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Executive summary 
 

Climate change is one of the more pressing issues that attract the attention of scientists and policy 

makers. Many scientists are developing necessary methodologies to better understand the impacts of 

climate change, and support the development of appropriate adaptation measures. Literature on the 

application of adaptation measures to changing climatic conditions is very limited and the need for more 

work is evident on the development of adaptation strategies for mitigating negative impacts of climate 

change in water resources management practice. 

This study presents an integrated reservoir management system for the Upper Thames River basin 

that includes: (1) a Weather Generator (WG) model; (2) a hydrologic model; and (3) a differential 

evolutionary optimization model. It is used to develop the alternative optimal operating rule curves for 

three reservoirs in the basin that will take into consideration the impact of climate change. Alternative 

curves developed using the proposed methodology represent one of the possible climate change 

adaptation strategies for the use of existing storage in the basin.  

Three different weather scenarios are employed to verify the integrated reservoir management 

system; (1) Case 1: scenarios set ൕ generated with the original WG model of Sharif and Burn (2006) with 

one variable (precipitation); (2) Case 2: scenario set ൖ: generated with original WG model with three 

variables named WG3; (3) scenario set ൗ: generated with the modified WG that is combined with 

Principal Component Analysis using three variables WG-PCA3. The results of this study indicate that the 

rule curves developed using B11(dry) climate scenario show the best result for the scenarios set ൕ because 

there is no significant flood events in the case 1 and for the scenario set ൖand the scenario set ൗ generated 

by WG3 and WG-PCA3, the B11 (PCA) rule curves provide the best result for B11, B11(PCA), and 
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historic(PCA) scenarios and the B21 rule curves represent the best results for B21 and B21(PCA) 

scenarios. Another notable result is that the flood operations would be required until April if the B21(wet) 

scenario occurs in the future. In addition, the WG-PCA3 provides more wet weather conditions than the 

original WG model. 



- 3 - 

 

Contents 

List of tables............................................................................................................................................. - 4 - 

List of figures........................................................................................................................................... - 5 - 

1. Introduction.......................................................................................................................................... - 6 - 

1.1 Background........................................................................................................................................ - 6 - 

1.2 Organization of the report.................................................................................................................. - 7 - 

2. Methodology........................................................................................................................................ - 8 - 

2.1 K-NN Weather Generator (WG) model............................................................................................. - 8 - 

2.1.1 K-NN Weather Generator (WG) model of Sharif and Burn (2006) ............................................. - 12 - 

2.1.2 Integration of weather generator with principle component analysis ........................................... - 12 - 

2.2 Hydrologic model (HEC-HMS)....................................................................................................... - 14 - 

2.3 Optimization model ......................................................................................................................... - 19 - 

3. Integrated Reservoir Management System ........................................................................................ - 22 - 

4. Application......................................................................................................................................... - 24 - 

4.1 Study basin – The Upper Thames River Basin................................................................................ - 24 - 

4.2 Application of the K-NN Weather Generator model ....................................................................... - 26 - 

4.3 Application of the hydrologic model ............................................................................................... - 30 - 

4.4 Application of the optimization model (Differential Evolution, DE) .............................................. - 32 - 

4.4.1 Objective function......................................................................................................................... - 32 - 

4.4.2 Constraints on reservoir operations .............................................................................................. - 36 - 

4.5 Results.............................................................................................................................................. - 42 - 

4.5.1 Case 1: WG weather scenarios (scenario set 帆) ............................................................................ - 42 - 

4.5.2 Case 2: new weather scenarios generated by WG3 and WG-PCA3.............................................. - 53 - 

5. Conclusions and future work ............................................................................................................. - 67 - 

References................................................................................................................................................ - 4 - 

Appendix 1: Previous reports in the series .............................................................................................. - 4 - 



- 4 - 

 

 

List of Tables 

Table 4.1 Available damage points in the Upper Thames River basin.....................................................34 

Table 4.2 Physical reservoir constraints ...................................................................................................36 

Table 4.3 Operational constraints of Wildwood and Pittock reservoirs (UTRCA, 1993) ........................37 

Table 4.4 The Fanshawe reservoir release ranges categorized by the flood damage................................40 

Table 4.5 Scenarios sets employed in the case study................................................................................41 

Table 4.6 Yearly average flood damage (103 Canadian dollars/year).......................................................48 

Table 4.7 Yearly average flood damage ...................................................................................................60 

 



- 5 - 

 

List of Figures 

Figure 2.1 Continuous hydrologic model structure ..................................................................................17 

Figure 2.2 Modified continuous hydrologic model structure....................................................................18 

Figure 2.3 Differential evolution algorithm..............................................................................................21 

Figure 3.1 Optimization procedure of the integrated reservoir management system ...............................23 

Figure 3.2 Interpretation procedure of integrated reservoir management system.....................................23 

Figure 4.1 Schematic map of the Upper Thames River basin...................................................................25 

Figure 4.2 Schematic location map of stations in the basin......................................................................27 

Figure 4.3 Meteorological characteristics of stations in the basin ............................................................28 

Figure 4.4 Statistical characteristics of three representative stations........................................................29 

Figure 4.5 Schematic of the hydrologic model for the Upper Thames River basin..................................31 

Figure 4.6 Flood damage curves for four control points in the Upper Thames River basin.....................34 

Figure 4.7 Optimal Fanshawe reservoir operating rule curves ................................................................44 

Figure 4.8 Optimal Wildwood reservoir operating rule curves ................................................................45 

Figure 4.9 Optimal Pittock reservoir operating rule curves ......................................................................46 

Figure 4.10 Daily reservoir storage for each climate scenario..................................................................49 

Figure 4.11 Streamflow at the Byron station ............................................................................................50 

Figure 4.12 Optimal Fanshawe reservoir rule curves ...............................................................................54 

Figure 4.13 Optimal Wildwood reservoir rule curves ..............................................................................55 

Figure 4.14 Optimal Pittock reservoir rule curves ....................................................................................56 

Figure 4.15 Optimal Fanshawe reservoir rule curves generated by WG-PCA3 .......................................57 

Figure 4.16 Optimal Wildwood reservoir rule curves generated by WG-PCA3 ......................................58 

Figure 4.17 Optimal Pittock reservoir rule curves generated by WG-PCA 3...........................................59 

Figure 4.18 Reservoir storages and flood damages for the B11 and historic rule curves at the Byron in 

November for B11 scenario ..................................................................................................62 

Figure 4.19 Reservoir storages and flood damages for the B21 and historic rule curves at the Byron in 

April for B21 scenario...........................................................................................................62 

Figure 4.20 Total flood damages corresponding to the B21 rule curve and historic rule curve in April for 

B21 scenario..........................................................................................................................63 

Figure 4.21 Total flood damages corresponding to the B11 rule curve and historic rule curve in November 

for B11 scenario ....................................................................................................................63 

Figure 4.22 Streamflow at Byron corresponding to different rule curves and climate scenarios..............64 



- 6 - 

 

1. Introduction 

Climate change is affecting management of water resources in different ways at different locations around 

the world. Our focus in this research is to assess the impact of climate change on the management of three 

existing reservoirs in the Upper Thames River basin, Ontario, Canada. 

1.1 Background 

Climate change is one of the issues that attract the attention of scientists and policy makers. Policy 

makers are dealing with legislation and necessary funding for mitigating the climate change and adapting 

to climate change impacts. On the other hand, scientists are developing necessary methodologies to better 

understand the impacts of climate change, and support development of appropriate adaptation measures. 

However, due to the large uncertainty associated to climate change impacts a very few adaptation 

measures have been developed and applied in practice.  To alleviate the uncertainty problem, the General 

Circulation Models (GCMs) provide the range of feasible future scenarios employing various emission 

scenarios (IPCC, 2000). GCM simulation results (e.g. temperature, precipitation, wind speed, humidity, 

and pressure) on a global scale (IPCC, 2007) show that the Earth’s average temperature will increase up 

to 3°C by 2080 due to the global warming caused by the increased emissions of carbon dioxide. In terms 

of fresh water resources, the annual average river flow will increase as much as 10% - 40% in high 

latitude and some wet tropical areas and decrease up to 30 % in dry regions at mid-latitude and dry 

tropical areas (IPCC, 2007). In addition, the IPCC assessment report (2007) warns that flooding will 

occur much more frequently in coastal areas due to the sea-level rise. 

The GCMs have typical spatial resolution between 250 and 600 km, which is too coarse for 

assessment of regional effects of climatic change. Therefore, downscaling procedures based on large-

scale GCM outputs and local information are necessary for the application at regional scales. Different 

downscaling procedures provide different results for the same GCM output. This means that there is also 

the uncertainty in the downscaling procedures. In spite of that, the water resources management 
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researcher is actively dealing with the climate change impacts at local scales (Christensen et al., 2004; 

Burn, 1998; Simonovic and Li, 2003; Hamlet and Lettenmaier, 1999; Westmacott and Burn, 1997; Payne 

et al., 2004; Van Rheenen et al., 2004). Most of the published studies focus on the change of weather 

conditions, such as precipitation, temperature and streamflow. Literature on the application of adaptation 

measures is very limited.  There is a need for development of adaptation strategies for mitigating negative 

impacts of climate change in practice. They may for example, include reservoir operation rules that will 

take into consideration a variety of socio-economic impacts of climate change. This study uses an 

integrated reservoir management system that includes (1) Weather Generator (WG) model; (2) hydrologic 

model; and (3) optimization model to determine the reservoir operation rules under changing climatic 

conditions. First, the WG model generates the plausible weather scenarios using observed data and GCM 

simulation outputs. They are used in the second step as inputs into the hydrologic model.  The hydrologic 

model requires reservoir operating rules and at step three the optimization model selects the optimal set of 

rules among the alternative choices that optimize the objective function.  Therefore, the integrated 

reservoir management system proposed in this study can be used to determine reservoir operation rules 

that adapt to new conditions whenever information is available (for example updated GCM output). The 

results of integrated reservoir management system provide the user with clear indication which part of the 

basin is vulnerable to climate change and how the reservoir operation should be adjusted to minimize the 

vulnerability.  

1.2 Organization of the report  

In the next section, the methodological aspects of K-NN weather generator model, hydrologic model, 

and optimization model are introduced and the description of their integration is provided. The following 

section presents the formulation of reservoir optimization model, its objective function and constraints.  

Study concludes with insights from the integrated reservoir management analyses under climate change 

and outlines the future work. 
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2. Methodology  

This section of the report provides methodological background of all three key elements of the integrated 

reservoir management system. 

2.1 K-NN Weather Generator (WG) model 

The spatial scale of GCMs prevents their effective use in regional assessments of climate change 

impacts. The downscaling schemes are used to bring the GCM results to regional scales.  Dynamic 

downscaling methods use the GCM results directly as boundary conditions for complex physically -based 

algorithms that describe atmospheric processes in limited-area models or regional climate models (Jones 

et al., 1995; Kidson and Thompson, 1998; Wilby et al., 1998). They can generate the regional data equal 

in length to GCM simulation period. In addition, these methods require significant computational effort 

and time to provide results on the proper regional scale.  Another group of downscaling models is based 

on statistical downscaling. They have an advantage over dynamic downscaling techniques by using 

simpler computational procedures (Wilby et al., 2000; Haylock et al., 2006). The process of statistical 

downscaling is based on the statistical relationships between the GCM output and the observed historical 

data within a region of interest over the same period. Various  tools used for representing these 

relationships include a linear and nonlinear regression (Wilby et al., 1998), artificial neural networks 

(Cannon and Whitfield, 2002; Tripathi and Srinivas, 2005), fuzzy rule-based systems (Bardossy et al., 

2005), delta method (Smith and Tirpak 1989; Lettenmaier and Gan 1990; Kirshen and Fennessey 1995; 

Lettenmaier at al. 1999), and quantile mapping method (Wood et al., 2002; Widmann et al., 2003; Salathé, 

2004) among others. With the assistance of various downscaling techniques, many researchers have 

investigated the impact of climate change on water resources at regional scales (Ahmad and Simonovic 

2000; Prudhomme et al., 2003; Christensen et al., 2004; Cunderlik and Simonovic, 2004; Simonovic and 

Li, 2004). The previous studies demonstrate that the climate change induces the change of water 
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availability (Christensen et al., 2004), extremes (Burn, 1998; Simonovic and Li, 2003), the timing of 

hydrological events (Hamlet and Lettenmaier, 1999), and the strategies for water resources management 

(Westmacott and Burn, 1997; Payne et al., 2004; Van Rheenen et al., 2004). Although various 

downscaling schemes have been used to estimate the impacts of climate change at regional scales, there 

are still some doubts in the downscaling results because different downscaling techniques employing with 

exactly the same GCM results provide the different results (Coulibaly and Dibike, 2004). 

In some recent work, a Weather Generator (WG) technique is being proposed as another type of 

statistical downscaling approache. The Weather Generator is regarded as a complex random number 

generator and has been employed (a) in parametric form as WGEN (Nicks et al., 1990) and generation of 

weather elements for multiple applications as GEM (Hanson and Johnson, 1998; Parlange and Katz, 

2000) or (b) in non-parametric form (Sharma et al., 1997; Wilks and Wilby, 1999; Mehrotra and Sharma, 

2007). Parametric weather generators require complex fitting of model parameters.  This problem is 

eliminated the non-parametric methods that are gaining interest among hydrologists. Among non-

parametric methods, many successful applications of the K-NN (K-Nearest Neighbor) technique for 

generating synthetic weather data have been reported (Young, 1994; Lall and Sharma, 1996; Lall et al., 

1996; Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001; Yates et al., 2003). Our work builds on 

the improved K-NN technique of Sharif and Burn (2006).  

 

2.1.1 K-NN Weather Generator (WG) model of Sharif and Burn (2006) 

The K-NN algorithm starts with randomly selecting the current day from the observed data set and a 

specified number of days similar in characteristics to the current day. Using resampling procedure, one of 

the days from the data set with similar statistical characteristics with current day is selected to represent 

the weather for the next day. The nearest neighbor algorithm (a) uses a simple computational procedure, 

and (b) preserves well both, temporal and spatial correlation among the input data. Yates et al. (2003) 
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applied K-NN algorithm successfully with three variables (precipitation, maximum temperature, and 

minimum temperature) to diverse areas of United States. The main limitation of their work is that the 

newly generated data stays within the range of observed minimum and maximum value.  

Sharif and Burn (2006) modified the K-NN weather generator algorithm of Yates et al. (2003) by 

incorporating the perturbation process for weather variables that generates extremes outside the range of 

historically observed data. The modified K-NN algorithm with p variables and q stations proposed by 

Sharif and Burn (2006) has the following steps:  

1) Calculation of regional means of p variables (x) across all q stations for each day in the historic 

record: 

[ ] },,2,1{,,, ,,2,1 TtxxxX tpttt LL =∀=      (2.1) 

where   },,2,1{
1

1

,, pix
q

x
q

j

j
titi L=∀= ∑

=

      (2.2) 

2) Computation of the potential neighbors of size L = (w + 1) × N − 1 days long for each variable p 

with N years of historical record and selected temporal window of size w. All days within that 

window are selected as potential neighbors to the current feature vector. Among the potential 

neighbors, N data corresponding to the current day are eliminated in the process to prevent the 

possibility of generating the same value as that of the current day.  

3) Computation of the regional means for all potential neighbors selected in step 2) across all q 

stations for each day. 

4) Computation of the covariance matrix, Ct, for day t using the data block of size L × p.  

5)  Random selection of the first time step value for each variable p from all current day values in the 

record of N years.  

6) Computation of the Mahalanobis distance expressed by Eq. (2.3) between the mean vector of the 

current days ( tX ) and the mean vector of all nearest neighbor values ( kX ), where k = 1, 2, L  , L.  
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where T represents the transpose matrix operation, and C−1 represents inverse of covariance matrix. 

7) Selection of the number of LK =  nearest neighbors out of L potential values. 

8) Sorting the Mahalanobis distance dk from smallest to largest, and retaining the first K neighbors in 

the sorted list (they are referred to as the K Nearest Neighbors). Then, use a discrete probability 

distribution giving higher weights to closest neighbors for resampling out the set of K neighbors 

(Lall and Sharma, 1996). The weights are calculated for each k neighbor using the following Eq. 

(2.4) and (2.5).  
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where k = 1, 2, . . . ,K. Cumulative probabilities, pj, are given by: 

∑
=

=
j

i
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1

        (2.5) 

Note that Sharif and Burn (2006) used cumulative probability of K neighbors with Eq. (2.5) while 

Yates et al. (2003) used just a probability for each K neighbors as shown by Eq. (2.4). 

9) Generating random number u(0,1) and comparing it to the cumulative probability pj to determine 

the nearest neighbor of current day. If p1 < u < pK, then day j for which u is closest to pj is selected. 

On the other hand, if u < p1, then the day corresponding to d1 is selected, and if u = pK, then the day 

corresponding to dK is selected. Once the nearest neighbor is selected, the weather of selected day 

is used for all stations in the region. This is how the K-NN algorithm preserves the cross-

correlation among variables in the region. In this step, the improved K-NN algorithm offers a 

reasonable method that randomly selects one among K neighbors based on the cumulative 

probability. However in the algorithm by Yates et al. (2003) the first nearest neighbor may be 
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selected in most cases because it selects one of K nearest neighbors for which u is closest to a 

probability of each neighbor.  

10) This step is added by Sharif and Burn (2006) to generate variables outside the range of historical 

data by perturbation. First, estimation of a conditional standard deviation σ for K nearest neighbors, 

and bandwidth λ (Sharma et al., 1997) is performed using Eq. (2.6): 

5/106.1 Kσλ =       (2.6) 

Then, the perturbation process follows according to  Eq. (7): 

t
j
i

j
ti

j
ti zxy λσ+= ,,      (2.7) 

where j
tix ,  is the value of the weather variable obtained from the original K-NN algorithm; j

tiy ,  is 

the weather variable value from the perturbed set; zt is normally distributed random variable with 

zero mean and unit variance, for day t. To prevent the negative values for bounded variables (i.e. 

precipitation), the largest acceptable value of jj
ta x **, 55.1/ σλ =  is employed, where * refers to a 

bounded weather variable (Sharif and Burn, 2006). If the value of the bounded weather variable, 

computed previously, is still negative, then a new value of zt is generated.  

 

2.1.2 Integration of weather generator with principle component analysis (WG-PCA) 

Sharif and Burn (2006) have developed the weather generator coded in C++ language employing the 

improved K-NN algorithm with three variables (p = 3: precipitation, maximum temperature, and 

minimum temperature). They generated 800 years of weather data with improved K-NN algorithm for the 

Upper Thames River basin, Ontario, Canada and showed that the modified algorithm generates synthetic 

data maintaining the statistical characteristics of reference data.  The main conclusion of their work is that 

the modified K-NN algorithm has the potential to serves as a tool for generating plausible scenarios for 
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the effective water resources management. However, one drawback of their work still remains – the 

modified algorithm cannot reflect the leap year (only generates weather data for 28 days in February).  

Prodanovic and Simonovic (2006a, 2006b) revised the weather generator developed by Sharif and 

Burn (2006) to address the leap year deficiency in the model and analyze the climatic change impacts on 

high flows (Prodanovic and Simonovic, 2006a) and low flows (Prodanovic and Simonovic, 2006b). The 

algorithm is converted into JAVA programming language and used in conjunction with a rainfall-runoff 

model (HEC-HMS) for the Upper Thames River basin, Ontario, Canada. Since the HEC-HMS model 

requires only the precipitation as a meteorological input they have employed only the precipitation data (p 

= 1) in the weather generator model to simplify its application. Both WG models developed in previous 

studies can generate the precipitation very well. However, the model employing more variables has the 

potential to capture the characteristics of the current weather with more detail because larger number of 

variables (i.e. temperature, humidity, pressure, etc.) provides additional information for choosing the 

nearest neighbor.  

This study (a) revised the WG model to allow the use of more variables available in the basin and (b) 

investigated the sensitivity of the results to the choice of variables. If there are many meteorological 

variables available in the basin for use with the WG model, the calculation of Mahalanobis distance 

expressed by Eq. (2.3) becomes quite demanding. Therefore, in this study we proposed integration of WG 

model with the Principle Component Analysis (PCA).  The new model named WG-PCA, reduces the 

dimension of the mean vector of the current days ( tX ) and the mean vector of all nearest neighbor values 

( kX ) in Step (6). The new approach requires only the variance of the first principle component to 

calculate the Mahalanobis distance. The WG-PCA modifies the Step (6) of the algorithm presented in the 

previous section as follows: 

(a) Calculation of eigenvector and eigenvalue for the covariance matrix (Ct). 

(b) Finding the eigenvector related to the largest eigenvalue that explains the largest fraction of the 

variance described by the p variables. 
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(c) Calculation of the first principle component with the eigenvector found in step (b) using Eq. (2.8) 

and Eq. (2.9): 

EX ttPC =        (2.8) 

EXkkPC =        (2.9) 

where PCt and PCk are the values of current day and the nearest neighbor transferred by the 

eigenvector found in step (b), respectively; and E is the eigenvector related to the largest 

eigenvalue.  

 

After calculating the PCt and PCk with one-dimensional matrix obtained by Eq (2.8) and (2.9), the 

Mahalanobis distance is computed using Eq. (2.10):  

 

( ) },,2,1{)(Var/
2

KkPCPCd ktk L=∀−= PC     (2.10) 

 

where Var(PC) represents the variance of the first principle component for the K nearest neighbors. 

In summary, this study used three WG models: (a) Sharif and Burn (2006) WG with one variable 

(precipitation) named WG1, (b) Sharif and Burn (2006) WG with three variables named WG3, and (c) 

WG combined with PCA using three variables named WG-PCA3. Results obtained using three different 

models are compared with each other to investigate the effects of additional variables in K-NN algorithm. 

In addition, the comparison of original WG model with WG-PCA is performed too. 

 

2.2 Hydrologic model (HEC-HMS)  

Various weather conditions obtained using weather generators are further used as inputs into 

hydrologic models in order to further assess the impacts of climate change on local conditions in a basin. 
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Hydrologic models are mathematical representations of rainfall-runoff processes operating within a basin. 

They provide essential information for the management of storage facilities-reservoirs in the basin. 

Therefore, hydrologic model is one important component of the integrated reservoir management system 

developed in this research as a tool for the analyses of climate change adaptation options within a basin.  

The hydrologic model employed in this study is based on the United States Army Corps of Engineers, 

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) which consists of three 

modules: (i) meteorologic module which describes basin input processes such as precipitation,  

evapotranspiration and other; (ii) basin module which describes the main physical processes occurring 

within a basin; and (iii) control module that sets the  simulation parameters. The meteorologic and basin 

modules consist of a collection of methods allowing the user to specify and describe climatic and physical 

properties of the basin.  

HEC – HMS hydrologic model can be used as event-driven or continuous-process model (Cunderlik 

and Simonovic, 2004 and 2005). Event-driven models are designed to simulate individual precipitation-

runoff events. Their emphasis is placed on infiltration and surface runoff, their objective is the evaluation 

of direct runoff. Typically, event models have no provision for moisture recovery between storm events 

and, therefore, are not suited for the simulation of dry weather flows (drought analyses). Continuous-

process models on the other hand take explicit account of all runoff components, including direct and 

indirect runoff (Bennett, 1998). They focus on long-term hydrologic abstractions responsible for the rate 

of moisture recovery during the periods of no precipitation. They are suited for simulation of daily, 

monthly or seasonal streamflow, usually for long-term runoff-volume forecasting and for estimates of 

water yield. 

The integrated reservoir management system uses the HEC – HMS hydrologic model in continuous 

form that provides a detailed long term movement of moisture within the basin, as well as an elaborate 

representation of moisture losses. Continuous hydrologic models (Fig. 2.1) typically combine methods 

used to describe rainfall transformation, baseflow, channel/reservoir routing (determining the shape of a 
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flood hydrograph as it moves through a channel/reservoir), together with losses (detailed movement of 

water through vegetation, surface, soil and ground water).  

Cunderlik and Simonovic (2004) have developed the event and continuous hydrological models for 

the Upper Thames River basin and Prodanovic and Simonovic (2006a, 2006b) applied these models 

within an inverse approach for assessment of the flood and drought risk under climate change. However, 

the previous work did not address the problem of optimal reservoir operation. The releases from the 

reservoirs in the basin were decided using the simple relationship between storage and outflow. In this 

study we modified the reservoir module to introduce a rule curve for control of reservoirs.  The overall 

structure of the modified continuous hydrologic model is shown in Fig. 2.2, where each box represents a 

module that mathematically describes a physical process in the basin. The snow module adjusts 

precipitation to account for both solid and liquid precipitation using the input (precipitation and 

temperature) from the weather generator.  The output of the snow module is used for computation of 

losses. The losses module describes the movement of moisture through various conceptual reservoirs 

within a catchment, which provides four different types of outputs; (1) evapotranspiration, or moisture 

that evaporates from the canopy, surface depressions, and/or the soil, (2) baseflow, (3) surface excess that 

does not infiltrate into the soil, and (4) ground water recharge that enters into deep aquifers and does not 

return to the stream. The surface excess is used by the transform module to generate surface runoff, which 

is then combined with baseflow to produce direct runoff. Then, the direct runoff is used by the routing 

module to calculate the propagation of a flood wave eventually producing channel streamflow. The 

reservoir module, employing the reservoir rule curve, is run if a reservoir exists at the end of a channel. 
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Figure 2.1 Continuous hydrologic model structure 



- 18 - 

 

 

Figure 2.2 Modified continuous hydrologic model structure 
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2.3 Optimization model  

Many optimization schemes have been employed to provide the efficient solutions to reservoir 

management problems (Yeh, 1985; Labadie, 2004). Nowadays, there are many nonlinear optimization 

algorithms that work using gradient-based and heuristic-based search techniques in deterministic and 

stochastic contexts. Traditional optimization approaches are showing some limitations for application 

with more complex reservoir management problems. Therefore, algorithms based on natural and physical 

selection principles are being adopted for more robust optimization.  To mimic the natural selection 

phenomenon or physical selection principles, several algorithms under the general umbrella of 

evolutionary optimization are suggested. They include genetic algorithms (Holland, 1975; Goldberg, 

1989), simulated annealing (Kirkpatrick et al., 1983), ant colony optimization (Dorigo, 1992), memetic 

algorithms (Moscato, 1989), and particle swarm optimization (Eberhart and Kennedy, 1995). Over the 

last decade, evolutionary optimization algorithms have been extensively used in various problem domains 

and succeeded in effectively finding the near global optimal solutions. 

Differential Evolution (DE) algorithm is used in this study. It has been introduced by Price and Storn 

(1997) as a branch of evolutionary algorithms for optimization problems over continuous domains. DE 

has been applied to various science and engineering fields. Its main advantages include simple structure, 

ease of use, fast convergence, and robustness. If a system can be evaluated rationally, DE can provide the 

effective means to select the best possible solution. DE uses mutation as a search mechanism and 

selection to direct the search toward the prospective regions in the feasible region. Therefore, DE uses 

mutation as the primary search mechanism while Genetic Algorithm (GA) uses crossover, a mechanism 

of probabilistic exchange of information among solutions to locate better solutions. 

DE is a population based search technique which utilizes NP variables as population of D 

dimensional parameter vectors for each generation. The initial population is chosen randomly in most 

cases.  In the case of available preliminary solution, the initial population can be generated by adding 
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normally distributed random values to the preliminary solution. The basic idea behind DE is to generate 

trial parameter vectors by adding the weighted difference vector between two population members to a 

third member described by Eq. (2.11) and crossover process. 

 

)('

bacc XXFXX −+=       (2.11) 

 

where Xc
' represents a vector before crossover, Xa, Xb, and Xc are vectors chosen randomly to define a 

vector differential and trial vector, and F is the weighting or scaling factor given by user in the optimal 

range between 0.5 and 1.0 (DE, 2008). Therefore, the trial vector is the child of two parents, a noisy 

random vector and the target vector against which it must compete. Uniform crossover that takes vector 

parameters from one parent more often than it does from other is used with a crossover constant (CR), in 

the optimal range between 0.5 and 1.0, which represents the probability that the child vector inherits the 

parameter values from the noisy random vector (DE, 2008). For example, when CR = 1.0, every trial 

vector parameter is certain to come from Xc
'. On the other hand, when CR = 0, all but one trial vector 

parameter comes from the target vector. When CR = 0, the final trial vector parameter must come from 

the noisy random vector to ensure that Xt differs from Xi by at least one parameter. Finally, the objective 

function corresponding to the trial vector is compared with that of the target vector. Then, the vector 

resulting in the lower objective function value in minimization problem among two vectors would survive 

for the next generation. Graphical representation of the DE optimization process is shown in Fig. 2.3. The 

search process continues until the termination criterion of a preset maximum iteration number is met, and 

difference in objective function values between two consecutive generations satisfies the tolerance level 

given by user. 

After Price and Storn (1997) have given first the working principle of DE with single strategy, they 

suggested nine more strategies that vary based on the vector to be perturbed, number of difference vectors, 

and the type of crossover (Onwubolu and Babu, 2004; Price et al., 2005). Different strategies can be 
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adopted in the DE algorithm depending upon the type of problem to which DE is applied. A strategy that 

works out to be the best for a certain problem may not work well for a different problem. Therefore, the 

strategy and the key parameters to be used for a particular problem should be determined by trial and 

error. However, strategy employing random perturbation, one difference vector, and binomial crossover 

scheme to generate a trial vector appears to be the most successful and the most widely used strategy. 

 

 

 

Figure 2.3 Differential evolution algorithm 

(http://www.icsi.berkeley.edu/~storn/code.html#hist) 



- 22 - 

 

3. Integrated Reservoir Management System  

In this study three separately developed models are integrated into a reservoir management system: 1) 

WG model for downscaling the GCM output, 2) modified hydrological model for generating the 

streamflow in the basin, and 3) DE optimization model for determining the optimal reservoir adaptation to 

changing climatic conditions.  

The procedure for finding the optimal solution is shown in Fig. 3.1. It is divided into 3 steps. First, the 

weather generator model generates weather conditions based on the available GCM outputs. This process 

can be easily repeated for any new and/or improved GCM output. Second, the output of weather generator 

model is put into the modified continuous hydrologic simulation model to estimate the basin response. 

This model allows for determination of damages and/or benefits corresponding to the optimal reservoir 

adaptation response to future climate scenarios.  The reservoir adaptation is provided by the optimization 

module. Therefore, the hydrologic model plays a key role in the integrated system. It receives both, the 

weather conditions and reservoir adaptation strategies from weather generator module and optimization 

module, respectively. In addition, it provides the response of the basin to easily understand the impacts of 

different climate scenarios on each control point within the basin. Lastly, the optimization model 

generates the optimal reservoir operations rule curves as adaptation strategy to changing climatic 

conditions in the basin. The integrated reservoir management model results interpretation procedure is 

shown in Fig. 3.2.  It offers the statistical analyses and provides valuable guidelines for reservoir 

adaptation to changing climate conditions. 
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Figure 3.1 Optimization procedure of the integrated reservoir management system 

 

 

Figure 3.2 Interpretation procedure of integrated reservoir management system 
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4. Application  

4.1 Study basin – The Upper Thames River basin 

The Thames River basin consisting of two major tributaries has a drainage area of 3,482 km2. The 

stream length is 273 km (from Tavistock to its mouth at Lake St. Clair): the North Branch, flowing 

southward through Mitchell, St. Marys, and eventually into London, and the East Branch, flowing 

through Woodstock, Ingersoll, and east London (Fig. 4.1). The two branches join near London city and 

then the river flows westwards and exits the basin near Byron, eventually draining into Lake St. Clair. 

The Upper Thames River basin receives about 1,000 mm of annual precipitation, 60% of which is lost 

through evaporation and/or evapotranspiration, stored in ponds and wetlands, or recharged as ground 

water (Wilcox et al., 1998). The slope is about 1.9 m/km for most of its upper reaches, while its lower 

reaches are much flatter with a slope of less than 0.2 m/km. 

The Upper Thames River basin has three major water management reservoirs: Wildwood, Pittock and 

Fanshawe near St. Marys, Woodstock and London, respectively (Fig. 4.1). The primary goals of all 

reservoirs include the flood control during snowmelt period and summer storm season, low flow 

augmentation from May to October, and recreational uses during the summer season. Among these goals, 

the most important goal is flood control. Floods in the basin result from a combination of snowmelt and 

intensive precipitation during December to April. The basin has the facilities like extensive dyking 

systems and a diversion channel to prevent the flood damages. Summer frontal storms are also known to 

produce severe flooding in and around the basin, but such storms are less frequent. Drought conditions 

occur mostly from June to September, though they can occur at any time of the year (Cunderlik and 

Simonovic, 2004). 
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Figure 4.1 Schematic map of the Upper Thames River basin 
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4.2 Application of K-NN Weather Generator model  

This study uses daily precipitation, maximum temperature, and minimum temperature of 15 stations 

for the period from 1964 to 2001 (N = 38) to simulate the plausible meteorological scenarios. Employing 

the temporal window of 14 days (w = 14) and 38 years of historical data (N = 38), this study used 569 

days as the potential neighbors (L = (w + 1) × N – 1 = 569) for each variable. The schematic location map 

and meteorological characteristics of 15 stations in the basin are shown in Fig. 4.2 and Fig. 4.3. 

Only three locations are used to show the comparison of WG results (data for other locations are 

available upon request): (1) Stratford for illustrating the characteristic of the northern part of the basin, (2) 

London for south-western part, and (3) Woodstock for south-eastern part of the basin. The monthly 

characteristics of the variables considered in this study are shown in Fig. 4.4. The results for three stations, 

therefore, will be represented and compared later for three WG models introduced in Section 2.1 of this 

report. 

This study generated synthetic meteorological scenarios equal in length to the historical data to 

allow for the statistical comparison of synthetic and historical data. Note that in the case of WG1 model, 

all variables recorded in the basin can be generated (all records on the day selected by K-NN algorithm 

are available) even though Mahalanobis distance is calculated based on one variable only (precipitation) 

to select the nearest neighbors. Therefore, all models used in the study generate three variables available 

in the Upper Thames River basin. That allows for comparison of different weather generator models with 

each other. 
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Figure 4.2 Schematic location map of stations in the basin 
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Figure 4.3 Meteorological characteristics of stations in the basin 
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(a) Stratford 
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(b) London 
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(c) Woodstock 

Figure 4.4 Statistical characteristics of three representative stations 
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4.3 Application of the hydrologic model  

Cunderlik and Simonovic (2004a, 2005) have developed the continuous hydrologic model for the 

Upper Thames River basin. The model has been properly calibrated and verified, with extensive 

sensitivity analyses. The continuous hydrologic model consists of 34 sub-basins, twenty one river reaches, 

and three reservoirs. The schematic of the continuous model is shown in Fig. 4.5.  The model uses a 

different parameter sets for describing summer and winter seasons.  The model details are provided in 

Cunderlik and Simonovic (2004a, 2004b, 2005) and in Prodanovic and Simonovic (2007). 

The previous studies conducted with the model have applied the channel routing method, referred to 

as the Modified Plus method, to reservoirs, with a non-linear relationship between the storage and outflow 

based generally on the historical reservoir operations data. However, this relationship between the storage 

and outflow changes with changing weather conditions (caused by climate change). In addition, the 

optimal reservoir operations are needed as an adaptation strategy for accommodating monthly or seasonal 

hydrological conditions caused by climate change. This study developed an integrated reservoir 

management model for optimization of monthly reservoir operational rule curves as introduced in  the  

Section 3 of the report. To estimate the flood damages caused by summer storm or snow melting during a 

short time periods (1 day or 2 days) at different control points in the basin, hourly or daily reservoir rule 

curves are required.  In case of hourly rule curve, reservoir optimization model requires 8,760 (=365×24) 

decision variables within one year. A large number of decision variables extends the optimization 

computation time. Therefore, this study incorporated an interpolation scheme into the reservoir 

optimization model which uses a monthly rule curve in to an hourly-based reservoir operations simulation. 

The hydrological model has a time-step limitation because Clark’s time of concentration is 6 hours (used 

as the minimum time-step) within some sub-basins. This study employs 6 hours time-step to simulate the 

streamflow and to estimate the corresponding climate change impacts based on the optimal rule curves 

and various climate scenarios.  
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Figure 4.5 Schematic of the hydrologic model for the Upper Thames River basin 
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4.4 Optimization model (Differential Evolution, DE) 

4.4.1 Objective function 

Optimization can be defined as a process that searches for an optimal solution that provides a 

maximum or minimum value of an objective function (Rao, 1996). Therefore, formulation of the 

objective function is the most important step in solving an optimization problem.   

 

The objective function used in this study is formulated as shown in Eq. (4.1).  

 

∑= iiDwfmin          (4.1) 

where Di represents the flood damage at control point i and wi is the weighting factor assigned 

corresponding to the importance of control points. 

The Upper Thames River Conservation Authority (UTRCA) suggested the consideration of the 

following flood damage points in the basin:  Mitchell, StMarys, Byron, Ingersoll, and Ealing (UTRCA, 

2005). In addition, flood damage tables (as function of streamflow value) have been developed for each 

damage point. In this study four control points are selected and used in the formulation of the objective 

function as shown in Table. 4.1. In addition, the weighting factors should be assigned according to the 

importance of each control point. Available flood damage tables are used to extract the importance of 

each control point proportional to the level of total flood damage as shown in Eq. (4.2). 

 

j
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      (4.2) 

 



- 33 - 

 

For example, the maximum flood damages at Byron, Ingersoll, and StMarys are $ 32,314,800., $ 

22,246,300., and $ 13,627,400., respectively. The resulting weighting factors for Byron, Ingersoll, and 

StMarys are then 0.47, 0.33, and 0.20, respectively. Use of the flood damage tables in the determination 

of weighting factors has an advantage that their values can be easily modified if/when updated  flood 

damage tables become available. Using the flood damage tables provided by UTRCA (2005) for four  

control points as shown in Figure 4.6, this study determined the weighting factors of 0.35, 0.26, 0.24 and 

0.15 for Byron, Ealing, Ingersoll and StMarys, respectively. 
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Table 4.1 Available damage points in the Upper Thames River basin 

 

Available damage points 

Points not affected by the 

reservoirs  

Usable points for development 

of the reservoir operations rule 

curve 

Mitchell, StMarys, Medway 

Byron, Ingersoll, Ealing 

Mitchell 

Medway 

StMarys, Byron 

Ingersoll, Ealing 
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Figure 4.6 Flood damage curves for four control points in the Upper Thames River basin 
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4.4.2 Constraints on reservoir operations 

The Upper Thames River basin consists of three reservoirs - Fanshawe, Wildwood, and Pittock. The 

physical constraints for all reservoirs are provided in Table 4.2. The UTRCA in 1993 conducted a 

study(UTRCA, 1993) to develop the rule curves for Wildwood and Pittock reservoirs for satisfying the 

seasonal needs of water supply and flood control. The operational constraints taken from the 1993 study 

for two reservoirs are shown in Table 4.3.  

The optimization problem addressed in this work determines the optimal set of rule curves for all 

reservoirs. The two types of monthly rule curves are developed: (1) lower rule curves and 2) upper rule 

curve. With 12 months optimization horizon the optimization algorithm determined the release according 

to four cases presented in Eq. (4.4) to Eq. (4.7) and the continuity Eq. (4.3). 

req
,1 it

i
t

i
t

i
t RISS −+= −         (4.3) 

   Case 1: Reservoir storage below the lower rule curve 

i
tR  = req

,itR ( i
tS  – min

iS )/( lower
,itS – min

iS )     (4.4) 

   Case 2: Reservoir storage between the lower and the upper rule curve 

i
tR  = req

,itR          (4.5) 

   Case 3: Reservoir storage between the upper rule curve and the maximum storage 

i
tR  = req

,itR  + ( i
tS – upper

,itS ) ≤  max
iR       (4.6) 

   Case 4: Reservoir storage above the maximum storage 

i
tR  = req

,itR  + ( i
tS – max

iS )      (4.7) 
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Table 4.2 Physical reservoir constraints 

Contents Fanshawe Wildwood Pittock 

Volume 
(103 m3) 

22,503 18,470 7,020 
Maximum 

Storage  Elevation 
(EL. M) 

3.0 6.7  4.25 

Volume 
(103 m3) 

5,500 2,430 0.0 
Minimum 
Storage Elevation 

(EL. M) 
-3.0  0.0 0.0 
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Table 4.3 Operational constraints of Wildwood and Pittock reservoirs (UTRCA, 1993) 

Categories Wildwood Pittock 

Flood control 

- Not exceeding 10.0 m3/s in most 

cases 

- Below a limit of 3.0 m3/s to avoid 

nuisance flooding at the St. Mary’s 

golf course 

- No specific flood control flow target 

in the original operating rule 

- Potential backyard flooding of a 

property near Road 48 at flow of 40 

m3/s 

- Authority staff tend to moderate 

outflows to about 35 m3/s 

Low flow 

augmentation 

- Target is 1.13 m3/s 

- No reduction be acceptable 

- Target is 0.42 m3/s 

- No reduction be acceptable 

- The potential benefit from increased 

flows 

Recreation 

- Not fall below 1058 ft before 

Labour Day 

- Wide fluctuation over a short period 

should be avoided 

- Minimizing over the summer 

Fisheries 

- Reach peak water levels by the end 

of the first week of April 

- Reduce peak water level during the 

spring period 

- Hold level stable at the summer 

level until late fall 

- Increase the minimum winter 

holding level  

- Reach peak water levels by the end of 

the first week of April and should be 

held constant until mid-May 

- Water level should be lowered by 

about 1 m over a week period 

- Level should be held at the summer 

level with little fluctuation 

- Increase the minimum winter holding 

level up to 1.3 m (EL. 284.0) 

Hydro power 
- Reach peak water levels by the end 

of the first week of April 
- No significant implications 
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where i
tS  represents the storage of reservoir i at the end of time t, req

,itR  is the required release from 

reservoir i during time t, the firm water supply from each reservoir, i
tI  is the inflow into reservoir i during 

time t, i
tR  is the release from reservoir i during time t, min

iS  is the minimum storage of reservoir i, max
iS  is 

the maximum storage of reservoir i, lower
,itS is the lower rule curve of reservoir i at the time t, upper

,itS is the 

upper rule curve of reservoir i at the time t, and max
iR  is the maximum release from reservoir i for 

reduction of flood damage. 

Among three reservoirs in the Upper Thames River basin, the Fanshawe dam has the unique 

operational role - to keep the water elevation near the sill of dam (=EL. 0.0 m, storage volume = 12,350 × 

103 m3) most of the time. The reservoir gets filled only temporarily to manage floods. In this regard the 

Fanshawe reservoir is very different from the other two reservoirs, Wildwood and Pittock. It can release 

exactly what comes in (less the evaporation and other losses) maintaining the elevation of the sill of the 

dam and performing as a run-of-river dam unless there is a flood. In the case of flooding, the reservoir can 

store the inflows using the storage between the sill of dam and the maximum storage. Therefore, the 

lower and the upper rule curve are developed in this study to guide the optimal reservoir flood control 

operations. Equation (4.8) is used to distinguish between the release under normal and flooding 

conditions and determine the release ranges based on the flood damage as shown in Table 4.4: 

 

i
t

i
t

i
t ISR += −1

i
tR  – sill of dam      (4.8) 

 

If i
tR  is less or equal to the maximum release 370 m3/sec - non flooding conditions - the reservoir  is 

operated as a  run-of-river dam to maintain the sill of dam elevation all the time. However, if i
tR  is greater 

than 370 m3/sec, the req
,itR is set to the maximum release of 370 m3/sec and reservoir storage  i

tS  is 
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calculated using Eq. (4.3). The release calculation is performed using Eq. (4.9) to Eq. (4.12) according to 

the four possible situations as in the case of other two reservoirs.  

 

   Case 1: Reservoir storage below the lower rule curve (storing all surplus inflows in the 

reservoir) 

i
tR  = req

,itR (= 370 m3/sec)       (4.9) 

  Case 2: Reservoir storage between the lower and the upper rule curve   

i
tR  = { i

tR ( upper
,itS )- i

tR ( lower
,itS )}/( upper

,itS – lower
,itS )×( i

tS - lower
,itS )+ i

tR ( upper
,itS ) (4.10) 

   Case 3: Reservoir storage between the upper rule curve and maximum storage 

i
tR  = max

fldR  (= 500 m3/sec)       (4.11) 

   Case 4: Reservoir storage above the maximum storage 

Ri = max
fldR  + ( i

tS  – max
iS )           (4.12) 

 

where i
tR ( upper

,itS ) and i
tR ( lower

,itS ) represent the release assigned to lower and upper rule curves, 400 

m3/sec and 500 m3/sec, respectively. max
fldR  represents the maximum release of 500 m3/sec for flooding 

situation. 

Note that the operation of Fanshawe reservoir according to the ending storage can be in: (1) the run-

of-river mode, or (2) the flood control mode. The other two reservoirs are operated only in the flood 

control mode. The estimation of flood damage in this study is performed using Eq.(4.4) to Eq.(4.7) for the 

Wildwood and the Pittock reservoirs and Eq.(4.8) to Eq.(4.12) for the Fanshawe reservoir.  
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Table 4.4 The Fanshawe reservoir release ranges categorized by the flood damage 

Releases (m3/sec) Action and impacts 

0 370 No major flood effects 

370 400 Commence monitoring 

400 500 No further action 

500 550 
Areas around Adelaide and Kipps lane and Windermare and Adelaide 

overtopped 

550 750 Adelaide street overtopping, possible evacuations 

750 935 Serious flood damages  

935  Broughdale dye breached 
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4.5 Results 

In this chapter, a case study of the integrated reservoir management system is presented with three 

sets of scenarios as shown in Table 4.5. Case 1 provides application of scenario set ൕ generated with the 

original WG model with one variable (precipitation) and Case 2 presents two scenarios: 1) scenario set ൖ 

generated with original WG model with three variables named WG3 and 2) scenario set ൗ: generated 

with the modified WG that includes Principal Component Analysis and three variables WG-PCA3.  

 

Table 4.5 Scenarios sets employed in the case study 

Cases Scenario set WG model 
Future scenarios 

generated 

Case 1 Scenario set ൕ WG model with one 
variable 

Scenario set ൖ WG3 

Case 2 

Scenario set ൗ WG-PCA3 

Historic 

B21 

B11 

 

4.5.1 Case 1: WG weather scenarios (scenario set ൕൕൕൕ))))   

Sharif and Burn (2006) has developed the improved K-NN WG model with a perturbation process 

and applied it to the Upper Thames River basin to assess the impacts of climate change. Prodanovic and 

Simonovic (2006a, 2006b) have selected two GCMs that define the possible range of climate change 

impacts and employed them within the weather generator model as a dry scenario (called B11) and a wet 

scenario (called B21) to generate weather conditions (called scenario set ൕ) for 100 years in addition to the 
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third scenario that is based on the historic record. With generated weather scenarios, they have conducted 

the frequency analysis and concluded that more significant and frequent floods will occur in the basin. 

The scenario set 帆 is employed in this study with the proposed integrated reservoir management 

system to develop the optimal reservoir rule curves for each scenario. Each 100 years period is divided 

evenly into two parts: (a) development of the optimal operating rule curves (50 years); and (b) verification 

of the optimal operating rules by simulation (50 years). Fig. 4.7 to Fig. 4.9 show the optimal rule curves 

for B11(dry), B21(wet), and historic scenarios, respectively for all three reservoirs in the basin.  Lower - 

DE and Upper - DE in these figures are denoting the lower and the upper optimal rule curves respectively, 

obtained using the differential evolution optimization algorithm imbedded in the integrated reservoir 

management system.  

Compared with the current rule curves first, the optimal rule curves for Wildwood and Pittock have 

different tendency that maintain high storage during the wet period from November to February although 

the current rule curve maintains low storage to prepare flood events during that period. The objective 

function in this study includes only flood damage estimated by the amount of streamflow at the control 

points, however the current rule curves have developed with multi-objective function including required 

instream flows at the downstream, flood damage, and recreation. To decrease the flood damage at the 

downstream, therefore, the release should be decreased by storing the inflow in the reservoir. If there is no 

severe flood event during a specific period a rule curve would maintain high reservoir storage to decrease 

the flood damage. Based on the optimal rule curves for Wildwood and Pittock that show high storage 

during the wet period, therefore, it can be concluded that scenario set 帆has no severe flood event during 

the generated period. In addition, the optimal rule curve is developed on the basis of a scenario in DE 

algorithm. It makes the optimal solution sensitive to how deep and how often the flood events occur. If 

severe flood events occur in a specific month and no flood event in following month, therefore, the 

optimal rule curve may be presented with steep difference between two months, not smoothing the rule 



- 44 - 

 

curve. Therefore, the optimal rule curves show very higher storages and steep difference between months 

than the current rule curve.  

The rule curves for three reservoirs under B11 (dry) climate change scenario show a tendency to store 

the inflow in reservoirs in order to decrease the downstream flood damage by maintaining the high 

reservoir levels over all periods. The optimal rule curve for B11 (dry) climate scenario for Wildwood 

reservoir is much higher than other rule curves and allows for storing more inflows during the period 

from August to December. Under the B11 (dry) climate scenario significant flooding will not occur 

during the period from August to December. On the other side, Pittock reservoir is showing a notable 

change in operation during the wet season, from January to March. According to the historic record,  the 

floods often occur in February, so the rule curves  for B11 (dry) climate scenario show a tendency in 

February to lower the reservoir storage and prepare for incoming significant flood flows. Since the 

maximum release flow for Pittock is 40.0 m3/sec, during the simulation, the inflow surplus is stored in the 

reservoir if sufficient storage is available. If a reservoir does not have an enough space to store the flood 

waters, the surplus inflow must be released in the form of spill.  The rule curves under B11 (dry) climate 

scenario still maintain the higher storage levels than the rule curves obtained under other scenarios. This 

is expected result, since the B11 as dry climate change scenario projects the decrease of inflow. On the 

other hand, the rule curves under B21 (wet) climate change scenario show the lowest storage levels in 

March, which demonstrates that the flood season under the wet climate change scenario is extended to 

start in March and the reservoir managers have to prepare the reservoirs for the flood control before 

March. 
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(a) B11 scenario 
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(b) B21 scenario 
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(c) Historic scenario 

Figure 4.7 Optimal Fanshawe reservoir operating rule curves 
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(c) Historic scenario 

Figure 4.8 Optimal Wildwood reservoir operating rule curves 
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(c) Historic scenario 

Figure 4.9 Optimal Pittock reservoir operating rule curves 
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The simulation of reservoir operations and corresponding flood damage calculations with three sets of 

rule curves developed for three different climate scenarios is performed in this study to verify the effects 

of the proposed optimal rule curves. Table 4.6 represents the yearly average flood damage calculated 

using the objective function as shown in Eq. (4.1). The each value of flood damage in the table represents 

the simulation result for a combination of climate scenario occurring in the future and one of the optimal 

rule curves developed in this study. For example, the value in the first cell, represents the total annual 

flood damage obtained with the rule curve developed assuming B11 scenario will occur and actually B11 

scenario occurring in the future. Therefore, the values on the diagonal should show the best result in each 

column – the minimum flood damage. However, for B21 (wet) scenario, the rule curve developed with 

B11 (dry) scenario shows the minimum flood damage. Fig. 4.10 provides the daily reservoir storage for 

each climate scenario for 50 years of simulation. As pointed out earlier (Section 4.4.2), the Fanshawe 

reservoir is operated like run-of-river facility to maintain the sill of dam level (12,349 × 103 m3) if there 

are no significant floods. It is obvious, from the simulation results for scenario set 帆, that during the 50 

years period no significant flood occurred. Therefore we conclude that the simulation period employed in 

this study is not sufficient to properly assess the effects of optimal reservoir operation on the flood 

damages in the basin. This explains the insignificant difference in level of flood damage as shown in 

Table 4.6. Due to lack of significant flood events in scenario set 帆during the simulation period, the optimal 

rule curve B11-DE obtained under B11 (dry) climates scenario, which stores more inflow in the reservoir, 

could be the best optimal operating policy even for B21 wet scenario - lower release from the reservoir 

decreases the total flood damage.  Fig. 4.11 shows the streamflow at the Byron station where the two 

tributaries of the Thames River, the North Branch and the East Branch, join. The Byron station flows are 

affected by the operations of all three reservoirs in the basin. For the B21 (wet) scenario, the streamflow 

is highest in April.  For the historic scenario the maximum streamflow occurs in February. This result 

demonstrates that obtaining the maximum space in all three reservoirs in March according to the optimal 
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B21-DE rule curve is appropriate in order to accommodate flood flows occurring in April. 
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Table 4.6 Yearly average flood damage (103 Canadian dollars/year) 

Climate 
scenario 

Rule curve 

B11 B21 Historic 

B11-DE 6,382.0
*
 7,390.9

* 6,674.4 

B21-DE 6,384.6 7,415.6 6,675.7 

Historic-DE 6,384.8 7,419.0 6,667.5
* 

 * represents the best result among three rule curves for a scenario 
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Figure 4.11 Streamflow at Byron station 
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4.5.2 Case 2: new weather scenarios generated by WG3 and WG-PCA3  

The scenario set 帆did not include enough significant flood events to assess the effects of the optimal 

reservoir operations on the flood damages under climatic change. Therefore, this study generates again 

the weather scenarios newly for 100 years to include more significant flood events using the original 

WG3 (scenario set 搬)and WG-PCA3 (scenario set 斑)described in Section 2.1 with three different weather 

scenario (B11, B21, and historic). In total, six future weather scenarios are generated and six sets of 

optimal reservoir operating rule curves are developed. 

Fig. 4.12 to Fig. 4.14 show the rule curves for three climate scenarios (scenario set 搬) obtained using 

the original WG3 model. Three rule curves for the Fanshawe reservoir provide for the conservative 

operating policies over the year (storing the inflows in the reservoir as much as possible). The B11-DE 

rule curve for the Wildwood reservoir is decreasing the storage in November in order to prepare for the 

upcoming wet season. The general tendency for B11 and historic scenarios is to keep the reservoir storage 

high. However, the B21-DE rule curves show low storage during the wet season - from December to 

March. Especially, the Wildwood reservoir rule curve is very low in March  in order to prepare the 

reservoir for a significant incoming flood, while the Fanshawe reservoir (located below the Wildwood) 

rule curve  is at the same time trying to store the inflows in the reservoir to decrease the downstream flood 

damages (e.g. Byron). This indicated that the Fanshawe reservoir still has capacity to control March 

flooding. For Pittock reservoir, located in upper region of the south branch, the B11-DE rule curves show 

are the lowest level for flood control in February. The other rule curves show the firm water supply 

release, or storing the inflows, during the summer season. In case of historic scenario, the reservoir 

operations for flood control are occurring from December to January in order to prepare sufficient storage 

in the reservoir for upcoming floods in February. Therefore, the rule curves in February show a wide 

range, between the lower and upper rule curves, of the firm water supply release during this period. The 
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B21-DE rule curves the show the low reservoir storage from February to April, which means the flood 

season is extended to April as in the first case, described in the previous section). 

In addition, this study generated the weather scenarios (scenario set ൗ)using the modified WG-PCA3 

model and developed the rule curves shown in Fig. 4.15 to Fig. 4.17. First, the three optimal rule curves 

for the Fanshawe reservoir show the same tendency as the rule curves obtained using original WG3 model 

(storing the inflows in the reservoir as much as possible over a year). However, the Wildwood reservoir 

rule curves for B21 and historic climate scenarios show the reservoir operations expecting flooding from 

February to April. Similar to the original WG3 scenarios, the Wildwood reservoir rule curves show 

minimum storage in March – in the case of original WG3 scenarios the minimum was occurring from 

February to March, while Fanshawe reservoir is still storing the inflows in the reservoir to decrease the 

downstream flood damages. Therefore, these rule curves also demonstrate that the Fanshawe reservoir 

still has the capacity to control flooding during this period. The Pittock reservoir rule curves for B21 

scenario prepare the reservoir for flood management in March, but that for historic scenario requires that 

the flood management is provided from February to April. These results are very interesting because the 

previous rule curves for the scenario set ൕand the scenario set ൖ show that the flood season would be 

extended up to April by B21 scenario as well as the scenario set ൗ. However, historically the flood season 

is ended by February. Therefore, these results indicate that the flood operation should be extended to 

April if the B21 scenario occurs in the future. 

With these six optimal reservoir rule curves for the scenario set ൖand the scenario set ൗ, this study 

simulates the reservoir performance and calculates the flood damage for 50 years using six future weather 

scenarios. Table 4.7 represents the yearly average flood damage calculated using the objective function 

and the bold results represent the best result among the six optimal rule curves for each weather scenario. 

Among the six optimal rule curves, the rule curve for B11(PCA) provides the best result for B11, 
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B11(PCA), and historic(PCA) scenarios and also the  B21 rule curve represents the best results for B21 

and B21(PCA). These results demonstrate that the DE optimization procedure performs very well and the 

optimal operating rule curves provide adequate adaptation of reservoir operations to changing climatic 

conditions. 
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(c) Historic scenario 

Figure 4.12 Optimal Fanshawe reservoir rule curves 
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(c) Historic scenario 

Figure 4.13 Optimal Wildwood reservoir rule curves 
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(c) Historic scenario 

Figure 4.14 Optimal Pittock reservoir rule curves  
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(a) B11-PCA scenario 
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(c) Historic-PCA scenario 

Figure 4.15 Optimal Fanshawe reservoir rule curves generated by WG-PCA3 
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(c) Historic-PCA scenario 

Figure 4.16 Optimal Wildwood reservoir rule curves generated by WG-PCA3 
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(c) Historic scenario 

Figure 4.17 Optimal Pittock reservoir rule curves generated by WG-PCA 3 
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Table 4.7 Yearly average flood damage  

Unit: 103 Canadian dollars/year 

Climate scenario 

Rule curves 

B11 B11(PCA) B21 B21(PCA) Historic 
Historic 
(PCA) 

Total 
flood 

damage 

B11 7,483.1 8,815.4 7,268.9 9,866.1 9,896.1 8,970.4 52,300.0 

B11(PCA) 7,451.3
* 

8,799.8
* 7,274.6 9,858.6 9,864.3 8,935.8

* 
52,184.4

* 

B21 7,480.7 8,849.2 7,249.6
* 

9,846.4
* 9,909.8 8,958.1 52,293.8 

B21(PCA) 7,517.5 8,893.4 7,253.1 9,910.4 9,965.2 8,999.4 52,539.0 

Historic  7,471.9 8,818.8 7,278.6 9,984.9 9,797.0
* 9,090.9 52,442.1 

Historic 
(PCA) 

7,490.2 8,853.1 7,294.4 9,853.0 9,958.0 9,017.0 52,465.7 

* represents the best result among three rule curves for a scenario 
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Fig. 4.18 shows the effect of B11 rule curves on flood damage in November at Byron.  The reservoir 

storage is minimized by the end of October to make the space for upcoming flood during the wet season. 

By this rule curve, the reservoir storages at the beginning of November, especially the storage in the 

Wildwood reservoir, are lower than that for historic scenario as visible in Fig. 4.18. Therefore, when the 

flood occurs during the wet season, the flood damages are decreased for B11 scenario, compared to the 

damages for historic scenario.  In Fig. 4.19 we see the reservoir storages and the flood damages for the 

B21 and historic rule curves at the Byron in April for B21 climate scenario. As mentioned before, the rule 

curves for B21 scenario tend to operate the reservoirs for flood control from December to April. 

Therefore, the storages of Wildwood and Pittock at the beginning of April for the B21 rule curves are 

lower than those for the historic scenario rule curves. As a result, the flood damage can be decreased by 

storing more inflows in the reservoirs during the period from December to April. In addition, Fig. 4.20 

and Fig. 4.21 show the total flood damage during the period estimated in Fig. 4.18 and Fig. 4.19, 

respectively, at each control point considered in the objective function. As expected, the results with rule 

curves developed based on B11 and B21 scenarios show the decrease in flood damages at most control 

points for both B11 and B21 scenarios, compared to those obtained using the rule curves based on the 

historic climate scenario. Therefore, the total flood damage at each control point is decreased by the 

implementation of the optimal reservoir rule curve. In addition, this study found that the scenarios set 斑 

provide more wet weather conditions. Fig. 4.22 shows the monthly average streamflow at Byron station, 

for the scenario set 搬 and 斑.   
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Figure 4.18 Reservoir storages and flood damages for the B11 and historic rule curves at the Byron in 

November for B11 scenario 
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Figure 4.19 Reservoir storages and flood damages for the B21 and historic rule curves at the Byron in 

April for B21 scenario 
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Figure 4.20 Total flood damages corresponding to the B21 rule curve and historic rule curve in April for 

B21 scenario 
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Figure 4.21 Total flood damages corresponding to the B11 rule curve and historic rule curve in November 

for B11 scenario 
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Figure 4.22 Streamflow at Byron corresponding to different rule curves and climate scenarios 
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5. Conclusion and future study outlook 

This study presents an integrated reservoir management system for the Upper Thames River basin 

that includes: (1) a WG model; (2) a hydrological model; and (3) a differential evolutionary optimization 

model. The integrated reservoir management system is used to develop the optimal operating rule curves 

for three reservoirs in the basin that represent the best climate change adaptation strategy for existing 

storage in the basin. The original WG model is modified to add more variables available in the basin and 

generate the plausible weather conditions reflecting the available GCMs’ outputs. The generated weather 

scenarios are used with the hydrological model to generate the streamflows according to the optimal 

reservoir operations provided by the optimization model. The optimization model generates randomly the 

alternatives based on the differential evolutionary algorithm and selects the optimal solution with the 

results calculated with the help of the hydrologic model.  

Three different weather scenarios are employed to verify the integrated reservoir management 

system; (1) Case 1: scenarios set 帆 generated by the original WG model, and (2) Case 2: scenario set 搬and 

scenario set 斑 generated by WG3 and WG-PCA3, respectively.  All weather scenarios and the developed 

rule curves (36 combinations - 6 rule curves × 6 scenarios = 36) are applied to each 50-year period to 

simulate basin response and calculate the total flood damages.  The rule curves for B11 (dry) climate 

scenario provide a conservative reservoir operating policies, but show that earlier flood control operation 

is required, starting from October. For the B21 (wet) climate scenario, the flood management is required 

until April, which means that the flood season is extended to April. Historically the flood season ends in 

February. As expected, the rule curves for historic scenario require for flood management from December 

to February. In simulation results for the scenarios set 帆 , the B11 rule curves  have a tendency of storing 

the inflows - the best result among three sets of the optimal rule curves because there is no significant 
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flood with three scenarios in this case. However, for the scenario set 搬and the scenario set 斑 generated by 

WG3 and WG-PCA3, the B11 (PCA) rule curves provide the best result for B11, B11(PCA), and 

historic(PCA) scenarios and the B21 rule curves represent the best results for B21 and B21(PCA) 

scenarios. These results demonstrate that the DE optimization procedure performs very well to determine 

the best adaptation strategy to the climate change using existing storage in the basin. The total flood 

damages at each control point are decreased by the implementation of the optimal reservoir rule curves 

developed for various climate change scenarios. In addition, the WG-PCA3 provides more wet weather 

conditions than the original WG model. 

The integrated reservoir management system proposed in this study provides the optimal reservoir 

operating rule curves that provide for adaptation to the climate change. The proposed system is flexible 

enough to accommodate more GCMs’ results when available. The main advantage of the system is its 

flexible architecture that includes three different modules that can be easily revised when better tools 

become available.  
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