2019

The Impact of Canadian School Food Programs on Children’s Nutrition and Health: A Systematic Review

Paige Colley
Western University

Bronia Myer
Western University

Jamie A. Seabrook
Brescia University, jsebro2@uwo.ca

Jason A. Gilliland
Western University, jgillila@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/healpub

Citation of this paper:
Colley, Paige; Myer, Bronia; Seabrook, Jamie A.; and Gilliland, Jason A., "The Impact of Canadian School Food Programs on Children’s Nutrition and Health: A Systematic Review" (2019). *Human Environments Analysis Lab (HEAL)*. 27.
https://ir.lib.uwo.ca/healpub/27
The Impact of Canadian School Food Programs on Children’s Nutrition and Health: A Systematic Review

PAIGE COLLEY, MSc; BRONIA MYER; JAMIE SEABROOK, PhD; JASON GILLILAND, PhD

*Health and Rehabilitation Sciences, Western University, London, ON; Medical Sciences and Psychology, Western University, London, ON; School of Food and Nutritional Sciences, Brescia University College at Western University, London, ON; Department of Paediatrics and Epidemiology & Biostatistics, Western University, London, ON

ABSTRACT

The quality of children’s diets has declined over the past few decades, giving rise to a variety of health-related consequences. In response to this trend, school food programs have become an increasingly effective method to support nutrition and lifelong healthy eating habits. This systematic review synthesizes current academic literature pertaining to school nutrition programs in Canada to identify existing interventions and their impacts on children’s nutritional knowledge, dietary behaviour, and food intake. The review was conducted through a search of the following databases: ERIC, Education Source, CINAHL, PubMed, SagePub, SCOPUS, EMBASE, and CBCA. Information extracted from the articles included the program objectives, intervention design and components, research evaluation, and primary outcomes. A total of 11 articles evaluating Canadian school nutrition programs were identified. The programs incorporated a variety of intervention components including policy, education, family and community involvement, and/or food provision. These multi-component interventions were positively associated with children’s development of nutrition knowledge, dietary behaviour changes, and intake of healthy foods; however, barriers associated with intervention duration, intensity, and availability of resources may have influenced the extent to which these programs impacted children’s diets and overall health.

(Can J Diet Pract Res. 2019;80:79–86)
(DOI: 10.3148/cjdpr-2018-037)
Published at dcjournal.ca on 15 November 2018

INTRODUCTION

Concerns about the quality of children’s diets have received considerable attention in recent decades. Many children are consuming foods of low-nutritional value, leading to dietary excesses and nutritional inadequacies [1]. Only 10% of Canadian youth are meeting the Canada’s Food Guide recommended intake of fruit and vegetable (F/V) servings [2]. Similar trends can be found across many food groups, with few children meeting basic nutrition standards [3].

Children with poor diets are prone to immediate and long-term health consequences [4]. Nearly one-third of Canadian children are overweight or obese [5], which increases the risk of developing type 2 diabetes, heart disease, and some forms of cancer [6–8]. Inadequate nutrition can also impact brain development, leading to a variety of psychosocial and behavioural problems [9–11]. It is therefore important to identify effective nutrition interventions that promote healthy eating and reduce the risk of debilitating health problems.

School food programs offer a promising method to support child nutrition and lifelong healthy eating habits. Students participating in school food programs demonstrate increased nutritional knowledge, preferences for healthy foods, and a higher intake of nutrient-dense foods [12, 13]. With increased access to healthy foods, children are less likely to consume non-nutritious foods [14]. Improved dietary behaviours can offset risk for health-related problems associated with poor eating patterns and nutritional deficiencies [15, 16].

RÉSUMÉ

(Rev can prat rech diétét. 2019;80:79–86)
(DOI: 10.3148/cjdpr-2018-037)
Publié au dcjournal.ca le 15 novembre 2018
Canada is the only nation among the G8 (i.e., the group of 8 highly industrialized nations, including France, Germany, Italy, Japan, Russia, the United Kingdom, and the United States), without a national school food program. In the absence of such a program, there are many regional and provincial food programs with different funding systems, intervention components, and delivery methods that vary greatly by region and school. A review of current research on school food programs is warranted to identify best practices and set a strong foundation for establishing a national program. Although reviews of school food programs in other countries exist, these programs may be context-driven and not necessarily replicable and transferable. Thus, an opportunity exists to examine school nutrition programming in Canada.

This systematic review synthesizes academic research on Canadian school nutrition programs by identifying existing interventions and their impacts on children’s nutrition. The PICO (Patient, Intervention, Comparison and Outcome) model [17] was applied to formulate and address the proposed research question: “How do Canadian elementary school nutrition programs impact children’s nutritional knowledge, dietary behaviour, and/or food intake?” Nutritional knowledge is broadly defined as concepts and processes relating to nutrition and health, including information about healthy eating, diet and disease prevention, nutritional value of foods, and awareness of dietary guidelines [18]. Dietary behaviours are often shaped by personal, familial, social, and physical environmental factors [19]. This review will identify dietary behaviour changes regarding food preferences, willingness to try new foods, self-efficacy, attitudes, and perceptions of healthy eating. Finally, direct measurements of food intake will be assessed, highlighting ways in which school nutrition programs influence children’s consumption patterns. The search aims to investigate elementary schools to better understand the influence of nutrition programming at an age when lifelong eating behaviours are being formed. A narrative description of the results will be conducted to incorporate the varied qualitative and quantitative study designs.

METHODS

This systematic review documented peer-reviewed literature focused on school food programs in Canada and synthesized children’s health outcomes. The search was limited to academic studies published after 1990, in accordance with the first school nutrition policy [20]. The search used in this review is current as of March 2017. In consultation with university librarians and academic experts in the field, 4 main concepts were developed to create a consistent and comprehensive search strategy: “geographical location” to identify Canadian articles, “program type” to reflect the specific nature of the interventions, “setting” to keep the scope of interventions within a school environment, and “initiative” to filter results away from policies, guidelines, and theoretical strategies.

The search strategy outlined in Supplementary Figure 1 was applied to 8 databases including: ERIC, Education Source, CINAHL, PubMed, SagePub, SCOPUS, EMBASE, and CBCA Education. Two reviewers independently assessed the inclusion and exclusion of peer-reviewed articles using the PICO search strategy [17]. All papers were required to meet the following criteria: (i) conducted in Canada, (ii) evaluated programs based in elementary schools, (iii) contained a program that offers food provision during the school day, (iv) contained a primary evaluation, assessment, or analysis of the program, and (v) reported a primary outcome that is related to children’s health (e.g., nutritional knowledge, dietary behaviours). Conversely, articles were excluded if they assessed a legislative policy or school strategy (e.g., a toolkit or guideline) rather than an actual food program. Any articles that were a summary of a program, did not contain a primary analysis, or failed to report a primary outcome were excluded. The reference lists of the included articles were also screened for additional studies.

The systematic review process followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines illustrated in Figure 1. After the articles were identified, data extraction included article reference, objectives, population, intervention design and components, research evaluation, and main outcomes (see Supplementary Table 1). Considering the varied study designs, we elected to use the Integrated Quality Criteria for the Review of Multiple Study designs (ICROMS) to assess paper quality (see Supplementary Table 2). ICROMS facilitates the critical appraisal of behavioural change intervention studies in the field of health [22]. It incorporates the assessment of multiple designs including randomized, controlled pre- and post-, interrupted time series, noncontrolled, cohort, and qualitative studies. For studies with cross-sectional designs not included in ICROMS, internal validity was evaluated using Strengthening the Reporting of Observational Studies in Epidemiology (see Supplementary Table 3) [22].

Using ICROMS [22], a study was given 2 points if the criteria were met, 0 points if they were not met, and 1 point for unclear assessment of criteria. The sum of the quality criterion was then totalled for each study to provide an overall quality score. A total score <60% was labelled high risk of bias or low reliability. Total scores between 60% and 80% were labelled medium risk of bias or medium reliability. Studies with total scores >80% were recorded as low risk of bias or high reliability. For studies included in STROBE (Strengthening The Reporting of Observational Studies in Epidemiology), a checklist of items was used to assess the quality of reporting. To capture all literature relevant to this review, we did not exclude studies based on the quality of evidence or reporting provided. Two authors independently assessed the methodological quality of each of the 11 articles and obtained a high correlation between the assessments.

Supplementary data are available with the article through the journal Web site at https://dcjournal.ca/doi/suppl/10.3148/cjdpr-2018-037.
The search strategy resulted in the retrieval of 11 articles, reporting results from 9 school-based nutrition programs (see Table 1). The school food programs were dispersed across Canada, with interventions in British Columbia (n = 1), Alberta (n = 2), Ontario (n = 4), Quebec (n = 1), and Nova Scotia (n = 1). Of the 9 programs identified, 4 interventions were offered in Indigenous communities, with the remaining 5 programs in both rural and urban elementary school settings. Program interventions often targeted disadvantaged or remote populations prone to food insecurity and nutrition deficiencies.

The selected articles included a variety of quantitative (n = 8), qualitative (n = 1), and mixed-methods (n = 2) studies. Eight articles included a pre- and post-intervention evaluation, and 4 studies utilized a control group. The number of child participants ranged from small-scale initiatives (min., n = 30) within a single school-based location to large-scale initiatives (max., n = 5200) that were province-wide (n = 282 schools). Of the studies assessed using ICROMS, all were found to be medium to low risk of bias (see Supplementary Table 2'). Studies appraised using STROBE indicated a high adherence to quality criterion recommendations (see Supplementary Table 3').

Intervention components

Intervention designs and components varied according to program objectives, populations, and settings. Most studies included multi-component interventions (n = 8), with 1 program offering only food provision. Recurring intervention components included implementation of policy, education, food provision, and/or family, peer and community involvement. Through multi-component designs, some programs (n = 5) incorporated healthy eating and nutrition policies [23, 24] and prohibited consumption of low-nutrient quality foods [25]. Most of the school interventions incorporated an education component (n = 8), which varied in intensity and duration. Passive educational methods included classroom activities and materials to promote healthy eating, information letters, messages in school newsletters and announcements, classroom discussions, and healthy meal planning. Some programs offered intensive educational approaches with regularly scheduled nutrition classes, classroom activities, cooking clubs, peer modeling, and health curriculum. A few programs (n = 5) also implemented education tied to the curriculum, one of which included a full-time school health facilitator to organize education programs and promote healthy eating [12]. All interventions (n = 9) incorporated food provision; however, this varied in quantity from taste-testing activities to daily administration of healthy snacks or meals. Parent, teacher, and community involvement included handouts, newsletters, presentations, classroom activities, take-home resources, workshops, and community feasts.

Impact on nutritional knowledge, dietary behaviours, and/or food intake

Several studies evaluated the impact of school food programs on children’s nutritional knowledge, dietary behaviours, and/or food intake. Of the included articles, 6 interventions evaluated changes in children’s nutritional knowledge. The results indicated increases in children’s nutritional knowledge (n = 4). Participants displayed improvement in dietary and health curriculum knowledge [25], specifically demonstrating a greater understanding of nutritional contents of foods, food transformation, and cooking procedures [26]. A few studies found increased knowledge of select food groups, including
<table>
<thead>
<tr>
<th>Program reference</th>
<th>Population</th>
<th>Intervention components</th>
<th>Reported outcomes</th>
</tr>
</thead>
</table>
| Gates et al. 2013 [23] | Children grades 6–8 (n = 10, Web-Q survey) and (n = 19, KSIQ survey) in 1 school in Fort Albany, Ontario | Policy; education; food provision; and family, peer, and community involvement (1 y) | • Significant improvement in knowledge and intentions regarding MMA intake
• Insufficient intake of recommended servings of MMA |
| Day et al. 2008 [28] | Children in grades 4 and 5 (n = 444) in 10 schools in British Columbia | Policy, education, food provision, and family and community involvement (12 weeks) | • Increase in F consumption, variety of F/V, and F/V tried
• No effects were found for typical daily F/V consumption; servings of V; willingness to try; knowledge, attitudes, and perceptions |
| Saksvig et al. 2005 [25] | Children grades 3–5 (n = 122) attending 1 school in Sandy Lake, Ontario | Policy; education; food provision; and family, peer, and community involvement (1 y) | • Increased dietary intention, preference, knowledge, self-efficacy, and meeting fibre intake recommendations
• Parent purchases included an increase in foods lower in fat, lower in sugar, and higher in fiber |
| Triador et al. 2015 [29]a | Children grades 1–6 (n = 76) at 1 school in Sandy Lake, Ontario | Education, food provision, and family and community involvement (11 mo) | • An increase in F/V preference
• Self-reported consumption of F/V at home did not change |
| Hanbazaza et al. 2015 [27]a | Children grades 1–6 (n = 66) at 1 school in Sandy Lake, Ontario | Education, food provision and family and community involvement (18 mo) | • Increased knowledge about F/V
• Improvement in short-term V preferences and long-term F preferences
• No change in F/V consumption at home |
| Gates et al. 2013 [31] | Children grades 6–8 at 2 schools in Kashechewan (n = 24), and Attawapiskat (n = 48), Ontario | Food provision (1 y) | • Short-term calcium intake increased in Kashechewan
• MMA and vitamin D increased in Attawapiskat
• Program induced lifestyle changes, i.e., better food choices |
| Bisset et al. 2008 [26] | Children grades 5 and 6 (n = 388), at 7 schools in Montreal, Quebec | Education, food provision, and family and community involvement (7 y) | • Greater knowledge of nutrition content, preparation, and cooking procedures
• No difference in knowledge of Canada’s Food Guide, local produce, or international cuisine
• Increased attitudes and experience with trying new or less-common foods |
| He et al. 2009 [13]b | Children grades 5–8 (n = 1277), from 26 schools across 7 Northern Ontario communities | Education and food provision (21 weeks) | • Higher F/V intake and preferences
• Moderate levels of self-efficacy and habits
• Change in preference scores from never tried to like
• Intervention II had unfavourable changes in self-efficacy and consumption of V
• Combined education component was more effective |
| He et al. 2012 [30]b | Children grades 5–8 (n = 139), from 11 schools in the Porcupine and Algoma regions, Ontario | Education; and food provision (2 y) | • Changed eating habits (more F/V at home and school), health and energy levels, ability to try new F/V
• Influenced parents’ F/V purchases |

(continued)
On the other hand, 3 studies reported no differences in knowledge following the intervention, including no significant changes in F/V knowledge [28] and similar levels of knowledge regarding daily F/V intake between intervention and control groups [13]. Although Bisset et al. [26] reported increases in children’s food knowledge, there were no differences in knowledge pertaining to Canada’s Food Guide, local produce, or international cuisine. The findings also indicated that intervention duration of a year or more was positively associated with increases in children’s nutritional knowledge.

Several studies (n = 7) evaluated the impact of school nutrition programs on children’s food preferences, willingness to try, self-efficacy, intentions, attitudes, and perceptions of healthy eating. Of these studies, all program interventions had a positive influence on children’s dietary behaviours. Not only did participants indicate an increased preference for high-nutrient dense foods, such as F/V [27, 29], but their attitudes and willingness to try a variety of new foods, particularly F/V, also increased [13, 26]. One study reported a shift in children’s preference from never having tried to liking food items [13].

Food consumption patterns and intake measurements were obtained across most of the Program interventions (n = 8). Among the studies evaluating food intake, over half of the programs (n = 6) reported increased consumption of healthy foods, including a higher intake of F/V [12, 13, 28] and M/A [31]. Significant changes in macronutrient consumption with increases in fiber [25], calcium, and vitamin D were observed from baseline to post-intervention, while Dey et al. [28] found no effect in F/V consumption.

DISCUSSION

Nearly all of the studies investigated programs with multi-component, including a combined use of policy, education, and food provision, which were found to be effective. To this point, Veugelers et al. [24] emphasized the value of integrative approaches that incorporate intensive and multidisciplinary components, to support child nutrition and lifelong healthy eating habits.

Table 1 (Continued).

<table>
<thead>
<tr>
<th>Program reference</th>
<th>Population</th>
<th>Intervention components</th>
<th>Reported outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veugelers et al. 2005 [24]</td>
<td>Children in grade 5 (n = 5200) at 282 schools across Nova Scotia</td>
<td>Policy, education, food provision, and family and community involvement (7 y)</td>
<td>• AVHPSP students exhibited healthier diets (higher consumption of F/V, lower fat intake, better diet quality)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Results were similar across schools with and without a nutrition program (except AVHPSP)</td>
</tr>
<tr>
<td>Fung et al. 2012 [12]</td>
<td>Children in grade 5 (n = 394) from 150 schools and 10 APPLE schools in Alberta</td>
<td>Policy, education, food provision, and family and community involvement (3 y)</td>
<td>• APPLE students had higher F/V consumption, lower caloric intakes, and increased overall diet quality</td>
</tr>
</tbody>
</table>

Note: For additional information see Supplementary Table 1. WEB-Q, Web-based Eating Behavior Questionnaire; KSIQ, Knowledge, Self-efficacy, and Intentions Questionnaire; MMA, milk and milk alternatives; F/V, fruit and vegetable; AVHPSP, Annapolis Valley Health Promoting Schools Project; APPLE, Alberta Project Promoting Active Living & Healthy Eating.

aTriador et al. [29] and Hanbazaza et al. [27] are 2 studies evaluating the same intervention.

bHe et al. [13] and He et al. [30] are 2 studies evaluating the same intervention.
Likewise, Gates et al. [31] evaluated the impact of a program offering food provision only, and discussed the benefits of extending the evaluation and integrating other elements to enhance the program. Interventions that were effective in changing dietary behaviour were ones that employed a comprehensive approach [23, 32]. The significance of these outcomes could be further improved if intervention components were tailored to school and community needs [23]. Interventions may benefit from high exposure involving community leadership, school nutrition policies, parental engagement, and cultural adaptations relevant to the population [23, 25].

Examining the interventions for effects on children’s nutritional knowledge, dietary behaviour, and/or food intake revealed positive outcomes. Several studies reported increased nutritional knowledge associated with interventions, noting outcomes pertaining to dietary and health curriculum knowledge, nutritional contents of food, food preparation, and cooking procedures [23, 25–27]. These findings are similar to existing literature, highlighting the benefits of school nutrition programs in increasing children’s nutritional knowledge [33]. Moreover, school-based interventions that include an education component supplementary to the curriculum (i.e., nutrition classes, cooking clubs, and healthy eating resources) can be particularly effective in enhancing children’s nutritional knowledge [23, 25, 34].

Outcomes related to intervention impacts on children’s dietary behaviours were considerable. Specific results included increased preference for high-nutrient foods, positive attitudes and willingness to try new foods, enhanced likability, shifts in dietary self-efficacy, and improved eating habits [26, 27, 29, 30]. These dietary changes may be attributed to a variety of program components. Increased access to healthy food through provisional practices was found to influence food preferences and liking new foods [13, 23, 29], and F/V tasting activities were a highly effective method for enhancing food preferences [13, 28, 29]. Increased preferences are associated with long-term dietary behaviour changes into adulthood [29]. Additionally, interventions documented community and familial behavioural changes. Gates et al. [31] discussed community changes, including stocking grocery stores with similar food accessed through the program. Parents also displayed changes in purchasing behaviours by buying healthier food [25]. With increased access and promotion of healthier food options among parents, these changes can ultimately influence children’s food preferences and dietary behaviours [13, 27]. A combination of personal and environmental factors associated with the intervention, such as knowledge of healthy foods and food provision, were discussed as being primary factors for increases in children’s food preferences [29].

Children’s increased consumption of healthy foods was another positive outcome resulting from the school food interventions. In 2 studies, participants demonstrated higher intake of F/V, M/A, and micronutrients and better overall diet quality [25, 31]. Offering daily sources of F/V was associated with increased dietary intake and offsets nutritional deficiencies leading to health risks and disease [25, 27]. This finding coincides with research reporting distribution of F/V as a practical strategy to increase children’s intake [35]. Food provision in partnership with education demonstrated favourable intervention effects on F/V consumption [13].

Although the studies reviewed presented many ways in which school food programs impacted children’s nutrition, recurrent barriers and challenges may have influenced the extent to which the programs were effective. Barriers concerning intervention duration, intensity, and availability of resources were frequently discussed within the articles. Some studies discussed challenges pertaining to intervention length and inhibited outcomes of dietary behavioural changes [29, 31]. Gates et al. [23] acknowledged that the intervention education component (2.5 hours) was insufficient to invoke dietary behaviour changes. It was recommended to increase intervention duration to 1 year or more to produce significant effects and sustainable change [28, 36].

Many studies discussed the low intensity of intervention methods as a frequent barrier to influencing children’s nutritional knowledge acquisition and consumption patterns [13, 23]. The delivery method of some programs was regularly inconsistent and sporadic, often due to limited capacity to deliver produce in remote regions or lack of support [13]. Providing consistent program provision is suggested to enhance operation and implementation [28]. Within both food provision and education components, studies reported a lack of repetition which is necessary for behaviour changes and knowledge acquisition [26]. Reiteration of nutritional topics and information, and repeat exposure to healthy food items is recommended to invoke dietary change [26, 28]. In relation to intervention parent and community components, parental involvement was often limited and passive [13, 23]. Active parental and community involvement may be an effective method to model healthy eating behaviours and promote consumption of nutritious foods [23].

Financial and human support were mentioned as a recurring challenge amongst program interventions [28, 31]. Studies reported a lack of available and affordable nutritious food at school and home, impacting program sustainability and dietary behavioural outcomes [23, 27, 29]. Furthermore, barriers related to staffing, equipment, resources, and other logistical components were acknowledged as constraints to implementation [28, 31]. In response to these barriers, it was recommended to increase human support, resources, and access to affordable healthy food items [28, 29]. Although the studies presented a variety of intervention barriers, the proposed solutions offer practical strategies to enhance the reported impact of the school-nutrition programs discussed within this review.

Limitations

This review is not without limitations. Specific terms, such as gardening and cooking, were not included within the search.
RELEVANCE TO PRACTICE
The multi-component school nutrition programs identified in this systematic review positively influenced children’s nutritional knowledge, dietary behaviours, and food intake. The search also identified, however, that implementation barriers associated with time, intensity, and resources limited program effectiveness. Dietitians and school nutrition programming stakeholders are encouraged to establish universal implementation guidelines to support efficient and effective program delivery [37]. These guidelines may include recommendations on adopting a school nutrition policy, providing comprehensive nutrition education, integrating parental and community involvement, and implementing food services. Supplementing these guidelines, additional research using rigorous experimental study designs with pre- and post-evaluations is warranted to investigate the success of these strategies in practice. Current research findings will aid in establishing an effective and sustainable nationwide school food program.

Financial support: PC received graduate trainee support from the Children’s Health Research Institute through funding from the Children’s Health Foundation. No other funding or financial support.

Conflict of interest: The authors declare that they have no competing interests.

References

