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Abstract 

Cellulose from toilet paper contributes approximately one third of the influent organic 

suspended solids (TSS) to wastewater treatment plants and is a key target for resources 

recovery. Cellulose recovery is beneficial as it reduces the required energy for treatment and 

biosolids treatment cost. Hence, understanding the hydrolysis of cellulose in wastewater which 

is mainly affected by temperature and the solids retention time (SRT), is a major key to 

determine the optimum location for its recovery. In order to assess the impact of temperature 

and  SRT on cellulose degradation, this study investigated the biological aerobic degradation 

of cellulose in four laboratory-scale sequencing batch reactors (SBR) at four different 

temperatures (10-33°C) and two different sludge retention times (SRT of 15 days and 3 days). 

The degradation efficiency of cellulose was observed to increase with temperature and was 

slightly dependent on sludge retention time (80%-90% at an SRT of 15 days, and 78%-85% at 

an SRT of 3 days). A set of respirometry  tests and modelling work was done using sludge 

samples from the four SBRs, tested and  verified this value for fibrous cellulose, but alpha 

cellulose hydrolyzed significantly faster (approximately 3 times), indicating it is not an 

effective biochemical proxy for fibrous cellulose. 

In wastewater treatment plants (WWTP), the influent carbon limitations negatively affect 

biological nutrient removal (BNR) performance. With increasing emphasis on resource 

recovery, wastewater treatment plants (WWTPs) supplement internal extra readily 

biodegradable carbon in the form of volatile fatty acids (VFA) produced from the fermentation 

of primary clarification biosolids to enhance BNR processes. Despite significant work on the 

fermentation of primary clarification biosolids, emerging technologies like rotating belt filters 

(RBF) which can selectively capture cellulose leading to potentially higher VFA yields and 

better BNR performance, have not been investigated. In this study, the fermentability of the 

cellulose-rich rotating belt filter (RBF) biosolids and its impact on enhancing biological 

phosphorus removal (EBPR) was studied and compared to the addition of fermented primary 

sludge in two lab-scale SBRs operated at a solids retention time (SRT) of 10 days. PE-SBR 

treated primary effluent and RBF-SBR treated RBF effluent. Allylthiourea (ATU) was added 

at 50 mg/L concentration to both SBRs to inhibit the nitrification and focus on the biological 

phosphorus removal. After the addition of fermented PS to PE-SBR and fermented RBF sludge 
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to RBF-SBR, the total phosphorus (TP) removal efficiencies increased from 69% and 72% to 

91% and 93% for PE-SBR and RBF-SBR, respectively. Effluent soluble phosphorus (SP) 

concentrations averaged 0.1 mg/L and 0.3 mg/L for PE-SBR and RBF-SBR, respectively.  

Keywords 

Cellulose degradation, temperature correction factor, cellulose hydrolysis rate, temperature, 

SRT, kinetics, phosphorus removal, fermentation, rotating belt filter, enhanced biological 

phosphorus removal with fermentation, sludge fermentation products.  
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Summary for Lay Audience 

Achieving a lower cost for wastewater treatment by minimizing the different treatment 

processes energy and solids resulting from the treatment different processes is the main focus 

of municipal wastewater treatment plants (WWTPs).  

The estimated daily consumption of toilet paper in the United States is 18,000 tons. Cellulose 

originates mainly from toilet paper in the municipal wastewater entering the sewer systems 

and reaching wastewater treatment plants. The cellulose that can be recovered using physical 

treatment units located in most of the treatment plants, can be reused as a carbon source for 

treatment which reduce the treatment costs and energy.  

In this study, the main focus was on understanding the different factors that affect cellulose 

fate in wastewater treatment plants bioreactors in order to identify its recovery opportunities.  

Fermentation of two types of primary treatment biosolids for the recovery of volatile fatty 

acids, required to improve the removal of phosphorous biologically, was also assessed and 

compared in this study.   
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Chapter 1  

Introduction 

1.1 Rationale 

Nutrients removal has always been one of the main objectives of wastewater treatment. 

Lately wastewater treatment technologies have been focusing on improving sustainability 

by resources recovery and energy minimization and hence treatment cost reduction to 

achieve a circular economy (Ruiken et al., 2013a).  

Cellulose in the form of toilet paper is a major constituent of municipal wastewaters (Gupta 

et al., 2018b). Cellulose can be captured and recovered by primary treatment technologies 

such as primary clarifiers that rely on settling, and emerging technologies such as the 

rotating belt filter (RBF) that uses sieving, among others. Successful diversion of cellulose 

from biological treatment reduces aeration energy, biological sludge production, and hence 

the overall treatment cost (Ruiken et al., 2013a). Moreover, recovered cellulose can be 

reused for many industrial purposes such as biofuels, building materials, and asphalt 

(Honda et al., 2000a; Mansouri et al., 2017a). 

Hence, recent research studies have targeted cellulose for a better understanding of its fate 

and behavior in wastewater. Cellulose quantification, recovery, and degradation in 

wastewater have been previously discussed in the literature (Ahmed et al., 2019a; Gupta et 

al., 2018b). Despite that, many knowledge gaps are still exist as described in the literature 

review chapter.  

Wastewater treatment modeling is a useful tool for design and optimization of wastewater 

treatment plants (WWTP). However, cellulose is not currently considered in activated 

sludge models (ASM) as a separate state variable (Reijken et al., 2018b). Moreover, 

cellulose kinetics are yet to be accurately specified. For a better understanding of cellulose, 

a combination of experimental and modeling work should be implemented (Ahmed et al., 

2019a). In this thesis, cellulose was introduced to ASM1 as a separate state variable 
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describing its hydrolysis as an extra slowly process to differentiate it from the hydrolysis 

of slowly biodegradable particulates. 

The satisfactory performance of biological nutrients removal (BNR) in wastewater 

treatment plants (WWTPs) rely on influent carbon. Due to the limitation of influent carbon 

in most of WWTPs, the whole process is dependent on supplementing extra source of 

readily biodegradable carbon (Tong and Chen, 2007a). Fermentation of primary biosolids 

to produce volatile fatty acids (VFAs) during the acidogenic phase of the fermentation was 

proved to be effective to enhance the BNR process (Ji and Chen, 2010; Tong and Chen, 

2007b). Rotating belt filters (RBF) is one of the emerging primary treatment technologies 

which selectively capture cellulose, that can thus impact biological treatment yields, BNR 

performance, oxygen demand and hence the overall treatment cost (Chakraborty, 2015; 

Ruiken et al., 2013b). Despite the significant work on the fermentation of primary 

clarification biosolids to produce volatile fatty acids (VFA) for the enhancement of BNR 

processes, the fermentability of the cellulose-rich RBF biosolids and impact on BNR, both 

for nitrogen and phosphorous removal, has been sparsely studied in the literature.  

1.2 Research objectives 

The specific objectives of the aerobic cellulose degradation in sequencing batch reactors 

study are:  

1- Assessment of the effect of temperature and solids retention times (SRT) on 

cellulose degradation in sequencing batch reactors (SBRs).  

2- Determination of cellulose degradation rates at different operational conditions.  

3- Estimation of cellulose hydrolysis rates and temperature correction factors. 

4- Comparison of the hydrolysis rates for both fibrous and alpha cellulose. 

5- Incorporation of cellulose hydrolysis and degradation kinetics in ASM1 as a 

separate state variable from the slowly biodegradable organics (XS).  
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The second study focusing on the enhancement of phosphorus removal using fermentation 

had the following specific objectives:  

1- Assessment of the effect of the addition of fermented RBF sludge on biological 

phosphorus removal efficiencies. 

2- Comparison of the effects of fermented primary sludge (PS) and RBF sludge on 

enhanced biological phosphorus removal (EBPR) efficiency. 

1.3 Thesis organization 

Chapter 1 presents an overview of the thesis, provides a background on the significance of 

cellulose degradation and recovery, and identifies the knowledge gaps both with respect to 

experimental and modeling studies. Chapter 2 presents a detailed literature review on 

cellulose recovery, reuse, and discusses its biodegradation and kinetics, and discusses the 

current limitations of ASM models with respect to cellulose modeling. Furthermore, the 

RBF technology which selectively removes cellulose is discussed with respect to 

performance and sludge characteristics, with particular emphasis on the fermentability of 

the RBF sludges for EBPR. Chapter 3 presents the materials and methods used during the 

overall thesis work which includes all the experimental conditions, operational and startup 

conditions, and analytical methods of the four lab scaled SBRs complemented by a set of 

respirometric tests on different sludge samples from the SBRs system with the addition of 

microcrystalline α-cellulose as a model cellulosic substrate, and the cellulose-rich RBF 

sludge. Moreover, it includes the description, configuration, and objectives of the cellulose 

simulation work in a modified activated sludge model (ASM1) with cellulose as a separate 

state variable. Chapter 4 includes detailed discussion on the sequencing batch reactors 

experimental work with respect to aerobic cellulose degradation rates in raw wastewater, 

effect of temperature and SRT on cellulose degradation. Chapter 5 includes the 

respirometry tests results that was used in calibrating the modified ASM1 models 

developed on SUMO and the modeling work results in matching the various oxygen uptake 

rates (OUR) of the respirometric tests to estimate cellulose hydrolysis kinetics. Chapter 6 

discusses the experimental results of two SBRs fed with the fermented primary sludges to 

enhance the removal of total phosphorus (TP). Chapter 7 presents the conclusion of the overall 

thesis work and the recommendations for future research work. 
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1.4 Thesis Format 

This thesis follows the requirements stated by the School of Graduate and Postdoctoral 

Studies (SGPS), Western University. Chapter 4 study is under review in Science of the 

Total Environment journal. Chapter 6 study is accepted and currently in the process of 

being published in Science of the Total Environment journal. The overall thesis references 

are stated at the end of the thesis after chapter 7.  
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                      Chapter 2 

2 Literature Review 

2.1 Cellulose in wastewater 

New wastewater treatment technologies are developed to improve sustainability and reduce 

cost mainly through minimizing energy costs and resource recovery. This has become one 

of the priorities along with the normal standards of successful management of the 

environmental and health impacts of wastewater disposal (Ruiken et al., 2013a). 

Cellulose in municipal wastewater mostly originates from toilet paper. A study by Ruiken 

et al., (2013) reported that per capita annual consumption of toilet paper was 23 kg for 

North America and 13.8 kg for Western Europe. In the United States, the same study of 

(Li et al., 2019a)  estimated the daily consumption of toilet paper is 18,000 tons with a 

substantial fraction of approximately 50% entering the sewer systems and hence the raw 

municipal wastewater contains about 158 mg/L of toilet paper  based on a water 

consumption per capita of 400 L/day (Tchobanoglous et al., 2003a). Based on the above  

estimate cellulose in the influent is about 40% of the mass of solids and about 20%-30% 

of the influent total COD (Ruiken et al., 2013, 2018). 

However, cellulose fibers have received little attention in the activated sludge process 

(Ruiken et al., 2013a) with  a few reports on the fate of cellulose and its conversion in 

wastewater treatment processes, especially in activated sludge processes (Verachtertk and 

Bevers, 1982a). 

2.2 Cellulose quantification 

Finding a consistent, reliable, and accurate method for cellulose quantification in 

wastewater is a significant step to understand the behavior of cellulose in wastewater 

treatment (Ahmed et al., 2019a). Several approaches have been developed to measure 

cellulose in wastewater to track its fate in different treatment processes (Gupta et al., 2018).  

Of the several methods proposed in the literature; enzymatic hydrolysis and acid hydrolysis 

were the most focused on. The two methods quantify the cellulose by the hydrolysis of 
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cellulose to monosaccharides and the glucose yield is the cellulose content index (Gupta et 

al., 2018b). 

DuBois et al., (1956) used the method of phenol-sulfuric acid, Honda et al., 2000 followed 

the same method to quantify cellulose using NaOH and H2SO4 for pretreatment. The 

aforementioned authors reported that 7% and 17% of the TSS were the cellulose content 

in both raw wastewater and primary sludge for combined and separate sewer systems, 

respectively and 1% of TSS for biological sludge. Honda et al., (2002) proposed 

conventional autoclaving treatment after sludge hydrolysis with diluted sulfuric acid in 

order to separate cellulose fibers from sludge. Moreover, Hofsten and Edberg, (1972) who 

investigated the cellulose degradation rate, quantified cellulose content by H2SO4 

hydrolysis followed by the anthrone method in which carbohydrate derivatives are 

determined by a colorimetric method. 

Gupta et al., (2018) assessed four methods of measuring cellulose in both wastewater and 

sludge. Out of 4 cellulose quantification methods, three methods were based on hydrolysis 

either with one or two steps then the determination of soluble product, and the fourth 

method is a gravimetric measurement. Acid hydrolysis using sulfuric acid, National 

Renewable Energy Laboratory (NREL), enzymatic hydrolysis, and Schweitzer methods 

were the methods evaluated by the aforementioned authors. It was concluded that the 

Schweitzer method is the most accurate and reliable method of measurement of cellulose 

having the advantages of full recovery, efficiency, temperature dependency, and 

reproducibility compared with the other methods, which even with using pure cellulose 

were not reproducible. Hurwitz et al., (1961) quantified cellulose in sludge using the 

Schweitzer reagent method at 4.5%-13.5% of total TSS in raw, 2%-10% of in primary 

sludge (PS), and 1%-3.55% in waste activated sludge (WAS). 
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2.3 Cellulose Recovery and Energy 

Cellulose is a complex carbohydrate which is known that it is a linear polymer of β-1,4-

glycosidic bond linked D-glucopyranose units (Olsson and Westm, 2013a). Cellulose is 

used in several industrial processes such as food, clothing, paper, fuel, and shelter 

industries, and is the most abundant organic polymer on earth (Bauer and Ibáñez, 2014a; 

Harris et al., 2010a; Olsson and Westm, 2013a; Thoorens et al., 2014a).  

Cellulose recovery helps reduce oxygen consumption and energy requirements, and 

decreases  sludge disposal costs (Honda et al., 2002a). Hence, cellulose recovery is 

significantly beneficial for achieving a circular economy and lowering overall treatment 

costs (Reijken et al., 2018a), as the recovered cellulose can be used for industrial purposes 

such as asphalt, biofuels or additives in building materials (Boztas, 2017; Honda et al., 

2000b), bioplastic bottles (Boztas, 2017). 

Moreover, cellulose can pose challenges to selected treatment processes such as membrane 

bioreactors as it can loop   around the membrane bundle, which requires proper screening 

of influent or recirculation of mixed liquor (Li et al., 2011).  

Furthermore, an investigation on performance of rotating belt filter (RBF) using several  

water qualities from several WWTP showed that,  80% removal of total suspended solids 

(TSS), and 60% removal of COD can be achieved with the decreased flux to the  filter 

mesh and increased TSS and COD removal due to formation of filter cake (Chakraborty, 

2015). 

2.4 Cellulose Degradation 

Influent cellulose concentrations for raw wastewater constitute approximately 1/3 of the 

influential total suspended solids (TSS), as indicated by the plant surveys performed in two 

full-scale water recovery facilities situated in Canada (33%) and the Netherlands (31%) 

(Ahmed et al., 2019a). 
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Solids disposal is one of the major problems faced at wastewater treatment plants, 

particularly with the diminishing availability of landfills. Cellulose can contribute to the 

formation of bulky solids rather than a granular which can lead to several problems with 

physical solids separation (Hurwitz et al., 1961a) In addition, cellulose degradation also 

results in reduced sludge production and associated biosolids processing costs (Li et al., 

2011). 

Understanding the fate of cellulose in WWTP at different treatment conditions such as 

temperature and SRT is essential to identify the best location in WWTP for efficient 

recovery of cellulose.  Furthermore, while aerobic cellulose degradation consumes energy, 

its anaerobic degradation produces energy and hence its fate can significantly impact the 

potential for energy neutrality at a given plant (Ahmed et al., 2019a).  

Hurwitz et al., (1961), showed that in a plant-scale experiment that used mixed liquors of 

2000 to 2500 mg/L, 2500 to 3000 mg/L and 3500-4000 mg/L for cellulose reduction, the 

MLSS concentration of 3500-4000 mg/L provided better reduction of cellulose and 

cellulose reduction is proportional to the MLSS concentration in the aeration tank, 

however, could hardly be achieved in winter because of the reduction of microbial activity.  

Cellulose degradation is strongly dependent on temperature and solid retention time (SRT). 

(Verachtertk and Bevers, 1982a) reported that in 4 weeks, 60% of the cellulose was 

degraded in activated sludge process under aerobic conditions. Moreover, In pilot scale 

studies  at 15oC, the degradation rate and COD removal of influent very slowly 

biodegradable organics  has proportionally increased with increasing   solids retention time 

(Nowak et al., 1999a). Cellulose aerobic degradation organisms are temperature sensitive. 

A batch experiment done by Ruiken et al., (2013), found that temperature has a strong 

effect on cellulose degradation by showing that  10% of cellulose was degraded in 20 days 

at a temperature of 9°C (representing winter season) compared to 12 days for full removal 

of cellulose at a temperature of 24°C (representing summer season). Reijken et al., (2018)  

assumed a temperature correction factor through the Arrhenius relationship of 1.1098 °C-

1. 
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Edberg and Hofsten (1975) tested degradation of cellulose and reported 40% degradation 

under anaerobic conditions. On the other hand, Verachtertk and Bevers, (1982) reported 

60% cellulose degradation under aerobic conditions and 50%-60% cellulose degradation 

under anaerobic conditions after 15 days of operation. 

Furthermore, biodegradation of 50% calculated based on AENOR, (2003) was reported by 

(Alvarez et al., 2009a) of toilet paper under aerobic conditions. However, an anaerobic 

degradation rate for cellulose sieved sludge (fine mesh less than 0.35mm) were 62% and 

57% for thermophilic and mesophilic conditions was reported by (Ghasimi et al., 2016a). 

Reported cellulose degradation efficiency in wastewater treatment varied. Hurwitz et al., 

(1961) who studied the aerobic degradation of cellulose using laboratory batch experiments 

reported that cellulose degradation after 72 hours was 6.7% at 12-13°C and 87% at 23°C, 

indicating a significant temperature impact. A recent study by Ahmed et al., (2019) 

analyzed cellulose in two water resource recovery facilities (WRRFs) operated at SRT of 

7-14 days and temperatures of 14 °C -25 °C and reported that the influent cellulose 

concentration in raw municipal wastewater was one‐third of the influent total suspended 

solids, and cellulose in primary effluent degraded at an efficiency of 70%-90%, with 

secondary effluent cellulose concentrations of 2-3 mg/L. Furthermore, the aforementioned 

study highlighted the selective removal of cellulose by RBF and emphasized that 

irrespective of the presence or lack of primary treatment, secondary effluent cellulose 

concentrations were independent of primary treatment, Cellulose degradation rates 

increased with MLSS concentrations and SRT. 

Benneouala et al. (2017) studied the hydrolysis of four different particulates of  toilet 

papers with different particulate settable COD contents  ( 15220 mg/L, 8180 mg/L, 11300 

mg/L and 10001 mg/L) using respirometric tests at 20 °C and reported that the hydrolysis 

rate coefficients of particulate settleable solids collected before primary clarification, 

particulates at the outlet of residential buildings which was considered as the upstream part 

of the sewage networks, toilet paper, and cellulose were 0.4, 3.2, 1.3, and 1.2 d-1, 

respectively.  The aforementioned studies by (Benneouala et al., 2017a), and  (Reijken et 

al., 2018a) indicated that the hydrolysis of particles was primarily influenced by the active 
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biomass which colonized particles and thus increase of biomass by adding more inoculum, 

beyond what is required for colonization, did not necessarily affect hydrolysis rates.  

The discrepancy in hydrolysis rates of cellulose in the previous studies could be related to 

testing conditions i.e. continuous-flow reactor operation and batch respirometry tests. 

Moreover, the cellulose to mixed liquor volatile suspended solids (MLVSS) mass ratio 

mg/g was 450-490 mg/g in Li et al. (2011), much higher than the 8 mg/g in Benneouala et 

al. (2017) and 12-30 mg/g in Ahmed et al. (2019). This could have impacted the estimated 

hydrolysis rate coefficients as discussed above. Temperature also is also known to affect 

hydrolysis rate in a microbially-mediated enzymatic process. However, the previous 

studies tested at near 20 °C, and the impact of temperature on hydrolysis of cellulose was 

not thoroughly addressed in the literature. Ruiken et al. (2013) who conducted batch 

anaerobic degradation of cellulose reported 10% cellulose degradation at 9 °C and a contact 

time of 20 days and 100% degradation at 24 °C and a contact time of 12 days under 

anaerobic conditions. Similarly, Ghasimi et al. (2016) also reported that cellulose anaerobic 

degradation efficiency was 57% at mesophilic conditions and 62% at thermophilic 

conditions at 15 days of contact time for both cases. 

Ahmed et al., (2019) investigated full-scale gravity settling and micro-sieving primary 

processes with cellulose capture rate > 80%. The cellulose content of the RBF sludge was 

almost twice high as primary clarifier sludge i.e. 35% versus 17% by TSS weight, 

respectively. Cellulose was effectively biodegraded under the experiment operational 

conditions and temperature ranges from 13.7 to 24.8 °C, with all systems achieving 

secondary effluent cellulose of 2–3 mg/L within an SRT range of 7-14 days.  

Comprehensive systematic studies delineating the impacts of temperature and SRT on 

cellulose are not available in the literature. Thus, the temperature correction factor for 

cellulose degradation is still unclear. In addition, the studies by Ruiken et al., (2013) and 

Ghasimi et al., (2016b) were conducted anaerobically; thus, the impact of different 

operational conditions on aerobic cellulose degradation has not been investigated to date.  
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2.5 Cellulose kinetics and modeling in wastewater 

Activated sludge models (ASM) i.e. ASM1, ASM2, and ASM3 are the most popular 

models for the design and optimization of wastewater treatment processes. In these models, 

respirometric techniques are the basis of the influent fractionation (Reijken et al., 2018a). 

There are many uses for respirometry, including characterizing wastewater streams, 

assessing the toxicity and inhibitory effects on biomass and calibrating mathematical 

models (figure 2.1)  

 

Figure 2.1 Uses of respirometry tests (Rossi et al., 2020) 

Cellulose is not described as a state variable separately in ASM models. (Reijken et al., 

2018a). Hence, cellulose should be implemented differently from slowly biodegradable 

organic to be a separate state variable having a slower hydrolysis rate (Reijken et al., 

2018a).   

Cellulose hydrolysis process can be described with different kinetics, first order (Weimer, 

1992a), Monod (Mino et al., 1995a), and Contois (von Munch et al. 1999). Reijken et al., 

(2018) described the cellulose hydrolysis in the modified model of ASM1 as first order for 

simplicity and for the complexity of describing cellulose hydrolysis process which is not 
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well defined. The hydrolysis factor in the proposed model was introduced to be dependent 

on temperature with temperature correction factor of 1.1098 d-1. However, knowing that 

hydrolysis of cellulose happens at the particle surface, the rate of degradation is dependent 

on the particular surface which will result in a power of 2/3 in cellulose concentration rate 

kinetics. 

Surprisingly, the traditional activated sludge models do not include a significant fraction 

of domestic wastewater (Henze et al., 2000a), which is extra slowly biodegradable COD. 

However, several modifications to ASM were proposed. One of the early modifications to 

ASM1, was developed by Nowak et al., (1999), describing the extra slowly biodegradable 

organic matter as Xv without specifying its nature, at 10%-15% of the COD of the influent. 

The implementation of this new variable was based on the finding that the difference 

between inert and slowly biodegradable particulate content appeared to depend on the 

wastewater treatment plant's temperature and sludge age. It was the first model to 

differentiate slowly biodegradable from the extra slowly biodegradable component in 

ASM1. 

Cellulose as mentioned earlier is described as very slowly biodegradable and also part of 

it is inert, is affected mainly by temperature (more degradable in high temperature than low 

temperature), and solids retention time (SRT) in biological reactors (Ruiken et al., 2013a). 

Hence, introducing cellulose into ASM1 is challenging due to its complicated degradation 

behavior and degradability dependency on temperature and SRT.  

Reijken et al., (2018) developed a modified ASM1 model incorporating the cellulose as a 

separate state variable and describing its hydrolysis behavior with a first-order hydrolysis 

rate aiming to monitor the effect of cellulose sieving on the performance of a plant. In the 

model inputs, cellulose was considered 20% of the total COD. Aerobic hydrolysis rate 

coefficients of cellulose in the literature were estimated using the first-order model 

(Benneouala et al. 2017, Li et al. 2019,  Reijken et al., 2018) while activated sludge model 

1 (ASM1) uses the Contois model (equation 1) for particulates which explicitly considers 

the food to microorganisms (F/M) ratio, and  oxygen availability (Henze et al. 2006). It 

was shown by Reijken et al., (2018) that at an SRT of 16 days, cellulose mostly is degraded 
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although part of it has been found in the sludge produced of the sieves which were around 

5-15% at a hydrolysis rate of 0.2 d-1. 

Furthermore, (Revilla et al., a and b) developed an integrated activated sludge model 

including cellulose as a state variable, simulating industrial waste generated from a 

cellulose company. 

However, cellulose degradation is an exocellular enzymatic process, influenced by solid 

substrate concentrations and active biomass (Benneouala et al. 2017). Common kinetic 

expressions for particulate hydrolysis are first order and Contois in particulate 

concentration are indicated in equations 2.1 and 2.2, respectively. 

  𝑟 = 𝑘𝐻,𝐶𝑋                                                                                                           (2.1) 

 𝑟 = 𝑘𝐻,𝑐
𝑋

𝐾
𝑥+

𝑋
𝑋𝐻

                                                                                                     (2.2) 

Where X is the particulate concentration (mg/L), kH is the first order hydrolysis coefficient 

(d-1), kH,C is the Contois rate coefficient (d-1), Kx is the Contois saturation coefficient, and 

XH is the biomass (normally heterotrophic biomass).  

Contois kinetics are the default in activated sludge models (ASM) (Henze et al. 2006), with 

modification factors for oxygen availability etc. When biomass is in excess, the Contois 

equation approximates to first order in particulate, with 𝑘𝐻~𝑘𝐻,𝑐/𝐾𝑋. When cellulose is in 

excess, the Contois equation approximates to zero order in particulate with 𝑟~𝑘𝐻,𝑐𝑋𝐻, and 

hence kH,c is the biomass specific cellulose hydrolysis rate.  

Cellulose is considered as slowly biodegradable with rate coefficients varying widely in 

the literature. Reijken et al., (2018a) who estimated the hydrolysis rate of cellulose using 

first-order kinetics in a modeling study reporting that cellulose is slowly biodegradable 

with a hydrolysis rate coefficient of 0.11 d-1, lower than 3 d-1 of particulates in activated 

sludge models (Henze et al. 2006). Li et al. (2019) who operated four SBR systems fed 

with toilet paper containing 56% (w/w) of cellulose at different SRTs of 5, 10, 20, and 40 
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days estimated that the hydrolysis rate coefficient at 22°C using first-order kinetics was as 

low as 0.03-0.12 d-1 for toilet paper and 0.03-0.07 d-1 for cellulose.  

2.6 Rotating Belt Filter (RBF) 

A suitable alternative to primary clarification (PC) is the rotating belt filter (RBF), among 

others such as rotary drum filters, disk filters, rotary circular filters etc... The RBF 

performance depends on the mesh pore size of the filters (typically 50 to 500 µm), influent 

particulate size distribution. Lema and Suarez, (2017)  showed that larger influent particles 

separated by the mesh. Although smaller particles can be retained when the mesh pore size 

becomes smaller by the cake formations, however, decrease the permeability and flow 

through the filters. 

While the COD fractionation of primary effluents has been well documented in the 

literature  (Henze et al., 2000a), COD fractionation of RBF effluent were examined in few 

studies which investigated its denitrification kinetics.  

Also, routine analysis of RBF samples from a full-scale RBF pilot done by Gupta et al., 

(2018b) found  that the efficiencies of TSS and TCOD removal of 28±1% and 17±2% 

respectively. Moreover, measured TCOD was found to be, 61±5% of which 54±3% was 

found to be XCOD. 

The aforementioned author also showed that the RBF has no impact on the SCOD fractions. 

The SCOD/TCOD fraction of 46% for RBF effluent was higher than raw wastewater’s 

fraction of 39%. The ratio of components in wastewater from RWW and RBFE from 

literature had been presented in Table 2.1. 
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Table 2.1 Raw wastewater and RBF components ratios 

Reference 

 
𝑇𝑆𝑆

𝑉𝑆𝑆
 

𝑋𝐶𝑂𝐷

𝑉𝑆𝑆
 

 
𝑟𝑏𝑆𝑆

𝑇𝐶𝑂𝐷
 

 

SI or 

SH 

 

XI 

 

YH Standard 

ratio 

 (Tchobano

glous et al., 

2003a) 

0.78±0.03, 

0.74±0.05 - 

    

 0.6-0.8 

 (Henze et 

al., 2008) - 

1.82±0.40, 

1.95±0.44 

    

1.5 

(Gupta et 

al., 2018a)     

   0.65±0.004 

  

  Henze et 

al., (2010)      

0.22- 

0.24 

  0.63-0.67 

  

       

(Tas et al., 

2009)   

 14±0.7 

(5% of 

SCOD, 

2% of 

TCOD) 

SH=13

-39% 

of 

TCOD 

 

COD(XI) 

and slowly 

biod. COD 

(XI)=24% 

& 27% 

respectively

. 

 

 

XCOD=Particulate COD, rbSS=Readily biodegradable suspended solids, SI=Soluble 

Inert, SH=Soluble Hydrolysable, XI=Inert, YH=Heterotrophic yield. 
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The effect of organic carbon recovery which includes cellulose on the aeration energy and 

biogas production was monitored by Behera et al., (2018). Influent cellulose was estimated 

to be 25%-40% of the influent COD and cellulose degradation under anaerobic and aerobic 

conditions was estimated at 50%-70% and 15%-35%, respectively in 9-14 days of 

operation. Recovering cellulose using RBF technology with thick mat formation increased 

methane production from the sludge by 10% and decreased aeration energy by 8% based 

on the results of the model compared to primary clarification; without mat formation the 

corresponding values are 20% increase in methane production and 2% energy reduction. 

 

2.7 Enhanced biological phosphorus removal (EBPR). 

Effluent phosphorus concentrations in wastewater treatment plants effluents typically 

range within 0.1-1 mg/L (Zhao, 2017), although effluents as lows as 0.01 mg/L are 

sometimes required. The removal of phosphorus in wastewater is either achieved 

biologically  or chemically and in some cases, both biological and chemical treatments are 

used (Tchobanoglous et al., 2003a). 

EBPR processes involve anaerobic/aerobic phases. The anaerobic phase (fermentation 

step) is primarily for P release and uptake of short-chain volatile fatty acids  by 

phosphorous accumulating bacteria (PAOs) (Comeau et al., 1986). PAOs which are 

responsible for phosphorus removal, store phosphates in intercellular granules for energy, 

which is produced from glycogen breakdown and the hydrolysis of polyphosphate cells 

which is a chain rich of energy. PAOs store VFA it in the form of carbon deposits – 

polyhydroxyalcanoates – PHA under anaerobic conditions. The phosphate concentration 

in the anaerobic phase increases when polyphosphates are broken to ortho-phosphate to 

release energy. In the aerobic phase, PHA is oxidized for the growth of cells, P storage,  

and glycogen regeneration (Seviour et al., 2003). 

Biological P-removal primarily occurs via the accumulation of P as polyphosphate, by 

microorganisms which is termed luxury phosphorus uptake (D. et al., 1979). Although 

PAOs seem to outcompete other microorganisms under several conditions, exception lies 
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in the presence of Glycogen Accumulating Organisms (GAO) that metabolize volatile fatty 

acids (VFAs) or other carbon compounds as PAO without accumulating P (Cydzik-

Kwiatkowska and Zielińska, 2016) which is detrimental for phosphorus uptake. While 

acetate is the dominant carbon source in the wastewater system, propionate could be added 

to the acetate to achieve better EBPR performance (Thomas et al., 2003). 

2.8 Anaerobic Fermentation 

Carbon shortage has always been a challenge for biological nutrients removal (BNR) from 

domestic wastewater. In order to enhance the treatment process, either external sources of 

carbon are added to the processes such as acetate and methanol (Hwang et al., 2016) or the 

VFA-rich supernatant from fermented primary and waste activated sludges. The chemical 

oxygen demand (COD) to the microorganism through cell synthesis i.e. to the waste 

activated sludge (WAS) happens in the biological process and that needs to be treated 

further (Yuan et al., 2016a). Anaerobic fermentation is an intermediate process in the  

anaerobic digestion of organics, whereby complex organic substrates are broken down by 

facultative bacteria to volatile fatty acids (Cuevas-Rodríguez et al., 1998). However, after 

the anaerobic fermentation process, mechanical centrifugation is typically needed for the 

separation of the fermented sludge solids from the fermentation supernatant due to the 

change in particles characteristics (Liu et al., 2017) and poor filterability of the supernatant 

(Zheng et al., 2009).  

Furthermore, during the WAS fermentation, nitrogen and phosphorus are released from 

sludge particles to liquid (Ahn and Speece, 2006a; Jiang et al., 2007a; Yuan et al., 2006a), 

thereby increasing the nutrients loadings to BNR systems (Tong and Chen, 2009a, 2007a). 

Yuan et al. (2015) reported that 31.65 mg COD/L which produced short chain fatty acids 

(SCFAs) of 17.21 mg COD/L that added to the influent from fermentation products which, 

showed the potential and feasibility of recovering and using organic carbon produced in 

the fermentation products without any nitrogen or phosphorus removal.  
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2.9  Synopsis of literature review 

Based on the literature review, there has always been a debate on the estimation of cellulose 

degradation kinetics under WWTPs common cellulose affecting operational conditions 

such as temperature and SRT. Moreover, introducing cellulose as a separate state variable 

to ASM1 and using the modification in validating experimental calculated cellulose 

hydrolysis rate (Khcl) with simulated models using Contois model has not been introduced 

to the literature yet. In this thesis, the first experimental work targeted assessing the effect 

of temperature and SRT on cellulose degradation and estimating cellulose hydrolysis rates 

at different operational conditions. In Incorporating cellulose kinetics in ASM1 model 

separately from slowly biodegradable organics (Xs) was a comparison of hydrolysis rates 

of fibrous and alpha cellulose as well.  

Studying the effect of the addition of fermented sludges on enhancing nutrients removal 

has been always been a main research topic in enhancing biological phosphorus removal 

(EBPR) process. However, with the several emerging treatment technologies introduced 

recently, studying the fermentability of RBF technology sludges and its effect improving 

nutrients removal efficiencies has been a knowledge gap in the literature. The second part 

of this thesis focused on studying the fermentability of RBF sludge and checking its effect 

on EBPR process. Furthermore, the experiment mentioned the latter was a comparison of 

using primary treatment sludges of primary sludge versus RBF sludge as an extra carbon 

source.  
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Chapter 3  

3 Materials and Methods 

3.1 Aerobic Cellulose Degradation in Sequencing Batch 
Reactors 

3.1.1 SBR Set-up and Operation  

Four lab-scale SBR systems with a working volume of 2 L were operated at four different 

temperatures i.e. 10 °C (R1), 17 °C (R2), 25 °C (R3), and 33 °C (R4) (Figure 3.1). 

Temperatures were controlled using a chiller (PolySciences Heated Circulating Bath, 1 

SD07R-20-A11B, Polysciences, Inc., Warrington, PA 18976) and hot plate (Corning® 

Digital Hot Plates, VWR). A total of 160 days of operation was monitored with phase 1 

(day 1-100) at an SRT of 15 days and phase 2 (101-160 days) at an SRT of 3 days. The 

systems were inoculated with activated sludge taken from the nitrifying Greenway WWTP 

(London, Ontario, Canada) with 5000 mg/L of MLSS and 4000 mg/L of MLVSS and fed 

with de-gritted wastewater. Dissolved oxygen levels during the aerobic phase were 5-7 

mg/L. For chemical P removal, FeCl3 solution was also added to the feed at a ratio of 5 mg 

Fe per 1 L wastewater. 

 

Figure 3.1 Lab-scale SBR system 
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The SBR systems, operated with three cycles a day, and treated 3 L/d of municipal 

wastewater with 1 L in each cycle and each 8-hr cycle consisting of filling (0.5 hr), anoxic 

phase (1.5 hr), aerobic phase (4.5 hr), settling (1 hr), and decanting (0.5 hr) (Figure 3.2). 

Dissolved oxygen levels during the aerobic phase were in the range of 5-7 mgO2/L. 

 

Figure 3.2 SBR cycle operation 

3.1.2 Analytical methods 

Table 3.1 presents the raw influent wastewater from Greenway characteristics. Samples 

were collected twice a week for analysis of total COD, soluble COD, total nitrogen (TN), 

soluble nitrogen (SN), ammonium (NH4), nitrate (NO3), nitrite (NO2), total phosphorus 

(TP), soluble phosphorus (SP) according to Hach Methods and suspended solids and 

alkalinity according to Standard Methods (APHA, 1998). A 0.45 μm membrane filter was 

used to differentiate between soluble and particulate fractions.  
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Table 3.1 Raw Wastewater characteristics 

  

Phase 1 (Day 37-100) 

(n=19) 

Phase 2 (Day 110-160) 

(n=14) 

Parameter Influent Influent 

pH 7.5±0.3 7.4±0.3 

Alkalinity (mgCaCO3/L) 375±35 368±32 

TSS (mg/L) 208±72 346±79 

VSS (mg/L) 144±47 233±55 

   

TCOD (mg/L) 359±104 447±132 

SCOD (mg/L) 142±41 138±36 

TN (mgN/L) 37±8 45±8 

SN (mgN/L) 28±4 34±5 

Amm-N (mgN/L) 25±4.3 25±5 

NO3 (mgN/L) 0.4±0.1 0.5±0 

NO2 (mgN/L) 0.0±0.0 0.1±0 

TP (mgP/L) 7.6±4.1 7.4±2 

SP (mgP/L) 2.5±1.3 1.2±1 

 

Cellulose in the influent, effluent, and mixed liquor samples was also determined once a 

week using the Schweitzer method (Gupta et al., 2018c; Hurwitz et al., 1961b). Briefly, 

this method involved several steps to capture cellulose through reaction with cupric 

hydroxide in alkaline solution to form copper complexes from which cellulose was 

precipitated with dilute acids or alcohol, and gravimetrically measured. The chemicals used 

for this analysis included sodium hydroxide (50%), Schweitzer reagent, ethyl alcohol 

(80%) and hydrochloric acid (1.25%). The Schweitzer reagent, prepared by adding 5.5 g 

of cupric hydroxide to 1 L of 28% to 29 % ammonium hydroxide, was used as a solvent 

for cellulose.   
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3.2 Respirometry tests 

3.2.1 Experimental work 

Respirometry is the tool to measure the respiration rate of living microorganisms in 

activated sludge. As discussed in the literature review chapter, one of the main uses of 

respirometry tests is calibrating wastewater models. A series of respirometry tests using an 

8-cell Challenge Respirometer (Respirometer Systems and Application, Fayetteville, 

Arkansas, USA) were conducted on SBR sludges samples with the addition of 

microcrystalline α-cellulose (Sigma Aldrich, Ontario) and cellulose-rich RBF sludges at a 

low substrate to biomass (S/X) ratio of 0.2 (gCOD/gVSS) and high S/X of 2,4 and 8 

(gCOD/gVSS) in order to investigate the impact of cellulose type on degradation rates. The 

respirometry tests design conditions are summarized in appendix A1.  

Microcrystalline α-cellulose has been used as standard cellulose in cellulose degradation 

studies (Ghasimi et al., 2016b). The working volume was 500 mL. Allylthiourea was added 

at 20 mg/L to inhibit nitrification. Ammonia was also added at 20 mg/L ensuring that the 

system was not ammonia limited. For the high S/X tests with α-cellulose, as presented in 

appendix A1, α-cellulose in the range of 58-120 mgCOD/L were added to the respirometry 

bottes. The high α-cellulose bottles were conducted at 27°C using R1 and R2 sludges. 

However, for the low S/X tests with α-cellulose supplemented at 120 mgCOD/L were 

conducted at 14 °C using R1 and R2 sludges and at 29 °C using R3 and R4 sludges.  

Similarly, the two high and low S/X tests with RBF sludge containing 100 mg COD/L of 

fibrous cellulose was run at 20 °C using the mixed biomass of the four reactors (R1-R4) during 

phase 2. The quantified cellulose content of the RBF sludge was 19% of particulate COD. The 

seed control bottles were also monitored to estimate the endogenous respiration rate.   

3.2.2 Respirometry simulation 

The main purpose of the respirometry tests was to calibrate the modified ASM1 models in 

order to describe the cellulose degradation. Data from the respirometry tests were 

processed using SUMO software (Dynamita, Nyons, France) to estimate kinetic parameters 

such as the maximum specific growth rate, the half-saturation concentration, cellulose 
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hydrolysis rate coefficients. The respirometry tests data were simulated using a Contois 

model to describe the cellulose hydrolysis process. The kinetic parameters were determined 

through closely matching SUMO simulated oxygen uptake rates with experimental OUR. 

The ASM1 in stock format was used with a modification of describing the cellulose 

hydrolysis rate by separate hydrolysis kinetics. The only process added and modified was 

the cellulose as XC and the parameters used to calibrate the models are the maximum 

growth rate of heterotrophs (μmax), decay rate for heterotrophs (bH), and cellulose 

hydrolysis factor (KH,CL). 

3.2.2.1 Modelling objectives and novelty 

The main modeling objectives were to introduce a new separate state variable which is 

cellulose to ASM1 model to differentiate it from the slowly biodegradable organics as an 

extra slowly biodegradable organic. Moreover, the model was built with the aim of 

estimating the hydrolysis rate coefficient of cellulose at different food- to-microorganisms 

ratios based on a Contois model for the first time in the literature. 

3.2.2.2 Modelling procedures 

Data Collection 

The sludge data used for both respirometry tests and the models are sludge collected from 

the SBRs (R1-R4) and only two runs used RBF sludge with a mixture of the SBRs sludges. 

ASM1 Modification 

In order to modify any activated sludge model which is originally a mathematical model 

based on differential equations describing the rate of hydrolysis of particulates and 

biodegradation of soluble organics of each parameter presented in the Gujer matrix. It also 

describes the rate of growth and decay of microorganisms in wastewater. The rate of 

change of each parameter is stochiometric based. Hence, to introduce any parameter to 

ASM, which is the cellulose in this case, the rate of its hydrolysis should be inputted as 

well as the stochiometric coefficients.  
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As shown in Figure 3.3, ASM1 Gujer matrix, (i) represents the different components in 

wastewater and (j) represent the different processes.  

 

Figure 3.3 ASM1 Gujer Matrix description (Henze et al., 2000a) 
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Gujer Matrix Components 

Table 3.2 presents the different soluble and particulate components of ASM1 model stated 

in the Gujer matrix (SUMO, Dynamita, Nyons, France, 2019). The cellulose as shown in 

the mentioned table is added as a separate particulate component (Xcl). 

Table 3.2 ASM1 components description (SUMO, Dynamita, Nyons, France, 2019) 

 

 

 

 

 

Symbol Name Unit Particle size 

SI Soluble undegradable organics g COD.m-3 S 

SS Soluble biodegradable organics g COD.m-3 S 

XI Particulate unbiodegradable organics 

from the influent 

g COD.m-3 X 

XS Particulate biodegradable organics g COD.m-3 X 

XB,H Ordinary heterotrophic organisms 

(OHO) 

g COD.m-3 X 

XB,A Autotrophic nitrifying organisms 

(NH4+ to NO3-) 

g COD.m-3 X 

XP Particulate undegradable endogenous 

products 

g COD.m-3 X 

SO Dissolved oxygen (O2) g O2.m-3 S 

SNO Nitrate and nitrite (NO3 + NO2) g N.m-3 S 

SNH Ammonia (NH4+ + NH3) g N.m-3 S 

SND Soluble biodegradable organic N g N.m-3 S 

XND Particulate biodegradable organic N g N.m-3 X 

SALK Alkalinity (ALK) eq ALK.L-1 S 

SN2 Dissolved nitrogen (N2) g N.m-3 S 

XINORG Inorganic suspended solids g TSS.m-3 X 

Xcl Slowly biodegradable cellulose g Cl.m-3 X 
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ASM1 model was modified by adding cellulose to the Gujer kinetics (Henze et al., 2000b) 

matrix as a separate state variable (Xcl) with a stoichiometric coefficient of -1 and 1 for 

the Xcl and SS components respectively, describing the cellulose conversion as an extra 

slow hydrolysable particulate to SS (Table 3.3). The hydrolysis rate for cellulose was 

described as Contois model (Eq. 3.1) including cellulose hydrolysis factor Kcl and 

cellulose half-saturation factor of Xcl/XB,H as Kxcl. 

 

𝑑𝑋𝑐𝑙

𝑑𝑡
=  −𝐾𝑐𝑙 

(𝑋𝑐𝑙/𝑋𝐵,𝐻)

(𝐾𝑥𝑐𝑙+𝑋𝑐𝑙/𝑋𝐵,𝐻)
 [(

𝑆𝑂

(𝐾𝑂,𝐻+𝑆𝑂)
)] 𝑋𝐵, 𝐻                                               (3.1) 

 

Where Kcl presents the hydrolysis of Cellulose (d-1), Xcl is the cellulose particulates 

concentration, XB,H  is the heterotrophic biomass concentration and Kxcl represents the 

half-saturation of Xcl/XB,H. 
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Table 3.3 Modified Gujer Kinetic Matrix (SUMO, Dynamita, Nyons, France, 2019) 
 

Gujer kinetic matrix 

 

j Symbol Process SI SS XI XS XB,H XB,A XP SO SNO 

1 r1 Aerobic growth of heterotrophs   -1/YH     1     -(1-YH)/YH   

2 r2 Anoxic growth of heterotrophs   -1/YH     1       -(1-YH)/(iNO3,N2*YH) 

3 r3 Aerobic growth of autotrophs           1   -(-iCOD,NO3-YA)/YA 1/YA 

4 r4 Decay of heterotrophs       1-fP -1   fP     

5 r5 Decay of autotrophs       1-fP   -1 fP     

6 r6 Ammonification of soluble organic 

nitrogen 
                  

7 r7 Hydrolysis of entrapped organics   1   -1           

8 r8 Hydrolysis of entrapped organic nitrogen                   

9 r9 Hydrolysis of Cellulose   1                  
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SNH SN

D 

XND SALK SN2 XINOR

G 

Xcl Rate Unit 

-iXB     -iXB*iCharge,SNHx       μH*MsatSS,KS*MsatSO,KO,H*MsatSNH,KNH,H*MsatSALK,KALK*XB,H g.m-3.d-1 

-iXB     -(1-YH)/(iNO3,N2*YH)*iCharge,SNOx-

iXB*iCharge,SNHx 

(1-

YH)/(iNO3,N2*

YH) 

    μH*MsatSS,KS*MinhSO,KO,H*MsatSNO,KNO*MsatSNH,KNH,H*ηg*XB,H g.m-3.d-1 

-

iXB-

1/Y

A 

    -

(iXB+1/YA)*iCharge,SNHx+(1/YA)*iC

harge,SNOx 

      μA*MsatSNH,KNH*MsatSO,KO,A*MsatSALK,KALK*XB,A g.m-3.d-1 

    iXB-

fP*iXP 

        bH*XB,H g.m-3.d-1 

    iXB-

fP*iXP 

        bA*XB,A g.m-3.d-1 

1 -1   iCharge,SNHx       ka*SND*XB,H g.m-3.d-1 

              kh*MRsatXS,XB,H,KX*(MsatSO,KO,H+ηh*MinhSO,KO,H*MsatSNO,KNO)*X

B,H 

g.m-3.d-1 

  1 -1         kh*(XND/XS)*MRsatXS,XB,H,KX*(MsatSO,KO,H+ηh*MinhSO,KO,H*MsatS

NO,KNO)*XB,H 

g.m-3.d-1 

            -1 Kcl*MRsatXcl,XB,H,KX*MsatSO,KO,H*XB,H g.m-3.d-1 
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The description of the Gujer Matrix’s components is presented in the tables below extracted 

from the SUMO software ASM1 formation code. Table 3.4 lists the description of 

autotrophic microorganism’s growth, decay and half saturations parameters used in the 

Gujer matrix of ASM1 earlier.  

Table 3.4 Growth and decay of autotrophic nitrifying organisms (SUMO, Dynamita, 

Nyons, France, 2019) 

Symbol Name Unit 

μA Maximum specific growth rate of autotrophs d-1 

bA Decay rate of autotrophs d-1 

ka Rate of ammonification m3.g COD-1.d-1 

KO,A Half-saturation of oxygen g O2.m-3 

KNH Half-saturation of ammonia g N.m-3 

Table 3.5 lists the description of heterotrophic microorganism’s growth, decay and half 

saturations parameters used in the Gujer matrix of ASM1 earlier.  

Table 3.5 Growth and decay of heterotrophic organisms (SUMO, Dynamita, Nyons, 

France, 2019) 

Symbol Name Unit 

μH Maximum specific growth rate of heterotrophs d-1 

ηg Reduction factor for anoxic growth of heterotrophs unitless 

KS Half-saturation of SB g COD m-3 

bH Decay rate of heterotrophs d-1 

KO,H Half-saturation of oxygen g O2.m-3 

KNO Half-saturation of nitrate g N.m-3 

KNH,H Half-saturation of ammonia g N.m-3 
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In table 3.6, the different hydrolysis and half saturation factors used in Gujer matrix are 

listed. As per contois model hydrolysis equation (3.1), the hydrolysis rate (Kcl) and half 

saturation factor (Xcl/Xb,H) were added to the different hydrolysis parameters of ASM1 to 

describe the cellulose hydrolysis process. 

Table 3.6 Hyrolysis factors of ASM1 (SUMO, Dynamita, Nyons, France, 2019) 

Symbol Name  Unit 

kh Maximum specific hydrolysis rate  g XS.g XB,H
-1.d-1 

KX Half-saturation of XB/XB,H  g XS.g XB,H
-1 

ηh Correction factor for hydrolysis under anoxic conditions  unitless 

Kcl Hydrolysis of Cellulose  g Xcl.g XB,H
-1.d-1 

Kxcl Half-saturation of Xcl/XB,H  g Xcl.g XB,H
-1 

Table 3.7 and 3.8 presents the different yields, alkalinity half-saturation factor, fractions 

and electron equivalence and charge balance values used in modified ASM1 model. All 

the mentioned parameters were used as the default values of ASM1. 

Table 3.7 Yields coefficients for autotrophic and heterotrophic microorganisms 

(SUMO, Dynamita, Nyons, France, 2019) 

  

 

 

 

 

Symbol Name Default value Unit 

YH Yield for XB,H growth 0.67 g XB,H.g COD-1 

YA Yield of XB,A growth per SNO3 0.24 g XB,A.g N-1 
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Table 3.8 Alkalinity, fractions and electron equivalence and charge balance (SUMO, 

Dynamita, Nyons, France, 2019) 

 

Table 3.9 presents the calculated variables ratios of ASM1. All default values were used 

in the simulation processes of all developed models. 

Table 3.9 Calculated variables ratios (SUMO, Dynamita, Nyons, France, 2019) 

Symbol Name Default value Unit 

iCV Particulate COD to VSS ratio 1.48 g COD.g VSS-1 

iCV,SS SS SCOD/VS ratio 1.07 g COD.g VS-1 

iCV,SI SI SCOD/VS ratio 0.93 g COD.g VS-1 

fBOD5,BODult BOD5 to ultimate BOD ratio 0.65 gCOD.gCOD-1 

 

 

 

Symbol Name Default value Unit 

KALK Half-saturation of alkalinity 0.001 eq/L 

fP Fraction of XU generated in 
biomass decay 

0.08 unitless 

iXB N content of biomasses 0.086 g N.g COD-1 

iXP N content of products from 
biomass 

0.06 g N.g COD-1 

iNO3,N2 Conversion factor for NO3 
reduction to N2 

2.86 g COD.g N-1 

iCOD,NO3 Conversion factor for NO3 into 
COD 

-4.57 g COD.g N-1 

iCOD,N2 Conversion factor for N2 into COD -1.71 g COD.g N-1 

iCharge,SNHx Conversion factor for NHx into 
charge 

0.00007 kCharge.g N-1 

iCharge,SNOx Conversion factor for NO3 into 
charge 

-0.00007 kCharge.g N-1 
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The saturation and inhibitions terms used in all the rates of different parameters of the 

modified ASM1 are listed in table 3.10. The saturation factor of cellulose particulates was 

added to this table following the contois hydrolysis rate equation (3.1). 

Table 3.10 Saturation/inhibition terms of modified ASM1 (SUMO, Dynamita, Nyons, 

France, 2019) 

Symbol Name Expression 

MsatSS,KS Saturation term for soluble biodegradable organics SS/(SS+KS) 

MsatSO,KO,H Saturation term for dissolved oxygen 

(heterotrophs) 

SO/(KO,H+SO) 

MsatSO,KO,A Saturation term for dissolved oxygen (autotrophs) SO/(KO,A+SO) 

MsatSNH,KNH,H Saturation term for ammonia (heterotrophs) SNH/(KNH,H+SNH) 

MsatSNH,KNH Saturation term for ammonia (autotrophs) SNH/(KNH+SNH) 

MsatSALK,KALK Saturation term for alkalinity SALK/(KALK+SALK) 

MsatSNO,KNO Saturation term for nitrate and nitrite SNO/(KNO+SNO) 

MRsatXS,XB,H,KX Saturation term for particulate biodegradable 

organics (heterotrophs) 

(XS/XB,H)/(KX+XS/XB,H) 

MinhSO,KO,H Inhibition term for dissolved oxygen KO,H/(KO,H+SO) 

MRsatXcl,XB,H,KX Saturation term for Cellulose (Xcl/XB,H)/(Kxcl+Xcl/XB,H) 
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System Configuration 

The respirometry experiment was simulated on SUMO software as a batch reactor aerated 

with a dissolved oxygen (DO) setpoint of 2 mg O2/L and the reactor volume was set to 500 

ml. 

Model Inputs and Calibration 

For Contois model calibration and parameters estimation on SUMO, the software influent 

tool was used to check some of the influent ratios listed in table 3.11. Moreover, the kinetics 

values were used to match the simulated OUR profiles with the experimental profiles from 

the respirometric test runs. The kinetics values used for calibration were in the reasonable 

range of the default kinetics values. To describe the temperature effect on kinetics, values 

were adjusted with temperature correction values from literature (Tchobanoglous et al., 

2003b). Different temperature correction factors are shown in appendix A2. 

Table 3.11 Influent tool ratios checks (SUMO, Dynamita, Nyons, France, 2019) 

COD/BOD/TSS/VSS match Measured 

data 

Calculated from 

estimated fractions 

Verdict 

Influent COD 360.0 360.0 good 

match 

Calculated influent filtered COD 150.8 150.8 good 

match 

Calculated Influent filtered flocculated 

COD 

85.0 85.0 good 

match 

Calculated influent BOD5 6.0 6.1 good 

match 

TSS 225.0 202.7 so-so… 

VSS 144.6 130.3 so-so… 

Due to the nitrification and denitrification inhibition in the respirometric bottles, the 

allylthiourea addition was incorporated by setting the maximum growth rate (μmax) and 

decay coefficients for autotrophic microorganisms both as 0 d-1.  
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Key Calibration Parameters  

The key parameters used to estimate the hydrolysis rate of cellulose in the different models 

were the maximum specific growth rate of heterotrophs (μmax) and the cellulose 

hydrolysis rate (Kxcl). 

The μmax controlled the peak level of OUR on the y-axis (mgO2/L.h) with time (d) on the 

x-axis. Figure 3.5 shows the effect of decreasing μmax value from 6 1/d to 3 1/d, which 

decreased the peak OUR value from 1.1 to 0.65 mg/L.h.  

3.3 Enhancing Phosphorus Removal Using Fermented 
Primary Sludge and RBF sludge 

3.3.1 Set-up and Operation 

Two lab-scale sequence batch reactors (SBRs) systems, as shown in Figure 3.7, were 

operated for 75 days. The first reactor treated primary effluent (PE-SBR) and the second 

reactor treated RBF effluent SBR (RBFE-SBR) collected from Greenway WWTP, London, 

Ontario, Canada. The working volume was 2 L with a filling ratio of 50% and a flowrate 

of 3 L/d. The reactors were operated with 3 cycles/day, 8 hours per cycle (480 mins). Each 

cycle consisted of 0.5hr of filling, 1.5 hr of anoxic phase, 4.5 hr of aerobic phase, 1 hr for 

settling and 0.5 for decanting (Figure 3.7). During the anaerobic phase, mixing was 

achieved using mechanical stirring to promote the biological phosphorus release.  The seed 

sludge was collected from Greenway WWTP (London, Ontario, Canada) with a 

concentration of 1430 mg/L for MLSS and 1080 mg/L for MLVSS. The system was 

operated at an SRT of 10 days for 75 days. Sludge wasting was performed at the end of the 

aeration phase before the settling phase. The wastewater samples were collected from 

Greenway WWTP (London, Ontario, Canada). Dissolved oxygen levels were kept in the 

range of 4-5 mg/L. Allylthiourea was added starting from day 38 to day 75 at 50 mg/L 

concentration to inhibit nitrification in both reactors in order to focus on the phosphorus 

removal. 
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Figure 3.4 SBR cycle operation 

The operation comprised three phases: phase 1 (day 1- 42) with both reactors treating 

primary effluent (PE) without any addition of fermented sludge or allylthiourea to reach 

the steady-state condition, phase 2 (day 43-53) operation with the supplementation of 

carbon by addition of fermented primary sludge (PS) to both PE-SBR and RBFE-SBR, and 

phase 3 (day 54-75) where PE-SBR and RBFE-SBR were supplemented with fermented 

PS and RBF sludge, respectively. Moreover, phase 2 and 3 included the addition of 

allylthiourea for nitrification inhibition to focus on the phosphorus removal in both 

reactors. 

Primary sludge (PS) and RBF sludge were collected once a week for the fermentation 

process from Greenway WWTP (London, Ontario, Canada). Moreover, RBF effluent and 

sludge were collected from an RBF pilot that was operated in the same treatment plant. 

Primary and RBF sludges used for fermentation collected from Greenway was 

characterized as presented in Table 3.12. 
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Table 3.12 Wastewater and sludge feed characteristics 

Parameter Primary effluent RBF effluent 
Primary sludge 

feed 
RBF sludge feed 

PH 7.6 ± 0.3 7.6 ± 0.2 6.2 ±0.3 6.2 ±0.4 

Alk 353 ± 23 364 ± 19 1826 ±266 1397 ±210 

VFA - - 945 ±513 974 ±470 

TCOD 230 ± 40 382 ± 46 33331 ±5512 39225 ±14022 

SCOD 129 ± 33 149 ± 44 1861 ±925 2042 ±602 

TN 29 ± 5 38 ± 5 880 ±275 1383 ±472 

SN 23 ± 3 27 ± 5 190 ±108 163 ±79 

NH4 21 ± 1 25 ± 3.1 59 ±62 139 ±100 

NO3 0.7 ± 0.3 0.6 ± 0.3 16 ±9 17 ±6 

NO2 0.02 ± 0.01 0.02 ± 0.01 0.31 ±0.18 0.28 ±0.17 

TP 4.7 ± 1.5 9.1 ± 3.2 460 ±202 474 ±170 

SP 2.8 ± 0.7 4.1 ± 0.7 38 ±14 50 ±15 

TS - - 26302 ±4601 50612 ±10841 

VS - - 19173 ±2869 33083 ±11182 

TSS 87 ± 11 257 ± 63 - - 

VSS 64 ± 9 159 ± 42 - - 

 

Anaerobic fermentation was done continuously for an SRT of 4 days for both sludge types 

at a temperature of 35°C. The working volume of the fermentation reactors were 400 ml. 

After the fermentation, the supernatant of both fermented sludges was separated from the 

solids using a mechanical centrifuge. Two cycles of centrifugation were applied to the 

sludges after fermentation. The sludges were centrifuged at 2400 g (2500 rpm) for 15 

minutes per cycle of centrifugation. The centrifuge process was followed with filtration 

using double 1.2 μm filters in order to reduce the suspended solids as much as possible not 

to affect significantly the solids concentration in the reactors. PE-SBR and RBF-SBR were 

enriched with 120 ml of fermented PS and RBF supernatant at the start of each cycle as a 

carbon source to enhance the biological phosphorus removal process. The added fermetates 

volume was calculated based on keeping a minimum SCOD/TN ratio of 6 and SCOD/TP 

of 20.  
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3.3.2 Cyclic Tests 

Three cyclic tests were done in the third phase of the experiment on three different days 

for PE-SBR and RBF-SBR to monitor the biological phosphorus removal inside the 

reactors starting from the feeding phase at t=0 till the end of the reaction phase at t= 6 

(before the settling phase). Samples were collected every 15 mins and filtered instantly to 

prepare the soluble fraction, and analyzed during feeding, anaerobic, and aerobic phases. 

Soluble phosphorus, soluble COD, ammonia, nitrate, and nitrite were analyzed for each 

sample of the three cyclic tests using Hach Methods.  

For the sludge samples which include the PS feed, RBF feed, fermented PS, fermented 

RBF, PS supernatant and RBF supernatant. Total COD, soluble COD, total nitrogen, 

soluble nitrogen, ammonium, nitrate, nitrite, total phosphorus, soluble phosphorus, volatile 

fatty acids (VFA) were analyzed twice a week (same analysis day of the influent and 

effluent samples) according to Hach Methods and suspended solids and alkalinity 

according to Standard Methods (APHA, 1998). Influent and sludge characteristics are 

summarized in table 3.12. 
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4 Chapter 4.  

Aerobic Cellulose Degradation in Sequencing Batch 
Reactors results 

4.1 SBR performance 

The influent and effluent water qualities during the steady-state operational periods in 

phases 1 and 2 are summarized in Table 4.1. Average influent TSS, COD, TN, and TP 

levels in phases 1 and 2 were 208-361 mg/L, 359-456 mg/L, 37-45 mg/L, and 7.6-7 mg/L, 

respectively. Average effluent SCOD of R1-R4 were 28-35 mg/L in phase 1 and 36-45 

mg/L in phase 2. Generally, effluent SCOD increased at lower temperature and shorter 

SRT. COD removal efficiencies were 92%-94% in phase 1 and 88%-90% in phase 2, 

slightly increasing with higher temperature.  

Effluent soluble nitrogen concentrations were 8-13 mg/L in phase 1 and 19-27 mg/L in 

phase 2, decreasing with higher temperature and longer SRT. Particularly, nitrification was 

hampered at low temperature and short SRT. Nitrogen removal efficiencies calculated 

based on influent TN and effluent SN increased with higher temperature from 65% (R1) to 

78% (R4) in phase 1 and from 41% (R1) to 63% (R4) in phase 2.  

As evident from Table 4.1, effluent SP concentrations generally increased with temperature 

and ranged between 0.2-0.8 mg/L in phase 1 and 0.2-0.4 mg/L in phase 2. Phosphorus 

removal efficiency decreased with increasing temperature from 97% (R1) to 89% (R4) in 

phase 1 with similar observations of 94%-96% in phase 2. This trend was related to P 

uptake for cell synthesis, which decreased for the reactors at higher temperature due to the 

lower sludge yield. However, the trend was not pronounced in phase 2 possibly because 

operation at SRT of 3 days showed low biomass concentrations. 
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Table 4.1  Summary of wastewater characteristics during steady-state conditions in SBRs 

  Phase 1 (Day 37-100) (n=19) Phase 2 (Day 110-160) (n=14) 

   R1 (10°C) R2 (17°C) R3 (25°C) R4 (33°C) R1 (10°C) R2 (17°C) R3 (25°C) R4 (33°C) 

  Influent Effluent Effluent Effluent Effluent Influent Effluent Effluent Effluent Effluent 

pH 7.5±0.3 8.0±0.3 8.1±0.3 8.2±0.2 8.2±0.2 7.4±0.3 7.9±0.3 8.1±0.3 8.2±0.3 8.2±0.2 

Alkalinity 

(mgCaCO3/L) 

375±35 243±29 247±33 249±25 261±31 368±32 275±33 287±31 286±29 277±35 

TSS (mg/L) 208±72 24±10 21±10 19±10 18±10 346±79 23±11 29±6 21±5 17±10 

VSS (mg/L) 144±47 16±8 11±7 9±7 9±6 233±55 11±12 16±13 12±10 8±8 

TCOD (mg/L) 359±104 35±11 34±9 28±7 29±6 447±132 75±26 64±16 61±18 54±16 

SCOD (mg/L) 142±41 28±9 26±8 23±7 26±7 138±36 54±17 44±12 44±12 44±16 

TN (mgN/L) 37±8 - - - - 45±8 - - - - 

SN (mgN/L) 28±4 13±4 12±3 10±3 8±4 34±5 26±9 25±8 22±13 17±10 

Amm-N (mgN/L) 25±4.3 1.3±2.0 1.0±3.3 0.6±1.4 0.2±0.2 25±5 20±8 18±6 15±10 11±7 

NO3 (mgN/L) 0.4±0.1 10.7±2.3 10.0±3.0 9.4±3.1 7.8±3.1 0.5±0 1.6±1 1.9±1 2.5±2 3.1±1 

NO2 (mgN/L) 0.0±0.0 0.1±0.1 0.1±0.1 0.1±0.2 0.2±0.1 0.1±0 4.8±7 0.9±0 0.9±1 0.9±0.3 

TP (mgP/L) 7.6±4.1 - - - - 7.4±2 - - - - 

SP (mgP/L) 2.5±1.3 0.2±0.2 0.4±0.8 0.5±0.5 0.8±0.3 1.2±1 0.3±0.2 0.3±0.2 0.4±0.3 0.4±0.3 

Reactor                      
                    

MLSS (mg/L)   4100±790 3800±1300 3200±1400 2800±1100   1400±610 1400±600 1600±850 1500±860 

MLVSS (mg/L)   2900±400 2500±800 2000±800 1700±600   810±260 800±240 850±320 800±330 

Sludge yield 

(gVSS/gCOD) 

 0.26 0.23 0.21 0.16  0.21 0.18 0.18 0.18 
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The overall removal efficiencies of COD, total nitrogen (TN) and total phosphorus (TP) are 

summarized in table 4.2. For the COD and TN removal, the removal efficiencies increase with 

the temperature increase due to the higher maximum growth rate (μHmax at (T)= μmax at T(20).ΘT-

20). Hence, with the increase of the temperature, the microorganism’s activities rate increase 

which by turn raise the removal efficiency. However, for the phosphorus removal, decreasing 

the operation temperature increase the removal efficiency for the reason of the higher formation 

of biomass in lower temperature reactors which increase the phosphorus removed during cell 

synthesis (Tchobanoglous et al., 2003b). 

 

In phase 2, the reactors SRT decreased to 3 days. For the COD and total Nitrogen (TN) removal 

efficiencies decreased compared to phase 1 due to the drop that occurred in all SBRs in the 

biomass concentration. Between the four SBRs, the removal efficiencies followed the same trend 

of increasing with the temperature increase for COD and TN, and decreasing for the TP removal.  

Table 4.2  SBRs removal performances 

 

 

Days 37-100 

SRT 15 days 

Average Removal (%) R1  R2  R3  R4  
 

(10 

°C) 

(17 

°C) 

(25 

°C) 

(33 °C) 

COD 92 93 94 93 

TN 65 69 72 78 

TP 97 95 93 89 

 

Days 110-135 

SRT 3 days 

Average Removal (%) R1  R2  R3  R4   
(10 

°C) 

(17 

°C) 

(25 

°C) 

(33 °C) 

COD 90 92 92 92 

TN 40 44 50 57 

TP 97 98 95 95 
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Temperature and SRT effects on the volatile fraction of mixed liquor were pronounced, with the 

volatile fraction decreasing with higher temperature and shorter SRT. The heterotrophic decay 

rate is temperature dependent (𝑏𝐻 = 𝑏𝐻,20𝜃𝑏𝐻 
T-20), which indicates that with the increase of 

temperature, the decay rate increases. Figure 4.1 presents the mixed liquor suspended solid 

profiles of R1-R4 during the two phases of the experiment (SRT 15&3 days). As shown the 

biomass profiles below, it indicates the higher biomass concentration with the lower temperature 

of R1 at 10°C and the lower biomass concentration took place in R4 operated at the highest 

temperature of 33°C. Moreover, as indicated in the same figure below that all the reactor biomass 

(VSS) concentrations dropped scientifically with reducing operation SRT of the SBRs from 15 

days to 3 days. The net biomass yield (Ynet) expressed as biomass yield (Y) /(1+bHSRT) also 

demonstrates that a higher decay rate reduced net biomass yield in the reactors. 

 

Figure 4.1 Mixed liquor suspended solids profiles 
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4.2 Fate of cellulose in SBRs and hydrolysis rates 

Cellulose concentrations in the influent, effluent, and sludge are summarized in Table 4.3. 

Average influent cellulose concentrations in phases 1 and 2 were 36 and 66 mg/L, accounting 

for 17%-20% of the influent TSS. Similarly, average effluent cellulose concentrations in both 

phases were mostly 2-3 mg/L, accounting for 4%-15% of the effluent TSS, similar to the effluent 

qualities of two full-scale WWTPs (Ahmed et al., 2019b). Cellulose concentrations in the sludge 

were 18-81 mg/L for both phases, accounting for 1%-2% of MLSS in phase 1 and 2%-5% of 

MLSS in phase 2, similar to 1%-2% of MLSS at SRT 7 &14 days reported by Ahmed et al., 

(2019).  

Table 4.3 Cellulose concentrations and degradation 

  
Effluent (mg/L) Sludge (mg/L) 

 
Influent 

(mg/L) 

R1 

(10°C) 

R2 

(17°C) 

R3 

(25°C) 

R4 

(33°C) 

R1 

(10°C) 

R2 

(17°C) 

R3 

(25°C) 

R4 

(33°C) 

Phase 1 

SRT 15 (d) 

36±20 

(13) 

2±1 

(13) 

2±1 

(13) 

3±2 

(13) 

2±1 

(13) 

81±26 

(10) 

51±30 

(10) 

36±23 

(10) 

18±11 

(10) 

Phase 2 

SRT 3 (d) 

66±49 

(7) 

2±3 

(7) 

2±2 

(7) 

2±1 

(7) 

4±3 

(7) 

57±37 

(7) 

56±22 

(7) 

44±17 

(7) 

31±17 

(7) 

 Degradation efficiency (%)  

 R1 

(10°C) 

R2 

(17°C) 

R3 

(25°C) 

R4 

(33°C) 

    

Phase 1 

SRT 15 (d) 

 80 83 84 90     

Phase 2 

SRT 3 (d) 

 78 80 83 85     
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The fate of cellulose was examined using cellulose mass balances on a cumulative basis 

(equation 4.1).  

 𝐵𝑖𝑜𝑑𝑒𝑔𝑟𝑎𝑑𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐼𝑛𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒−(𝐸𝑓𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒+𝑊𝑎𝑠𝑡𝑒 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒+𝐵𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒)

𝐼𝑛𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
𝑥 100       

(4.1) 

Based on the cellulose mass balance, the estimated cellulose biodegradation efficiency was 80%-

90% during phase 1 and 78%-85% in phase 2. The estimated degradation efficiencies (table 4.3) 

during phase 1 indicated the effect of increasing the temperature in increasing the cellulose 

biodegradation efficiencies.  

Figure 4.2 present the four reactors cellulose degradation efficiencies (%) with respect to 

temperature. The mentioned figure proved the higher the temperature the higher the cellulose 

degradation efficiency for the same SRT. It also shows the effect of decreasing the SRT on 

decreasing the hydrolysis efficiency to 3 days compared to the degradation efficiencies at the 

SRT of 15 days. 

 

Figure 4.2 Cellulose Biodegradation efficiency with temperature 
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The cumulative mass balance shown in figure 4.3 was used to estimate cellulose biodegradation 

by subtracting the sum of effluent, waste sludge, reactor cellulose from influent.  

 

Figure 4.3 Cumulative mass of cellulose in influent, effluent, sludge, and bioreactor 

As shown in figure 4.3, the cumulative cellulose mass balance indicated that cellulose in effluent, 

waste sludge, and reactor cellulose were 6%-9%, 2%-12%, <2% of influent for phase 1 and 2%-

7%, 11%-20%, <0.1% for phase 2, respectively. It should be noted that the distribution of 

cellulose between biomass and effluent was dependent on SRT and temperature. At an SRT of 

15 days, the abundance of cellulose in biomass, relative to the effluent increased with lower 

temperature. At the shorter SRT of 3 days, cellulose was more abundant in waste sludge than the 

effluent regardless of temperature. The cellulose distribution values (%) in the influent, biomass 

and effluent are summarized in table 4.4. 
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Table 4.4 Cellulose distribution in effluent and sludge waste relative to influent based on 

cumulative mass 

  R1 R2 R3 R4 

Phase 1 

(SRT 15 day) 

Effluent (%) 5.8 8.0 8.9 6.9 

Sludge waste (%) 11.9 7.2 4.8 2.3 

Reactor (%) 2.1 2.1 2.1 1.0 

Phase 2 

(SRT 3 day) 

Effluent (%) 3.4 2.4 3.1 6.8 

Sludge waste (%) 19.9 19.5 15.5 10.5 

Reactor (%) <0.1 <0.1 <0.1 <0.1 

 

Summarizing the cellulose concentrations at the two different operation SRTs of 15 and 3 days 

in figure 4.4, it shows that cellulose degradation efficiency is dependent on temperature 

(increasing with the temperature increase) and on SRTs showing lower degradation efficiency 

when in phase 2 when SRT decreased to 3 days. It also shows the cellulose concentration 

relatively to mixed liquor (MLVSS) concentration of 1%-2% and 2%-5% at SRT of 15 and 3 

days, relatively which indicated that cellulose concentration in the SBRs increase with the SRTs 

decrease. 

 

Figure 4.4 Cellulose distribution between reactors (influent, reactors and effluent) at the 

different SRT values 
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Cellulose Biodegradation Study Results Summary 

From the previous study of cellulose biodegradation, based on the experiment results it can be 

concluded that:  

1. From the influent, biomass and effluent cellulose concentrations, cellulose degradation 

is mainly dependent on temperature and biological reactors SRTs. 

2. Cellulose concentrations in the bioreactors increase with lowering the SRT (1%-2% at 

SRT of 15 days increased to 2%-5% of the bioreactors MLVSS at SRT of 3 days). 
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5 Chapter 5.  

Respirometry Results 

5.1 Respirometry tests 

Calculating OUR curves through oxygen uptake data 

Respirometry tests mechanism is simply to monitor the dissolved oxygen (DO) consumption and 

compute the oxygen mass balance over the liquid phase (Rossi et al., 2020). The respirometer 

records oxygen uptake data (OU) every 10 mins for the whole running period of the experiment 

until the OU curve reach a plateau. Oxygen uptake rate is the slope of OU versus time. Based on 

the oxygen uptake data outputs from the respirometry tests, oxygen uptake rates are basically 

obtained through calculating the derivative of DO curve (OUR= dO2/dt). Oxygen uptake rates 

time profiles were plotted for all respirometry runs.  

An example of oxygen uptake output curve of one of the respirometry tests of R1 at an S/X of 4 

gCellulose_COD/gVSS operated at a temperature of 27 ºC, after the addition of 120 mg/L of α-

cellulose to R1 sludge reporting dissolved oxygen readings (mgO2/L) throughout the experiment 

time (6.8 days) is shown in figure 5.1a. Then, in figure 5.1b, the OUR curved was derived by the 

differentiation of oxygen data with time. The same procedures were completed for all 

respirometric runs. 

a) 
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b) 

 

Figure 5.1 Obtaining OUR time profile from OU data, a) OU output of respirometer, b) 

OUR curve for the same respirometric run 
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5.2 Simulation results 

5.2.1 Models calibration parameters 

The μmax controlled the peak level of OUR on the y-axis (mgO2/L.h) with time (d) on the x-

axis. Figure 5.2 shows the effect of decreasing μmax value from 6 1/d to 3 1/d, which decreased 

the peak OUR value from 1.1 to 0.65 mg/L.h.  

 

Figure 5.2 Effect of μmax on OUR profiles 

For the cellulose hydrolysis factor, it affected the OUR profiles since it controls the availability 

of food. Figure 5.3 presents an example of an OUR profile of one respirometry run (OUR values 

on y-axis with time (days) on the x-axis). It shows that decreasing the Khcl decreased the curves 

slopes which indicates how fast the cellulose is being hydrolyzed and converted to soluble 

substrate (SS) ready to be utilized by the microorganisms. The y-axis presents the OUR levels 

(mgO2/L.h) and the x-axis presents the experiment time (d). The effect of decreasing the Khcl 

from 3 1/d to 1 1/d increased the time to reach peak OUR to 1.5 days from 0.8 days.  
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Figure 5.3 Effect of cellulose hydrolysis factor on OUR profiles 

It should be noted that the experimental OUR profiles had a lag phase at the start of the 

experiments which is considered as an adaptation phase for the microorganisms in the new 

systems. The models did not estimate that lag phase. 
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5.2.2 Alpha Alpha Cellulose High S/X models 

Six respirometric models for high F/M with the addition of α-cellulose were developed on 

samples from R1 and R4 from the SBR system. The six runs of R1 and R4 were conducted at a 

temperature of 27°C. The respirometry tests of α-cellulose for both high and low S/X are 

summarized in figure 5.4. The substrate (S) represents the initial cellulose concentration and the 

biomass (X) are the initial heterotrophs microorganism concentration. 

 

Figure 5.4 α-cellulose high and low S/X models 

The hydrolysis rate coefficients of α-cellulose were estimated using SUMO software. Different 

oxygen uptake rate profiles were monitored at high S/X and were compared with simulated 

OURs. In this comparison, OUR of mixture of substrate and biomass, biomass alone, and net 

OUR (substrate alone) were fitted. This comparison was necessitated by the fact that the seed 

biomass for the respirometry originated from the SBRs and still contained fibrous cellulose, 

albeit at very low concentrations (2%-8% of the concentration of the α-cellulose added). The 

parameters maximum growth rate (µmax), Half saturation factor (KS), and the cellulose hydrolysis 

rate coefficient (khcl) were changed to match the measured OUR and simulated OUR profiles. 

It must be asserted that while some of the experimental data showed a lag of 1-2 days, as 

expected, the model did not predict any lag phase.  
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The models simulated the experimental conditions including the temperature. Kinetics were 

recalculated at 20 ºC. The temperature correction factor used for µmax and bH was 1.07 and 1.04, 

respectively (Tchobanoglous et al., 2003b). Moreover, theta value of 1.072 was used to correct 

the cellulose hydrolysis rate (Table A2). 

5.2.2.1 Experimental versus simulated OUR profiles 

5.2.2.1.1 Reactor 1 S/X = 4,6,8 gCOD/gVSS 

Experimental and simulated oxygen uptake rates profiles (OUR) of R1 with different S/X of 

4,6 and 8 gCOD/gVSS are shown in figures 5.5. 

(a) 

 

 

 

 

 

 

 



53 

 

(b) 

 

(c) 

 

Figure 5.5 α-cellulose, R1 High S/X matching OUR profiles, a) S/X = 4, b) S/X = 6, c) S/X 

= 8 
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5.2.2.1.1 Reactor 4, S/X = 4,6,8 gCOD/gVSS 

Experimental and simulated oxygen uptake rates profiles (OUR) of R4 with different S/X of 

4,6 and 8 gCOD/gVSS are shown in figures 5.6. 

(a)

 

(b)
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(c) 

 

Figure 5.6 α-cellulose, R4 High S/X matching OUR profiles, a) S/X = 4, b) S/X = 6, c) S/X 

= 8 

5.2.2.2 Goodness of fits 

5.2.2.2.1 Reactor 1 S/X = 4,6,8 gCOD/gVSS 

The simulated output data from the models were compared to the experimental data to evaluate 

how goodness of fit. Figure 5.7 shows the three cases of high S/X of R1 fits of experimental 

OUR profiles to the Contois simulated data.  
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Figure 5.7 High α-cellulose of R1 comparison between experimental and Contois models 

a) S/X=4, b) S/X = 6, c) S/X= 8 

5.2.2.2.1 Reactor 4 S/X = 4,6,8 gCOD/gVSS 

Figure 5.8 presents the experimental versus simulated curves as compared above to evaluate the 

goodness of fit between experimental and simulated data of the three cases of R4 at S/X of 4,6 

and 8 operated at a temperature of 27°C. 
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Figure 5.8 High α-cellulose of R4 comparison between experimental and Contois model 
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The closer the slope of the line presenting the modelled data to the value of 1.0, the more it is 

representative of the experimental data. The high S/X scenarios showed poor correlations with 

average slopes of 1.42 and 1.34 for R1 and R4, respectively which indicates that the model does 

not fit the experimental data (compared to the low S/X cases). In these cases, the models were 

active biomass limited with high concentrations of substrate (α-cellulose). Hence the hydrolysis 

factors estimated were more descriptive to the α-cellulose which was the dominant in the high 

S/X cases (where α-cellulose concentration in the biomass is much greater than the biomass 

cellulose). Simulation using respirometry tests with α-cellulose showed higher hydrolysis rates 

of 3 d-1 at 20 °C. It was concluded that the Contois model was not well descriptive of the α-

cellulose at high S/X cases and the estimated high Kxcl values described the hydrolysis rate of 

α-cellulose not the cellulose in the biomass. 

Table 5.1 presents the summary of kinetics used in the simulation of the six high S/X cases. At 

the high S/X ratio with α-cellulose, the average hydrolysis rate (Khcl) of cellulose were 3.0 d-1 

which represents the hydrolysis factor of α-cellulose. A half saturation concentration of 

Xcl/Xb,H value of 1 was used in all modelling scenarios based on ASM3 model (Henze et al., 

2000b). Active biomass estimation was in the range of 46%-66% of the MLVSS concentrations. 

Table 5.1 High S/X models estimated kinetics 

High S/X 

Seed source R1 R4 

Temperature (°C) 27 27 27 27 27 27 

F/M (gCOD/gVSS) 4 6 8 4 6 8 

Active cell (mgCOD/L) 13 13 13 10 10 10 

PCOD (mg/L) 0.1 0.1 0.1 0.1 0.1 0.1 

µmax (d-1) at 20°C 2.4 3 3 2.2 3 3 

Ks (mg/L) at 20°C 40 20 40 20 40 35 

bH (d-1) at 20°C 0.4 0.4 0.4 0.3 0.4 0.4 

kh (d-1) at 20°C 3 1.9 2.2 3.4 3 2 

Khcl at 20°C 3 3 3 3 3 3 

Kxcl at 20°C 1 1 1 1 1 1 

Where µmax is the maximum growth rate of heterotrophic microorganisms, ks is the half-

saturation factor of organics, bH is the decay rate, kh is the hydrolysis rate of particulates, khcl is 

the hydrolysis rate of cellulose and kxcl is the half-saturation factor of Xcl/Xh. 
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5.2.3 Aplha Cellulose Low S/X models 

5.2.3.1  Experimental versus simulated OUR profiles 

Experimental and simulated oxygen uptake rates profiles (OUR) of R1-R4 with different S/X of 

0.2 gcellulose_COD/gVSS are shown in figure 5.9. To more accurately estimate kinetics related 

to substrate degradation alone at low S/X condition, net OUR (mixture -biomass alone) was 

simulated. 

(a) 

 

(b) 
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(c) 
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(d) 

 

Figure 5.9 α-cellulose, R1-R4 Low S/X matching OUR profiles, a) R1 S/X = 0.2, b) R2 S/X 

= 0.2, c) R3 S/X = 0.2, d) R4 S/X = 0.2 

5.2.3.2  Goodness of fits 

Figure 5.10 presents the experimental versus simulated curves as compared above to evaluate 

the goodness of fit between experimental and simulated data of the four cases of R1-R4 at S/X 

of 0.2 gcellulose_COD/gVSS operated at a temperature of 14°C and 29°C for R1&R2 and 

R3&R4, respectively.  
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Figure 5.10 Low α-cellulose of R1 to R4 comparison between experimental and Contois 

Model 
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For the low S/X cases, scrutiny of the data and change of operational conditions indicated that 

the simulated curves showed good correlations to the experimental data with average slope of 

0.9 which indicates the goodness of fit to the experimental data with the slope of 1 (Figure 5.8). 

The models were substrate (α-cellulose) limited in these cases; the hydrolysis factors estimated 

were low compared to high S/X models. The hydrolysis factors estimated for the four cases 

presented  in Table 5.2 were close to the decay constant (bH) of activated sludge of Henze et 

al.(2000). In these cases, the cellulose that was dominant the cellulose in the seed sludge.  

Hence, the active cells were adjusted from 513-621mgCOD/L to 10 mgCOD/L (table 5.2). This 

adjustment was necessary to determine the amount of active biomass which actually biodegraded 

the dominant fibrous cellulose as the simulated curves using the original active cell 

concentrations did not match the experimental data. Benneouala et al., (2017) also reported that 

not all the active biomass was involved in the degradation of particulates. The 10 mgCOD/L of 

active cell concentration was estimated based on trial and error approach by changing active cell 

concentration and comparing the simulated curves with experimental OUR data. It indicates that 

although active biomass was abundant, the biomass actually involved in the fibrous cellulose 

degradation was a small fraction i.e. 2% of the active biomass. This observation agreed with the 

finding of Benneouala et al., (2017) that cellulose degradation was predominantly done by the 

colonizing biomass rather than the whole biomass.  

Table 5.3 represents the kinetics summary used in modelling the low S/X experimental cases. 

The average khcl of samples at low S/X ratios was 0.525 d-1. The distinct difference between 

high S/X and low S/X conditions was related to khcl, which dramatically decreased at low S/X 

ratios due to influence of active biomass, as the hydrolysis rate of fibrous cellulose alone was 

estimated as 0.35-0.7 d-1 (Table 5.2). At the low S/X ratios, the biomass concentration used was 

36-46 times higher than the amount at high S/X ratio, and the influence of biomass levels on 

OUR curves was significantly higher at low S/X condition.  
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Table 5.2 Kinetics inputs for R1-R4 Low S/X models 

 

 

 

 

 

 

 

 

High and low S/X goodness of fit of α-cellulose are compared in Table 5.3. Low S/X were 

more describing the experimental data as mentioned earlier by having an average slope of 0.9 

(higher than high S/X cases), which indicates the better fits of the OUR experimental and 

simulated profiles.  

 

 

 

 

 

 

 

 

Low S/X 

Seed source R1 R2 R3 R4 

Temperature (ºC) 14 14 29 29 

F/M (gCOD/gVSS) 0.2 0.2 0.2 0.2 

Active cell (mgCOD/L) 10 10 10 10 

PCOD (mg/L) 0.2 0.2 0.1 0.2 

µmax (d-1) at 20ºC 3.0 4.5 3.0 3.0 

Ks (mg/L) at 20ºC 20 40 40 20 

bH (d-1) at 20ºC 0.4 0.4 0.4 0.4 

kh (d-1) at 20ºC 2.3 2.3 2.7 2.8 

Khcl at 20ºC 0.70 0.45 0.60 0.35 

Kxcl at 20ºC 1 1 1 1 
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Table 5.3 α-cellulose high and low F/M comparison between experimental and Contois 

model. 

 

 

 

 

 

 

High S/X High S/X Low S/X 

Seed source R1  R4  R1 R2 R3 R4 

Temperature (ºC) 2

7 

2

7 

27 2

7 

2

7 

27 14 14 29 29 

F/M (gCOD/gVSS) 4 6 8 4 6 8 0.2 0.2 0.2 0.2 

Khcl at 20ºC 3

.

0 

3

.

0 

3.0 3

.

0 

3

.

0 

3.0 0.7 0.45 0.6 0.3

5 

Kxcl at 20ºC 1 1 1 1 1 1 1 1 1 1 

bH (d-1) at 20ºC 0

.

4 

0

.

4 

0.4 0

.

3 

0

.

4 

0.4 0.4 0.4 0.4 0.4 

Slope of 

experimental vs 

simulated 

1

.

7

4 

1

.

2

4 

1.03 1

.

7 

1

.

3 

1.03 1.0 0.98 0.79 0.8

3 

R2 0

.

5 

0

.

7 

0.75 0

.

4

6 

0

.

5 

0.67 0.84 0.96 0.69 0.7

8 
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5.2.4 Fibrous Cellulose (RBF) high and low S/X models 

Two respirometric models for high and low S/X with the addition of RBF were developed on 

mixture of biomass from reactors 1 and 4 as mentioned earlier. As shown in Figure 5.11, the two 

runs of R1 and R4 were conducted at a temperature of 20°C. The experimental conditions of the 

two fibrous cellulose runs are summarized in table A2. 

 

Figure 5.11 RBF models 
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5.2.4.1 Experimental versus simulated OUR profiles 

Experimental and simulated oxygen uptake rates profiles (OUR) of R1-R4 with different S/X 

of 4 and 0.2 gcellulose_COD/gVSS are shown in figure 5.12.  

(a) 
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(b)

 

Figure 5.12 RBF Mixture of R1-R4 High and Low S/X matching OUR profiles, a) R1-R4 

S/X = 4, b) R1-R4 S/X = 0.2 

5.2.4.2 Goodness of fits 

Figure 5.13 presents the experimental versus simulated curves as compared above to evaluate 

the goodness of fit between experimental and simulated data of the two cases of R1-R4 at S/X 

of 4 and 0.2 operated at a temperature of 20°C. 
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Figure 5.13 High and low RBF comparison between experimental and Contois model 

Both models showed good fits to the experimental data with slopes of 1 and 1.2 for high and low 

S/X respectively. 

Table 5.4 is the summary of the high and low RBF models kinetics and inputs used to match the 

experimental OUR profiles. Similarly, respirometric tests with mixture of RBF sludge and 

biomass at high and low S/X showed khcl values of 1 and 0.6 d-1, respectively. In matching the 

experimental net OUR at the low S/X, initial active biomass was adjusted from 466 mgCOD/L 

to 35 mgCOD/L and initial PCOD concentration was decreased by 72% from 530 mg/L to 150 

mg/L similar to the aforementioned with the low S/X α-cellulose cases, and the estimated 

hydrolysis rate was 0.6 d-1. The adjustment indicated that only 8% of active biomass actually 

(466 mg/L) degraded 28% of the initial PCOD during the test. PCOD degradation was slower 

than α-cellulose. The cellulose content of the PCOD in the RBF sludge was 19%. Thus, since 

the cellulose content of the RBF sludge of 19% was lower than the degraded 28% of PCOD, it 

is evident that other non-cellulosic PCOD was also biodegraded. The overall values of khcl for 

the α-cellulose were higher than for the RBF fibrous cellulose-rich sludge, implying that the 

hydrolysis rate of cellulose is slower than α-cellulose. In addition, the microcrystalline α-

cellulose used in this study is partially depolymerized cellulose which can degrade faster than 

cellulose in wastewater. 
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Table 5.4 Kinetics inputs for RBF High and low S/X models 

RBF sludge 

Seed source Mixture of R1-R4 

Temperature (ºC) 20 20 

F/M (gCOD/gVSS) 4 0.2 

Active cell (mgCOD/L) 22 35 

PCOD (mg/L) 150 150 

µmax (d-1) at 20ºC 6 3 

Ks (mg/L) at 20ºC 40 40 

kd (d-1) at 20ºC 0.4 0.4 

kh (d-1) at 20ºC 3 1.2 

Khcl at 20ºC 1 0.6 

Kxcl at 20ºC 1 1 
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6 Chapter 6. 

Enhancing Phosphorus Removal Using Fermentation Results 

6.1 Phase 1 (day 1-42) 

6.1.1 SBR Performance 

Steady-state influent and effluent characteristics for phase 1 are summarized in Table 6.1. Both 

PE-SBR and RBF-SBR were fed with primary effluent (PE) for the first and the second phase 

due to delays in running the RBF pilot located in Greenway WWTP related to the Covid-19 

situation. 

Table 6.1 Phase 1 influent and effluent characteristics 

August 1st- September 10th 

Phase 1 (day 1- 42) (n=5) 
  

PE-SBR RBF-SBR 
 

P.E (influent) Effluent Effluent 

pH 7.5 ± 0.1 7.9 ± 0.2 8.1 ± 0.1 

Alkalinity 

(mgCaCO3/L) 

377 ± 42 253 ± 39 253 ± 41 

TSS (mg/L) 91 ± 11 15 ± 7 11 ± 2 

VSS (mg/L) 70 ± 8 11 ± 6 5 ± 3 

TCOD (mg/L) 258 ± 66 32 ± 16 23 ± 9 

SCOD (mg/L) 167 ± 27 21 ± 11 18 ± 10 

TN (mgN/L) 33 ± 8 18 ± 4 18 ± 4 

SN (mgN/L) 28 ± 6 16 ± 4 15 ± 3 

Amm-N (mgN/L) 23 ± 5.4 0 ± 0.2 0 ± 0.2 

NO3 (mgN/L) 0.4 ± 0.2 12.2 ± 1.7 12.1 ± 1.1 

NO2 (mgN/L) 0.01 ± 0.01 0.06 ± 0.02 0.05 ± 0.03 

TP (mgP/L) 4.3 ± 0.6 2 ± 0.5 1.9 ± 0.6 

SP (mgP/L) 2.6 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 
    

Reactor 
   

MLSS (mg/L) NA 1308 ± 380 1174 ± 492 

MLVSS (mg/L) NA 967 ± 275 881 ± 359 

. 
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The average influent (Greenway primary effluent) TSS, TCOD, TN and TP concentrations were 

80-102 mg/L, 192-324 mg/L, 25-41 mg/L and 3.7-4.9 mg/L, respectively. Removal efficiencies 

for stage 1 are shown in Table 6.2. Based on the influent and effluent data of phase 1, the high 

effluent TN (14-22 mg/L) and TP (1.9-2.0 mg/L) concentrations confirm that both reactors were 

deficient in readily biodegradable COD (rbCOD). Effluent SCOD were mostly in the range of 

10-32 mg/L and 10-28 mg/L with removal efficiency 86% and 87% for PE-SBR and RBF-SBR, 

respectively. Full nitrification was achieved, and ammonia was completely removed in both 

reactors.  Effluent TP concentrations were mostly above 1.5 mg/L corresponding to  a poor 

average removal of 55% (Table 6.2) for both reactors, which shows the carbon limitation in the 

SBRs and the competition between the denitrification and biological phosphorus removal 

processes over the organic carbon.  

Table 6.2 Removal efficiencies of SBRs in phase 1 

Phase 1 Removal efficiencies (%) 

  PE-SBR RBF-SBR 

TSS  84 ± 6 88 ± 2 

VSS  85 ± 8 92 ± 4 

TCOD  87 ± 9 90 ± 4 

SCOD  86 ± 8 87 ± 7 

TN  43 ± 11 44 ± 11 

SN  40 ± 12 42 ± 6 

Amm-N  99 ± 1 100 ± 1 

TP  52 ± 13 55 ± 16 

SP  39 ± 20 39 ± 22 
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6.1.2 Mass balance 

Nitrogen Mass Balance 

Nitrogen mass balance in the both SBRs were performed. The mass balance used Eqs. (6.1)-(6.5) 

was used to determine the nitrogen input (mg/L) to the reactor: 

Influent-N=Q* (CInf-TKN+CInf-NOx)     (6.1) 

Where, Q (L/d), and C (mg/L) represent the flow and concentrations, respectively. 

Nitrification, denitrification and cell synthesis were considered in the nitrogen mass balance and 

the transformation of nitrogen (mg/L) in the influent. The nitrogen in the effluent (mg/L) was 

calculated using Eq. (6.2): 

Effluent-N=NCE +NDN +NWAS      (6.2) 

NCE =Q* (CEff-TKN+ CEff-NOx+ fN* CEff-VSS)     (6.3) 

NDN=Q* (CInf-TKN- CEff-TKN- CN-cell synthesis - CEff-NOx)   (6.4) 

NWAS= (CMLVSS* VR/ƟC -Q * CEff-VSS)*fN     (6.5) 

Where NCE (mg/d), NDN (mg/d), NWAS (mg/d), represent the nitrogen in the clarified effluent, 

denitrification, and waste activated sludge streams, respectively. fN, VR (L), and ƟC, represent N-

content of the biomass, reactor volume, and solid retention time of the reactor (10 days), 

respectively. fN values vary between 0.10-0.12 (Tchobanoglous et al., 2003b). 
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Phosphorus Mass Balance 

For the phosphorus mass balance, the phosphorus concentration in the influent in the effluent 

was calculated using Eqs (6.6)-(6.7).  

Influent-P=Q* CInf-TP       (6.6) 

Effluent-P=PCE +PWAS       (6.7) 

PCE =Q* (CEff-SP+ fP* CEff-VSS)      (6.8) 

PWAS= (CMLVSS* VR/ƟC -Q * CEff-VSS)*fP     (6.9) 

Where PCE (mg/d), PWAS (mg/d), and FP represent the phosphorus in the clarified effluent, and 

waste activated sludge streams, and the P-content of the biomass, respectively. FP was reported 

to be in the range of 5%-7%  (Tchobanoglous et al., 2003b). 

Nitrogen and phosphorus mass balance results in Phase 1 are shown in Table 6.3.  

Table 6.3 Nitrogen and Phosphorus mass balance for phase 1 

Nirogen mass balance Phosphorus mass balance 

  PE-

SBR 

RBF-

SBR 

  PE-SBR RBF-SBR 

Influent-N (%) 100 100 P (influent) 100 100 

N (WAS) (%) 20 19 P (WAS) 42 41 

N (Effluent) (%) 64 62 P (Effluent) 47 43 

N (Denitrified) (%) 18 18 P-balance 11 16 

N-balance (%) -2.1 0.6 
   

Based on the nitrogen mass balance calculated for phase 1, the nitrogen that was removed via 

cell synthesis is about 20% of the influent for both reactors with the remaining 80% oxidized 

with an overall average nitrogen removal efficiency of 51%. 

The phosphorus mass balance results for phase 1 presented  in Table 6.3, indicate good closure 

with discrepancies of 11% and 16%; 45% of the phosphorus in both reactors was used in the 
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biomass cell synthesis and 7% of the phosphorus concentration remained in the effluent, with an 

overall average phosphorus removal of 52% and 55% for PE-SBR and RBF-SBR, respectively.  

6.2 Phase 2 (day 43-53) 

By the end of phase 1 and at day 37, the system started to be fed with ATU at a dose of 20 mg/L. 

This addition contributed to the system with an additional COD of 80 mg/L, based on the 

wastewater flow of 1 L/cycle. Nitrification and hence denitrification were inhibited in the two 

reactors. Ammonia concentration in the effluent of both reactors jumped to an average of 25 

mg/L which was the result of the influent. Total phosphorus removal efficiencies increased to 

69% and 72% for PE-SBR and RBF-SBR, respectively due to the presence of extra organic 

carbon provided with denitrification inhibition. Effluent concentrations of NH4-N and NOX-N 

through the operation period are shown in figure 6.1a and 6.1b. 

a) 

 

b) 
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Figure 6.1 Effect of addition of ATU to both PE-SBR and RBF-SBR effluent concentrations 

a) NH4 effluent time profile, b) NOX effluent time profile 

Phase 2 was considered to be a preparation phase for switching RBF-SBR feed to RBF effluent 

and fermented RBF sludge.  In this phase, both reactors were identical with the addition of 120 

mg/L of fermented primary sludge to each reactor at the start of each cycle. The addition of 

fermented primary sludge for the two reactors was from day 43-53. Influent and effluent 

characteristics are included in Table 6.4. Soluble COD concentrations increased in the effluent 

of the two reactors to an average of 107 mg/L and 74 mg/L for PE-SBR and RBF-SBR, 

respectively. This increase is due to two reasons for the addition of the fermentates to the reactors 

and also the ATU addition which contributes 80-90 mg/L of SCOD. Hence, an accumulation of 

SCOD started in this phase for both reactors. 
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Table 6.4 Phase 2 influent and effluent characteristics 

September 10th- September 21st 

Phase 2 (43-53) (n=3)   
PE-SBR RBF-SBR  

P.E Effluent Effluent 

pH 7.7 ± 0.2 8.1 ± 0.1 8.2 ± 0.1 

Alkalinity (mgCaCO3/L) 375 ± 25 405 ± 14 403 ± 23 

TSS (mg/L) 93 ± 13 18 ± 5 15 ± 8 

VSS (mg/L) 69 ± 9 11 ± 3 5 ± 2 

TCOD (mg/L) 304 ± 68 124 ± 47 83 ± 26 

SCOD (mg/L) 106 ± 14 107 ± 45 74 ± 23 

TN (mgN/L) 30 ± 3 42 ± 9 41 ± 9 

SN (mgN/L) 23 ± 2 40 ± 10 37 ± 9 

Amm-N (mgN/L) 21 ± 2.6 27 ± 2.9 26 ± 3 

NO3 (mgN/L) 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 

NO2 (mgN/L) 0.01 ± 0 0.01 ± 0 0.01 ± 0.01 

TP (mgP/L) 4 ± 0.2 0.5 ± 0.1 0.5 ± 0 

SP (mgP/L) 2.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.1     

Reactor 
   

MLSS (mg/L) NA 2381 ± 447 3067 ± 1356 

MLVSS (mg/L) NA 1654 ± 387 2203 ± 1021 

 

Total phosphorus removal increased from 69% to 85%-91% for PE-SBR and from 72% to 87%-

89% in RBF-SBR, which showed the effectiveness of adding the fermentates in providing an 

extra carbon source for the biological phosphorus removal process. Effluent total phosphorus 

concentrations were in the range of 0.5-0.6 mg/L in the two reactors while effluent SP hovered 

around of 0-0.2 mg/L for both reactors, corresponding to a removal efficiency of 91-98% (Table 

6.5).  
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Table 6.5 Removal efficiencies of SBRs in phase 2 

Phase 2 Removal efficiencies (%)  
PE-SBR RBF-SBR 

TSS 81 ± 4 84 ± 6 

VSS 84 ± 2 92 ± 3 

TCOD 81 ± 9 94 ± 7 

SCOD 59 ± 30 93 ± 17 

TP 88 ± 3 88 ± 1 

SP 95 ± 3 95 ± 4 

Total nitrogen removal was neglected as the study focused on biological phosphorus removal, 

Soluble effluent nitrogen profile through the operation period is depicted in figure A5.2. 

 

Figure 6.2 Soluble Nitrogen effluent time profile 
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6.3 Phase 3 (day 54-75) 

6.3.1 SBRs Performance 

Phase 3 was from day 53-75 when RBF-SBR feed was switched to RBF effluent (RBFE) and 

the fermented sludge added in each cycle was switched to RBF sludge. Table 6.6 shows the 

influent and the effluent concentrations in each reactor as well as the combined influent 

characteristics with the addition of the fermentates supernatant and the ATU addition.  

Table 6.6 Phase 3 influent and effluent characteristics 

September 21st- October 13th-20th 

Phase 3 (54-75) (n=6)  
P.E 

influent 

Combined 

influent (PE 

+ 

supernatant) 

RBF 

influent 

Combined 

influent 

(RBF + 

supernatant) 

PE-SBR 

Effluent 

RBF-

SBR  

Effluent 

pH 7.6 ± 0.3 - 7.6 ± 0.2 - 8.1 ± 0.1 8.2 ± 0.1 

Alkalinity 

(mgCaCO3/L) 

353 ± 23 405 364 ± 19 431 381 ± 13 404 ± 12 

TSS (mg/L) 87 ± 11 - 257 ± 63 - 20 ± 8 17 ± 8 

VSS (mg/L) 64 ± 9 - 159 ± 42 - 11 ± 7 10 ± 5 

TCOD (mg/L) 230 ± 40 569 382 ± 46 678 150 ± 20 126 ± 9 

SCOD (mg/L) 129 ± 33 385 149 ± 44 414 143 ± 18 120 ± 7 

TN (mgN/L) 29 ± 5 53 38 ± 5 65 38 ± 4 44 ± 3 

SN (mgN/L) 23 ± 3 43 27 ± 5 50 36 ± 6 40 ± 6 

Amm-N 

(mgN/L) 

21 ± 1 33 25 ± 3.1 38 28 ± 2.4 34 ± 3.2 

NO3 (mgN/L) 0.7 ± 0.3 - 0.6 ± 0.3 - 0.6 ± 0.3 0.7 ± 0.2 

NO2 (mgN/L) 0.02 ± 

0.01 

- 0.02 ± 0.01 - 0.01 ± 0.01 0.01 ± 

0.01 

TP (mgP/L) 4.7 ± 1.5 11 9.1 ± 3.2 14 0.6 ± 0.1 0.7 ± 0.2 

SP (mgP/L) 2.8 ± 0.7 8 4.1 ± 0.7 9 0.1 ± 0.1 0.3 ± 0.2 

However, despite the phosphorus added with the supernatant to each reactor, P.E-SBR achieved 

an average SP removal of 98.2% (Table 6.7), with effluent concentrations of 0-0.2 mg/L. RBF-

SBR achieved an average SP removal efficiency of 96.1% with effluent concentrations in the 

range of 0.1-0.5 mg/L. Soluble COD accumulation continued in this phase as well, SCOD in the 

effluent was in the range of 125-161 mg/L and 113-127 mg/L for PE-SBR and RBF-SBR. This 

increase in SCOD is mainly from the supernatant addition and also the ATU contribution. ATU 

contributed with 80 mg/L which was added to the influent in phase 3.  
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Table 6.7 Removal efficiencies of the SBRs in phase 3 

  PE-SBR RBF-SBR 

TSS (%) 77 ± 8 93 ± 4 

VSS (%) 84 ± 9 93 ± 4 

TCOD (%) 67 ± 11 88 ± 3 

SCOD (%) 51 ± 13 70 ± 9 

TP (%) 92 ± 5 95 ± 3 

SP (%) 98 ± 2 97 ± 3 

 

The phosphorus removal efficiencies for PE-SBR and RBF-SBR during the operation period are 

shown in figure 6.3. 
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Figure 6.3 Phosphorus influent, effluent and removal efficiencies 

Plans for optimization of fermentation liquid dose were derailed due to COVID-19, and the 

experiment was shut down after 75 days of operation. 

6.3.2 Fermentation Supernatant Characteristics  

The fermentation supernatant characteristics are included in Table 6.8. The hydrolysis and 

acidification yields were calculated for both sludge types. The calculated hydrolysis of the 

fermented sludges was 13.5±2% and 12±5.8% for PS and RBF sludge respectively. The 

supernatant added 3068-4496 mg/L and 3120-4632 mg/L of VFA to PE-SBR and RBF-SBR, 

respectively. The addition of the PS and RBF supernatants to both reactors contributed also  134-

182 mg/L and 111-163 mg/L of total phosphorus to PE-SBR and RBF-SBR, respectively. It has 

also added 114-158 mg/L and 112-159 mg/L of soluble phosphorus to PE-SBR and RBF-SBR, 

respectively. Moreover, the acidification yields were 54±8% and 54±9.8% for PS and RBF 

sludge, respectively. 
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Table 6.8 Feed, fermentates sludges and supernatants characteristics 
 

Feed Sludge Fermentates Supernatants 
 

Primary 

sludge 

RBF Sludge PS Fermentate RBF Fermentate PS Supernatant RBF 

Supernatant 

PH 6.2 ±0.3 6.2 ±0.4 5.2 ±0.2 5.2 ±0.2 5.2 ±0.2 5.2 ±0.2 

Alk (mg/L) 1826 ±266 1397 ±210 2186 ±896 2267 ±689 2186 ±896 2267 ±689 

VFA (mg/L) 945 ±513 974 ±470 3372 ±842 3508 ±898 3782 ±714 3876 ±756 

TCOD (mg/L) 33331 ±5512 39225 ±14022 32493 ±4467 34940 ±7583 9127 ±2032 9298 ±2364 

SCOD (mg/L) 1861 ±925 2042 ±602 6609 ±1178 6873 ±1110 7169 ±1028 7321 ±874 

TN (mg/L) 880 ±275 1383 ±472 1455 ±619 1347 ±471 669 ±127 691 ±162 

SN (mg/L) 190 ±108 163 ±79 577 ±124 625 ±161 585 ±117 731 ±302 

NH4 (mg/L) 59 ±62 139 ±100 338 ±62 350 ±74 338 ±62 350 ±74 

NO3 (mg/L) 16 ±9 17 ±6 21 ±18 19 ±8 21 ±18 18 ±9 

NO2 (mg/L) 0.31 ±0.18 0.28 ±0.17 0.29 ±0.18 0.21 ±0.09 0.29 ±0.18 0.21 ±0.09 

TP (mg/L) 460 ±202 474 ±170 483 ±129 451 ±138 158 ±24 137 ±26 

SP (mg/L) 38 ±14 50 ±15 139 ±22 135 ±19 136 ±22 135 ±23 

NOX (mg/L) 15.3 ±8.7 16.9 ±6 20.9 ±18.1 19 ±7.9 20.9 ±18.1 18.3 ±9.2 

TS (mg/L) 26302 ±4601 50612 ±10841 18672 ±3125 24533 ±7896 554 ±177 614 ±254 

VS (mg/L) 19173 ±2869 33083 ±11182 13295 ±2206 18396 ±6219 426 ±185 466 ±204  

 

6.3.3 Phosphorus mass balance of phase 3 

Following the same equations of phosphorus mass balance in phase 1 based on the combined 

influent characteristics with the addition of fermentates, a mass balance for phase 3 was 

conducted as shown in Table 6.9. 

Table 6.9 Phosphorus mass balance for PE-SBR and RBF-SBR in phase 3 

  PE-SBR RBF-SBR 

P (Influent) (%) 100 100 

P (WAS) (%) 81 87 

P (Effluent) (%) 7 7 

P-balance (%) 12 6 
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The mass balance results show that after the addition of fermentates, despite significantly 

increasing influent phosphorus, about 84% of the phosphorus in the reactors was incorporated in 

biomass and only 7% escaped in the SBR effluent, with an overall average phosphorus removal 

of 91% and 93% for PE-SBR and RBF-SBR, respectively. This increase in the phosphorus 

removed biologically is due to the VFA added from the fermented sludge which increased the 

phosphorus uptake and release rates, and promoted the growth of phosphorous accumulating 

organisms (PAOs). The comparison between phase 1 and phase 3 mass balance is shown in 

figure 6.4. 

 

Figure 6.4 Comparison of the phosphorus mass balance between phase 1 and phase 3 

6.3.4 Reactors Biomass profiles 

The biomass concentrations in the two reactors increased with the fermentates addition. For PE-

SBR, MLSS and MLVSS concentrations increased with a ratio of 2.1 times the initial 

concentration at the beginning of phase 2 to reach 2813 mg/L and 2033 mg/L, respectively. 

Furthermore, RBF-SBR biomass increased significantly as well, MLSS and MLVSS increased 

with a ratio of 3 times the initial concentration before the start of this phase to reach 4590 mg/L 

and 3360 mg/L, respectively. Biomass time profiles for both reactors are shown in figure 6.3a 

and 6.3b.  
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(a) 

 

 

(b) 

 

Figure 6.5 PE-SBR and RBF-SBR biomass profiles 
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Biomass concentration in both reactors in the two reactors were in the range of 3034-3718 mg/L 

of MLSS and 2172-2668 mg/L of MLVSS for PE-SBR. For RBF-SBR the range of MLSS was 

in the range of 2968-4200 mg/L and for the MLVSS 2064-3018 mg/L. 

6.3.5 Cyclic tests 

One cyclic test was conducted during phase 1 to monitor the SCOD usage during the reaction 

time (anoxic and aerobic). The results showed that due to the lack of carbon source, nitrate 

concentration decreased slightly from 3.8 mg/L at the start of the anoxic phase to 2.6 mg/L at 

the end of the anoxic phase. Moreover, effluent phosphorus concentrations showed the lack of 

carbon source to remove the soluble phosphorus during the phosphorus uptake phase (aerobic 

phase). The low effluent SCOD concentrations were mostly influent soluble inert COD. 

An average of three cyclic tests results were conducted in phase 3. Soluble phosphorus (SP) 

profiles from the start of the feeding at t=0 till the end of the reaction time t=6.5 for PE-SBR and 

RBF-SBR are plotted in Figure 6.3. Initial SP concentrations at the beginning of the anaerobic 

phase in both reactors started at 1.7 and 3.5 mg/L for PE-SBR and RBF-SBR, respectively. For 

PE-SBR, during the anaerobic phase, SP reached a peak level of 18.6 mg/L with an average 

phosphorus release rate of 5.5 mg PO4-P/g VSS·h. Moreover, by the end of the aerobic phase 

SP concentration ended with an average of 0.1 mg/L with a phosphorus uptake rate of 3.8 mg 

PO4-P/g VSS·h. Soluble phosphorus and COD profiles for the cyclic tests is shown in figures 

6.6-6.7. 

On the other hand, SP shown figure 6.6 in the RBF-SBR during the anaerobic phase reached a 

peak of 22.94 mg/L at an average phosphorus release rate of 6 mg PO4-P/g VSS·h to. By the 

end of the aerobic phase, with an average phosphorus uptake rate of 3.9 mg PO4-P/g VSS·h, SP 

reached 0.15 mg/L.  
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Figure 6.6 SP profiles for PE-SBR and RBF-SBR during one cycle. 

 

Figure 6.7 SCOD profiles for PE-SBR and RBF-SBR during one cycle. 

Both reactors showed consistent ammonia, nitrate, and nitrite profiles. The cyclic tests average 

results shown in figure 6.8 indicated the inhibitory effect of ATU added at the start of each phase 

in both reactors during one cycle.  



87 

 

 

Figure 6.8 NH4 and NOX profile for PE-SBR and RBF-SBR during one cycle in phase 3. 

Both reactors showed consistent removal by the addition of fermentates as an extra carbon source 

reaching the phosphorus concentrations desired of below 0.5 mg/L without any chemical 

treatment.  
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7 Chapter 7. 

Conclusions and Recommendations 

7.1 Conclusions  

Based on the first study of the four SBRs operated at four different temperatures and two 

different SRT, cellulose average concentration in the influent and accounted 17%-20% of the 

SBR system influent TSS with an average concentration of 36 mg/L and 66 mg/L for phase 1 

and 2, respectively. Cellulose ended up with an average concentration of 2-3 mg/L in the system 

effluent. Based on cellulose mass balance on the experimental data, the biodegradation efficiency 

of cellulose was 80%-90% at SRT of 15 days and 78%-85% at SRT of 3 days. The results 

indicated that cellulose biodegradation is dependent on temperature and SRT. Hence, during the 

cold seasons, increasing the biological reactors SRT can balance the lower temperatures 

regarding the cellulose recovery and hence the biomass volume. Cellulose concentrations in the 

bioreactor’s biomass increase with lowering the SRT (1%-2% at SRT of 15 days increased to 

2%-5% of the bioreactors MLVSS at SRT of 3 days). 

Data from the respirometry runs were collected to calibrate the ASM1 modified models. The 

cellulose simulation study showed higher hydrolysis rates when system reactors was fibrous 

cellulose limited (cellulose concentration in the biomass) at high availability of food to 

microogranims concentration (S/X ratios), where the dominant cellulose content was the alpha 

cellulose added to the respirometry bottles compared to the low S/X cases where the hydrolysis 

rates estimated by the models represents the fibrous cellulose hydrolysis kinetics. Incorporating 

cellulose into ASM1 model to simulate the respirometric runs and estimating cellulose 

hydrolysis rates at different temperatures using Contois model estimated cellulose hydrolysis 

rate of 3 d-1 at 20 °C based on α-cellulose at high S/X ratios in the range of 4,6 and 8 

gcellulose_COD/gVSS while hydrolysis rate of PCOD of RBF sludge was estimated 0.6-1 d-1. 

For the low S/X of 0.2 gcellulose_COD/gVSS, the model estimated a hydrolysis rate of cellulose 

of 0.5 d-1. 
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Cellulose can either be removed by primary treatment technologies and hence can be fermented 

with the primary treatment solids and added to the biological reactors as an extra source of carbon 

to enhance biological phosphorus removal (EBPR), or through degradation in the biological 

reactions. Fermentation is effective in providing external carbon for enhancing biological 

phosphorus removal and achieving high phosphorus removal efficiencies of above 95% 

biologically without chemical addition. However, this may increase SCOD in the effluent, the 

fractionation of which was beyond the scope of this work. Moreover, simultaneous optimization 

of effluent phosphorous and COD, would be dictated by regulatory requirements, and hence 

choosing the optimum fermentate dose to the biological reactors requires further investigation.  

Due to the high concentration of solids in the fermnented sludges which increase by turn the 

SBRs effluent solids concentration. Hence, including proper solids separation after the 

fermentation process using centrifugation and filtration helped reduce the inert solids 

accumulation in the bioreactors and reduce by turn the biosolids yield. 
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7.2 Recommendations 

Based on the major findings of the thesis projects, future research should address the following 

topics: 

• Validation of the modified activated sludge model to simulate cellulose using a Contois 

model for a full-scale treatment plant in order to check its effectiveness and its capability 

to predict cellulose fate in WWTPs. 

• The fractionation of COD, N, and P in the fermentate according to ASIM models is 

needed for optimization of the required fermentate dose to meet specific effluent 

requirements. 

• Whole plant modeling is required to assess the impact of fermentate solids separation 

and liquid diversion to BNR processes on overall aeration energy consumption, waste 

activated sludge production, anaerobic bioenergy generation, and solids processing and 

disposal. 
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Table A.1 Respirometry setup conditions of α-cellulose using an 8-cell Challenge Respirometer 

  α-cellulose 

  High S/X Low S/X 

Seed source R1 R4 R1 R2 R3 R4 
 

Temperature (ºC) 27 27 27 27 27 27 14 14 29 29  

S/X (g cellulose_COD/gVSS) 4 6 8 4 6 8 0.2 0.2 0.2 0.2  

Biomass (mgVSS/L) 15 15 15 15 15 15 539 539 592 692  

Cellulose in bottle       
    

 

Cellulose of biomass in bottle (mgCOD/L)       61 60 9 10  

α-cellulose or RBF cellulose in bottle 

(mgCOD/L) 
58 88 120 58 88 120 120 120 120 120  

RBF Cellulose in bottle       
    

 

PCOD in bottle (mg/L)       
    

 

PCOD excluding cellulose in bottle (mg/L)                      
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Table A.2 Respirometry setup conditions of fibrous cellulose using an 8-cell 

Challenge respirometer 

  RBF cellulose 

  High S/X Low S/X 

Seed source mixture of R1-R4 mixture of R1-R4 
 

Temperature (ºC) 20 20  

S/X (g cellulose_COD/gVSS) 4 0.2  

Biomass (mgVSS/L) 24 498  

Cellulose in bottle 
  

 

Cellulose of biomass in bottle (mgCOD/L) 2 43  

α-cellulose or RBF cellulose in bottle (mgCOD/L) 100 100  

RBF Cellulose in bottle 
  

 

PCOD in bottle (mg/L) 530 530  

PCOD excluding cellulose in bottle (mg/L) 430 430  
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Table A.3 Temperature correction factors for model kinetics 

Symbol Name Default at 20°C Unit θ 

μH Maximum specific 

growth rate of 

heterotrophs 

6 d-1 1.07 

ηg Reduction factor for 

anoxic growth of 

heterotrophs 

0.8 unitless - 

KS Half-saturation of SB 20 g COD m-3 1 

bH Decay rate of 

heterotrophs 

0.62 d-1 1.04 

KO,H Half-saturation of 

oxygen 

0.2 g O2.m-3 - 

KNO Half-saturation of 

nitrate 

0.5 g N.m-3 1 

KNH,H Half-saturation of 

ammonia 

0.05 g N.m-3 1 

 
Hydrolysis Type (Kinetic) 

  

Symbol Name Default Unit θ 

kh Maximum specific 

hydrolysis rate 

3 g XS.g XB,H
-1.d-1 1.041 

KX Half-saturation of 

XB/XB,H 

0.03 g XS.g XB,H
-1 - 

ηh Correction factor for 

hydrolysis under 

anoxic conditions 

0.4 unitless - 

Kcl Hydrolysis of cellulose 0.4 g Xcl.g XB,H
-1.d-1 1.072 

KXcl Half-saturation of 

Xcl/XB,H 

20 g Xcl.g XB,H
-1 - 
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