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Abstract 

Combined sewer overflows (CSOs) contain a highly variable, wide range of contaminants, 

both in particulate and soluble form, making conventional water treatment processes 

unable to offer adequate public health protection. Moreover, the disinfection of combined 

sewer overflow discharges is necessary to reduce the amount of microorganisms 

discharged into urban waters. To overcome CSO impacts, new and adaptable 

multifunctional treatment schemes need to be developed. To date, to the best of our 

knowledge, no study proposed an efficient and cost-competitive treatment able to remove 

a broad spectrum of CSO pollutants. This research demonstrated that a chemical pre-

treatment, followed by micro-sieve filtration and UV disinfection is an efficient and cost-

competitive treatment process able to simultaneously remove typical combined sewer 

overflow pollutants (suspended solids, chemical oxygen depends, turbidity, and fecal 

bacteria) in conjunction with nutrient (nitrogen and phosphorus). The removal of 

particulates, as well as dissolved nitrogen and phosphorus, was achieved by first adsorbing 

soluble pollutants on zeolite and powdered activated carbon, and subsequently applying 

filtration carried out by polymer-enhanced microsieving. An optimal treatment condition, 

consisting of 1.1 mg/L of the cationic polymer, 250 mg/L of zeolite, and 5 mg/L of 

powdered activated carbon, was identified by Pareto analysis. Under this condition, 

expected performance would be reductions of 72%, 56%, 35%, and 75% for turbidity, total 

Kjeldahl nitrogen, total chemical oxygen demand, and total phosphorous, respectively. 

Moreover, the efficiency of UV disinfection with and without chemical pre-treatment was 

investigated and a microbial inactivation model able to predicts the inactivation of fecal 
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coliform (FC) bacteria was developed. Experimental results reported that 4-log removal of 

FC was achieved at fluence 10 mJ/cm2 when the UV disinfection was enhanced by 

chemical pre-treatment and microsieving filtration using a 32 µm mesh size. Under these 

conditions, the TSS removal achieved was 73% and the UVT increase of 32%.  

The findings presented in this thesis demonstrate the possibility to quickly and effectively 

treat a large amount of wastewater flow by reducing equipment and operating costs, 

providing municipalities with viable and low footprint treatment options where the issues 

of combined sewer overflow and nutrient management are simultaneously tackled. 

Summary for Lay Audience 

Combined sewer overflows (CSOs) contain a highly variable, wide range of contaminants, 

making conventional water treatment processes unable to offer adequate public health 

protection. Treating combined sewer overflow discharges is necessary to reduce the 

amount of pollutants discharged into rivers, lakes, or seas. To overcome CSO impacts, new 

and adaptable multifunctional treatment schemes need to be developed. To date, to the best 

of our knowledge, no study proposed an efficient and cost-competitive treatment able to 

remove a broad spectrum of CSO pollutants. This research demonstrated that a chemical 

pre-treatment, followed by micro-sieve filtration and UV disinfection is an efficient and 

cost-competitive treatment process able to simultaneously remove combined sewer 

overflow pollutants (i.e. suspended solids, chemical oxygen depends, turbidity, and fecal 

bacteria) in conjunction with nutrient (nitrogen and phosphorus). The removal of 

particulates, as well as dissolved nitrogen and phosphorus, was achieved by first adsorbing 

soluble pollutants on zeolite and powdered activated carbon, and subsequently applying 

filtration carried out by polymer-enhanced microsieving. An optimal treatment condition, 
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consisting of 1.1 mg/L of the cationic polymer, 250 mg/L of zeolite, and 5 mg/L of 

powdered activated carbon, was identified by Pareto analysis. Under this condition, 

expected performance would be reductions of 72%, 56%, 35%, and 75% for turbidity, total 

Kjeldahl nitrogen, total chemical oxygen demand, and total phosphorous, respectively. 

Moreover, the efficiency of UV disinfection with and without chemical pre-treatment was 

investigated and a microbial inactivation model able to predicts the inactivation of fecal 

coliform (FC) bacteria was developed. Experimental results reported that 4-log removal of 

FC was achieved at fluence 10 mJ/cm2 when the UV disinfection was enhanced by 

chemical pre-treatment and microsieving filtration using a 32 µm mesh size. Under these 

conditions, the TSS removal achieved was 73% and the UVT increase of 32%.  

The findings presented in this thesis demonstrate the possibility to quickly and effectively 

treat a large amount of wastewater flow by reducing equipment and operating costs, 

providing municipalities with viable and low footprint treatment options where the issues 

of combined sewer overflow and nutrient management are simultaneously tackled. 

Keywords 

Coagulation-flocculation; Combined sewer overflow; Micro-sieving; Pareto analysis; 

Response surface methodology; Wastewater treatment; UV disinfection, inactivation 

kinetic model, stormwater management model. 
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Chapter 1  

1 Introduction 

Due to urbanization and population growth, municipalities began to install sewer systems 

in the middle of 1800, having as a main goal to improve the urban sanitary condition and 

public health. Today, sewers are a fundamental part of the urban water infrastructure. 

Two types of sewer systems are commonly used, such as: 

• Combined sewer systems (CSSs), i.e. a sewage collection system characterized by 

only one pipe designed to collect wastewater and stormwater. 

• Separate sewer systems (SSSs), i.e. a sewage collection system characterized by 

two separate systems of pipes: one for wastewater management and one for 

stormwater management. 

At the end of the 19th century, CSSs appeared to be the most efficient way for the collection 

and conveyance of stormwater and wastewater (EPA, 2004). However, management of 

Combined Sewer Overflow (CSO) has become a main concern in the last years because of 

combined sewer network limitation and/or to the overcoming of maximum Wastewater 

Treatment Plants (WWTPs) capacity during wet weather periods. Specifically, in the case 

of CSSs, the additional flow associated with strong rainfall events may lead to situations 

where sewer capacity is exceeded, and an overflow occurs (Zukovs and Marsalek, 2004). 

When this happens, water bypasses the WWTP and untreated water is discharged directly 

into the receiving body (e.g. lakes, rivers, sea). Visible matter, infectious (pathogenic) 

bacteria and viruses, oxygen-demanding substances, nutrients, toxicants (e.g., heavy 

metals, pesticides, and petroleum hydrocarbons), and fecal bacteria are discharged into the 
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urban waters (Metcalf & Eddy, 2014). As such, sewage discharges coming from CSSs are 

considered a source of pathogens, organic and inorganic pollutants, and solids. As a result, 

several public health risks could be induced by sewage overflow discharges; the 

Environmental Protection Agency (EPA) has estimated that, per year, between 3.448 and 

5.576 illnesses are associated with untreated wastewater discharge (EPA, 2004). 

1.1 Rationale 

To date, integrated treatment strategies to effectively remediate a wide spectrum of CSO 

contaminants are limited. In several cities (Maruejouls et al., 2011; Nascimento et al., 

1999), the most common approach to reduce pollutant loads from CSO is to develop 

storage facilities or retention treatment basins to reduce the hydraulic peak flow (Gasperi 

et al., 2012a; Li et al., 2003). Nevertheless, CSOs cannot be entirely controlled only by 

reducing the overflow loadings by storage facilities or retention treatment basins but also 

by developing remedial measures to achieve improvement of water quality in streams 

(EPA, 2004). Also, since CSOs are caused by wet weather conditions and occur while 

storm water and other nonpoint source pollutant loads are delivered to surface water, it is 

hard to directly identify specific CSO pollutant sources. Then, there is a need to effectively 

treat CSOs by new treatment approaches able to remove different types of pollutants in the 

same process. 

This research aims to develop an integrated treatment process able to simultaneously 

remove solids, organic matters, nutrients, and microorganism loads and to assess its 

performance at the urban scale.  

Following are the questions which were attempted in this study: 
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• To what extent an improvement of water quality attainable via technology 

deployment at catchment scale would translate into environmental and public 

health benefits? 

• What is the return of investment for a municipality that has invested in CSO 

treatment? 

This study could likely evolve into a supporting tool for municipalities that need to invest 

in CSO treatment strategies and management.   
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1.2 Thesis Organization 

This Ph.D. thesis is written in the article-integrated format specified by the School of Graduate 

and Postdoctoral Studies of The University of Western Ontario. The contents of the six chapters 

included in this thesis are presented below. 

Chapter 1 provides a brief introduction related to the background and motivation for 

developing combined sewer overflow treatment.  

Chapter 2 provides a comprehensive literature review of different treatment techniques used 

to treat combined sewer overflow. The review also highlights the advantages and disadvantages 

of existing combined sewer overflow treatments. The research objectives of the thesis are 

also included in Chapter 2. 

Chapter 3 is a research article entitled “A microsieve-based filtration process for 

combined sewer overflow treatment with nutrient control: Modeling and experimental 

studies”. The objective of this work was to assess the effects of the various treatment 

variables, i.e. cationic polymer, zeolite, powder activated carbon, and microsieve size, on 

the removal of typical combined sewer overflow pollutants (suspended solids, chemical 

oxygen depends, turbidity) in conjunction with nutrient (nitrogen and phosphorus). 

Additionally, an optimization study was carried out to identify the optimal process 

conditions. 

Chapter 4, Chapter 5, and Chapter 6 are part of a research article entitled “Low-fluence 

UV disinfection for combined sewer overflow treatment”. In Chapter 4, the treatment 

developed in chapter 3 was implemented by adding the UV disinfection process as the final 

step of the treatment train. In this study, the efficiency of UV disinfection with and without 
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pre-treatment was assessed on the removal of TSS, UVT, and fecal coliform inactivation. 

The inactivation kinetic model was to estimate the six kinetic parameters controlling the 

Fecal coliform inactivation process. In Chapter 5, the CSO treatment developed was 

compared with existing CSO treatments reported in the literature. In Chapter 6, the 

developed CSO treatment was simulated by using the stormwater management model 

(SWMM) to assess, at the urban scale, the performance of the treatment in restoring the 

water balance of the receiving water. Cavendish area in London (ON) was used as a study 

area. 

Chapter 7 includes the main conclusions of the thesis along with study limitations and 

recommendations for future work. 
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Chapter 2  

2 Literature Review 

2.1 Combined sewer overflows (CSOs) 

A combined sewer system (CSS) collects rainwater runoff, domestic sewage, and industrial 

wastewater in a single pipe (Diaz-Fierros et al., 2002; EPA, 1994; Scherrenberg, 2006). 

Under normal conditions, CSS transports wastewater to a wastewater treatment plant 

(WWTP) for treatment. During a heavy rainfall events, the volume of wastewater into the 

sewer network can increase to five to ten times (Field, 1990). Under these conditions, the 

capacity of a sewer system can be reached, and an overflow occurs (Madoux-Humery et 

al., 2016). When this occurs, untreated stormwater and wastewater are discharged directly 

to nearby streams, rivers, and other water bodies. 

 

Figure 2-1: Combined sewer overflow. Image courtesy of 

www.CivicGardenCenter.org 
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2.2 Impacts of CSOs 

2.2.1 Physical-chemical and Microbial CSO characteristics 

Combined sewer overflows (CSOs) carries a mixture of stormwater, untreated human and 

industrial waste, toxic materials, and debris. When an overflow occurs, visible matter, 

infectious (pathogenic) bacteria, and viruses, oxygen-demanding substances, nutrients, 

toxicants (e.g., heavy metals, pesticides, and petroleum hydrocarbons), and fecal bacteria 

are discharged into the urban waters (Becouze-Lareure et al., 2016; EPA, 1994; Gasperi et 

al., 2008; Iannuzzi et al., 1997; Launay et al., 2016; Weyrauch et al., 2010). The EPA 

Report to Congress on the Impacts and Control of CSOs and SSOs (EPA, 2004) reported 

that pollutants from CSOs can potentially impact four designated water uses, i.e. aquatic 

life support, drinking water supply, fish consumption, and recreational water. 

Total Suspended Solids (TSS), Chemical oxygen demand (COD), 5-day Biochemical 

Oxygen Demand (BOD5), Ammonium (NH4), total Phosphorus (Ptot), and fecal bacteria 

(E.coli and Enterococci) concentrations were considered as basic parameters of CSOs test 

to assess the overflow impacts on the receiving water (Gasperi et al., 2008; Hajj-Mohamad 

et al., 2014; Launay et al., 2016; Servais et al., 1999). Sewer deposit resuspension, mainly 

in a particulate form (>70%), is the primary contributor for TSS, COD, and BOD5. Eroded 

particles are highly organic and biodegradable with TSS values around 50-80% (Ahyerre 

et al., 2000; Gasperi et al., 2010, 2008; Gupta and Saul, 1996; Madoux-Humery et al., 

2013; Riechel et al., 2016; Soonthornnonda and Christensen, 2008). Ammonium occurs in 

higher concentrations because it mainly comes from urine and feces in the wastewater 

portion of CSO, as well as from residues of food production or slaughterhouse effluents 

(Degree, 2013; Tondera et al., 2018). Contamination from fecal bacteria occurs along with 
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solid matter (attached) and wastewater (Jalliffier-Verne et al., 2016). CSOs showed to 

increase fecal bacteria in the receiving waters by four orders-of-magnitude (Smith and 

Perdek, 2004) and it remains high during the whole rainfall event (Pongmala et al., 2015; 

Sztruhár et al., 2002).   

2.2.2 Factors affecting the CSOs discharges 

In-sewer flow is characterized by Dry Weather Flow (DWF) and Wet Weather Flow 

(WWF). DWF includes Base Wastewater Flow (BWF) and Ground Wastewater Infiltration 

(GWI). BWF is the residential, commercial, institutional, and industrial flow, collected 

from the sanitary sewer system and treated to the wastewater treatment plant (WWTP). 

GWI is the groundwater infiltration that enters the collection system through cracked pipes 

or deteriorated manholes when the ground surface is extremely saturated  (EPA, 2017). 

Rainfall Derived Infiltration/Inflow (RDII) is added to GWI and BWF during WWF. 

Rainfall inflow refers to the water that enters the sanitary sewer system through direct 

connections (e.g., roof and stormwater cross-connection); rainfall infiltration refers to the 

water that filters through the soil before entering the sanitary sewer system through 

damaged pipe sections, deteriorated manholes, or connected foundation drain. RDII is the 

major component of peak wastewater flows during wet weather and it is typically 

responsible for overflows (Muleta and Boulos, 2008). CSO impact management requires a 

comprehensive knowledge of natural and anthropogenic factors: rainfall variability, land 

use, implementation of human infrastructures, different agricultural practices, and 

agroforestry species or deforestation (Im et al., 2009; Nasrin et al., 2013). Each one of these 

factors can affect the CSO discharge resulting in different CSO impacts in terms of 

pollutant loads and flowrate, which are ultimately dependent on time-variability and 
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spatial-variability. Several studies (Chebbo et al., 2001; Gasperi et al., 2010; Gromaire et 

al., 2001) showed that the peak concentration of pollutants is observed during the first 30 

minutes of overflow. During this time, solid matter concentration is higher because of in-

sewer phenomenon processes, i.e. resuspension/erosion of the sewer deposits. The spatial-

variability impacts are associated with the urban growth, and the consequent rapidly 

increasing of impervious areas. Impervious areas lead to an increase of hardly identified 

non-point sources that carry various pollutants from urban runoff into the sewer network 

(Acharyaa et al., 2010; Kim et al., 2014; Tsihrintzis and Hamid, 1998). Kim et al. 

investigated CSO pollutant loads concerning different land-uses (Kim et al., 2014). The 

results of this analysis showed that runoff characteristics of non-point pollutants are 

different and site-specific; therefore, each CSO treatment should meet specific watershed 

characteristics. Additionally, considering the overflow impact variability, an effective 

water quality investigation is necessary to characterize the CSO discharges in terms of 

pollutant loads.  

2.3 Regulatory contest for CSOs 

Under the Clean Water Act’s National Pollutant Discharge Elimination System (NPDES), 

The U.S. Environmental Protection Agency (EPA) regulates discharges of pollutants from 

municipal and industrial collection systems. All municipalities and facilities must obtain a 

permit to discharge a pollutant into waterways. Without a permit, the discharge is 

considered unlawful.  

To address CSOs under the NPDES permitting program, EPA developed a CSO control 

policy. The policy contains the following fundamental principles to ensure that CSO 

controls are cost-effective and meet local environmental objectives (EPA, 1994): 
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• Clear levels of control to meet health and environmental objectives. 

• Flexibility to consider the site-specific nature of CSOs and find the most cost-

effective way to control them. 

• Phased implementation of CSO controls to accommodate a community's financial 

capability. 

• Review and revision of water quality standards during the development of CSO 

control plans to reflect the site-specific wet weather impacts of CSOs. 

In order to facilitate the implementation of CSO control policy, EPA published nine 

minimum controls (NMC) (EPA, 2004). The NMCs are as follows: 

1. Proper operation and regular maintenance programs for the sewer system and CSO 

outfalls 

2. Maximum use of the collection system for storage 

3. Review and modification of pretreatment requirements to ensure that CSO impacts 

are minimized 

4. Maximization of flow to the POTW for treatment 

5. Elimination of CSOs during dry weather 

6. Control of solid and floatable materials in CSOs 

7. Pollution prevention programs to reduce containments in CSOs 

8. Public notification to ensure that the public receives adequate notification of CSO 

occurrences and CSO impacts 

9. Monitoring to effectively characterize CSO impacts and the efficacy of CSO 

controls. 
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In addition to implementing the NMC, municipalities are required to develop a Long-Term 

Control Plan (LTCP) which should include: 

• Characterization, monitoring, and modeling of the CSS 

• Public participation  

• Consideration of sensitive areas 

• Evaluation of alternatives 

• Cost/performance considerations 

• Operational plan  

• Maximization of treatment at the POTW treatment plant 

• Implementation schedule 

• Post-construction compliance monitoring 

In Canada, the Ontario Ministry of Environment (MOE) published specific guidelines 

about CSO control requirements, the most relevant being the Procedures F-5-5. The main 

goals of the guidelines are 1) to eliminate the occurrence of dry weather overflows; 2) to 

minimize the impacts on human health, environment, and aquatic life resulting from CSOs; 

and 3) to achieve as a minimum compliance with body contact recreational water quality 

objectives. Moreover, the Procedure F-5-5 requires a minimum of 50 % of total suspended 

solids (TSS) removal and 30 % of five-day Biochemical Oxygen Demand (BOD5) removal 

prior to discharge.  To meet the Procedure F-5-5 goals for CSO control, municipalities are 

required to adopt a Pollution Prevention and Control Plan (PPCP) in order to define the 

nature and cause of pollution problems and establishes remedial measures to overcome 

them. 
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2.4 Best available processes and technologies 

Based on the literature, the main pollutants found in CSO are classified according to their 

effects on the following categories of contaminant loads: (a) oxygen demand (BOD and 

COD), (b) nutrients (N and P), (c) toxic substances (NH3, heavy metals, 

microcontaminants), (d) hygiene (fecal bacteria), and (e) physical factors (suspended 

solids) (Diaz-Fierros et al., 2002; Gasperi et al., 2008; Hajj-Mohamad et al., 2014; Launay 

et al., 2016; Servais et al., 1999). However, most pollutants have a strong affinity for 

suspended solids (Ahyerre et al., 2000), therefore, the removal of particle matters will very 

often remove many of the other pollutants found in urban stormwater (Li et al., 2003). In 

the last decade, different treatment practices, i.e. primary treatment, chemically enhanced 

primary treatment, advanced treatment, and disinfection treatment have been considered 

and investigated to reduce the CSO impacts. Gasperi et al. tested a 

coagulation/flocculation/clarification processes to treat CSO water achieving about 80% 

of TSS removal, between 40-70% of BOD5, but no removal for ammonium (Gasperi et al., 

2012a). Averill et al. compared the efficiency of solid/liquid separation process, with and 

without chemical coagulants, followed by UV disinfection (Averill et al., 1997). The 

treatment involving chemical coagulants showed a better TSS removal (50% of TSS 

removal) which allowed to obtain a fecal coliform concentration of fewer than 100 counts 

per 100 mL by UV disinfection. However, to date, no study proposed an efficient and cost-

competitive treatment able to simultaneously remove solids, organic matters, nutrients, and 

microorganism loads. 
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2.4.1 Primary treatment techniques 

Solids and organic matters are removed by primary treatment (Metcalf & Eddy, 2014). 

Particulate matters are removed by physical treatments involving solid-liquid separation 

and the typical physical treatment removal efficiency is around 70% for suspended solids 

(Bridoux et al., 1998; Delporte et al., 1995; Plum et al., 1998). The main primary treatment 

techniques applied for CSO treatment are 1) wetlands, 2) storage tanks, 3) settling tanks, 

and 4) coarse screen. 

2.4.1.1 Wetlands 

Wetlands are engineered systems that use natural processes involving wetland vegetation, 

soils, and organism to treat wastewater (Kadlec and Wallace, 2008; Scherrenberg, 2006). 

For CSO treatment, the general and most used wetlands configuration is characterized by 

vertical flow soil filters with a detention basin on top of the filter layer. A throttle in the 

outlet structure is installed to control filtration rate and detention time and the filter is 

completely drained and emptied after every CSO event to guarantee aeration for aerobic 

degradation within the filter layer (Uhl and Dittmer, 2005). Typical treatment operational 

performance for solids and organic matter removal is 85–99% (Masi et al., 2017; Scholz 

and Xu, 2002; Tao et al., 2014; Uhl and Dittmer, 2005). 

The main advantages of using wetlands treatment are related to its cost/efficiency and its 

low maintenance (Tao et al., 2014). On the other hand, treatment of CSO using wetlands 

carry numerous disadvantages, for example, it requires a large area, cannot support long 

dry weather periods, and it is not able to remove soluble organic matters (Scherrenberg, 

2006). 
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2.4.1.2 Storage and settling tanks 

Storage tanks are built to provide extra storage in the sewer system (EPA, 1999a). Flow is 

stored during the rainfall event and it is emptied at the end of the event by pumping water 

into the sewer system (Scherrenberg, 2006). Storage tanks are mainly used as quantity 

control in order to reduce the flow into the sewer system (EPA, 2007a). Settling tanks are 

used to remove solids by settling, usually enhanced by coagulation and flocculation process 

(De Cock et al., 1999). Typical TSS and BOD5 removal are between 50-70% and 25-40%, 

respectively (Metcalf & Eddy, 2003). 

Storage and settling tanks can survive for a long period without feed water and have low 

maintenance. However, CSO is usually characterized by a large amount of flow discharged 

which usually requires bigger tanks to avoid tanks overflow. Large tanks require a large 

area to be installed which leads to high construction and material costs. 

2.4.1.3 Coarse screens  

Coarse screens are bares located at the overflow pipe to prevent solids from entering the 

overflow pipe (EPA, 2007a, 1993). Coarse screens can get clogged due to large amount of 

solids and floating material transported during the overflow. For this reason, bares need to 

be cleaned after each overflow resulting in high maintenance costs (Scherrenberg, 2006). 

2.4.2 Chemically enhanced primary treatment  

In chemically enhanced primary treatment, pollutants are removed by primary treatment 

techniques enhanced by the use of coagulants and flocculants. Common coagulants used 

in the chemically enhanced primary treatment for CSO include ferric chloride, alum, and 

polymers (Chhetri et al., 2016; El Samrani et al., 2008; He et al., 2016; Li et al., 2004; 
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Zahrim et al., 2011). By chemically enhanced primary treatment, the removal efficiency 

achieved is ranged between 80-90% for suspended solids, and 35-75% for COD removal 

depending on the water quality and type of coagulants and/or flocculants used (Bourke, 

2000; Bridoux et al., 1998; Delporte et al., 1995; Plum et al., 1998; Shewa and Dagnew, 

2020). Despite the high pollutant removal achievable, chemically enhanced primary 

treatment has its disadvantages, for example, the high amount of coagulant doses needed, 

and the large quantity of sludge produced. 

2.4.3 Advanced treatment techniques 

Advanced treatments are used to enhance the removal of suspended solids and organic 

matter when suspended solids and organic matter are not effectively removed by primary 

treatment techniques (Metcalf & Eddy, 2014). Most of the time, these treatment techniques 

need an additional process, the adsorption, to remove nutrients and micro-pollutants (Liao 

et al., 2015; Scherrenberg, 2006). For CSO treatment, the main advanced treatment 

techniques identified are 1) Hydrodynamic vortex separation, 2) lamella clarification, 3) 

Chemically enhanced high rate sedimentation, and 4) membrane filtrations. 

2.4.3.1 Hydrodynamic vortex separation 

The hydrodynamic vortex separation systems are self-inducing high rate rotary flow 

devices designed for the removal of solid materials. The flow containing solids enters in 

tangential direction into a cylindrical vessel; the velocity of water moves the solids towards 

the vortex creating a swirling motion and they will settle down by gravity. The base of the 

vortex separator is characterized by a slope to sweep the solids in a central drain (Andoh 

et al., 2002; Faram et al., 2004; Scherrenberg, 2006). It is impossible to estimates the 

efficiency of the hydrodynamic vortex separation since it depends on several variables such 
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as, rainfall characteristics, the particle size of solids, and settling velocities (Andoh and 

Saul, 2003; Boner et al., 1995). 

2.4.3.2 Lamella clarification 

Lamella clarification systems are advanced settling apparatus with storage usually 

enhanced by the use of coagulant to increase particle removal. By lamella settler, solids 

will settle on the lamella plate and will fall forming sludge. Sludge will be collected into 

the sludge hopper and subsequently pumped out (Scherrenberg, 2006). The main advantage 

of lamella clarification is the system footprint; indeed, lamella clarification requires only 

one-third of the area used by storage and settling tanks (Fuchs et al., 2014; Takayanagi et 

al., 1997). Previous investigations on the lamella clarification efficiency reported a 

suspended solids removal ranged between 50%-90% (Daligault et al., 1999). 

2.4.3.3 Chemically enhanced high rate sedimentation 

Chemically enhanced high rate sedimentation is a Physico-chemical treatment where 

coagulation/flocculation process is employed to form dense flocs with high settling 

velocity (Scherrenberg, 2006). Actiflo and DensaDeg are the two commercial technologies 

used for CSO treatment. Actiflo is a compact process that operates with microsand. It 

combines chemical precipitation and lamella settling involving weighted settling. A 

coagulant is injected to untreated CSO water before entering the coagulation tank. In the 

coagulation tank, solids are destabilized and moved into the injection tank where polymer 

and microsand are added allowing the formation of large and heavy flocs. Because of their 

weight, the flocs can be easily removed by sedimentation. After this stage the water enters 

the settling zone with lamella while microsand containing sludge is treated with a 

hydrocyclone; this step will allow microsand to separate from sludge and the microsand 
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will be reintroduced into the injection tank (EPA, 2003; Plum et al., 1998; Scherrenberg, 

2006). The typical removal efficiency of Actiflo system was ranged between 70-95%, 60-

85%, and 50-75% for TSS, COD, and BOD5, respectively (EPA, 2003; Jolis and Ahmad, 

2004) 

DensaDeg is a three-components system characterized by coagulation, flocculation, and 

clarification unit (EPA, 2003). The CSO water enters the first tank where grit removal takes 

place, water is aerated, and a coagulant is injected. Then, water will flow to the second 

tank. In the second tank, a flocculant and sludge from the clarifier tank are added and the 

flocculation process is promoted by turbines installed in the chamber for mixing. This 

process will increase contact between the solids and recycled sludge forming denser flocs. 

The flocculated stream enters the third chamber, the clarifier. Here, solids will settle, and 

sludge is thickened and recirculated into the flocculation unit tank (EPA, 2003; 

Scherrenberg, 2006). Typical removal efficiency of DensaDeg system was ranged between 

80-90%, 45-60% and 40-63% for TSS, COD, and BOD5, respectively (EPA, 2003; Frank 

et al., 2006) 

Both Actiflo and DensaDeg have a start-up time ranged between 10 and 30 minutes. 

Despite the high pollutant removal achievable, the long start-up time makes Actiflo and 

DensaDeg unsuitable to treat the first flush of an overflow (EPA, 2003; Jolis and Ahmad, 

2004). 

2.4.4 Disinfection treatment techniques 

Disinfection is required to reduce the amount of bacteria and pathogenic microorganisms, 

which can be dangerous for public health (Metcalf & Eddy, 2014). CSOs are recognized 
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as a primary source of fecal bacteria. The main disinfection treatment techniques for CSO 

treatment reported by the literature are 1) chlorination, 2) ozonation, 3) peracetic and 

performic acid and 4) UV irradiation. 

2.4.4.1 Chlorination 

Chlorine is the most used disinfectant techniques. In CSO water with a small amount of 

solids, a low amount of chlorine is enough to achieve a high level of pathogen inactivation 

(EPA, 1999b). However, because of the high flowrates and the high solids contents 

associated with a CSO discharge, an effective CSO disinfection by chlorine requires high 

chlorine doses resulting in a high level of toxicity by-products (EPA, 1999b; Watson et al., 

2012; Wojtenko et al., 2002). 

2.4.4.2 Ozonation 

With Ozonation, we are referring to the inactivation of pathogenic through the infusion of 

ozone. Ozone is one of the most powerful oxidizers able to inactivate bacteria, viruses, and 

organic material (EPA, 1999c; Shammas and Wang, 2005; Tondera et al., 2015; Xu et al., 

2002). One of the main disadvantages related to the ozonation is that, due to reactions of 

ozone with organic and inorganic compounds and suspended solids, wastewater requires a 

high dosage of Ozone. Moreover, due to the quantity and quality flow variability during 

CSO events, the dosage of ozone needs to change simultaneously with the water quality; 

this will increase the complexity and costs of the disinfection process (Gehr et al., 2003). 

2.4.4.3 Peracetic and Performic acid 

Peracetic and Performic acid are emerging chemical disinfectants that have demonstrated 

the potential to inactivate microorganisms (Maffettone et al., 2020; Manoli et al., 2019). 
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Peracetic acid is produced by a combination of water, acetic acid, and hydrogen peroxide. 

Sulfuric acid is added as a catalyst to increasing the chemical reaction rate (Coyle et al., 

2014). Performic acid is an organic chemical that belongs to the family of aliphatic peracids 

(Swern, 1949). Chhetri et al. reported that peracetic acid can be used to treat CSO discharge 

only where treatment facilities have a long retention contact time, while disinfection by 

performic acid is more efficient at low fluences and can be used where the overflow 

structures have a short retention time (Chhetri et al., 2014). The aforementioned limitations 

make peracetic acid and performic acid unsuitable to treat CSO discharges since the ideal 

CSO disinfectant has to be adaptable to the rapid change of quality and quantity of CSO 

discharges during CSO events. 

2.4.4.4 UV irradiation 

UV irradiation is a physical process able to neutralizes microorganisms by ultraviolet 

lamps submerged in the effluent (EPA, 1999d; Gibson et al., 2017). The process adds 

nothing to the water but UV light, and therefore, has no impact on the chemical 

composition of the water (Averill et al., 1997). Wojtenko et al. highlighted that UV 

disinfection is an effective alternative to chlorination for CSO treatments (Wojtenko et al., 

2001). Gehr et al. emphasized that UV disinfection is the most suitable treatment process 

for UV disinfection against higher costs related to the peracetic acid and higher dosage of 

ozone (Gehr et al., 2003). Additionally, UV disinfection does not need large and expensive 

contact tanks due to short contact time. Anyway, pre-treatment of CSO water plays a 

fundamental role in disinfection efficiency since the presence of solids is a concern for 

several CSO technologies (Boner et al., 1995; Jolis et al., 2001; Madge and Jensen, 1999; 

Wojtenko et al., 2001). 
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2.5 Synopsis of the literature 

CSOs are very frequent events in CSSs. In 2004, EPA released an official position to 

Congress reporting on health and environmental impacts caused by CSOs (EPA, 2004). In 

this document, it has been estimated that each year, in the U.S.A., 850 billion gallons of 

untreated water is discharged, impacting aquatic life, drinking water, fish consumption, 

shellfish harvesting, and water recreation activities, as well as causing diseases, i.e. 

gastroenteritis, dysentery, cholera, and hepatitis. For this reason, CSO is today one of the 

major sources of environmental pollution that cause severe damage to human health.  To 

develop effective stormwater management strategies, municipalities need to have a detailed 

understanding of CSO characterization both qualitatively and quantitatively. That said, the 

impacts of wet weather events on the performance and reliability of combined sewer 

systems for flood control, pollutant loads, and environmental protection are extremely 

challenging, despite this being an essential and inevitable task. Integrated treatment 

strategies to effectively remediate a wide spectrum of CSO contaminants are limited and 

not well researched. Nowadays, existing CSO treatments are mainly focused on the 

removal of conventional pollutants such as total suspended solids and oxygen-depleting 

substances. Treatment targets are also set to a minimum level required, as in Procedure F-

5-5 (50% of TSS and 30% of BOD) with no efficiency regarding the removal of soluble 

oxygen matters. Such removal objectives are likely to be insufficient; an optimal and 

effective CSO treatment should be aimed to achieve multiple treatment goals, thus 

maximizing the removal of suspended solids, oxygen demand substances, nutrients, and 

fecal bacteria. To achieve such a goal, advanced treatment techniques involving solid-

liquid separation and adsorption process seem to be the best option. The UV disinfection 
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appears to be the best option for fecal bacteria removal due to the fast start-up time and 

small footprint. However, pre-treatment with high particle removal is needed to improve 

the UV disinfection process. Additionally, the reliability of CSO treatment processes and 

technologies, as well as their cost-effectiveness and value-added features, have not been 

considered during their development; all these factors must be considered since locations 

associated with CSO events are typically not easily accessible and space-constrained. 

Therefore, to ensure high results, integration of large scale (urban scale) and small scale 

(sewer network) is necessary while developing a CSO treatment.  

2.6 Discussion 

Based on the literature review, the following observation could be made to guide the 

development of a novel treatment process and assess its efficacy at catchment scale:  

1. an optimal and effective CSO treatment should be aimed at maximizing particle 

removal, thus having a high solids removal efficiency as well as sufficient oxygen 

demand and nutrients removal. 

2. a physical-chemical pre-treatment is likely required to enhance the subsequent 

disinfection process; however, the minimization of chemicals used in CSO 

treatment is a highly desirable goal for public health protection. 

3. a disinfection process is required to remove fecal contamination from CSO water 

discharges. 

4. a good characterization of CSO discharge is necessary to size the treatment process 

as the water quality characteristics of CSOs are highly site-specific dependent.  
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5. a complete understanding of the CSO impacts at the urban scale is required; 

specifically, a stormwater management model should be employed to allow the 

identification of site-specific dynamics associated with CSO events.  

 

2.7 Research Objectives 

This research was conducted to develop a novel, multifunctional CSO treatment process 

able to cost-effectively achieve multiple treatment objectives to simultaneously remove 

visible matter, oxygen-demanding substances, nutrients, and fecal bacteria. To achieve 

such an ambitious goal, six main objectives have been identified and outlined as follows: 

I. To assess and validate the effectiveness of coagulation/flocculation process using 

polymer as coagulant on the removal of visible matter, and oxygen-demanding 

substances. 

II. To investigate the effectiveness of zeolite and power activated carbon on the 

removal of nutrients and soluble oxygen-demanding substances. 

III. To investigate the effectiveness of UV disinfection on the removal of fecal bacteria 

and its interaction with coagulation/flocculation and adsorption processes. 

IV. To develop regression equations able to quantitively describe the synergies between 

the aforementioned treatment processes and the simultaneous removal of visible 

matter, oxygen-demanding substances, nutrients, and fecal bacteria. 

V. To develop model-based simulations at the urban scale with the intent to assess the 

sewer network response during wet weather events and to assess the environmental 

impacts of the proposed treatment. 

VI. To determine and compare the proposed CSO treatment costs with existing CSO 

treatment strategies. 
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Chapter 3  

3 A Microsieve-Based Filtration Process for Combined 
Sewer Overflow Treatment with Nutrient Control: 
Modeling and Experimental Studies 

3.1 Introduction 

Pollution from urban stormwater discharges and combined sewer overflows (CSOs) are 

reported as one of the main factors affecting the water quality of receiving bodies (Anne-

Sophie et al., 2015; Bryan Ellis and Yu, 1995; Eganhouse and Sherblom, 2001; Gasperi et 

al., 2008; Passerat et al., 2011a; Riechel et al., 2016; USEPA, 2004). Consequently, 

developing strategies for CSO management has become central in the environmental 

agenda of municipalities around the world, exacerbated by the limitations of combined 

sewer system (CSS) infrastructure and/or the limited capacity of municipal wastewater 

treatment plants (WWTPs). Furthermore, the additional flow generated by extreme wet-

weather events could lead to a bypass of wastewater treatment plants (WWTPs) and 

untreated wastewater being discharged directly into the environment. As a result, oxygen-

depleting matter and pathogens, are discharged into the environment together with solids, 

nutrients, and other micropollutants including heavy metals and chemicals of emerging 

concern (USEPA, 2004).  

For the last two decades, stormwater management strategies have been centered around 

mitigating the CSO impacts by reducing runoff volume or peak flow by employing storage 

facilities and retention treatment basins (Li et al., 2004). However, since locations 

associated with CSO discharges are typically not easily accessible and often space-limited, 

the design, operation and management of these facilities may be complex. As a result, there 
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is a need to develop new, space-efficient treatment schemes able to remove a broad 

spectrum of pollutants in a single and multifunctional train (Gasperi et al., 2010, 2008; 

Iannuzzi et al., 1997; Launay et al., 2016; Soonthornnonda and Christensen, 2008). 

Passerat et al. (Passerat et al., 2011b) highlighted that sewer sediments were estimated to 

contribute to about 75% of the solid matter, 10-70% of the E. coli (about 77% attached to 

the solid matters), and 40-80% of the intestinal enterococci that were discharged by 

overflows. Therefore, effective removal of particulate matters from CSO water could 

immediately lead to improve the performance of disinfection processes by which the 

inactivation of microorganism occurs (Chhetri et al., 2014; Gehr et al., 2003; Kitis, 2004; 

Wojtenko et al., 2001). To date, a number of studies (Bridoux et al., 1998; Delporte et al., 

1995; Ebeling et al., 2003; El-Gendy et al., 2008; Gasperi et al., 2012a; Plum et al., 1998) 

have examined the performance of physico-chemical treatment, such as coagulation-

flocculation, on the removal of particulate matter by using polymer as primary coagulant, 

a process entailing the neutralization of negative charge and allows small particles to react 

with the polymer to form insoluble precipitates before flocculation of the solids commences 

(Bolto et al., 2001; Scherrenberg, 2006). To achieve advanced nitrogen control, the 

removal of particulate nitrogen is not sufficient as ammonium is mostly present in 

dissolved form. A review paper on the application of zeolite for wastewater treatment 

(Wang and Peng, 2010) reported that natural zeolite is a promising technique for the 

removal of ammonium due to the low costs and its physico-chemical proprieties such as 

the high cation exchange and sorption capacity (Liao et al., 2015). However, its adsorption 

efficiency may be reduced by the presence of organic matters. On the other hand, powdered 

activated carbon (PAC) is the most widely applied adsorption material for the removal of 
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dissolved organics (Gai and Kim, 2008; Ma et al., 2013; Scherrenberg, 2006; Seo et al., 

1997). Moreover, a synergistic effect of zeolite and activated carbon on the removal of 

nutrients and organic contaminants has been reported by Malekmohammadi et al. and Liao 

et al. (Liao et al., 2015; Malekmohammadi, 2016). In these works, the authors stated that a 

mixture of carbon and zeolite increases the adsorption efficiency against nutrients and 

organic pollutants while neither could remove the pollutants if used alone. Table 3.1 

summarizes information available in the literature on the effectiveness of treatment by 

cationic polymer, PAC, zeolite, and microsieving process, when taken individually, to 

remove specific CSO pollutants.  

The goal of this study was to develop and assess the performance of an integrated treatment 

process starting from an idea of possible treatment technologies to deploy at the urban scale 

(Fig.3-1). 

 

Figure 3-1: Multifunctional CSO treatment process 

 At this stage, only the first two steps of the treatment represented in Fig. 3-1 will be tested, 

while further studies on the UV disinfection process will be presented in Chapter 4. The 

proposed treatment has to be able to simultaneously remove nutrients and CSO pollutants 

in a multifunctional reactor. The main advantage of using a multifunctional reactor is to 

carry multiple functions at the same time (i.e. coagulation, adsorption, and filtration) and 
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in a single unit. This new approach opens the possibility for municipalities to address CSO 

and nutrient pollution with a single capital upgrade. More specifically, the proposed 

integrated treatment process relies on multiple treatment agents combined in a single 

multifunctional process where fine particles, such as zeolite and powdered activated 

carbon, first adsorb soluble nutrient and are subsequently removed by polymer-enhanced 

microsieving allowing the removal of both soluble and particulate pollutants in a single 

treatment step. Furthermore, this work describes an innovative method for the removal of 

ammonia via a dual mechanism of ammonia capture by zeolite absorption, followed by 

zeolites removal by polymer coagulation and microsieving filtration. By polymer 

coagulation, smaller particles of zeolite were incorporated into bigger particles and easily 

removed by microsieving 

Table 3-1: Individual and combined effects of polymer, PAC, zeolite and microsieving 

on CSO pollutants removal 

Treatment 

agents 

Pollutants 

References 
Turbidity 

Particulate 

COD 

Soluble 

COD 
TKN TP 

Polymer X X    
(Bolto et al., 2001) 

(Liao et al., 2015) 

PAC  X X   

(Gai and Kim, 2008) 

(Scherrenberg, 2006) 

(Ma et al., 2013) 

(Seo et al., 1997) 

Zeolite    X X (Wang and Peng, 2010) 
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(Liao et al., 2015) 

Microsieving X X X   

(Evren Ersahin et al., 

2012) 

(Scherrenberg, 2006) 

Integrated 

Treatment 
X X X X X This study 

. 

 In order to do so, we first investigated the efficiency of the individual treatment agents, 

and then explored the synergies achieved when the chemicals were dosed simultaneously 

in an integrated treatment process targeting the removal of particulate CSO pollutants (such 

as turbidity and chemical oxygen demand) as well as dissolved nutrients (ammonium and 

nitrogen). 

3.2 Materials and Methods 

3.2.1 Source of wastewater and analytical measurements 

Primary influent (PI) was used as a surrogate to establish CSO treatment efficiency during 

bench-scale experiments. Samples were collected manually from the Greenway WWTP, 

located in London, Ontario, Canada. The city of London is characterized by approximately 

2,750 kilometers (km) of the sanitary, storm, and combined sewers. Greenway WWTP is 

one of the six wastewater treatment plants with a combined rated capacity of 152 million 

liters per day and an average daily flow of 117 million liters per day in 2018 (City of 

London Corporation, 2016). The plant receives wastewater from approximately 9,100 ha 

and services a population of 180,000 equivalent inhabitants with a combination of 

industrial wastewater, residential sewage, including the combined sewers from the older 
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parts of the City. For each sample, the level of turbidity was measured by a HACH 2100 

turbidimeter following the Nephelometric method (Standard Method 2130B). Turbidity 

was used as an indicator of removal efficiency for particulate matter since a linear 

correlation between turbidity and TSS exists (Hannouche et al., 2012; Ru et al., 2013).  

COD tests were carried out by Standard Method 5220-D. The soluble COD (s-COD) was 

measured by filtering samples through a 0.45 μm pore size filters and the particulate COD 

(p-COD) measurement was obtained by subtracting s-COD from the total COD (t-COD). 

TKN was used to quantify the amount of nitrogen contained in organic form and it was 

determined by digestion and distillation (Standard Method 4500-NorgC). TP was measured 

following Standard Method 4500-P. 

3.2.2 Chemically-enhanced pre-treatment  

The coagulation-flocculation process was performed on the collected samples using 1 L of 

raw wastewater. Experiments were carried out using the jar test method in 1-L beakers 

where polymer, PAC, and zeolite were mixed simultaneously. Natural zeolite NV-Na 

(surface area 40m2/g, pore volume 15%, particle size of 0.42 mm; bulk density: 45-50 lbs 

ft-3) used in this study was obtained from St. Cloud Mining Company, Winston, New 

Mexico. Zeolite nv-na was selected from previous studies where different type of zeolite 

with different surface area were compared. Among all the zeolite tested, zeolite NV-Na 

provided the best results in terms of nutrients removal. PAC (grain size of 10-220 μm; total 

surface area: 650 m2 g-1; bulk density: 0,51 g ml-1) was purchased from Cabot Norit 

Americas Company, Marshall, USA. Cationic Acrylamide polymer (PG-906) was used as 

coagulant with 10% mole charge purchased from ChemTreat Company, Virginia, USA. 
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The jar test employed the following steps: (1) rapid mix at a constant speed of 200 rpm for 

1 min to maximize the destabilization of colloidal particles and initiate coagulation, (2) 

slow mix at a constant speed of 20 rpm for 2 min to increase the number of contact events 

among treating agents and particles, and to facilitate the development of large flocs and (3) 

the last step was the settling stage. After the coagulation-flocculation process, water was 

filtered through meshes of three different pore sizes: 158, 350, and 500 µm. Table 3.2 

summarizes the employed ranges of mesh size, the dosage of polymer, PAC and zeolite. 

At the end of each treatment, turbidity, s-COD, p-COD, TKN, and TP were analyzed. 

Results were compared with the concentration of pollutants in the collected samples to 

assess the treatment efficiency in terms of percentage removal.  

Table 3-2: List of independent variables and the levels tested 

Independent Variable Symbol 

Coded variable level 

Low Center High 

-1 0 +1 

Polymer (mg/L) 𝑥1 1 2 3 

Zeolite (mg/L) 𝑥2 0 2500 5000 

PAC (mg/L) 𝑥3 0 250 500 

Mesh (µm) 𝑥4 158 350 500 

 

3.2.3 Design of experiments and response surface analysis 

The Box-Behnken (BB-DOE) scheme with four-factor, and three-levels for each factor, 

was selected as experimental design for this study. The BB-DOE is an independent 
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quadratic design in which the combinations of experimental plans are located at the 

midpoints of edges and at the center of the process space. The number of experimental 

points (N) is defined by the expression N = 2k (k-1) + C0, where k is the number of factors 

and C0 is the number of center points (Ferreira et al., 2007). As reported by Zolgharnein et 

al. (2013), the BB-DOE requires fewer combinations of the independent variables (i.e., the 

treatment agents) to estimate a potentially complex response function when compared with 

the central composite design (CCD). This is in line with the findings by Ferreira et al. 

(2007) who demonstrated that the BB-DOE is an adequate scheme for response surface 

modelling (RSM), and subsequent optimization studies, in case of non-linear relationships 

among independent and dependent variables. As a matter of fact, based on previous studies 

(Ghafari et al., 2009; Liao et al., 2015; Trinh and Kang, 2010; Wang et al., 2011), the 

relationship between the treatment agents and removal is expected to be non-linear in the 

case of physico-chemical processes applied to water treatment. Therefore, a second-order 

model must be used as a surface response to fit the data and identify the optimal treatment 

conditions.   

As shown in Table 2, polymer, PAC, zeolite and mesh size were placed at one of three 

equally spaced values, coded as −1, 0, +1. The responses were expressed as a second-order 

polynomial equation and a mathematical model was developed according to Eq. 1: 

𝑌 = 𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1
2 + 𝛽6𝑥2

2 + 𝛽7𝑥3
2 + 𝛽8𝑥4

2 + 𝛽9𝑥1𝑥2

+ 𝛽10𝑥1𝑥3 + 𝛽11𝑥1𝑥4 + 𝛽12𝑥2𝑥3 + 𝛽13𝑥2𝑥4 + 𝛽14𝑥3𝑥4 
(1) 

where 𝑌 is the predicted response in terms of pollutant removal; 𝛽0 is the constant 

coefficient; 𝑥1, 𝑥2, and 𝑥3 are the independent variables which influence the predicted 
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response 𝑌; 𝛽1, 𝛽2, 𝛽3 , and 𝛽4 are the linear coefficients; 𝛽5, 𝛽6, 𝛽7 and 𝛽8 are the quadratic 

coefficient, and 𝛽9 , 𝛽10, 𝛽11, 𝛽12, 𝛽13, and 𝛽14 are the cross-product coefficients. The model 

equation easily clarifies the interaction effect such as synergism, antagonism, and addition 

of the independent parameters. The statistical significance of each variable was analyzed 

by observing the p-value; p-values less than 5% (p < 0.05), indicates that the variable is 

considered to be statistically significant. The validity of each model was expressed by the 

coefficient of determination R2, ranged between 0 to 1. A R2 value close to 1 is desirable 

to ensure a good fit of the quadratic model to the actual data, as well as to assure that the 

RSM correctly explained the interactions between dependent and independent variables 

based on the experimental results. 

 The RSM obtained with the aforementioned procedure were used to optimize the 

treatment process. In the optimization study, treatment factors were calculated for feasible 

combinations of polymer, PAC and zeolite (ranged between -1 and 1 in coded units), and 

then evaluated for the relative dominance status of each pollutant removal objectives. The 

Pareto analysis was used to evaluate the entire feasible space of treatment combinations 

for each model response (pollutants removal). The Pareto frontier was identified by setting 

two treatment objectives: 1) minimization of the amount of chemical used and 2) 

maximization of the extent of removal for each pollutant (%). The desirable goal was to 

identify a combination of treatment agents able to maximize pollutant removal while 

minimizing the amount of chemicals. By inspecting the Pareto frontier, non-dominated 

designs could be easily identified for each of the pollutants considered in this study and 

compared.  
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The experimental results were processed and interpreted by employing Minitab Statistical 

Software (version 17, State College, Pennsylvania, USA).  

3.3 Results and discussion 

3.3.1 Wastewater characteristics 

The physico-chemical characteristics of the wastewater used in this study are shown in 

Table 3.3 and compared with data obtained from the literature. TSS data were estimated 

by correlation with turbidity based on 14 samples analyzed with both methods. No general 

trends was identified from the information  available in the literature thus confirming that 

CSO water quality is region-specific, and largely dictated by the catchment and rainfall 

characteristics of the geography of concern (Kafi et al., 2008; Madoux-Humery et al., 2013; 

Suárez and Puertas, 2005). Since this work focused on the simultaneous control of CSO 

pollutants and nutrient runoffs (P and N), and because CSOs water quality is originated 

from rainwater-diluted sewage, we considered raw wastewater suitable CSO surrogate for 

our research purposes. 

Table 3-3: Sample characteristics and comparison with CSO characteristics 

reported by literature 

 This study  From literature 

 Samples Average + 
Standard 
Deviation 

 
(Metcalf & 

Eddy, 2014) 

(Suárez and 
Puertas, 

2005) 

(Diaz-
Fierros et 
al., 2002) 

(Gasperi et 
al., 2012b) 

 1 2 3  Min Max Min Max Min Max Min Max 

Turbidity 
(NTU) 

269 278 276 274.33+4.7  - - - - - - - - 

TSS * 
(mg/L) 

619 640 636 632+9.31  270 550 561 1722 160 411 204 393 

t-COD 
(mg/L) 

759 744 780 761+18  260 480 569 1717 134 540 270 560 
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TKN 
(mg/L) 

74 67 68 69.6+3.8  4 17 - - 13.2 33 29 46 

TP 
(mg/L) 

34 33 
33.
5 

33.5+0.5  1.2 2.8  - - 0.5 4.6 4.3 6.5 

* Data converted from turbidity to TSS using the correlation included in Appendix A (Figure S3.3) 

3.3.2 Integrated treatment performance 

Table S3.1 in Appendix A summarizes results obtained during the experimental runs. It 

should be noted that the effect on treatment performance associated with the influent 

particulate, is secondary as the overall solids content of the treatment is dominated by the 

externally added carbon/zeolite particles. For the soluble components, the removal is 

mostly associated with absorption mechanisms by carbon and zeolite. A statistical test was 

conducted on the experimental data collected with the BB-DOE scheme, at a significance 

level of p-values < 0.05. The latter indicated whether the removal of a given pollutant 

(listed as a column in Table 3.4) was affected by the treatment agent utilized in the study 

(listed as a row in Table 3.4). The full statistical analysis, reported in Table S3.2 of 

Appendix A, confirmed the hypothesis that an integrated treatment process able to cope 

with a wide spectrum of pollutants requires the simultaneous use of all treatment agents, 

and justifies a modeling study to optimize the process while achieving multiple treatment 

objectives.  

Table 3-4: Statistical significance (p <0.05) for each treatment agent on the removal 

of each pollutant  

 BB-DOE main factors analysis 

Parameters Polymer PAC Zeolite Mesh size 

Turbidity Yes No No No 

s-COD No Yes No No 
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p-COD Yes Yes No No 

TKN Yes* No Yes Yes* 

TP Yes No No No 

*Statistically significant factor via a two-way interaction  

Figure 3.2 shows the tri-dimensional plots, in the form of the response surface, highlighting 

the trend in performance manifested by the combined process for the case of turbidity and 

total phosphorus removal. The experimental results revealed that, by using a cationic 

polymer, >75% of both pollutants could be simultaneously removed leading to a final 

concentration of <50 NTU and <7 mg/L TP, respectively, in the CSO-simulated treatment. 

Such considerable extent of particulate removal is consistent with findings from previous 

studies (Li et al., 2003; Scherrenberg, 2006; Zahrim et al., 2011) and confirms the 

effectiveness of coagulation and microsieve filtration when used in combination. Indeed, 

the positive charge of a cationic polymer effectively neutralizes the negative charge of 

particles allowing floc formation, therefore facilitating particle separation by fine sieve 

microfiltration. Also, during the microsieving process, it is possible that polymer facilitated 

the formation of a thin cake layer on the filter surface, which in turn further enhanced 

particle removal.  

In the case of total phosphorus, high level of removal is mainly associated with the 

combined effect of direct sieving (for particulate phosphorus) and the sequestration, by 

adsorption, of phosphate by zeolite. This mechanism is confirmed by the statistically 

significant effect associated with the product of polymer and zeolite at p-value < 0.05.  
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The regression analysis returned the following expressions by statistical analysis for the 

two pollutants considered in this section (in coded units): 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 =  78.22 +  6.737 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 −  1.359 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 +  0.072 𝑃𝐴𝐶 −  0.340 𝑀𝑒𝑠ℎ 

−  3.98 𝑃𝑜𝑙𝑦𝑚𝑒𝑟2  −  1.05 𝑍𝑒𝑜𝑙𝑖𝑡𝑒2 +  0.39 𝑃𝐴𝐶2  +  0.30 𝑀𝑒𝑠ℎ2  +  1.97 𝑃𝑜𝑙𝑦𝑚𝑒𝑟

∗ 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 −  0.17 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑃𝐴𝐶  +  0.31 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑀𝑒𝑠ℎ +  0.32 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑃𝐴𝐶 

−  0.17 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑀𝑒𝑠ℎ  +  0.18 𝑃𝐴𝐶 ∗ 𝑀𝑒𝑠ℎ  

𝑇𝑃 =  75.629 +  2.334 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 −  0.355 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 +  0.293 𝑃𝐴𝐶 +  0.031 𝑀𝑒𝑠ℎ   

−  0.597 𝑃𝑜𝑙𝑦𝑚𝑒𝑟2  −  0.280 𝑍𝑒𝑜𝑙𝑖𝑡𝑒2  −  0.373 𝑃𝐴𝐶2   +  0.672 𝑀𝑒𝑠ℎ2  

+  1.382 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 +  0.429 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑃𝐴𝐶 −  0.075 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑀𝑒𝑠ℎ 

+  0.691 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑃𝐴𝐶  −  0.075 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑀𝑒𝑠ℎ −  0.131 𝑃𝐴𝐶 ∗ 𝑀𝑒𝑠ℎ 

The model equations showed an R2 = 0.89 and 0.90 for turbidity and TP removal, 

respectively.  

 

Figure 3-2: 3D surface plot for (a) turbidity removal, and (b) TP removal.  

The same analysis was repeated in the case of COD and TKN. The statistical analysis 

confirmed that also for this case, all the treatment agents were statistically significant in 
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achieving up to 75% of p-COD removal. Moreover, response surface analysis revealed that 

the two most important factors were polymer and PAC. The regression equation for p-COD 

removal (%) is proposed in coded unit as follows: 

𝑝‐ 𝐶𝑂𝐷 =  59.30 +  8.29 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 −  1.68 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 −  5.33 𝑃𝐴𝐶 −  0.72 𝑀𝑒𝑠ℎ  −  0.14 𝑃𝑜𝑙𝑦𝑚𝑒𝑟2  

−  0.32 𝑍𝑒𝑜𝑙𝑖𝑡𝑒2  +  2.02 𝑃𝐴𝐶2  +  8.69 𝑀𝑒𝑠ℎ2 +  2.40 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 

+  1.74 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑃𝐴𝐶 −  6.31 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑀𝑒𝑠ℎ −  1.62 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑃𝐴𝐶 

−  1.99 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑀𝑒𝑠ℎ −  3.84 𝑃𝐴𝐶 ∗ 𝑀𝑒𝑠ℎ 

It is interesting to note how the surface plot for p-COD removal (Fig.2a) reports an inverse 

relationship between polymer and PAC: the p-COD removal efficiency increases by adding 

the highest concentration of polymer and the lowest concentration of PAC. This could be 

due to the fact that PAC was a facilitating agent for coagulation by providing external 

coagulation nuclei, but only until a critical upper concentration of carbon particle was 

reached. On the other hand, the p-values analysis highlighted that PAC played a decisive 

role in the removal of s-COD. The regression equation (coded units) developed by RSM 

for s-COD removal (%) is proposed as follows: 

𝑠‐ 𝐶𝑂𝐷 =  12.65 +  0.991 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 +  1.086 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 +  3.211 𝑃𝐴𝐶 −  0.026 𝑀𝑒𝑠ℎ −  1.88 𝑃𝑜𝑙𝑦𝑚𝑒𝑟2

−  3.26 𝑍𝑒𝑜𝑙𝑖𝑡𝑒2   −  1.88 𝑃𝐴𝐶2 −  3.04  𝑀𝑒𝑠ℎ2  −  1.30 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 

−  0.94 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑃𝐴𝐶 +  1.08 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑃𝐴𝐶 +  1.45 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑀𝑒𝑠ℎ +  1.37 𝑃𝐴𝐶

∗ 𝑀𝑒𝑠ℎ 

The curve plot in Figure 3.3 confirms that the level of s-COD removal increased by 

increasing the concentration of PAC.  
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Figure 3-3: 3D surface plot for (a) p-COD removal, and (b) s-COD removal.  

By observing the surface curvature, a maximum in the removal of s-COD could be 

observed for an optimal combination of PAC and zeolite (250 mg/L and 2,500 mg/L, 

respectively). This is in agreement with previous studies (Liao et al., 2015; 

Malekmohammadi, 2016) who emphasized that PAC and zeolite if used in combination, 

lead to an increase in adsorption efficiency. The regression equation for TKN removal (%) 

is proposed in coded unit as follows: 

𝑇𝐾𝑁 = 68.759 +  0.027 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 +  7.308 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 +  0.106 𝑃𝐴𝐶 −  0.638 𝑀𝑒𝑠ℎ −  1.794 𝑃𝑜𝑙𝑦𝑚𝑒𝑟2

−  4.249 𝑍𝑒𝑜𝑙𝑖𝑡𝑒2  −  2.436 𝑃𝐴𝐶2 −  2.658 𝑀𝑒𝑠ℎ2 −  0.399 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 

+  0.053 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑃𝐴𝐶 −  1.472 𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ∗ 𝑀𝑒𝑠ℎ +  1.135 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑃𝐴𝐶 

+  0.301 𝑍𝑒𝑜𝑙𝑖𝑡𝑒 ∗ 𝑀𝑒𝑠ℎ −  0.195 𝑃𝐴𝐶 ∗ 𝑀𝑒𝑠ℎ 
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Figure 3-4: 3D surface plot for TKN removal.  

The surface plot reported in Figure 3.4 shows that the highest level of TKN removal (> 

65% and with ammonia removal up to 40%) is achieved at high zeolite concentration, 

regardless of the concentrations of the other agents including PAC. Moreover, 

experimental results indicated that no TKN could be removed without the addition of 

zeolite, thus confirming the importance of this treatment agent for nitrogen control and in 

line with findings from previous studies (Wang and Peng, 2010). In Table 4, a linear 

interaction of zeolite and a two-way interaction of polymer and mesh size for the removal 

of TKN are reported. This result confirm that ammonia removal occurs via a dual 

mechanism of ammonia capture by ion exchange on zeolite, and a subsequent step of 

polymer coagulation and microsieving filtration. 

Figure 3.5 shows the predicted and the observed values for the removal of the five 

pollutants considered in this study, indicating an excellent agreement between model and 

experimental values. The model has also been successfully tested by the “leave one out” 

cross-validation method, with results are reported in supporting information file (Figure 
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S3.2 of Appendix A). As expected, each variable has its importance in the developed 

model.  

The chart in Figure.3.5 has been divided into three arbitrary regions aimed to classify the 

various pollutants removal: poorly removed (<30% removal), moderately removed 

(between 30% and 60%) and efficiently removed (>60%). Among the considered 

pollutants, only s-COD was poorly removed, while turbidity, TP, p-COD and TKN all 

displayed removal in the range of 45% to 80%. 

 

Figure 3-5: Predicted vs. actual values for turbidity, TP, p-COD, s-COD, and TKN 

3.3.3 Pareto frontier and scenario analysis  

Figures 3.6, 3.7, 3.8 and 3.9 report the assessed combinations of treatment agents as well 

as those falling onto the Pareto frontiers when the maximization of removal and the 

minimization of treatment agents used in the process are simultaneously specified as the 

treatment objectives. Moreover, these plots provide useful information on the trade-offs 



 

54 

between the two treatment objectives (i.e., simultaneous minimization of chemical cost and 

maximization of treatment performance).  

In the following figures, the Pareto designs (non-dominated solutions), each design 

consisting of a unique combination of treatment agents, are reported in red, yellow, green 

and blue for turbidity, t-COD, TKN and TP, respectively. The dominated solutions (sub-

optimal designs) are reported in grey. From Figures 3.6 and 3.7, it can be seen that all the 

frontier designs for turbidity, t-COD, TP and TKN converge towards the minimum amount 

of chemicals used to detach themselves when the amount of chemicals increase. Turbidity, 

t-COD and TP follow the same trend suggesting that a combination of designs can be easily 

selected to effectively remove all these pollutants.  
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Figure 3-6: Pareto frontier (non-dominated designs) plot for turbidity removal (red 

triangles). In grey, the dominated solutions for turbidity.  



 

56 

 

Figure 3-7: Pareto frontier designs (non-dominated solutions) plot for TP removal 

(blue crosses). In grey, the dominated solutions for TP.  

However, by plotting the TP-optimal designs on the t-COD plot (Figure 3.8), it is possible 

to observe that two sub-curves are defined: the first one follows the t-COD optimal design 

(Pareto frontiers), while the second one departs from the t-COD-optimal designs. 

Interestingly, it was seen that the distance between TP and t-COD frontier designs tends to 
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increase when zeolite and mesh size range between 3000-5000 mg/L and 300-500 μm 

while it tends to decrease when zeolite concentration is kept between 2500 mg/L to 3000 

mg/L and the mesh size at 200 μm. 

 

Figure 3-8: Pareto frontier designs (non-dominated solutions) plot for t-COD removal 

(yellow triangles). In grey, the dominated solutions for t-COD.  
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On the other hand, as the shape of the TKN Pareto frontiers indicates, TKN removal is very 

sensitive to the zeolite concentration, with the highest level of removal (72%) reported by 

using the highest concentrations of zeolite (4500 mg/L). When the zeolite concentration is 

reduced to 250 mg/L, the TKN removal drops to 53%. Observing Figure 3.9, it is also 

interesting to note that the designs that are optimal for nitrogen removal are sub-optimal 

for all the remaining pollutants. As such, a universal treatment able to optimally remove 

all the considered pollutants cannot be advanced. However, all the designs belonging to the 

four Pareto frontiers tend to converge when the minimum amounts of chemicals are used. 

Such point is characterized by the following combination of treatment agents: 1.1 mg/L of 

the cationic polymer, 250 mg/L of zeolite, 5 mg/L of PAC, and a 370 μm mesh size. Under 

these conditions, excellent performance as high as 71.6% of removal in turbidity, 55.7% 

removal in TKN, 35% for t-COD and 75% for TP are observed. 
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Figure 3-9: Pareto frontier designs (non-dominated solutions) plot for TKN removal 

(green circles). In grey, the dominated solutions for TKN.  

Since the minimization of chemicals used in CSO treatment is a highly desirable goal for 

public health protection, we explored the performance of optimal designs that were 

simultaneously able to perform with low-chemicals usage while also achieving the 

advanced treatment goals such as a) simultaneous maximum removal of turbidity, t-COD, 

TKN, and TP achieving the best performance on each removal, b) simultaneous maximum 

removal of t-COD, TKN, and TP, and c) simultaneous maximum removal of turbidity and 
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TP. Table 3.5 shows the three combinations of treatment agents extracted from the Pareto 

frontier designs and in line with the three scenarios indicated above. In Table S3.3 of 

Appendix A, the treatment agents have been normalized by the influent pollutant loads to 

provide useful sizing information for process scale-up as a function of the different 

treatment goals pursued in this study. 

The design O-1 was identified as the best combination of treatment agents for the first 

scenario (case a). Remarkably, O-1 belongs to all the four frontiers associated with the 

removal of each pollutant taken individually. When the treatment objective was set to 

maximize the removal of nutrient and organic pollutants by using the smallest amount of 

chemicals (case b), an increase of zeolite dosage is required, and the O-2 combination 

resulted in being optimal. Such design appears to be common for three frontiers, i.e. t-

COD, TKN, and TP frontiers. Finally, for the third scenario (case c), the design O-3 

appeared to be optimal: an increase of polymer dosage and a reduction of mesh size is 

required to pursue the simultaneous removal of turbidity and TP. It should be noted that O-

3 allows achieving one of the highest removals in turbidity and TP, even with a relatively 

small amount of chemicals.   

Table 3-5: Treatment alternatives based on different treatment objectives 

 Removal (%)  Design  N. of 

frontiers 

per design 
 Turbidity t-COD TKN TP 

 Polymer 

(mg/L) 

Zeolite 

(mg/L) 

PAC 

(mg/L) 

Mesh 

(μm) 

 

O-1 72 35 56 75  1.13 250 5 370  4 

O-2 72 40 57 75  1.17 650 2.5 475  3 
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O-3 80 42 57 76  2.1 550 5 180  2 

3.4 Conclusions 

One of the main goals of this study was to investigate the performance of a novel, integrated 

process based on the simultaneous treatment by cationic polymer, zeolite, and powdered 

activated carbon followed by microsieving filtration.  Results suggested that:  

• The novel integrated treatment process proposed in this study could be exploited to 

deal with multiple contaminants and the associated impacts in the receiving bodies 

caused by CSO pollution and nutrients discharge in the environment. 

• All treatment agents tested in this study, i.e. cationic polymer, powdered activated 

carbon, and zeolite, have shown synergistic effects when simultaneously dosed 

prior to microsieving for treating the major CSO pollutants. 

• Cationic polymer played a fundamental role in coagulating zeolites, on which 

ammonia was initially absorbed, thus indirectly enabling the removal by a soluble 

constituent by microsieving filtration.  

• As highlighted by response surface analysis, while zeolite played a central role in 

achieving satisfactory removal (>50%) of dissolved nitrogen in the form of 

ammonium. At the same time, low removal of soluble COD by powder activated 

carbon was observed (<15%).  

• A regression model able to describe the relationship between treatment agents and 

CSO pollutants removal was developed. The model was employed to perform a 

multi-objective optimization of the treatment method, and to identify Pareto 

frontiers, demonstrating the possibility of pursuing, with a single treatment method, 

multiple treatment objectives.  
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Chapter 4  

4 Low-fluence UV disinfection for Combined Sewer 
Overflow 

4.1 Introduction 

During wet weather events, the flow in a combined sewer system usually exceeds the 

maximum capacity and a combined sewer overflow (CSO) occurs (Scherrenberg, 2006). 

When a CSO event occurs, a mixture of raw sanitary wastewater, raw industrial 

wastewater, and rainwater is discharged to surface waters without receiving any treatment. 

According to EPA (EPA, 2004), it was estimated that, in the USA, the number of CSO 

discharge events in 2002 was more than 9,000, corresponding to approximately 850 billion 

gals of untreated wastewater being discharged to surface waters nationwide. While the cost 

estimate to address CSO was $50.6 billion, only $6.0 billion had been spent through 2002, 

highlighting the discrepancy between the cost to address CSO and the amount of available 

funds to bring CSO into compliance with water quality standards (EPA, 2004). As a result, 

the receiving waters will get polluted by dissolved (soluble) and insoluble pollutants 

impacting aquatic life, drinking water resources, fish health and consumption, shellfish 

harvesting, water recreation, and human health with a risk of causing diseases as 

gastroenteritis, dysentery, cholera, and hepatitis (Anne-Sophie et al., 2015; Barco et al., 

2008; Diaz-Fierros et al., 2002; Eganhouse and Sherblom, 2001; EPA, 2004; Kafi et al., 

2008; Venditto et al., 2020; Weyrauch et al., 2010). Several studies reported data on the 

microbiological CSO quality characteristics and their impact on the receiving waters 

(Donovan et al., 2008; Ham et al., 2008; Mclellan et al., 2007; Passerat et al., 2011), 

concluding that CSO is one of the primary sources of microbial pollution in surface waters 
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such as lakes and rivers. Mclellan et al. (2007), (Mclellan et al., 2007) reported that E. coli 

levels in the Milwaukee River, following CSO events, ranged from 104 to nearly 105 

CFU/100 mL, highlighting that CSO has a considerable impact on the microbiological 

quality of the river. In another study on pathogen-related disease risk for users of the Lower 

Passaic River in New Jersey, it was stated that the release of pathogens into the river via 

CSO will continue to be a significant human health risk until CSO discharges are 

adequately controlled (Donovan et al., 2008),.  

To reduce the impact of discharges in surface waters, the EPA published a guidance 

document, ‘‘Combined Sewer Overflow Control’’ (EPA, 1993), discussing methods to 

achieve high-rate disinfection of wet weather flows. The guidance document indicates that 

an effective CSO disinfection would achieve a reduction in bacteria concentration of at 

least 4-log (99.99% removal) at a contact time of 15-30 minutes. To combat waterborne 

diseases, different disinfection methods have been used to inactivate pathogens coming 

from CSO discharges (Corporation, 2010). Among them, chlorine-based disinfecting 

agents, ozone, peracetic acid (PAA), performic acid (PFA), and ultraviolet (UV) light are 

the most common disinfection processes. Chlorine is the most widely used disinfectant, 

but its use is decreasing in the water industry because of the formation of potentially toxic 

and carcinogenic chlorinated by-products (Bayo et al., 2009; Nurizzo et al., 2005; Watson 

et al., 2012). Ozone is a very efficient disinfectant for drinking water, but its application in 

wastewater treatment is limited due to operation and maintenance limitations (Chhetri et 

al., 2014; EPA, 1999; Gehr et al., 2003; Xu et al., 2002). PAA and PFA are emerging 

chemical disinfectants that have demonstrated the potential to inactivate microorganisms 
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(Maffettone et al., 2020; Manoli et al., 2019). This study deals with a physical disinfection 

process, UV light, to inactivate bacteria and address CSO challenges. 

To date, UV irradiation is the most attractive disinfection process for CSO events due to 

its short contact time requirements and the lack of any toxic by-products (Botturi et al., 

2020; Gehr et al., 2003; Gibson et al., 2017; Muller and Lem, 2011; Scherrenberg, 2006; 

Tondera et al., 2015). However, the high suspended solids content of CSO is a major 

challenge for UV disinfection (Muller and Lem, 2011; Wojtenko et al., 2001). With 

particles present in the influent, UV transmittance is significantly decreased, reducing the 

efficiency of the UV light for microorganism inactivation. Studies investigated the effects 

of solids on the efficiency of UV disinfection revealing that a relationship exists between 

the concentration of total suspended solids (TSS) and the removal rate of fecal bacteria 

(Air et al., 2013; Darby et al., 1993; Jolis et al., 2001). Air et al. (2013) (Air et al., 2013) 

reported that as the TSS level increase, the UV inactivation rate constants decrease. Madge 

et al. (1999) (Madge and Jensen, 1999) stated that not only the concentration of solids but 

also the particle size affect the UV disinfection efficiency. Indeed, the authors underlined 

that a slower disinfection rate of fecal coliforms (FC) was associated with particles over 20 

µm. 

To overcome CSO impacts, new and adaptable multifunctional treatment schemes need to 

be developed. To date, to the best of our knowledge, no study proposed an efficient and 

cost-competitive treatment able to remove a broad spectrum of CSO pollutants. In our 

previous study (Venditto et al., 2020), we contributed to fill this gap by developing a 

microsieve-based filtration pre-treatment process where the effectiveness of chemical pre-

treatment followed by micro-sieve filtration was assessed on the removal of multiple 
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contaminants, i.e., chemical oxygen demand (COD), turbidity, as well as nutrients such as 

nitrogen and phosphorus. The removal of contaminants was achieved by first adsorbing 

soluble pollutants on zeolite and powdered activated carbon (PAC), and subsequently 

applying filtration carried out by polymer-enhanced microsieving. An optimal treatment 

condition consisting of 1.1 mg/L of cationic polymer, 250 mg/L of zeolite, 5 mg/L of 

powdered activated carbon was identified. Under these conditions, excellent performance 

as high as 71.6% removal of turbidity, 55.7% removal of total Kjeldahl nitrogen (TKN), 

35% for total COD (t-COD), and 75% for total phosphorous (TP) were observed (Venditto 

et al., 2020).   

In this paper, the aforementioned treatment process is implemented by adding the UV 

disinfection process as the final step of the treatment train. The study aims at contributing 

towards the identified knowledge gaps by developing an efficient, adaptable, and cost-

competitive disinfection treatment process able to improve the quality of surface waters by 

simultaneously removing microbial and chemical pollutants coming from CSO discharges. 

4.2 Material and methods 

4.2.1 Source of wastewater  

Raw wastewaters (primary influents) were grab sampled after the screening process of a 

wastewater treatment plant (WWTP) located in London, Ontario, Canada. Four sampling 

campaigns were carried out (campaigns 1, 2, 3, and 4) under different weather conditions. 

Campaigns 1 (December, 13th) and 3 (December, 17th) corresponded to the dry weather 

campaigns while campaigns 2 (December, 14th) and 4 (December, 18th) corresponded to 

the rain campaigns (precipitation height H = 3.6 mm and 4.6 mm, respectively). For each 
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wastewater sample, TSS, UV transmittance (UVT), and viable fecal coliforms (FC) were 

measured in triplicates, and averages with standard deviations were reported. 

4.2.2 Analytical methods 

Wastewaters were analyzed for TSS following Standard Methods 2540 (APHA, 1998), and 

UVT at 254 nm was measured using a REALUVT meter (REALTECH, Whitby, Ontario, 

Canada). The standard membrane filtration method (9222D) (APHA, 1998) has been used 

to measure the concentration (CFU/100 mL) of FC. 

4.3 CSO disinfection treatment train and experimental 
procedure 

To identify the best CSO disinfection treatment process, four scenarios were developedand 

the following experiments were carried out at bench scale: 

Scenario 1. Microsieve-based filtration using 350 μm mesh followed by UV irradiation, 

Scenario 2. Microsieve-based filtration using 32 μm mesh followed by UV irradiation, 

Scenario 3. Chemical pre-treatment followed by microsieve-based filtration using 350 

μm and UV irradiation, 

Scenario 4. Chemical pre-treatment process followed by microsieve-based filtration 

using 32 μm mesh and UV irradiation. 

While the overall objective of this research was to develop an efficient, adaptable, and cost-

competitive disinfection treatment process, the above-mentioned scenarios were used (i) to 

select the best mesh size for microsieving by evaluating the TSS removal efficiency and 

UVT improvement, and (ii) to investigate the performance of UV disinfection based on the 

pathogens inactivation. Thereupon, all the scenarios have been compared to find the best 
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CSO disinfection process. Ultimately, the best CSO disinfection process was simulated and 

compared with the no-treatment scenario on a SWMM-simulated CSO to assess its 

environmental impacts at the urban scale. 

4.3.1 Chemical pre-treatment and microsieve-based filtration  

The chemical pre-treatment included two main processes, i.e., a coagulation/flocculation 

process using cationic polymer as coagulant (1.1 mg/L), and an adsorption process using 

powdered activated carbon (5 mg/L) and zeolite (250 mg/L). The treatment was performed 

by following the procedures described elsewhere (Venditto et al., 2020), using 1 L of raw 

wastewater. The pre-treatment process was followed by microsieve-based filtration where 

two different pore size meshes were tested, i.e., 32 µm and 350 µm. At the end of each 

treatment, UVT and TSS were measured in triplicates, and averages were reported. Results 

were compared with UVT values and TSS concentration in the raw (untreated) wastewaters 

to assess the treatment efficiency in terms of percentage removal. 

4.3.2 UV disinfection and microbial inactivation kinetic model 

The UV disinfection process was the final step of the proposed CSO treatment train. The 

UV fluence inactivation response curve was determined in a bench-scale apparatus, known 

as collimated beam, in which part of the output of a UV lamp is directed onto a horizontal 

surface through a non-reflective inner surface (Bolton et al., 2003). Fifty milliliters of 

wastewater were poured into a 60 mm (diameter) x 35 mm (height) crystallization dish 

containing a magnetic stirring bar, and then placed on a magnetic stirrer under the 

collimated beam lamp. A low-pressure mercury amalgam UV lamp emitting 253.7 nm has 

been utilized. The intensity of the incident UV light was measured by placing the IL1700 

radiometer detector (International Light Technologies, Peabody, USA) at the same height 
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as the surface of the wastewater. The exposure time was controlled manually by a shutter. 

The wastewaters were exposed to 4 UV irradiation fluences: 10, 20, 40, and 80 mJ/cm2. 

The UV fluence was calculated as the product of the average UV intensity (mW/cm2) and 

the average exposure time (s) (Kuo et al., 2003). For each sample, the concentration of FC 

was measured before and after irradiation, and the microbial inactivation was investigated. 

All experiments were performed in triplicates, and averages with standard deviations were 

reported.  

For several disinfecting agents such as peracetic acid, performic acid, ferrate and UV, 

microbial inactivation has been reported to exhibit an initial fast inactivation of dispersed 

microbes followed by a slower inactivation of particle-associated microbes (Campo et al., 

2020; Maffettone et al., 2020; Manoli et al., 2020; Santoro et al., 2015). In this study, an 

inactivation kinetic model able to describe the aforementioned biphasic behavior was 

applied to estimate the kinetic parameters controlling the FC inactivation (Santoro et al., 

2015): 

𝑁 =  𝑁0 ∗ (1 − 𝛽) ∗ 𝑒−𝑘𝑑∗𝑈𝑉𝐹𝑙𝑢𝑒𝑛𝑐𝑒 +  𝑁0 ∗ (𝛽) ∗ 𝑒−𝑘𝑝∗𝑈𝑉𝐹𝑙𝑢𝑒𝑛𝑐𝑒               (Eq. 1) 

where N is the FC concentration (CFU/100 mL), N0 is the initial  FC concentration 

(CFU/100 mL), β is the fraction of particle-associated FC (dimensionless), and kd and kp 

are the UV fluence-based microbial inactivation kinetic rate constants for dispersed and 

particle-associated FC (cm2/mJ), respectively. To minimize the sum of square errors (SSE) 

between experimental data and model prediction, β, kd, and kp were fitted for each 

experiment individually using Excel Solver. The inactivation kinetic model was evaluated 
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by the coefficient of determination R2 ranged between 0 and 1. An R2 value close to 1 is 

desirable to ensure a good fit of the model to the observed data. 

4.4 Results and discussion 

4.4.1 Wastewater characteristics  

Table 4.1 summarizes the measured wastewater quality parameters for the collected 

campaigns. Microbial and physical properties measured were consistent with literature-

reported CSO values. In particular, a low UVT ranged between 13.0% and 14.0% was 

measured. The TSS concentration fluctuated between 143 mg/L and 159 mg/L. 

Importantly, these TSS concentrations are in agreement with previous studies reported on 

characteristics of CSO (Arnone and Walling, 2006; Gasperi et al., 2012a). The suspended 

solids content in CSO is a major source of inhibition to disinfection due to its ability to 

absorb, or scatter, a large amount of UV irradiation, thereby decreasing the amount of UV 

light available for disinfection. The concentration of FC ranged from 0.55 × 106 CFU/100 

mL to 1.25 × 106 CFU/100 mL (Table 1). These values are consistent with data reported 

for concentrations of FC in combined wastewater or CSO (Louisville, KY and Atlanta, 

GA). (Arnone and Walling, 2006; Metcalf & Eddy, 2014). The fact that the TSS and FC 

concentrations of the wastewater used in this study are in agreement with reported CSO 

quality characteristics is important in terms of CSO relevance of the present paper.  

Table 4.1- Microbial and physical sample properties and comparison with CSO 

characteristics reported by literature Wastewater characteristics 

   UVT (%) TSS (mg/L) 
FC  

(106 CFU/100 mL) 

This study Campaigns a 
1st 14 ± 0.5  143 ± 11.7  0.60 ± 0.5 

2nd 13 ± 0.5 158 ± 10.4   0.55 ± 1.0   
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3rd 13 ± 0.5 151 ± 10.8   1.05 ± 0.5 

4th 14 ± 0.0 159 ± 10.6 1.25 ± 1.1 

Average  14  153  0.86  
 

      

From 
literature 

(Metcalf & 
Eddy, 2014) 

Range - 270 - 550 0.1 - 1 
     

(Arnone and 
Walling, 2006) 

Range - 14 - 227 0.03 - 0.43 
     

(Gasperi et al., 
2012a) 

Range - 121 - 394 - 

a All measurements were performed in triplicates and averages with standard 

deviations were reported. 

4.4.2 Treatment efficacy on TSS removal and UVT 

Figs. 4.1a) and 4.1b) compare the performance of microieve-based filtration in terms of 

TSS and UVT removal, with and without chemical pre-treatment. As expected, the 

microsieved-based filtration enhanced by chemical pre-treatment achieved higher removal 

of TSS compared to the TSS removal observed in the absence of chemical pre-

treatment. The TSS concentration ranged between 90-120 mg/L without chemicals and 

41-51 mg/L with chemical pre-treatment. At 350 μm mesh, the TSS removal efficiency 

was 20% by filtration alone (no chemical pre-treatment), while TSS removal increased to 

68% with the chemical pre-treatment. At 32 μm mesh, the TSS removal efficiency achieved 

was 73% and 40% with and without chemical pre-treatment respectively (Fig. 4.1a).  

Filtration alone slightly increased UVT from 14.0% to 14.4% and 16.3% by 350 μm mesh 

and 32 μm mesh, respectively. When filtration was preceded by chemical pre-treatment, 

UVT increased from 19.6 to ~30.5% by 350 μm mesh, and to ~32% by 32 μm mesh (Fig. 

4.1b). Moreover, Fig. 4.1a) shows that, while without chemicals a smaller mesh size 
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significantly increased the level of solids removal, the mesh size slightly affected the 

removal of particles when chemicals were used. These results are in agreement with 

previous studies where the performance of coagulation-flocculation using polymer as 

primary coagulant was investigated in terms of particulate matter removal, e.g., reported 

typical particle removal efficiencies of around 70-90% using polymer (Chhetri et al., 2016; 

Delporte et al., 1995; EPA, 2003; Jolis and Ahmad, 2004; Li et al., 2003), and around 39% 

with filtration alone (Botturi et al., 2020). 

The use of polymer as a primary coagulant is considered to be the main contributor to the 

enhanced particle removal. Indeed, the micorsieve-based filtration increased the removal 

of particulate matter (up to 73%) when polymer was used as a primary coagulant. The high 

level of removal is mainly associated with the combined effect of coagulation-flocculation 

and adsorption. The likely mechanism of the enhanced particulates removal was charge 

neutralization of negatively charged particles, through reaction with the cationic polymer, 

followed by adsorption on zeolite and powdered activated carbon. This would result in 

large floc formation allowing for better exclusion during subsequent filtration. As a result, 

the negative charge of particles was neutralized through the positive charge of cationic 

polymer and then adsorbed on zeolite and powdered activated carbon allowing large floc 

formation. This mechanism facilitated the sieving process regardless of the mesh size used 

and confirmed the effectiveness of the chemical pre-treatment. 
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Figure 4-1: Comparison between microsieve-based filtration alone (no chemical pre-

treatment) and chemical pre-treatment: a) TSS concentration (mg/L) and removal 

efficiency, and b) UVT (%) and UVT improvement with respect to the raw water. 

Error bars represent standard deviations of reported data. 

4.4.3 Treatment efficacy on fecal bacteria 

4.4.3.1 UV disinfection enhanced by microsieve-based filtration 

Fig. 4.2 shows the UV fluence response curves for the inactivation of FC with and without 

microsieve-based filtration by 350 μm and 32 μm mesh size. The curve obtained filtering 

with 350 μm mesh shows a steep decline in numbers with an approximate 2-log reduction 

at fluences up to 10 mJ/cm2 followed by an asymptote beyond that fluence. The same trend 

was observed for the inactivation of FC by UV alone and UV after filtration by 32 μm 

mesh size (Fig. 4.2). Indeed, the curves obtained using UV alone and UV with 32 μm mesh 

show a steep decline with an approximate 2.2-log and 2.7-log reductions, respectively, at 

fluences up to 10 mJ/cm2. While the dispersed microorganisms were inactivated rapidly in 

all cases (~2.5-log reduction at UV fluence of 10 mJ/cm2), much higher UV fluences are 

needed to further increase the FC inactivation efficiency. For example, to increase the FC 

reduction from 2.5-log to 3.5-log, a UV fluence higher than 40 mJ/cm2 was required. This 

behavior may be related to shielding embedded bacteria from UV irradiation which affects 

the disinfection process (Darby et al., 1993). It is also observed that filtration by 32 μm 

mesh did not affect the disinfection process significantly, despite the higher particle 

removal efficiency than 350 μm mesh (Fig. 4.1a). This result point to the probability that 

particles smaller than 32 μm are still present in the wastewater, decreasing the disinfection 

efficiency. Qualls et al. (Qualls et al., 1985) showed that complete inactivation of FC was 
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achieved only in wastewaters where particles bigger than 8 μm were removed. Likewise, 

Jolis et al. (Jolis et al., 1996) studied the effect of particles on UV inactivation of coliform 

bacteria reporting that suspended particles smaller than 7 μm have little impact on the 

bacteria inactivation. 

 

Figure 4-2: UV fluence response curves for the inactivation of FC after microsieve-

based filtration by 350 μm mesh and 32 μm mesh. Error bars represent standard 

deviations of reported data. 
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4.4.3.2 UV disinfection enhanced by chemical pre-treatment and 
microsieve-based filtration 

Fig. 4.3 shows the FC inactivation curve by UV enhanced by chemical pre-treatment and 

filtration. During filtration, 350 μm mesh and 32 μm mesh were tested to investigate their 

impact on the disinfection process. Results show a higher FC inactivation using the 32 μm 

mesh compared with filtration by 350 μm mesh. The most remarkable result emerges 

comparing the FC inactivation curve with and without chemical pre-treatment at 32 μm 

mesh (Figs. 4.2 and 4.3). Significantly, a 4-log reduction at a UV fluence of 10 mJ/cm2 

was achieved with chemical pre-treatment (Fig. 4.3), while without pre-treatment, a 4-log 

reduction could be achieved at a higher UV fluence of 80 mJ/cm2 (Fig. 4.2). As it was 

expected, the lower TSS concentration obtained after the chemical pre-treatment (Fig. 

4.1a)) improved the efficiency of the disinfection process, i.e., higher FC inactivation was 

achieved (Fig. 4.3) (Friedler et al., 2021; Liang et al., 2013). Previous studies of Gehr et 

al., where the performance of UV disinfection enhanced by physico-chemical processes 

using ferric and/or alum coagulation was investigated, the FC inactivation curve showed 

an asymptote zone at UV fluences >20mJ/cm2 achieving approximately 3-log reduction 

(Gehr et al., 2003). In our study, with chemical pre-treatment, a 4-log reduction of FC was 

achieved at lower UV fluence of 10 mJ/cm2 (Fig. 4.3). Importantly, the upshot of this result 

is the possibility to use less UV equipment when a chemical pre-treatment and microsieve-

based filtration are applied before the UV disinfection process, thereby reducing the UV 

treatment cost. This may result in a quick and effective treatment of a large amount of 

wastewater flow, which is of utmost importance to address CSO challenges. Moreover, 

since locations associated with CSO discharges are typically not easily accessible and often 
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space-limited, the use of low footprint equipment has the potential to provide 

municipalities with a compact treatment unit for CSO. 

 

Figure 4-3: UV fluence response curves for the inactivation of FC after chemical pre-

treatment and microsieve-based filtration by 350 μm mesh and 32 μm mesh. Error 

bars represent standard deviations of reported data. 

4.4.4 Evaluation of microbial inactivation kinetic model 

Table 4.1 reports the microbial inactivation kinetic model fitted parameters. The fraction 

of particle-associated FC, β, varied from 0.0001 to 0.0085, with the highest β value 

determined for the UV disinfection after 350 μm mesh filtration with no chemical pre-

treatment. This is consistent with the result of low TSS removal (< 25%) obtained after 
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350 μm filtration (Fig. 4.1a). The lowest β of 0.0001 was determined for the UV 

disinfection enhanced by chemical pre-treatment followed by 32 μm filtration, 

demonstrating the efficacy of this treatment train to remove particle-associated microbes. 

Interestingly, the β values determined by the model fitting are consistent with the results 

of TSS removal (Fig. 4.1a)). The kd varied from 2.220 to 3.215 cm2/mJ (Table 4.1) with 

lowest kd determined for the UV alone. The highest kd (~3.2 cm2/mJ) was determined for 

the UV disinfection enhanced by chemical pre-treatment, indicating the efficiency of the 

treatment to inactivate dispersed microorganisms. In all cases, a lower kp (0.005-0.053 

cm2/mJ) than kd was determined. This result is consistent with the FC inactivation curves 

presented in Fig. 4.3, where a marked tailing effect is observed after fluence 10 mJ/cm2 for 

both the chemical pre-treatment followed by 32 μm and 350 μm. 

Table 4-1: Microbial inactivation kinetic model fitted parameters 

Treatment  β 
kd 

cm2/mJ  

kp 

cm2/mJ  

UV alone  0.0066 2.220 0.049 

Microsieve-based filtration using 32 μm mesh followed by 

UV irradiation 

 
0.0037 2.626 0.053 

Microsieve-based filtration using 350 μm mesh followed 

by UV irradiation, 

 
0.0085 2.626 0.050 

Chemical pre-treatment process followed by microsieve-

based filtration using 32 μm mesh and UV irradiation 

 
0.0001 3.203 0.005 

Chemical pre-treatment followed by microsieve-based 

filtration using 350 μm and UV irradiation 

 

0.0004 3.215 0.009 
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Figure 4.4 shows the model predicted and the observed values for different log reductions 

of FC for each treatment process. The chart has been divided into three arbitrary regions 

aiming at classifying the efficiency of each treatment process as low removal (<2-log FC 

reduction), medium removal (between 2-log and 4-log FC reduction), and high removal 

(>4-log FC reduction). Among the tested treatments, only the UV irradiation enhanced by 

chemical pre-treatment followed by microsieve-based filtration using 32 μm mesh 

achieved a high removal (>4-log reduction of FC) at all the UV fluences applied (10-80 

mJ/cm2). The high R2 of 0.99 for all the treatments tested, and 0.98 for the UV disinfection 

alone, indicates an excellent agreement between model-predicted and experimental values. 

In our previous work (Venditto et al., 2020), we developed a regression model for each one 

of the main CSO pollutants, and we demonstrated how the regression models were able to 

achieve different treatment objectives. The inactivation kinetic model (Eq. 1), combined 

with the regression models developed in our previous work, can be used to pursue multiple 

treatment objectives making the treatment adaptable to different CSO water quality and 

quantity. 
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Figure 4-4: Microbial inactivation model assessment: predicted vs. observed 

4.5 Conclusion 

The main goal of this study was to develop an efficient, adaptable, and cost-competitive 

disinfection treatment process for low-quality wastewaters. The main conclusions are: 

• The UV disinfection enhanced by chemical pre-treatment and microsieving 

filtration showed better performance at lower UV fluence than without chemical 
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pre-treatment. The highest FC inactivation was obtained by the UV disinfection 

enhanced by chemical pre-treatment and filtration by 32 μm mesh size, i.e., 4-log 

reduction of FC at a UV fluence of 10 mJ/cm2. 

• The low UV fluence requirements of the proposed treatment train may result in a 

reduced cost for the treatment of a high wastewater flow, with reduced UV 

equipment and operating costs, providing municipalities with a smaller and 

compact treatment unit for CSO. 

• The double exponential microbial inactivation model applied in this study, well 

predicted the FC inactivation kinetics with an R2 of 0.98, for all the treatments 

tested. This model, used in combination with the regression models developed in 

our previous work (Venditto et al., 2020), makes the treatment adaptable to 

different CSO water quality and quantity, to pursue multiple treatment objectives 

with a single treatment process. 

• The SWMM simulations showed a considerable environmental efficacy of the UV 

disinfection enhanced by chemical pre-treatment and filtration by 32 μm mesh, i.e., 

TSS removal of 73% and 4-log reduction of FC.  

• The cost analysis performed herein suggests that the proposed treatment train is 

competitive to current CSO treatment technologies and strategies in terms of cost-

effectiveness. 
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Chapter 5  

5 Environmental impacts of CSO treatment: Stormwater 
management modeling study 

5.1 Introduction 

Since the extent and the frequency of CSO discharges is also function of land-use, rainfall 

and sewer network characteristics, the integration of the large (catchment scale) and the 

small scale (sewer network scale) in a comprehensive hydraulic model is required in order 

to predict and control CSO impacts (Field and Jr, 1972). Thus, the application of a dynamic 

rainfall-runoff-routing simulation model is necessary to simulate the sewer network 

response during a rainfall event in terms of pollutant loads and discharge volume (Freni et 

al., 2010; Lucas and Sample, 2015). A The Storm Water Management Model (SWMM) is 

one of the most effective models to simulate the response of sewer networks under several 

weather conditions and to assess overflow pollution (Warwick and Tadepalli, 1991) 

merging different scales. The SWMM has been successfully used in several projects to 

simulate short and long-term hydraulic sewer network response to the rainfall events. These 

projects showed that SWMM application is very useful on urban drainage flooding analysis 

(Akdoğan and Güven, 2016; Tsihrintzis and Hamid, 1998), water quality and transport of 

contaminants (Liu et al., 2010; Temprano et al., 2007). The SWMM allows users to 

manage, simultaneously, hydraulic and hydrological modules identifying pollutant sources 

and their impacts on the water quality. The hydrology module operates on the catchment 

areas that receive precipitation and generate runoff and pollutant loads (Tsihrintzis and 

Hamid, 1998). The model requires several input data such as the sub-catchment area, 

pervious and impervious areas with and without depression storage, width, slope and 
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Manning’s roughness overland (Niaizi et al., 2017). The hydraulic module works on the 

sewer network tracking the quantity and quality of runoff generated within the catchment 

area, the flow rate into the system, flow depth, and quality of water. The input data used to 

describe pipes, manholes and outfalls are diameter, length, material, slope, Manning 

coefficient, and type of flow (stormwater or sanitary flow) (EPA, 2017). 

5.2 Study area 

In this study, the SWMM was applied to simulate the receiving body water quality impacts 

when a CSO occurs. Cavendish area, located to the north-west of London Ontario (CA), was 

used as a study area (Figure 6.1).  

 

Figure 5-1: Location (left side) and discretization (right side) of the catchment area 

The total catchment studied has an area of 41 ha and the land use is predominantly low-

density residential area with remaining land use (about 30%) as open space. The studied 

area is characterized by a mixture of combined sewer drainage system and sanitary sewer 
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system with a separate stormwater drainage network. The sewers consist mostly of circular 

concrete pipes the total length of the main sewers is 6.2 km, measured from the upstream 

to the overflow outfall point. The studied sewer network discharges through the outfall 

located in the south of the area directly into the Thames River. 

5.3 Calibration and Validation 

Table 6.1 summarizes the input data used for model calibration. An initial representation 

of the area was constructed using shapefiles from the municipality of the City of London 

and sanitary flows and infiltration flows were modeled based upon design data provided 

by the municipality. Details about land use and estimated population of the study area are 

reported in Figure S6.1 and Table S6.1 of Appendix B. 

Table 5-1: Hydrologic and hydraulic input data added to the SWMM model 

Hydrologic input data Hydraulic input data 

Slope and width Pipe physical characteristics 

Depression storage Manhole physical characteristics 

Pervious and impervious area (with and w/o 

depression storage) 

Outfall physical characteristics 

Manning’s roughness coefficient Pump station characteristics 

Soil infiltration capacity  

Raw rainfall data from October 2006 to December 2010 were acquired from local weather 

stations operated by the municipality (A.J. Taylor Operations Centre). Depth and flow 
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velocities registered by three monitoring stations of Cavendish area were also provided by 

the City of London from October 2006 to December 2010. Rainfall data, depth and flow 

velocities data were used to generate 5-min intervals time-series input files for the 

modeling software and analyze the sewer network response.  

To calibrate the SWMM, the aforementioned monitoring data were added into the model 

in tabular form. Quality Assurance/ Quality Control (QA/QC) analysis (Lai et al., 2007; 

Vallabhaneni et al., 2012) were carried out by sanitary sewer overflow analysis and 

planning (SSOAP) toolbox to ensure accuracy and reliability of observed data. Thus, the 

relationship between depth and velocity, and depth and flow rate of flow monitoring data 

was investigated by scatter plot. Data were considered consistent if a positive correlation 

among depth, flow and velocity data was identified. Specifically, an increase of the water-

depth into the sewer network must correspond to an increase of flow and velocity; no 

inconsistencies were found at the end of this analysis, confirming the accuracy and 

reliability of the observed data (Figure S6.2 and S6.3 of Appendix B). Additionally, by 

analyzing observed flow and rainfall data, dry weather days and wet weather days were 

identified. To assess the reliability of flow and rainfall data, days were divided in weekday 

and weekend days. The average of weekday and weekend flow for the period recorded was 

calculated, expecting a different amount of flow (higher) during the weekend day (Nasrin 

et al., 2013). The average flow for weekdays and weekend-days was graphically compared 

by line chart; the weekend day flow path is greater and a little bit shift on the right than 

weekday flow path, validating the previous assumption and in agreement with the literature 

(Figure S6.4 of Appendix B). 
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To carefully investigate the sewer network response during rainfall events, the sewer 

network flow was analyzed in order to identify the amount of the base wastewater flow 

(BWF), groundwater flow (GWF) and rainfall derived infiltration and inflow (RDII) into 

the sewer network. As already reported in Chapter 2, Base Wastewater Flow (BWF) and 

Ground Wastewater Infiltration (GWI) are a consequence of dry weather flow. BWF is the 

residential, commercial, institutional, and industrial flow, collected from the sanitary sewer 

system and treated to the wastewater treatment plant (WWTP). GWI is the groundwater 

infiltration that enters the collection system through cracked pipes or deteriorated manholes 

when the ground surface is extremely saturated (EPA, 2017). During Wet Weather Flow 

(WWF), Rainfall Derived Infiltration/Inflow (RDII) is added to GWI and BWI. Rainfall 

inflow refers to the water that enters the sanitary sewer system through direct connections 

(e.g., roof and stormwater cross-connection); rainfall infiltration refers to the water that 

filters through the soil before entering the sanitary sewer system through damaged pipe 

sections, deteriorated manholes or connected foundation drain. RDII is the major 

component of peak wastewater flows during wet weather and it is typically responsible for 

overflows (Muleta and Boulos, 2008). The SSOAP toolbox provides automated 

identification of BWF, GWF, and RDII generating a simulated RTK hydrograph. The RTK 

hydrograph contains three types of hydrographs 1) short, 2) medium and 3) long responses, 

and it is based on three values: R, T and K. R is the fraction of rainfall that enters into the 

system, T is the time of onset of rainfall to the peak in hours, and K is the time to recession 

to the time to peak (Vallabhaneni et al., 2012). The SWMM requires the R, T, and K values 

as input data to calculate the amount of RDII flow that comes into the sewer network during 

a rainfall event. SSOAP toolbox helps to identify the best combination of R, T, and K 
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values by visual curve fitting. The visual curve fitting is an interactive and visual approach 

by which users can define manually R, T, and K getting short, medium and long response 

curves (Gheith, 2010; Lai et al., 2007). Initial values of R, T, and K were selected based 

on pre-defined guidelines identified during the literature review and they were adjusted to 

reach a good fit between observed RDII flow and simulated RDII flow. Observed RDII 

flow and simulated RDII flow achieved a good visual comparison with the following R, T, 

and K values (Figure S6.5 of Appendix B):  

• For the short response, R-value was 0.169, T-value was 0.5, and K-value was 15. 

• For the medium response, R-value was 0.20, T-value was 3, and K-value was 3. 

• For the long response, R-value was 0.30, T-value was 10, and K-value was 9. 

From observed dry weather and wet weather days, the strongest rainfall event was 

identified and used for model calibration. The observed depth and the observed flow 

velocity from each monitoring station were compared with simulated depth and simulated 

velocity data for the monitoring station n.1, monitoring station n.2, and monitoring station 

n.3. To find the best fit between observed and modelled data, a sensitivity analysis was 

performed using pervious and impervious area, depression storage, width, slope, and 

Manning's roughness coefficient for each sub-catchment were used as sensitive parameters 

(EPA, 2016a). According to the sensitivity analysis, pervious and impervious area showed 

a greater impact on calibration results. Calibration results are reported in Appendix B. To 

assess the calibration reliability, the model was validated by using a different rainfall event 

and the model response was compared with the observed data. Validation results are also 

reported in Appendix B. 
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5.4 Environmental impacts of CSO treatment 

The SWMM was used to simulate an overflow and analyze the benefits of treating CSO 

discharges on the receiving body water quality by the proposed treatment. For this purpose, 

the no-treatment scenario was compared with the best treatment scenario identified in 

chapter 4, such as UV disinfection (fluence 10 mJ/cm2) enhanced by chemical pre-

treatment and filtration by 32 μm mesh. The overflow impacts on the water quality of the 

Thames River were investigated in terms of TSS and FC concentrations. The deposit of 

TSS on the catchment (pollutants build-up) during dry weather and their movement from 

a catchment surface (pollutants wash-off) during dry wet weather was simulated using 

SWMM build-up and wash-off equations (EPA, 2016b). Since no TSS data were available 

from the municipality about pollutants build-up and pollutants wash-off, these parameters 

were estimated according to land use and obtained from the literature (Tu and Smith, 2018). 

FC was assumed to be co-pollutants of TSS in overland flow. The attachment fraction of 

FC with TSS was assumed to be 50% (Characklis et al., 2005; Wu et al., 2009). The 

concentration of TSS and FC coming from the sewer network was assumed to be the same 

as the collected samples. 

Under wet weather conditions, an overflow occurred during a 3-hours rainfall event with 

maximum rainfall intensity of 50 mm/hr. The CSO lasted 6 hours (from 4:10 a.m. to 10:50 

a.m.) and resulted in the discharge of 1213 m3 of untreated water into the Thames River 

with an average flow rate of 44.42 L/s (Table 6.3). 

Table 5-2: Overflow characteristics and pollutant load before and after treatment 
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 No treatment 

Microsieve-based filtration 

(32 µm) + UV dose 10 

(mJ/cm2) 

Duration Overflow (min) 440 

Overflow discharged volume (mc) 1213 

Flow rate average (L/s) 44.42 

Cumulative precipitations during overflow 

(mm) (mean intensity (mm/hr)) 
46.77 (0.61) 

Cumulative TSS discharged (g) 184955 50332 

Cumulative FC discharged (counts) 1.05 x 1013 1.24 x 109 

The flow peaked after 1 hour from the beginning of the overflow reaching 102 L/s and the 

water discharged during the first 2 hours of overflow carried the highest amount of TSS 

and FC (Figure 6.2). As regards the solid matters, the high concentration of TSS at the 

beginning of the overflow may be due to the particles washed by the stormwater runoff on 

urban surfaces and the resuspended sewer sediments. On the other hand, the high 

concentration of FC during the first 2 hours of overflow may be related to the fraction of 

microorganisms attached to solid matters (Passerat et al., 2011b). These results suggest that 

a CSO can have considerable impacts on the water quality of the Thames River. Indeed, it 

is interesting to note that for a total of 1213 mc of water overflowed, a total of about 180000 

g of TSS and 1.05 x 1013 FC were discharged into the river. However, Figure 6.3 clearly 

shows that 73% of TSS were removed by the treatment while the number of FC was at 

least 4 orders of magnitude higher than the number of FC observed in the treated effluents. 
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These results validate the effectiveness of the treatment as a key point for the improvement 

of the water quality of the Thames River.  

 

Figure 5-2: Variation of CSO parameters over time - Flow rate (orange bars); TSS 

(moving 5-min average, line) discharged into the Thames River during the overflow 

(blue); FC (moving 5-min average, line) discharged into the Thames River during the 

overflow (red). 
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Figure 5-3: Comparison of the cumulative mass of TSS discharged into the Thames 

River before (red) and after (blue) treatment, and cumulative count of FC discharged 

into the Thames River before (red) and after (blue) treatment. 
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Chapter 6  

6 Conclusion and Recommendations 

6.1 Conclusions 

The detailed summary of the major findings of the various subprojects have been included 

in chapters 3-6. The principal findings of this study were: 

• The developed microsieve-based filtration enhanced by low-dose chemical pre-

treatment and followed by UV disinfection, still not explored in other studies, was 

able to deal with multiple contaminants and the associated impacts in the receiving 

bodies caused by CSO pollution and nutrients discharge in the environment.  

• The developed treatment relies on multiple treatment agents combined in a single 

multifunctional process where fine particles, such as zeolite and powdered 

activated carbon, first adsorb soluble nutrient and are subsequently removed by 

polymer-enhanced microsieving allowing the removal of both soluble and 

particulate pollutants in a single treatment step. At the optimum dosage of treatment 

agents, about 72% of Turbidity removal, 65% of TSS removal, 56% of TKN 

removal, 35% of t-COD removal and 75% of TP were observed. Furthermore, this 

work describes an innovative method for the removal of ammonia via a dual 

mechanism of ammonia capture by zeolite adsorption, followed by zeolites removal 

by polymer coagulation and microsieving filtration.  

• The UV disinfection showed better performance at lower UV fluence when 

enhanced by low-dose chemical pre-treatment and microsieve-based filtration. 

Indeed, 4-log inactivation of fecal coliform was obtained at fluence 10 mJ/cm2. This 

result opens the possibility for municipalities to deploy smaller and compact 
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treatment units for CSO treatment able to treat large amount of flow quickly and 

effectively, reducing operating costs. 

• The proposed treatment showed its advantages in terms of cost-effectiveness if 

compared with existing CSO treatments, sewer separation or storage tank 

applications. 

6.2 Limitations 

The developed microsieve-based filtration enhanced by low-dose chemical pre-treatment 

and followed by UV disinfection achieved high removal efficiencies. Thus, this treatment 

is promising for treating CSO discharges. However, one of the major limitations of this 

treatment is the low removal of soluble COD (<15%). Although the literature suggest that 

soluble COD removal increase with the increase of carbon dose due to an increase of active 

site available on the activated carbon for the adsorption of soluble COD, we preferred to 

keep a low-dosage of treatment agents to develop a cost-competitive CSO treatment. 

Moreover, in Chapter 4, the rate constants of particle-associated microbes Kd for all the 

treatment scenarios, may present a marginal error due to only two data points corresponded 

to UV Fluence 0 mJ/cm2 and 10 mJ/cm2. 

6.3 Recommendations 

The cost-effective microsieve-based filtration enhanced by low-dose chemical pre-

treatment and followed by UV disinfection require further investigations. The following 

recommendations for future work are made:  

• Experiments on a pilot scale are needed to quantify the performance and overall 

treatment cost of the proposed treatment. 
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• The amount of chemical sludge produced by the physico-chemical treatment has to 

be analyzed. Remedial measures to deal with chemical sludge must be investigated. 

• Large-scale scenarios associated with centralized and decentralized CSO treatment 

strategies should be investigated in order to quantify the performance of the 

developed treatment in terms of environmental and economic sustainability. 

• Zeolite regeneration methods should be investigated, and the efficiency of 

regenerate zeolite should be tested. The economical advantages of the regeneration 

of the zeolite should be assessed. 
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Appendices 

Appendix A: Supplementary material of Chapter 3  

 

Figure S3. 1: Graphical abstract of work presented in Chapter 3. 
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Table S3. 1: Treatment results obtained by testing different combinations of mesh 

size, Polymer, Zeolite, and PAC dosages. 

Treatment agents 
 

Pollutants (after treatment) 

Run 
Polymer Zeolite PAC Mesh   Turbidity t-COD s-COD TKN TP 

(mg/L) (mg/L) (mg/L) µm  (NTU) (mg/L) (mg/L) (mg/L) (mg/L) 

1 1 0 250 350  91.4 565 340 31.5 8.8 

2 3 0 250 350  54.5 456 319 30.5 7.7 

3 1 5000 250 350  114 581 324 21.7 10.2 

4 3 5000 250 350  55.3 450 321 21.8 7.3 

5 2 2500 0 158  62.4 453 337 25.2 8.1 

6 2 2500 500 158  64.6 451 326 24.7 8 

7 2 2500 0 500  62.4 458 334 26.5 8.2 

8 2 2500 500 500  62.6 501 304 26.5 8.2 

9 1 2500 250 158  84.9 498 318 25.2 8.9 

10 3 2500 250 158  50.8 420 314 24.3 7.3 

11 1 2500 250 500  89.6 411 322 23 8.6 

12 3 2500 250 500  52.15 438 318 26.2 7.2 

13 2 0 0 350  54.1 447 330 30.5 7.9 

14 2 5000 0 350  65.4 458 334 22.1 8.8 

15 2 0 500 350  58.5 478 311 32 8.2 

16 2 5000 500 350  66.3 501 300 20.4 8.1 

17 2 0 250 158  56.2 437 313 32.2 8.1 

18 2 5000 250 158  56.5 428 311 20.8 7.9 

19 2 0 250 500  58.9 456 332 34 8 

20 2 5000 250 500  61.1 460 310 21.7 7.9 

21 1 2500 0 350  83 496 323 25.7 9.1 

22 3 2500 0 350  54.1 422 312 25 8.2 

23 1 2500 500 350  77 513 297 25.7 8.9 

24 3 2500 500 350  50 423 299 24.8 7.5 

25 2 2500 250 350  61.5 461 304 22.4 8.2 

26 2 2500 250 350  59.2 462 296 21.7 8.1 

27 2 2500 250 350  59.5 489 304 21.9 8 
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Table S3. 2: Summary of the analysis of variance: linear and two-way interactions of treatment agents on turbidity, p-COD, s-COD, t-COD, TKN and TP removal. The table shown p-value, standard error 

of the coefficients (SE coeff) and variance inflation factor 

 Turbidity p-COD s-COD t-COD TKN TP 

Source p-Value SE Coef VIF p-Value SE Coef VIF p-Value SE Coef VIF p-Value SE Coef VIF p-Value SE Coef VIF p-Value SE Coef VIF 

Polymer 0 0.756 1 0.002 2.13 1 0.246 0.813 1 0.002 1.31 1 0.945 0.381 1 0 0.248 1 

Zeolite 0.097 0.756 1 0.444 2.13 1 0.206 0.813 1 0.75 1.31 1 0 0.381 1 0.178 0.248 1 

PAC 0.925 0.756 1 0.028 2.13 1 0.002 0.813 1 0.288 1.31 1 0.785 0.381 1 0.261 0.248 1 

Mesh 0.661 0.756 1 0.74 2.13 1 0.975 0.813 1 0.762 1.31 1 0.119 0.381 1 0.902 0.248 1 

Polymer*Zeolite 0.158 1.31 1 0.526 3.68 1 0.372 1.41 1 0.755 2.27 1 0.556 0.659 1 0.007 0.43 1 

Polymer*PAC 0.9 1.31 1 0.645 3.68 1 0.516 1.41 1 0.821 2.27 1 0.937 0.659 1 0.338 0.43 1 

Polymer*Mesh 0.818 1.31 1 0.112 3.68 1 1 1.41 1 0.154 2.27 1 0.045 0.659 1 0.865 0.43 1 

Zeolite*PAC 0.811 1.31 1 0.667 3.68 1 0.456 1.41 1 0.865 2.27 1 0.111 0.659 1 0.134 0.43 1 

Zeolite*Mesh 0.897 1.31 1 0.6 3.68 1 0.324 1.41 1 0.854 2.27 1 0.656 0.659 1 0.865 0.43 1 

PAC*Mesh 0.89 1.31 1 0.317 3.68 1 0.348 1.41 1 0.526 2.27 1 0.772 0.659 1 0.766 0.43 1 
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Table S3. 3: Treatment alternatives based on different treatment objectives. Treatment agents have been normalized by the influent 

pollutant loads 

 Removal (%) Design 
N. of 

frontiers 
per design  Turbidity t-COD TKN TP  

Polymer  
(mg/g of 

TSS) 

Zeolite 
(mg/g of TKN) 

PAC  
(mg/g of COD) 

Mesh 
(μm) 

 

O-1 72 35 36 75  1.79 3592 149 370  4 

O-2 72 40 57 75  1.85 9339 75 475  3 

O-3 80 42 57 76  3.32 7902 149 180  2 
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Figure S3. 2: Predicted (% removal) vs. actual values (% removal) plot for 

turbidity, TP, p-COD, s-COD, and TKN. Results obtained from cross-validation 

model. 
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Figure S3. 3: Correlation plot between Turbidity and TSS. 
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Appendix B: Supplementary material of Chapter 4 

 

Figure S4. 1: Graphical abstract of work presented in Chapter 4. 
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 Appendix C: Supplementary material of Chapter 6  

 

Figure S6. 1: Land Use of the study area 

 

Table S6. 1: Land Use and estimated population based on "Design Specifications 

& Requirements Manual" of the City of London 

Land Use Type Area (ha) Population Density Estimated Population 

Residential – Low Density 86.5 3 persons/unit 2.500 

Green area 13.5 26.4 persons/ha 357 

Total 100 - 2.857 
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Figure S6. 2: Scatter graph showing the relationship between velocity and depth 

into the sewer network during the rainfall event 

 

Figure S6. 3: Scatter graph showing the relationship between flow and depth into 

the sewer network during the rainfall event
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Figure S6. 4: Dry weather hydrographs showing the flow path of the weekday and weekend day average flow
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Figure S6. 5: RDII graph showing the flow characterization into the sewer network during wet weather period: Observed wet flow (light-green line), Observed  dry flow (dark-green line), Simulated  RDII 

flow (red line).The histogram (purple columns) represents the height of rainfall (mm). The beginning and end of the rainfall event is marked by the pink square shape.
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Figure S6. 6: Calibration results in terms of depth for monitoring station n.1 

 

Figure S6. 7: Calibration results in terms of velocity for monitoring station n.1 
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Figure S6. 8: Calibration results in terms of depth for monitoring station n.2 

 

Figure S6. 9: Calibration results in terms of velocity for monitoring station n.2 
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Figure S6. 10: Calibration results in terms of depth for monitoring station n.3 
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Figure S6. 11:  Calibration results in terms of velocity for monitoring station n.3 

 

Figure S6. 12: Validation results in terms of depth for monitoring station n.1 
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Figure S6. 13: Validation results in terms of velocity for monitoring station n.1 

 

Figure S6. 14: Validation results in terms of depth for monitoring station n.2 
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Figure S6. 15: Validation results in terms of velocity for monitoring station n.2 
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Figure S6. 16: Validation results in terms of depth for monitoring station n.3

 

Figure S6. 17: Validation results in terms of velocity for monitoring station n.3 
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Appendix D: Preliminary treatment assessment 

In the last decade, different strategies were developed to control CSO discharge 

including 1) source controls reducing the flow directed to the combined sewers, 2) 

conveyance controls storing or delaying the flow of excessive amounts of stormwater, 

and 3) end-of-pipe controls developing water treatments or adopting physical 

separation methods at the end of a flow conveyance system or outfall. When choosing 

the treatment configuration for CSO wastewater several factors should be considered. 

The most important criteria are related to the quality of the wastewater and the amount 

of overflow wastewater. It is also essential to verify the cost-effectiveness of the 

alternatives proposed to overcome CSO challenges. To date, limited information is 

available for the cost of CSO control strategies. In the Long-Term Control Plan (EPA, 

2007a), it was reported that the cost of sewer separation is one of the most expensive 

approaches. In Randolph (VT), 2,660,000 USD had been spent to separate 95% of its 

combined sewers, while in Seaford (DE), 2,200,000 USD were used to separate 

approximately 40 percent of its combined sewer system. Under the Metropolitan 

Council’s Environmental Servicies Division (MCES), the cities of St. Paul, South St. 

Paul, and Minneapolis spent 331,000,000 USD to complete a 10-year sewer separation 

program (EPA, 2007b). In 2009, the City of Quebec (Quebec, Canada) adopted a CSO 

Long-Term Control Plan (LTCP) planning to install 14 storage tanks and one tunnel, 

for a total storage volume of  45 million gallons, and a cost of 89,812,500 USD (with 

an exchange rate of 0.72 CAD/USD) (Olivier Fradetz et al., 2011). 

In appendix L of the Long-Term Control Plan, EPA estimated a default value for 

different CSO treatment strategies. For chemical flocculation, a cost of 40,000 USD for 

every million gallons treated/day using aluminum additive, and 1,030,000 USD for for 
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every million gallons treated/day using ferrous sulfate was estimated. Reynolds et al. 

(Reynolds et al., 1981) compared three different CSO control alternatives: 1) CSO 

storage control strategy, 2) transport and treatment of overflows, and 3) screening and 

disinfection treatment. It was pointed out that the most cost-effective method for CSO 

control was decreasing the amount of overflow by storage tank while transporting the 

remaining flow to the treatment plant for secondary treatment.  

Based on direct contact with the vendors, the price per ton of cationic polymer, PAC 

and Zeolite were 1,000 CAD, 400 CAD and 300 CAD, respectively. A preliminary cost 

assessment for the treatment proposed in this study led to a cost of about 14.5 USD  of 

powdered activated carbon, 32 USD  of polymer (with an exchange rate of 0.74 

CAD/USD), and 400 USD  of zeolite for every million gallons of wastewater 

treated/day. A cost of  45,455 –190,000 USD  per  million gallons of wastewater 

treated/day (with an exchange rate of 1.09 EUR/USD) can be estimated for filtration 

and disinfection treatment based on previous studies (Iglesias et al., 2010). Moreover, 

it is worth noting that the proposed treatment could be exploited to deal with multiple 

CSO contaminants and the associated impacts on the receiving bodies (Venditto et al., 

2020). This new approach, still not explored in other studies, has a great potential to 

address CSO and nutrient pollution with a single capital upgrade, which may be very 

important for municipalities facing CSO challenges. Therefore, it can be concluded that 

the proposed treatment train is an alternative to current solutions, which is competitive 

in terms of cost-effectiveness compared with sewer separation or storage tank 

applications. It is worth noting that most of the data available and reported above were 

derived from research conducted on a laboratory scale, and the operational/maintenance 

costs were not considered. Consequently, further experiments on a pilot scale are 

needed to quantify the overall treatment cost associated with the proposed treatment. 
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