
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-14-2021 10:00 AM

Calibration Between Eye Tracker and Stereoscopic Vision System Calibration Between Eye Tracker and Stereoscopic Vision System

Employing a Linear Closed-Form Perspective-n-Point (PNP) Employing a Linear Closed-Form Perspective-n-Point (PNP)

Algorithm Algorithm

Mohammad Karami, The University of Western Ontario

Supervisor: Dr. Steven Beauchemin, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Mohammad Karami 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces

Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Karami, Mohammad, "Calibration Between Eye Tracker and Stereoscopic Vision System Employing a
Linear Closed-Form Perspective-n-Point (PNP) Algorithm" (2021). Electronic Thesis and Dissertation
Repository. 7746.
https://ir.lib.uwo.ca/etd/7746

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7746?utm_source=ir.lib.uwo.ca%2Fetd%2F7746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

In many advanced driver assistance systems (ADAS) applications, it is essential to

figure out where gaze of driver locates in image area of stereoscopic vision system.

This problem, which involves a cross calibration between the stereo vision system

and eye tracker, is a challenging task since the two systems are not consistent in

modality and do not share a common image area. The eye tracker system provides

a 3D gaze vector which describes the direction of driver’s 3D line of gaze, while the

stereoscopic vision system provides a depth image frame. In this thesis, this cross-

calibration was performed with a closed-form solution that employs an efficient,

linear time Perspective-n-Point algorithm. The main contribution of the present

thesis is reformulation of this cross-calibration problem in a way that we would be

able to employ PnP algorithm for providing a closed-form solution. The calibration

process maps the 3D driver gaze vector into the surrounding outdoor environment.

Moreover, the robustness of the algorithm with respect to noise is investigated on a

set of synthetic data as well as in a lab-environment place.

Keywords: Cross-calibration, perspective-n-point, driver gaze mapping

i

Summary for Lay Audience

Advanced driver assistance systems (ADASs) have already been implemented

in vehicles. Such examples are cruise control, warning systems for lane departure

and automatic parking that have been recently introduced.

ADASs are supposed to provide a safe driving experience, but fatalities involv-

ing these systems increased during recent years. It is believed that if their full po-

tential be realized, ADASs would have an annual benefit of around $800 billion by

2050 via mitigation in traffic congestion, energy consumption and road collisions.

This goal cannot be achieved unless knowledge in ADASs is advanced to a greater

extent.

ADASs are focused on perception of environments around the vehicles for as-

sisting the driver, while little attention is given to the perception of driver behavior.

It is believed that driver behavior can significantly improve ADASs as 95 percent of

vehicle collision are due to human error. For detection of visual driver distraction,

it is important to find out where the driver is looking. This is the main subject of

current thesis.

ii

Acknowlegements

I want to begin by expressing my sincere appreciation to Dr. Steven Beauchemin

for his excellent supervision and feedback during the last two years. He gave me

the time, resources and freedom to grow as a researcher. This work would not have

been possible without his priceless guidance.

I would like to extend my thanks to my advisor Dr. Anwar Haque for his sug-

gestions and guidance.

I would like also to thank Dr. Michael Bauer, Dr. Rahman Taufiq and Mr.

Stephen Sweeny.

My officemates and friends have also been amazing during my study. Special

thanks to Mohsen Shirpour, Farzan Heidari, Nima Khair Doost.

Last but not least, I would like to thank my family: my wife (Zahra Habibi), my

parents (Fereshteh and Abdolhassan), and my sisters (Narges and Nastaran), for all

their love and support.

iii

Contents

Abstract ii

Summary for Lay Audience iii

Certificate of Examination iv

Co-Authorship Statement iv

Acknowlegements iv

List of Figures vii

List of Tables x

List of Appendices xi

1 Introduction 1

2 Literature survey 5

2.1 Overview . 5

2.2 Gaze estimation algorithms . 5

2.3 Applications of gaze tracker in driver assistance systems 9

iv

3 Cross-calibration algorithm and error analysis 20

3.1 Problem overview . 20

3.2 PnP algorithm . 21

3.3 Cross-calibration algorithm . 24

3.4 Error analysis . 26

3.4.1 Synthetic data . 26

3.4.2 Lab-environment experiment 27

4 Conclusions and future work 35

4.1 Future work . 36

Bibliography 38

A Gaze data transfer over socket 44

Curriculum Vitae 59

v

List of Figures

2.1 Different pupil images (a) dark, (b) bright, and (c) bright with dif-

ferent intensity. The small reflection on the cornea surface in the

dark and bright pupil images is referred to as the glint, shown as red

circles. Obtained with modifications from Ref. [1] 6

2.2 Schematic of the mapping function in 2D gaze estimation models.

Obtained with modifications from Ref. [2] 6

2.3 Schematic of the 3D gaze estimation models. Obtained with modi-

fications from Ref. [3] . 7

2.4 Relationship between each gaze tracker and stereo system, studied

in Ref. [4] . 9

2.5 Schematic setup of gaze tracker and stereo system studied in Ref.

[5] . 10

2.6 Schematic relationship between lane change action and gaze data

pattern, adapted from Ref. [6] . 11

2.7 A screen shot of driving simulator used in the study of Ref. [7] . . 12

2.8 Three different scenarios considered for lane-change driver’s intent

in Ref. [7] . 13

vi

2.9 Divided surrounding area of vehicle for evaluation of risk, adapted

from Ref. [8] . 14

2.10 Schematic configuration of cameras inside the vehicle for the study

of gaze/head behaviour, adapted from [9] 15

2.11 Class distribution of the six different gaze areas versus side-to-side

head rotation, adapted from [9]. 16

2.12 Two different pedestrian walking scenarios used in the driving sim-

ulator [10]. Black arrow shows the pedestrian path. 17

2.13 Eye fixation and its distance from pedestrian center [10]. 17

2.14 Driving field relevant view, defined in [11]. The mirrors are not

part of this field of view. 18

2.15 The defined gaze areas in [11]. The white rectangles show the gaze

areas, and the green circle shows the head position. The red line

emanating from the head is gaze direction. [12]. 18

2.16 Driver attentional gaze cone defined in [13]. 19

2.17 Detection of vehicles that fall in the gaze cone, from [13]. 19

3.1 Physical configuration of (a) FaceLab eye tracker and (b) Intel Re-

alSense stereoscopic vision system. 31

3.2 Schematic formulation of PnP problem. Obtained with modification

from Ref. [37]. 32

3.3 Schematic of the virtual plane configuration for the cross-calibration

process between the eye tracker facing toward the driver and the

stereoscopic vision system facing toward the surroundings. 32

vii

3.4 Noise robustness of PnP based on EPnP and Levenberg-Marquardt

techniques applied on the synthetic data set, presented in Table 3.2. . 33

3.5 (a) Image frame of the lab-environment place with its salient points,

shown in blue points, and (b) its map depth frame. 34

A.1 Screenshot of FaceLab Eye Tracker Machine Windows, presenting

FaceLab and VMware workstation icons. 45

A.2 Physical configuration of FaceLab cameras. 46

A.3 Chessboard in different orientation for calibration of FaceLab cam-

eras. 47

A.4 Configuration of FaceLab 5.0 for publishing gaze data on a specific

IP. 48

A.5 Main menu window of FaceLab 5.0 for start tracking and publishing

data on IP. 49

A.6 Screen shot of RoadLab Ubuntu inside VMware. 50

viii

List of Tables

2.1 Classification result of the Ref. [9] 16

3.1 Time complexity of recent closed-form PnP algorithms. 22

3.2 Synthetic data set of 3D salient points and gaze vectors. 29

3.3 Experimental data set. 30

ix

List of Appendices

Appendix A Gaze data transfer over socket 44

x

Chapter 1

Introduction

The government of Canada reported that in 2018 vehicle collisions resulted in al-

most 2000 fatalities and 152,000 injuries [14]. These catastrophes have led re-

searchers to improve car safety by providing critical information to drivers, by way

of Intelligent Transportation Systems.

Advanced driver assistance systems (ADASs) have already been implemented

in vehicles. Such examples are cruise control, warning systems for lane departure

and automatic parking.

The Society of Automotive Engineers defined five levels of driving automation

[15]. Based on this categorization, Level 0 is the lowest level of driving automation

and involves no automation. Level 1 involves partly automated driving support

systems such as lane centering and adaptive cruise control, and level 2 involves

breaking and acceleration support or collision-avoidance. In level 3, drivers are not

responsible for controlling the vehicle, except in urgent situations. In level 4, the

drivers are not responsible for driving except in limited conditions. Examples of

1

2 Chapter 1. Introduction

level 4 are local driverless taxis. For level 5, the vehicle is totally driverless and

does not require a driver at any time.

ADASs are supposed to provide a safe driving experience, but fatalities involv-

ing these systems have increased during recent years [16]. It is believed that if

their full potential would be realized, ADASs could have annual benefits of around

$800 billion by 2050 via mitigation in traffic congestion, energy consumption and

road collisions [17]. This goal cannot be achieved unless knowledge in ADASs is

advanced to a greater extent. Such an unsolved ADASs problem is perception of

the surrounding area which is critical for a safe navigation. Most of state-of-the-art

computer vision algorithms that have been built during decades are still not robust

to different lighting or weather conditions [18].

ADASs are focused on perception of environments around vehicles for assisting

drivers, and they mainly rely on real-time computer-vision algorithms, supported by

sensors. In lane departure warning, as one sample of ADAS, edge detection, image

segmentation and feature tracking have been used successfully [19]. Thus, the

robustness of computer vision algorithms has made driving automation at level 2

feasible. However, levels 3 and 4 of ADASs, where driver action is required in

limited conditions, is challenging for several reasons.

First, the driver has to respond quickly when automation is switch off, leading

to manual control requirements [20]. For high-level ADASs, drivers are engaged

in non-driving related tasks (e.g. using mobile phones) which makes it hard to com-

pute a sufficient transition time between automation and manual control. It is shown

that the transition time is a critical factor that increase the risk of collision [21].

The second reason is that little attention is given to the perception of driver

3

behaviour. It is believed that understanding driver behaviour can significantly im-

prove ADASs as 95 percent of vehicle collisions are due to human error [22]. For

detection of visual driver distraction, eye as well as head movements are important

factors to decide whether a warning should be given to the drivers [23]. However, it

is challenging to perform experimental studies of driver behavior in real road con-

ditions. The experimental setup is expensive and hard to design. The remote eye

tracker itself can cost more than $30,000. It requires powerful systems for storage

and data processing. Only one hour of driving can generate more than 250GB of

data.

With the rise of deep learning and the advent of new sensors such as eye-trackers

[16], ADASs have been improved [24]. Moreover, despite the significant number of

ADAS studies, there is a lack in investigating the performance of driver monitoring

systems in ADAS. This is partly due to the two reasons [18]. First, eye trackers cost

is high and prohibitive to be implemented in the vehicles. However, it is expected

that it will be commercialized at some point, and it is not going to be a problem

in future. For instance, vehicle radars used to be around $15,000, but they are less

than $100 nowadays. Second, the eye tracker modality modality is not consistent

with the rest of vehicle sensors such as Lidar and stereo system. A robust ADAS

should always perceive the driver attention and its surrounding environment, and

this requires real-time data fusion from multiple sensors with the eye tracker that

have different functionality, or the way it processes the input data. Considering

different lighting and weather conditions, such as a robust state-of-the-art algorithm

is not established yet [18, 25]. The data fusion, or calibration, between an eye

tracker and a stereo vision system is the is the main subject of this thesis. Out of

4 Chapter 1. Introduction

cross-calibration, we would be able to perceive driver action and find out where the

driver is looking, which is a crucial information for safe navigation.

Chapter 2

Literature survey

2.1 Overview

This Section provides a literature review on two aspects of eye tracking: (i) gaze

estimation algorithms, and (ii) applications of gaze tracker in driver assistance sys-

tems.

2.2 Gaze estimation algorithms

Following Hansen’s [1] survey, gaze estimation techniques can be categorized as

2D or 3D models. In 2D models, the input data is pupil image with glint, as shown

in Figure 2.1, and the output of the model is a pixel coordinate on the screen.

This mapping function can be done with regression [26] or neural network [2].

Schematic of the mapping function is displayed in Figure 2.2.

Since these models avoid explicitly calculating the intersection between the 3D

gaze direction and 3D gazed objects, they are only used in vehicle simulator, and

5

6 Chapter 2. Literature survey

not in real-road experiments [27]. Although 2D gaze models have their own chal-

lenges, such as recognition of compatible input gaze data with the calibration data

[28], they are heavily studied and most of the challenges are remained for 3D gaze

models.

Figure 2.1: Different pupil images (a) dark, (b) bright, and (c) bright with different
intensity. The small reflection on the cornea surface in the dark and bright pupil
images is referred to as the glint, shown as red circles. Obtained with modifications
from Ref. [1]

Figure 2.2: Schematic of the mapping function in 2D gaze estimation models. Ob-
tained with modifications from Ref. [2]

In 3D gaze estimation algorithms, 3D human eye ball is modelled as a sphere

with a constant radius, and the difference between 3D position of iris center and

the position of eye ball center defines the 3D gaze vector [3], displayed schemat-

2.2. Gaze estimation algorithms 7

ically in Figure 2.3. The main challenge, herein, is detection of the position of

iris center [1]. Due to this reason, we have two types of gaze trackers: Remote

and head-mounted. Remote eye trackers are considered as non-intrusive monitor-

ing technique (i.e. non-restriction technique), and consequently more expensive

than head-mounted eye trackers. In this thesis, a commercial remote eye tracker,

manufactured by FaceLab company, has been used for tracking gaze data, shown in

Figure 3.1.

Figure 2.3: Schematic of the 3D gaze estimation models. Obtained with modifica-
tions from Ref. [3]

To figure out the location where the driver is looking, we need to map the 3D

driver gaze vector in image frame provided from a stereo vision system. This pro-

cess, refers to as cross-calibration, requires depth information of the surrounding

objects, which is provided from a stereo vision system. Based on the 3D gaze vec-

tor provided from the eye tracker and depth information provided from stereoscopic

vision system, we would be able to recognize the gaze target as an intersection of

8 Chapter 2. Literature survey

the gaze vector with the surrounding objects [1].

This calibration process is a challenging task as there is no common imaging

area between the two systems and the two systems process different types of data.

Eye tracker processes a 3D vector while stereo vision system processes RGB-Depth

data, i.e. inconsistent modalities. There are very few contributions on this cross-

calibration problem. Takagi et. al. [4] simplified the cross-calibration by assuming

that one axis of coordinate systems of eye tracker and stereoscopic vision are paral-

lel. The relationship between each camera is shown in Figure 2.4. This assumption

constrained them to implement the algorithm in a vehicle simulator. Hennessey and

Lawrence presented a 3D PoG (Point of Gaze) method which employs eye vergence

to estimate the 3D position of a fixated object [29]. Recently, Kang et. al. [5] and

Kowsari et. al. [30] proposed an iterative algorithm for the calibration problem with

experimental setup shown in Figure 2.5. They provided a cost function to minimize

the convergence error.

The above-literature review shows a lack of robust cross-calibration between

eye trackers and stereoscopic vision systems. Such a lack of robust algorithm with

easy implementation has led researchers to use virtual simulators or use iterative

algorithms, whose solution depends on the initialization. To the best of our knowl-

edge, the proposed algorithm presented in the current thesis is the first closed form

solution to the problem, which makes it easy and robust to implement. In the next

Section, applications of the cross-calibration problem in driver assistance systems

are reviewed.

2.3. Applications of gaze tracker in driver assistance systems 9

Figure 2.4: Relationship between each gaze tracker and stereo system, studied in
Ref. [4]

2.3 Applications of gaze tracker in driver assistance

systems

Lethaus and Rataj [31] tried to find a reflection between eye movement and driver

action. This relationship has been experimented by Land and Horwood [32] as well

as Land [33]. They showed that a time lag of 0.8 to 1 s exists between eye move-

ments and steering maneuvers, suggesting that the driver gaze contains important

information for action prediction.

Lethaus et. al. [6] used supervised learning techniques on gaze data to derive

information about a driver’s next plan. They showed that gaze data is a ‘stand-

alone’ predictive action of lane change with a time lag of 10 s, as shown in Figure

2.6.

Li et. al. [7] predict to find driver’s lane-change intent by considering the

10 Chapter 2. Literature survey

Figure 2.5: Schematic setup of gaze tracker and stereo system studied in Ref. [5]

surrounding traffic. They used a driving simulator (Figure 2.7) with three different

scenarios, as shown in Figure 2.8. Using driver gaze data, they proposed a Bayesian

network-based model that estimates the driver’s intent in 4.5 seconds ahead with a

better accuracy than Support Vector Machine (SVM) model.

Mori et. al. [8] studied real-world driving instead of vehicle simulators and

found a relationship between gaze behaviour and risks posed by surrounding vehi-

cles. They divided the surrounding area of a vehicle into eight zones (Figure 2.9)

and defined risk as time to collision. They showed that gaze behaviour is indicative

of drivers awareness levels.

Pech et. al. [9] analysed driver gaze and head pose before lane change to ex-

tract and estimate driver behaviours presenting its intent. They defined six different

gaze areas: front window ahead (FW), left mirror (LM), right mirror (RM), rear

2.3. Applications of gaze tracker in driver assistance systems 11

Figure 2.6: Schematic relationship between lane change action and gaze data pat-
tern, adapted from Ref. [6]

view mirror (RVM), left window (LW) and right window (RW). The vehicle was

equipped with six cameras as shown in Figure 2.10. They found interesting pat-

terns of side-to-side head rotations, as shown in Figure 2.11. However, due to the

absence of driver gaze mapping on a stereo image frame, it was challenging to dis-

tinguish the nearby defined gaze areas, such as right mirror (RM) and right window

(RW). This issue resulted in low classification result of left window (LW) and right

window (RW), presented in Table 2.1. Meanwhile, they had to use six cameras for

tracking driver in the defined gaze areas, while this would not be an issue if the

driver gaze mapping was available.

Diederichs and Spath [10] used driver gaze data for developing an automated

braking system for pedestrian protection. They considered different scenarios for

pedestrian movement for data collection. As shown in Figure 2.12, the pedestrian

is either walking along the road or crossing the road. They tracked the distance

12 Chapter 2. Literature survey

Figure 2.7: A screen shot of driving simulator used in the study of Ref. [7]

between eye fixation and center of the pedestrian, shown in Figure 2.13. However,

they had to use a driving simulator in their study due to the absence of driver gaze

mapping.

Ahlstrom et. al. [11] performed the first study on a real time distraction warning

system based on driver gaze data. They carried out experiments with seven drivers

who drove an average of 4351 kilometers on real road conditions. They defined a

field view relevant for driving as a cone of 900 (Figure 2.14), and any deviation out

of this field of view for more than 2 seconds is considered as driver distraction. To

figure out where the drivers are looking when their gaze of line is deviated from

the field of view, they divided the vehicle into different area zones based on the

assumption that the drivers are supposed to look at them during standard driving

tasks, see Figure 2.15. The gaze areas were the windscreen, the right front window,

the left front window, the right rear view mirror, the left rear view mirror, the centre

2.3. Applications of gaze tracker in driver assistance systems 13

Figure 2.8: Three different scenarios considered for lane-change driver’s intent in
Ref. [7]

rear view mirror, the dashboard, the speedometer, the middle console, the glove

box, the left front door, the right front door, the floor of the car, the foot area and

the roof. They showed that the suggested warning system changes the driver visual

behaviour in the desired direction. However, there were some limitations on their

work: the field view was static and not changed dramatically with upcoming road

geometry, and the driver’s intent was not taken into consideration.

Zabihi et. al. [13] used 3D gaze data to detect vehicles that are most likely the

14 Chapter 2. Literature survey

Figure 2.9: Divided surrounding area of vehicle for evaluation of risk, adapted from
Ref. [8]

driver was aware of. They defined an attentional gaze cone whose radius depended

on the distance between the fixated object and the driver (Figure 2.16). The cone

angle was set to 6.500 Ref. [4]. Following the definition of the gaze cone, they man-

aged to detect the vehicles that elicited ocular responses from drivers. Figure 2.17

shows a sample of detection results. This study was performed only for vehicles,

but could be easily extended to other types of objects such as pedestrians.

In summary, the above-literature review shows that the lack of presence of ro-

bust cross-calibration algorithm has been a constraint on ADAS researchers. Mori

et al. [8] looked into the relation between gaze behaviour and driver awareness.

They did experiment in real road conditions, but they simplified the problem into a

classification problem by dividing vehicle surrounding areas into 8 different zones.

Moreover, Kircher et al. [11] suggested a gaze-based driver distraction warning

system by defining a 900 cone view. They did experiment in a real road condition.

2.3. Applications of gaze tracker in driver assistance systems 15

Figure 2.10: Schematic configuration of cameras inside the vehicle for the study of
gaze/head behaviour, adapted from [9]

However, due to the lack of driver gaze mapping information, the cone view was

static and not dynamic by implementing the surrounding areas information. Due to

the challenges in real road experiments, some ADAS researchers have used driver

simulator, in which 2D gaze estimation with a 2D target plane is required [34]. For

instance Lie et al.[7] used a driver simulator to find the relation between lane change

action and eye movement. However, vehicle simulators are far away from the real

conditions and the real-road experiments.

16 Chapter 2. Literature survey

Figure 2.11: Class distribution of the six different gaze areas versus side-to-side
head rotation, adapted from [9].

Table 2.1: Classification result of the Ref. [9]
Glance area Positive predictive value

All 0.81
FW 0.96
LM 0.86
RM 0.75

RVM 0.86
LW 0.06
RW -

2.3. Applications of gaze tracker in driver assistance systems 17

Figure 2.12: Two different pedestrian walking scenarios used in the driving simula-
tor [10]. Black arrow shows the pedestrian path.

Figure 2.13: Eye fixation and its distance from pedestrian center [10].

18 Chapter 2. Literature survey

Figure 2.14: Driving field relevant view, defined in [11]. The mirrors are not part
of this field of view.

Figure 2.15: The defined gaze areas in [11]. The white rectangles show the gaze
areas, and the green circle shows the head position. The red line emanating from
the head is gaze direction. [12].

2.3. Applications of gaze tracker in driver assistance systems 19

Figure 2.16: Driver attentional gaze cone defined in [13].

Figure 2.17: Detection of vehicles that fall in the gaze cone, from [13].

Chapter 3

Cross-calibration algorithm and

error analysis

3.1 Problem overview

The goal of this thesis is the cross-calibration process between a FaceLab eye

tracker [35], facing the driver and a RealSense stereoscopic vision system [36]

facing the surroundings. The eye tracker provides a 3D gaze vector of one of the

driver’s eye, ~g = (gx, gy, gz) and the stereoscopic vision system provides RGB-

Depth image frames.

The physical configurations of the FaceLab eye tracker and RealSense stereo-

scopic vision system are shown in Figure 3.1. The FaceLab eye tracker is a com-

mercialized product that is experimentally designed for monitoring driver action in

a remote and non-intrusive manner. It has its own machine and needs to be cali-

brated for each individual driver. Its operating system is Windows 7 and requires

20

3.2. PnP algorithm 21

socket programming to retrieve its gaze data through a LAN cable in real-time. For

more information about this process see the Appendix A. The stereoscopic vision

system provides RGB-Depth as well as 3D point cloud of the surrounding objects.

Its depth range is around 6 meter with 30 HZ FPS. Its data can be retrieved with

USB 3.0 cable.

The cross-calibration process between the eye tracker and the stereoscopic vi-

sion system refers to the process of mapping 3D gaze vector on the image frame.

To achieve this, we need to find rotation and translation matrices that transforms the

driver’s gaze from coordinate system of the eye tracker to coordinate system of the

stereoscopic vision system. Herein, estimation of the translation and rotation matri-

ces has been done with the help of Perspective-n-Point (PnP) algorithm. However,

it should be noted PnP algorithm has been designed for a totally different set of

problems, and thus the present cross-calibration problem needs to be re-formulated

in order to be solved with PnP algorithm. In the following sections, first, the PnP al-

gorithm is described, and then re-formulation of the cross-calibration problem will

be explained.

3.2 PnP algorithm

The formulation of the PnP algorithm has been shown schematically in Figure 3.2.

The PnP algorithm finds the pose of a camera using a set of object points, shown

in orange color, in the world coordinate system and their corresponding projection,

shown in yellow color, on the image frame. The PnP algorithm returns the rotation

and translation matrices that project object points into the image frame.

22 Chapter 3. Cross-calibration algorithm and error analysis

PnP problems can be solved with two methods. The first method is P3P. The

minimal PnP problem with a finite number of solutions require three point corre-

spondences (n = 3). P3P methods are not usually robust to noises, although the

latest P3P algorithm by Persson et al. [38] in 2018 has been found promising. The

second method solves the general problem of PnP for n ≥ 4, to deal with outliers in

the data. Table 3.1 summarizes some of the well-known closed form approaches to

the general case of PnP problems.

Herein, the algorithm proposed by Lepetit et. al. [39] is chosen since it is

available in OpenCV library, resulting in easy implementation. The central idea in

Lepetit et al. [39] algorithm is expressing the n 3D points as a weighted sum of four

virtual control points. This expression reduces the PnP problem into the estimation

of the coordinates of these control points, which can be obtained in non-iterative

manner. The time complexity of Lepetit et. al. [39] is linear O(n), which is in

contrast to previous methods that are in O(n2) [40], O(n5) [41], and O(n8) [42].

Table 3.1: Time complexity of recent closed-form PnP algorithms.
Authors Year Time Complexity

Quan and Lan [41] 1999 O(n5)
Ansar and Daniilidis [42] 2003 O(n8)

Fiore [40] 2001 O(n2)
Lepetit et al. [39] 2009 O(n)

PnP algorithm requires a set of correspondences between 3D points, Pi in the

world coordinate system and their 2D points, pi onto the image frame. It also

assumes that the intrinsic camera matrix, which consists of focal length and optical

center, is known to us in prior. Using these data as input, PnP returns the rotation

and translation matrices that project object points into the image frame. The PnP

3.2. PnP algorithm 23

algorithm involves with solving the following equation for obtaining the rotation

and translation matrices [R|t]:

S i

xi

yi

1

 =

fx 0 cx

0 fy cy

0 0 1

R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

Xi

Yi

Zi

1

(3.1)

which can be also written as:

S i pi = McMtPi (3.2)

Where (Xi,Yi,Zi) or Pi are the object points expressed in the world coordinate

system. (xi, yi) or pi are the projections of object points on the image frame. S i is

the scaling factor, and Mc is the intrinsic camera matrix. PnP solves the equation to

obtain the R and t matrices.

Briefly, PnP algorithm is designed to estimate the rotation and translation ma-

trices that project the object points onto the image frame. This problem, which

refers to as camera pose estimation, is completely different from the present cross-

calibration between eye tracker and stereo vision system. In order to be able to use

PnP algorithm for the present cross-calibration problem, we need to re-formulate

the cross-calibration, which is explained in the next section.

24 Chapter 3. Cross-calibration algorithm and error analysis

3.3 Cross-calibration algorithm

In the present cross-calibration problem, we want to find out rotation and translation

matrices that project the 3D gaze vector of one of the driver’s eye, ~g = (gx, gy, gz),

on the image frame of the stereoscopic vision system. However, PnP algorithm

requires a set of correspondences between 3D points and their 2D point, and it

has not been designed to deal with gaze vectors. To solve this issue, we need to

convert the 3D gaze vectors into 2D image points. For the purpose of conversion,

we assume that the head position remains constant and a virtual plane is located at a

distance of 1 meter and perpendicular to the line of sight of the eye tracker. In other

words, we have created a virtual camera in which the virtual plane is assumed as an

image frame and the gaze vectors are originating from the optical center of the eye

tracker. It should be also noted that the distance of the virtual plane from driver’s

head is arbitrary since it is only associated to the values of intrinsic virtual camera

matrix.

The construction of this virtual camera through the assumption of the virtual

plane can help us to convert each of the 3D gaze vectors into the 2D image points,

required by the PnP algorithm. To do this conversion, we find the intersection of

the gaze points with the virtual plane, and these points of intersections are the 2D

image points, needed for the PnP algorithm. Since we assumed that the virtual

plane is located at a distance of 1 meter, the optical center and the focal length of

the virtual camera are: (cx, cy) = (0, 0) and (fx, fy) = (1, 1). These parameters are

required by PnP algorithm for formation of the intrinsic virtual camera matrix. The

schematic of the virtual plane configuration is shown in Figure 3.3.

It should be noted that the construction of the virtual camera for solving the

3.3. Cross-calibration algorithm 25

cross-calibration problem will put a limitation on the implementation of the algo-

rithm. This limitation is requirement of a constant and a fixed head position. This

means that any head movement is considered as a noise in estimation of the rotation

and translation matrices. However, the effects of the noise would be reduced, when

the 3D object points (or the point where the driver is looking) is farther away from

the stereo vision system. Herein, these 3D object points are referred to as salient

points.

The whole process of the cross-calibration problem which employs PnP algo-

rithm is summarized in Algorithm 1. The input to the algorithm is the virtual cam-

era matrix, Mc, which consists of optical center and the focal length of the virtual

camera. Herein, the distance of the virtual plane is 1 meter from the driver’s head,

and thus the camera matrix is an identity matrix. The output of the algorithm are

the rotation and translation matrices that we can project the 3D gaze vector on the

image frame. The algorithm also returns the eye position, ei, to monitor the noise

introduced from deviation of the head position from the initial position.

It is worth mentioning that during the calibration process, we compute the set of

the salient points from the image frame provided by the stereo vision system using

the function GoodFeaturesToTrack from OpenCV library. These salient points, Pi,

are displayed by blue circle in Figure 3.5. Afterwards, we ask the driver to fixate

its gaze on each salient point for two seconds, during which gaze data from the

eye tracker and its correspondence 3D salient point from stereo vision system are

collected.

26 Chapter 3. Cross-calibration algorithm and error analysis

Algorithm 1 Cross-calibration algorithm
INPUT: Virtual Camera Matrix Mc

OUTPUT: Extrinsic Calibration Parameters [R|t] and eye position e

Select n ≥ 4 3D salient points Pi from RGB-Depth vision system
for all i in n do

Require the observer to fixate its gaze on the 3D salient point Pi in the envi-
ronment
Collect gaze vector, ĝi, and the eye position, êi, from the eye tracker
~g = average of sample ĝi

ei = average of sample êi

pi = point of intersection of the ~g with the virtual plane
end for
Compute PnP(Mc, pi, Pi)
Return [R|t], ei

3.4 Error analysis

Two important aspects of the algorithm need to be studied: i) its accuracy and ii)

its robustness toward noise. For this purpose, we performed error analysis on two

distinct data sets. The first one is a set of synthetic data without noise, while the

other data set is from a lab environment. Note that one of the main sources of

noises, herein, can be attributed to the head movement, violating the assumption

that gaze vectors origination from the optical center of the eye tracker.

3.4.1 Synthetic data

The synthetic data set in this Section is primarily used for the evaluation of the ac-

curacy of the algorithm and its noise robustness. The synthetic data set is provided

in Table 3.2.

To study the robustness of the algorithm to noise, we added zero-mean Gaussian

3.4. Error analysis 27

noise to the gaze vector, for which the value of the standard deviation (σ) of the

Gaussian noise increases. It should be noted that the type of noise in real condition

is unknown to us, and thus, herein, a Gaussian noise has been considered due to its

simplicity. This process is summarized in Algorithm 2.

Herein, we applied two techniques of PnPRansac provided from the OpenCV

library: (i) Levenberg-Marquardt method and (ii) Lepetit et al. [39] algorithm, re-

ferred to as efficient PnP. Levenberg-Marquardt algorithm is an iterative technique

which tries to minimize the reprojection error, while the efficient PnP algorithm pro-

vides a linear closed-form solution to the PnP problem. This comparison provides

us additional information needed for the solution to the calibration problem.

For the set of synthetic data set without noise, Table 3.2, both algorithms pro-

vide similar results with a reprojection error of 0.35 mm, which is very close to

zero. This small value of the reprojection error validates the correctness of the

cross-calibration algorithm. When we add noise into the synthetic data set, a dif-

ference between the two algorithms emerges (see Figure 3.4). It can be seen that

the reprojection error increases almost linearly with amplifying noise, suggesting

a linear relationship between noise magnitude and reprojection error. Moreover, it

shows that both algorithms have a comparative noise robustness, but, herein, EPnP

has been selected for employment in the cross-calibration algorithm since it pro-

vides a closed-form solution.

3.4.2 Lab-environment experiment

In this Section, we apply the algorithm in a lab environment. Figure 3.5 shows

the image frame with its salient points, displayed in blue points, and its depth map

28 Chapter 3. Cross-calibration algorithm and error analysis

Algorithm 2 Noise robustness algorithm
INPUT: Lists gazes, salients and CameraMatrix, see Algorithm 1
OUTPUT: Reprojection error
For concatenation of reprojection errors
errors = []
For concatenation of projected noisy gazes
pn = []
for k = 1 to 20 do

for all gi in gazes do
m = magnitude of gi

σ = 0.01 ∗ k ∗ m
for i = 1 to 3 do

random value(i) = a Gaussian random quantity with zero-mean and stan-
dard deviation σ

end for
noisy gaze = add random value(i) to each component of gi

pk,n = projection of noisy gaze on the virtual plane
concatenate pk,n into the list pn

pn.append(pk,n)
end for
compute R,T matrices from the noisy projection points and noiseless 3D
salient points
R,T = PnP(pn, salients,CameraMatrix)
obtain a set of 3D salient points, using pn,R,T
Pn = R−1Mc

−1S i(pn) − R−1T
repro jection error = average squared difference between Pn and salients
concatenate repro jection error into the list errors
errors.append(repro jection error)

end for

RETURN errors

3.4. Error analysis 29

Table 3.2: Synthetic data set of 3D salient points and gaze vectors.
3D salient point(mm) Gaze Vector

(X,Y,Z) ~g = (gx, gy, gz)
(0, 3, 50) (0, 3, 30)
(2, -5, 47) (-3, -5, 28)
(-1, 7, 60) (10, 7, 31)
(5, -1, 40) (-10, -1, 25)
(0, 2, 45) (-5, 2, 30)
(3, -4, 44) (-6, -4, 27)

frame. For the first case, the driver head or eye location remains fixed during the

whole cross-calibration process. The experimental data set is provided in Table 3.3.

Note that the small variations in eye locations in the data set is due to the fact that

head movement can be reduced but cannot be equal to zero.

Applying PnPRansac from the OpenCV 4.2.0 library provides with the rota-

tion and translation matrices with a reprojection error of 78.26 mm. Increasing

the number of salient points to 19 points in another experiment did not affect the

reprojection error, and it was almost equal to 110 mm, respectively.

The present algorithm error is in the range of 1.3% to 3.3% with respect to

the depth of salient points. This normalized value of error is obtained by dividing

the value of reprojection error, 77 mm, by the depth of salient points, value of Z

presented in the Table 3.3. This normalized value of error for the previous studies

with iterative algorithms is 8.9% in [29], 6.6% in [4] and 2.1% in [5]. Moreover,

the time latency of present algorithm is in the order of milliseconds, while this value

is 1.5 seconds for the algorithm suggested in [29] due to its image preprocessing

steps. It should be noted that the present closed-form PnP algorithm has linear time

complexity O(n), which is in contrast to the previous iterative algorithms with the

30 Chapter 3. Cross-calibration algorithm and error analysis

following time complexity: O(T (n3)) in [30] and O(T (n2)) in [4], where T is the

number of iterations and n is the number of salient points.

Table 3.3: Experimental data set.
3D salient point(mm) Gaze Vector Eye Location(mm))

(X,Y,Z) ~g = (gx, gy, gz) (Xe,Ye,Ze)
(411.83,111.53,3145.0) (-0.11,-0.04,0.99) (43.47,85.07,809.82)
(-509.04,875.49,3066.0) (0.13,0.18,0.97) (42.80,84.92,811.13)
(-903.66,426.11,3586.0) (0.18,0.03,0.98) (42.60,85.14,811.79)
(645.91,1133.50,3051.0) (-0.12,0.23,0.96) (42.03,86.14,813.05)
(2.26,1152.40,3262.0) (0.00,0.21,0.97) (40.56,85.41,812.55)

(-465.76,-657.54,2762.0) (0.12,-0.23,0.96) (40.57,85.34,812.36)
(788.21,1090.53,2305.0) (-0.13,0.30,0.94) (39.49,85.91,813.72)

(-3399.98,5025.52,5731.0) (0.28,0.46,0.84) (37.61,86.23,816.72)

3.4. Error analysis 31

Figure 3.1: Physical configuration of (a) FaceLab eye tracker and (b) Intel Re-
alSense stereoscopic vision system.

32 Chapter 3. Cross-calibration algorithm and error analysis

Figure 3.2: Schematic formulation of PnP problem. Obtained with modification
from Ref. [37].

Figure 3.3: Schematic of the virtual plane configuration for the cross-calibration
process between the eye tracker facing toward the driver and the stereoscopic vision
system facing toward the surroundings.

3.4. Error analysis 33

Figure 3.4: Noise robustness of PnP based on EPnP and Levenberg-Marquardt tech-
niques applied on the synthetic data set, presented in Table 3.2.

34 Chapter 3. Cross-calibration algorithm and error analysis

Figure 3.5: (a) Image frame of the lab-environment place with its salient points,
shown in blue points, and (b) its map depth frame.

Chapter 4

Conclusions and future work

In this thesis, we examined the PnP algorithm as a closed-form solution to the cross-

calibration problem between an eye-tracker facing toward the driver’s face and a

stereoscopic vision system mounted on a car roof and facing toward the surrounding

areas. This is a challenging problem as there is no common imaging area between

the two systems. The lack of presence of such robust cross-calibration algorithms

has restricted the researchers of ADASs to use either a simulator or simplify the

problem by defining some areas in the vehicle that the driver is supposed to look at

during a driving task.

We first applied the algorithm on a set of synthetic data set and provided a

comparison between PnPRansac based on Levenberg-Marquardt and Lepetit et. al.

algorithm [39], referred to as EPnP. Then, we applied the algorithm in a lab envi-

ronment and showed that the reprojection error is around 100 mm and increasing

the number of calibration points does not have an effect on the reprojection error.

To the best of the author’s knowledge, this is the first closed-form solution to the

35

36 Chapter 4. Conclusions and future work

cross-calibration problem.

There are two limitations in the present algorithm. First, the driver’s head should

remain constant during cross-calibration process. Violation of this assumption in-

troduces an error whose value will be reduced as the salient points are farther away.

The second limitation is that depth coverage of current vision system is around 6

to 8 meters. This means that we have two contrary effects. The reprojection would

be smaller by selecting farther salient points. On the other hand, choosing farther

salient points would increase the noise from the stereo vision system.

4.1 Future work

Despite past and current progress on the topics related to this thesis, there are still

areas for further development and improvement on the current body of knowledge.

In this regard, the following recommendations for future work are suggested:

One interesting area is cross-calibration between Lidars and stereo vision sys-

tems. In the current research, we used stereoscopic vision system to compute the

point cloud of surrounding areas. However, stereo vision systems might have poor

performance in low-light environments and have also poor long-distance accuracy.

For these reasons, LiDAR seems a promising alternative for obtaining point clouds.

Using LiDAR would allow us to track the 3D driver gaze into the surround-

ings in a more comprehensive manner including at nights and in adverse weather

conditions. It should be noted that the present algorithm requires pixel-wise depth

estimation of the image frame, while LiDAR provides a ring point cloud of sur-

roundings. Thus, the present algorithm requires modifications to make it suitable

4.1. Future work 37

for LiDAR data points.

It would be interesting to try this algorithm in real-road condition and see the

robustness of the algorithm with respect to the head displacement. The present

cross-calibration algorithm is based on the assumption that the driver’s head re-

mains constant and the gaze vectors are originating from the optical center of the

eye tracker. However, this does not mean that the algorithm does not work in the

case of driver’s head movement since the effects of head displacement on the repro-

jection error would be smaller when the objects are farther away from the driver. It

should be noted that the limitation on head displacement could be entirely removed

by using a head-mounted wearable eye-tracker.

Bibliography

[1] D. W. Hansen and Q. Ji. In the eye of the beholder: A survey of models for

eyes and gaze. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 32, no. 3, pp. 478-500, March 2010.

[2] J. Wang, G. Zhang, and J. Shi. 2d gaze estimation based on pupil-glint

vector using an artificial neural network. Applied Sciences, 6, 174, 2016,

doi:10.3390/app6060174.

[3] A. Tsukada, M. Shino, M. Devyver, and T. Kanade. Illumination-free gaze

estimation method for first-person vision wearable device. IEEE International

Conference on Computer Vision Workshops (ICCV Workshops), 2084-2091,

2011, doi: 10.1109/ICCVW.2011.6130505.

[4] K. Takagi, H. Kawanaka, S. Bhuiyan, and K. Oguri. Estimation of a threed-

imensional gaze point and the gaze target from the road images. Proc. IEEE

ITSC, Washington, DC, USA, pp. 526-531, Oct. 2011.

[5] M. Kang, C. Yoo, K. Uhm, D. Lee, and S. Ko. A robust extrinsic calibration

method for non-contact gaze tracking in the 3-d space. in IEEE Access, vol.

6, pp. 48840-48849, 2018.

38

BIBLIOGRAPHY 39

[6] F. Lethaus, M. R.K. Baumann, F. Köster, and K. Lemmer. A comparison of

selected simple supervised learning algorithms to predict driver intent based

on gaze data. Neurocomputing , vol. 121, pp. 108-130, 2013.

[7] X. Li, W. Wang, and M. Roetting. Estimating driver’s lane-change intent con-

sidering driving style and contextual traffic. IEEE Transactions on Intelligent

Transportation Systems, vol. 20, no. 9, pp. 3258-3271, Sept. 2019.

[8] M. Mori, C. Miyajima, P. Angkititrakul, T. Hirayama, Y. Li, N. Kitaoka, and

K. Takeda. Measuring driver awareness based on correlation between gaze be-

havior and risks of surrounding vehicles. 15th International IEEE Conference

on Intelligent Transportation Systems, Anchorage, pp. 644-647 AK, 2012.

[9] T. Pech, P. Lindner, and G. Wanielik. Head tracking based glance area es-

timation for driver behaviour modelling during lane change execution. 17th

International IEEE Conference on Intelligent Transportation Systems (ITSC),

Qingdao, pp. 655-660, 2014.

[10] F. Diederichs, T. Schüttke, and D. Spath. Driver intention algorithm for pedes-

trian protection and automated emergency braking systems. IEEE 18th Inter-

national Conference on Intelligent Transportation Systems, Las Palmas, pp.

1049-1054, 2015.

[11] C. Ahlstrom, K. Kircher, and A. Kircher. A gaze-based driver distraction

warning system and its effect on visual behavior. IEEE Transactions on Intel-

ligent Transportation Systems, vol. 14, no. 2, pp. 965-973, June 2013.

40 BIBLIOGRAPHY

[12] K. Kircher, A. Kircher, and F. Claezon. Distraction and drowsiness field opera-

tional test. VTI (Swedish Nat. Road Transport Res. Inst.), Linköping, Sweden,

2009.

[13] S. M. Zabihi, S. S. Beauchemin, E. A. M. de Medeiros, and M. A. Bauer.

Frame-rate vehicle detection within the attentional visual area of drivers. IEEE

Intelligent Vehicles Symposium Proceedings, Dearborn, MI, pp. 146-150,

2014.

[14] Statistics Canada. Canadian motor vehicle traffic collision statistics. Cata-

logue No. T45-3E-PDF, 2018.

[15] SAE. Taxonomy and definitions for terms related to driving automation sys-

tems for on-road motor vehicles. J3016,Tech. Rep., 2016.

[16] L. Petersson, L. Fletcher, N. Barnes, and A. Zelinsky. An interactive driver

assistance system monitoring the scene in and out of the vehicle. IEEE Inter-

national Conference on Robotics and Automation, 2004. Proceedings. ICRA

2004, New Orleans, LA, USA, pp. 3475-3481 Vol.4, 2004.

[17] W. D. Montgomery, R. Mudge, E. L. Groshen, S. Helper, J. P. MacDuffie,

and C. Carson. America’s workforce and the self-driving future: realizing

productivity gains and spurring economic growth. Securing America’s Future

Energy, Washington, DC, USA, Tech. Rep., 2018.

[18] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous

driving: Common practices and emerging technologies. EEE Access, 8,

58443-58469, 2020.

BIBLIOGRAPHY 41

[19] M. Bertozzi and A. B. Gold. A parallel real-time stereo vision system for

generic obstacle and lane detection. Image Processing, IEEE Transactions on,

7(1):62-81, 1998.

[20] C. Gold, M. Körber, D. Lechner, and K. Bengler. Taking over control from

highly automated vehicles in complex traffic situations: the role of traffic den-

sity. Human factors, vol. 58, no. 4, pp. 642–652, 2016.

[21] N. Merat, A. H. Jamson, F. C. Lai, M. Daly, and O. M. Carsten. Transition

to manual: Driver behaviour when resuming control from a highly automated

vehicle. Transportation research part F: traffic psychology and behaviour, vol.

27, pp. 274–282, 2014.

[22] S. Singh. Critical reasons for crashes investigated in the national motor vehicle

crash causation survey. Tech. Rep., 2015.

[23] C. Ahlström and K. Kircher. Review of real-time visual driver distraction de-

tection algorithms. Proceedings of the 7th International Conference on Meth-

ods and Techniques in Behavioral Research, August 2010.

[24] S. Hecker, D. Dai, and L. Van Gool. End-to-end learning of driving models

with surround-view cameras and route planners. Eur. Conf. Comput. Vis.

ECCV, pp. 435-453, 2018.

[25] J. Yang, C. Wang, B. Jiang, H. Song, and Q. Meng. Visual perception en-

abled industry intelligence: State of the art, challenges and prospects. IEEE

Transactions on Industrial Informatics, 17, 2204-2219, 2021.

42 BIBLIOGRAPHY

[26] C.H. Morimoto and M.R.M. Mimica. Eye gaze tracking techniques for inter-

active applications. Computer Vision and Image Understanding, 98, 1, 4-24,

2005.

[27] G J. Andersen. Focused attention in three dimensional space. Perception and

Psychophysics, 47, 112-120, 1990.

[28] D. Witzner Hansen, J.P. Hansen, M. Nielsen, A.S. Johansen, and M.B.

Stegmann. Eye typing using markov and active appearance models. Proc.

IEEE Workshop Applications on Computer Vision, pp. 132-136, 2003.

[29] C. Hennessey and P. Lawrence. Noncontact binocular eye-gaze tracking for

point-of-gaze estimation in three dimensions. IEEE Transactions on Biomed-

ical Engineering, 56, 790-799, 2009.

[30] T. Kowsari, S.S. Beauchemin, D. Laurendeau M.A. Bauer, and N. Teasdale.

Multi-depth cross-calibration of remote eye gaze trackers and stereoscopic

scene systems. IEEE Transactions on Instrumentation and Measurement, Dec.

2012.

[31] F. Lethaus and J. Rataje. Do eye movements reflect driving manoeuvres? IET

Intelligent Transportation Systems, vol. 1, no. 3, pp. 199–204, 2007.

[32] M. Land and J. Horwood. Which parts of the road guide steering? Nature,

vol. 377, pp. 339–340, 1995.

[33] M. Land. Eye movements and the control of actions in everyday life. Prog. in

Ret. and Eye Res., vol. 25, pp. 296–324, 2006.

BIBLIOGRAPHY 43

[34] C. Gong, Z. Li, C. Lu, J. Gong, and F. Hu. A comparative study on trans-

ferable driver behavior learning methods in the lane-changing scenario. IEEE

International Conference on Computer Vision Workshops (IEEE Intelligent

Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019.

[35] FaceLab5 Eye Tracker. User manual. SeeingMachine, 2009.

[36] RealSense Depth Camera D415. User manual. Intel, 2020.

[37] G. Bradski. The OpenCV Library. The OpenCV Library, 2000.

[38] M. Persson and K. Nordberg. Lambda twist: An accurate fast robust perspec-

tive three point (p3p) solver. ECCV, 2018.

[39] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o(n) solution to

the pnp problem. Int J Comput Vis 81, 155, 2009.

[40] P. D. Fiore. Efficient linear solution of exterior orientation. IEEE Trans. Pat-

tern Anal. Mach. Intell., 23,140–148, 2001.

[41] L. Quan and Z. Lan. Linear n-point camera pose determination. EEE Trans-

actions on Pattern Analysis and Machine Intelligence, 21,774–780, 1999.

[42] A. Ansar and K. Daniilidis. Linear pose estimation from points or lines. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25,578–589,

2003.

Appendix A

Gaze data transfer over socket

This Section describes the technical steps for reading gaze data from the FaceLab

Eye Tracker socket in real time, which was a challenging part of the thesis. It is

hoped that this serves as a reference for future students from the RoadLab Research

group.

Socket programming is a way of connecting two nodes on a network to commu-

nicate with each other. One socket (node) listens on a particular port at an IP, while

another socket reaches out to the other to form a connection. The server forms the

listener socket while the client reaches out to the server.

The first step toward this, which is transferring real time gaze via an Ethernet

cable, is to run the software FaceLab 5.0, which is located on the FaceLab machine

Windows 7. A.1 shows a screenshot of Windows.

After executing the FaceLab software on Windows, FaceLab cameras need to be

calibrated with the following physical configuration, shown in A.2. The calibration

is performed with a chessboard in different orientations, shown in A.3.

44

45

Figure A.1: Screenshot of FaceLab Eye Tracker Machine Windows, presenting
FaceLab and VMware workstation icons.

After calibration, one should select the following tab to publish the gaze data

on a specific IP, see A.4. IP value will be explained later in this section. There

are two options for publish gaze data on a specific IP: (i) Log Accurate and (ii)

Log Realtime. Log Accurate publishes data with time lag of 2.5 second, while Log

Realtime publishes data with time lag of 50 millisecond. Note that the port numbers

should be left as default and should not be changed.

After specifying the IP value for publishing the gaze data, one has to ‘start

tracking’ and ‘start logging’ in the main menu window of FaceLab, as shown in

A.4.

Afterwards, VMware machine from desktop should be executed, see Figure A.1,

and select RoadLab Ubuntu to run. Find the IP of VMware and enter the IP value

in FaceLab 5.0, as shown in A.4.

46 Chapter A. Gaze data transfer over socket

Figure A.2: Physical configuration of FaceLab cameras.

Finally, select Eclipse from the desktop (shown in A.6). Then, create a new

C++ script file, inside the project RL Reader that is already available. Note that

if a new project is created, then many libraries need to be linked to project, which

is cumbersome work. Run the following C++ code in Eclipse, reads the gaze data

from the socket. After running the C++ code inside the VMware, run the following

python code in the FaceLab Machine Windows 7 to receive the gaze data from

virtual machine and transfer it over the socket.

// Name : Socket Programming for Transferring gaze vector, rotation vector and

eye location in real time

// Author : Mohammad Karami

// Version : 1.0

// Copyright : Your copyright notice

47

Figure A.3: Chessboard in different orientation for calibration of FaceLab cameras.

#include < csignal >

#include < iostream >

#include < sys/time.h >

#include ”RL ReaderGUI.hpp”

#include < boost/shared ptr.hpp >

#include < boost/algorithm/string.hpp >

#include < boost/chrono.hpp >

48 Chapter A. Gaze data transfer over socket

Figure A.4: Configuration of FaceLab 5.0 for publishing gaze data on a specific IP.

#include < sys/types.h >

#include < sys/stat.h >

#include < gtkmm.h >

#include < sys/socket.h >

#include < arpa/inet.h >

#include < unistd.h >

#include < stdio.h >

#include < stdlib.h >

#include < string.h >

#include ”eod/sdk.h”

using namespace sm::eod;

using namespace sm::eod::io;

49

Figure A.5: Main menu window of FaceLab 5.0 for start tracking and publishing
data on IP.

using namespace sm::eod::utils;

using namespace std;

typedef struct GazeData sock {

float gazeVector x;

float gazeVector y;

float gazeVector z;

float center x;

float center y;

float center z;

float rot x;

float rot y;

} gaze sock;

50 Chapter A. Gaze data transfer over socket

Figure A.6: Screen shot of RoadLab Ubuntu inside VMware.

int createSocket(int port) {

int sock, err;

struct sockaddr in server;

if ((sock = socket(AF INET, SOCK STREAM, 0)) < 0) {

printf(”ERROR: Socket creation failed”);

exit(1);

}

printf(”Socket created”);

bzero((char *) &server, sizeof(server));

server.sin family = AF INET;

server.sin addr.s addr = INADDR ANY;

server.sin port = htons(port);

51

if (bind(sock, (struct sockaddr *)&server , sizeof(server)) < 0) {

printf(”ERROR: Bind failed”);

exit(1);

}

printf(”Bind done”);

listen(sock , 3);

return sock;

}

void closeSocket(int sock) {

close(sock);

return;

}

void sendMsg(int sock, void msg, int msgsize) {

if (write(sock, msg, msgsize) ¡ 0) {

printf(”Can’t send message.”);

closeSocket(sock);

exit(1);

}

printf(”Message sent (%d bytes).”, msgsize);

return;

}

int interrupt status = 0;

void signal handler(int param) {

printf(” SIGINT Signal: User pressed ctr+c...”);

52 Chapter A. Gaze data transfer over socket

interrupt status = 1;

}

#define port 2002

int main() {

DatagramSocket inputsocket(port);

SerializablePtr realtime serializable;

EngineOutputDataPtr realtimeEngine;

InetAddress from;

vector<uint8> buffer;

GazeData gaze;

int BUFFSIZE = 512;

char buff[BUFFSIZE];

int ssock, csock;

int nread;

struct sockaddr in client;

socklen t clilen = sizeof(client);

ssock = createSocket(port);

csock = accept(ssock, (struct sockaddr) & client, &clilen);

signal(SIGINT, signal handler);

float i = 0.1;

while(interrupt status == 0) {

buffer.clear();

int pos = 0;

inputsocket.receiveDatagram(buffer,from);

53

if(buffer.size() > 0)

cout << ”Data Received from buffer” << buffer.size() << endl;

} else

cout << ”Not received” << endl;

if(buffer.size() > 0) {

realtime serializable = SerializableFactory::newObject(buffer, pos);

realtimeEngine = boost::dynamic pointer cast<EngineOutputData>(realtime serializable);

}

EngineOutputData engine = realtimeEngine.get();

EngineOutputData &facelabData = engine;

EyeId eyeId = RIGHT EYE;

GazeOutputData & faceGaze = facelabData.eyeOutputData()− >gazeOutputData();

const fStdVector2 & rot = faceGaze.gazeRotation(eyeId);

const fStdVector3 & center = faceGaze.eyeballCentre(eyeId);

gaze.quality = faceGaze.gazeQualityLevel(eyeId);

printf(”%f %f” , rot[0], rot[1]);

float c1 = cos(rot[0]);

float s1 = sin(rot[0]);

float c2 = cos(rot[1]);

float s2 = sin(rot[1]);

gaze.gazeVector[0] = s1 c2;

gaze.gazeVector[1] = -s2;

gaze.gazeVector[2] = c1 c2;

gaze.eyeCenter[0] = 1000 center[0];//inmillimeter

54 Chapter A. Gaze data transfer over socket

gaze.eyeCenter[1] = 1000*center[1];

gaze.eyeCenter[2] = 1000*center[2];

printf(”%1.5f %1.5f %1.5f”, gaze.gazeVector[0], gaze.gazeVector[1],

gaze.gazeVector[2]);

printf(”%1.5f %1.5f %1.5f”, gaze.eyeCenter[0], gaze.eyeCenter[1],

gaze.eyeCenter[2]);

//Trans f erthe f ilesonthesocket

gaze sock p = new gaze sock;

i += 0.1;

p− >gazeVector x = gaze.gazeVector[0];

p− >gazeVector y = gaze.gazeVector[1] ;

p− >gazeVector z = gaze.gazeVector[2];

p− >center x = gaze.eyeCenter[0];

p− >center y = gaze.eyeCenter[1];

p− >center z = gaze.eyeCenter[2];

p− >rot x = rot[0];

p− >rot y = rot[1];

sendMsg(csock, p, sizeof(gaze sock));

delete p;

} //endo f whileloop

printf(”Closing Socket”);

closeSocket(ssock);

closeSocket(csock);

55

return 0;

}

Python code for receiving and transferring gaze data over socket (should be

executed inside Windows 7 of FaceLab Mahcine:

import socket

import sys

from ctypes import

import time

HOST = ’192.168.127.129’ # The server’s hostname or IP address, as sample

PORT = 2002 # The port used by the server

class GazeData(Structure): fields = [(”gazeVector x”, c float),

(”gazeVector y”, c float),

(”gazeVector z”, c float),

(”center x”, c float),

(”center y”, c float),

(”center z”, c float),

(”rot x”, c float),

(”rot y”, c float)]

server addr = (HOST, PORT)

s = socket.socket(socket.AF INET, socket.SOCK STREAM)

s.connect(server addr)

print(”Connected to VMware”)

print(”Waiting for another PC to connect”)

new s = socket.socket()

56 Chapter A. Gaze data transfer over socket

new s.bind((”, PORT))

new s.listen(5)

c, addr = new s.accept()

try:

while True:

buff = s.recv(sizeof(GazeData))

GazeData in = GazeData.from buffer copy(buff)

print (”Received x=%f, y=%f, z=%f” % (GazeData in.gazeVector x,

GazeData in.gazeVector y, GazeData in.gazeVector z,))

c.sendall(GazeData in)

#time.sleep(0.01)

except KeyboardInterrupt:

print(”Closing Socket”)

c.close()

s.close()

new s.close()

Now, you can use the following Python code in any machine that is connected

with Ethernet cable to the FaceLab Machine to read the gaze vector, rotation vector

and eye location in real time:

import socket

from ctypes import

port = 2002

HOST = ’192.168.65.127’

class GazeData(Structure):

57

fields = [(”gazeVector x”, c float),

(”gazeVector y”, c float),

(”gazeVector z”, c float),

(”center x”, c float),

(”center y”, c float),

(”center z”, c float),

(”rot x”, c float),

(”rot y”, c float)]

s = socket.socket()

s.connect((HOST, port))

print(”Connected to FaceLab Machine”)

try:

while True:

buff = s.recv(sizeof(GazeData))

GazeData in = GazeData.from buffer copy(buff)

print (”Received x = %f, y = %f, z = %f” %

(GazeData in.gazeVector x,

GazeData in.gazeVector y,

GazeData in.gazeVector z))

//GazeData in.center x,

//GazeData in.center y,

//GazeData in.center z,

//GazeData in.rot x,

//GazeData in.rot y))

58 Chapter A. Gaze data transfer over socket

except:

s.close()

print(”Socket closed”)

Curriculum Vitae

Name: Mohammad Karami

Post-Secondary University of Western Ontario
Education and Computer Science Department
Degrees: 2019-2021 M.Sc.

University of Western Ontario
Civil and Environmental Engineering Department
2015 - 2019 Ph.D.

Isfahan University of Technology, IRAN
Mechanical Engineering Department
2010 - 2013 M.Sc.

Persian Gulf University, IRAN
Mechanical Engineering Department
2005 - 2010 B.Sc.

Honours and Graduate Research Assistant
Awards: 2015-2021

Related Work Teaching Assistant
Experience: The University of Western Ontario

2016 - 2021
Machine Learning Engineer
National Research Council
2020-2020

59

60 Chapter A. Gaze data transfer over socket

Publications:

- M. Karami, H. Hangan, L. Carassale, H. Peerhossaini, Coherent structures in

tornado-like vortices, Selected paper by Editor, Physics of Fluids 31, 085118 (2019).

- M. Karami, H. Hangan, L. Carassale, Statistical and modal analysis of surface

pressure fluctuations in tornado-like vortices, Selected paper by Editor, Physics of

Fluids 32, 075109 (2020).

	Calibration Between Eye Tracker and Stereoscopic Vision System Employing a Linear Closed-Form Perspective-n-Point (PNP) Algorithm
	Recommended Citation

	tmp.1619644073.pdf.d_JwH

