harmful species such as sulfide or methane. Moreover, other differences 

related to the concentration of the biomass, solids, and soluble substrate determine the 

importance and the form of the models for the biochemical processes involved.  

1.2.4.1 Biochemical modelling of biological wastewater treatment 

Modelling of biochemical processes in biological treatment of wastewater has become 

essential part of the design and operation process since the project launched by 

International Water Association (IWA) to develop mathematical models of the activated 

sludge process (Henze et al. 2000). Activated Sludge Model (ASM) series have been 
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developed to model the removal of carbon, nitrogen and phosphorus from wastewater in 

activated sludge processes. While Activated Sludge Model No. 1 (ASM1) described in 

Henze et al. (1987) is to model nitrification and denitrification processes, other 

extensions of this model have been introduced in ASM2 and ASM2d (Henze et al., 1999; 

Gujer et al., 1995) to include the capability of predicting the biological phosphorus 

uptake. This is implemented by describing the internal storage compounds of Phosphorus 

Accumulating Organisms (PAOs). However, since ASM1 was the most common model 

used in industrial and academic projects, ASM3 (Gujer et al., 1999) was introduced to 

resolve several deficits that have been appeared. On the other hand, biochemical 

mathematical models have been introduced as well for the anaerobic digester by IWA 

anaerobic digestion modelling task group (Batstone et al., 2002).  

Along with the biochemical processes that are mediated by the microorganisms, several 

processes take place during the biological treatment. These processes are commonly 

referred to as physico-chemical processes that comprise gas-liquid mass transfer, 

chemical precipitation and aquatic dissociation/association reactions (Lizarralde et al., 

2015). Physico-chemical processes are commonly neglected while modelling the 

biological wastewater treatment using the standard IWA ASM series due to the 

complexity of implementing these reactions and the weak benefits gained (Batstone et al., 

2012). However, for complete modelling of the WWTP that comprises the IWA ASM-

series for activated sludge processes and the ADM for the anaerobic digester, the 

implementation of the physico-chemical models in the IWA models is essential (Batstone 

et al., 2012). While the alkalinity is considered sufficient for the IWA models to monitor 

the drop in the pH level, integration with AD modelling necessitates mechanistic 

modelling of pH levels. Therefore, Flores-Alsina et al. (2015) have implemented the 

dynamic calculation of the pH level for ASM-series in the physico-chemical framework. 

Nevertheless, for the modelling of the advanced wastewater biological treatment to 

remove the phosphorus using chemical dosing, the physic-chemical processes (Hauduc et 

al., 2015) are influential to the model prediction.  
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1.2.4.2 Biochemical modelling of the collection system 

The transformations of different wastewater constituents in sewers could be relatively 

high due to the long residence time from the source to the treatment facilities (Hvitved-

Jacobsen et al., 2013). In-sewer biological and chemical conversions include the aerobic, 

anaerobic, and anoxic microbial growth and respiration processes using biodegradable 

organic matter and nutrients. Since the concentration of the nitrate in wastewater is 

typically low, the anoxic processes are not of importance if no treatment is applied using 

nitrate injection. Thus, processes in the sewer systems are either aerobic or anaerobic. For 

the gravity mains, oxygen mass transfer across the free surface of the flow occurs 

providing oxygen for the microorganisms in the liquid phase. Anaerobic conditions in the 

gravity mains could exist locally in the biofilm developed on the pipe walls.  In pressure 

mains anaerobic conditions prevail since the sewer pipe is full of sewage flow with no 

source of oxygen, if there is no oxygen injected.   

Although carbon and nutrient concentrations in sewer are not the limiting condition for 

the suspended biomass growth, the biomass kinetics is slow with respect to the average 

Hydraulic Retention Time (HRT) in the sewer systems. The biofilm developed on the 

sewer pipe walls and sediments at the bottom of the sewer pipe represent the proper 

environment for anaerobic biomass to grow (Fig. 1-6). Consequently, biomass 

accumulation in the biofilm and sediments is the main location of the production and of 

main species commonly observed in the sewer flow, e.g. methane by Methanogenic 

Archaea (MA) and sulfide by Sulfate Reducing Bacteria (SRB) ((Hvitved-Jacobsen et al., 

2013; Liu et al., 2015). The main limitation to the biomass growth in the biofilm comes 

from the diffusion rate of the different substrate to the deep layer of the biofilm. 

Hydrogen sulfide production by the suspended solids is insignificant if compared with the 

contribution of the anaerobic bacteria in the biofilm (Gutierrez et al., 2009). Sulfide 

production in the biofilm depends on the dominance of the anaerobic conditions with the 

molecular diffusivity of the limiting substrates in the biofilm. That can be illustrated 

clearly in the biofilm measurement reported in (Mohanakrishnan et al., 2009). 
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The most common issues that arise in sewer systems is due to anaerobic processes. The 

formation of VOC, sulfide, and methane represent threats to the environment and health 

of humans. In addition, the further oxidation of hydrogen sulfide on the inner walls of the 

sewer pipes leads to corrosion of the pipes, which leads to expensive maintenance costs. 

Several strategies have been developed to overcome the problems of the formation and 

emission of these species. These strategies include addition of chemicals, such as metals 

salts, to promote the precipitation of the sulfide and injecting oxygen or nitrate to oxidize 

sulfide formed. Furthermore, different commercial alkalis are used to prevent the 

presence of the molecular form of the hydrogen sulfide, preventing mass transfer across 

the liquid-gas interface (Mora et al., 2016; Mohanakrishnan et al., 2009). 

 

Figure 1-6: Key biological, chemical and physical processes in gravity sewers 
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First attempts to model the in-sewer biochemical processes were concerned with the 

predicting sulfide production rate (Pomeroy and Parkhurst, 1978; Boon, 1975). These 

studies proposed empirical models for the prediction of the concentration of sulfide in 

sewer system based on the concentration of the organic matter, flow conditions, and the 

characteristics of the sewer pipes. However, these empirical models do not provide 

information regarding the sulfide formation mechanisms. Moreover, well controlled 

experiments are conducted to obtain these empirical models and cannot be used for the 

variation of the wastewater characteristics. Therefore, more conceptual models have been 

developed in the literature that are based on IWA activated sludge models.   

Widely used biochemical models of the sewer system are stemmed from activated sludge 

models, ASM-series, and anaerobic digestion models. However, large differences exist 

between the modelling of the in-sewer processes and activated sludge processes. For 

instance, the main objective of the activated sludge models is to evaluate the removal 

efficiency of organic carbon, phosphorus, and nitrogen from wastewater. On the other 

hand, for sewer systems, the conversion of the soluble substrate and biomass production 

is of interest along with the prediction of the production rate of VOC, sulfide, and 

methane. Moreover, the conditions for the biomass growth are different; active biomass 

in activated sludge system is mainly exists in dense sludge flocs that comprise 

biodegradable and nonbiodegradable particulate COD with high concentration of active 

biomass. Substrate limited growth conditions prevail in the activated sludge system, 

while low concentrations of biomass exist in high concentration of substrate in sewer 

systems. Although the conversions occur in the biofilm are either neglected or 

inadequately considered in the activated sludge models, since it is insignificant if 

compared with the conversions in the bulk phase, the role of the biofilm in the sewer 

systems is crucial and requires special attention. Thus, using the accumulated experience 

of the activated sludge modelling to build a sewer system model is an effective method 

(Hvitved-Jacobsen et al., 2013).  

Mathematical modelling of the biochemical processes in the sewer system has witnessed 

a huge development since the work published by Bjerre et al. (1998) that is based on 

ASM No.1 with addition of two other types of hydrolysis. Hvitved-Jacobsen et al. (1999) 
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further developed the model for the pressure mains by adding the anaerobic processes 

and the sulfate reduction process. The Wastewater Aerobic/Anaerobic Transformations in 

Sewers (WATS) model was introduced in the work of Hvitved-Jacobsen et al. (2000) 

where a more detailed model of the carbon and sulfur cycles were included. The 

integration between the carbon and sulfur cycle was implemented in the work of Tanaka 

et al. (2000). However, the emission of hydrogen sulfide to the gas phase was considered 

in the model by Yongsiri et al. (2003) in order to complete the cycle of sulfur in the in-

sewer processes. The SeweX model that was developed in the work of Sharma et al. 

(2008a) and Sharma et al. (2008b) was based on WATS model. This model was further 

extended in (Guisasola et al., 2009) to predict the formation of methane by MA in the 

biofilm, hence the competition with SRB was considered. In addition, a model to predict 

the development of the biofilm was developed (Jiang et al., 2009).  

Since sulfide production control is widely achieved by oxygen or nitrate injection as one 

of the strategies used for the prevention of sulfide emission, several studies have been 

conducted to model sulfide oxidation (Mora et al., 2016; Mora et al., 2015). Oxidation of 

produced hydrogen sulfide may occur either chemically or biologically by the sulfide-

oxidizing bacteria. However, it was reported that the aerobic and anoxic oxidation of 

sulfide is biological (Nielsen et al., 2006).    

1.3 Uncertainty of the biochemical models 

Model-based design, operation, and development of control strategies for wastewater 

management systems is prone to the risk of not meeting the regulatory standards due to 

the uncertainty of the modelling. Moreover, the uncertainty of the model could affect the 

cost management of the control and chemical dosing systems which is essential for the 

wastewater management industry. Flores-Alsina et al. (2008) demonstrated the influence 

of the uncertainty of model parameters on decision making for control strategies of 

wastewater management systems. Especially for integrated models of wastewater 

management systems, the complexity of the integration of the models of catchments, 

sewers and WWTPs makes decision making more difficult (Benedetti et al., 2008). 

Therefore, special attention has been drawn to the uncertainty analysis of the model-

based design and management of the wastewater management systems. 
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The main sources of uncertainty of the models are categorized into three classes (McKay 

et al., 1999) which are (i) input or subjective uncertainty; (ii) structural uncertainty; and 

(iii) stochastic uncertainty. Input or subjective uncertainty comprises the uncertainty of 

the model parameters and input variables (Freni et al., 2009). This kind of uncertainty 

arises from the approximations and assumptions pertaining to wastewater 

characterization, flow profile, and model parameters. The fact that the model parameter 

default values are defined as ranges, rather than unique values, calibration is required to 

specify the true values for a given problem. This gives rise to the identifiability problem 

of the model parameters, which is a result of inadequate data points or unsuitable data 

used in the calibration process (Freni et al., 2009). This problem reduces the confidence 

in the calibrated set of parameters. Moreover, the model input variables have natural 

variation, while the model parameters are assumed constant, which could be another 

cause of the input uncertainty. The common methods used in uncertainty analysis of 

complex systems are summarized in the work of (Helton and Davis, 2003) where the 

relation and the differences between the uncertainty and sensitivity analysis is clarified.  

Model parameters and input variables are commonly referred to as “model factors” in the 

uncertainty and sensitivity analysis literature, thereby it will be used consistently herein. 

Structural uncertainty is the uncertainty related to the approximations of the mathematical 

form used. This uncertainty originates from the imperfect representation of reality by 

making approximation of the physical real system to facilitate the mathematical model. 

For instance, the misuse of the hydrodynamics and mixing models to simulate the flow in 

the system could be one of the reasons of the structural uncertainty. Stochastic 

uncertainty could be included in the model itself as a random failure events of some 

components of the system.   

Sensitivity and uncertainty analysis are an essential task for implementing mechanistic 

models so that the behaviour of the models with respect to various sources of uncertainty 

can be identified (Sin et al., 2009). Uncertainty and sensitivity analysis are widely 

performed conjointly since their definitions are closely related. Uncertainty analysis is 

conducted to study the uncertainty of the model output due to the propagation of the 

model factors uncertainty. On the other hand, sensitivity analysis is used to quantify the 
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characteristics of the model factors and determine the influence of each factor on the 

model output. Another definition of the sensitivity analysis is related to the uncertainty 

analysis as analysis of variance problem (ANOVA) (Sin et al., 2011), where the variance 

in the model output is decomposed and attributed to each of the model factors thereby the 

weight of each factor in the output variance could be quantified. In other words, the 

uncertainty analysis provides the probability distribution of the model outputs that 

corresponds to the uncertainty in the model input. The mean and the variance could be 

derived from this distribution to indicate the most likely and variability of the model 

outputs. On the other hand, the sensitivity analysis identifies and prioritizes the sources of 

the uncertainty.  

Uncertainty analysis framing defines the sources of the uncertainty that are to be 

considered in the study and quantification method of the uncertainty. For instance, Sin et 

al., (2009) conducted uncertainty analysis for WWTP design problem under different 

model framings (uncertainty of the biochemical model parameter and influent 

characterization, hydraulics and mass transfer and combined all together). It was 

demonstrated the effect of the uncertainty on the design output under these proposed 

framings, concluding that the uncertainty of the different framings is almost additive if 

combined together. 

Various sensitivity analysis methods have been developed for studying the mathematical 

models of the environmental fields. The common objectives of the sensitivity analysis are 

summarized as: factors prioritisation, factors fixing, factors mapping, and variance 

cutting. Where the factors prioritization and fixing are to rank the influence of the input 

factors on the model output and identify the non-influential factors, respectively. By 

identifying the non-influential inputs, their values could be fixed at the default, therefore, 

reducing the space of calibration. Inputs priorization reveals the inputs that should be 

well studied to reduce the variance in the model output. Factors mapping identifies the 

factors that lead the output to certain regions, and variance cutting is to identify a set of 

factors with minimum number that should be fixed to achieve a certain low level of 

model output variance (Neumann, 2012).  According to Cosenza et al. (2013), the 

sensitivity analysis methods are classified into three groups: (i) local methods; (ii) global 

methods; and (iii) screening methods.  Selection of the method to conduct the sensitivity 
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analysis is commonly based on the objectives of the study, the model complexity, the 

computational cost, the relation between the model factors and the output, and the 

correlation between the factors. However, not all of these factors are known prior to the 

study, especially the relation between the factors which is commonly unclear. The 

methods adopted in the literature vary in the number of simulations that should be 

performed. This is an essential factor for the complex environmental models that are 

highly nonlinear and stiff and have a huge number of parameters. Moreover, the 

dependence between the parameters and the form of the model are key factors to choose 

the method for the sensitivity analysis.   

Local methods are exemplified in the differential analysis (derivative-based method) 

where the sensitivity of the model output is evaluated at a specific location of the factors 

space due to infinitesimal change of one model factor at a time (OAT). This method is 

based on computing the partial derivative of the model output with respect to a certain 

model factor with the other factor values are fixed at most probable values (mean values). 

Cosenza et al. (2013) have demonstrated the false conclusion that may be extracted of the 

study using this method due to the model non-linearity and abundant interaction between 

the model factors. Several studies have implemented the derivative-based method to 

conduct the sensitivity analysis of the environmental models (Neumann, 2012). Among 

the various sensitivity methods used in the literature to study the behaviour of complex 

model, differential analysis is widely used for the applications of the wastewater 

management since it requires low computational cost. Differential analysis is inherently 

local in terms of parameter values and requires differentation of the whole system of 

equations which is tedious process and prone to error either in the derivation of the 

equations or the implemetation.  

Global methods are implemented over the entire space of the possible values of the model 

factors, thereby a large number of simulations may be required to cover the input space. 

Global sensitivity analysis methods typically require Monte Carlo simulations to be 

conducted. Widely used global methods in the literature include global Morris screening 

(Morris, 1991; Campolongo et al., 2007), regression-based methods, e.g. Standardised 

Regression Coefficients (SRC) (Saltelli et al., 2008), and variance-based methods, e.g. 
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Fourier Amplitude Sensitivity Testing (FAST), extended FAST and relevant method of 

Sobol indices methods (Sobol, 2001; Saltelli et al., 1999). These methods define a 

number of sensitivity measures for each model factor that are used to evaluate the study 

objectives. 

Morris screening method is based on computing multiple Elementary Effects (EEs) 

where EE of factor i is defined as the change in the model outputs after applying 

perturbation to the model factor i. The mathematical form of the EE is described in Eq. 

1.2 of the influence of factor ix  of k model factors on the model output y . 

1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., )
( ) i i i k i i i k

i i

y x x x x x y x x x x x
EE x − + − ++ −

=


               (1.2) 

While the form of Eq. 1.2 is similar to the numerical approximation of the partial 

derivative of the model output with respect to the model factor ix , the perturbation   is 

not infinitesimal and defined based on the number of levels of the factor space sampling. 

In order to explore the global effect of each factor, r replicates of the iEE are computed 

over the factor space. The mean and standard deviation of the r replicates for each factor 

are defined as sensitivity measures. The application of this method on the environmental 

system is reported in Ruano et al. (2011) and Vezzaro et al. (2011). 

Another approach is adopting the Monte Carlo (MC) technique to perform the uncertainty 

and sensitivity analysis. The main advantage of MC technique is no need for the 

manipulation or modification of the original model. In the MC technique, a number of 

posssible sampling procedures are used to form a sampling space of the model factors 

(Helton and Davis, 2003). Evaluation of the model output using the all the vectors in the 

sampling space is the next step. A variety of sensitivity analysis procedures are available 

to determine the weight of the model input using the MC simulations output. The MC 

approach is a method reduce the time required for the calibration of the biological model 

as suggested by Sin et al. (2008). The SRC method is adopted to quantify the influence of 

each factor on the model output by implementing a regression process of the MC 

simulations output to a multivariate linear model (Eq. 1.3) and the coefficients ib are 
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obtained. Coefficients ib are normalized using the standard deviation  of the MC 

simulation outputs y and model factors ix to obtain the standardized slopes i . 

 .i iy b x a= +  (1.3) 

 . xi
i i

y

b





=  (1.4) 

i  values are used for the ranking of the model factors where the sign of i  indicates 

the direction of influence of the specified factor on the model results. For the case of 

1i = , the model could be considered as a linear model thereby the factors 

prioritization and determining the non-influential factors could be performed (Saltelli et 

al., 2004). However, for the nonlinear models, only factor prioritization could be reliably 

obtained (Cosenza et al., 2013). Since this method investigates the first order effect, it 

does not explore the interactions between the model factors.  Moreover, it is proposed by 

(Saltelli et al., 2004) that the SRCs could be considered valid sensitivity measures only 

when the coefficient of determination 2R of the regression process is greater than 0.7.  

Variance-based methods are based on variance decomposition theorems that indicate that 

the model output variance can be decomposed into conditional variances Eq. 1.5. In Eq. 

1.5, the V and E stand for variance and expectancy operators, respectively, whereas the 

subscript i and i− indicate that the operation is evaluated over the factor i  and all the 

factors except factor i , respectively.  

 ( ) ( ( | )) ( ( | ))i i i i i iV y V E y x E V y x− −= +  (1.5) 

These methods have the advantage that they do not require the linearity or the 

monotonicity of the examined model. Extended Fourier Amplitude Sensitivity Test 

(FAST) method (Saltelli et al., 1999) is widely used recently due to its capability of 

evaluation the interactions between the factors (IF). It results from combining the FAST 

method (Cukier et al., 1973) with Sobol’ variance method (Sobol, 2001). For each factor

ix two measures are defined: first order effect index ( iS ) and total effect index ( TiS ).  The 
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value of the iS  (defined in Eq.1.6) indicates the importance of the corresponding factor 

ix  on the model output.  

 
( ( | ))

( )

xi x i i
i

V E y x
S

V y

−=  (1.6) 

It is worth mentioning that for linear models and orthogonal factors, iS is equivalent to 

the i  squared of the SRC method ( 2( )i iS = ). However, the low value of iS  does not 

imply that the factor ix  is non-influential factor. It is necessary to evaluate TiS  for all 

factors since the high value of TiS  indicates that the corresponding factor ix  could have 

an indirect influence on the model output through the interaction with the other factors 

(Sobol, 2001). The TiS is defined as: 

 
( ( | ))

1
( )

x i xi i
Ti

V E y x
S

V y

− −= −  (1.7) 

Several comparisons between the global methods have been carried out in the literature 

(Cosenza et al., 2013; Confalonieri et al., 2010; Neumann, 2012; Sun et al., 2012) to 

determine to assess the performance of these models. It can be concluded from these 

studies that all the global methods have a similar performance in terms of ranking the 

influential factors. However, for highly non-linear models, (Neumann, 2012) stated that 

the methods define first order measure only, e.g. regression-based methods, cannot be 

reliably adopted. On the other hand, Sun et al. (2012) proposed using two-step procedure 

for models with too high number of factors. The first step is to screen the factors using a 

local method, then a global method should be conducted. However, the study of Cosenza 

et al. (2013) showed that Extended FAST method and SRC give similar results regarding 

the factor prioritization, knowing that that SRC was used out of its recommended range (

2 0.7R  ) , whereas discrepancy was observed in the results of global  Morris screening 

method.  It was proposed to conduct sensitivity analysis adopting multiple methods 

simultaneously for the sack of robustness of the study. 



30 

 

1.4 Objectives of the Thesis 

The overall goal of this work is to develop detailed models of some challenging sections 

of the wastewater management systems using CFD framework. CFD is a robust 

computational method to simulate the hydrodynamics of single phase and multiphase 

flow, spatial distribution of different species and mass transfer. Therefore, the 

approximations of common models could be examined. To achieve this overall goal, the 

following specific objectives have been identified:   

i. To develop a CFD-PBM model to capture the BSD evolution correctly and 

investigate the common approximations of modelling the aeration system in 

activated sludge system,  

ii. To develop a CFD model integrated with the biochemical reactions of sewer 

systems, but with more accurate description of the heterogeneous reactions to 

examine the approximations of the 1-D models, and 

iii. To use the most efficient model from the previous objective to simulate the 

performance of a lab-scale experiment to develop a nitrate dosing plan to study 

the different strategies of nitrate dosing.  

The primary motivation of this work is to use the high capabilities of CFD analysis to 

simulate the different processes involved in the wastewater management system. 

However, using CFD models in such systems might be unaffordable nowadays due to the 

high computational cost. Therefore, CFD could be more useful to examine the 

conventional models used in the industry. Two applications are chosen herein where CFD 

could play an important role in determining the inaccuracy. The first application, 

described in objective (i), is to investigate the influence of the constant bubble 

assumption or uniform LK a  throughout the reactor. To reach this goal, a validated CFD-

PBM model is adopted that can capture the BSD and oxygen mass transfer parameters. 

CFD-PBM, which has been witnessed recently a great progress, is studied and a 

comparison between different closure models of bubble coalescence and breakup is 

presented. The second application is described in objective (ii) and (iii), where the effect 

of neglecting the solids settling and homogenization of heterogenous reactions is the 

main concern. CFD model is developed to integrate the biochemical reactions with 
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hydrodynamics simulation. However, uncertainty/sensitivity analysis of the WATS 

biochemical model is conducted. Then, the conclusions of objective (ii) are used to 

determine how to model the performance of a lab-scale experiment and propose a nitrate 

dosing strategy. However, since this experiment is intended to be used to study sulfide 

biological oxidation by nitrate, the WATS model is extended to include the relevant 

reactions.   

1.5 Thesis organization 

Thesis is organized into three articles that are discussing two knowledge gaps in the 

modelling and physics of the aeration of the activated sludge systems and the modelling 

the biochemical conversions in the sewer network.    

• Chapter 2: A CFD-PBM model is developed and validated using experimental 

data from literature. The validation is based on the measurement of BSD at 

different levels and LK a  in a bubble column reactor. A comparison between 

different closure models of bubbles coalescence and breakup is conducted. A 

detailed analysis of the effect of the BSD and the flow field on the local LK a  is 

conducted. The validity of the constant bubble size approximation is analyzed and 

discussed. 

• Chapter 3: Uncertainty/sensitivity analysis of the WATS biochemical model 

implemented in 1-D CSTRs-in-series form is conducted to determine the 

influential parameters in the biochemical model. A CFD model is integrated with 

the WATS model to simultaneously simulate the hydrodynamics and the 

biochemical reactions in the sewer. The CFD model is developed to consider the 

settling of particulate matters and the heterogeneity of the biofilm reactions. A 

novel method of implementing the surface reactions in ANSYS FLUENT (CFD 

commercial software) is developed and verified. The verified CFD model is used 

to examine the accuracy of the results of the 1-D model where the effect of 

neglecting the particulate setting and the homogenization of the biofilm reactions 

are evaluated.  

• Chapter 4: Based on the conclusion in chapter 3, a lab-scale experiment is 

modelled using The WATS model in the form of CSTRs-in-series. However, the 
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goal of this chapter is to evaluate different strategies of nitrate dosing in the lab-

scale experiment. Therefore, the WATS model is extended to include the 

biological oxidation of sulfide in anoxic conditions. The developed model is 

calibrated and validated using measurement data from the experiment. Then, the 

different strategies are tested, and recommendations are proposed for efficient 

nitrate dosing in the system.   

• Chapter 5: summary of the present study and main contribution is reported along 

with recommendations for future work.  
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Chapter 2  

2 Effects of flow velocity and bubble size distribution on 
oxygen mass transfer in bubble column reactors – A 
critical evaluation of the CFD-PBM model 

Computational fluid dynamics (CFD) is used to simulate a bubble column reactor 

operating in the bubbly (homogenous) regime. The Euler-Euler two-fluid model, 

integrated with the population balance model (PBM), is adopted to compute the flow and 

bubble size distribution (BSD). The CFD-PBM model is validated against published 

experimental data for BSD, global gas holdup, and oxygen mass transfer coefficient. The 

sensitivity of the model with respect to the specification of boundary conditions and the 

bubble coalescence/breakup models is assessed. The coalescence model of Prince and 

Blanch (1990) provides the best results, while the output is shown to be insensitive to the 

breakup model. The CFD-PBM study demonstrates the importance of considering the 

BSD in order to correctly model mass transfer. Results show that the constant bubble size 

approximation results in a large error in the oxygen mass transfer coefficient, while 

giving acceptable results for gas holdup. 

2.1 Introduction  

Bubble columns are multiphase reactors that are widely used in numerous industrial 

processes. For example, bubble columns are involved in many biochemical and 

petrochemical applications, as well as biochemical processes such as biological 

wastewater treatment (Kantarci et al., 2005). The widespread use of bubble columns in 

industrial applications is due to their simple operation and control, low cost, high 

capacity, and good heat and mass transfer characteristics between phases (Bhole et al., 

2008). The operation of bubble columns is simple because the gas phase is sparged by a 

gas distributor maintained at the bottom of the reactor. Rising bubbles push the liquid 

phase in the lateral and axial directions creating circulation in the continuous phase, 

thereby improving the mixing. There are various types of gas distributors used in 

industrial applications.  However, fine bubbling is favoured because it achieves high 

interfacial area, which facilitates more efficient mass transfer between phases and 
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minimises stripping of the liquid phase as vapour (Hasanen et al., 2006). Fine-bubble 

diffusers such as perforated flexible membrane, porous rigid ceramic, jets, mechanical 

turbines, and perforated cap diffusers are the most commonly used in industrial 

applications (Terashima et al., 2016). Due to their energy efficiency, fine-bubble 

diffusers made of perforated membranes and porous ceramics are the most common 

technology of choice in biological wastewater treatment (Tchobanoglous et al., 2014; 

Rosso, 2019). 

Many experimental studies (inter alia: Zlokarnik, 1980; Amaral et al., 2018; Darmana et 

al., 2007; Krishna and Ellenberger, 1996; Pjontek et al., 2014; and Rzehak et al., 2017) 

and numerical analyses (Chen et al., 2005; Deen et al., 2001; Liang et al., 2016; Rzehak 

et al., 2017; and Yang, et al., 2017) have been conducted to understand and improve the 

performance of bubble columns by making efficient use of the limited volume available 

(Jakobsen, Lindborg and Dorao, 2005). These studies focused on the influence of several 

parameters such as column dimensions, gas sparger type and position, the properties of 

liquid phase, gas superficial velocity, water composition, and operating temperature and 

pressure. The quantification of the influence of these parameters is based on local and 

global gas holdup, heat and mass transfer rates, bubble characteristics, and flow regime. 

The key to understanding bubble column performance when operating in batch mode is 

to precisely predict the behaviour of the gas phase motion and the bubble size evolution 

along the bubble column. While overall heat and mass transfer rates can be measured for 

the volume, understanding the local hydrodynamics, including bubble size distribution, is 

required to predict these rates a priori or within an integrated multiphysics CFD 

simulation. However, limited understanding of the complex interactions between the 

phases and the heat and mass transfer processes hinders the optimization and scale-up of 

such reactors.  

Computational fluid dynamics (CFD) is a promising numerical approach that can be used 

to calculate and optimize the performance of bubble columns. In recent years, there have 

been significant developments made in CFD techniques used for simulating multiphase 

flows, resulting in improved accuracy and stability of solutions. Many works in the 

literature have attempted to study the hydrodynamics of bubble columns using various 
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numerical approaches available, namely the Euler-Lagrange framework (Delnoij et al., 

1997; Sokolichin et al., 1997) and the two-fluid model in the Euler-Euler framework 

(Gemello et al., 2018; Zhang et al., 2006; and Liang et al., 2016). The Euler-Lagrange 

method treats the fluid phase as a continuum in the Eulerian framework while the 

dispersed phase is tracked by solving Newton’s second law of motion on the trajectory of 

the individual bubbles in the domain. This approach is very computationally expensive 

when applied to modelling high gas flow rates since it tracks the large number of bubbles 

individually. Hence, this model is only applicable for limited low flow rates of the 

dispersed phase and a limited number of bubbles within the domain. The more commonly 

used model is the Eulerian (or two-fluid) model, which solves a set of continuity and 

momentum equations for each phase in the Eulerian framework. It assumes that the 

immiscible phases are interpenetrating continua. The momentum and continuity 

equations are derived by conditional ensemble or volume averaging of single-phase 

forms of the fundamental conservation equations for each phase (Ishii and Hibiki, 2011; 

Marschall, 2011 and Rusche, 2002).  

The averaging process required for the Eulerian model leads to the loss of the interfacial 

boundary between the different phases in the system. In practice this corresponds to 

modelling the two phases as separate continua, with no explicit interface, which interact 

only through interfacial transfer terms that capture their interaction. Generally, the 

complexity of multiphase flows arises from these interactions between the different 

phases within the system. Modelling these interactions is a complex process and can 

result in substantial errors in numerical simulations if not handled correctly, as will be 

shown in this study. 

Many closure models for the interfacial forces and turbulence interactions have been 

developed in the literature. The interfacial forces include drag (Ishii and Zuber, 1979; 

Grace, 1976; Naumann and Schiller, 1935; Tomiyama, 1998; Tomiyama and Kataoka, 

1998; Zhang and VanderHeyden, 2002), virtual mass (Rafique et al., 2004), turbulent 

dispersion (Burns et al., 2004; Gosman et al., 1992; Lopez De Bertodano, 1998; Lucas et 

al., 2007), and lift and wall forces (Drew and Lahey, 1987; Lucas et al., 2007; Lucas and 

Tomiyama, 2011; Tomiyama, 1998; Tomiyama et al., 2002; Ẑun, 1980). Lubchenko et al. 
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(2018) reviewed the wall lubrication superficial force that is commonly used in the 

literature to capture the gas volume fraction profile near the wall. Experimental data and 

direct numerical simulation (DNS) results were used to propose a new understanding of 

this force that is different from what is reported in the literature. As all the forces are 

modelled, instead of being resolved directly due to the loss of the interfacial boundaries 

between the phases in the Eulerian model, various models were developed either by 

experimental observation or by the analytical solution of a simplified problem. Including 

all known interfacial forces might improve the ability of a simulation to approach the real 

physics of the problem, yet not all forces show considerable influence on the results and 

only offer additional computational cost and solution instability. Therefore, one must 

consider carefully which forces to include and how they should be modelled. 

Despite the significant influence of the bubble size distribution (BSD) in bubble column 

systems (Amaral, 2019), many studies published in the literature assumed a constant size 

throughout the whole domain. Amaral (2019) emphasized the significance of studying the 

variation of BSD on the mass transfer process, showing the possibility of numerically 

modelling the evolution of the BSD in bubble column reactor. The uniform bubble size 

assumption used in these studies is based on experimental observation (Gemello et al., 

2018; Zhang et al., 2006; Masood and Delgado, 2014; Simonnet et al. 2008), empirical 

correlation (Chen et al., 2005), or assumed without justification. In most cases, this 

assumption is unrealistic and disregards the fact that the interaction between the bubbles 

and the continuous phase leads to coalescence and breakage of the bubbles as they rise. 

Consequently, the BSD should be considered to vary throughout the domain as a function 

of the hydrodynamics of the continuous phase. The BSD plays a critical role in 

computing interfacial forces and their direction.  

Several works in the literature (Chen et al., 2005; Vik et al., 2018; Wang et al., 2005; 

Yang et al., 2017) are concerned with studying the evolution of the BSD in the domain by 

integrating the population balance model (PBM) in the CFD simulation. PBM is a 

statistical model that was formulated by Hulburt and Katz (1964) and has been 

subsequently integrated into various CFD frameworks. Several methods have been 

developed for the coupled solution of PBM with CFD (Hounslow et al, 1988; Kumar and 
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Ramkrishna, 1996; Marchisio and Fox, 2005). Methods developed by Marchisio and Fox 

(2005) and Randolph (2012) are based on solving transport equations for the moments of 

the BSD in the CFD domain, then reconstructing the BSD using the solved moments. 

These methods were developed to reduce the computational cost of employing the PBM 

model within CFD simulations. The Class Method (CM) developed by Kumar and 

Ramkrishna (1996) has the advantage of directly representing the BSD by a discrete set 

of size classes. A conventional conservation equation is formulated for each bubble class 

with source terms that represent the coalescence, breakup, and growth of bubbles. The 

mechanisms of bubble breakup and coalescence are strongly influenced by the 

hydrodynamics of the surrounding continuous phase. These mechanisms have been 

studied and numerous mechanistic models were proposed in the literature (Lehr et al., 

2002; Luo and Svendsen, 1996; Wang et al., 2006; Prince and Blanch, 1990).  

It is critical to employ interfacial force models that take into account the size of bubbles, 

whether they are modelled using moment- or class-based methods. The reason behind 

this is the challenging prediction of the gas holdup radial profiles. Even if the gas holdup 

profiles are well-predicted and match with experimental data, the constant bubble size 

assumption would still result in inaccurate prediction of any subsequent calculations of 

mass and heat transfer between the gas bubbles and the continuous liquid phase since the 

interfacial area plays a key role in determining such rates (Shah et al., 1982). Moreover, 

the correct prediction of the bubble size distribution with accurate gas holdup profile 

would imply that the physics of bubble dynamics in the bubble column reactor is 

correctly modelled and the other field quantities are also correctly predicted. In addition, 

the models’ error can be traced. For instance, the sign conversion of the lateral lift force 

of the model proposed by Tomiyama et al. (1995), which is based on the bubble size, 

depicts the importance of simulating the BSD. Therefore, if improvement in gas holdup 

profile prediction is achieved with this lateral force model using the bubble size evaluated 

by PBM, we hypothesize that this would imply that the mathematical model is highly 

likely to reflect the true physics of the bubble plume dynamics.  

The representation of the computational domain for bubble columns as a 2D or 3D space 

is an active argument in the literature and several studies have been conducted to 
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compare the 2D and 3D simulations (Chen et al., 2005; Krishna et al., 2000). The 

simplification of the domain to 2D is primarily to reduce the computational cost and 

improve the stability of the solution. However, it is agreed that the 2D axisymmetric 

domain is not appropriate for this kind of simulation (Chen et al., 2005; Krishna et al., 

2000). It was explained by Chen et al. (2005) that using a 2D axisymmetric model does 

not capture the meandering movement of the bubble plume in the bubble column, thus 

inaccurate results are obtained. In this case, the authors recommended the use of 3D 

simulations. On the other hand, it has been shown that a 2D planar approach can be 

considered as a good compromise between accuracy and computational cost (Jakobsen et 

al., 1997).  

In the present work, multiphase CFD simulations of air flow in a bubble column 

operating at low gas flow rates (2 and 8 L·min-1) are conducted utilizing OpenFOAM® 

(Weller et al., 1998) while using a 2D planar approximation of the system. Experimental 

data from Amaral et al. (2018) are used for validation and evaluation of the examined 

models. The PBM class method is adopted in the CFD simulations to capture the 

evolution of the bubble size distribution in the bubble column.  Different model 

parameters are examined to illustrate the sensitivity of the results to each parameter. The 

oxygen transfer coefficient and gas holdup are computed and compared against 

measurement data to investigate the influence of the flow field on the performance of the 

bubble column. Moreover, the results of the global gas holdup and oxygen mass transfer 

are used to assess the inaccuracy of the constant bubble size assumption. 

2.2 Problem Description 

2.2.1 Validation Data 

Experimental data from Amaral et al. (2018) is used for validation and discussion. A lab-

scale bubble column reactor with dimensions of 380 mm in diameter and height of 1600 

mm was used in this work. It should be noted that this reactor is too shallow to observe 

an increase in bubble size due to the hydrostatic pressure gradient, yet provides an 

excellent means of evaluating interfacial force, coalescence, and breakup models. The 

bubble column was built from transparent material in order to allow the authors to 
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measure the bubble size distribution using a high-speed camera. A flexible membrane air 

diffuser with an inner diameter of 30 cm, as shown in Fig. 2-1, was mounted for sparging 

air from the bottom of the bubble column filled with tap water. The reported 

measurement data includes the bubble size distribution at 5 and 120 cm above the air 

diffuser, global gas holdup, and global volumetric oxygen mass transfer coefficient. The 

measurements were taken at air flow rates ranging from 2 to 8 L·min-1 which indicates 

the bubbly (homogeneous) flow regime is dominant. BSD measurements were taken at 

different levels in the bubble column illustrated in Fig. 2-1 using dashed lines. The 

dimensions of the bubble column and the locations of the measurements in the work of 

Amaral et al. (2018) are used to set up the current numerical simulations and for post-

processing the results.  

 

Figure 2-1: Experimental bubble column setup (adapted from Amaral el al., 

2018) with bubble size measurement locations denoted by dashed lines 
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2.2.2 Numerical Model  

A 2D planar CFD model is developed to simulate the two-phase flow field in the bubble 

column (see Fig. 2-1) using the OpenFOAM open source CFD code (Weller et al., 1998). 

In the experimental setup, the air sparger was mounted 20 cm above the bottom of the 

column. In order to reduce the computational cost of the CFD model, the space below the 

air diffuser is disregarded since it is presumed to have minimal influence on the flow 

fields above the air diffuser. The CFD domain is shown Fig. 2-2 where the total height of 

the domain is 140 cm with an initial water level of 130 cm above the air diffuser. The 

standard properties of air and water at 20°C are used for the model, assuming both phases 

are incompressible (since the hydrostatic pressure difference is too small to substantially 

change the gas density). Since the rising bubble plume in the bubble column exhibits 

dynamic behaviour, a transient simulation setup is used to control the solution stability 

and capture the dynamics of the bubbles. The time step size is dynamically controlled to 

ensure the Courant number remains below 0.5 throughout the domain. Volume fractions 

and the velocities of the air and water phases are sampled during the simulations to 

calculate the time-averaged quantities for post-processing.  

The two-fluid multiphase model that is implemented in OpenFOAM is used in the current 

study. OpenFOAM is an open-source software package that has been developed over 

many years and contains many different solvers for different types of flows. In this study, 

the “reactingTwoPhaseEulerFoam” solver is adopted since the PBM is already integrated. 

The interfacial forces are modelled using the models presented in the following section.     
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2.3 Governing Equations  

2.3.1 Euler-Euler Two-Fluid Model  

The governing equations of the two-fluid model are derived by conditional averaging of 

the single-liquid conservation equations. The basis of the conditional average is to 

multiply the single-phase flow equations by indicator functions, then ensemble average 

(or volume average) the result. Details regarding the conditional averaging process and 

derivation of the governing equations are reported in the work of Marschall (2011) and 

 

Figure 2-2: Illustration of the bubble column computational domain, where the 

blue colour (bottom rectangle) indicates space occupied by water and the red 

colour (top rectangle) indicates space occupied by air, in the initial condition 
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Rusche (2002). For incompressible flow, the averaged continuity equation for phase k 

reads:  

 .( ) 0k
k kU

t





+ =


 (2.1) 

Here, U  is the averaged velocity and  is the volume fraction (not to be confused with 

the  factor describing the ratio of oxygen transfer in wastewater to clean water). The 

averaged momentum equations for phase k are given by:  
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where 
eff

kR represents the viscous and Reynolds turbulent stresses that are closed by the 

turbulence model, p  is the mean common static pressure between the phases, g is the 

gravitational acceleration, k  is the density of the pertaining phase, and kF  is the sum 

of all interfacial forces between the two fluids, which needs to be modelled. The 

interfacial forces included in the current study are drag ( DF ), virtual mass ( VMF ), and 

lift forces ( LF ), such that the total force is given as: 

 D VM LkF F F F= + +  (2.3) 

In order to model the free surface in the bubble column, the solver must be able to model 

the phase inversion where the dispersed gas phase becomes the continuous phase. A 

blending function for the interfacial forces is required to improve the solution stability 

and distinguish the continuous phase (Rusche, 2002). Thus, a representative diameter 

should be assigned for both phases in the system. For the CFD-PBM model, the Sauter 

diameter computed by the PBM is used as the bubble diameter for the gas phase while a 

constant value is given to the liquid phase. The Sauter diameter defined in the 

OpenFOAM solver is given as (Askari et al., 2019): 
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where 𝑓𝑖 is the normalized volume fraction of gas bubble class i with bubble size of 𝑑𝑖. 

Further discussion is provided in section (2.3.3), which deals with the PBM. On the other 

hand, in the case of constant bubble size simulations, bubble sizes in the range from 1.25 

to 1.75 mm (based on the gas flow rate) is defined as the average bubble size observed in 

the experimental data. The interfacial force models described below are represented in 

such a form that the continuous phase and the diameter of the dispersed phase are known. 

Turbulence in bubble column reactors is generally induced by the shear stress and the 

bubbles’ movement. The relative movement of the bubbles generates velocity 

fluctuations in the wake region of the bubbles. A significant source of turbulence in a 

bubble column with quiescent liquid is the turbulence induced by the rising bubbles in the 

liquid. It is observed by Mudde et al. (1997) that strong fluctuations in the liquid velocity 

field are present due to the motion of the rising bubbles even at low flow rates of the gas 

phase. Therefore, it is essential to incorporate the effect of the gas flow on the liquid 

phase turbulence. Turbulence generated by the mean shear follows the classic hypothesis 

of the energy cascade, which assumes that energy transfers from the large scale to the 

smaller scale until it dissipates at the Kolmogrov scale. On the other hand, the turbulence 

generated by bubbles follows an inverse cascade hypothesis where the turbulence is 

generated at the length and time scales associated with the bubble dimension and rising 

velocity (Jakobsen et al., 1997). The turbulence source in the liquid phase is related to the 

drag work of the bubbles and the relative velocity of the bubbles (Svendsen et al., 1992). 

Although there are two phases in the system, such that turbulence could be modelled for 

both phases, solving the turbulence model for the gas (dispersed) phase would not have 

influence on the results in most of the domain and would only contribute to additional 

computational cost (Oey et al., 2003). Therefore, turbulence in the gas phase is not 

considered and only turbulence for the liquid phase is modelled. 
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Several models have been developed to calculate the turbulent kinetic energy and 

dissipation rate either directly or indirectly. A widely used model in the literature is the 

model developed by Sato et al. (1980), where the turbulence induced by the bubble is 

accounted for by adding an additional turbulent viscosity to the original one. This model 

does not directly give a solution for the turbulent kinetic energy and the dissipation rate. 

More direct methods to model bubble-induced turbulence have been proposed. In these 

models, e.g. Politano et al. (2003) and Troshko and Hassan (2001), the bubble-induced 

turbulence is modelled by adding a source term to the turbulent kinetic energy and 

dissipation rate equations. Following the same method to add a source term to the 

turbulent kinetic energy and dissipation rate that is associated with the bubble motion, the 

model proposed by Lahey (2005) is used in the current work. Closure for the Reynolds 

turbulent stresses in the liquid phase momentum equations is obtained using the standard 

k − turbulence model with source terms to account for the influence of the bubbles’ 

motion in the liquid phase as:   
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where lP  is the production rate of the turbulent kinetic energy, k , and   is the 

dissipation rate of the turbulent kinetic energy. k ,  , 1C and 2C  are model 

constants. The subscripts l  and g  refer to the liquid and gas phase, respectively. The 

source terms associated with the turbulence induced by bubble motion are defined as: 
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Here, PC  is a model constant, DC  is the drag coefficient, rU  is the relative velocity 

between the phases, and gd is the diameter of the gas phase (Sauter diameter in case of 

using PBM).  

The interfacial force in the momentum equations must be specified by closure models, as 

discussed in the next section.   

2.3.2 Interfacial Force Models 

The drag force is based on the dispersed phase equivalent diameter ( ad ) and is described 

by:  

 
3

( )
4

b
D a D b a b a

a

F C U U U U
d


= − −  (2.9) 

where the drag coefficient ( DC  ) is a function of the bubble Reynolds number as: 

 Re
a r

b

d U


=  (2.10) 

where rU  is mean relative velocity and b  is the kinematic viscosity of the continuous 

phase. Two models are used for the drag coefficient calculation in the current study in an 

attempt to match the global gas holdup with the experimental data. The swarm correction 

factor that accounts for the interaction between the bubbles (Gemello et al., 2018) is not 

considered as the gas flow rate is low in this case, resulting in a low density of bubbles, 

such that little interaction between the bubbles is expected. The first drag model used is 

the model proposed by Naumann and Schiller (1935), which reads: 

 

0.68724
(1 0.15Re ) Re 1000

Re

0.44 Re 1000
DC


+ 

= 
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 (2.11) 

Another model that has good performance over a wide range of air flow rates has been 

suggested by Ishii and Zuber (1979) and is given by: 
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where the drag coefficient for the different bubble shapes (spheres, ellipses, spherical 

caps) are defined as: 
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Here, Eo is the Eötvös (or, equivalently, Bond) number which represents the 

dimensionless ratio of gravitational forces (i.e. buoyancy) vs. surface tension forces.  

The lift force is a net force resulting from numerous interacting transverse forces 

perpendicular to the bubble rising direction. This force can be explained as a result of the 

asymmetric pressure distribution around the bubble (Rafique et al., 2004). The influence 

of the lift force was investigated by Deen et al. (2001) and Zhang et al. (2006). It was 

illustrated in these studies that the lift force controls the spreading of the bubble plume. 

Therefore, the ratio of the lift force to the drag force plays a critical role in the prediction 

of the gas and liquid velocity profiles. In other words, lower lift force results in less 

spreading of the bubble plume and steeper velocity profiles. The widely used formula for 

the lift force is:  

 ( )L a b L b a bF C U U  = −   (2.14) 

 b bU =  (2.15) 

Where b  is the averaged vorticity of the continuous phase and LC is the lift force 

coefficient and is modelled following the work of Tomiyama (1998): 
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The virtual mass force is the force induced by accelerating bubbles in the liquid phase 

where some surrounding the liquid phase are accelerated with the bubbles. The most 

common formulation for the virtual mass is derived in the work of Auton et al. (1988) as: 

 a a b b
VM VM a b

D U D U
F C
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 

 
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 
 (2.17) 

The virtual mass coefficient is VMC = 0.5.  

2.3.3 Population Balance Model 

The population balance equation (PBE) is integrated with the two-phase CFD model in 

OpenFOAM in order to simulate the BSD evolution along with the flow field of the 

phases involved in the bubble column reactor (Bannari et al. 2008). Here we adopt the 

class method (CM), wherein the BSD is represented as a finite number of discrete bubble 

size classes. A conservation equation for each bubble class is solved in the computational 

domain. The conservation equation for the ‘i’ bubble class can be written as:  

 ( ) .( ) ( )gg i g i g iC iC iB iBn U n B D B D
t
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
+ = − + −


 (2.18) 

where in represents bubble number density for bubble class i in each of the 

computational cells. , ,iC iC i BB D B and i BD are the source terms for the bubble class that 

represent the birth and death rates due to coalescence and the birth and death rates due to 

breakup, respectively. The birth and death rates for the bubble class can be represented 

as:  
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 ( ) ( )i BD b v n v=  (2.22) 

( ')n v is the bubble density of bubble class of size 'v ; ( ', ')a v v v− is the coalescence rate 

between the bubble class 'v v− and size 'v ; ( ')b v  is the breakup rate of the bubble class 

of size 'v ; ( ')m v is the number of daughter bubble produced by the breakup of a bubble 

of size 'v , and ( , ')p v v is the probability density function for the generation of bubble of 

size v out of the breakup of bubble of size 'v . The transport equations solved for each of 

the bubble classes are expressed in terms of normalized bubble class volume fraction, if , 

which is defined as:  

 i
i

g

f



=  (2.23) 

Thus,  

 1if =  (2.24) 

The bubble class volume fraction can be computed as:  

 i i in v =  (2.25) 

So,  

 i g =  (2.26) 
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That brings Equation (2.18) to the final form for the incompressible gas phase:  
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In order to solve the integro-differential final form of the bubble class conservation 

equations, discretization in the bubble size, spatial, and temporal coordinates is 

performed. For interested readers, more details are presented in the work of Bannari et al. 

(2008).  

To solve the PBE, closure models for the coalescence and breakup rates are required. 

There are various models in the literature that use probability theory, mechanistic models, 

and experimental observation (Lehr et al., 2002a; Luo and Svendsen, 1996a; Prince and 

Blanch, 1990). Wang et al. (2005b) reviewed these models and proposed a 

comprehensive model that includes most of the sources of the bubble breakup and 

coalescence. 

2.3.4 Coalescence Model 

In the current study, the coalescence model suggested by Prince and Blanch (1990) is 

adopted. In this model, the bubble coalescence process is suggested to occur in three 

steps starting with the collision between two bubbles, trapping a small amount of liquid 

phase in form of thin film, then the thinning of this film takes place as the liquid drains. 

Finally, rupture of the film occurs, and the coalescence is complete. The influence of 

organic molecules on the probability of the film breakage, which is relevant for 

wastewater aeration applications, is not included in the coalescence model. The 

coalescence rate is formulated as a product of the collision rate between the bubbles and 

coalescence efficiency (probability) that represents the ratio of the period of time that the 

bubbles remain in contact to the time required for the film thinning and coalescence. 

Three causes for collision are considered in this model: collision due to buoyancy, 

laminar shear, and turbulence. The overall bubble coalescence rate is assumed to be the 

cumulative rate of the coalescence rates due to the relative rising velocity of bubbles with 

different sizes due to buoyancy, the collision of bubbles as a result of the random 

movement driven by turbulence, and relative motion of bubbles because of laminar shear. 
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The implementation of this model in OpenFOAM enables the selection of the sources of 

the collisions to be considered. Later, a comparison will be presented to assess the 

differences between including the coalescence due to rising velocity alone and with the 

coalescence rate due to turbulence.   

2.3.5 Breakup Models  

Although breakup rate of small bubbles in the range of the bubbly flow regime may not 

be significant, it plays critical role in determining the correct BSD as reported in Liao et 

al. (2015). Herein, the breakup reduces the fraction of larger bubbles produced by 

coalescence. Two different breakup models are used in the current study for comparison: 

the model proposed by Luo and Svendsen (1996a) and the one proposed by Lehr et al. 

(2002a). Both models are widely used in the literature and derive the breakup rate as the 

product of the frequency of the collision of turbulent eddies, which is the frequency of 

arriving eddies to a bubble, and the probability of breakage to occur due to this collision. 

The collision frequency is derived by analogy to the kinetic gas theory, assuming 

isotropic turbulence. Again, it is noted that the influence of various contaminants that will 

be present in wastewater are not included in the breakup model. The probability for 

breakage to occur is the main difference between the two models. In Luo’s model, the 

breakup probability, or efficiency, of a bubble of size v  into smaller daughter bubbles of 

size Bvf v  is equivalent to the probability for the bombarding eddy of size  to have a 

kinetic energy that is greater than or equal to the increase in the surface energy of the 

resulting daughter bubbles due to the increase of the interfacial surface area. However, 

the increase in the surface energy is a function of the breakage volume fraction, Bvf , 

which is assumed to be stochastic variable. The breakage volume fraction comes out 

directly from the solution of the model. On the other hand, for the Lehr’s model, the 

breakage probability is derived from a force balance between the inertial force of the 

hitting eddy and the interfacial force of the bubble surface assuming the bubble nearly 

takes cylindrical form immediately before the breakage. 
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2.3.6 Boundary and Initial Conditions 

The bubble size distribution at the diffuser (the inlet to the domain) is critical for the 

accuracy of the simulation. Therefore, the experimental measurements taken at 5 cm 

above the air diffuser, as reported by Amaral et al. (2018), are used as the initial and inlet 

boundary conditions under the implicit assumption that no change occurs to the bubble 

size distribution in the 5 cm above the air diffuser. The implementation and calculation of 

the volume fraction of each of the bubble classes is verified against the experimental data 

before starting each simulation. A sensitivity study for the prescribed air phase velocity 

and volume fraction at the inlet is undertaken herein to remove the error that might come 

up from defining approximated values. Three different air volume fractions are assumed 

with the corresponding air velocity to guarantee the same flow rate is obtained. The 

boundary conditions imposed on the lateral walls are no-slip conditions for the velocity 

profiles. At the top of the bubble column, the pressure is specified to atmospheric 

pressure. The air diffuser is described as an inlet boundary condition with no flow for the 

liquid phase, while the velocity and volume fraction of the gas phase are varied to study 

their effect, as presented herein. 

2.4 Results and Discussion  

2.4.1 Grid Independence Test  

In order to minimize the influence of the spatial discretization error on the numerical 

simulation results, a grid independence study is conducted to ensure that the results are 

not significantly dependent on the mesh refinement level. A simulation case has been 

setup to first check using three different grids with three different resolutions. The ratio 

between the grid sizes is based on the outline recommended in Celik et al. (2008) with 

size reduction ratio of 1.3 between any two consecutive grids. The number of 

computational cells in the coarse, medium, and fine grids is 23520, 52920, and 85575, 

respectively. The time-averaged water velocity profiles at 1.2 m above the air diffuser are 

compared for the three cases to judge the influence of the grid refinement. The grid with 

medium resolution is used in the current study since further refinement showed no 

improvement of the simulation results. Figure 2-3 shows a comparison between the time-
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averaged velocity profile of the water phase at 1.2 m above the air diffuser using the three 

different grids. The comparison in Fig. 2-3 shows that, for the medium and fine grids, 

two peaks in the velocity of the water phase near the walls are captured, while the coarse 

grid shows a flat profile. To study this effect, the water phase velocity vectors are plotted 

on the domain in Fig. 2-4. The figure depicts the impact of air pushing the water which 

results in a number of circulation areas near the walls. Moreover, the waving of the free 

surface due to the drag between the two phases is clear on the fine grid vector field while 

it is lost when using the coarse mesh with underestimated vortices near the free surface. 

Thus, the downward flow stream of the water phase at the column centre, which results 

from the strong circulation, could not be captured by the coarse mesh, resulting in the flat 

profile that is obtained. The effect of the coarse grid on the simulation results can be 

explained as the drag force computed using the coarse grid being less than that obtained 

by the fine mesh. This conclusion is drawn from the similarity between the solution 

obtained by the coarse mesh and that obtained by using Ishii and Zuber’s drag model 

presented in the following sections. Therefore, the grid resolution is crucial for the 

simulation of the two-phase in bubble columns and should be carefully examined prior to 

conducting simulations. 

 

Figure 2-3: Time-averaged velocity profiles for the water phase on the coarse, 

medium, and fine meshes at 1.2 m above the air diffuser 
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Figure 2-4: Instantaneous velocity vector field for the water phase on the coarse grid 

(left) and fine grid (right) 

2.4.2 8 L·min-1 Flow Rate 

The study of the model parameters is conducted using the air flow rate of 8 L·min-1 in 

comparison to the experimental results in the literature. This is because this flow rate is 

closer to the flow rates that would be expected in full-scale aeration tanks and the 

evolution of the BSD is more pronounced.  

2.4.2.1 Validation Case 

A base simulation is set up for validation and studying the effects of the simulation 

parameters on the results. In the base setup, the interfacial forces considered are: 

• Drag force using the Schiller-Naumann model; 
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• Lift force using the Tomiyama model; 

• Virtual mass force with coefficient set to 0.5.  

The BSD is discretized into 32 classes for the class method of solving the PBE. The PBM 

coalescence model of Prince and Blanch is adopted while using Lehr’s model for breakup 

rate. An air phase volume fraction of 0.9 is specified at the inlet, defined as the surface of 

the diffuser with the corresponding velocity to achieve a flow rate of 8 L·min-1. Several 

preliminary trial simulations were conducted to determine this setup for the simulation 

such that it matched well with the experimental data; sensitivity to different models and 

parameters is assessed below.  

Figure 2-5 shows the contours of volume fraction for the air phase in the computational 

domain. Since the air diffuser diameter is almost the same as the bubble column, the 

bubble plume occupies most of the cross-sectional area of the column. Moreover, it is 

observed for the low gas flow rate (homogeneous regime) that the volume fraction profile 

is flat and almost uniform (Gemello et al., 2018). This is explained as the average bubble 

diameters in the homogeneous regime is relatively small, hence the magnitude of the lift 

force is low and pushes the bubbles toward the walls. This is also implemented in the lift 

force model where the lift force sign is determined by the bubble size (Tomiyama, 1998).  

The validation of the CFD-PBM model is based on the cumulative BSD from the 

experimental data of Amaral et al. (2018). The BSD is extracted from the cumulative 

BSD for further clarification of the behaviour of the breakup and coalescence models. 

Figure 2-6 compares the cumulative BSD and BSD results from the simulation and the 

experimental data. The BSD of the simulation at time zero is also plotted against the 

measured BSD at 5 cm above the air diffuser. These are used to verify the assigned 

volume fractions of the BSD classes and for validation of the assumption that the BSD 

does not change from the inlet to the 5 cm plane. From the figure, excellent agreement 

with the measured data is obtained. The BSD shows the bubble evolution from the level 

of 5 cm to 120 cm above the air diffuser. It is clear that the average bubble size is moved 

from 0.75 mm to 1.75 mm and the profile is distributed over the bubble size range 0-4 

mm. The numerical model fully captures the bubble size evolution along the column 
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height. However, various model parameters should be studied to understand their 

influence on the overall performance of the model. 

 

 

 

Figure 2-5: Instantaneous contour plot of the air volume fraction for the gas flow 

rate of 8 L·min-1 
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Figure 2-6: Cumulative BSD (top) and BSD (bottom) for the validation of 8 L·min-1 

simulation 
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2.4.2.2 Effect of Diffuser Boundary Conditions  

The inlet boundary conditions corresponding to the air diffuser may produce an error if 

not treated carefully. To the best of our knowledge, no clear guideline is presented in the 

literature to define the inlet conditions. Mudde and Simonin (1999) developed a 2D 

model for the simulation of a bubble column where the air velocity at the sparger is 

presumed and the gas fractions are computed using the measured air flow rate. However, 

the uncertainty due to the assumption of the gas velocity at the inlet was not studied. 

Another approach adopted by Liang et al. (2016) is that inlet openings of the gas phase in 

the diffuser are constructed in the discretized computational domain such that only gas 

phase flows through the openings (gas fraction is unity). However, this method is not 

applicable for all cases since it requires a specific mesh refinement at the inlet to the 

column, which may increase the computational requirements dramatically. Moreover, this 

method can only be applied for the discrete openings of the gas phase (Deen et al., 2001 

and Rzehak et al., 2017). For the case of flexible membrane, porous, and heavily ruptured 

diffusers, this method is not applicable. 

The flow rate reported in Amaral et al. (2018) must be translated in terms of the boundary 

conditions that can be specified in the numerical simulation. For two-phase flow, the air 

flow rate at the inlet boundary is the product of the inlet area (the diffuser inner 

diameter), dA , air velocity in the vertical direction, ,g yU , and volume fraction of air at the 

inlet boundary, ,g y d gQ U A = . The volume fraction of the air phase at the boundary is not 

usually defined due to the change in the free membrane when applying the pressurized air 

from the blower. Therefore, in this study the effect of different assumptions for the 

volume fractions and the corresponding air phase velocity are studied and compared to 

exclude the uncertainty that accompanies the unknown active surface area of the diffuser. 

The 8 L·min-1 simulation is performed using three air phase volume fractions at the inlet; 

0.5, 0.8, and 0.9. The time-averaged water phase velocity at 1.2 m above the air diffuser 

is compared in Fig. 2-7. In addition, the computed cumulative BSD and BSD profiles, 

respectively, are presented in Fig. 2-8 to show the influence of the presumed air volume 

fraction at the inlet on the performance of the PBM. The figures show that all of the 

profiles for the three different presumed air phase volume fractions are collapsing upon 
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each other. Therefore, the simulation results are not observed to be particularly sensitive 

to the air volume fraction at the inlet. Because the pores on the free surface membrane are 

dense, the volume fractions of 0.8 and 0.9 result in closer matching to the experimental 

BSD. Therefore, for the rest of the simulations herein, the volume fraction of 0.9 is used.   

 

 

Figure 2-7: Time-averaged air velocity at 1.2 m above the air diffuser using three 

different volume fractions at the inlet; 0.5, 0.8, and 0.9 
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Figure 2-8: Cumulative BSD (top) and BSD (bottom) for the boundary conditions 

tested with different values of air volume fraction at the diffuser 
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2.4.2.3 Effect of Number of Bubble Size Bins 

Since the bubble size is discretized into a number of discrete classes to be incorporated in 

the CFD framework, the uncertainty of the numerical solution regarding the resolution of 

the bubble size distribution discretization should be studied. Wang et al. (2006) studied 

the effect of the refinement of the bubble size coordinate with a maximum size of 80 mm. 

The results showed that the number classes greater than 30 had no pronounced influence 

on the simulation results. Herein, the BSD is discretized into 12, 22, and 32 classes to 

determine at what level the increase of the number of bubble class would only increase 

the computational cost without any further improvement in the results. Figure 2-9 shows 

the cumulative BSD and BSD, respectively, obtained by employing the three numbers of 

bubble classes. It is clear that increasing the number of bubble classes from 12 to 22 

classes improves the matching with the experimental data, however, no further 

improvement is observed when 32 classes are implemented. Therefore, 22 bubble classes 

are used for the rest of the presented simulations.        

2.4.2.4 Effect of Breakup Models 

The breakup of rising bubbles reverses the effect of bubble coalescence on the average 

bubble size along the column. It is important to study the influence of the breakup model 

as it relates to the balance of the coalescence rate and the equilibrium BSD. For the 

previous sections, Lehr’s bubble breakup model is used to compute the bubble breakup 

rate. In this section, Lehr’s model is compared with Luo’s model on the BSD and 

cumulative BSD. In addition, the breakup model is disabled to illustrate the balancing 

impact of the breakup model on the BSD.  

As shown in Fig. 2-10, the BSD obtained by the different breakup models and without 

including the breakup effect is depicted. The figure shows the influence of the bubble 

breakup on the shape of the BSD. It is clear from the BSD that the breakup limits the 

production of the bubbles larger than 3.5 mm hence squeezes the BSD around the mean 

bubble size observed in the experimental data. Luo’s and Lehr’s models predict a very 

similar profiles for the BSD. A possible explanation is that both of the models are 

dependent on the turbulence level of the water phase which is low in the case of bubbly 
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(homogeneous) flow. A possible further study might be required to study the effect of the 

turbulence source terms in bubbly flow on the breakup models. 

 

 

 

Figure 2-9: Cumulative BSD (top) and BSD (bottom) for different numbers of 

bubble size classes 
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Figure 2-10: Cumulative BSD (top) and BSD (bottom) using different bubble 

breakup model 

 

 

 



72 

 

 

2.4.2.5 Effect of Prince and Blanch Model Coalescence Terms 

Prince and Blanch’s bubble coalescence model includes two terms that can be enabled in 

the OpenFOAM implementation of the PBM. These terms are the coalescence due to the 

difference of bubbles’ rising velocities (buoyancy) and due to the turbulent collisions. A 

comparison is made between two cases: first when both terms are enabled, and second 

when only the coalescence is due to different rising velocities.  

Figure 2-11 shows the influence of including the coalescence due to turbulent collision 

on the BSD. This term leads to an overestimation of bubble coalescence, resulting in poor 

matching with the experimental data. In contrary to the breakup models, Prince and 

Blanch’s coalescence model is sensitive to the turbulence. However, this conclusion 

needs further study to understand the interaction between turbulence and the breakup and 

coalescence rate in the PBM. Based on the current result, it appears that coalescence due 

to buoyancy is clearly dominant and that the coalescence due to turbulence is not well-

described by the Prince and Blanch model for this flow condition. 

2.4.2.6 Effect of Drag Model 

As illustrated in the following section, the drag model of Schiller and Naumann 

overpredicts the global gas holdup. Therefore, another widely used drag force model, 

Ishii and Zuber’s model, is used to explore the effect of the drag model on the flow field, 

gas holdup, and BSD evolution. The first observation that can be made about the 

simulation result is the lack of the free surface “waving” as illustrated in Fig. 2-12. 

Referring to the grid independence test presented earlier, it is noted that the same 

behaviour is noticed when using the coarse grid. Furthermore, as will be shown in the gas 

holdup results, the drag model proposed by Ishii and Zuber predicts lower drag, and 

consequently, lower gas holdup is obtained. When the bubbles are subjected to lower 

drag force, higher rising velocity is expected. This could be the reason for the 

overestimation of the coalescence model as depicted in Fig. 2-13 where adopting Ishii 

and Zuber’s model produces poor agreement in the BSD when compared with the 

experimental data. These results reveal the complexity of the multiphase modelling 
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integrated with BSD models. Selecting the drag model is critical to correctly predict the 

flow fields and the BSD. 

 

 

Figure 2-11: Cumulative BSD (top) and BSD (bottom) for simulation employing the 

bubble coalescence due to turbulence and different rising velocity 
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Figure 2-12: Air volume fraction contours from the simulation adopting Ishii and 

Zuber's drag model 
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Figure 2-13: Cumulative BSD for the simulation using Ishii's and Zuber's drag 

model 

 

2.4.3 2 L·min-1 Flow Rate 

To examine the applicability of the current model over different gas flow rates, the 

experimental measurement in Amaral et al. (2018) for the gas flow rate of 2 L·min-1 is 

simulated as well. The model shows a good performance to simulate the low flow rates. 

As depicted in Fig. 2-14, a reasonable matching is obtained when using the model with 2 

L·min-1 gas flow rate. The model captures the cumulative BSD and BSD at 120 cm above 

the air diffuser fairly well with average bubble size around 1.25 mm. Moreover, the 

contours of the gas phase volume fraction (Fig. 2-15) show that, for such low flow rate, 

the free surface does not experience strong waving. This indicates that the water phase 

circulation is weak hence the mass transfer and the breakup of the near the free surface 

are low as will be discussed while presenting the predicted mass transfer coefficient 

herein. 
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Figure 2-14: Cumulative BSD (top) and BSD (bottom) for gas flow rate of 2 L·min-1 
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Figure 2-15: Instantaneous contours of air volume fraction for the gas flow rate of 2 

L·min-1 

2.4.4 Gas Holdup 

The gas holdup predicted by the numerical model is compared to the experimentally 

measured values. The measurement of the gas holdup in the experimental study was 

conducted by measuring the rise in the free surface of water in the bubble column using a 

graded ruler (Amaral et al., 2018). Therefore, high uncertainty was observed by the 

authors which was up to 20% for the highest air flow rate. This is due to the formation of 

the froth on the free surface of water in the bubble column. Simulations of the four air 

flow rates considered by Amaral et al. (2018) were conducted and the global gas holdup 

was calculated. Figure 2-16 depicts a comparison between the numerical model results 

using two different drag models and the measurement data. Additional simulations using 
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the constant bubble size (CBS) assumption were also performed to assess the importance 

of using PBM. These results are also included in Fig. 2-16. The comparison shows that 

both drag models used in the numerical model overestimate the gas holdup. However, it 

is noticed that the drag force computed by Ishii-Zuber’s model is lower than that 

computed by Schiller-Naumann’s model. This is reflected in the global gas holdup since 

the drag force controls the rising velocity of the bubbles in the bubble column hence the 

global gas holdup. Ishii-Zuber’s model predicts closer gas holdup values to the 

experimental data. It is noted, however, that the CFD model predicts the correct trend 

with similar slope to the experimental results. Given the small gas holdup values (i.e. less 

than 1%), the uncertainty is expected to be so high that quantitative comparisons are quite 

difficult. It is also noted that the CBS assumption gives similar results to PBM and may 

be considered as a suitable model for the prediction of global gas holdup. 

 

Figure 2-16: Gas holdup vs gas flow rate for the simulation adopting Schiller-

Naumann's and Ishii-Zuber's drag models in comparison to experimental data 



79 

 

2.4.5 Oxygen Mass Transfer Rate 

As the final objective of the current study is to investigate the effect of the evolution of 

the BSD and the flow field on the oxygen mass transfer from the gas phase (air bubbles) 

to the liquid phase (water), the mass transfer coefficient is computed based on the 

simulation result of the air flow rate of 8 and 2 L·min-1. The computed coefficient is 

compared to the results of the model developed in Amaral et al. (2018) and their 

assumptions are examined against the CFD-PBM simulation results. In addition, the mass 

transfer rate is computed from the result of the simulation of CBS and compared with the 

experimental data as well to evaluate the inaccuracy that accompanies this assumption.  

The local oxygen transfer coefficient, LK , is calculated using Higbie’s model: 

 
,L r air

L

g

D U
K

d
=  (2.28) 

where LD is oxygen diffusion coefficient in water and assumed to be 92.01 10x − m2/s, and 

gd is the local Sauter diameter for the gas phase based on the computed BSD (in case of 

PBM used) or the defined diameter for the gas phase (in case of CBS assumption). The 

interfacial area density is given by:  

 
6 a

S

a
d


=  (2.29) 

The oxygen mass transfer characteristics are computed using the mean values of the flow 

field over the measurement windows illustrated in Fig. 2-1. In an attempt to understand 

the mutual influence between the flow field and BSD evolution and their effect on the 

oxygen mass transfer rate, the variables used in the calculation of LK a  are plotted along 

the vertical distance above the air diffuser in Fig. 2-17.  

A comparison between the current work and the modelling results from Amaral et al., 

2018 is illustrated in Fig.2-17a. The comparison shows that the LK a  coefficient 

estimated by the current model is lower for most of the distance above the air diffuser 
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except near the free surface. Furthermore, the LK a estimated by Amaral et al. (2018) is 

more uniform along the bubble column. This can be explained as it was assumed that the 

global gas holdup is uniformly distributed over the column height in addition to the water 

phase which was assumed to be quiescent, and terminal bubble velocity was used as the 

relative velocity between the two phases. 

An interesting observation is noticed in the CFD-PBM model result; a jump in the LK a  is 

observed near the free surface. This is can be explained by Fig. 2-17b and 17c , as the

LK a equals the product of the LK  and a . The increase in a is due to the decrease in the 

Sauter diameter near the free surface, as seen in Fig. 2-17d. One possible explanation is 

that the high circulation of the water phase at the free surface of such a small tank results 

in high turbulence and hence promotes more bubble breakup to occur. This may not 

happen at a large, full-scale plant where wall effects can be considered negligible, unlike 

in small research reactors. The higher air volume fractions at the surface are shown in 

Fig2-17e. Moreover, the increase in the LK value is noticed as a result of the decrease in 

the Sauter diameter and high relative velocity observed in this region, as seen in Fig. 2-

17f. This increase in the relative velocity could also be explained by the circulation in the 

water phase. 

Therefore, computing the oxygen mass transfer rate based on the global gas holdup and 

the expressions of the terminal bubble rising velocity without considering the water phase 

motion due to the interaction between the phases might lead to higher uncertainty in the 

model results. The circulation of the water phase shows a strong influence on all the 

variables in the model, hence the final estimated oxygen mass transfer coefficient. 

 Similarly, for the flow rate of 2 L·min-1, the characteristics of the oxygen mass transfer 

are plotted along the bubble column and a comparison of LK a  is shown in  Fig. 2-18. In 

this case, however, the waving of the free surface does not present itself for such a low 

flow rate. Therefore, monotonic behaviour of the mass transfer characteristics is observed 

and there is less departure between the vertical profiles in Fig. 2-18a. 
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Figure 2-17: Profiles of averaged (a) KLa; (b) interfacial area density, a; (c) KL; (d) 

Sauter diameter; (e) air volume fraction; and (f) air relative velocity along the 

bubble column height for air flow rate of 8 L·min-1 

he overall oxygen mass transfer coefficient, LK a , is considered to be a comprehensive 

parameter that comprises the gas and liquid flow fields, BSD, and the mass transfer 

process. Thus, it is considered as the key point that the comparison between the 

simulation results and the experimental data should be based on. The predicted global 

LK a  from the CFD-PBM simulation is computed as the average value over the entire 

computational domain, which in practical terms corresponds to the cumulative oxygen 

transfer over the entire column. The predicted global LK a  is compared against the 

experimental data at different gas flow rates, as seen in Fig 2-19. Good agreement 

between the measured and predicted is obtained with only a slight overestimation of the 

experimental results. This overestimation can be largely attributed to the uncertainty in 

the measurement and the numerical error. However, this matching between the numerical 

model results and the experimental measurements indicates that the model has excellent 

accuracy for simulating the different aspects of the bubble column dynamics of the  
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 bubble column. On the other hand, the CBS assumption results in a significant 

overestimation of the oxygen mass transfer coefficient despite the good results obtained 

for the global gas holdup using CBS. This departure is enhanced by increasing gas flow 

rate and shows an overprediction of nearly 150% at a gas flow rate of 8 L·min-1. This 

indicates that the BSD plays a critical role in modelling mass transfer in multiphase flows 

and that the CBS assumption is unsuitable for such applications.  

 

Figure 2-18: Profiles of averaged (a) KLa; (b) interfacial area density, a; (c) KL; (d) Sauter 

diameter; (e) air volume fraction; and (f) air relative velocity along the bubble column 

height for air flow rate of 2 L·min-1 
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Figure 2-19: Global oxygen mass transfer measurement against CFD-BPM 

simulation 

2.5 Conclusions 

CFD coupled with PBM was used to model the dynamics in bubble columns operating 

within the bubbly regime. The simulations were performed using two flow rates. The 

CFD-PBM model was validated against the experimental data that includes bubble size 

distribution, global gas holdup, and global mass transfer coefficient with excellent 

agreement. The effect of different model parameters such as spatial grid refinement, 

specifying the boundary conditions for the gas phase, the number of classes used in the 

PBM class method, the different terms in Prince and Blanch’s bubble coalescence model, 

breakup models, and drag models were studied and presented.  

For the bubble size in range 0-5.5 mm, 22 bubble size classes were sufficient such that no 

improvement in the results was obtained with further refinement. Moreover, the results 

did not vary significantly with varying the gas volume fraction at the inlet boundary 
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conditions. It was shown that the coalescence due to difference in rising velocity of the 

bubbles that is implemented in Prince and Blanch’s coalescence model was able to 

precisely capture the BSD over the two flow rates examined. The model showed 

sensitivity to the drag models used because lower estimated drag force and higher bubble 

rising velocity were obtained along with the overestimation of the bubble coalescence. 

Interestingly, it was shown how the circulating of the water phase near the free surface 

promotes the breakup of bubbles and, subsequently, increases the gas holdup and the 

mass transfer coefficient. This effect is expected to be much less relevant in full-scale 

deeper tanks. Furthermore, the importance of considering the variation of BSD is 

emphasized. The CBS assumption shows good performance regarding the prediction of 

the global gas holdup, but very poor performance in predicting the oxygen mass transfer 

coefficient. 
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Chapter 3  

3 Uncertainty analysis of rising sewer models with 
respect to input parameters and model structure using 
Monte Carlo simulations and computational fluid 
dynamics 

 

Modelling conversion processes in sewers can help minimize odour and pipe corrosion 

issues, but model uncertainties and errors must be understood. In this chapter, the 

Wastewater Aerobic/Anaerobic Transformation in Sewers (WATS) model is 

implemented in two different frameworks; 1-D (CSTR-in-series) and computational fluid 

dynamics (CFD) to study the uncertainties due to model parameters and its mathematical 

form. The 1-D model is used to conduct uncertainty/sensitivity analysis using Monte 

Carlo simulations. Time-averaged outputs were represented using a general linearized 

model to quantify the importance of specific parameters. The sulfide formation rate per 

unit area of the biofilm is the most influential parameter. Parameters controlling 

anaerobic hydrolysis and fermentation are also significant. Uncertainty due to model 

structure is studied using CFD to explore the influences of non-homogeneous surface 

reactions and solids settling. These showed that the 1-D model provides a reasonable 

characterisation of the process for simple flows in pressure mains. 

3.1 Introduction  

There are a number of potential problems that can arise from the biological and chemical 

reactions that occur in sewer systems, most commonly odour nuisance and corrosion 

(Carrera et al. 2016). The build-up of hydrogen sulfide and volatile organic compounds is 

the major cause of odour, while formation of hydrogen sulfide and its subsequent 

oxidation to sulfuric acid on the moist walls of the sewer pipes leads to pipe corrosion. 

The cost of replacement and maintenance due to corrosion is significant for 

municipalities (Rootsey and Yuan 2005). Production of methane by methanogens in the 

sewer can cause explosion risk in confined spaces. Furthermore, methane is a potent 
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greenhouse gas that is responsible for almost 20% of forcing in climate change models 

(Minami and Takata, 1991). Guisasola et al. (2013) reports that methane discharge from 

sewers contributes significantly to the overall greenhouse gas emissions that are 

associated with wastewater transport and treatment. 

Developing a more complete understanding of the processes occurring in sewer networks 

has the potential to enable improvements in the performance of wastewater treatment 

plants (WWTPs). For example, removal of readily biodegradable chemical oxygen 

demand (COD) can be achieved in the sewer system through conversion to slowly 

biodegradable organic matter stored in biomass, which is more readily removed by 

mechanical treatment. In other words, the sewer is not only a collection system; it is also 

a pre-treatment stage that can be exploited in different ways to improve the performance 

of the WWTP (Guo et al., 2019). When considering such strategies, it is important to 

consider downstream processes where it may be necessary to preserve and produce 

readily biodegradable substrate, since this is beneficial for denitrification and biological 

phosphorus removal processes in advanced WWTP designs (Vollertsen and Matos, 

2018). Furthermore, some microbial activities, such as methanogenesis, consume the 

available organic carbon which may be required for other downstream processes 

(Gutierrez et al., 2009). In light of these complex and coupled interactions, process 

modelling becomes increasingly important. 

Moving from an empirical approach (Pomeroy and Parkhurst, 1978) to a conceptual 

understanding of the biological and chemical mechanisms of the in-sewer transformations 

allows for greater insight into the processes that occur. Microbial transformation 

processes in biological systems are, to a large extent, identical to the in-sewer 

transformations (Bjerre et al., 1998). Therefore, the mathematical model of the microbial 

processes described in the IWA Activated Sludge Model No. 1 (ASM1) (Henze et al., 

1987) was adopted in the work of Bjerre et al. (1998) to model the aerobic processes in 

the wastewater collection system with two additional types of hydrolysis processes. 

Hvitved-Jacobsen et al. (1998) reported that certain modifications were necessary to 

adapt the ASM1 model to gravity sewer systems. First, the biomass decay rate was found 

to be unrealistic, so the biomass decay process was replaced by the energy maintenance 
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requirement rate as a reasonable alterantive process. Further, the biofilm concentration 

was assumed to be constant and any growth of the biofilm was assumed to be released in 

the bulk water phase. Hvitved-Jacobsen et al. (1998) also included anaerobic processes in 

their model, based on the IWA Activated Sludge Model No. 2 (Gujer et al., 1995) where, 

even if aerobic conditions are assumed (as in gravity sewers), anaerobic regions could 

certainly exist within the sewer system (Carrera et al., 2016). The sulfur cycle was also 

included as it was necessary to describe sulfide formation and consumption (Hvitved-

Jacobsen et al., 1999). The work of Hvitved-Jacobsen et al. (1999) is considered to be the 

foundation of the Wastewater Aerobic/Anaerobic Transformation in Sewers (WATS) 

model, which describes the aerobic and anaerobic transformation of carbon in the sewer, 

in addition to sufide formation by the sulfate reduction process. Yongsiri et al. (2003) 

later improved upon the original WATS model by introducing the emission of the sulfide 

from the bulk water phase, which is considered as the first step toward incorporating 

physical processes alongside the biological and chemical transformations. The 

application and parameter estimation of the WATS model were reported by Tanaka and 

Hvitved-Jacobsen (2002). However, the uncertainty and sensitivity analysis of the WATS 

model is scarce in the literature.  

Model-based design, operation, and development of control strategies for wastewater 

systems management is prone to risk of not meeting regulatory standards or operating a 

system inefficiently as a result of model uncertainties; therefore, uncertainty and 

sensitivity analysis is essential (Sin et al., 2009).  Uncertainty analysis is concerned with 

the propogation uncertainty from different sources onto the global model output, while 

sensitivity analysis is concerned with the weight of each of the model inputs on the model 

output. According to Saltelli (2000), sensitivity analysis in wastewater applications can 

be categorized into three class: local methods, global methods, and screening methods. 

This work is focused on global sensitivity analysis, which is capable of providing 

information regarding the effect of model parameters on the model output over the space 

of all possible parameter values. Many global sensitivity analysis techniques have been 

applied in the literature, including regression-based methods, e.g. the Standard 

Regression Coefficient (SRC) method (Flores-Alsina et al., 2012; Sin et al., 2011), and 
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variance-based methods, e.g. the Fourier Amplitude Sensitivity Testing (FAST) and 

Extended-FAST methods (Chen et al., 2012; Cosenza et al., 2014).  

Uncertainty analysis framing defines the sources of the uncertainty that are to be 

considered in the study, including the model assumptions and approximations, as well as 

the identification of the uncertainty range assigned for each of the model inputs. Sin et al. 

(2009) conducted uncertainty analysis under different model framings, concluding that 

the uncertainty of the different framings is almost additive if combined together. The 

main sources of uncertainty on model outputs, as described in Sin et al. (2009), arise from 

the uncertainty of the model inputs, the form (structure) of the mathematical model, and 

stoichastic events. In the literature, sewers are modeled by coupling biochemical models 

with a hydraulic model, where the sewer pipe is commonly approximated as series of 

Continuous Stirred Tank Reactors (CSTRs) (Sharma et al., 2008). One downside of 

CSTR model is the spatial distribution of the species and their associated reactions cannot 

be taken into account, representing a model structure uncertainty. This can be particularly 

problematic for biofilm reactions, e.g. sulfide production by sulfate-reduction bacteria 

(Mohanakrishnan et al., 2009), which are highly localized at the biofilm accumulated on 

the sewer walls. Similarly, settling of particulate species can generate spatial non-

uniformities that cannot easily be captured using existing modelling approaches. This 

study is intended to shed the light on the process model uncertainties that may arise from 

two common simplifications that are assumed in the such models: (i) the homogenization 

of surface reactions using the ratio of wall surface area to volume and (ii) the omission of 

particulate settling.  

A computational fluid dynamics (CFD) approach for modelling sewer systems offers 

some potential improvements over a CSTR model, since it is able to resolve the spatial 

variations in species concentration and reaction rates along with the tranport of the 

different species by advection and diffusion. CFD solvers are robustly capable of solving 

the hydrodynamics of the sewer system while the biological and chemical reactions 

embodied by the various kinetic models discussed previously that can be implemented as 

additional coupled advection-diffusion transport equations. Of course, CFD simulation of 

pressure mains is computationally expensive, but can be useful for examining the details 
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of the spatial distribution and the heterogenity of the reactions in certain cross-sections of 

the pipes. As such, the uncertainties that accompany the usage of the CSTR model 

structure can be examined using CFD and can ultimately be used to further improve the 

lumped-parameter-based models. For gravity sewers, CFD could also play an important 

role in determinig the mass transfer mechanisms (Teuber, 2020), thereby improving 

modelling of hydrogen sulfide emission. 

The aim of this work is to determine the sources of uncertainty in the modelling of sewer 

systems using the WATS model. These sources are associated with the biochemical 

model parameters (input uncertainty) and with the mathematical form of the model 

(model structure). The input uncertainty related to the model parameters is examined 

using the SRC method. The structural uncertainties that will be considered are: (i) the 

representation of the sewer pipe as a series of tanks, (ii) the homogenization of biofilm 

surface reactions, and (iii) exclusion of the physical processes of solids settling. The 

structural uncertainties are assessed using a detailed CFD model which allws for each of 

these factors to be included and their effects examined.  

 

3.2 Materials and Methods 

3.2.1 Measurement data 

Measurement data provided in Guo et al. (2018) is used for the calibration of the models 

in the present study. A 24-hour on-site sampling and measurement campaign on a force 

main system in California, US was reported. The current study is concerned with one of 

three force mains that transport sewage from three different catchments to a WWTP. The 

main under consideration is 9.09 km in length and 40.64 cm in diameter. The flow rates 

and the water characteristics of the sewage were measured at the inlet and the outlet of 

the pipe during the sampling period. Soluble COD, VFA, and total sulfide measurements 

are the main characteristics that are used for the calibration and validation (see 

supplementary information). 
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3.2.2 Biochemical model 

The WATS model is the basis of most of the recently developed models (Sharma et al., 

2008) to model the anaerobic processes that include fermentation, hydrolysis of 

particulate COD and sulfide production. Therefore, WATS biochemical model reported 

by Yongsiri et al. (2003) and Nielsen et al. (2005) is adapted in this work to model the 

biological and chemical conversions in the sewer. These conversions include main 

processes in the carbon and the sulfur cycles. Modifications of the original model are 

made by adding the chemical and biological oxidation reactions of sulfide (Carrera et al. 

2016). The kinetics of the biological and chemical oxidation of sulfide in the water phase 

and biofilm are adopted from Nielsen et al. (2003) and Nielsen et al. (2006). The diagram 

in Fig. 3-1 describes the key processes in the implemented biochemical model showing 

the main state variables in the model. The resulting model is in the form of a system of 

ordinary differential equations (ODEs) that describe the production and consumption 

rates of the modelled species.  

Integration of the biokinetics with the hydrodynamics can either be carried out using a 

conventional CSTR-in-series approach or by solving the complete advection-diffusion 

equation for each of the species using CFD method. Both of these are considered in the 

present work, where the CSTR model is used for calibration and sensitivity/uncertainty 

analysis of the model to its input parameters, while the CFD model is used to assess 

uncertainty with respect to the influence of solids settling  and non-homogeneous 

reactions in the biofilm on the walls. 
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Code Reaction Remarks location 

R1 Het. Biomass growth (aerobic and anoxic conditions) by fermentable COD Bulk and biofilm 
R2 Het. Biomass growth (aerobic and anoxic conditions) by VFA Bulk and biofilm 

R3 
Energy maintenance requirement (aerobic and anoxic 
conditions) 

by fermentable COD and VFA Bulk 

R4 Hydrolysis of XS1(aerobic and anoxic conditions)  Bulk and biofilm 
R5 Hydrolysis of XS2(aerobic and anoxic conditions)  Bulk and biofilm 
R6 Fermentation   Bulk  
R7 Sulfate reduction to sulfide  Biofilm 
R8 Chemical sulfide oxidation to sulfate  Bulk 
R9 Biological sulfide oxidation to sulfate  Biofilm and bulk 

 

Figure 3-1: Key processes in the WATS model implemented in the current study 
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3.2.3 CSTR-in-series process model 

The process model is developed in MATLAB/Simulink, where the sewer pipe is 

represented as a series of Continuous Stirred-Tank Reactors (CSTRs). Sensitivity 

analysis for the number of the CSTRs was conducted as a preliminary step. It was found 

that including more than 80 CSTRs resulted in no noticeable change in the concentration 

profiles, which indicated that this is an adequate representation of the plug flow 

behaviour. Therefore, all subsequent results implement 80 CSTRs. As the sewage flow 

rate and characteristics largely vary along day- and night-time, dynamic inlet conditions 

are necessary to be considered for better prediction of the dynamic and peak 

concentration of the species. Species concentrations at the outlet of the series of the 

CSTR are monitored for the calibration and sensitivity analysis of the model.  

3.2.4 Calibration and uncertainty/sensitivity analysis 

Studies on the uncertainty/sensitivity of the sewer biochemical models is scarce in the 

literature. Therefore, most of the initial values for the biochemical model parameters used 

herein are adopted from Calabrò et al. (2009) and Hvitved-Jacobsen et al. (2013) as an 

initial parameter state. Using 24-hr dynamic measurement data, the key parameters of the 

model are calibrated to obtain a reasonable match between the model prediction and the 

dynamic measurement data for total COD, soluble COD (sCOD), VFA, and total sulfide. 

For further quantification of the significance of the role of each of the key parameters in 

calibrating the model and potential source of model output variance, 

uncertainty/sensitivity analysis is conducted. Following the work of Sin et al. (2011), the 

analysis is conducted into two steps. First, Monte Carlo method is used to explore the 

propagation of uncertainty from the model input to the output. Then, the Monte Carlo 

results are used for analysis by graphical representation and by fitting to multivariate 

linear functions of the model input using the Standardized Regression Coefficient (SRC) 

method. This study is concerned with identifying the most influential parameters in the 

model. However, SRCs could be used to determine the non-influential parameters as 

well, if the coefficient of determination (R2) is higher than 0.7, as in the case of our study 

(section 3.2.2) (Cosenza et al., 2013). Further study could be conducted using one of the 
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variance-based sensitivity analysis methods such as Extended-FAST method (Cosenza et 

al., 2013) to explore the higher order effect of the model parameters.  

Monte Carlo simulations are performed for the uncertainty/sensitivity analysis of the 

model parameters using 1000 simulations in a randomly sampled parameter space. A pre-

defined variational range for each parameter, except the parameters pertaining to the 

anoxic processes, as illustrated in Table 3-1, was determined. A guideline for specifying 

the variational range and default values are provided by Brun et al. (2002). Parameters 

are classified into three uncertainty classes (Table 3-1) with variations of 5%, 25% and 

50%, around the preliminary calibrated parameter values, where these values correspond 

to classes 1, 2, and 3, respectively. A parameter sampling matrix, S, is created using the 

Latin Hypercube Sampling (LHS) technique to ensure full coverage of the range for each 

parameter variation (Sin et al. 2009; Helton and Davis, 2003). The calibrated parameter 

values are used as the mean values of the variation range and reference values.  

The influence of variations in each of the model parameters is isolated using both 

graphical and SRC methods. In the SRC approach, Monte Carlo output time series of 

sCOD, VFA and total sulfide are time-averaged and represented by linear multivariate 

functions of model inputs, , in the form:  

 reg i i

i

y a b= +  (3.1) 

The regression coefficients, , are obtained and scaled to calculate the Standardized 

Regression Coefficients, , using the standard deviation of the model output, , and 

input, , as:  

 i
i i

y

b


=  (3.2) 

The values of  should be in the range of -1 to 1. For the values of  to be valid, the 

coefficient of determination of the linear regression should be high enough, i.e. , 

to ensure that the model is adequately linear. The absolute values of  are used to 
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determine the sensitivity of the model output to the corresponding input and, 

consequently, the contribution of that model input to the output variance. 

A graphical representation of the influence of each of the parameters on the simulation 

output is conducted by plotting the simulation results of the highest and lowest values of 

this parameter of interest against the Monto Carlo simulation output bands. In order to 

quantify the model uncertainty with respect to a specific parameter, 𝜃𝑗 , an average 

measure for the output sensitivity, , is defined as:  

 
, ,

, ,

( ) ( )j i ub j i lb

j

i ub i lb

Y Y

Y Y

 


−
=

−
 (3.3) 

where 𝑌(𝜃𝑗)𝑖,𝑢𝑏 and 𝑌(𝜃𝑗)𝑖,𝑙𝑏 are the upper and lower bounds, respectively, of  simulation 

outputs that correspond to the range limit values of parameter 𝜃𝑗 . This sensitivity 

parameter represents the maximum change in a specific output parameter that occurs with 

a variation in 𝜃𝑗 , normalized by the difference between the upper and lower band of the 

outputs of Monte Carlo, 𝑌𝑖,𝑢𝑏 and 𝑌𝑖,𝑙𝑏, respectively. 
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Table 3-1: Model parameters default values and variation range 

Parameter  Symbol Unit 
Calibrated 

Value 

Uncertainty 

Class 

Biomass growth in bulk water parameters 

Maximum aerobic specific growth rate µH,O2 [d-1] 7 3 

Yield constant for heterotrophic biomass in water phase Yhw [gCOD/gCOD] 0.55 1 

Maintenance energy requirement rate constant qm [d-1] 1 3 

Saturation constant for readily biodegradable substrate  Ksw [gCOD/m3] 1 3 

Saturation constant for dissolved oxygen  KO [gO2/m3] 0.05 3 

Biomass growth in biofilm parameters 

Half-order aerobic reaction rate constant per unit area for biofilm surface  K1/2 [gO2
0.5m-0.5d-1] 4 3 

Yield constant for heterotrophic biomass in biofilm Yhf [gCOD/gCOD] 0.55 1 

Saturation constant for readily biodegradable substrate in biofilm  Ksf [gCOD/m3] 5 3 

Saturation constant for dissolved oxygen  KO [gO2/m3] 0.05 3 

Particulate hydrolysis parameters 

Rapidly hydrolysis rate constant  Kh1 [d-1] 12 3 

Saturation constant for the rapidly hydrolyzable substrate  KX1 [gCOD/gCOD] 1.5 3 

Slowly hydrolysis rate constant  Kh2 [d-1] 5 3 

Saturation constant for the slowly hydrolyzable substrate KX2 [gCOD/gCOD] 0.5 3 

Efficiency constant for anaerobic hydrolysis  ηh,ana — 0.18 2 

Relative efficiency constant for the biomass in the biofilm ε — 0.15 2 

Biomass concentration in the biofilm  Xbf  [gCOD/m2] 10 3 

Fermentation parameters 

Fermentation rate constant qferm [d-1] 2 3 

Saturation constant for fermentation  kferm [gCOD/m3] 20 3 

Hydrogen sulfide formation parameters 

Rate constant for sulfide formation  
a [gS0.5m-0.5h-1] 

0.003

2 
3 

Sulfate saturation constant     Kso4 [gS/m3] 2 3 

Hydrogen sulfide oxidation parameters 

Rate constant for sulfide oxidation in biofilm Ks(II)ox,f [gS0.5gO2
-0.5md-1] 12 3 

Chemical oxidation reaction order n1 — 0.9 2 

Chemical oxidation reaction order n2 — 0.15 2 

Rate constant for chemical sulfide oxidation of molecular sulfide KH2S,c [(gSm-3)1-n1(gO2m-3)n2d-1] 0.96 3 

Rate constant for chemical sulfide oxidation of ionic sulfide KHS,c [(gSm-3)1-n1(gO2m-3)n2d-1] 12 3 

Maximum rate constant for biological sulfide oxidation at the pHopt value 

KS(II),b,pH,op

t 
[(gSm-3)1-n1(gO2m-3)n2d-1] 19.92 3 

Constant for sulfide oxidation rate function of pH level ΩS(II)b — 25.00 2 
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3.2.5 Distributed parameter CFD model 

While the process model divides the geometry of pipe into a number of CSTRs, assuming 

homogeneity in each CSTR, the geometry is discretized into a number of computational 

cells in the CFD model. In each of these cells, the governing conservation equations are 

integrated using the finite volume method to arrive at a coupled set of algebraic 

equations. The geometry of the computational domain is based on that described in 

Section 2.1, where the domain is discretized using ANSYS ICEM meshing software to 

produce a structured-like mesh with an O-grid profile at the cross section. Due to the 

length of the domain, the computational cells are created with high aspect ratio to reduce 

the number of the cells hence the computational cost. Therefore, it is necessary to 

produce cell faces perpendicular to the flow direction to reduce the error coming from the 

interpolation of the different variables at the face centroids. A grid independence test was 

done on three different meshes containing 1.82, 3.17, and 5.88 million cells. The velocity 

profiles at different sections were compared and it was determined that the difference in 

the velocity values between the intermediate the finest mesh is less than 5%. Therefore, 

the intermediate mesh was used as a compromise between the accuracy and the 

computational cost.  

 ANSYS FLUENT CFD software was used for the simulation of the hydrodynamics of 

the flow in the pipe in addition to the settling behaviour of the solids in the flow. Due to 

the dynamic nature of the sewer system, a transient simulation was performed to simulate 

the dynamic behaviour of the flow and species concentration at the domain inlet. A 

transient table of the inlet conditions was defined for the CFD case providing the 

variation of the inlet flow rate and the concentrations of the simulated species. The 

biological and chemical reactions in the sewage were simulated along with the transport 

of each species in the sewage. The simulated species in the sewage were defined based on 

the integrated biochemical model. In the following sections, the governing equations for 

the hydrodynamics, modelling of the solids settling and surface reactions in the biofilm 

model development and the integration between the CFD and the biochemical model are 

presented.  
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3.2.5.1 Governing equations 

The pressure-based solver in the ANSYS FLUENT software was used for simulating the 

flow field. The general momentum and continuity equations for incompressible, turbulent 

flow were solved. In addition, turbulent kinetic energy and turbulent energy dissipation 

rate equations were solved to compute the turbulent viscosity for the momentum 

equation. The continuity equation is given by:  

 0iv

y


=


 (3.4) 

where  is the water density, iv is the mean velocity in the 𝑖 direction. Momentum 

conservation equation for turbulent flow is described as:  
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Here,  is the mean pressure, 𝜇 is the dynamic viscosity, is Reynolds stress 

tensor, and 𝑣′is the velocity fluctuation. The Reynolds stress tensor, the final term in Eq. 

3.5, is closed using the realizable k-ε turbulence model.  

3.2.5.2 Biochemical model integration with CFD 

In order to couple the hydrodynamic simulation with the biochemical model, a general 

advection-diffusion transport equation in the liquid phase was solved for each species of 

the biochemical model. The transport equation defined for each species describes the 

spatial distribution for each species based on the liquid flow. The general transport 

equation solved in ANSYS FLUENT is defined as:  
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Here  is the concentration of the 𝑘𝑡ℎ species, k  is the diffusivity of the scalar in 

water, and  
k

S  is the source term of the 𝑘𝑡ℎ species. The turbulent diffusivity is included 

in k  and is defined using the computed turbulent viscosity assuming a turbulent 

Schmidt number of 0.7. 

3.2.5.2.1 Production/consumption rate of the wastewater 
constituents 

The source terms, , for the different species is defined by the corresponding 

conversion rates in the biochemical model and is implemented using user-defined 

functions. The source term describes the production and consumption rates of each 

species. These rates were computed using the local values of the dependent species 

concentrations in each computational cell, thereby accounting for the heterogeneity.  

3.2.5.2.2 Surface reaction modelling  

A technique is developed for the surface reactions in the biofilm such that these reactions 

are modelled as a superficial flux from the wall faces. A user-defined function is used to 

identify wall faces and, for all cells adjacent to a wall, the flux from the wall face is 

defined with direction defined based on the net generation/consumption of the 

corresponding species and magnitude defined by the biochemical model. More details 

and verification of the technique used for the simulation of the surface reactions are 

provided in the supplementary information.   

It is hypothesised that one of the most influential parameters in the biochemical model is 

the sulfide production rate per unit area, . Special attention is drawn to this parameter 

since it is directly affected by the homogenization of the surface reactions model as 

described in the sulfide formation rate:  

 1
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Here, ,  , , and  are the concentrations of fermentable COD, VFA, soluble 

oxygen, and rapidly hydrolysable substrate, respectively.  is the oxygen saturation 
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constant and the factor  is the homogenization factor that converts the areal sulfide 

formation rate to volumetric form in the process model structure. In the CFD model, this 

homogenization factor is not required, such that the model uncertainty resulting from the 

introduction of this parameter can be assessed though the CFD results. 

3.2.5.2.3 Solids settling  

Particulate species settle due to gravity. A multi-phase approach that includes solids as a 

separate phase is incompatible with the scalar approach taken for soluble substrates, and 

does not represent dilute hindered settling well. Therefore, settling is incorporated in the 

scalar system by subjecting settling species additional advection flux at the computational 

cell faces that is normal to the gravity direction. This method was implemented in 

Lakehal et al. (1999) to model the setting of the solids in a secondary clarifier. The 

settling velocity of the solids is a function of the solids concentration, which is evaluated 

as a sum of the particulate species in each computation cell. The settling velocity is then 

calculated using the double exponential model (Takacs and Nolasco, 1991) which is 

defined as:  

 minmin
( )( )

( )p sh s
r X Xr X X

s ov v e e
− −− −

= −  (3.8) 

where 𝑣0 is a reference settling velocity, 𝑋𝑚𝑖𝑛 is the non-settleable concentration, and 𝑟ℎ 

and 𝑟𝑝 are model parameters. The model parameters for this model are highly dependent 

on the nature of the solids in the wastewater. For approximation, the data from Patziger 

and Kiss (2015) measured for primary sludge is used to determine the model parameters 

for this study. Takacs’s model is originally was proposed for the activated sludge. 

However, it was adapted in the work of Patziger and Kiss (2015) to model the settling of 

solids in the primary clarifier. The maximal settling velocity in the primary clarifier is 

much higher than that of activated sludge. This is due to the relavtive higher desnity of 

the primary sludge and larger particle size that varies in the range of 0.01-0.5 mm 

(Patziger and Kiss, 2015) which results in settling velocity of 10-11 cm/s at concentration 

of 100-200 mg/L suspended solids.  

A
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3.3 Results and Discussion  

3.3.1 Monte Carlo Simulations  

The global uncertainty of the model is assessed using Monte Carlo simulations without 

assuming any correlation between the input parameters. Time series of the concentrations 

of sCOD, VFA and sulfide at the pipe outlet were monitored for each simulation. The 

upper and lower bands, along with the 10th and 90th percentiles, of the Monte Carlo 

simulation outputs are shown in Fig. 3-2. Higher band represents the largest difference 

between an instance of the Monte Carlo simulation output and the mean profile of the all 

simulations in the positive direction. On the other hand, the lower band represent the 

largest difference in the negative direction. These give an overall indication of the 

uncertainty level of the model, where a larger difference between the Monte Carlo bands 

and the mean indicates a higher uncertainty. 

3.3.2 Uncertainty/Sensitivity Analysis 

3.3.2.1 Graphical Representation  

Figures 3-3 to 3-5 show the influence of the key parameters of the model (as defined in 

Table 3-1) on the model outputs, with respect to the uncertainty envelope of the Monte 

Carlo simulations output. The parameters related to the biomass growth in the bulk water, 

which describe the suspended biomass growth kinetics on the sCOD, show no effect on 

the model outputs. This can be explained on the basis that the present study involves a 

pressure main where the dissolved oxygen concentration is low enough that anaerobic 

conditions prevail. The same conclusion can be made for the biomass growth in the 

biofilm parameters as well. The hydrolysis processes are more impactful on the model 

output. The anaerobic hydrolysis rate constant, 𝑘ℎ1, and efficiency, 𝜂ℎ,𝑎𝑛𝑎, show no direct 

effect on the sulfide and VFA levels. However, they have a significant effect on the 

sCOD, since these parameters control the rate of conversion of particulate COD to 

fermentable substrate. Therefore, by increasing 𝑘ℎ1 and 𝜂ℎ,𝑎𝑛𝑎, the concentration of the 

sCOD increases. However, 𝑘ℎ1 and 𝜂ℎ,𝑎𝑛𝑎 are not the predominant parameters for sulfide 

concentration output of the model. In general, the hydrolysis process parameters are the 

most influential parameters on the sCOD output. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3-2: Model uncertainties for (a) soluble COD, (b) VFA, (c) total sulfide, 

represented using mean, 10th and 90th percentiles, and upper and lower band 

values from the Monte Carlo simulations 
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determining the variation in the sCOD. This can be concluded by comparing with the 

upper and lower bands of Monte Carlo simulations. Sulfide formation rate, 𝑎, and 

saturation constant of rapidly hydrolysable substrate, 𝑘𝑥1, play a significant role in 

determining the correct sCOD level as well. 

The average sensitivity measure, , of 𝑘ℎ1 and 𝜂ℎ,𝑎𝑛𝑎 on sCOD are 53.8% and 25.4%, 

respectively. The saturation constant for the rapidly hydrolysable substrate shows a high 

influence on the sCOD with relative sensitivity of 19.8%. Fermentation rate, 𝑞𝑓𝑒𝑟𝑚, is 

another key parameter in calibrating the model where its effect is clear on the VFA levels 

only (Fig. 3-4). The sensitivity measure of the fermentation rate constant on the VFA 

concentrations is 67.6%, whereas the other parameters do not exceed 13.3% with respect 

to VFA. The sulfide formation constant, 𝑎, is a key parameter that has large influence on 

all of the model outputs. This is clear in Figs. 3-3 to 3-5, where its value has a significant 

impact on the concentration of sCOD and VFA, and it is the major parameter that 

controls the sulfide concentration output as shown in Fig. 3-5. The sensitivity measure of 

the sulfide formation rate constant on the sCOD, VFA, and sulfide are 23.3%, 13.3% and 

81.6%, respectively.    

From the data presented, it is concluded that the sulfide formation rate constant shows a 

significant influence on all of the monitored species. It is the predominant parameter 

affecting the predicted sulfide. On the other hand, the fermentation rate constant is the 

main parameter controlling the concentration of VFA, but it has almost no effect on the 

other species. This can be explained by the fact that the fermentation process is 

responsible for converting the fermentable substrate to acetate, which is another form of 

sCOD. As a result, the overall sCOD does not change as a result of fermentation. In 

addition, the sulfide formation expression is a function of sCOD, thereby the 

concentration of the sulfide is not determined by the fermentation process rate. The 

anaerobic hydrolysis efficiency and hydrolysis rate constant of the rapidly hydrolysable 

substrate have a predominant influence on sCOD since anaerobic conditions prevail in 

pressure mains. For sulfide formation, the colloidal COD is considered as rapidly 

hydrolysable substrate and is added to sCOD in the sulfide formation rate expression. 

Therefore, the effect of the anaerobic hydrolysis efficiency does not propagate to the  

j
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Figure 3-3: Graphical representation of the sensitivity of the predicted time-series of 

soluble COD concentration at the outlet for selected model parameters 

 

Figure 3-4: Graphical representation of the sensitivity of the predicted time-series of 

VFA concentration at the outlet for selected model parameters 
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                                                        (c) 

Figure 3-5: Graphical representation of the sensitivity of the predicted time-series of 

total sulfide concentration at the outlet for selected model parameters 

3.3.2.2 Standardized linear regression (SRC) 

Three multivariate linear models are fitted using linear regression (implemented in 

MATLAB) for the averaged concentrations of sCOD, VFA, and total sulfide at the sewer 

outlet. The fitted models can reasonably reproduce the time-averaged output of the Monte 

Carlo simulations as depicted in Figs. 3-6 to 3-8. The figures show a comparison between 

the probability distribution of the Monte Carlo simulations and the fitted model outputs 

where clear overlap is obtained except some differences (blue and orange part of the bars 

illustrate higher probability by the Monte Carlo simulations and by the fitted models, 

respectively). This is illustrated by the determination coefficient reported in Table 3-2 for 

each of the model outputs where  for all the outputs. This indicates that linear 

effect of parameter variability could account for the majority of average output variation. 

The regression coefficients, , can be used to evaluate the contribution of each of the 

model parameters on the overall variance. Furthermore, the condition of the standardized 

2 0.9R 

i
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regression coefficients  is generally satisfied, as shown in the last row of 

Table 3-2. The parameters that show the greatest influence ( ) on the model 

output hence highest sensitivity and contribution in the overall variance can be deduced 

from Table 3-2. The SRC results support the results obtained from the graphical 

representation, where the parameters that have the most important influence on the results 

of the model are the same, namely, , , , , and  are the most influential 

parameters in the model. Further to this, the sign of the standardized regression 

coefficients indicates the direction of the influence of the parameter on the model output 

while the magnitude reflects the strength of the parameter effect. 

 

 

Figure 3-6: Histogram for the time-averaged Monte Carlo output compared with 

the fitted linear multivariate model for soluble COD 
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Figure 3-7: Histogram for the time-averaged Monte Carlo output compared with 

the fitted linear multivariate model for VFA 

  

Figure 3-8: Histogram for the time-averaged Monte Carlo output compared with 

the fitted linear multivariate model for total sulfide 
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Table 3-2: Standardized regression coefficients for linear models of soluble COD, 

VFA, and total sulfide with the determination coefficients (R2) for each model. The 

values in bold are those with the most significant effects on the model outputs 

Parameter Soluble COD VFA Total sulfide  

R2 0.974 0.981 0.981 

  Estimate p-Value Estimate p-Value Estimate p-Value 

µH -0.050 0.000 -0.023 0.000 0.035 0.000 

Ksw -0.001 0.859 0.000 0.913 -0.003 0.086 

KO 0.002 0.678 -0.006 0.148 -0.015 0.000 

Ksf -0.012 0.018 -0.005 0.234 -0.001 0.672 

K1/2 -0.007 0.176 0.001 0.739 0.004 0.025 

qm -0.004 0.470 -0.005 0.266 0.005 0.003 

Kh1 0.773 0.000 0.038 0.000 -0.001 0.578 

Kx1 -0.299 0.000 -0.013 0.003 0.000 0.968 

ηh,ana 0.361 0.000 0.000 0.929 -0.002 0.269 

ε 0.045 0.000 0.063 0.000 -0.001 0.740 

a -0.340 0.000 -0.161 0.000 0.953 0.000 

Kso4 0.035 0.000 0.019 0.000 -0.091 0.000 

qferm 0.005 0.323 0.970 0.000 0.001 0.726 

Kferm 0.006 0.274 -0.067 0.000 0.001 0.446 

n1 0.003 0.565 0.002 0.729 -0.035 0.000 

n2 0.002 0.642 -0.003 0.447 0.240 0.000 

Ks(II)ox -0.003 0.587 -0.002 0.629 -0.151 0.000 

KH2S,c 0.002 0.746 -0.002 0.612 0.001 0.627 

KHS,c 0.001 0.920 0.003 0.481 -0.001 0.494 

KS(II),b,pH,opt 0.002 0.690 -0.002 0.612 -0.026 0.000 

 
ΩS(II)b 

 

-0.001 0.804 0.007 0.109 0.000 0.973 

  0.977   0.977   1.001   

 

Improvement of the model accuracy can be obtained by reducing the uncertainty of these 

parameter values. The uncertainty reduction required for the model parameters, in order 

to achieve a specific reduction in variance in the model outputs, can be quantified (Sin et 

al. 2011). Therefore, the most influential parameters should be studied in more detail, 

with more lab experiments being conducted to reduce the uncertainty of the overall 

model. For instance, the sulfide production rate constant, a, is emphasized to be the most 

influential parameter on the model as it significantly affects all the outputs of the model 

∑ 𝛽𝑖
2 
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as illustrated from the graphical and analytical results. Thus, special attention should be 

drawn to get an accurate value of this parameter. 

3.3.3 CFD Model Results 

First, the influence of the homogenization of the surface reactions in the biofilm is 

studied using the CFD model. Three simulations of the biochemical conversions along 

with the flow field in the sewer pipe were conducted using different values of a. The 

upper and lower limits of the  variation range used in the Monte Carlo simulation are 

used along with best fit value obtained from the calibration using Weighted Sum of 

Squared Errors (WSSE) criteria, which is . The mass-weighted 

average of the concentrations of the simulated species are monitored at the outlet of pipe 

and plotted in Figs. 3-9 to 3-11. The 1-D model simulations for the same parameter set 

are plotted on the same figures to compare between the outputs of the two models. The 

comparison shows that similar variation of the results of the CFD model is obtained as 

that of the 1-D CSTR-in-series model structure. It is obvious that CSTR-in-series model 

tends to smear out the high dynamic variation in the inlet concentration. This is could be 

explained by the fact that the CFD model is, in general, better in modelling the advection 

and diffusion influence than the 1-D CSTR-in-series model. However, the mean values of 

the different concentrations predicted by the CFD model and 1-D CSTR-in-series model 

are similar. Thus, the detailed modelling of the surface reactions in the case of pipe flow 

shows that the approximation used in the process model of the homogenization of the 

surface reactions is acceptable in this case. However, this cannot be generalized for all 

segments of the sewer network and other surface reactions in the biological treatment 

stages in WWTP. The CFD model demonstrated herein could be used in such cases to 

determine whether or not the heterogeneous nature of the reactions is important to take 

into account or whether a homogenized CSTR-in-series model is acceptable. Moreover, 

the dynamic response of the 1-D CSTR-in-model could be examined using the CFD 

model to ensure that the variation is in the design limit of the chemical treatment dosing 

of sewer systems.  

 

a

0.0032a = 0.5 0.5 1gS m h− −
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Figure 3-9: Plots of mass-weighted average at pipe outlet of the CFD model vs 1-D 

model of soluble COD concentration at the outlet  

 

Figure 3-10: Plots of mass-weighted average at pipe outlet of the CFD model vs 1-D 

model of VFA concentration at the outlet 
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Figure 3-11: Plots of mass-weighted average at pipe outlet of the CFD model vs 1-D 

model of total sulfide concentration at the outlet 

Figure 3-12a shows the spatial distribution of the total COD at a pipe cross section at the 

middle of the simulated pipe. It is clear that because of the settling of the particulate 

COD, higher concentration is noticed at the bottom of the pipe. However, the variation of 

the total COD is not significant across the cross section of the pipe, such that the 

completely mixed assumption of the 1-D CSTR-in-series model is deemed to be 

acceptable. The same can observed from the sCOD contours where in Fig. 3-12b, due to 

the utilization of the sCOD by the sulfate reduction bacteria (SRB) in the biofilm, higher 

utilization rate is observed near the wall. Therefore, lower concentration of the sCOD is 

near the wall. However, the variation of the sCOD concentration across the cross section 

of the pipe is negligible this due to the diffusion of the soluble matters and the hydrolysis 

process which compensates for the sCOD consumption by the SRB. Since the production 

of sulfide is mainly at the wall, slightly higher sulfide concentration was noticed near the 

wall. However, due to diffusion, this difference between the sulfide concentration at wall 

and in the bulk water is negligible.   
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            (a) 

 

        (b) 

 

(c) 

Figure 3-12: Contour plots of the concentrations of (a) total COD (mgCOD/L), (b) 

soluble COD (mgCOD/L), and (c) total sulfide (mgS/L) for a cross-section of the pipe 

halfway between the inlet and outlet 
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To assess the impact of solids settling on the model outputs, two simulations were 

performed: one with the solids settling term included in the CFD model and the other 

without considering this term. Settling of the solids does have noticeable influence on the 

mass-weighted average of the species concentrations if compared with the simulations 

that disregards the solids settling (results not shown). This indicates that the solids 

settling for the low solids concentration in the sewer may not have a significant influence 

on the overall simulation outputs in straight pipes. Again, this conclusion should not be 

generalized to all sewers, and this methodology can be considered as a useful tool in 

assessing the influence of settling for other operating conditions as well. For example, the 

case of intermittent flow is not considered in this work and could result in solids settling 

being important. 

For illustration of the effect of the solids settling on the profiles of the particulate species 

along the pipe length, the particulate COD profiles at different distance from the inlet are 

plotted in Fig. 3-13. From the figure, the concentration gradients in the radial direction 

are evolved from the uniform distribution assumed at the inlet (zero gradient) to more 

noticeable values based on the solids concentration. However, due to transient 

concentration of the solids at the inflow of the sewer pipe, the concentration gradient of 

the particulate COD is not uniform in the longitudinal direction. It is noticeable that the 

radial concentration gradient increases with the level of the solids concentration as 

described in Eq. 3.8. 

In conclusion, the influence of the detailed modelling of the solids settling and chemical 

and biological reactions heterogeneity has a marginal in the case of straight pressure 

sewer pipes.  This could be explained by the fact that the gradients of the different 

species due to solids setting and heterogeneous model of the sulfide formation are low 

since the convection of the species in the flow direction is predominant on the 

distribution of the species concentrations. 



120 

 

 

Figure 3-13: Plot of the radial concentration profiles of particulate COD at different 

locations along the length of the sewer pipe 

3.4 Conclusions 

SRC analysis of outcomes from time averaged outputs from the biochemical WATS 

model demonstrated that parameters could account for >90% of the output variance 

observed in sCOD, VFA, and total sulfides. Parameters pertaining hydrolysis, efficiency 

of the anaerobic processes, and sulfide production rate constant per unit area of biofilm 

area were the most significant predictors of these outputs. Comparison of 1-D 

biochemical and multidimensional CFD analysis, including settling, turbulent flow, and 

biochemical reactions indicated that the 1-D model was an adequate representation of the 

multi-dimensional model, with increased short-term time dependent behaviour in the 

multi-dimensional model.  Further study should be conducted in more complex segments 

in the sewer system that could be hot spots for hydrogen sulfide production. In such 



121 

 

locations, it would be beneficial to assess the accuracy of the process models in 

predicting the hydrogen sulfide levels in light of the highly heterogeneous reactions. 

While CFD is not justified by improved predictive capability in output values for the case 

considered, it provides mechanistic analysis into the way that sedimentation, reaction, 

and hydraulic processes can interact. 
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Chapter 4  

4 Numerical study of the nitrate dosing in lab-scale 
experiment of sewer system 

Hydrogen sulfide and methane production in sewer systems is a serious problem that has 

various negative consequences. Nitrate dosing is one of the most common methods that is 

used to alleviate the sulfide levels in sewers. The optimal Nitrate dosing rate and location 

is investigated in a lab-scale experiment at the Greenway wastewater treatment plant 

(WWTP), in London, Ontario. This plant treats the wastewater for nearly 50% of the city. 

This chapter is directed towards developing a simple mathematical model that can be 

used in developing experimental plans for the lab-scale reactor by testing scenarios using 

the model prior to experimentation. The mathematical model is calibrated and validated 

using measurement data from the experiment without and with nitrate dosing. Then, the 

model was used to investigate several possibilities of the dosing position and rate. 

Recommendations for the current dosing strategy were drawn and possible modifications 

were proposed.  

4.1 Introduction 

The sewer system is an essential infrastructure component in urban environments, 

primarily tasked with collecting and conveying produced sewage waste to wastewater 

treatment plants (WWTP). Sewer networks suffer from a common problem of hydrogen 

sulfide and methane formation, each by different microorganism populations, since the 

formation of both species is favorable in the same redox potential levels. Since the 

retention time is relatively short for biomass growth in the bulk water phase, biofilm 

developed on the inner walls as well as sediments formed at the bottom of the pipes are 

the most common environments for bacteria to accumulate and develop. Hydrogen 

sulfide is produced by sulfate-reducing bacteria (SRB) accumulated in the biofilm 

developed in pressure mains (Sharma et al., 2008) and solids sediments in gravity mains 

(Liu et al., 2015). SRB use sulfate as the electron acceptor through the anaerobic 

respiration process. Emission of hydrogen sulfide from the liquid phase and oxidization 

to sulfuric acid on the inner walls of the sewer pipes leads to pipes corrosion which 
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requires expensive maintenance. In addition, hydrogen sulfide released to the 

environment causes odor nuisance and has a harmful effect on human health because of 

its toxicity (Carrera et al., 2016). Meanwhile, methane is produced as a product of the 

methanogenic archaea (MA) metabolism (Guisasola et al., 2009). Methane contributes 

significantly to the overall greenhouse gas emissions from wastewater management (Liu 

et al., 2015). Furthermore, it is an explosive gas if mixed with air even at low 

concentration (Guisasola et al., 2009). 

Several strategies have been developed to overcome the problem of hydrogen sulfide 

formation. These strategies range from simple mechanical cleaning of the biofilm and 

sediments to prevent the accumulation of the SRB (Saracevicet al., 2007) to strategies 

involving dosing of chemicals at certain points in the sewer network (Ganigue et al., 

2011). For example, injecting alkalis to elevate the pH level in the sewer reduces the 

mass transfer of hydrogen sulfide from the liquid to gas phase, thereby reducing the 

oxidation to sulfuric acid and the subsequent corrosion (Ganigue et al., 2011). Another 

strategy is to dose metal salts, such as iron salts, which react with sulfide and remove it 

by precipitation (Zhang et al., 2009). The most common chemicals used are nitrate and 

oxygen to oxidize the produced sulfide and methane. However, the high solubility of 

nitrate salts gives an advantage to the use of nitrate over oxygen as the oxidant (Gutierrez 

et al., 2010). This advantage makes the optimization of the oxidant dosing more flexible 

in terms of solution concentration, rate, and position of dosing in the sewer system. 

Oxidation of sulfide in the presence of oxygen is mainly a biological process. It was 

indicated in the work of Mora et al. (2016) that chemical oxidation by oxygen is 

negligible if compared with the biological oxidation rates. Moreover, it was reported that 

thiosulfate is main product of the aerobic chemical sulfide oxidation. On the other hand, 

thiosulfate and elemental sulfur are intermediate products of the biological oxidation by 

oxygen before further oxidation to sulfate. Nielsen et al. (2006) reported that 95% of the 

sulfide oxidation by oxygen is biological.  

Biochemical conversions in nitrate-receiving wastewater has been studied in several 

works in the literature. Deep investigation on how nitrate prevents the accumulation of 
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sulfide in the sewer system was conducted by Mohanakrishnan et al. (2009) and Liu et al. 

(2015). Biological oxidation of sulfide was attributed to the activity of the biomass in the 

biofilm (Mohanakrishnan et al., 2009).  It was concluded that the nitrate-reducing sulfide-

oxidizing bacteria (NR-SOB) are responsible for oxidizing the produced sulfide in the 

biofilm. Another mechanism that was suggested is that the development of heterotrophic 

nitrate reducing bacteria (hNRB) in the biofilm compete with the SRB for the available 

organic carbon (Ganigue et al., 2011; Zhang et al., 2008). Moreover, nitrate was found 

not to a have long-term inhibitory influence on the sulfide formation, even after long 

exposure time.  

Sulfide oxidation steps were studied in the work of Jiang et al. (2009). It was illustrated 

that the sulfide oxidation by nitrate takes place over two steps. First, oxidation of sulfide 

to elemental sulfur occurs. Then, elemental sulfur is further oxidized to sulfate at slower 

rate. Accumulated elemental sulfur in the biofilm could be a source of sulfide if reduced 

in the anaerobic regions of the biofilm or the depletion of nitrate in the bulk liquid phase 

(Auguet et al. 2015). However, the measured rates of sulfide oxidation were 20-30 times 

the reduction rate of sulfate and elemental sulfur back to sulfide. This difference in 

oxidation and reduction rates is favorable for controlling the sulfide concentration in the 

sewer system by nitrate dosing. Jiang et al. (2013) suggested that after a short adaptation 

period for the microorganisms in the biofilm, four different processes take place 

simultaneously in three distinct stratified layers in the biofilm. These processes include 

sulfide oxidation, nitrate reduction, sulfate production, and methane production. The 

competition between the different microorganisms for the soluble COD (sCOD) 

determines the depth of the existence for each species.  

Several dosing concentrations and strategies have been studied in literature (Bentzen et 

al., 1995; Rodríguez-Gómez et al., 2005; Saracevic et al., 2007). Gutierrez et al. (2010) 

tested seven scenarios of nitrate dosing in a lab-scale sewer system. The study revealed 

the importance of choosing an effective nitrate dosing strategy to control the sulfide 

levels at the system discharge. Two principal parameters were emphasized to control the 

nitrate dosing. These parameters are the dosing position and the rate of nitrate dosing. It 

was recommended that nitrate dosing to be in proportion to the hydraulic retention time 
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(HRT) of the sewage. Moreover, dosing should be in a position near to the discharge 

point (or the sulfide-controlled point in the system) such that sulfate oxidizing bacteria 

have adequate time to consume all the sulfide formed upstream. Due to the intermittent 

flow rate in the sewer systems, anaerobic and anoxic conditions could alternate based on 

the retention time of the sewage and the sulfide concentration levels (Jiang et al., 2009). 

Therefore, synchronizing nitrate dosing with the HRT of the sewage in the system is 

crucial to avoid excess dosing of nitrate, which would consequently reach the WWTP at 

high concentration.  

Modelling of biochemical conversions in sewer systems is beneficial in predicting the 

“hot spots” of hydrogen sulfide production and planning for treatment location and 

strategies (Vollertsen et al., 2011). In the early stages of modelling sulfide formation in 

sewer systems, several empirical models have been proposed to predict sulfide 

concentration as a function of the organic strength of the wastewater, sewer pipe 

characteristics, flow rate, and temperature (Boon, 1975; Pomeroy and Parkhurst, 1978). 

Hvitved-Jacobsen et al. (2000) developed the Wastewater Aerobic/Anaerobic 

Transformations in Sewer (WATS) model that considers the carbon and sulfur cycles in 

more detail. Further improvement on the WATS model have been proposed to model the 

oxygen concentration (Gudjonsson et al., 2002), anoxic processes (Abdul-Talib et al., 

2005), sulfide emission from the liquid to gas phase (Yongsiri et al., 2003) and sulfide 

oxidation by oxygen (Nielsen et al., 2005; Nielsen et al., 2006). More recently, the 

SeweX model was developed by (Sharma et al., 2008) to model the dynamic conversions 

of carbon, nitrogen, and sulfur in the sewer environment under aerobic, anaerobic, and 

anoxic conditions, resulting in good predictions of the sulfide concentration. This model 

was extended by Guisasola et al. (2009) to include the production of methane by 

modelling the competition between SRB and MA in the biofilm. Moreover, in order to 

include the long-term influence on the production rate of sulfide and methane, Sun et al. 

(2018) proposed an empirical relation, using a detailed and validated model, to predict 

the sulfide and methane production rates as function of sCOD and sulfate.    

In the current work, a mathematical model based on the WATS model is developed by 

considering sulfide oxidation by nitrate in addition to methane production. The model is 
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calibrated and validated by data collected from a lab-scale system that is composed of 

four reactors in series that are intended to mimic the HRT of a real pressurized sewer 

pipe. Then, the model was used to study the strategy of nitrate dosing in the reactors in 

order to achieve complete oxidation of sulfide with minimal nitrate residual in the 

effluent flow from the last reactor.   

4.2 Material and methods 

4.2.1 Experiment setup 

A lab-scale system was used to mimic the biochemical conversions in the sewer system 

as illustrated in Fig. 4-1. The system consists of four air-sealed reactors designated as R1 

to R4 that are connected in series. The volume of each reactor is 1.5 L with an internal 

diameter of 110 mm. Internal biofilm carriers were inserted from the lid of each reactor to 

increase the area available for the biofilm growth. The total biofilm area in the reactor, 

including the reactor internal wall and surface area of the carriers, is 0.085 m2 (area to 

volume ratio, A/V = 56.7 m2/m3). Magnetic stirrers and recirculating pumps were 

installed as well to ensure that the content is homogeneous with minimum settling of 

solids. The reactors were totally covered by aluminum foil to prevent exposing the 

biofilm and sewage to light. This design was first proposed by (Guisasola et al., 2008). 

However, the system has some limitations to perfectly mimic the biochemical 

conversions in a real pipe. These limitations are due to differences from the real system 

such as shear stress applied on the developed biofilm on the walls, higher A/V, settling of 

some solids in the first reactors due to imperfect mixing and insufficient number of 

reactors to mimic the plug flow in the real sewer pipe.  

The system was running in Greenway wastewater facility located in London, Ontario, 

Canada. Raw wastewater was weekly collected from the Oxford pollution pant, London, 

Ontario wastewater treatment plant because it has a low concentration of iron, as 

compared to the Greenway plant. This is to ensure the experiments are not significantly 

affected by other treatments applied by the plants. Raw wastewater was stored in a cold 

room at 4 oC to minimize the microbial activities. A feeding tank to the reactors with a 

mixing pump was installed to ensure complete mixing of the solids and to prevent 
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settling. Influent and effluent samples were characterized using HACH methods and kits: 

chemical oxygen demand (total COD and sCOD), total nitrogen (TN), soluble nitrogen 

(SN), ammonia-N (NH4-N), and volatile fatty acids (VFA) (HACH Odyssey DR/2500 

spectrophotometer manual). Total sulfide, sulfate, and ferrous/ferric iron were measured 

using (DR900 multiparameter portable colorimeter). 1.2 μm filter papers were used for 

VSS and TSS analysis (APHA 2005). Soluble parameters were determined by filtration 

through 0.45 μm filter papers (VWR International, Mississauga Ontario, Canada).  

A Peristaltic pump was used to feed the system with sewage intermittently (average of 30 

minutes per hour in the daytime and 20 minutes per hour at nighttime, for a total of 10 

hours per day) following the typical pumping system in real sewers. HRT variation of the 

sewage in the system varies with the pumping events. The pump is programmed to run at 

the top of the hour for a duration that varies from 16 to 31 minutes, where the short 

running durations were scheduled after midnight to 6:00 am.   

4.2.2 Developing biofilm and nitrate dosing  

The system was running for several months to develop the biofilm on the walls and 

carriers until the quasi steady-state performance was reached. The average concentration 

of sulfide produced was 10.4 ±1.4 mgS/L. After reaching steady state, dosing of nitrate at 

a concentration of 1500 mgNO3/L was commenced in the first reactor in the line for three 

months. 

 

Figure 4-1: Schematic of the lab-scale system 
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4.2.3 System hydrodynamics 

Two tracer tests were conducted using sodium chloride (NaCl) as a tracer. Two tracer 

tests were conducted using two different concentrations of sodium chloride in raw 

sewage. The two concentrations correspond to conductivity of 12 and 6.2 mS/cm of the 

sewage that were fed to the system during the test as a step input. The peristaltic pump 

was running on the programmed schedule for the system feeding. The conductivity of the 

feeding sewage and background conductivity of the sewage without sodium chloride 

were measured. Then, the conductivity probe was installed at the effluent of the system to 

measure and store the data continuously. Each test was run for 24 hours with the 

continuous conductivity measurement using Hach HQ40d portable conductivity meter.   

4.2.4 Data for the mathematical model calibration/validation  

For the calibration and validation of the biochemical model, samples from the effluent 

were collected every 10 minutes for 2 hours during the normal operation without nitrate 

dosing. These data were used for the calibration of the anaerobic processes in the model. 

Then, batch tests were conducted in the last reactor by turning off the feeding pump and 

isolating the reactor from the system. The recirculating pumping and the magnetic stirrer 

provided gentle mixing to the content of the reactor during the batch test. A nitrate 

solution was dosed in the reactor to have initial concentration of 50 mgNO3-N/L. 

Samples were drawn from the reactor for 2 hours and were analysed for sulfide and 

nitrate. Sulfide oxidation and nitrate reduction processes in the biochemical model were 

calibrated using the collected data.  

4.2.5 Biochemical mathematical model 

A mathematical model was developed based on the WATS model framework, with 

additional processes added to better predict the consumption of the sCOD and the anoxic 

oxidation of sulfide. Figure 4-2 depicts a diagram of the biochemical reactions included 

in the model (details of the model reactions are illustrated in Tables (4-2 and 4-3). 

Methane production kinetics were adopted from the work of Guisasola et al., 2009 and 

Sun et al., 2018 to consider the competition with the SRB, hence better modelling the 

sCOD concentration. The kinetics parameter values reported in the literature are used in 
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the current model. Moreover, the anoxic oxidation mechanism and the associated kinetic 

parameters are adopted from the work of Jiang et al. (2009). The key processes added to 

the basic WATS model are illustrated in Table (4-1). The reaction rates (first term in each 

expression) are denoted 𝐾 with subscript according to the processes listed in the leftmost 

column. Moreover, 𝐾𝑂, 𝐾𝑁𝑂3, 𝐾𝑉𝐹𝐴,𝑀𝐵,  𝐾𝑆𝑅𝐵, 𝐾𝐻2, 𝐾𝑆𝑂4, 𝐾𝑆0 and 𝐾𝑆2− are the saturation 

constants of the Monod kinetics defined for the added processes. The state variables in 

the expressions are summarized in Table (4-3). The biochemical model is implemented 

using Matlab/Simulink for the ease of manipulation of the system configuration.  

 

Table 4-1: Kinetics added to the WATS model 

Process Conditions Kinetics 

Methanogenesis using VFA Anaerobic 𝐾𝐶𝐻4,𝑎𝑐𝑖𝑑,𝑓 
𝑆𝑉𝐹𝐴

𝐾𝑉𝐹𝐴,𝑀𝐵 + 𝑆𝑉𝐹𝐴

𝐾𝑂

𝐾𝑂 + 𝑆𝑂

 
𝐾𝑁𝑂3

𝐾𝑁𝑂3 + 𝑆𝑁𝑂3

(
𝐴

𝑉
)  𝛼𝑠

(𝑇−20)
 

Methanogenesis using hydrogen Anaerobic 𝐾𝐶𝐻4,𝐻𝑦𝑑,𝑓 
𝑆𝐻2

𝐾𝐻2 + 𝑆𝐻2

𝐾𝑂

𝐾𝑂 + 𝑆𝑂

𝐾𝑁𝑂3

𝐾𝑁𝑂3 + 𝑆𝑁𝑂3

(
𝐴

𝑉
) 𝛼𝑠

(𝑇−20)
 

Sulfide production by sulfate 

reduction  
Anaerobic 𝐾𝐻2𝑆,𝑉𝐹𝐴,𝑓 

𝑆𝑉𝐹𝐴

𝐾𝑆𝑅𝐵 + 𝑆𝑉𝐹𝐴

𝑆𝑆𝑂4

𝐾𝑆𝑂4 + 𝑆𝑆𝑂4

𝐾𝑂

𝐾𝑂 + 𝑆𝑂

(
𝐴

𝑉
) 𝛼𝑠

(𝑇−20)
 

Sulfide production by elemental 

sulfur reduction  
Anaerobic 𝐾𝑆0,𝑉𝐹𝐴,𝑓 

𝑆𝑉𝐹𝐴

𝐾𝑆𝑅𝐵 + 𝑆𝑉𝐹𝐴

𝑋𝑆(0)

𝐾𝑆0 + 𝑋𝑆(0)

𝐾𝑂

𝐾𝑂 + 𝑆𝑂

(
𝐴

𝑉
) 𝛼𝑠

(𝑇−20)
 

Sulfide biological oxidation by 

nitrate to elemental sulfur 
Anoxic 𝐾𝑆(2−),𝑎𝑛𝑜𝑥,𝑓 

𝑆𝑆(2−)

𝐾𝑆2−+𝑆𝑆(2−)

𝑆𝑁𝑂3

𝐾𝑁𝑂3+𝑆𝑁𝑂3
 (

𝐴

𝑉
) 𝛼𝑠

(𝑇−20)
  

Elemental sulfur biological 

oxidation by nitrate to sulfate 
Anoxic 𝐾𝑆(0),𝑎𝑛𝑜𝑥,𝑓 

𝑋𝑆(0)

𝐾𝑆0+𝑋𝑆(0)

𝑆𝑁𝑂3

𝐾𝑁𝑂3+𝑆𝑁𝑂3
 (

𝐴

𝑉
)  𝛼𝑠

(𝑇−20)
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Figure 4-2: Mathematical model biochemical processes included
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Table 4-2: Mathematical model process definitions 

Table 4-3: Mathematical model state variable definitions 

Symbol Variable   

SB Readily biodegradable substrate (non-VFA) 

SVFA Volatile fatty acids (acetate) 

XHet Heterotrophic bacteria  

XS1 Rapidly hydrolysable particulate COD 

XS2 Slowly hydrolysable particulate COD 

SNO3 Dissolved nitrate and nitrite   

SS2- Sulfide in molecular and ionic form  

XS Elemental sulfide 

SSO4 Dissolved sulfate  

SCH4 Methane  

SH2 Dissolved hydrogen  

Code Process Conditions Remarks 

R1 Growth of heterotrophs on SVFA  Aerobic/anoxic bulk/biofilm 

R2 Growth of heterotrophs on SB Aerobic/anoxic bulk/biofilm 

R3 Hydrolysis, fast Aerobic/anaerobic/anoxic bulk/biofilm 

R4 Hydrolysis, slow Aerobic/anaerobic/anoxic bulk/biofilm 

R5 SB fermentation, acetogenesis and acidogenesis Anaerobic  bulk/biofilm 

R6 Methanogenesis using hydrogen (a) and VFA(b)  Anaerobic Biofilm 

R7 Sulfide production by sulfate (a) and elemental 

sulfur reduction (b) 

Anaerobic Biofilm 

R8 Sulfide biological oxidation by nitrate to 

elemental sulfur 

Anoxic Biofilm 

R9 Elemental sulfur biological oxidation by nitrate to 

sulfate 

Anoxic Biofilm 
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4.3 Results and Discussion 

The system is modelled as four continuously stirred-tank reactors (CSTRs) in series. 

Dynamic inlet flow was specified according to the pumping events scheduled. The model 

shows a reasonable fit with the tracer test measurements, indicated that the 

hydrodynamics a reasonably well modelled. This can be illustrated in the cumulative 

residence time distribution, F(t), that is shown in Fig. 4-3. It is observed that the 

numerical model indicates that the actual volume of the reactor is different from that of 

the calculated cylindrical volume. The effective volume was determined to be 75% of the 

calculated volume (based on the internal dimensions of the reactor). This agreed with the 

calculations of the effective volume by deducting the occupied volume of the biofilm 

carriers and the inlet tube. The effective volume was confirmed with the measurement of 

the initial concentration of nitrate during the batch test. Moreover, the F(t) curve 

indicated that time required for the 10, 50, and 90% of the feeding sewage to pass the 

systems was 2.8, 7.1 and 18 h, respectively. The mean residence time was computed as 

10.44 h. The hydrodynamic configuration with the effective volume that was verified by 

the tracer test was used for the following modelling of the biochemical conversions. 

 

Figure 4-3: Cumulative residence time distribution (F(t)) of the tracer test against 

the numerical model results 
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4.3.1 Numerical model calibration/validation without nitrate dosing  

Data collected from the system effluent during normal operation of the system without 

dosing was used to calibrate the model. Parameter estimation was initiated from the 

default values reported in Calabrò et al. (2009) and Guisasola et al. (2009) for the 

anaerobic processes and methane production, respectively. Sulfate reduction rate was the 

only parameter that was adjusted to get a good fit with the experimental measurements 

for the effluent measurements as compared with R4 concentrations (Fig. 4-4 and 4-5). 

Since the variation of the wastewater characteristics as a function of time were mild, the 

time average and the standard deviation are illustrated in Fig. 4-4. The model showed a 

reasonable agreement with the measurements, with all model predictions being within 

one standard deviation of the observed values. There is a gradual increase in the sulfide 

concentration from R1 through R4 due to sulfate reduction, as indicated by the sulfate 

concentration reduction through the reactors. It should be noted that sulfide production 

using hydrogen in the wastewater was neglected based on the estimation provided in the 

work of Guisasola et al. (2009). Therefore, only VFA was used by SRB to reduce sulfate 

to sulfide. However, the increase of VFA indicated that the fermentation of more 

complex soluble carbon compounds (SB) to VFA is higher. Since both VFA and SB are 

part of the sCOD measurement, the decrease of sCOD is due to the sulfide formation 

process.   

Figure 4-5 shows the variation of the sulfide in the effluent with time for the 

measurements and the model predictions. The sulfide production rate was found to be 

1.46 gS/m2-day, which is comparable to the empirical values reported in Hvitved-

Jacobsen (2002), which range from 0.48 to 2.4 gS/m2-d. The variation of sulfide was due 

to the dilution of the contents of the last reactor (R4) with the flow coming from R3 

during the pumping events. However, the concentration of sulfide in R3 was comparable 

to that in R4. Therefore, the variation of sulfide with respect to time was mild. In the no-

flow conditions, SRB had more time to reduce the sulfate in the reactor and produce 

sulfide.   
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Figure 4-4: Model calibration: average concentration measurements at the effluent 

(blue columns) and model predictions effluent of each reactor in the system for 

sulfide, sulfate, soluble COD and VFA (R1-R4) 

 

Figure 4-5: Calibrated sulfide production: measurement and model prediction of 

sulfide concentration at the system effluent 
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Validation of the model was then performed using the second 2-h data set collected 

during normal operations. The model was able to reasonably capture the mean 

concentration of wastewater characteristics (Fig. 4-6 and 4-7). At this point only the 

anaerobic processes were activated due to the absence of the nitrate. The next step is to 

calibrate the anoxic processes that involve the sulfide and elemental sulfur oxidation.  

 

 

 

Figure 4-6: Model validation: average concentration measurements at the effluent 

and model predictions effluent of each reactor in the system for sulfide, sulfate, 

soluble COD and VFA 
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Figure 4-7: Validated sulfide production: measurement and model prediction of 

sulfide concentration at the system effluent 

4.3.2 Numerical model calibration for nitrate dosing  

The data collected from the 2-h batch test with nitrate were used to calibrate the model 

for the oxidation of sulfide by nitrate and elemental sulfur as an intermediate species. 

Two reaction expressions were compared for the sulfide oxidation in the biofilm, namely 

half-order and Monod-type kinetics. The results showed that both expressions captured 

the reaction rate of sulfide and nitrate with good agreement, therefore Monod type 

kinetics was used herein (Fig. 4-8 and 4-9). The anoxic oxidation rates that were 

measured by Jiang et al. (2009) were used as the reference values for the calibration. It 

was concluded that that the oxidation rate of the elemental sulfur was about 2.2 mgS/m2-

d which was used in the current model. On the other hand, the rate of anoxic oxidation of 

sulfide was estimated as 12.1 mgS/m2-d by the current model. This value is lower than 

the anoxic oxidation rate reported (17.1 ± 2.3 mgS/m2-d). From Fig. 8, it is shown that 

only 35 min was needed for the complete biological oxidation of sulfide. This similar 

behaviour to what was observed by Jiang et al. (2009). 
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Figure 4-8: Calibrated profile of sulfide oxidation: measurement and model 

prediction of sulfide concentration at the system effluent 

  

Figure 4-9: Calibrated profile of nitrate reduction: measurement and model 

prediction of nitrate concentration at the system effluent 
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4.3.3 Nitrate dosing rate and location study 

The calibrated model was used to develop a strategy for nitrate dosing in the system to 

help with planning the experiments that will be done in the future. The dosing strategy of 

nitrate in the system was studied to optimize the nitrate dosing effectiveness. The study 

was based on the same nitrate stock solution concentration of 2600 mg NO3/L. The 

pumping events of the nitrate solution were based on the schedule of the fresh sewage 

pumping in the system. Thus, the nitrate pumping started with the sewage feeding and 

stopped once the feeding event was completed. The studied optimization parameters were 

the nitrate flow rate and the position of the dosing. Dosing was tested in one reactor at a 

time while varying the reactor that was receiving the nitrate. The flow rates tested in this 

study were chosen to determine the flow rates that achieve 0.5 mgS/L sulfide and 

0.5mgNO3-N/L nitrate average concentrations at the effluent when certain reactor was 

dosed with nitrate. These goals were used to measure the effectiveness of the nitrate 

dosing rate to oxidize the sulfide and having no negative influence on the subsequent 

treatment stage. The total volume of nitrate solution dosed per day is computed and used 

for the comparison between the different cases. The average concentrations of sulfide and 

nitrate at the effluent were used to judge the influence of the optimization parameters. 

4.3.4 Dosing in the 1st reactor 

Dosing in the first reactor was examined at four flow rates (0.2, 0.3, 0.41 and 0.445 L/d). 

Nitrate flow rates resulting in sulfide and nitrate average concentrations lower than 0.5 

mgS/L and 0.5 mgNO3-N/L, respectively, at the effluent were determined. It was found 

that 0.41 L/d achieved sulfide concentration at the effluent of the system lower than 0.5 

mgS/L while a slightly higher dosing rate (0.445 L/d) was required for the nitrate 

concentration of the outlet to be 0.5 mgNO3-N/L and complete elimination of sulfide as 

shown in Fig. 4-10.  Since the nitrate was dosed in R1 and flowed to the following 

reactors, the sulfide was noticed to be completely oxidized in all the reactors.  
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Figure 4-10: Sulfide (top) and nitrate (bottom) concentrations in the effluent of the 

reactors (R1-R4) when dosing in R1 
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It was observed that the average nitrate concentration in R3 and R4 was the main 

parameter to determine the sulfide concentration in the effluent. Since the dosing was 

carried out in R1, a gradient of the nitrate concentration was obtained. However, a 

sufficient nitrate concentration was needed to suppress the sulfide in these reactors. This 

is clear in the case of dosing flow rate of 0.3 L/d. Nitrate concentration in R3 was around 

2 mgNO3-N/L leading to 2 and 4 mgS/L in R3 and R4, respectively.    

4.3.5 Dosing in the 2nd reactor 

For dosing in the second reactor, nitrate solution flow rates of 0.3, 0.387, 0.4 and 0.418 

were examined. It was illustrated that lower nitrate solution flow rate (0.387 L/d) was 

required to achieve 0.5 mgS/L sulfide at the effluent than in the case of dosing in R1. 

However, the average sulfide level in the R1 was around 4 mgS/L (Fig. 4-11). Sulfide 

produced in the first reactor is transported to the following reactors when the feeding 

pump is on. For the complete elimination of sulfide and 0.5 mgNO3-N/L in the effluent, 

higher dosing rate was needed (0.481 L/d).  

Nitrate was dosed in R1 and R2 and then transported with the flow to R3 and R4. This 

resulted in lower nitrate concentration in the last two reactors. Therefore, high dosing rate 

was needed as illustrated in the next two cases. The dilution of the nitrate solution dosing 

over a larger volume of sewage negatively affects the effectiveness of the dosing.      

4.3.6 Dosing in the 3rd reactor  

In case of dosing in the third reactor, dosing flow rate resulting in 0.5 mgS/L sulfide in 

the effluent was 0.282 L/d which is lower than the dosing rates in the previous two cases. 

However, using this flow rate lead the average nitrate concentration in the effluent to be 

0.9 mgNO3-N/L. This is due to inadequate time available for the nitrate to oxidize the 

sulfide. Therefore, higher dosing is needed to get higher nitrate concentration and higher 

oxidation rate. This was illustrated by the dosing rate (0.223 L/d) that resulting 0.5 

mgNO3-N/L in the effluent. Moreover, the higher concentration of sulfide in R2 (7.8 

mgS/L) that was transported to R3 made the sulfide amount to be oxidized higher (Fig. 4- 

12). However, still the dosing rate needed for the full oxidation of sulfide is lower than 

the dosing rates required when dosing in R1 or R2.   
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Figure 4-11: Sulfide (top) and nitrate (bottom) concentrations in the effluent of 

the reactors (R1-R4) when dosing in R2 
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Figure 4-12: Sulfide (top) and nitrate (bottom) concentrations in the effluent of the 

reactors (R1-R4) when dosing in R3 
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4.3.7 Dosing in the 4th reactor 

Dosing in the last reactor (R4) seems to be attractive to reduce the nitrate amount needed, 

but this was not observed in the current study. The simulation showed that a very high 

dosing rate is needed to achieve 0.5 mgS/L in the effluent. This may be explained by the 

fact that the sulfide concentration coming from R3 is much higher than the other cases. 

Moreover, since the dosing was scheduled during the feeding duration, a significant 

amount of nitrate was flushed with the effluent of the system, leading to higher dosing 

rate being required to achieve a higher concentration of nitrate to be adequate for rapid 

oxidation of sulfide. The simulations showed that 0.53 L/d was required to get 0.5 mgS/L 

in the effluent (Fig. 4-13) which is much higher than if the dosing was in R1, R2 or R3. 

Moreover, the nitrate concentration in the effluent in this case is high (27 mgNO3-N/L) 

which may have a negative impact on the treatment processes.  More information can be 

obtained by examining the dosing rate that achieves 0.5 mgNO3-N/L nitrate 

concentration at the effluent. On the other hand, only 0.06 L/d could result in 0.5 

mgNO3-N/L of nitrate in the effluent.  

4.3.8 HRT versus nitrate concentration 

The total HRT of 10.44 h was assumed to be uniformly distributed among the four 

reactors. Thus, the sewage slug stayed the same amount of time in each reactor. Based on 

this assumption, four HRTs for the nitrate dosing are computed. The applied nitrate 

concentration is the resultant concentration of the dilution of the stock solution in the 

sewage flow during pumping event. Figure 4-14 shows the effective dosing rate to have 

0.5 mgS/L sulfide in the effluent, as a function of HRT. It was clear that the lowest HRT 

(2.11 h), which corresponds to the dosing in R4, has the highest applied nitrate 

concentration. This was explained above was due to the short time available for the 

nitrate to oxidize the sulfide accompanying with high sulfide concentration that was 

produced in R1 to R3 hence higher nitrate was needed. Moreover, almost no difference is 

observed between the applied nitrate concentrations when dosing R1 and R2. On the 

other hand, dosing in R3 shows the lowest value. Therefore, dosing in R3 is the most 

efficient way in this dosing strategies even with nitrate concentration in the effluent of 

0.9 mgNO3-N/L that could be neglected. Figure 4-15 showed the applied nitrate 
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concentration for dosing flow rates that results in 0.5 mgNO3-N/L in the effluent against 

the HRT. Since this criterion does not necessarily result in complete depletion of sulfide, 

it cannot be used as a measure of the effectiveness of the nitrate dosing. However, it 

 

 

Figure 4-13: Sulfide (top) and nitrate (bottom) concentrations in the effluent of 

the reactors (R1-R4) when dosing in R4 
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illustrates the maximum applied nitrate that can be used at each HRT without affecting 

the subsequent treatment process.      

 

Figure 4-14: Effective nitrate dosing to achieve 0.5 mgS/L sulfide in the effluent 

 

Figure 4-15: Effective nitrate dosing to achieve 0.5 mgNO3-N/L sulfide in the 

effluent 
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4.4 Conclusions 

The model proposed herein, based on the WATS model, reasonably described the 

kinetics of the anaerobic biochemical conversions in the sewer system. Moreover, sulfide 

oxidation rate by nitrate was well-captured. However, more data should be collected for 

more precise calibration and validation. Batch tests at different concentrations of nitrate 

and sulfide are needed to ensure the good performance of the model. In addition, 

sensitivity/uncertainty analysis of the model should be conducted to determine the key 

parameters and uncertainty of the model predictions. 

The modelling results showed that the optimal dosing was found to be carried out in R3 

while dosing in the last reactor results in the worst effectiveness. The same effectiveness 

was noticed when dosing in R1 and R2.  

Synchronizing the dosing pump with the feeding pump may not be the best strategy to 

follow, especially when dosing in the last reactor since nitrate could be flushed thus 

effectiveness was significantly reduced. Moreover, dosing in multiple reactors at the 

same time should be studied. In addition, increasing the number of the reactors in the 

model could be performed to investigate the optimal location of nitrate dosing where this 

cannot be feasible to be done in the current experiment setup.   
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Chapter 5  

5 Summary and recommendations for future work 

In this chapter, a summary of the work in this thesis is presented along with the major 

conclusions for each chapter. This is followed by recommendations for future work.   

5.1 Summary  

In this work, the uncertainty of the most common approximations used in modelling the 

biochemical processes occurring in wastewater management systems were evaluated 

using a CFD framework. Two major subjects were of concern in this work: the aeration 

of activated sludge reactors and sulfide formation in sewer systems. For the aeration 

model, a CFD-PBM approach was adopted to investigate the influence of the constant 

bubble size approximation. For the sewer modelling, the WATS model was implemented 

in 1-D and CFD frameworks for comparison and for studying the uncertainty of the 1-D 

model mathematical form. A novel technique is developed to simulate the biofilm 

reactions in the biofilm using a CFD model. Moreover, the settling of the solids in sewers 

is considered to include its influence on the homogeneity of the reactions. Then, the 1-D 

model structure was selected to implement an extension of the WATS model to simulate 

the anoxic sulfide biological oxidation. 

In chapter 2, CFD model integrated with PBM was used to simulate air bubbles flowing 

in a bubble column reactor operating within the homogeneous regime. The CFD-PBM 

model was validated using the experimental measurement of bubble size distribution at 

different levels, global gas holdup in the column and global oxygen mass transfer 

coefficient at two air flow rates. Different closure models for bubble breakup and 

coalescence rates, along with drag force models, were examined to determine the suitable 

combination that can predict the evolution of the bubble size distribution in the reactor 

effectively. The applied boundary conditions (gas volume fraction at the air diffuser 

surface) were investigated as well to provide the best practices for using such model. The 

discretization of the bubble size distribution was studied to determine the dependency of 

the model results on the number of the bubble classes.  
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The CFD-PBM model showed excellent performance in terms of capturing the evolution 

of the bubble size distribution and oxygen mass transfer parameters. Specifying the gas 

volume fraction at the inlet did not affect the accuracy of the results as long as the same 

gas flow rate is applied at the inlet. Moreover, 22 bubble size classes of the PBM was 

sufficient to obtain a good agreement with the experimental data with no further 

improvement with increasing the number of classes.  Prince and Blanch’s coalescence 

model with only buoyancy activated showed the most precise performance for the two 

gas flow rates examined. However, the drag model used has a critical role on the 

accuracy of the results. Nevertheless, analysis of the flow fields and the BSD along the 

bubble column height showed a significant influence of the water phase recirculation near 

the free surface on the bubble size distribution and oxygen mass transfer. Finally, the 

constant bubble size approximation was examined using the mean diameters observed in 

the experimental data at each flow rate. The results showed that this approximation has 

similar prediction of the global gas holdup as the CFD-PBM model. However, adopting 

this approximation resulted in poor prediction of the oxygen mass transfer.  

In chapter 3, uncertainty/sensitivity analysis of the WATS biochemical model 

implemented in the 1-D framework was conducted to determine the key parameters that 

influence the performance of the model. It was demonstrated using the computed 

standardized regression coefficients that the parameters of the hydrolysis processes, 

efficiency of the anaerobic processes, and sulfide formation rate per unit area of the 

biofilm are the main parameters that determine the accuracy of the model. Therefore, it 

was concluded that special attention should be taken while estimating these parameters. 

On the other hand, the WATS model was integrated in CFD with developed models to 

consider the settling of particulate matter and reactions in the biofilm. The 

implementation of the surface reactions in the CFD model was verified using a very 

simple domain (results shown in appendix A). The analysis of the CFD results showed 

that the influence of the heterogeneity of the reactions in the biofilm and due to the 

settling of solids does not have a significant influence on the results. Therefore, the 1-D 

model could be used for simple domains such as pressure mains.  
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In chapter 4, the WATS model implemented in the 1-D framework was used with an 

extension added to consider the biological oxidation of sulfide with nitrate. A lab-scale 

experiment, which consists of four well-mixed tanks connected in series, was used to 

generate data to calibrate and validate the model. First, the model was calibrated and 

validated for the anaerobic processes that include hydrolysis, fermentation, and sulfate 

reduction to produce sulfide. Then, the anoxic processes of sulfide and elemental sulfur 

oxidation were included. Calibration and validation of the anoxic processes were 

conducted using data of batch tests performed. Finally, the validated 1-D model was used 

to test a number of strategies for nitrate dosing. The study was based on determining the 

nitrate concentration that is required to get 0.5 mgNO3-N/L of nitrate and 0.5 mgS/L 

sulfide at the outlet. The study showed that dosing near the outlet is beneficial in terms of 

the amount of nitrate needed. However, the nitrate dosing location should not be too close 

to the outlet in order to avoid flushing the nitrate solution from the system without 

sufficient time being available for the microorganisms to oxidize the sulfide. Moreover, it 

was recommended not to use simultaneous nitrate dosing and fresh sewage feeding to the 

system. 

5.2 Recommendations for future work 

• For CFD-PBM, further study is needed to understand the interaction between the 

turbulence model and the bubble breakup/coalescence models to gain more 

insight into the physics of the bubble evolution along the bubble column. This 

study requires more experimental data that includes bubble size distribution at 

different levels of the bubble column and at different levels of turbulence. 

Turbulence in this system could be generated either by high gas flow rate or using 

any other means that generate eddies that physically interact with the bubbles. 

The bubble size distribution could be measured using photographic techniques or 

using an optical probe. The turbulence intensity should be measured as well to 

quantitively evaluate the CFD model.  

• For CFD-PBM modelling of the bubble size evolution and mass transfer in bubble 

columns and activated sludge reactors, the breakup/coalescence models should be 

studied in the case of various contaminants being present in the water as well as 
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the effects of foam accumulation at the free surface. The suggested study should 

focus on developing breakup and coalescence models that can capture the effect 

of suspended solids in the water phase. Moreover, soluble matters that have an 

influence on the bubble size distribution and oxygen mass transfer (such as 

surface-active agents) should be examined, along with suspended solids 

concentrations that vary in size and concentration. An interesting study that could 

be beneficial to the modelling of the aeration of activated sludge reactors is to 

investigate the concentration of alpha-cellulose on oxygen mass transfer. The 

biodegradation of alpha-cellulose in activated sludge reactor was recently studied. 

Therefore, the influence of alpha-cellulose could be incorporated in the modelling 

of dynamic α-factor. 

• Simulation of a bubble column operating within the heterogeneous regime using 

CFD-PBM model could be examined. Measurement data in the heterogeneous 

flow regime would be beneficial for examining the capability of the CFD-PBM 

model to capture the BSD evolution, flow field, and mass transfer coefficient in 

such cases. Developing new models of bubble breakup and coalescence or 

modifying the existing ones should be conducted to capture the evolution of the 

bubble size distribution and consequent mass/heat transfer parameters. 

• Further study on the detailed modelling of biofilm reactions in membrane 

bioreactors using the developed CFD model of heterogeneous reactions, would be 

an interesting extension of the current work. The numerical technique developed 

in this study to simulate the heterogeneous reactions could be further applied on 

membrane bioreactors to explore the uncertainties within current models. 

Moreover, detailed modelling of such reactors could be crucial for further 

development of new designs.  

• Modelling of sewer system ventilation and more robust particulate settling would 

be a valuable further extension of the proposed CFD model integrated with the 

biochemical model. The model could be extended to simulate the ventilation of 

sewer systems where the formed hydrogen sulfide produced in the liquid phase 

transfers to the sewer environment. Moreover, different segments of sewer system 

could be prone to high emission of hydrogen sulfide in the gas phase due to 
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higher turbulence and air velocity at the free surface of the water phase. In 

addition, settling of solids could be imperative in some segments of the sewer 

system. Therefore, more robust settling function of solids in sewers should be 

developed.  

• Modelling of nitrate dosing in sewer systems through experimental investigation 

should be performed to test nitrate dosing at different concentrations and rates. 

This experimental data could be used to develop more robust nitrate model. 

Moreover, to ensure the dynamic behaviour of the sewer system could be 

captured by the model, more dynamic flow or concentration of the sewage 

constituents should be generated and used in testing the model.  
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Appendices  

Appendix A: Supplementary information for Chapter 3 

Biochemical surface reactions implementation in CFD model 

ANSYS FLUENT CFD commercial software was used for the simulation of the flow 

field along with the biochemical conversions. The biochemical reactions that happen in 

the water phase are modelled using the technique described in the paper. However, a 

technique was developed for the reactions happen in the biofilm that is accumulated on 

the inner wall of the sewer pipes (surface reactions). User-Defined Scalars (UDS) in 

ANSYS FLUENT has a capability that enables us to define a general transport equation 

and to customize the different terms in the equations. This includes volumetric source 

term (as was done for the integration of the consumption/generation of different species 

in water phase) and the flux at the computational cell faces. User-defined flux was 

developed for the integration of the solids settling and the surface biofilm reactions. The 

advection term in the general transport equation is described as:  

 

  (A.1) 

where is a vector field that has a default of the multiplication of the velocity vector 

field and the density of the medium. However, it was customized to adopt the surface 

reactions. First, identification of the computational cell on the wall was carried out using 

a built-in macro in the software (shown in Fig. A.1). Then, artificial flux for each of the 

species that is involved in the surface reactions is defined with direction based on if this 

species is consumed or produced in reactions. The sign of the flux is assigned as positive 

in case of species consumption and vice versa.  

.


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Fig. A.1: Identification of the computational cells where surface reactions occur. 

Verification of this technique is conducted by comparing the results of the 

MATLAB/Simulink model for one CSTR with the CFD model with no-flow conditions 

and fictitious initial concentrations. A simple computational domain is created in the 

form a cube with six faces and volume of 1 m3 (shown in Fig. A.2). This results in area-

to-volume ratio of 6. Therefore, the area-to-volume ratio of the CSTR model is set to 6 as 

well.  
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Fig. A.2: The computational domain for the CFD model 

The time series of the different concentration resulting from the two models are plotted in 

Fig. A.3. An essentially prefect match is obtained since only the biochemical reactions 

are resposible for the species change in the two model (no flow conditions). The figure 

shows the predicted concentration of the fermentable substrate, VFA, sulphide and 

sulphate. The matching proves the correct coding of the customized source terms and 

fluxes (surface reactions).  
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Fig. A.3: Comparison between the results of the CFD model and the CSTR model with 

test case for verification of the biochemical model implementation in the water phase 

and biofilm. 
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Comparison between experimental and model results 

The experimental data is compared against the model predictions (using the two different 

calibrations used in this work) in Fig. A.4. These show good agreement for sCOD both in 

terms of the magnitude and the trend. The agreement for VFA and total sulfide is 

acceptable, showing the correct magnitude, but missing some aspects of the dynamic 

response. 

 

 

(a) 

 

(b) 
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(c) 

Fig. A.4: Comparison between the experimental results and the model results with the 

preliminary calibration and the minimum WSSE calibration results for (a)  soluble 

COD, (b) VFA, and (c) total sulfide 
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