
THE UNIVERSITY OF WESTERN ONTARIO

DEPARTMENT OF CIVIL AND

ENVIRONMENTAL ENGINEERING

Water Resources Research Report

Report No: 060

Date: July 2008

Optimization Using Differential Evolution

By:

Vasan Arunachalam

ISSN: (print) 1913-3200; (online) 1913-3219;

ISBN: (print) 978-0-7714-2689-6; (online) 978-0-7714-2690-2;

OPTIMIZATION USING DIFFERENTIAL EVOLUTION

By

VASAN ARUNACHALAM

Facility for Intelligent Decision Support

Department of Civil and Environmental Engineering

The University Of Western Ontario, London, Ontario, Canada

JULY 2008

 i

ABSTRACT

The book explains in detail the working of Differential Evolution optimization algorithm.

It also provides documentation for the use of Differential Evolution computer program to

solve user-defined optimization problems. The computer program is written in C

language for Windows environment. The book also demonstrates how to modify the

program using an example optimization problem.

This source code is distributed for academic purposes only. It has no warranty implied or

given, and the author assumes no liability for damage resulting from its use or misuse.

The author can be contacted for any comments by email at

vasan.arunachalam@gmail.com.

 ii

TABLE OF CONTENTS

 ABSTRACT……………………………………………………………………... i

 TABLE OF CONTENTS………………………………………………………... ii

1 INTRODUCTION……………………………………………………………… 1

2 DIFFERENTIAL EVOLUTION……………………………………………… 3

 WORKING OF THE DE ALGORITHM……………………………………….. 3

 AN ILLUSTRATIVE EXAMPLE………..…………………………………….. 7

3 HOW TO RUN THE DE PROGRAM?... 10

4 CONCLUSION…………………………………………………………………. 19

 REFERENCES…………………………………………………………………. 20

 APPENDIX A - SOURCE CODE OF THE DE ALGORITHM IN C……… 21

 APPENDIX B - PREVIOUS REPORTS IN THE SERIES 35

 1

CHAPTER

1

INTRODUCTION

Optimization is a procedure through which the best possible values of decision variables

are obtained under the given set of constraints and in accordance to a selected

optimization objective function. The most common optimization procedure applies to a

design that will minimize the total cost or maximize the possible reliability or any other

specific objective. Fields of science and engineering, business decision-making and

industry are all rich in problems that require the implementation of optimization

approach. Since, most real world optimization problems seem to be both fundamentally

and practically hard, research into better algorithms remains valuable and continues, so

that, one can guarantee to find the best solution using an efficient optimization algorithm.

Nowadays, there exist a lot of optimization algorithms that work using gradient-based

and heuristic-based search techniques in deterministic and stochastic contexts. In order to

widen the applicability of the optimization approach to various problem domains, natural

and physical principles are mimicked to develop robust optimization algorithms.

Evolutionary algorithms, simulated annealing, ant colony optimization, memetic

algorithms, particle swarm optimization are few examples of such algorithms.

Over the last decade, evolutionary algorithms have been extensively used in various

problem domains and succeeded in effectively finding the near optimal solutions. The

present book provides a detailed description of one such evolutionary algorithm, named,

Differential Evolution (DE). Since its inception in 1995, DE has earned a reputation of a

very effective global optimizer (Storn and Price, 1995). Chapter 1 begins with an

introduction to the optimization and Chapter 2 introduces the detailed working of DE

 2

algorithm with an illustrative example. Chapter 3 provides the instructions for using the

DE computer program developed for Windows environment that accompanies this book

on CD-ROM. Chapter 4 concludes with few practical suggestions for the users of the DE

computer program. An Appendix to the text contains description of the source code of

DE software developed in C programming language.

 3

CHAPTER

2

DIFFERENTIAL EVOLUTION

WORKING OF THE DE ALGORITHM

Differential Evolution (DE) algorithm is a branch of evolutionary programming

developed by Rainer Storn and Kenneth Price (Price and Storn, 1997) for optimization

problems over continuous domains. In DE, each variable’s value is represented by a real

number. The advantages of DE are its simple structure, ease of use, speed and robustness.

DE is one of the best genetic type algorithms for solving problems with the real valued

variables. Differential Evolution is a design tool of great utility that is immediately

accessible for practical applications. DE has been used in several science and engineering

applications to discover effective solutions to nearly intractable problems without

appealing to expert knowledge or complex design algorithms. If a system is amenable to

being rationally evaluated, DE can provide the means for extracting the best possible

performance from it. Differential Evolution uses mutation as a search mechanism and

selection to direct the search toward the prospective regions in the feasible region.

Genetic Algorithms generate a sequence of populations by using selection mechanisms.

Genetic Algorithms use crossover and mutation as search mechanisms. The principal

difference between Genetic Algorithms and Differential Evolution is that Genetic

Algorithms rely on crossover, a mechanism of probabilistic and useful exchange of

information among solutions to locate better solutions, while evolutionary strategies use

mutation as the primary search mechanism.

DE is a population based search technique which utilizes NP variables as population of D

dimensional parameter vectors for each generation. The initial population is chosen

 4

randomly if no information is available about the problem. In the case of the available

preliminary solution, the initial population is often generated by adding normally

distributed random deviations to the preliminary solution. The basic idea behind DE is a

new scheme for generating trial parameter vectors. DE generates new parameter vectors

by adding the weighted difference vector between two population members to a third

member. If the resulting vector yields a lower objective function value than a

predetermined population member, the newly generated vector replaces the vector with

which it was compared. In addition, the best parameter vector is evaluated for every

generation in order to keep track of the progress that is made during the optimization

process. Extracting the distance and the direction information from the population to

generate random deviations result in an adaptive scheme with excellent convergence

properties (Price et al., 2005).

DE maintains two arrays, each of which holds a population size NP and D dimensional,

real-valued vectors. The primary array holds the current vector population, while the

secondary array accumulates vectors that are selected for the next generation. In each

generation, NP competitions are held to determine the composition of the next

generation.

Every pair of vectors),(ba XX defines a vector differential:)(ba XX − . When aX and

bX are chosen randomly, their weighted differential is used to perturb another randomly

chosen vector cX . This process can be mathematically expressed as:

)(bacc XXFXX −+=
′

 (1)

The weighting, or scaling, factor F is a user supplied constant in the optimal range

between 0.5 and 1.0 (DE, 2008). In every generation, each primary array vector iX is

targeted for crossover with a vector like
′

cX to produce a trial vector tX . Thus, the trial

vector is the child of two parents, a noisy random vector and the target vector against

which it must compete. Uniform crossover (that can take child vector parameters from

 5

one parent more often than it does from others) is used with a crossover constant (CR), in

the optimal range of 0.5 to 1.0 (DE, 2008) which actually represents the probability that

the child vector inherits the parameter values from the noisy random vector. When CR =

1, for example, every trial vector parameter is certain to come from
′

cX . On the other

hand, if CR = 0, all but one trial vector parameter comes from the target vector. To ensure

that tX differs from iX by at least one parameter, the final trial vector parameter always

comes from the noisy random vector even when CR = 0. Then the objective function

corresponding to the trial vector is compared with that of the target vector, and the vector

that has the lower objective function value (for minimization) of the two would survive

for the next generation. This process is continued until the termination criterion of a

preset maximum number of generations (MAXGEN) is met, and difference in objective

function values between two consecutive generations reaches a small value. Figure 1

shows the working of the DE algorithm.

Fig. 1. Working of Differential Evolution Algorithm

 6

Price & Storn (1997) gave the working principle of DE with single strategy. Later on,

they suggested ten different strategies for DE. Different strategies can be adopted in the

DE algorithm depending upon the type of problem to which DE is applied. The strategies

can vary based on the vector to be perturbed, number of difference vectors considered for

perturbation, and finally the type of crossover used. The following are the ten different

working strategies:

1. DE/best/1/exp

2. DE/rand/1/exp

3. DE/rand-to-best/1/exp

4. DE/best/2/exp

5. DE/rand/2/exp

6. DE/best/1/bin

7. DE/rand/1/bin

8. DE/rand-to-best/1/bin

9. DE/best/2/bin

10. DE/rand/2/bin

The general convention used above is DE/x/y/z. DE stands for Differential Evolution, x

represents a string denoting the vector to be perturbed, y is the number of difference

vectors considered for perturbation of x, and z stands for the type of crossover being used

(exp: exponential; bin: binomial). Hence the perturbation can be either in the best vector

of the previous generation or in any randomly chosen vector. Similarly for perturbation

either single or two vector differences can be used. For perturbation with a single vector

difference, out of the three distinct randomly chosen vectors, the weighted vector

differential of any two vectors is added to the third one. Similarly for perturbation with

two vector differences, five distinct vectors, other than the target vector are chosen

randomly from the current population. Out of these, the weighted vector difference of

each pair of any four vectors is added to the fifth one for perturbation. In exponential

crossover, the crossover is performed on the D variables in one loop until it is within the

CR bound. The first time a randomly picked number between 0 and 1 goes beyond the

CR value, no crossover is performed and the remaining D variables are left intact. In

 7

binomial crossover, the crossover is performed on each of the D variables whenever a

randomly picked number between 0 and 1 is within the CR value. So for high values of

CR, the exponential and binomial crossover methods yield similar results.

A strategy that works out to be the best for a given problem may not work well when

applied to a different problem. Also, the strategy and the key parameters to be adopted

for a problem are to be determined by trial and error. However, strategy-7

(DE/rand/1/bin) appears to be the most successful and the most widely used strategy. In

all, three factors control evolution under DE, the population size NP, the weight applied

to the random differential F and the crossover constant CR. More details regarding DE

are available in Price and Storn (1997), Onwubolu and Babu (2004) and Price and Storn

(2005).

AN ILLUSTRATIVE EXAMPLE

A simple numerical example is presented to illustrate the DE algorithm. Let us consider

the following objective function:

321)(xxxxfMinimize ++= (2)

The initial population is generated (chosen randomly between the bounds of decision

variables, in this case within 0 and 1, for the three decision variables. The population

along with its respective objective function values is shown in Table 1. The first member

of the population “Individual 1” is set as the target vector.

In order to generate the noisy random vector, three individuals (Individual 2, Individual 4

and Individual 6) from the population size are selected randomly (ignoring “Individual

1”, since it is set as the target vector). The weighted difference between “Individual 2”

and “Individual 4” is added to the third randomly chosen vector “Individual 6” to

generate the noisy random vector. The weighting factor F is chosen as 0.80 and the

weighted difference vector is obtained in Table 2 and the noisy random vector in Table 3.

 8

Table 1. An illustrative example

Population Size NP = 6 (user defined), D = 3

 Individual

1

Individual

2

Individual

3

Individual

4

Individual

5

Individual

6

1x 0.68 0.92 0.22 0.12 0.40 0.94

2x 0.89 0.92 0.14 0.09 0.81 0.63

3x 0.04 0.33 0.40 0.05 0.83 0.13

)(xf 1.61 2.17 0.76 0.26 2.04 1.70

Table 2. Calculation of the weighted difference vector for the illustrative example

Individual

2

Individual

4

Difference

Vector

Weighted

Difference

Vector

1x 0.92 0.12 = 0.80 = 0.64

2x 0.92 0.09 = 0.83 = 0.66

3x 0.33

-

0.05 = 0.28

× F

(F = 0.80)

= 0.22

Table 3. Calculation of the noisy random vector for the illustrative example

Weighted

Difference

Vector

Individual

6

Noisy

Random

Vector

1x 0.64 0.94 = 1.58

2x 0.66 0.63 = 1.29

3x 0.22

+

0.13 = 0.35

The noisy random vector does a crossover with the target vector to generate the trial

vector as shown in Table 4. This is carried out by (1) generating random numbers equal

to the dimension of the problem (2) for each of the dimensions: if random number > CR;

copy the value from the target vector, else copy the value from the noisy random vector

into the trial vector. In this example, the crossover constant CR is chosen as 0.50.

 9

Table 4. Generation of the trial vector for the illustrative example

Target

Vector

Noisy

Random

Vector

Trial

Vector

1x 0.68 1.58 = 1.58

2x 0.89 1.29 = 0.89

3x 0.04

Crossover

(CR =

0.50)
0.35 = 0.04

)(xf 1.61 3.22 2.51

The objective function of the trial vector is compared with that of the target vector and

the vector with the lowest value of the two becomes “Individual 1” for the next

generation. To evolve “Individual 2” for the next generation, the second member of the

population is set as target vector and the above process is repeated. This process is

repeated NP times till the new population set array is filled which completes one

generation. Once the termination criterion is met, the algorithm ends.

Table 5. New population for next generation for the illustrative example

New Population for Next Generation

 Individual

1

Individual

2

Individual

3

Individual

4

Individual

5

Individual

6

1x 0.68

2x 0.89

3x 0.04

)(xf 1.61

 10

CHAPTER

3

HOW TO RUN THE DE PROGRAM?

Single objective Differential Evolution optimization algorithm has been programmed in

C language using Microsoft Visual C++ 6.0 for Windows. This Chapter explains how to

use the DE computer program for solving any optimization problem. The source code of

the DE program is available in Appendix I. The CD enclosed along with this book

contains a folder named “Program”. The folder contains the C program file “DE.c” which

requires two input files, “Limits.txt” and “ParameterLimits.txt”. The program generates

two output files, “ReportDE.html” and “Convergence.txt”.

In order to learn how to use the DE program, consider the following optimization

problem:

() ()22

21

2

2

2

1 7xx11xx)x(fMinimize −++−+=

subject to

()

0x,x

020xx4

026x5x

21

21

2

2

2

1

≥

≤−−

≤−+−

The algorithm is designed to accept optimization problem with an objective of

minimization type. If the objective of the problem is of maximization type, it should be

modified accordingly to use in the program. Each decision variable is represented from

x[0], x[1], x[2] and so on. Accordingly, the objective function for the example is written

as follows:

(x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11)+(x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-7)

 11

To enter the constraints, the inequality constraints should be modified to the less or equal

format, .0)x(g ≤ If the problem is an unconstrained optimization problem, the user need

not enter anything in the space specified for the constraints coding. The constraints of the

example are entered as follows:

/* Constraint 1*/

temp = (x[0]-5)*(x[0]-5) + x[1]*x[1] - 26;

 val[1] = max(temp,0);

/* Constraint 2 */

 temp = 4*x[0] + x[1] -20;

 val[2] = max(temp,0);

If the first constraint of the example is an equality constraint, the constraint should be

entered as follows:

/* Constraint 1 (Equality Condition) */

val[1] = abs((x[0]-5)*(x[0]-5) + x[1]*x[1] – 26);

where val[1] and val[2] represent the amount of violation for each constraint. These

values are multiplied by a penalty co-efficient penal[1] and penal[2] (entered by the user

of the program), which is then added to the objective function to continue the process of

optimization. This process is often termed as penalty function approach. A simple

additive penalty function approach is used in order to convert the constrained problem

into unconstrained problem. Due to this conversion, the solution falling outside the

feasible region is penalized and forced to fall into the feasible solution space after a few

generations. However, the penalty function method has certain weaknesses that are fatal

when the penalty parameters are large. Penalty functions tend to be ill conditioned near

the boundary of the feasible domain and that may result in a local optimal solution or an

 12

infeasible solution. Careful selection of the penalty parameters is required for the proper

convergence to a feasible optimal solution.

The main C program has many user-defined functions. The user needs to enter objective

function and constraints in the user-defined function evaluate(). The program code is

commented, so the user needs to follow the comments to enter the number of constraints,

ncons (in this example, ncons = 2), objective function, constraints (if any) and the penalty

coefficient for each constraint (if any), at the appropriate places. The “evaluate()”

function for the example problem is displayed below:

double evaluate(double *x)

{

 int ncons, i;

 double *val, *penal, temp;

 long double value=0;

 feval++;

/* DO NOT CHANGE ANYTHING ABOVE */

 /* Enter the Number of Constraints to the variable ncons*/

 ncons = 2;

 /*--*/

 val = (double *)malloc(sizeof(double)*ncons);

 penal = (double *)malloc(sizeof(double)*ncons);

 penal[0]=1;

/*----------------------CODE YOUR OBJECTIVE FUNCTIONS HERE------------*/

/*All functions must be of minimization type*/

 /*============Start Coding Your Objective Function=============*/

val[0] = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) +

 (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-7);

 /*========END YOUR CODING UPTO THIS POINT============*/

 13

 /*----------------------CODE YOUR CONSTRAINTS HERE------------*/

 /*All functions must be of minimization type, negate maximization functions */

 /*Constraints must be of the following type: g(x) <= 0. Enter the constraint

 equation to temp variable and don't change the expression for val[1].

 Similarly, do the same for other constraints. */

 /*============Start Coding Your Constraints=============*/

 /* Constraint 1*/

temp = (x[0]-5)*(x[0]-5) + x[1]*x[1] - 26;

 val[1] = max(temp,0);

/* Constraint 2*/

 temp = 4*x[0] + x[1] -20;

 val[2] = max(temp,0);

 /*Enter the Penalty Coefficient for Each constraint*/

 penal[1] = 1000;

 penal[2] = 1000;

 /*========END YOUR CODING UPTO THIS POINT============*/

 for (i=0;i<=ncons;i++) value = (value + penal[i]*val[i]);

 return value;

}

Similarly, the objective function without constraints needs to be entered in the function

“evaluateWOpenalty()”. The “evaluateWOpenalty()” function for the example problem

is displayed below:

double evaluateWOpenalty(double *x)

{

 double value;

 /* DO NOT CHANGE ANYTHING ABOVE */

 14

/*--------------------CODE YOUR OBJECTIVE FUNCTIONS HERE------------*/

/*All functions must be of minimization type*/

/*============Start Coding Your Objective Function=============*/

value = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) +

 (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-7);

 /*=========END CODING UPTO THIS POINT===================*/

 return value;

}

After inserting the objective function and constraints, the user needs to prepare the two

input files (“Limits.txt” and “ParameterLimits.txt”). In the “Limits.txt” input file, the

lower and upper bound for each decision variable separated by a tab, is entered. The

number of decision variables for the example is two. The lower and upper bounds for

each variable is assumed as 0 and 10 respectively. The “Limits.txt” input file for the

example is as follows:

0 10 � Lower and Upper bound of first decision variable

0 10 � Lower and Upper bound of second decision variable

The “ParameterLimits.txt” input file requires the number of decision variables (in the

first row), maximum number of generations (in the second row), minimum and maximum

number of population (NP), crossover constant (CR), weighting factor (F) along with

their step length for sensitivity analysis in the third, fourth and fifth rows respectively.

The input file for the example problem is as follows:

2 � Number of decision variables

30 � Maximum number of generations

20 20 10 � Minimum, maximum and step length for NP

0.8 0.9 0.1 � Minimum, maximum and step length for CR

0.5 0.6 0.1 � Minimum, maximum and step length for F

 15

This completes the preparation of inputs files. To generate the optimal set of solutions for

the optimization problem, DE program is compiled and executed. The program can be

compiled and execution using any standard C compiler for Windows environment. After

the execution starts, a DOS window pops up (as shown in Figure 2), displaying the

progress of the optimization process.

Fig. 2. DOS window displaying the progress of optimization

When the program is run for different combinations of NP, CR and F, the optimal set of

parameters is determined based on two factors i.e., minimum objective function value

and lower CPU time requirement. In any given situation, if minimum objective function

values are the same for any given combination(s), the next criteria that is chosen for

selecting optimal combination is lower CPU time requirement. In this program, these two

factors are considered for choosing optimal set of parameters. Two output files

(“ReportDE.html” and “Convergence.txt”) are generated after the successful completion

of the program’s execution.

“ReportDE.html” output file prints the detailed record of the objective function value for

all combinations of NP, CR and F for all ten strategies. It also records the best ever

combination for each strategy along with its objective function value, constraint

 16

violation, number of function evaluations and computational time. The optimal value of

objective function and decision variables for the optimization problem is also recorded.

The output file for the example is as follows:

Optimization by Differential Evolution

Strategy 1 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 1.776225E-005 (31 ms) 8.532469E-005 (62 ms)

CR = 0.90 1.954033E-006 (63 ms) 1.214437E-004 (78 ms)

Strategy 2 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 8.589940E-010 (78 ms) 7.677683E-009 (78 ms)

CR = 0.90 3.381982E-008 (94 ms) 7.682233E-007 (94 ms)

Strategy 3 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 3.777920E-005 (78 ms) 3.098915E-005 (94 ms)

CR = 0.90 4.402272E-007 (93 ms) 1.464849E-004 (94 ms)

Strategy 4 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 2.198994E-004 (78 ms) 5.341329E-007 (110 ms)

CR = 0.90 7.713227E-006 (109 ms) 1.041404E-004 (78 ms)

Strategy 5 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 5.074285E-007 (94 ms) 4.970142E-007 (94 ms)

CR = 0.90 5.250883E-005 (93 ms) 1.778123E-007 (94 ms)

Strategy 6 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 2.001744E-007 (110 ms) 6.724820E-005 (93 ms)

CR = 0.90 8.234626E-008 (125 ms) 3.239539E-005 (94 ms)

Strategy 7 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 7.588175E-009 (94 ms) 9.897662E-008 (94 ms)

CR = 0.90 7.055386E-009 (93 ms) 2.659110E-007 (94 ms)

Strategy 8 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 1.362700E-006 (109 ms) 1.225594E-005 (110 ms)

CR = 0.90 4.150216E-008 (109 ms) 7.398449E-006 (94 ms)

Strategy 9 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 5.604798E-006 (109 ms) 4.277174E-004 (94 ms)

CR = 0.90 3.914301E-005 (109 ms) 3.000180E-004 (94 ms)

 17

Strategy 10 :
NP = 20

NP = 20 F = 0.50 F = 0.60

CR = 0.80 1.259527E-009 (110 ms) 8.828525E-009 (93 ms)

CR = 0.90 1.220839E-006 (94 ms) 3.677681E-007 (94 ms)

Results :

Strategy
No.

Strategy NP CR F Optimal Value
Constraint
Violation

NFE
Time

Taken(ms)

1 DE/rand/1/bin 20 0.90 0.50
1.954033E-

006
0.0000E+000 703 63

2 DE/best/1/bin 20 0.80 0.50
8.589940E-

010
0.0000E+000 681 78

3 DE/best/2/bin 20 0.90 0.50
4.402272E-

007
0.0000E+000 681 93

4 DE/rand/2/bin 20 0.80 0.60
5.341329E-

007
0.0000E+000 769 110

5
DE/rand-to-
best/1/bin

20 0.90 0.60
1.778123E-

007
0.0000E+000 681 94

6 DE/rand/1/exp 20 0.90 0.50
8.234626E-

008
0.0000E+000 879 125

7 DE/best/1/exp 20 0.90 0.50
7.055386E-

009
0.0000E+000 681 93

8 DE/best/2/exp 20 0.90 0.50
4.150216E-

008
0.0000E+000 725 109

9 DE/rand/2/exp 20 0.80 0.50
1.954033E-

006
0.0000E+000 747 109

10
DE/rand-to-
best/1/exp

20 0.80 0.50
1.259527E-

009
0.0000E+000 769 110

Best Strategy is Strategy DE/rand/1/bin

Minimum constraint violation (CV) : 0.0000E+000
Minimum objective value with min CV: 1.954033E-006
Minimum time taken : 63

Parameter Value

X1 3.000126

X2 2.000219
End of report

“Convergence.txt” output file prints the record of the best objective function value for

each generation, strategy wise.

The maximum number of generations for the program has been limited to 5000. If the

user requires to run the program for more than 5000 generations, a minor modification in

the program is necessary. The first line in the main() program assigns the variable

nx=5000. The value of the variable nx needs to be modified accordingly. Similarly, the

value of EPSILON (i.e., the difference in objective function values between two

consecutive generations) can also be changed by the user in the program. It can be found

in the 17
th

 line of the program as “#define EPSILON 0.000001”. The default value of

 18

EPSILON is set as 0.000001 which is good enough for all kinds of optimization

problems.

Thus, one can modify the program to determine the optimal solution for any optimization

problem. This source code is distributed for academic purposes only. It has no warranty

implied or given, and the author assumes no liability for damage resulting from its use or

misuse. Please forward comments or question to the author at

vasan.arunachalam@gmail.com.

 19

CHAPTER

4

CONCLUSION

The book explains optimization using the Differential Evolution (DE) algorithm in detail.

The DE computer program is available on the accompanying CD. The source code is

written in C language in Microsoft Visual C++ 6.0 environment and a basic knowledge of

C programming language is sufficient to modify the program. The explanations on how

to modify the DE code to use it for various optimization problems are provided. The use

of the DE computer program is illustrated using an example problem.

 20

REFERENCES

DE. “Differential Evolution Homepage.” <http://www.icsi.berkeley.edu/~storn/code.html>

(Last accessed on July 15, 2008).

Onwubolu, G. C., and Babu, B. V. (2004). New Optimization Techniques in Engineering,

Springer-Verlag, Germany.

Price, V. Kenneth., and Storn, M. Rainer. (1997). “Differential evolution - A simple

evolution strategy for fast optimization.” Dr. Dobb's Journal, 22, 18-24 and 78.

Price, V. Kenneth., Storn, M. Rainer., and Lampinen, A. Jouni. (2005). Differential

evolution: A practical approach to global optimization. Springer-Verlag Berlin,

Heidelberg.

Storn, R., Price, V. Kenneth. (1995). Differential Evolution – A simple and eifficient

adaptive scheme for global optimization over continous spaces. Technical Report TR-95-

012, ICSI.

 21

APPENDIX A

SOURCE CODE OF DE ALGORITHM IN C

#include <stdio.h>

#include <stdlib.h>

#include <sys/timeb.h>

#include <time.h>

#include <math.h>

double sumarray(double *x,int start,int end);

double evaluateWOpenalty(double *x);

double evaluate(double *x);

double getDouble(const char *prompt);

double rnd_uni();

int getInt(const char *prompt);

void copyPoint(double *dest,double *source,int D);

double optimise(int gen_max, int D, int NP,double F,double CR,int strategy,double *Point);

int feval;

long timeTaken;

double **x1, **x2, resultpen;

#define EPSILON 0.000001

#define startBold fprintf(fp,"\n");fprintf(fp,"")

#define endBold fprintf(fp,"\n");fprintf(fp,"")

#define doubleLine fprintf(fp,"

\n")

#define singleLine fprintf(fp,"
\n")

#define Heading1 fprintf(fp,"\n")

#define endHeading1 fprintf(fp,"
\n")

#define Heading2 fprintf(fp,"\n")

#define endHeading2 fprintf(fp,"
\n")

/* HTML Report Generation functions */

void startHTMLBODY(FILE *fp)

{

 fprintf(fp,"<HTML><HEAD>");

 fprintf(fp,"<style type=\"text/css\"><!--\

.borderTL {\

 border-top: 1px solid #cccccc;\

 border-right: 1px none #999999;\

 border-bottom: 1px none #999999;\

 border-left: 1px solid #cccccc;\

}\

.borderBR {\

 border-top: 1px none #e9e9e9;\

 border-right: 1px solid #cccccc;\

 22

 border-bottom: 1px solid #cccccc;\

 border-left: 1px none #e9e9e9;\

}\

.data {\

 font-family: Arial, Helvetica, sans-serif;\

 font-size: 11px;\

 vertical-align: middle;\

 border-top-width: 1px;\

 border-right-width: 1px;\

 border-bottom-width: 1px;\

 border-left-width: 1px;\

 border-top-style: none;\

 border-right-style: solid;\

 border-bottom-style: solid;\

 border-left-style: none;\

 border-top-color: #999999;\

 border-right-color: #cccccc;\

 border-bottom-color: #cccccc;\

 border-left-color: #999999;\

 width: 200px;\

}\

.data1 {\

 font-family: Arial, Helvetica, sans-serif;\

 font-size: 11px;\

 text-align: center;\

 vertical-align: middle;\

 border-top-width: 1px;\

 border-right-width: 1px;\

 border-bottom-width: 1px;\

 border-left-width: 1px;\

 border-top-style: none;\

 border-right-style: solid;\

 border-bottom-style: solid;\

 border-left-style: none;\

 border-top-color: #999999;\

 border-right-color: #cccccc;\

 border-bottom-color: #cccccc;\

 border-left-color: #999999;\

 width: 150px;\

}\

-->\

</style>\n");

 fprintf(fp,"<TITLE>Report generated</TITLE>\n</HEAD>\n<BODY>\n");

 fprintf(fp,"\n");

 fprintf(fp,"\n");

 fprintf(fp,"Optimization by Differential Evolution");

 fprintf(fp,"
<HR>
");

 return;

}

 23

void closeHTML(FILE *fp)

{

 fprintf(fp,"\n\n</BODY>\n</HTML>\n");

 return;

}

int main()

{

int GENMAX, PARAMS, NP, NPmin, NPmax, sNP, i, j, nx=5000, ny, mx=10, oNP[10],

oNFE[10], strategy, best=0;

double CR, F, result, CRmin, CRmax, sCR, Fmin, Fmax, sF, *oCR, *oF, *oResult,

*wResult, **oPoint, *Point;

 long *oTime;

 char *strategies[14] = {

 "DE/rand/1/bin",

 "DE/best/1/bin",

 "DE/best/2/bin",

 "DE/rand/2/bin",

 "DE/rand-to-best/1/bin",

 "DE/rand/1/exp",

 "DE/best/1/exp",

 "DE/best/2/exp",

 "DE/rand/2/exp",

 "DE/rand-to-best/1/exp"

 };

 FILE *fp;

 fp = fopen("ParameterLimits.txt","r");

 fscanf(fp,"%d",&PARAMS);

 fscanf(fp,"%d",&GENMAX);

 fscanf(fp,"%d %d %d",&NPmin,&NPmax,&sNP);

 fscanf(fp,"%lf %lf %lf",&CRmin,&CRmax,&sCR);

 fscanf(fp,"%lf %lf %lf",&Fmin,&Fmax,&sF);

 fclose(fp);

 ny=PARAMS;

 Point = (double *)malloc(sizeof(double)*ny);

 oCR = (double *)malloc(sizeof(double)*mx);

 oF = (double *)malloc(sizeof(double)*mx);

 oResult = (double *)malloc(sizeof(double)*mx);

 wResult = (double *)malloc(sizeof(double)*mx);

 oTime = (long *)malloc(sizeof(long)*mx);

 x1 = (double **) malloc(nx * sizeof(double*));

 x1[0] = (double *) malloc((nx * ny) * sizeof(double));

 for(i = 1; i < nx; i++) x1[i] = x1[i-1] + ny;

 x2 = (double **) malloc(nx * sizeof(double*));

 x2[0] = (double *) malloc((nx * ny) * sizeof(double));

 for(i = 1; i < nx; i++) x2[i] = x2[i-1] + ny;

 24

 oPoint = (double **) malloc(mx * sizeof(double*));

 oPoint[0] = (double *) malloc((mx * ny) * sizeof(double));

 for(i = 1; i < mx; i++) oPoint[i] = oPoint[i-1] + ny;

 for(i=0;i<10;i++)

 for(j=0;j<PARAMS;j++)

 oPoint[i][j] = 0;

 fp= fopen("Convergence.txt","w");

 fclose(fp);

 fp= fopen("ReportDE.html","w");

 startHTMLBODY(fp);

 for(strategy=1;strategy<=10;strategy++)

 {

 printf("Strategy %d\n",strategy);

 Heading1;

 fprintf(fp,"Strategy %d :",strategy);

 endHeading1;

 oResult[strategy-1] = -1;

 for(NP=NPmin;NP<=NPmax;NP+=sNP)

 {

 printf("NP = %d\n",NP);

 Heading2;

 fprintf(fp,"NP = %d\n",NP);

 endHeading2;

fprintf(fp,"<TABLE cellpadding=\"0\" cellspacing=\"0\"

class=\"borderTL\">\n");

 fprintf(fp,"<TR><TD class=\"data1\">NP = %d</TD>\n",NP);

 for(F=Fmin;F<=Fmax;F+=sF)

fprintf(fp,"<TD class=\"data\" align=\"center\">F = %0.2lf</TD>\n",F);

 fprintf(fp,"</TR>\n");

 for(CR=CRmin;CR<=CRmax;CR+=sCR)

 {

fprintf(fp,"<TR><TD class=\"data1\" align=\"center\">CR =

%0.2lf</TD>\n",CR);

 for(F=Fmin;F<=Fmax;F+=sF)

 {

 feval = 0;

 result = optimise(GENMAX, PARAMS, NP, F, CR,

strategy, Point);

if(oResult[strategy-1]==-1 || oResult[strategy-1]>result)

 {

 oNFE[strategy-1] = feval;

 oResult[strategy-1] = result;

 wResult[strategy-1] = resultpen;

 oNP[strategy-1] = NP;

 oF[strategy-1] = F;

 oCR[strategy-1] = CR;

 25

 oTime[strategy-1] = timeTaken;

 copyPoint(oPoint[strategy-1],Point,ny);

 }

fprintf(fp,"<TD class=\"data\" align=\"right\">%0.6lE (%ld

ms)</TD>\n",result,timeTaken);

 }

 fprintf(fp,"</TR>\n");

 }

 fprintf(fp,"</TABLE>\n");

 }

 if(best==0 || oResult[strategy-1] <= oResult[best-1])

 best = strategy;

 }

 //Minium constraint violation value

 resultpen = wResult[0];

 for(i=1;i<10;i++) if(wResult[i]<resultpen) resultpen = wResult[i];

 //Best objective function value with minimum constraint violation

 i = 0;

 while(wResult[i]!=resultpen) i++;

 result = oResult[i];

 best = i+1;

for(i=best;i<10;i++) if(wResult[i]==resultpen && result<oResult[i]) oResult[i]=result;

 //Best strategy with time

 best = 0;

 timeTaken=-1;

 for(i=0;i<10;i++)

 if(wResult[i]==resultpen && oResult[i]==result)

 if(timeTaken==-1 || timeTaken > oTime[i])

 {

 timeTaken = oTime[i];

 best=i;

 }

 best++;

 Heading1;

 fprintf(fp,"Results : ");

 endHeading1;

fprintf(fp,"<TABLE cellpadding=\"0\" cellspacing=\"0\" class=\"borderTL\">\n");

fprintf(fp,"<TR><TD class=\"data1\" align=\"center\">Strategy No.</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">Strategy</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">NP</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">CR</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">F</TD>\n");

fprintf(fp,"<TD class=\"data1\" align=\"center\">Optimal Value</TD>\n");

fprintf(fp,"<TD class=\"data1\" align=\"center\">Constraint

Violation</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">NFE</TD>\n");

 26

fprintf(fp,"<TD class=\"data1\" align=\"center\">Time

Taken(ms)</TD></TR>\n");

 for(strategy=0;strategy<10;strategy++)

 {

 fprintf(fp,"<TR><TD class=\"data1\">%d</TD>\n",strategy+1);

 fprintf(fp,"<TD class=\"data1\">%s</TD>\n",strategies[strategy]);

 fprintf(fp,"<TD class=\"data1\">%d</TD>\n",oNP[strategy]);

 fprintf(fp,"<TD class=\"data1\">%0.2lf</TD>\n",oCR[strategy]);

 fprintf(fp,"<TD class=\"data1\">%0.2lf</TD>\n",oF[strategy]);

 fprintf(fp,"<TD class=\"data1\">%0.6lE</TD>\n",oResult[strategy]);

 fprintf(fp,"<TD class=\"data1\">%0.4lE</TD>\n",wResult[strategy]);

 fprintf(fp,"<TD class=\"data1\">%d</TD>\n",oNFE[strategy]);

 fprintf(fp,"<TD class=\"data1\">%ld</TD></TR>\n",oTime[strategy]);

 }

 fprintf(fp,"</TABLE>");

 Heading1;

 fprintf(fp,"Best Strategy is Strategy %s
",strategies[best-1]);

 endHeading1;

fprintf(fp,"Minimum constraint violation (CV) : %0.4lE
",resultpen);

fprintf(fp,"Minimum objective value with min CV: %0.6lE
",result);

 fprintf(fp,"Minimum time taken : %d
",timeTaken);

fprintf(fp,"<TABLE cellpadding=\"0\" cellspacing=\"0\" class=\"borderTL\">\n");

 fprintf(fp,"<TR>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">Parameter</TD>\n");

 fprintf(fp,"<TD class=\"data1\" align=\"center\">Value</TD></TR>\n");

 for(i=0;i<ny;i++)

 {

 fprintf(fp,"<TR><TD class=\"data1\">X_{%d}</TD>\n",i+1);

fprintf(fp,"<TD class=\"data1\" align=\"right\">%lf</TD></TR>\n",oPoint[best-

1][i]);

 }

 fprintf(fp,"</TABLE>");

 fprintf(fp,"End of report");

 closeHTML(fp);

 fclose(fp);

 return 0;

}

double optimise(int gen_max,int D,int NP,double F,double CR,int strategy,double *Point)

{

 int min_cost, count, a, b, c, d, e, i, j, k, imin;

 double result, cmin, *best, *bestit, *trial, *cost, score, *xlow, *xhigh;

 FILE *fp;

 struct timeb start,end;

 double epsilon;

 count = 0;

 xlow = (double *)malloc(sizeof(double)*D);

 27

 xhigh = (double *)malloc(sizeof(double)*D);

 best = (double *)malloc(sizeof(double)*D);

 bestit = (double *)malloc(sizeof(double)*D);

 trial = (double *)malloc(sizeof(double)*D);

 cost = (double *)malloc(sizeof(double)*NP);

 fp = fopen("limits.txt","r");

 for(i=0;i<D;i++)

 fscanf(fp,"%lf %lf",&xlow[i],&xhigh[i]);

 fclose(fp);

 ftime(&start);

 for(i=0;i<NP;i++)

 {

 for(j=0;j<D;j++)

 x1[i][j] = xlow[j]+rnd_uni()*(xhigh[j]-xlow[j]);

 cost[i] = evaluate(x1[i]);

 }

 cmin = cost[0];

 imin = 0;

 for (i=1; i<NP; i++)

 {

 if (cost[i]<cmin)

 {

 cmin = cost[i];

 imin = i;

 }

 }

 copyPoint(best,x1[imin],D); /*save best member ever */

 copyPoint(bestit,x1[imin],D); /*save best member of generation */

 fp = fopen("Convergence.txt","a");

 fprintf(fp,"\n\nStrategy %d (NP=%d; CR=%0.2lf; F=%0.2lf)\n",strategy, NP, CR, F);

 fprintf(fp,"------------------------------------\n");

 fclose(fp);

 while(!(fabs(epsilon)<EPSILON && count>=gen_max))

 {

 for(i=0;i<NP;i++)

 {

 do a=(int)(rnd_uni()*NP); while(a==i);

 do b=(int)(rnd_uni()*NP); while(b==i || b==a);

 do c=(int)(rnd_uni()*NP); while(c==i || c==b || c==a);

 do d=(int)(rnd_uni()*NP); while(d==i || d==c || d==b ||d==a);

 do e=(int)(rnd_uni()*NP); while(e==i || e==d || e==c ||e==b || e==a);

 /*--------------- DE/rand/1/bin ---------------------*/

 if(strategy == 1)

 {

 j= (int)(rnd_uni()*D);

 28

 for(k=1;k<=D;k++)

 {

 if(rnd_uni()<CR || k==D)

 trial[j] = x1[c][j]+F*(x1[a][j]-x1[b][j]);

 else

 trial[j] = x1[i][j];

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 }

 }

 /*--------------- DE/best/1/bin ---------------------*/

 else if(strategy == 2)

 {

 j= (int)(rnd_uni()*D);

 for(k=1;k<=D;k++)

 {

 if(rnd_uni()<CR || k==D)

 trial[j] = bestit[j]+F*(x1[a][j]-x1[b][j]);

 else

 trial[j] = x1[i][j];

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 }

 }

 /*--------------- DE/best/2/bin ---------------------*/

 else if(strategy == 3)

 {

 j= (int)(rnd_uni()*D);

 for(k=1;k<=D;k++)

 {

 if(rnd_uni()<CR || k==D)

trial[j] = bestit[j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-

x1[d][j]);

 else

 trial[j] = x1[i][j];

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 }

 }

 /*--------------- DE/rand/2/bin ---------------------*/

 else if(strategy == 4)

 {

 j= (int)(rnd_uni()*D);

 for(k=1;k<=D;k++)

 {

 29

 if(rnd_uni()<CR || k==D)

trial[j] = x1[e][j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-

x1[d][j]);

 else

 trial[j] = x1[i][j];

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 }

 }

 /*--------------- DE/rand-to-best/1/bin ---------------------*/

 else if(strategy == 5)

 {

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 for(k=1;k<=D;k++)

 {

 if(rnd_uni()<CR || k==D)

trial[j] = trial[j]+F*(bestit[j]-

trial[j])+F*(x1[a][j]-x1[b][j]);

 else

 trial[j] = x1[i][j];

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 }

 }

 /*--------------- DE/rand/1/exp ---------------------*/

 else if(strategy == 6)

 {

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 k=0;

 do

 {

 trial[j] = x1[c][j]+F*(x1[a][j]-x1[b][j]);

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 k++;

 }while(rnd_uni()<CR && k<D);

 }

 /*--------------- DE/best/1/exp ---------------------*/

 else if(strategy == 7)

 {

 30

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 k=0;

 do

 {

 trial[j] = bestit[j]+F*(x1[a][j]-x1[b][j]);

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 k++;

 }while(rnd_uni()<CR && k<D);

 }

 /*--------------- DE/best/2/exp ---------------------*/

 else if(strategy == 8)

 {

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 k=0;

 do

 {

 trial[j] = bestit[j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-x1[d][j]);

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 k++;

 }while(rnd_uni()<CR && k<D);

 }

 /*--------------- DE/rand/2/exp ---------------------*/

 else if(strategy == 9)

 {

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 k=0;

 do

 {

 trial[j] = x1[e][j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-x1[d][j]);

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 k++;

 }while(rnd_uni()<CR && k<D);

 }

 /*--------------- DE/rand-to-best/1/exp ---------------------*/

 else if(strategy == 10)

 {

 31

 copyPoint(trial,x1[i],D);

 j= (int)(rnd_uni()*D);

 k=0;

 do

 {

trial[j] = trial[j]+F*(bestit[j]-trial[j])+F*(x1[a][j]-

x1[b][j]);

 if(trial[j]>xhigh[j] || trial[j]<xlow[j])

 trial[j] = x1[i][j];

 j= (j+1)%D;

 k++;

 } while(rnd_uni()<CR && k<D);

 }

 score = evaluate(trial);

 if(score<=cost[i])

 {

 copyPoint(x2[i],trial,D);

 cost[i] = score;

 }

 else

 copyPoint(x2[i],x1[i],D);

 }

 for(i=0;i<NP;i++)

 copyPoint(x1[i],x2[i],D);

 imin = 0;

 for (i=1; i<NP; i++)

 {

 if (cost[i]<cmin)

 {

 cmin = cost[i];

 imin = i;

 }

 }

 count++;

 epsilon = evaluate(bestit);

 fp = fopen("Convergence.txt","a");

 fprintf(fp,"%d\t%0.6lE\n", count, epsilon);

 fclose(fp);

 copyPoint(bestit,x1[imin],D); /* save best member of generation */

 epsilon -= evaluate(bestit); /* Determines the epsilon value */

 }

 min_cost = 0;

 for(i=1;i<NP;i++) if(cost[i] < cost[min_cost]) min_cost = i;

 copyPoint(Point,x1[min_cost],D);

 result = evaluateWOpenalty(Point);

 resultpen = (fabs(fabs(result)-fabs(evaluate(Point))));

 ftime(&end);

 32

 timeTaken= (end.time-start.time)*1000;

 timeTaken+= (end.millitm-start.millitm);

 return result;

}

double sumarray(double *x,int start,int end)

{

 int i;

 double result=0;

 for(i=start;i<=end;i++)

 result+= x[i];

 return result;

}

int getInt(const char *prompt)

{

 int result;

 printf(prompt);

 scanf("%d",&result);

 return result;

}

double getDouble(const char *prompt)

{

 double result;

 printf(prompt);

 scanf("%lf",&result);

 return result;

}

double rnd_uni()

{

 int r;

 r= rand();

 return (double)(r)/RAND_MAX;

}

void copyPoint(double *dest,double *source,int D)

{

 int i;

 for(i=0;i<D;i++)

 dest[i] = source[i];

 return;

}

double evaluateWOpenalty(double *x)

{

 double value;

 33

/* DO NOT CHANGE ANYTHING ABOVE */

/*----------------------CODE YOUR OBJECTIVE FUNCTIONS HERE------------*/

 /*All functions must be of minimization type*/

 /*Example for Objective Function

val[0] = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) + (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-

7);

 --*/

 /*============Start Coding Your Objective Function=============*/

value = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) + (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-

7);

 /*============END CODING UPTO THIS POINT======================*/

 return value;

}

double evaluate(double *x)

{

 int ncons, i;

 double *val, *penal, temp;

 long double value=0;

 feval++;

 /* DO NOT CHANGE ANYTHING ABOVE */

 /* Enter the Number of Constraints to the variable ncons*/

 ncons = 2;

 /*--*/

 val = (double *)malloc(sizeof(double)*ncons);

 penal = (double *)malloc(sizeof(double)*ncons);

 penal[0]=1;

 /*----------------------CODE YOUR OBJECTIVE FUNCTIONS HERE------------*/

 /*All functions must be of minimization type*/

 /*Example for Objective Function

val[0] = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) + (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-

7);

 --*/

 34

/*============Start Coding Your Objective Function=============*/

val[0] = (x[0]*x[0]+x[1]-11)*(x[0]*x[0]+x[1]-11) + (x[0]+x[1]*x[1]-7)*(x[0]+x[1]*x[1]-

7);

 /*========END YOUR CODING UPTO THIS POINT============*/

 /*----------------------CODE YOUR CONSTRAINTS HERE------------*/

 /*All functions must be of minimization type, negate maximization functions */

 /*Constraints must be of the following type: g(x) <= 0. Enter the constraint

 equation to temp variable and don't change the expression for val[1].

 Similarly, do the same for other constraints. See the example below.*/

 /*Example for Objective Function

 temp = (x[0]-5)*(x[0]-5) + x[1]*x[1] - 26;

 val[1] = max(temp,0);

If the constraint of the example is an equality constraint, the constraint should be entered

as follows:

 val[1] = abs((x[0]-5)*(x[0]-5) + x[1]*x[1] - 26);

 --*/

 /*============Start Coding Your Constraints=============*/

 /* Constraint 1

 temp = (x[0]-5)*(x[0]-5) + x[1]*x[1] - 26;

 val[1] = max(temp,0);

 /* Constraint 2

 temp = 4*x[0] + x[1] - 20;

 val[2] = max(temp,0);

 /*Enter the Penalty Coefficient for Each constraint*/

 penal[1] = 1000;

 penal[2] = 1000;

 /*========END YOUR CODING UPTO THIS POINT============*/

 for (i=0;i<=ncons;i++)

 value = value + penal[i]*val[i];

 return value;

}

 35

APPENDIX B

PREVIOUS REPORTS IN THE SERIES

ISSN: (print) 1913-3200; (online) 1913-3219

1. Slobodan P. Simonovic (2001). Assessment of the Impact of Climate Variability and

Change on the Reliability, Resiliency and Vulnerability of Complex Flood Protection

Systems. Water Resources Research Report no. 038, Facility for Intelligent Decision

Support, Department of Civil and Environmental Engineering, London, Ontario,

Canada, 91 pages. ISBN: (print) 978-0-7714-2606-3; (online) 978-0-7714-2607-0.

2. Predrag Prodanovic (2001). Fuzzy Set Ranking Methods and Multiple Expert

Decision Making. Water Resources Research Report no. 039, Facility for Intelligent

Decision Support, Department of Civil and Environmental Engineering, London,

Ontario, Canada, 68 pages. ISBN: (print) 978-0-7714-2608-7; (online) 978-0-7714-

2609-4.

3. Nirupama and Slobodan P. Simonovic (2002). Role of Remote Sensing in Disaster

Management. Water Resources Research Report no. 040, Facility for Intelligent

Decision Support, Department of Civil and Environmental Engineering, London,

Ontario, Canada, 107 pages. ISBN: (print) 978-0-7714-2610-0; (online) 978-0-7714-

2611-7.

4. Taslima Akter and Slobodan P. Simonovic (2002). A General Overview of

Multiobjective Multiple-Participant Decision Making for Flood Management. Water

Resources Research Report no. 041, Facility for Intelligent Decision Support,

Department of Civil and Environmental Engineering, London, Ontario, Canada, 65

pages. ISBN: (print) 978-0-7714-2612-4; (online) 978-0-7714-2613-1.

5. Nirupama and Slobodan P. Simonovic (2002). A Spatial Fuzzy Compromise

Approach for Flood Disaster Management. Water Resources Research Report no.

042, Facility for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 138 pages. ISBN: (print) 978-0-7714-2614-8;

(online) 978-0-7714-2615-5.

6. K. D. W. Nandalal and Slobodan P. Simonovic (2002). State-of-the-Art Report on

Systems Analysis Methods for Resolution of Conflicts in Water Resources

Management. Water Resources Research Report no. 043, Facility for Intelligent

Decision Support, Department of Civil and Environmental Engineering, London,

 36

Ontario, Canada, 216 pages. ISBN: (print) 978-0-7714-2616-2; (online) 978-0-7714-

2617-9.

7. K. D. W. Nandalal and Slobodan P. Simonovic (2003). Conflict Resolution Support

System – A Software for the Resolution of Conflicts in Water Resource Management.

Water Resources Research Report no. 044, Facility for Intelligent Decision Support,

Department of Civil and Environmental Engineering, London, Ontario, Canada, 144

pages. ISBN: (print) 978-0-7714-2618-6; (online) 978-0-7714-2619-3.

8. Ibrahim El-Baroudy and Slobodan P. Simonovic (2003). New Fuzzy Performance

Indices for Reliability Analysis of Water Supply Systems. Water Resources Research

Report no. 045, Facility for Intelligent Decision Support, Department of Civil and

Environmental Engineering, London, Ontario, Canada, 90 pages. ISBN: (print) 978-

0-7714-2620-9; (online) 978-0-7714-2621-6.

9. Juraj Cunderlik (2003). Hydrologic Model Selection for the CFCAS Project:

Assessment of Water Resources Risk and Vulnerability to Changing Climatic

Conditions. Water Resources Research Report no. 046, Facility for Intelligent

Decision Support, Department of Civil and Environmental Engineering, London,

Ontario, Canada, 40 pages. ISBN: (print) 978-0-7714-2622-3; (online) 978-0-7714-

2623-0.

10. Juraj Cunderlik and Slobodan P. Simonovic (2004). Selection of Calibration and

Verification Data for the HEC-HMS Hydrologic Model. Water Resources Research

Report no. 047, Facility for Intelligent Decision Support, Department of Civil and

Environmental Engineering, London, Ontario, Canada, 29 pages. ISBN: (print) 978-

0-7714-2624-7; (online) 978-0-7714-2625-4.

11. Juraj Cunderlik and Slobodan P. Simonovic (2004). Calibration, Verification and

Sensitivity Analysis of the HEC-HMS Hydrologic Model. Water Resources Research

Report no. 048, Facility for Intelligent Decision Support, Department of Civil and

Environmental Engineering, London, Ontario, Canada, 113 pages. ISBN: (print) 978-

0-7714-2626-1; (online) 978-0-7714-2627-8.

12. Predrag Prodanovic and Slobodan P. Simonovic (2004). Generation of Synthetic

Design Storms for the Upper Thames River basin. Water Resources Research Report

no. 049, Facility for Intelligent Decision Support, Department of Civil and

Environmental Engineering, London, Ontario, Canada, 20 pages. ISBN: (print) 978-

0-7714-2628-5; (online) 978-0-7714-2629-2.

13. Ibrahim El-Baroudy and Slobodan P. Simonovic (2005). Application of the Fuzzy

Performance Indices to the City of London Water Supply System. Water Resources

Research Report no. 050, Facility for Intelligent Decision Support, Department of

Civil and Environmental Engineering, London, Ontario, Canada, 137 pages. ISBN:

(print) 978-0-7714-2630-8; (online) 978-0-7714-2631-5.

14. Ibrahim El-Baroudy and Slobodan P. Simonovic (2006). A Decision Support System

for Integrated Risk Management. Water Resources Research Report no. 051, Facility

 37

for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 146 pages. ISBN: (print) 978-0-7714-2632-2;

(online) 978-0-7714-2633-9.

15. Predrag Prodanovic and Slobodan P. Simonovic (2006). Inverse Flood Risk

Modelling of The Upper Thames River Basin. Water Resources Research Report no.

052, Facility for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 163 pages. ISBN: (print) 978-0-7714-2634-6;

(online) 978-0-7714-2635-3.

16. Predrag Prodanovic and Slobodan P. Simonovic (2006). Inverse Drought Risk

Modelling of The Upper Thames River Basin. Water Resources Research Report no.

053, Facility for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 252 pages. ISBN: (print) 978-0-7714-2636-0;

(online) 978-0-7714-2637-7.

17. Predrag Prodanovic and Slobodan P. Simonovic (2007). Dynamic Feedback Coupling

of Continuous Hydrologic and Socio-Economic Model Components of the Upper

Thames River Basin. Water Resources Research Report no. 054, Facility for

Intelligent Decision Support, Department of Civil and Environmental Engineering,

London, Ontario, Canada, 437 pages. ISBN: (print) 978-0-7714-2638-4; (online) 978-

0-7714-2639-1.

18. Subhankar Karmakar and Slobodan P. Simonovic (2007). Flood Frequency Analysis

Using Copula with Mixed Marginal Distributions. Water Resources Research Report

no. 055, Facility for Intelligent Decision Support, Department of Civil and

Environmental Engineering, London, Ontario, Canada, 144 pages. ISBN: (print) 978-

0-7714-2658-2; (online) 978-0-7714-2659-9.

19. Jordan Black, Subhankar Karmakar and Slobodan P. Simonovic (2007). A Web-

Based Flood Information System. Water Resources Research Report no. 056, Facility

for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 133 pages. ISBN: (print) 978-0-7714-2660-5;

(online) 978-0-7714-2661-2.

20. Angela Peck, Subhankar Karmakar and Slobodan P. Simonovic (2007). Physical,

Economical, Infrastructural and Social Flood Risk – Vulnerability Analyses in GIS.

Water Resources Research Report no. 057, Facility for Intelligent Decision Support,

Department of Civil and Environmental Engineering, London, Ontario, Canada, 80

pages. ISBN: (print) 978-0-7714-2662-9; (online) 978-0-7714-2663-6.

21. Predrag Prodanovic and Slobodan P. Simonovic (2007). Development of Rainfall

Intensity Duration Frequency Curves for the City of London Under the Changing

Climate. Water Resources Research Report no. 058, Facility for Intelligent Decision

Support, Department of Civil and Environmental Engineering, London, Ontario,

Canada, 51 pages. ISBN: (print) 978-0-7714-2667-4; (online) 978-0-7714-2668-1.

 38

22. Evan G. R. Davies and Slobodan P. Simonovic (2008). An integrated system

dynamics model for analyzing behaviour of the social-economic-climatic system:

Model description and model use guide. Water Resources Research Report no. 059,

Facility for Intelligent Decision Support, Department of Civil and Environmental

Engineering, London, Ontario, Canada, 233 pages. ISBN: (print) 978-0-7714-2679-7;

(online) 978-0-7714-2680-3.

