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ABSTRACT  

The purpose of this study was to develop a dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) 

technique to characterize tumor physiology. Dynamic data were acquired using two contrast agents of different 

molecular weights, indocyanine green (ICG) and IRDye 800CW carboxylate (IRDcxb). The DCE curves were analyzed 

using a kinetic model capable of extracting estimates of tumor blood flow (F), capillary transit time (tc) and the amount 

of dye that leaked into the extravascular space (EVS) – characterized by the extraction fraction (E). Data were acquired 

from five nude rats with tumor xenografts (>10mm) implanted in the neck. Four DCE-NIR datasets (two from each 

contrast agent) were acquired for each rat. The dye concentration curve in arterial blood, which is required to quantify 

the model parameters, was measured non-invasively by dye densitometry. A modification to the kinetic model to 

characterize tc as a distribution of possible values, rather than finite, improved the fit of acquired tumor concentration 

curves, resulting in more reliable estimates. This modified kinetic model identified a difference between the extracted 

fraction of IRDcxb, 15 ± 6 %, and ICG, 1.6 ± 0.6 %, in the tumor, which can be explained by the difference in molecular 

weight: 67 kDa for ICG since it binds to albumin and 1.17 kDa for IRD. This study demonstrates the ability of DCE-

NIRS to quantify tumor physiology. The next step is to adapt this approach with a dual-receptor approach. 

Keywords: Dynamic-contrast enhanced, near-infrared spectroscopy, time-resolved, tumor, hemodynamics, adiabatic 

approximation to the tissue homogeneity 

1. INTRODUCTION  

Increased angiogenesis, the physiological process of generating new blood vessels, is a characteristic of cancer. 

Furthermore, because of the rapid growth of tumor vessels, they are often leaky compared to healthy tissue, and this can 

be detected by dynamic contrast-enhanced (DCE) imaging methods, including magnetic resonance imaging (MRI)
1
 and 

computed tomography (CT)
2
. The methodology involves injecting a contrast agent into the blood system and using 

serial imaging to monitoring the uptake and clearance of the contrast agent. With MRI and CT, DCE imaging has 

become standard practice for assessing tumor hemodynamic properties in order to improve detection and grading of 

cancer. However, only few studies have applied DCE to optical methods
3
,
4
, despite the potential advantages that optics 

provides in terms of safety, expense, and repeatability
5
.  

Our group has previously developed DCE near-infrared spectroscopy (NIRS) for assessing cerebral hemodynamics by 

using the optical contrast agent, indocyanine green (ICG)
6
–

8
. Because the blood-brain barrier remains intact in this 

application, cerebral blood flow, blood volume, and mean transit time are determined by a model-independent 

deconvolution approach. However, it is expected in tumors that contrast agents will leak out of the vasculature due to 

the poorly developed vessels
9
. To account for this feature, the deconvolution was performed using a model-based 

approach that explicitly describes both blood flow and vascular permeability. A variation of the tracer kinetic model 

that accounts for a distribution of tc values due to flow heterogeneity in tumors was also investigated.  The purpose of 

this study was to assess the ability of these models to properly characterize DCE data acquired by time-resolved (TR)-

NIRS. Experiments were conducted using human colon cancer xenographs grown subcutaneously in rats. Two contrast 

agents with different molecular-weights, ICG and IRDye 800CW carboxylate (IRDcbx, LI-COR Biosciences), were 

used. 
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1.1 Tracer kinetic model 

In all kinetic models, the concentration of the contrast agent within the interrogated tissue volume, for instance in a 

tumor, can be modeled as a linear time-invariant system, given by the convolution equation: 

)()()( tRtCFtQ a                                                                       (1) 

where * is the convolution operator, Q(t) is the amount of contrast agent within the tumor, F is blood flow, and Ca(t) is 

the time-varying contrast agent concentration in arterial blood. The function R(t) is referred to as the impulse residue 

function and it describes the amount of contrast agent remaining in the tumor following an idealized bolus injection at t 

equal to 0. R(t) is defined by the specific kinetic models which are described below. 

1.2 Adiabatic approximation to the tissue homogeneity model 

Multiple tracer kinetic models have been proposed for describing R(t). For this application, we selected the adiabatic 

approximation to the tissue homogeneity (AATH) model 
10

 because it accounts for a finite vascular transit time – unlike 

compartmental models that assume it is negligible are due to instantaneous mixing – and the exchange of contrast agent 

between blood and surrounding tissue. For the AATH model, R(t) is defined as follows: 
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In Equation (2), the main components defined by the model are the capillary transit time, tc, and the fraction of contrast 

agent extracted into the surrounding extravascular space during a single capillary transit, E. Also, the clearance rate of 

extracted contrast agent from the tumor is governed by the rate constant ke. A caveat to the AATH model is transit 

through the tumor vasculature is defined by a single capillary transit time. This is likely an oversimplification when the 

model is applied to DCE data acquired from a large tissue volume. 

1.3 Vascular dispersion model 

A modification to the AATH model to account for the possibility of a distribution of tc values has been proposed
11

. In 

this modification, referred to as the vascular dispersion (VD) model, the tc distribution is modeled as gamma 

distribution:  
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where the addition function, g(t), refers to the gamma distribution: 
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and τ = tc/α. Compared to the AATH model, a new parameter, α, is introduced to characterize the width of vascular 

dispersion (0 ≤ α
-1 

≤ 1). 

 

2. METHODS 

2.1 Time-resolved near-infrared spectroscopy system 

A time-resolved NIRS system consisting of picosecond pulsed diode laser (LDH-P-C-810, PicoQuant, Germany) was 

used to acquire the DCE data
8
. The wavelength of the emitted light by the laser was 802 nm with an output power and 

pulse repetition rate of 1.4 mW and 80 MHz, respectively. The laser beam was coupled into a 1.5-m long multimode 

fiber (N.A. = 0.22, core = 400 µm, Fiberoptics Technology, Pomfret, Connecticut) and attenuated by two variable 

neutral density filters (NDC-50-4M, Thorlabs, Newton, NJ) before transmitting through tissue. The diffuse light was 
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detected by a 2-m fiber optic bundle (N.A. = 0.55, 3.6 mm active area and 4.7 mm outer diameter; Fiberoptics 

Technology) coupled to a Peltier-cooled photomultiplier tube (PMC-100, Becker & Hickl, DE). Detection of single 

photons generated electrical pulses (amplitude = 50-200 mV, width = 1.5 ns) that were transmitted to a time-correlated 

single photon counting (TCSPC) module (SPC-134, Becker & Hickl, Germany). Before tissue data were acquired, the 

instrument response function (IRF) was measured at the start of each experiment to account for light dispersion by the 

TR-NIRS system
12

. 

2.2 Rat model 

All experimental procedures were approved by the Animal Use Subcommittee of the University of Western Ontario. 

The LoVo human colon adenocarcinoma cell line (no. CCL-229; ATCC, Manassas, VA) was maintained in F12K 

growth medium (Gibco, Burlington, Ontario, Canada), supplemented with 10% fetal bovine serum. Cells were 

implanted onto the neck of male T-cell deficient athymic nude rats (Crl:NIH-rnu, Charles River 

Laboratories,Wilmington,MA) between the ages of four to six weeks old. For implantation, the cells were suspended at 

a concentration of 108 cells/ml in serum-free F12K medium with penicillin (100 U/ml) and streptomycin (100 µl/ml) 

added before 150 microliters of the cell suspension (1.5 x 10
7
 cells/rat) were implanted subcutaneously. Experiments 

were conducted approximately two weeks after implantation when tumors had reached a minimal diameter of 10 mm. 

2.3 Experimental setup 

Rats were anaesthetized by inhaling 4% isoflurane before inserting a catheter into a tail vein, which was used to collect 

blood samples and to inject contrast agents. The emission and detection optical fibers were placed transversely onto the 

tumor surface using in-house developed probe holders. The diameter of each tumor was measured by callipers. Four 

sets of DCE data were collected per rat and each set contained a total acquisition time of 5 minutes. Successive injection 

of contrast agents was separated by roughly 30 minutes to allow contrast agent clearance from the previous injection. 

The first two injections were ICG due to its faster clearance, followed by the two IRDcxb injections. The contrast agents 

were intravenously injected as a bolus at a concentration of 0.7 mg/kg dissolved in 0.5 ml sterile water. Serial tissue 

tracer concentration measurements were made every 0.4 s for 15 s prior to and 5 min following injection of the contrast 

agent. The arterial input function (AIF) was measured concurrently by a dye densitometer attached to a rear foot (DDG 

2001, Nihon Kohden, Japan). 

 

Figure 1. A schematic diagram of the experimental setup 

2.4 Data Analysis 

Quantification of tumor optical properties was performed by fitting the solution to the diffusion equation for 

transmittance through an infinite homogenous slab
13

. For each injection, the concentration of contrast agent in the 

tumor, Q(t), was determined in two steps. First, the baseline optical properties (the absorption coefficient, µa, and the 

reduced scattering coefficient, µs’) were determined from temporal point spread functions (TPSFs) acquired for 30 

seconds before injecting a contrast agent. Second, the time-varying change in µa caused by the injected contrast agent 

was determined by analyzing each TPSF in the time series by fitting for µa and setting µs’ to its baseline value. Using 
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the known extinction coefficient of the active contrast agent at 802 nm, the time-dependent change in µa(t) was 

converted into concentration. Simultaneously, data obtained by the dye densitometer were converted into the arterial 

contrast agent concentration, Ca(t), by using the measured total hemoglobin blood concentration (tHb) for each rat and 

the molecular weight of the contrast agent. 

The kinetic models were fit to the DCE data by nonlinear optimization (MATLAB® function fminsearch). The fitting 

parameters were F, tc, E, and ke for both models. The VD model also included the additional fitting parameter α to 

account for the distribution of capillary transit times. All parameters were constrained to be positive, the upper limit of 

both E and α
-1

 was set to 1. To account for differences in the arrival time of contrast agent between tissue and arterial 

blood, the fitting was repeated while shifting the arterial data by the sampling interval (0.4 s). The optimal time shift 

was selected based on the minimum sum of squared differences between the data and the model. From the best-fit 

estimates of the model parameters, tumor blood volume (Vc) was determined using the central volume principle,          

Vc = F·tc and the permeability surface-area (PS) product was determined from E = 1-e
-PS/F

. 

 

3. RESULTS AND DISCUSSION 

3.1 Physiological Parameters 

A total of 5 rats were used in this study and all errors are given as standard error. Table 1 contains the individual 

physiological parameters for each individual rat. The average values were 310 ± 20 g for weight, 13 ± 4 mm for tumor 

diameter, 95 ± 3 % for arterial oxygen saturation (SO2), 360 ± 30 beats per minute (BPM) for heart rate, and 12.7 ± 1.0 

g/dl for tHb. 

     Table 1. Physiological parameters for each rat within the study. 

Rat Weight (g) Diameter (mm) SO2 (%) Heart Rate (BPM) tHb (g/dl) 

1 286 12 95 372 12.8 

2 312 11 97 365 12.8 

3 291 21 91 360 12.4 

4 332 12 96 375 11.5 

5 336 10 98 306 14.2 

Average 310 ± 20 13 ± 4 95 ± 3 360 ± 30 12.7 ± 1.0 

 

To minimize dead-time and pile-up effects, the maximum count rate was restrained to approximately 1% of the 

maximum output power by adjusting the neutral density filters to control the attenuation of the emitted light. In all rats, 

the maximum count rate was approximately 800 kHz, except for Rat 3. The tumor diameter for this rate was roughly 

double the average size and the maximum count rate was 265 kHz. Upon visual inspection, this tumor had a large 

necrotic center, which limited the maximum count rate. However, the signal-to-noise ratio of the acquired DCE data 

was still quite high. 

3.2 Optical Properties 

Table 2 lists the retrieved optical properties of the tumors obtained by fitting the solution to the diffusion equation for 

transmittance through an infinite homogenous slab. 

Table 2. Measured tumor optical properties by the TR-NIRS system. 

Rat µs' (cm
-1

) µa (cm
-1

) 

1 17.98 1.07 

2 28.03 1.45 

3 30.95 1.52 

4 21.35 0.99 

5 12.08 0.84 

Average 22 ± 8 1.2 ± 0.3 
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The average optical properties, µs' and µa, were 22 ± 8 and 1.2 ± 0.3 cm
-1

, respectively. These values are in reasonable 

agreement with a previous study: 15 ± 7 and 1.4 ± 0.7  cm
-1

 for µs' and µa, respectively
14

. Differences between the 

studies could be partly attributed to the difference in cell lines. Rat colon adenocarcinoma cells were used by Van 

Hillegersberg et al, while the current study used Lovo human adenocarcinoma cells. Furthermore, measurements by 

Van Hillegersberg et al. were conducted on ex vivo samples using the integrating sphere technique, compared to in vivo 

TR-NIRS measurements used in the current study. 

3.3 Sample of Measured Concentration Curves 

Figure 2 shows an example of arterial and tumor contrast agent concentration curves, which were acquired 

simultaneously during the passage of an ICG bolus. 

 

Figure 2. Arterial (red) and tumor (black) contrast agent concentration curves measured by the dye densitometer and TR-NIRS 

system, respectively, following a bolus injection of ICG. 

In comparison, Figure 3 depicts the arterial and tumor contrast agent concentration curves acquired with IRDcxb. In both 

figures, the distinctive hump occurring approximately at 20 seconds after contrast agent injection reflects the initial 

passage of the bolus through the interrogated tissue volume and is characteristics of the finite capillary transit time. 

After the first pass, the tissue concentration curve for ICG mirrors the slow washout of contrast agent from blood. In 

contrast, the continual rise of the tissue concentration curve for IRDcxb reflects the extraction of the dye into the 

interstitial space of the tumor. This visible difference in the clearance curves for the two dyes reflects the difference in 

molecular weight. That is, ICG due to its binding with albumin is too large to penetrate tumor vessel walls. 

 

Figure 3. Arterial (red) and tumor (black) contrast agent concentration curves measured by the dye densitometer and TR-NIRS 

system, respectively, following a bolus injection of IRDcxb. 
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3.4 Fitted Parameter Data 

For each rat there were two injections of each contrast agent, ICG and IRDcxb. Tables 3 and 4 list the fitting parameters 

for the AATH and VD models when applied to ICG data, respectively. Similarly, Tables 5 and 6 list the fitting 

parameters for the two models when applied to IRDcxb data. Note, Rat 2 was not included in the ICG results (Tables 3 

and 4) because only IRDcxb was injected. All comparisons were conducted by multivariate analysis of variance 

(MANOVA) run in IBM SPSS Statistics 20 (significant difference was defined as p<0.05). 

Table 3. Retrieved fitting parameters extracted by the AATH model for ICG clearance data. 

Rat F (ml/g/min) tc (s) E ke (min
-1

) Vc (ml/g) PS (ml/g/min) 

1 0.371 7.0 0.27 2.9 0.043 0.117 

3 0.194 12.3 0.33 2.0 0.040 0.078 

4 0.177 12.7 0.04 0.2 0.038 0.007 

5 0.239 6.8 0.30 3.6 0.027 0.085 

Average 0.25 ± 0.09 10 ± 3 0.2 ± 0.1 2 ± 1 0.04 ± 0.01 0.07 ± 0.05  

Table 4. Retrieved fitting parameters extracted by the VD model for ICG clearance data. 

Rat F (ml/g/min) tc (s) E ke (min
-1

) α
-1

 Vc (ml/g) PS (ml/g/min) 

1 0.46 7.8 0.0100 0.154 0.80 0.060 0.0020 

3 0.23 14.7 0.0175 0.019 0.65 0.056 0.0018 

4 0.22 10.8 0.0240 0.012 0.45 0.040 0.0023 

5 0.29 7.6 0.0125 0.005 0.68 0.037 0.0016 

Average 0.3 ± 0.1 10 ± 3 0.016 ± 0.006 0.05 ± 0.07 0.6 ± 0.1 0.05 ± 0.01 0.0019 ± 0.0003 

 
Comparing the values in Tables 3 and 4, significant differences between the two models for ICG clearance data were 

observed for E, ke, and PS (α
-1

 was not used in the MANOVA). In general, the fit of the AATH model was much poorer 

than the VD model, particularly during the first pass, as illustrated in Figure 4. A consequence of the poor fit is 

statistically greater E values for the AATH model; however, ICG can be considered a macromolecular contrast agent 

due to the binding albumin. Therefore, its uptake into the tumor extravascular space is likely going to be small, 

suggesting that the AATH model overestimates the extraction fraction of ICG. In turn, this error leads to erroneous 

estimates of the extracted clearance rate (ke) and the calculated PS product.  

 

Figure 4. Representative tumor ICG concentration curve (black) and the fit of the (A) the AATH model (red) and (B) the VD 

model (red). 

The fit of the AATH model also appeared worse for the IRDcxb clearance data. However, despite the poorer fit, there 

were no significant differences observed in any of the fitting parameters listed in Tables 5 and 6 for IRDcxb. This is 

likely because of differences in the kinetic properties of the two dyes. IRDcxb is considerably smaller than ICG and will 

likely leak into the extravascular space. 
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Table 5. Retrieved fitting parameters extracted by the AATH model for IRDcxb clearance data. 

Rat F (ml/g/min) tc (s) E ke (min
-1

) Vc (ml/g) PS (ml/g/min) 

1 0.293 11.0 0.189 0.098 0.054 0.027 

2 0.248 15.8 0.346 0.145 0.065 0.046 

3 0.226 13.9 0.188 0.154 0.052 0.020 

4 0.144 18.1 0.224 0.085 0.043 0.016 

5 0.162 8.8 0.161 0.171 0.024 0.012 

Average 0.21 ± 0.06 14 ± 4 0.22 ± 0.07 0.13 ± 0.04 0.05 ± 0.02 0.02 ± 0.01 

 

Table 6. Retrieved fitting parameters extracted by the VD model for IRDcxb clearance data 

Rat F (ml/g/min) tc (s) E ke (min
-1

) α
-1

 Vc (ml/g) PS (ml/g/min) 

1 0.379 9.4 0.129 0.053 0.94 0.059 0.023 

2 0.304 15.2 0.247 0.076 1.00 0.077 0.038 

3 0.340 10.1 0.110 0.096 0.98 0.057 0.017 

4 0.211 12.9 0.132 0.033 0.97 0.045 0.013 

5 0.188 8.0 0.129 0.140 0.46 0.025 0.011 

Average 0.28 ± 0.08 11 ± 3 0.15 ± 0.06 0.08 ± 0.04 0.9 ± 0.2 0.05 ± 0.02 0.02 ± 0.01 

 

Comparing the best-fit parameters from the AATH model between the two contrast agents (Tables 3 and 5), a 

significant difference was only observed for ke. However, the variability in some of the other parameters, notably E, 

was large due to the poor fit of the model. In contrast, significant differences for E and the PS product were found when 

comparing the best-fit estimates from the VD model (Tables 4 and 6). This result agrees with the expected difference 

between these contrast agents considering the difference in molecular weight: 67 and 1.17 kDa for ICG and IRDcxb, 

respectively. 

3.5 Mean Difference 

Since the VD model demonstrates a better fit, the percent mean difference was determined for each parameter from the 

two trials (Table 7). The largest variations were observed for E, ke, and PS for ICG, which is understandable 

considering the low extraction of this contrast agent. However, a largest variation for ke was also found for IRGcxb, 

indicating that this is the least reliable fitting parameter.   

Table 7. The relative mean difference (%) between trials for each fitting parameters from the vascular dispersion model applied to 

clearance data from both contrast agents. 

Contrast Agent ICG (%) IRD (%) 

F 12 30 

tc 14 13 

E 84 9 

ke 146 38 

α 21 1 

Vc 7 13 

PS 63 3 
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4. CONCLUSION 

In this work, the ability of two tracer kinetic models, the AATH model and the VD model, to characterize tumor 

hemodynamics was investigated. The difference between the two models is the original AATH model restricts the 

capillary transit time tc to a single value, while the VD model includes an additional parameter to account for the 

possibility of a distribution of tc values. The results indicated that this modification improved the tumor concentration 

curves fitting, particularly for the first pass of the contrast agent. With an appropriate model in base, this approach could 

be used to characterize the hemodynamic properties of different cancers and their response to treatments. Tumor blood 

flow and vascular permeability likely play a significant role in the efficacy of therapeutic drugs since they will affect 

drug delivery. This method could be combined with the quantitative receptor imaging approach proposed by Tichauer et 

al. to further enhance the characterization of cancer by optical techniques
15

. 
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